

SEMANTIC BASED TASK PLANNING FOR

DOMESTIC SERVICE ROBOTS

A thesis submitted to Cardiff University in

candidature for the degree of

Doctor of Philosophy

By

AHMED ABDULHADI AHMED AL-MOADHEN

School of Engineering

Cardiff University

United Kingdom

April 2015

i

Abstract

Task Planning is developed for an autonomous mobile robot in order to support the

robot to accomplish tasks in various degrees of environmental complexity. This

environment can be fixed or deterministic (as in a factory), dynamic (as in the human

domestic household), or non-deterministic (as in the space exploration). The robot

should be provided with a reliable planning system in order to face its major challenge

of being certain that its plan to accomplish a task is generated correctly, regardless of

the dynamic or uncertain elements of its environment.

This thesis is focused on providing the robot task planner with the ability to generate

its plans reliably and detect the failures in generating correct plans. Previous

approaches for generating plans depended mainly on action effects (explicit effects)

that are encoded in the action model. This means that the action effects should cover

most of the characteristics of the newly generated world state. However, this extra

information can complicate the action model, especially in the real world.

In this thesis, a semantic knowledge base is proposed to derive and check implicit

information about the effects of actions during plan generation. For example, this

approach would inform the robot, that it had entered a bedroom because it has

recorded at least one bed and zero ovens. When a robot enters a room, the implicit

expectations are derived from a semantic knowledge base about that type of room.

These expectations should be verified in order to make sure the robot is in the correct

room.

The main contributions of this thesis are as follows:

 The concept of using the Semantic Knowledge Base (SKB) to support the robot

task planner under deterministic conditions has been defined. A new model of

high-level robot actions has been developed, and this model represents the

details of robot action as ontology. This model is thus known as the Semantic

Action Model (SAM). An algorithm that integrates SKB and SAMs has also

been developed. This algorithm creates the “planning domain” in the Planning

Domain Definition Language (PDDL) style. This is used as input to the planner

to generate the plan for robot tasks. Then, a general purpose planning algorithm

has also been defined, which can support planning under deterministic

conditions, and is based on using ontology to represent SKB.

ii

 A further contribution relates to the development of a probabilistic approach to

deal with uncertainty in semantic knowledge based task planning. This approach

shows how uncertainties in action effects and world states are taken into account

by the planning system. This contribution also served to resolve situations of

confusion in finding an object relevant to the successful generation of an action

during task planning. The accuracy related to this type of planning in navigation

scenario, on average, is (90.10%).

 An additional contribution is using the planning system to respond to

unexpected situations which are caused by lack of information. This

contribution is formalised as a general approach that models cases of incomplete

information as a planning problem. This approach includes a sequence of steps

for modelling and generating a plan of actions to collect the necessary

information from the knowledge base to support the robot planner in generating

its plan. This results in developing a new type of action which is known as a

Semantic Action Model for Information Gathering (SAM_IG). These actions

have the ability to access the knowledge base to retrieve the necessary

information to support the planning system when it is faced with incomplete

information. The information gathering approach is also used to gather the

necessary information in order to check the implicit expectations of the

generated actions. The correct classification related to this type of planning in

navigation scenario, on average, is (92.83 %).

 Another contribution is concerned with solving the problem of missing

information, which is using the methods for measuring concept similarity in

order to extend the robot world state with new similar objects to the original one

in the action model. This results in developing Semantic Realisation and

Refreshment Module (SRRM) which has the ability to estimate the similarities

between objects and the quality of the alternative plans. The quality of the

alternative plans could be similar to the original plan, in average, 92.1%.

The results reported in this thesis have been tested and verified in simulation

experiments under the Robot Operating System (ROS) middleware. The performance

of the planning system has been evaluated by using the planning time and other

known metrics. These results show that using semantic knowledge can lead to high

performance and reliability in generating robot plans during its operation.

iii

Acknowledgements

I thank my God ‘Allah’ for his mercy and kindness to support me in all period of my

life.

I owe my parents a great gratitude for all their love, prayer and support. This work

would not have been possible without the support, appreciation and patience of my

wife Zahraa and our children Ali and Abdullah.

I would like to express my gratitude to all those who have helped me, in any way, to

successfully complete my PhD thesis.

In particular, I would like to express my sincere thanks to my supervisors, Dr Michael

Packianather and Prof Rossi Setchi and, my supervisor for the first two years of my

PhD study, Dr Renxi Qiu, for their encouragement and invaluable advice and guidance

throughout my study.

Also, I would like to thank my brothers and sisters for their prayer to support me. I

would like to thank Dr Ze Ji for his time that he had spent with me to discuss about the

research.

I would like to thank “coursera”, an educational platform "https://www.coursera.org/",

for providing very good courses which I used online for developing my experiences

and skills.

Grateful acknowledgement is made to my country “Iraq” for granting me this

opportunity to develop my knowledge and experience.

iv

Dedication

This work is entirely dedicated to my Queen ‘Fatima’ the daughter of Prophet of God

Mohammed 'May Allah grant peace and honour on him and his family'.

This work is also dedicated to

My Grandfather

My Parents

My Wife

My Children

v

Declaration and Statements

Declaration

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

Signed ……………..… (Ahmed Abdulhadi Ahmed Al-Moadhen) Date ………

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree

of PhD

Signed ……………….… (Ahmed Abdulhadi Ahmed Al-Moadhen) Date ……

Statement 2

This thesis is the result of my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.

Signed ……………….… (Ahmed Abdulhadi Ahmed Al-Moadhen) Date ………

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed ……………….… (Ahmed Abdulhadi Ahmed Al-Moadhen) Date ………

vi

Table of Contents

Abstract ... i

Acknowledgements ... iii

Dedication ... iv

Declaration and Statements ... v

Table of Contents ... vi

List of Figures ... xiv

List of Tables .. xvi

List of Algorithms .. xix

Abbreviations .. xx

List of Shapes .. xxii

Chapter 1: Introduction .. 1

1.1 Introduction ... 1

1.2 Motivation .. 6

1.3 Scope of the Thesis .. 8

1.4 Research Methodology.. 10

1.5 Aim and Objectives ... 12

1.6 Thesis Statement ... 13

1.7 Thesis Outline .. 14

1.8 Publications .. 15

vii

Chapter 2: Background and Related Work .. 17

2.1 Introduction ... 17

2.2 Generating of Robot Plans ... 17

2.3 Overview of Literature Regarding Task Planning .. 21

2.3.1 Reviewing Planning under Deterministic Conditions 21

2.3.2 Reviewing Planning under Probabilistic Conditions 26

2.4 Techniques for Planning System ... 28

2.5 Automated Plan Construction ... 33

2.5.1 Planning in Hierarchical Networks ... 34

2.5.2 Planning Actions with Regression Assessment .. 35

2.5.3 Proposed Planning System ... 36

2.6 Summary .. 37

Chapter 3: Planning System Tools ... 40

3.1 Introduction ... 40

3.2 Planning Domain and Problem Representation ... 42

 The STRIPS Model ... 43 3.2.1

 Definition of the PDDL Language ... 45 3.2.2

3.3 Knowledge Representation Methods ... 52

 Description Logics (DLs) .. 53 3.3.1

viii

 Ontology Layout ... 56 3.3.2

3.4 Graphical Models .. 59

 Markov Networks (MNs) ... 60 3.4.1

 Markov Logic Networks (MLNs) .. 64 3.4.2

3.5 Planning System Architecture ... 65

3.6 Plan Generation under Deterministic and Probabilistic Conditions 67

3.7 Robot and Environment Specifications ... 68

3.8 Summary .. 70

Chapter 4: Semantic Based Planning under Deterministic Conditions........................ 72

4.1 Introduction ... 72

4.2 A Motivating Scenario .. 74

4.3 Robot Semantic Knowledge Base (Robot Environment Ontology) 77

4.4 Planning System Architecture ... 83

4.4.1 Semantic Action Models (SAMs) ... 84

4.4.2 Planner ... 88

4.4.3 Semantic Action Model Transformation to Planning Domain Definition

Algorithm.. 89

4.4.4 Problem Definitions .. 90

4.5 Overview of the Approach.. 91

4.5.1 The Overall Planning Process ... 92

ix

4.5.2 Planning Basics ... 94

4.5.3 Semantic Plan Generation Process.. 96

4.6 Experiments ... 98

4.6.1 Environment Setup for Plan Analysis .. 99

4.6.1.1 Knowledge Based Deterministic Planning (Exact Plan) 100

4.6.2 Testing Planning System Efficiency Using Performance Metrics 103

4.6.2.1 Metrics for Performance Evaluation .. 103

4.6.2.2 Analysing Planning System Behaviour using Performance Metrics

... 103

4.6.3 Statistical Analysis of the T-Test ... 109

4.7 Discussion ... 111

4.8 Summary .. 114

Chapter 5: Semantic Based Planning under Probabilistic Conditions 115

5.1 Introduction ... 115

5.2 Overview of the Approach.. 116

5.2.1 Motivation ... 120

5.3 Probabilistic Planning System Architecture ... 123

5.3.1 Markov Logic Networks (MLNs) .. 124

5.3.2 MLN Learning Phase ... 125

x

5.3.3 MLN as Inference Engine .. 128

5.3.4 SKB to MLN Algorithm ... 130

5.3.5 Examples .. 131

5.4 Testing Scenarios ... 131

5.4.1 Simulation Results .. 132

5.4.2 Metrics for Performance Evaluation .. 132

5.4.3 Manipulation Scenario ... 133

5.4.4 Navigation Scenario .. 134

5.4.5 Threshold for Decision Making ... 134

5.4.6 Example ... 135

5.4.7 Probabilistic Plan Generation ... 138

5.4.8 Sabotaged SAMs ... 143

5.5 Discussion ... 145

5.6 Summary .. 147

Chapter 6: Semantic Task Planning Based on Information Gathering 148

6.1 Introduction ... 148

6.2 Motivations .. 149

6.3 Gathering Information by Planning .. 151

6.4 Predicting Information Gathering under Uncertain Planning 153

xi

6.4.1 Decision Making ... 153

6.4.2 Including an Evidence Space ... 155

6.5 Gathering Information from Knowledge Bases ... 156

6.5.1 Complete vs Incomplete Information Planning Domain 159

6.5.2 Semantic Action Model for Information Gathering (SAM_IG)........... 163

6.6 Planning Process ... 164

6.6.1 Initial Belief State ... 164

6.6.2 Goal Specification ... 166

6.6.3 Plan Generation .. 167

6.7 Information Gathering for Planning under Probabilistic Cases 169

6.7.1 Information Gain .. 170

6.8 Experimental evaluation ... 172

6.8.1 Information Gathering for Deterministic Planning 172

6.8.2 Information Gathering for Probabilistic Planning 177

6.9 Discussion ... 180

6.10 Summary .. 182

Chapter 7: Planning under Extended Conditions .. 184

7.1 Introduction ... 184

7.2 A Motivation .. 185

xii

7.3 Recovering from Unsuccessful Planning ... 186

7.3.1 Semantic Realisation and Refreshment Module (SRRM) 188

7.3.2 Hierarchical Relationships ... 189

7.3.3 Semantic Similarity .. 189

7.3.4 Formal Conditions of Classes’ Relevance .. 190

7.3.5 Extending Initial State and Action Details by Semantic Realisation and

Refreshment Module ... 191

7.3.6 Plan Accuracy Assessment ... 194

7.4 Experiments ... 196

7.4.1 Environment Setup for Plan analysis ... 197

7.4.1.1 Knowledge-Based Deterministic Planning and Re-Planning 198

7.4.1.2 Time Performance of the Planning System under Extended

Conditions .. 201

7.4.2 Comparing Time Performance of Planning under Extended Conditions

with other Planning Methods ... 203

7.5 Discussion ... 204

7.6 Summary .. 206

Chapter 8: Conclusions, Contributions and Future Work .. 207

8.1 Conclusions .. 207

8.2 Contributions ... 211

xiii

8.3 Limitations ... 214

8.4 Future Work .. 215

Appendix ... 217

References ... 227

xiv

List of Figures

Figure 1.1: A Summary of the Thesis Outline and Research Questions 16

Figure 2.1: Steps of Learning and Generation of Symbolic Plans by a Mobile Robot. .. 20

Figure 3.1: The Typical Structure of a PDDL Domain. .. 47

Figure 3.2: The Typical Structure of a PDDL Problem .. 48

Figure 3.3: Planning System Architecture .. 66

Figure 4.1: Robot Environment .. 75

Figure 4.2: Robot Knowledge Ontology ... 81

Figure 4.3: Planning System Architecture .. 84

Figure 4.4: Semantic Action Model for Move Action (SAM) .. 85

Figure 4.5: Mapping between Semantic Action Model and Planning Domain 87

Figure 4.6: True Positive Rate (TPR) and True Negative Rate (TNR) Achieved by

Planning System for Different Types of Objects. ... 107

Figure 4.7: True Positive Rate (TPR) and True Negative Rate (TNR) Achieved by

Planning System for Different Types of Rooms. .. 107

Figure 5.1: Probabilistic Planning System Architecture. .. 124

Figure 5.2: MLN Learning Phase.. 127

Figure 5.3: MLN Inference (Query) Phase ... 130

file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126343
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126359
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126368
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126369
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126370
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126382
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126383
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126384
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126385
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126386
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126387
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126387
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126388
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126388
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126396
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126397
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126398

xv

Figure 6.1: Mapping between Semantic Knowledge Information Gathering and the

Incomplete Information Planning Domain ... 162

Figure 6.2: Semantic Action Model for Information Gathering SAM_IG. 164

Figure 6.3: The Percentage of Times the Information Gathering Algorithm Supports the

Planning System to Find Plans for the Robot Delivery and Arrange Problem as a

Function of the Amount of Information Available During Planning. 174

Figure 6.4: The Probability of Finding Plans When the Planning System is Supported by

the Information Gathering Algorithm. .. 180

Figure 7.1: Enhanced Planning System Architecture with Semantic Realisation and

Refreshment Module (SRRM). ... 187

Figure 7.2: Robots can Find Objects Based on their Properties 200

file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126411
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126411
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126412
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126413
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126413
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126413
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126414
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126414
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126420
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126420
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126421

xvi

List of Tables

Table 2.1: Summary of Reviewing Actions Planning Systems. 32

Table 3.1: A Comparison Between OWL and DL Constructors 57

Table 3.2: A Comparison between OWL and DL Axioms ... 58

Table 4.1: Results from Running the Planning System under Deterministic Conditions

for the Actions take and move. The Cells Represent Number of Runs that result in

Matched (M), Unmatched (U) or Ambiguous (A) Outcomes. 105

Table 4.2: The Percentage (%) Rates of True Positives (TPR) and False Positives (FPR)

of Planning System under Deterministic Conditions for the Actions take and move. Two

World Features are Considered: Open World Treating Ambiguous as a Successful Case

and Closed World Treating Ambiguous as a New Case. .. 108

Table 5.1: The Result of Querying About the Type of Room r1 138

Table 5.2: Results from Running the Planning System under Probabilistic Conditions

for the Actions take and move with Open World Feature. Each Cell Represents the

Number of Runs that Result in Matched (M) between Action Outcome (out_1 or out_2)

and Probabilistic Results, or Unmatched (U) between Action Outcome (out_1 or out_2)

and Probabilistic Results. .. 141

Table 5.3: Results from Running the Planning System under Probabilistic Conditions

for the Actions take and move with Closed World Feature. Each Cell Represents the

Number of Runs that Result in Matched (M) between Action Outcome (out_1 or out_2)

xvii

and Probabilistic Results, or Unmatched (U) between Action Outcome (out_1 or out_2)

and Probabilistic Results. .. 141

Table 5.4: The Percentage (%) Rates of True Positive Rate (TPR) and False Positive

Rate (FPR) of the Planning System under Probabilistic Conditions for the Two Actions

move and take. Two World Features are Considered: Open and Closed World Features.

 ... 141

Table 5.5: Accuracy of Planning System under Probabilistic Conditions in Navigation

and Manipulation Actions Using the Two World Features Open and Close. The results

are given as percentages (%). .. 142

Table 5.6: Precision of Planning System under Probabilistic Conditions in Navigation

and Manipulation Actions Using the Two World Features Open and Close. The results

are given as percentages (%). .. 142

Table 5.7: Recall of Planning System under Probabilistic Conditions in Navigation and

Manipulation Actions Using the Two World Features Open and Close. The results are

given as percentages (%). .. 143

Table 5.8: The Results from Running the Planning System under Probabilistic

Conditions for Navigation Actions with Accurate and Sabotaged SAM Models. Each

Cell Represents the Number of Runs that Result in Matched (M) between Action

Outcome (out_1 or out_2) and Probabilistic Results, or Unmatched (U) between Action

Outcome (out_1 or out_2) and Probabilistic Results. ... 144

xviii

Table 5.9: The Percentage (%) Rates of True Positives Rates (TPR) and False Positives

Rates (FPR) of the Planning System under Probabilistic Conditions Using Accurate and

Sabotaged Navigation SAM Models. .. 145

Table 5.10: Accuracy and Precision of the Planning System under Probabilistic

Conditions Using Sabotaged and Accurate SAM Models in Navigation Actions. The

Results are Given as Percentage (%). ... 145

Table 6.1: Results from Running the Information Gathering Plan Generation for the

Actions find and explore. The Cells Represent Number of Runs that result in Matched

(M), Unmatched (U) or Ambiguous (A) Outcomes. ... 177

Table 6.2: The Percentage (%) Rates of True Positives (TPR) and False Positives (FPR)

for the Information Gathering Plan Generation for the Actions find and explore. Two

World Features are Considered: Open World Treating Ambiguous Cases as Successful,

and Closed World Treating Ambiguous Cases as a New Case. 177

Table 7.1: Robot Actions .. 199

Table 7.2: Percentage (%) of Object Similarity. ... 200

Table 7.3: Preplanning Time Measurements in Milliseconds for Experiments in the

Planning System. ... 202

Table 7.4: Measurements of Time in Milliseconds for Experiments Conducted in the

Planning System for Three Different Situations: Deterministic, Probabilistic and

Information Gathering. .. 204

file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126567
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126567
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126567

xix

List of Algorithms

Algorithm 4.1 .. 90

Algorithm 4.2 .. 97

Algorithm 5.1 .. 130

Algorithm 6.1 .. 163

Algorithm 7.1 .. 192

file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126582
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126583
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126591
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126602
file:///D:/PROJECT/Papers/ahmed/CH/corrections/After%20Viva/My%20Master_submitted.docx%23_Toc422126612

xx

Abbreviations

ABox Assertion Box

A Ambiguous Results

BLN Bayesian Logic Network

DL Description Logics

FPR False Positive Rate

GI Gain in the Information

GPS General Problem Solver

HTN Hierarchical Task Network

IG Information Gathering

IPC International Planning Competition

Java API Java Application Programming Interface

KB Knowledge Base

M Matched Result

MLN Markov Logic Network

MN Markov network

OMRKF Ontology-based Multi-layered Robot Knowledge Framework

xxi

OMICS Open Mind Indoor Common Sense project

Optop Opt-based total-order

OWL Web Ontology Language

POMDP Partially observable Markov decision process

PDDL Planning Domain Definition Language

SAM Semantic Action Model

SAM_IG Semantic Action Model for Information Gathering

SKB semantic knowledge base

SRRM Semantic Refreshment and Realisation Module

SBox Spatial Box

STRIPS Stanford Research Institute Problem Solver

TBox Taxonomy Box

TNR True Negative Rate

TPR True Positive Rate

U Unmatched Results

xxii

List of Shapes

Knowledge Base

Primary Process

Input Files

Output File(s)

Secondary Process

Decision

xxiii

Data Base (Direct Data)

Difference

 The direction that the process flows

Information

1

Chapter 1

Introduction

1.1 Introduction

Over the years, the development of planning techniques has been one of the main

interests in the field of task planning. Task planning is required in several applications

such as robotics, web composition, and scheduling.

In various applications, intelligent autonomous mobile robots are being expanded with

the purpose of performing complex tasks. These tasks can be local domestic tasks

within the homes of humans (Thrun et al. 1999; Saffiotti and Broxvall 2005) at remote

planets (Muscettola et al. 1998) and can even be underwater (Fujii and Ura 1996).

Robots' environments should be represented in an intelligent way in order to provide

these robots with the ability to interact with their environments and perform their

allocated tasks. High-level techniques should be employed within robot control

architecture to enable a robot to reason about its actions and available resources in an

elastic and effective manner.

Modern mobile robots, equipped with artificial intelligence techniques, have the

ability and flexibility to carry out a greater range tasks with a minimal human

intervention, and without the need to program each task from beginning. Task

planning is used to allow robots to generate their own course of action (plan), in order

to accomplish a given set of tasks.

2

Semantic knowledge information plays an important role in representing the structure

of a robot’s environment, and explains the relationships between the entities (objects

and places) and their respective properties.

This thesis aims to provide an intelligent support framework for robot task planning in

(real-world) indoor domestic environments. The main focus is on the ability of a

mobile robot to semantically generate its own plans and to make sure that these plans

are created as expected, based on an improved awareness of the robot’s environment.

This capability is essential for the performance and autonomy of any moving robot.

Robot plans should not divert from the assigned task. The robot should be provided

with the ability to interact with its environment's objects and places, taking into

consideration the meaning of these objects and places and their interdependencies.

When unpredictable changes or missing information occurs while an autonomous

mobile robot is attempting to achieve its tasks, the robot should have the ability to

adapt its behaviour according to these dynamic conditions. This means that the robot

should be able to find alternative ways to continue planning its tasks in spite of the

occurrence of unexpected situations. This requires alternative methods to support

robot task planning.

This thesis presents two general schemes for responding to unexpected situations

which impose a lack of information relevant to the task planning. The first scheme

relies on information gathering techniques proposed in this study, to extend the robot

workspace with new information. The second scheme is based on extending the

robot’s initial state with equivalent or similar concepts. In the case of uncertain

situations, this study proposes a learned probabilistic model, which is obtained by

3

training the statistical relational models, in order to produce the most probable plan for

a given task.

The learned model can support construction of the planning domain by answering

queries about uncertain information. This process enforces robot task planning in its

duty to generate semantic and most probable plans. This scheme can be applied to

infer the most probable information needed to solve uncertainty in situations which

relate to robot tasks, either before or while building a plan of actions.

Humans have the ability to create and use symbolic representations of their

environment, and this is the main feature that characterises their intelligence (Deacon

1998). These representations enable humans to perform their tasks intelligently, for

example, to know what would be the results of their actions before they perform them.

Furthermore, humans can learn by testing different types of strategies to find out

which is the most useful or superior according to the current conditions of the

environment.

The mental representation of the physical environment can greatly simplify the huge

amount of information collected by the human senses. The human brain has the ability

to abstract sensed information into a general class, i.e. a symbol that represents all

objects under this class, regardless of their particular shapes, colours, sizes, etc. This

capability allows humans to efficiently process problems of high complexity without

considering the huge amount of information arising from their physical environment.

They are then able to communicate with each other by dealing with shared symbols.

Nowadays, there are more and more robots that can perform manipulation actions such

as picking-and-dropping or even more complex tasks such as setting a dinner table or

4

cooking meals. These include the Care-o-bot (Reiser et al. 2009), the PR2 (Bohren et

al. 2011), TUM-Rosie (Beetz et al. 2009) and Herb (Srinivasa et al. 2009).

These robots will become common-place in the human world once a great

development in robot hardware and control routines (software) takes place. The robots

need knowledge representation and processing methods to support them in generating

suitable plans for their current tasks.

When informal instructions are given by a user to a robot, a lot of knowledge is

required in order to understand the instructions correctly. Small differences in

instruction details, which may be obvious to a human, would need to be explained to a

robot. For example, a human would not describe the opening of a fridge door as part of

the process of taking meat from it, or explain that a bottle needs to be opened before

the water can be poured into a glass.

Humans can comprehend incomplete information about a task because of their ability

to learn and store vast volumes of action results and knowledge, and then quickly

retrieve everything they need to know for a given task. Since people can assume other

humans have this kind of knowledge, they do not have to explain it when describing

how to perform a task or how to deal with an object. The addressee of the instruction

should be able to illustrate the information correctly in order to have the utility of

reducing redundancy in relationships. Humans can assign meaning to abstract phrases

in the tasks (e.g. fridge, isContained or grasp) by relating them to knowledge they

already have about these things. For example this knowledge could be that fridges are

containers used for storing perishable foods, things are not visible if they are inside a

closed container, or the result of grasping an object is that this object is held in the

hand.

5

An important goal in using artificial intelligence techniques in the operations of

artificial robotic systems is to endow them with the ability to display expert problem-

solving behaviour and reasoning in the real world. Early attempts at realising artificial

smart robot capabilities have focused on manipulation of abstract symbols through

formal calculi. The central function of mind, thought, which corresponds to the notion

of cognitivism, can be accounted for through the rule-based manipulation of symbols

(Newell and Simon 1976). Knowledge (or abstract knowledge) is the systematic

representation of the world, and it describes the heart of the cognitive system.

Research on embodied cognition (Anderson 2003) has largely avoided symbols,

abstract planning and logical calculi. It has instead emphasised the physical

implementation of an agent and its interaction with its world. Consequently, research

into embodied cognition typically insists on working exclusively with symbols that

could be easily related to the cognitive system’s particular manifestations of

perceptions and actions. Hence these symbols are physically grounded. The physical

grounding hypothesis (Brooks 1990) rejects the notion of symbols that assume a

knowable objective truth, and states that grounding is at the root of intelligence. The

key proposition is that it is better for a robot to “use the world as its own model”

(Brooks 1991) rather than using some abstract symbolic representation of it. This view

of cognition ultimately calls for a bottom-up, developmental approach, in which

abstractions are somehow constructed from grounded low-level perception and

experience.

Two separate subfields of Artificial Intelligence (AI) research can be recognised: one

has focused on logical representation, and the other on statistical representation.

Logical AI approaches tend to emphasise handling complexity. Examples of logical AI

6

include logic programming, description logics, classical planning, symbolic parsing,

and rule induction. Statistical AI approaches tend to emphasise handling uncertainty.

These include Bayesian networks, hidden Markov models, Markov decision processes,

statistical parsing, and neural networks. Intelligent agents must be compatible with

both types of AI approach if they are to be useful in real-world applications.

1.2 Motivation

In real-world environments a range of events can occur which present challenging

issues for robots. Situations which lead to confusion in the robot plan generation are a

typical cause of such issues. For example, a locked door might render the robot arm

unable to open the door and navigate to a goal destination. When a robot generates a

plan which involves exploring, detecting and recognising objects, it may find itself

incapable of preforming that plan due to unfavourable lighting conditions for

capturing clear images of the environment. Another example may be that a robot

cannot find “the green cup on the kitchen table” because another robot has picked it up

and placed it in the cupboard. A robot may also fall down some stairs because it was

unaware that they were there. The list of examples is endless, but the key point is that

in all those cases the robot failed to generate a suitable plan which takes into

consideration the semantics and conditions of the robot world.

Generally, failures in generating suitable plans are detected when the robot planning

system finds itself in situations that it did not expect. The uncertainty, complexity, and

dynamics of the environment are common unexpected situations which may occur

during a robot's operations. Uncertainty itself can be the result of many factors. The

7

robot sensors are an important source of uncertainty because they carry an inherent

degree of error due to noise and physical limitations. For example lighting conditions

must be within certain limitations in order for some optical systems to function. Most

failures in a navigation plan are caused by errors in localising the robot within its

environment, which is in most cases due to poor sensing. Unreliable sensors provide

uncertain measurements which can lead to incorrect robot state estimation (e.g. robot

pose) and incorrect control actions. As a result, the robot might fail to generate plans

for its future goals.

The work presented in this thesis aims to contribute to the design of autonomous and

intelligent robot planning systems which will support the next generation of robots to

work closely with humans and assist them in their tasks. It may be many years before

researchers discover the mental processes which govern human intelligent behaviour.

Moreover, if this feat in some day achieved, it is not clear how such mental processes

could be replicated and implemented in intelligent machines (Bickhard and Terveen

1995; Hauser 1997; Nualláin et al. 1997). In the meantime, small but steady steps can

be taken to approach the problem.

This thesis will develop and present new ideas, algorithms and mathematical formulas

to enable mobile robots to face complex tasks within their domestic environments. To

achieve this, the initial challenge is simplified into a robotic application in which a

mobile robot semantically plans and carries out its tasks, managing knowledge bases

stemmed from a large indoor scenario, whereas it interacts intelligently with humans.

8

1.3 Scope of the Thesis

Planning approaches for robotic system tasks have generally focused on comparing

between the current robot world state, initial state or states resulting from the effects of

applying certain actions. These effects are specified in an action model which is

primarily used by the planner to extract the explicit effects of actions. The aim of the

comparison is to select the action whose its conditions are verified, and then insert this

action successfully into the plan. Examples of such approaches include the ROGUE

mobile robotic architecture (Haigh and Veloso 1997) and the work of (Fichtner et al.

2003).

If unexpected situations occur, such as uncertainty or incomplete information, the

planning system should be supported to generate the most probable plans or to extend

its world states with new information.

Creating a robot plan using only the explicit effects of actions on static world states

theoretically means that the predicted outcomes are directly notable. However, that is

not always realistic in complex environments where extending world states with

expectations is an inherently complex process. For this reason the primary focus of

this thesis is on using of advanced knowledge representation methods and reasoning

techniques involving semantic domain knowledge to derive and infer implicit

expectations related to the correct generation of robots’ action plans.

Semantic domain knowledge refers to knowledge about objects, places, and their

classes, as well as how those objects and places are related to each other. For instance,

in a kitchen environment, a kitchen is a class whose individual instances (objects) are

rooms that have an oven or cooker. The entities ovens and cookers denote classes of

9

kitchen objects. In the context of robot task planning, semantic domain knowledge is

used as a source of information to logically derive implicit expectations from the

explicit ones. These explicit expectations are the ones encoded in the action models.

Semantic domain knowledge is also used to extend world states. The key idea is to

compute implicit expectations that can be checked at planning time to make sure that

actions are generated as expected. For example, if the mobile robot needs to move into

a room that is of type office, then the robot will find itself in that room (explicit

expectation), and it will observe objects that are typical of an office (implicit

expectations), e.g., a desk, a chair, and possibly a PC. If the robot needs to enter a

kitchen, it will expect to see an oven, a sink, etc.

Unexpected situations that can occur at the planning stage are also addressed. The

assertion of this thesis is to investigate unexpected situations caused primarily by a

lack of the information required for planning robot tasks. The focus will be on cases

where (a) a lack of information is noted during the planning stage; (b) the outcomes of

an action has only partial information about holding implicit expectations; and (c) the

robot may not have enough knowledge to find the appropriate object due to several

objects sharing some common properties.

The following constraints are used in this thesis when dealing with the identified

problem:

1. Plan generation: this work is restricted to dealing only with the formulation of

high-level symbolic plans. This means that low-level planning and execution

is not addressed in this thesis.

10

2. Single mobile robot: this work considers the generation of task plans for a

single mobile robot. Multi-robot plan generation, although challenging, is not

addressed in this work.

3. Indoor domestic environments: the robot task plans are based on an indoor

domestic environment. Tasks that involve outdoor environments are not

considered.

4. Semantic knowledge base: the semantic knowledge base contains the main

object classes in the robot environment and relationships between these

classes. It is used in the planning process to provide the planning system with

the implicit information of the planning time object.

5. Evidence base: contains the actual objects and their properties in the robot

environment during robot operation. The evidence will be used in the planning

process to check if the planning time object is matched with an evidence

object or not.

6. Planning system: refers to the overall components such as planner, semantic

knowledge base, evidence base and all the units that will be addressed in this

study.

1.4 Research Methodology

In this thesis, the discipline of artificial intelligence has been used to develop solutions

to robot task planning. This has been achieved by generating semantic plans using

standard tools and techniques to allow robots to respond to unexpected situations. To

address the problem of semantically generation of plans, a semantic knowledge

domain is employed as a source of information to compute and check the conditions

11

that should hold when an action is selected correctly. The notion of the Semantic

Action Model (or SAM for short) is defined, and an algorithm for transforming SAM

into the Planning Domain Definition Language (PDDL) format is proposed. Then a

general planning algorithm which based on the use of description logics (DL) for

representing the knowledge is developed. This model will be used in deterministic

planning where the knowledge of the initial state is complete and static. A second

approach of planning is developed to take into account probabilistic uncertainty, both

in action outcomes and world states. In particular, in this type of planning, the

planning system is allowed to have action models with more than one possible

outcome, and the uncertainty about the state of the world, due to action’s outcomes, is

also taken into consideration. This extension is essential to the applicability of the

proposed approach, since uncertainty is a widespread phenomenon in robotics. The

third planning type will be used for incomplete information situations, and in this case

the planner is used to gather necessary information to support task planning and to

generate the plan. A fourth approach of planning is developed by taking into

consideration the handling of missing information by acquiring support from a

Semantic Realisation and Refreshment Module (SRRM) then the robot world states

are extended with equivalent and similar objects.

Since this study is dealing with simulated problems, the best way to validate the

proposed approaches is through carrying out an experimental evaluation. So, an

extensive simulation experiments have been performed in order to collect data for the

purpose of statistical evaluation of performance. Unfortunately, the lack of shared

benchmarks in the field makes the evaluation against other solutions impossible. In

fact, a common problem that is faced by research works like this study is how to

12

evaluate performance. This problem is mainly due to lack of appropriate evaluation

metrics, which are available in other research areas.

1.5 Aim and Objectives

The overall aim of this research was to develop a robust robotic task planner. The first

proposed stage of the development was to create a robot knowledge base that reflects

the robot environment and the entities (objects and places) within it. This knowledge

was represented as ontology which consists of the main objects and places classes and

their individuals. The second stage was to construct Semantic Action Models (SAMs)

that represented the robot action details as ontology in order to facilitate its integration

with the knowledge base. In these two stages the planning system depended on the

deterministic information which was stored in the knowledge base. The third stage

dealt with uncertainty information by using a combination of probability theory and

logic theory through Markov Logic Networks (MLNs). The fourth stage also dealt

with incomplete information. This stage depended on the planning system to gather

the necessary information to support it in generating a plan for its tasks. The fifth stage

was to deal with cases when the robot faces situations of missing information related

to its current task, but in a different way. This stage depended on the similarity

techniques and the calculation of the quality of alternative plans.

The objectives of this work were:

1. To develop a Semantic Knowledge Base (SKB) to represent the robot environment

as an ontology.

13

2. To create a new model of action to represent the details of robot action. This model

is called the Semantic Action Model (SAM).

3. To develop an algorithm that integrates SKB and SAM to generate PDDL files

which are input to the planner to generate the plans.

4. To propose a general task planning algorithm to check whether the explicit effects

of actions are matched (or not) with the implicit expectations of action effects.

5. To deal with uncertainty situations by developing an algorithm to create an MLN

model from SKB and then train this model to be ready to answer queries which are

generated from the planning system.

6. To develop information gathering technique to support the robot task planner in

incomplete information conditions by collecting new information from knowledge

base and extending the world state with this information.

7. To develop a Semantic Realisation and Refreshment Module (SRRM) which is

responsible for estimating similar objects to the original object in the action model in

order to recover the robot planning system from situation of missing information

(target). Also, SRRM is used to calculate the quality of the alternative plans which are

related to the similar objects in order to select the best one.

1.6 Thesis Statement

This thesis is about using standard artificial intelligence knowledge representation and

reasoning techniques to make robot task planning more robust. The thesis statement is:

14

Semantic domain knowledge and semantic action modelling increase the robustness of

autonomous robot task planning because they contribute to the detection and handling

of unexpected situations during plan generation.

1.7 Thesis Outline

The work in this thesis can be read in a sequential style. The interested reader may also

able to concentrate on individual parts, though a basic understanding of the knowledge

representation, reasoning and planning concepts used would also be helpful. Figure 1.1

summarise the outline of the thesis and where the research questions are addressed.

Chapter 2 introduces the main literature which is used to construct the scientific

foundation of the work presented in this thesis.

Chapter 3 describes in detail the main tools which are used to create and support the

planning system. These tools include knowledge representation, action representation,

reasoning techniques and planning fundamentals.

Chapter 4 presents planning in deterministic situations and constructing the semantic

knowledge base and semantic action models which are used to produce the planning

domain and problem.

Chapter 5 deals with uncertainty situations when the action model has two outcomes,

and with how to solve the problem of confusion in finding an object which is relevant

to the successful generation of an action plan for a given task.

Chapter 6 describes how the planning system process can be used to gather the

necessary information to generate task plans when the planning system is faced with

incomplete information.

15

Chapter 7 presents the way in which the planning system will deal with missing

information and testing the quality of the alternative plans.

Chapter 8 presents the conclusions, contributions and suggestions for future work.

1.8 Publications

 Al-Moadhen A, Qiu R, Packianather M, Ji Z, Setchi R. Integrating Robot Task

Planner with Common-sense Knowledge Base to Improve the Efficiency of

Planning. Procedia Computer Science 2013; 22: 211–220. Best paper award.

 Ahmed Al-Moadhen, Michael Packianather, Renxi Qiu, Rossi Setchi, Ze Ji.

2015. Improving the Efficiency of Robot Task Planning by Automatically

Integrating Its Planner and Common-Sense Knowledge Base. In: Tweedale J.

W. et al. eds. Knowledge-Based Information Systems in Practice. Volume 30,

pp 185-199.

 Al-Moadhen, A., Packianather, M., Setchi, R., & Qiu, R. (2014). Automation

in Handling Uncertainty in Semantic-knowledge based Robotic Task-planning

by Using Markov Logic Networks, Procedia Computer Science: Vol. 35. (pp.

1023–1032).

 Al-Moadhen A., Packianather M., Setchi R., and Qiu R. (2015). Supporting

Robot Task Planning in Deterministic and Probabilistic Conditions by Using

Semantic Knowledge Base, International Journal of Knowledge and Systems

Science (IJKSS). Accepted.

16

Figure 1.1: A Summary of the Thesis Outline and Research Questions

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

General Introduction

A comprehensive review of

the literature relevant to the

topic.

Descriptions of tools used to

solve the problems are

addressed by this thesis.

These tools are used to

support the task planning in

generating plans in both

normal and unexpected cases.

Increase the reliability of

robot planning system by

incorporating more advanced

forms of knowledge

representation reasoning

techniques.

Deals with unexpected

situations result from

uncertainty in the robot world

states.

Recover the planning system

from unexpected situations

result from lack of

information.

Handle the contingent situations

that result from missing the

target.

Conclusions, Contributions and

Future Work

Survey the state-of-

the-art tools which

are used in dealing

with robot planning.

Research question 1

How can the robot

planning system

reliability be

increased?

Research question 2

How can the robot

planning system

recover from

uncertainty in its

world states?

Research question 3

How can the robot

planning system

recover from world

state suffering from

lack of information?

Research question 4

How can the robot

planning system

handle missing

target?

17

Chapter 2

Background and Related Work

2.1 Introduction

Plan generation of mobile robots can potentially be a complex and challenging task

since it involves dealing with uncertainty in dynamic environments. Autonomy requires

that mobile robots are able to recognise unexpected situations that might lead to failures

in the plan generation stage for a given task. Autonomy also requires that robots attempt

to handle unexpected situations on their own in order to successfully create a plan for

their assigned tasks.

Despite the importance of task planning and the need to respond to unexpected

situations in the process of plan generation, literature which focusses on these areas is

sparse. Instead, such areas are usually mentioned briefly when talking about the general

field of task planning.

This chapter will present a review of previous research work in the area of robot task

planning and strategies for responding to planning failures. The main focus of this

review is the generation of robot symbolic plans.

2.2 Generating of Robot Plans

To schedule their tasks successfully, plan-based mobile robotic architectures need to be

able to cope with the issues of uncertainty and the dynamics of the real world that might

prevent the correct creation of their task plans. To achieve that objective, planning

18

systems employ planning techniques and methods in order to make sure that the

necessary plan actions are constructed correctly.

The aim of using semantic knowledge in plan generation is to facilitate the planning

process and identify unexpected situations that might lead to planning failure. Thus task

planning is a fundamental functionality that needs to be implemented in order to achieve

robustness in coping with situations that might occur at the planning time. Moreover,

the creation of contingency plans is a prerequisite for dealing with unexpected

situations.

Most plan generation approaches in mobile robotics use action models to compare the

explicit conditions of each action to what is observed in the world states as a result of

applying the previous action(s) (Haigh and Veloso 1997; Veloso et al. 1995). It is

important to note that the terms ‘symbolic’ and ‘expected’ are also used to describe the

situation that might take place when the plan is generated successfully. Conversely, the

anomalous situation can be expressed as erroneous, faulty, or simply unexpected.

Figure 2.1 shows the main steps involved in the generation of symbolic plans by mobile

robots. Briefly, the task planner takes one action and compares its conditions against the

(initial) state of the robot world. If all of the action conditions are verified, the planner

will select it. The effect of inserting that action into the robot plan is that the action’s

conditions are deleted from the world state and the effects of that action are added to the

world state.

The MLN template is created from the SKB and a learning process begins to train the

template and generate the learned model. This informed model is then ready to answer

19

most of the queries which might be generated during the planning process as a result of

encountering unexpected situations.

The checking stage compares the estimated state (i.e. that calculated from the evidence

database) with the predicted state (i.e., the state resulting from the effect part of the

action, the action effect). The aim of this comparison is to check whether there is a

contradiction between the two states, indicating an unexpected situation. If a

contradiction is detected, a diagnostic process can be launched in order to identify and

classify the unexpected situation that has occurred. The main classes of unexpected

situations are: (1) uncertainty or (2) lack of information (incomplete information or

missing information). The diagnosis result can be used by the planning system to search

for a recovery solution or re-planning operation.

Example: Consider a mobile robot trying to plan the task of returning a spoon to a

kitchen located in a house and identified by the symbol k1. The generated task plan

could include the following actions to achieve the task:

move(robot, hall, k1), open(robot, door1),enter(robot, k1), drop-spoon(robot, k1)

This plan includes actions that instruct the robot to move from its current position hall

to a new position k1. Before the robot can enter the kitchen, it should open the kitchen

door d1, and upon entry should drop the spoon inside the room. Generating the action

open(robot, d1) implies that the robot has to direct itself until its front camera is facing

the door d1. Successful implementation of this action within the plan depends on the

contents of the robot’s evidence database. This must be observed in order to establish

the truth value of the predicate inFrontOf (robot, d1). If the truth value of the predicate

is found to be true, then the task planning process deduces that the action has been

20

successfully inserted in the plan. Otherwise, an unexpected situation is detected, which

triggers a recovery procedure with the aim of finding a solution. This solution may be a

second plan to achieve the goal of opening door d1.

Predicted State Estimated State

Task planner

MLN Template

Variation

PDDL Files

SKB

Evidence

s

SAMs

Plan

Actions

Figure 2.1: Steps of Learning and Generation of Symbolic Plans by a Mobile

Robot.

Yes
No

Diagnosis

21

2.3 Overview of Literature Regarding Task Planning

2.3.1 Reviewing Planning under Deterministic Conditions

Using semantic information to support the robot task planner is a topic of great interest

in this field. In recent years, the problem of inferring and utilising semantic

information in the context of mobile robot operation has gained substantial interest.

This is motivated by the observation that mobile robots can benefit from semantic

information in various ways, not least that it helps them to more efficiently carry out

their tasks. Additionally, it allows robots to reason about their environment, and can

be considered a large step towards bridging the gap between perception and action.

Determining the semantic information required to assist a robot to carry out its tasks is a

subject of great research interest. This semantic knowledge can be integrated with

spatial knowledge to produce semantic maps (Galindo et al. 2008). These maps help a

planner to reason and to infer the types of objects from their places. The map aim is to

endow the robot with semantic capabilities by relying on a richer multi-ontology

approach where two different hierarchies are used: one for spatial knowledge and one

for semantic knowledge. The information in the two hierarchies is combined in different

ways to provide the robot with more advanced reasoning and planning capabilities. This

approach is dependent on asserted information and does not take into consideration the

uncertainty that the robot may face.

Recent experience has shown that another benefit of using semantic information is that

it allows any violation of facts in the knowledge base to be detected. Robotics

applications can benefit from semantic information which carries common-sense facts

(Galindo and Saffiotti 2013). For example, if a robot detects that a toothbrush is in the

22

living room, and the knowledge base suggests the normal place of a toothbrush is in a

bathroom, the robot will register that the toothbrush must be returned to the bathroom.

The planner must first initiate a goal to recover this violation. The work proposed to use

categorical knowledge to achieve goal autonomy. For example, in the categorical

knowledge it is known that milk is a perishable substance, and perishable goods should

be stored in the fridge. If a robot finds a bottle of milk on the table, it could use this

knowledge to generate a task to return the milk to the fridge.

In recent work (Blodow et al. 2011), semantic information was used to build a robot

map. The building process took into consideration the semantics of the objects and

places in the robot’s environment. Semantic mapping of a kitchen environment enabled

the robot to perform manipulation tasks. The framework presented in the work makes a

clear distinction between knowledge and reasoning by separating them into two entities.

Galindo et al. (2004) improved the task planner efficiency through abstracting robot

world definitions. The improvement was achieved through optimised computational

efficiency. This was enabled by beginning the planning process at a higher level, and

then stepping down and refining the plan by discarding objects or places irrelevant to

the current task.

The semantic information discussed by Galindo et al. (2005) could be acquired by a

robot’s sensor, and then used to build semantic maps. These maps could be organised in

a multi-hierarchical fashion and used to support the robot when navigating its

environment. The robot uses this semantic level for reasoning, e.g. “this room contains

no sink; therefore it cannot be the kitchen”.

23

The linking process between spatial and semantic information is carried out by using of

the anchoring technique (Coradeschi and Saffiotti 2003). Object anchoring (or symbol

grounding) is an area of robotics-related research that aims to build and maintain new

and existing links between symbolic representations of objects (as in a logic-based

knowledge representation formalism) and their images in the sensor data stream. In this

manner it also relates to semantic mapping. This framework gives the robot the ability

to use and infer new semantic information from its environment, leading to

improvements in its operation.

Galindo et al. (2007) explored the way that semantic information makes complex robot

task planning more efficient. This was seen as a new benefit of semantic information.

Semantic information can be used as a tool to improve the task planning in complex

scenarios where other planners may easily find themselves in intractable situations. This

leads to robots dealing with a great number of objects, places and actions. Galindo et al.

(2007) built a semantic plan which classified objects, places and actions, and then

presented a generalised version of the requested task. Afterwards, the plan could be

used for removing redundant information to enforce the robot planning in an efficient

manner.

Other research has focused on semantic knowledge as a source of the information

necessary to monitor plan execution. Bouguerra et al. (2007) presented an intelligent

plan-execution monitoring method, which used semantic information in the robot

domain to extract implied expectations. The robot could then use these expectations to

verify the correctness of executing actions within its plan.

A new knowledge processing system, known as KNOWROB, was presented by

(Tenorth and Beetz 2009), and was designed for enabling personal robots to be more

24

autonomous in their work. This system contained the necessary control routines and

action sequences to automatically execute a particular requested task. KNOWROB

integrates encyclopaedic knowledge with an environmental model, action-based

reasoning and human observations. It has the ability to access all this information in a

uniform and symbolic way. The map which was used as a source of information by the

KNOWROB knowledge processing system is called KNOWROB-MAP (Tenorth et al.,

2010). This map includes spatial knowledge about objects in the environment and their

relationships, and provides this object details to a robot.

Semantic information can be used with spatial categorisation to build a model which

can be used to enable the robot to engage in high level communication with humans

(Mozos et al. 2007). This model is composed of layers that represent maps (such as

metric, navigation, topological and conceptual maps) at different levels of abstraction.

Tenorth et al. (2010) listed some challenges that can hinder robot operation in

unstructured environments, and then proposed methods to overcome them. For example,

household robots work in real-world environments that can be highly dynamic, so the

robots need specific methods to deal with these uncertain situations. The authors’

method for dealing with these situations was to create probabilistic first order models by

using statistical relational models to represent probabilistic knowledge.

A good action representation that integrates a good planning algorithm is important for

the task performance of many intelligent systems. Kemke and Walker (2006) focused

on creating integration between a STRIPS-style (Stanford Research Institute Problem

Solver) action hierarchy and a plan decomposition hierarchy. This integration seems

ideal for natural language processing as it allows the robot to be more expressive and

efficient.

25

A framework for representing the knowledge of household service robots was proposed

by Lim et al. (2007). This framework was divided into classes, axioms and rules to

enable a robot to recognise objects and navigate while inferring localisation-related

knowledge. This could be performed even if there was hidden and partial data due to

noise in the sensed data. Lim et al. (2007) constructed a robot knowledge framework

based on Robot-centered ontologies, Human-centered ontologies and various rules. This

framework is known as OMRKF (Ontology-based Multi-layered Robot Knowledge

Framework). Lim et al. (2007) also conducted a cup delivery service experiment to

demonstrate the validity of the framework.

The task planner presented by Galindo et al. (2007) was improved by optimising the

symbolic representation of the robot environment using a genetic algorithm. A

framework was proposed allowed an indoor mobile robot to automatically construct a

symbolic model of its environment. This model is optimised over time with respect to

alterations in the environment and the robot operational needs through an evolutionary

algorithm. To efficiently process the large amounts of information that the real world

provides, an abstraction was used. This also improves the efficiency of task planning

process.

Tenorth and Beetz (2013b) provide an overview of several different types of

knowledge, along with inference mechanisms for acquiring the knowledge from

external sources. A description is then presented of the overall system architecture

which includes the main components of (i) knowledge acquisition, (ii) automated

reasoning, (iii) visualisation and (iv) information querying.

New representations of environment maps presented by Tenorth & Beetz (2013),

combined expressive semantic environment models with techniques for selecting

26

suitable maps from the web-based knowledge base. The planning domains can be

generated by integrating semantic action models with a common-sense knowledge base

(Al-Moadhen et al. 2013). These domains are input into a robot planner to generate a

suitable action plan for a given task.

Further work in this area (Galindo et al. 2004) included developing a formalism of a

symbolic model of the environment to solve the issues associated with processing large

amounts of information during planning. This model was efficient in providing human–

machine communication in a normal form through a mechanism inspired by humans

whereby knowledge is structured in multiple hierarchies. Planning with a hierarchical

model may be efficient even in cases where the lack of hierarchical information would

make it intractable. However, this method is dependent on deterministic information.

2.3.2 Reviewing Planning under Probabilistic Conditions

Planning under deterministic conditions presents few issues compared to planning under

probabilistic conditions. Approaches in the previous section have focused on planning

under deterministic world states and action details (preconditions and effects). In

general, predefined action models are used to describe the states of the environment

after actions have been correctly executed.

Bouguerra and Karlsson (2004) proposed a hierarchical task planning approach that

handled uncertainty in both the state of the world and the effect of a given action. It

introduced mechanisms to handle situations with incomplete and uncertain information

about the state of the environment by using belief states to represent incomplete

information about the state of the world. Meanwhile, actions were allowed to have more

27

than one outcome. The problem with this approach (using a conditional planner) is its

link to conditional branching, which is dependent upon exogenous events, namely, the

player interaction.

Partially observable Markov decision processes (POMDPs) (Papadimitriou and

Tsitsiklis 1987) provide an essential mathematical framework for the planning of

autonomous robots in uncertain and dynamic environments. Solving POMDPs exactly

is computationally expensive and intractable. For this reason, (Ong et al. 2010) used a

factored model to separately represent the fully and partially observable components of

a robot’s state. They then derived a compact lower-dimensional representation of the

robot belief space. This factored representation can be combined with any point-based

algorithm to compute approximate POMDP solutions, and hence it improves the speed

of POMDP planning under uncertainty.

To deal with uncertainty, probabilistic methods can be used to link the system variables

to one other and construct a network among them. Markov Logic Networks (Richardson

and Domingos 2006) and Bayesian Logic Networks (Jain et al. 2009) can be utilised to

process probabilistic information for supporting many applications including task

planning.

Plan generation can take into account the uncertainty in the existence of objects, given

their types and properties, by proposing a new framework to construct plans based on

probabilistic values which are derived from Markov Logic Networks (MLN). This

approach has also been adopted in more recent work (Al-Moadhen et al. 2014). In this

framework an MLN module is established for probabilistic learning and inferencing.

This is combined with semantic information to provide a basis for plausible learning

and reasoning services in the support of robot task planning.

28

The gap between the semantic and spatial representations of an environment was

bridged by (Eich and Goldhoorn 2010). This was achieved by depending on the

semantic side, which comes from (Galindo et al. 2008) and (Galindo et al. 2005), to

describe the way in which semantic maps can be used for high level planning and

spatial reasoning. (Eich and Goldhoorn 2010) described the bridging between the spatial

domain and the semantic domain which they refer to as the SBox (spatial box) and the

TBox (taxonomy box) respectively. The semantic interpretation of physical objects is

achieved by means of optical marker identification, although it is not based directly on

the spatial interpretation of point cloud data.

2.4 Techniques for Planning System

Since the research of planning systems has been an active field for at least the last 40

years, several different techniques, algorithms and systems have been proposed. They

differ substantially either in the way that they model the world or in their manner of

searching for a solution to a problem. They also differ in the way that they employ

heuristic techniques to accelerate the recovery process.

The first planning system that appeared in the literature was known as the General

Problem Solver (GPS). It was developed by (Newell and Simon 1963), who attempted

to simulate human thinking in order to solve problems. A different system proposed in

combination with the Stanford Research Institute Problem Solver (STRIPS) formalism,

and with the same name (STRIPS), attempted to use state-space planning (Fikes and

Nilsson 1971). This class of planning was constantly transforming states by applying

existing action details and the heuristic in order to obtain a desired state and reduce the

29

number of conditions examined. The starting point of the search can be either the initial

state or the final state, and hence the planning can be characterised as forward or

backward respectively.

Another technique discussed during the 1990s was plan-space planning. This technique

also attempted to solve the problem of planning robot actions. The three main examples

of plan-space planning are: UCPOP systems (Penberthy and Weld 1992), TWEAK

(Chapman 1987) and SNLP (Mcallester and Rosenblitt 1991; Knoblock and Yang

1993). In these systems a search begins with an initial plan which is continuously

transformed until the system finds a plan whose accuracy and applicability are ensured.

The design of the plan-space search significantly reduces the search time, and offers the

possibility of building partially ordered plans.

One of the initial approaches to action planning is a planning hierarchy, in which the

user can define different levels of abstraction to describe the problem. Solutions begin at

the highest abstract level and the plan is gradually enriched with details from the lower

levels so that the conditions are simple enough to be matched with the available action

preconditions. In this way it is possible to reduce the search time, but this process

requires a prior knowledge of the domain from the domain expert in order to achieve a

proper decomposition of actions. Examples of systems that used a hierarchical approach

are ABSTRIPS (Sacerdott 1974) and AbTWEAK (Yang and Tenenberg 1990).

The approaches mentioned so far belong to the group of classical action planning

techniques but are still currently used in plan construction for planning systems.

However, since the early 1990s researchers have turned to new methods to accelerate

the planning process and handle issues not addressed by the majority of classical

30

techniques, such as time, uncertainty, the availability of restricted resources (Vrakas et

al. 1999).

A typical method for representing different types of planning techniques is to use

graphs. This is known as graph-based planning. The main system that has implemented

this technique, and has received special interest in recent years, was Graphplan (Blum

and Furst 1997). A key role of using graphs in the planning process is to provide a

visual description of the problem which contains all the available information. The

graph can then be used to search for reasonable results even for nonlinear plans

(conditional plans). Other examples of graph-based planning systems include STAN

(Long and Fox 1999) and IPP (Koehler et al. 1997).

An alternative system which depends on graphs to formalise its action planning is the

LPG-td (Gerevini et al. 2004; Gerevini and Long 2005). This system has been used

extensively in the present study as an external action planning system.

Another important approach used automatic heuristic mechanisms to extract the

knowledge from the structure of a problem and to direct the search for a solution. One

of the first systems related to this approach was UNPOP (Mcdermott 1996; McDermott

1999). This was followed by the ASP / HSP (Bonet et al. 1997; Bonet and Geffner

1999), FF (Hoffmann 2000; Hoffmann and Nebel 2001) and HAPRC (Vrakas et al.

2005) systems.

A significant number of approaches have attempted to address the action planning

problem by transforming it into a different type of problem, such as a problem of

Satisfaction Propositional Logic (Propositional Satisfiability). Examples of systems

which have use this approach include SATPLAN (Kautz and Selman 1992; Kautz and

31

Selman 1996) and BLACKBOX (Kautz and Selman 1998). Other researchers have

attempted to convert the problem into a problem of Constraint Satisfaction (Constraint

Satisfaction Problem), solving it with constraint satisfaction methods and then

converting the solution into an action plan. Examples of such systems include IxTeT

(Laborie and Ghallab 1995) and HSTS (Muscettola 1994). Finally, planning problems

can be represented as model control problems (Model Checking) and Markov Decision

Processes. These are techniques which can handle uncertainty (Giunchiglia and

Traverso 2000).

Table 2.1 summarises the aforementioned planning techniques with a brief review and

examples of systems that represent each technique. The decision to use LPG-td as the

main action planning system for solving planning problems in this thesis was based on

the following reasons:

1. It is one of the most modern design techniques with a proven performance

record in action planning competitions for various kinds of domains and

problems. Its performance was verified by experiments in this thesis, as it will

be seen in later chapters.

2. It has the ability to handle large numbers of actions in a domain, and a large

number of objects in the problems, while minimising the time required for

planning. Its status is particularly important for scaling up the problem of the

planning when the domains have a large number of actions. Other planning

systems, which is used in this thesis, such as the automatic heuristic extraction

based Metric-FF system, showed good performance with a moderate number of

actions, but an inability to handle large numbers of actions.

32

3. It gives increased customisation capabilities and returns several plans. It also has

the potential to improve the solutions.

4. Its integration with other existing systems is simple because of its compatibility

with the PDDL language.

Metric-FF shares with LPG-td in points 1, 3 and 4 but it cannot handle large number of

actions (point 2).

Table 2.1: Summary of Reviewing Actions Planning Systems.

 Technique Feature System Example

C
la

ssica
l P

la
n

n
in

g
 S

y
stem

State-space

planning

Transforms states by actions to

obtain the desired final state.
STRIPS

Plan-based

Planning

Transforms plans until it finds a

sound and workable plan.

UCPOP, TWEAK,

SNLP

Hierarchical

planning

Solves the problem at the highest

level of abstraction then gradually

enriches the plan at lower levels.

ABSTRIPS,

AbTWEAK

O
th

er P
la

n
n

in
g
 S

y
stem

Graph-based

planning

Constructs graphs from a problem

description and then uses them in

the search for a solution.

Graphplan, STAN,

IPP, LPG-td

Automatic

heuristic

extraction

Knowledge extraction from the

structure of a problem for using in

searching for a solution

UNPOP, ASP /

HSP, FF, PGRT,

CL, HybridAcE,

ChAPrk

Transformation

into another

problem type

Convert to problem Satisfaction

propositional logic (Propositional

satisfiability) or Constraint

Satisfaction and then find a solution.

SATPLAN,

BLACKBOX,

IxTeT, HSTS

33

2.5 Automated Plan Construction

Planning processes in factories or industrial environments face the problem of planning

within a static world. In reality, the world of the robot is not always static. Robot

environments are open medium, each user having the freedom to add new places and

objects or to modify the existing ones. In order to manage this large and constantly

changing world and action volume, a semantic knowledge base can help to automate the

task planning.

Despite efforts to develop common standards for describing simple and complex

actions, the process of editing and constructing task planning has a high complexity.

This is due to the following reasons:

1. The number of actions is increasing due to the extremely rapid development of

new robots and their functionalities expanding to cover most services. As a

result, the planning process must search through extensive and every growing

action domains.

2. Actions may be modified several times after their creation, so the planning

process must be able to detect such changes and act accordingly in real time.

Many times, although the solution is simple, the planner may carry out the

process from the beginning.

3. Various actions (or robots) have been developed by different organisations who

have used different concept models and natural language to describe them (or

their capabilities). Existing standards (action representations) require

communication with the parameter and maintain editorial control, but the

semantics of these parameters play a key role in the plan creation. The

34

identification and mapping of world facts and concepts with the parameters is a

time consuming and difficult process.

It is logical that increasing robot complexity will increase the time required for a non-

automated planning process. Therefore, the creation of an action plan should be carried

out using techniques which favour automation. These techniques generally fall in the

area of Artificial Intelligence and facilitate the automation of the entire process of task

planning, the selection of appropriate actions for individual tasks and the production of

a sequence of actions as a final synthetic plan. However, the application of most of

these techniques is not possible without semantic information. The use of semantic

information makes the planning process more accurate and efficient.

The remainder of this section presents techniques which have been proposed for

automating task planning along with illustrative systems that have implemented the

appropriate technologies.

2.5.1 Planning in Hierarchical Networks

A Hierarchical Task Network (HTN) is an action planning technique that solves a

problem at various levels of abstraction based on hierarchical decomposition of network

processes (Erol et al. 1994). An initial network of processes (task network) is entered

into a planning system, which also contains the problem to be solved, i.e. the goal of the

task planning.

A task network consists of abstract tasks defined by other tasks. There are three types of

tasks: (i) primitive tasks which correspond to simple STRIPS (Stanford Research

35

Institute Planning System) operators and can be run directly, (ii) compound tasks which

are composed of a set of simpler tasks, and (iii) goal tasks that are described by

conditions representing the desired properties of the final state. Moreover, a set of

operators should be given, which describe the results of each primary task (each

individual action). A set of methods that determine how complex tasks can be

decomposed into simple tasks should also be given. The planning process initially

decomposes successively all the complex processes included in the initial network with

the primary concern of maintaining the restrictions. In the second phase, when the

network contains only primary tasks, the planning process finds a plan that satisfies all

the constraints. The plan is a description of the robot actions and consists only of

primary tasks, which are assigned to individual actions.

2.5.2 Planning Actions with Regression Assessment

In these systems, in the general case, the outputs of the desired task represented as a

target state. The approach aims to transform an initial state into the target state by using

the initial conditions and available robot actions.

The state space is composed of all possible situations that can be obtained by applying

an arbitrary number of actions to the initial state. Estimated regression planners use a

backward search. Forward searching is a less difficult way to find a solution in the state

space. The search is guided by a heuristic estimator, which is determined by using

backward chaining. This method links to a problem in a space resulting from relaxation,

and ignores the interactions between operators that achieve objectives and deletions.

36

Thus, the space created is somewhat smaller than the state space, and a planning system

can fully represent the means of a regression graph. In order to use this system in the

field of robot planning, an extension to the conventional notation of PDDL should be

added.

The action execution may result in the production of information, and this is sometimes

represented by the effect structure of PDDL. This approach assumes such information

as the cost (value) of an operator, which can act as an input to subsequent steps in the

plan. The definition of the PDDL language extends to include such values in the

definition of the operators (McDermott 2002), so that they have the ability to express

these types of data. The new language created after these changes was named Opt

(McDermott 2005). Opt was used to amend the existing actions planner Unpop

(Mcdermott 1996; McDermott 1999) resulting in the new name Optop (Opt-based total-

order). Optop is able to handle the new demands of the language used for task planning

problems. The system implements the above assumption experimentally for simple

planning problems which represent the problem directly in PDDL. However, this

approach does not address issues such as scaling, conditional plans or repetitive plans,

and research in this area is still in its early stages (Chan et al. 2007).

2.5.3 Proposed Planning System

The proposed planning system in this thesis uses semantic action models (SAMs) to

represent the robot action models. These models are then integrated with a robot

semantic knowledge base, which is implemented as ontology to generate the planning

domain that consists of actions, predicates and problems. The solution to the problem is

37

obtained by calling an external planner (Metric-FF or LPG-td). In this study, Metric-FF

and LPG-td planners are chosen to generate the plans. This approach can also be used to

solve the problem by expanding the Metric-FF or LPG-td planning domain with new

information in order to generate new plans, or to re-plan when necessary. To configure

the planning problem, the system uses the semantic descriptions of SAMs together with

the corresponding ontologies to generate the domain of the plan. Therefore, it does not

fully exploit the semantic information contained in them, since the use of ontology does

not lead to the conscious semantics of concepts, only to the facilitation of the

configuration of the domain. Subsequently, the planning system can invoke semantic

enhancement during the action planning process to obtain new plans. In this case, the

new generated plans’ quality is assessed in order to choose the most suitable one. The

planning system can also be used in the case of incomplete information in the robot

world states by generating a plan that has a sequence of actions which have the

capability to access the knowledge base and provide the world states with additional

information.

This system appears to be a promising approach in the field of automated task planning.

The details of this planning system will be explained in Chapter 4.

2.6 Summary

This section has reviewed the theoretical basis and process of using the semantic

knowledge base (SKB) in supporting the robotic system in its duties and the issues

related to planning under uncertainty. The review has highlighted the following points:

38

1. The SKB has been integrated with spatial knowledge to produce semantic maps

that are used to help a robot planner to reason and infer the types of objects from

their places.

2. The SKB has been used to monitor the robot plan execution, which used the

semantic information in the domain to extract implied expectations. Then the

robot can use these expectations to verify the correctness of executing action

within its plan.

3. The SKB has been used to build the knowledge processing system in order to

enable personal robots to be more autonomous in their works.

4. The SKB has been used with spatial categorisation to build a model which can

be used to enable the robot to engage in high level communication with human.

5. A hierarchical task planning approach has been used to handle uncertainty in

action effects, where the actions are allowed to have more than one possible

outcome.

6. Probabilistic methods can be used to link the system variables and construct a

network among these variables. The network of variables reflects the

dependencies between these variables and can be formalized as a model to

support the planning system.

7. Different techniques and algorithms have been proposed to develop the planning

system. The main different points are: in the way they model the world, in the

manner of searching the solutions or the way they employ heuristic techniques

to accelerate the recovery process.

8. The planning systems would begin searching for the solutions from the initial

plan which is continuously transformed until the system finds a plan whose

accuracy and applicability are ensured.

39

9. The hierarchical task network is a planning technique that solves a problem at

various level of abstraction based on hierarchical decomposition of network

processes.

10. The proposed planning system in this study is using the semantic knowledge

base and semantic action model to support its planner (Metric-FF or LPG-td) in

order to obtain more reliable planning system.

Having established the mechanisms of using the semantic knowledge base, next chapter

will explain the planning domain representation and the knowledge representation

methods that are used in robotic applications.

40

Chapter 3

Planning System Tools

3.1 Introduction

Planning operation is the process of selecting a sequence of actions which, when

executed by an agent, will achieve a set of objectives (goals). Planning has been an

important active area of Artificial Intelligence research for over four decades. It enables

greater autonomy and flexibility in systems and intelligent agents, especially when they

operate in dynamic environments. Planning systems have a wide range of real world

applications, in field from robotics, logistics and construction, to space exploration,

navigation and strategy.

The planning of actions to address problems of high complexity and large search spaces

cannot be achieved by simple search algorithms as their solutions are insufficient for

complex problems. Alternative techniques of problem solving within the context of

action planning have been developed. These include non-linear planning, graph-based

planning and hierarchical planning. Systems which implement planning algorithms and

techniques are known as ‘planning systems’ or more simply as ‘planners’.

In the general case, an action planning problem can be represented by the initial state of

the world, the final (goal) state, and the abilities of the robot, which define its set of

allowable actions. These actions are used by the robot to transfer from an existing state

to a new one. The result generated by the planner for a given problem is called a plan.

The plan is a sequence of fully or partially ordered actions, which can be applied to the

initial state in order to produce the desired end state.

41

All the knowledge and techniques required for a robot to accomplish its tasks should be

provided by a knowledge representation and processing system. This system needs to

make informed decisions, parameterise robot actions, and plan under complete,

incomplete or ambiguous conditions. Thus the system requires descriptions of different

component of actions that the robot can perform, the features of objects it can interact

with, details of the environment it operates in, and knowledge of the abilities of the

robot itself. All these requirements need to be represented in the proposed robot

planning system so that all robots can understand their meaning, merge them, perform

reasoning and draw conclusions.

This chapter describes the tools which are used to solve the problems addressed by this

thesis. These tools are used to support the robot task planning system in generating task

plans in both normal and unexpected cases. The normal cases represent situations of

deterministic world states and action effects. Unexpected cases represent situations of

missing, incomplete in robot world states or probabilistic information in world states

and action effects.

Firstly, this chapter gives an overview of the planning system, its domain, its problem

style and its definition language. Secondly, the knowledge representation method is

described, including the method used to structure this knowledge. Description logics are

used to represent the knowledge as a semantic knowledge domain. This representation

benefits from the use of reasoning to obtain implicit information from explicit

information. The ontology is used to structure this knowledge and linked between its

classes by using properties and relationships.

Next, graphical models are used to represent the probabilistic knowledge in the robot

environment. Markov network (MN) and Markov Logic Network (MLN) models are

42

used in this study. An overview is given of the proposed planning system architecture in

the context of its different interrelated components in order to better understand their

roles in the planning system.

Finally, a brief description of the planning under both deterministic and probabilistic

conditions will be presented.

3.2 Planning Domain and Problem Representation

The terms ‘planning domain’ and ‘problem representation’ refer to the systematic

coding of all available information about the robot world that is relevant for all the

robot’s tasks. The resulting domain represents, in a formal way, the elements of the

world which will be used to describe problems. This formalism of knowledge

representation plays a key role in the types of problems that can be represented and

solved, as each style has a given degree of expressiveness and complexity. There are a

large number of languages and standards for describing problems, for example

propositional logic or first-order predicate logic (Hamilton 1978).

It is obvious that the more expressive a language is, the larger the range of problems it

can represent. Therefore, the representation of complex systems and concepts of the real

world is better facilitated by expressive languages. However, the time needed to solve a

problem normally increases with the complexity of the language, because it increases

the computational complexity of the algorithms involved in the solving process

(Bylander 1994).

43

The next subsections describe the most dominant formalism used for representing

planning domains and problems. The elements of this formalism are used to represent

the process of robot task planning as operation of problems planning.

 The STRIPS Model 3.2.1

The STRIPS (Stanford Research Institute Planning System) model is the basis for

representing domains and problems in most conventional planning systems (Fikes and

Nilsson 1971), due to its simplicity and naivety. A planning problem in the STRIPS

style is represented as a triplet <I, A, G>, where I is the initial state, A is a set of

available actions, and G is a set of objectives (goals). The states are represented as a set

of predicates, based on first-order predicate logic. All elements of the original state of

the world that have some relevance to the problem must be explicitly declared in the

initial state I. The initial state I can contain both static and dynamic information. For

example, in one particular situation I may state that the objects X and Y are boxes,

which is an example of static information as it is assumed to remain unchanged during

the action planning. At the same time, the state I may indicate that the box X is initially

on the box Y, which is an example of dynamic information, as it is expected to undergo

changes during action planning.

The state G, on the other hand, is not complete. I is not necessary to specify in G the

final state of all objects of the problem, either because it is implied by the context or

because the final state of some objects does not matter to the problem. Consider an

example from the field of logistics (Mcdermott 2000), in which there are packages to be

transferred between locations using different means of transport. The final location of

44

the transport vehicles is usually omitted from the definition of the problem because the

main object is only the transfer of packages to the desired destinations. It follows that

there are usually several solutions that meet the objectives of a problem, so it is more

correct to say that G represents a set of statements instead of a unique situation. The set

A contains all the actions that can be used to change the world situations. Any action Ai

has three sets of facts which contain:

 Conditions of Ai, i.e. facts that should be verified in the current state of the world

to allow the application of action (denoted as precondition (Ai)).

 Facts which are added to the state of the world after the application of an action

(indicated as add (Ai)).

 Facts which are removed from the state of the world after the application of an

action (denoted as del (Ai)).

Typically, the following rules are applied to the world states formalised by STRIPS:

 An action Ai can be applied in state S if precondition (Ai) ⊆S.

 If the action Ai is applied in S, the new state S' is calculated as:

S' = [S ∪ add (Ai)] - del (Ai).

 The solution to a problem, i.e. the action plan, is a sequence of actions which, if

applied sequentially to the initial state I, lead to a situation S' such that S'⊇G.

The operators have variables that can be identified with the available objects, and thus

facilitate the encoding of the domain. This significantly reduces the number of actions

required to accomplish the task.

45

 Definition of the PDDL Language 3.2.2

Planning Domain Definition Language (PDDL) was originally designed to provide a

standard means of coding planning domains and problems. This enabled standardisation

of the action planning system, to take part in international competition programs such as

the IPC (Bacchus 2001; IPC 2004). However, in subsequent editions, this standard has

been enriched and expanded in many ways. Nowadays, it has become a standard in the

planning domain and problem modelling community. The PDDL has established itself

as the most widely accepted common language for the exchange of information among

researchers about planning domains and problems.

The typical description of a PDDL domain structure is shown in Figure 3.1, while

Figure 3.2 shows the structure of a typical problem expressed in PDDL style. The

following paragraphs give a brief description of the components which form the

planning domains and problems.

The first edition of PDDL (Ghallab et al. 1998) mainly reflected the physical properties

of the domains for each action planning problem, such as the available predicates and

the available operators, without giving special attention to the time or other

characteristics. However, the first edition was improved over the years and extended to

form a new version. The elements of the PDDL style are divided into subsets referred to

as requirements. These facilitate the handling of the planning system domains.

Each domain indicates which requirements it uses, so the planning system is aware of

its compatibility with them. In this way, the planning system is able to determine

without additional information if it has the ability to manage the given domain. The

planning system can simply ignore all the definitions related to the requirements which

46

it is not able to manage. It should be noted that the valid assumption of domains

expressed in PDDL is a closed world assumption. This means that anything not

specifically mentioned as true is deemed to be false, unless the definition of the field is

clearly stated otherwise.

47

requirements

types

constants

predicates

functions

constraints

parameters actions

preconditions Comparisons

(functions)

effects assignments

duration
durative-

actions

conditions

effects

domains

Figure 3.1: The Typical Structure of a PDDL Domain.

48

The using of the term ‘types’ in domain definition is helpful and informative. Domains

where the related requirements are stated as (: types), should display every object and

predicate argument with their type. If the explicit declaration of the type is absent, then

the objects, predicate arguments or variables are considered to be of general type. The

definition of types provides a validation feature based on the agreement between object

types and argument types by identification. This process is particularly useful for the

validation of the domain, i.e. the confirmation of the correctness and consistency.

corresponding domain

objects

initial states timed initial literals

problem

function values

goal state

constraints

plan metrics

Figure 3.2: The Typical Structure of a PDDL Problem

49

The variables in PDDL have the same semantics as can be found in many other

languages. These can take any value from a set and can be used in conjunction with

built-in functions of PDDL for evaluating expressions. In later versions of the language,

variables are displayed by the term ‘fluents’ and are used not only in evaluating

expressions, but also to represent quantities which may change over time as a result of

some effectors.

Constants represent objects whose values remain unchanged and are used in the location

of some arguments of action models stated in a domain. The relationships between

objects in a domain are expressed through predicates. The predicates have an arbitrary

number of arguments, and the order of these arguments and the type of each (if any) are

clearly defined. The predicates are used as conditions or results of actions and to

describe the state of the world at any given time.

Actions allow transition between two successive states. The transitions mean the

addition or removal of predicates. The declaration of an action includes the parameters

and variables used, and the conditions which should be valid in order to apply the

action, i.e. the predicates that describe the state of the world..

PDDL offers two ways of constructing the results of an action. The results may either

be a list of predicates or an expansion, but not both simultaneously. If the results of an

operator are a list of predicates, which may be conditional or universally quantified,

then they express the changes that would be introduced by the operator in the state of

the world after the action is applied. More specifically, the results may include both

predicates to be added and predicates to be removed from the state of the world.

Predicates are not listed among the results of actions if they are considered to be

unaffected by that action. If the results are expressed as an operand extension, then the

50

operand is decomposed into simpler parts, which can be in any combination of serial or

parallel. This approach is used when the solution of a problem is expressed in the form

of a series of operands instead of a set of predicates which represent the final state.

The axioms, in contrast, express relationships between successive statements that

expressing relationships between facts in the same situation. The necessity of axioms

arises from the fact that the definition of an action may not report all the predicates that

are affected by that action. Therefore, additional predicates are deduced from the

axioms after applying any operator. These are called derived predicates and are quite

different to the elementary predicates. In newer versions of the PDDL language, the

term ‘derived predicates’ has replaced the axioms term, but the concept and the idea

behind them are the same.

The definition of a problem in PDDL includes the initial state and the final state (also to

as the goal). The initial state includes a list of predicates, which are considered to be

true and valid. It depends on the theory of the closed world, i.e. anything not mentioned

as true in the original state is by definition false. The description of the final state can be

exist either as free functions of first order predicate logic, or as an extension operand.

The PDDL 2.1 (Fox and Long 2003) was developed because of the need for a language

capable of expressing the temporal and numerical properties of modern planning

domains and problems. However, it was designed to be compatible with previous

versions of the language and to maintain the basic principles.

The first extensions introduced numeric expressions. Elementary arithmetic expressions

are functions that associate a number of domain objects with numerical values.

Complex arithmetic expressions are formed from simple expressions by using

51

arithmetic operators between them. In order to support arithmetic expressions,

additional information must be appended into the language. Such functions and

hypothetical expressions include comparison between pairs of numerical expressions

and values for operators, the assignment, increase and decrease. Assigning values or

numeric values to functions are not part of the domain, so they should be declared in the

problem definition. Plan metrics are another notable addition to the language. This

allows the user to determine how each plan should be assessed and enable the ranking

of solutions to identify the one which represents the best plan of action.

A further extension to this version of the language is the term ‘durative actions’, which

are divided into discrete and continuous. While all previous versions of actions are

considered instantaneous, this extension gives actions the ability to have a predefined

duration. To work properly, the actions of the planning system are further extended to

include associated timestamps (temporal annotations) to the conditions and the effects

of actions. A condition associated with temporal annotation needs to be applied at the

beginning, end or throughout the duration of the action. Similarly, an effect may be

immediate or delayed, i.e. taking place at the beginning or at the end of the action

duration.

The PDDL 2.2 (Edelkamp and Hoffmann 2004) added the derived predicates which

were mentioned earlier, as well as initial delayed predicates (timed initial literals).

These are events that are true or false at any given time as specified in the context of the

problem. They are unaffected by the operators. The planning system indicates that these

predicates should be applied when the action activates.

PDDL 3.0 (Gerevini and Long 2005) attempted to enrich the language structure by

adding the ability to increase the expressive definition in the context of metrics that

52

determine the quality of plans. One of the ways of making this possible is the separation

of hard and soft restrictions. Hard restrictions are required to be satisfied by the solution

of the problem, while soft restrictions are desired (not required) to be satisfied by the

solution of the problem. There are state trajectory constraints that place restrictions not

only in the final state, but throughout the action sequence which is included in a plan.

State trajectory constraints assert conditions that must be met by the entire sequence of

states visited during the execution of a plan. They are expressed through temporal

modal operators over first order formulae involving state predicates.

3.3 Knowledge Representation Methods

In the field of knowledge representation and reasoning, research usually focuses on

developing methods for providing high-level descriptions of the world. Therefore, these

methods can effectively be used to build intelligent applications to support, for example,

the robotic system in accomplishing its tasks. When this system has the ability to

discover implicit consequences of its explicitly represented knowledge, then it is

characterised as knowledge based system.

In this study, the description logics (DLs), a family of logic-based knowledge

representation languages, are chosen to represent the knowledge of an agent domain in

an organised and formal manner. The most effective application of DLs is, however,

becoming the basis of building the ontology of knowledge based systems in the Web

Ontology Language (OWL) format.

The following subsection will describe the details of DL features and the benefits of

using DLs to represent the system ontology.

53

 Description Logics (DLs) 3.3.1

Description Logic languages are viewed as the core of knowledge representation

systems as they consider both the structure of a DL knowledge base and its associated

reasoning services.

Description logics (DLs), as explained by Baader et al. (2010), are knowledgeable

fragments of first order logic which are intended for representing and managing

knowledge. They are used to represent domain knowledge of applications through the

specification of the domain concepts and the relationships between these concepts

(concepts also known as terminologies). Assertions about the properties of, and

relations between, individuals which are present in the domain are used to describe the

agent world. The ability to reason and infer implicit knowledge from the explicitly

represented knowledge is an important characteristic of description logics (Baader et al.

2008).

In DLs style, unary predicates represent concepts (i.e. sets of individuals that have

common properties), while binary predicates represent relationships between

individuals. Concept expressions can be built using a small set of connectives and

constraints over the individuals that are in a relationship with a specific individual.

Concepts that are not defined in terms of other concepts are called atomic concepts.

For example, to define the concept of “A room that contained a fridge, and all of its

stuffs are either perishable or non-perishable.” This concept can be described with the

following concept description:

Place ¬Object (∃isContained.Fridge) (∀hasStuff.(Perishable Non-

Perishable)).

54

This description employs several Boolean constructors: conjunction (), which is

interpreted as set intersection; disjunction (), which is interpreted as set union;

negation (¬), which is interpreted as set complement; the existential restriction

constructor (∃r.C); and the value restriction constructor (∀r.C). An individual, for

example Kitchen1, belongs to ∃isContained.Fridge if there exists an individual that is

contained in Kitchen1 (i.e., is related to Kitchen1 via the isContained role) and is a

fridge (i.e., belongs to the concept Fridge). Similarly, Kitchen1 belongs to ∀hasStuff.(

Perishable Non-Perishable) if all its stuff (i.e., all individuals related to Kitchen1 via

the hasStuff role) are either perishable or non-perishable.

The present study has employed description logics to encode and reason about semantic

domain knowledge for the purpose of plan generation (as will be described in Chapter

4). The major advantages of using description logics (DLs) are as follows:

 DLs provide a summarised representation of the world, as they can express

general knowledge about classes of objects. Thus a lot of information can be

kept implicit. For instance, one does not have to state explicitly that room r5,

which is an office, contains a desk. Such information can be inferred from the

general description of the class Office.

 DLs are quite expressive and supported by efficient inference mechanisms,

making them practically useful.

Description Logics distinguish between terminological knowledge, the so-called TBox,

and assertion knowledge, the ABox. The TBox contains definitions of concepts, for

example the concepts Action, Room or Oven. These concepts are arranged in a hierarchy

called taxonomy, using subclass definitions that describe, for example, that a Kitchen is

55

a specialisation of Room. The ABox contains individuals that are instantiations of these

concepts, e.g. a particular Table, table1, as an instantiation of the concept DiningTable.

When modelling knowledge in robotics, the ABox usually describes detected object

instances which are stored in the robot’s knowledge base or evidence base. The TBox,

in contrast, describes classes of objects or actions. Note that the differences between

ABox and TBox are not specific to a domain or dependent on the environment.

Therefore, individuals in the ABox can be very general, like an instance of

SpatialThing, while classes in the TBox can be very specific, like the class of action

“Grasping a milk box from the fridge with the right hand using a gripper”.

In TBox, the relevant thought of a robot domain can be described by stating properties

of concepts and roles, and relationships between them. In a TBox, a statement can be

used to introduce an abbreviation for a complex description. For example, the name

HouseKitchen can be used as an abbreviation for the concept description from above:

HouseKitchen ≡ Place ¬Object (∃isContained.Fridge) (∀hasStuff.(Perishable

 Non-Perishable)).

More expressive TBoxes allow the statement of more general axioms such as

∃hasStuff .Fridge KitchenObject.

This says that only kitchen objects can have a fridge. This statement does not define a

new concept, it just constrains the manner in which concepts and roles (KitchenObject

and hasStuff) can be explained.

The ABox is used to describe a concrete situation by stating properties of individuals.

For example, the assertions HouseKitchen(Kitchen1), hasStuff(Kitchen1,Fridge1), and

56

¬Object(Kitchen1) state that Kitchen1 belongs to the concept KitchenHouse, and that

Fridge is one of its objects. The underlying idea is that the ABox can then be used to

represent knowledge that is not expressible in the restricted TBox formalism.

 Ontology Layout 3.3.2

A knowledge representation method that depends on the taxonomy of concepts and

relations between them is called “ontology”. Ontology allows conclusions to be drawn

using logical inference by the knowledge processing system. This is the essential

objective of knowledge representation.

The Web Ontology Language (OWL) (Motik et al. 2009) is used for storing Description

Logic formulas in an XML-based file format. OWL was originally developed for

representing knowledge in the Semantic Web (Berners-Lee et al. 2001). Since that time,

it has become a commonly used knowledge representation format. OWL is a file format

for storing and exchanging description logic formulas. The naming in OWL differs

slightly from that of DLs: “concepts” are usually called “classes” in OWL, “roles” are

called “properties”, and “individuals” are called “objects” or “instances”. Table 3.1 lists

the language constructs in DLs and their counterparts in OWL (Baader et al. 2008).

An OWL ontology can be seen to correspond to a DLs TBox together with a role

hierarchy, describing the domain in terms of classes (corresponding to concepts) and

properties (corresponding to roles). An ontology consists of a set of axioms which make

it possible to assert subsumption or equivalence with respect to (i) classes or properties,

(ii) the disjoint between classes, and (iii) the equivalence or non-equivalence of

57

individuals. Additionally, OWL allows features of properties (i.e., DL roles) to be

asserted as transitive, functional, inverse functional or symmetric.

Table 3.2 compares the language axioms in DLs with their counterparts in OWL

(Baader et al. 2008).

Table 3.1: A Comparison Between OWL and DL Constructors

Constructor DL syntax Example

intersectionOf C1 … Cn Human Male

unionOf C1 … Cn Doctor Lawyer

complementOf ¬C ¬Male

oneOf {x1 … x2} {john, mary}

allValuesFrom ∀P.C ∀hasChild.Doctor

someValuesFrom ∃r.C ∃hasChild.Lawyer

hasValue ∃r.{x} ∃citizenOf.{USA}

minCardinality (≥ nr) (≥ 2 hasChild)

maxCardinality (≤ nr) (≤ 1 hasChild)

inverseOf r
-
 hasChild

-

OWL has several advantages, which include the structured descriptions, the decision

ability, and the fact that it is standardised and widely used. Despite these advantages,

OWL suffers from some restrictions with respect to the representation of the knowledge

of an autonomous robot. As a description logic language, it is limited to binary

predicates, and stores all knowledge in terms of Subject-Predicate-Object triples. If

58

more complex n-ary relations are to be expressed, one has to create an intermediate

instance (a parsed collection), that represents the relation to be expressed.

Table 3.2: A Comparison between OWL and DL Axioms

Axiom DL syntax Example

subClassOf C1 Cn Human Animal Biped

equivalentClass C1 ≡ Cn Man ≡ Human Male

subPropertyOf P1 P2 hasDaughter hasChild

equivalentProperty P1 ≡ P2 cost ≡ price

disjointWith C1 ¬C2 Male ¬Female

sameAs {x1} ≡ {x2} {Pres_Bush} ≡ {G_W_Bush}

differentFrom {x1} ¬{x2} {john} ¬{peter}

TransitiveProperty P transitive role hasAncestor is a transitive role

FunctionalProperty T (≤ 1 P) T (≤ 1 hasMother)

InverseFunctionalProperty T (≤ 1 P
-
) T (≤ 1 isMotherOf

-
)

SymmetricProperty P ≡ P
-
 isSiblingOf ≡ isSiblingOf

-

Though this is less elegant than native support for such relations in the language, it

generally presents no limitation. For example, the relation between Place and Fridge

would be written as

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Place"/>

<owl:Class rdf:about="#Fridge"/>

</owl:intersectionOf>

</owl:Class>

59

while (>2 hasStuff.Thing) would be written as

<owl:Restriction>

<owl:onProperty rdf:resource="#hasStuff"/>

<owl:minCardinality

rdf:datatype="&xsd;NonNegativeInteger">2

</owl:minCardinality>

</owl:Restriction>

In chapter 4, DLs and OWL ontology will be used to build the semantic knowledge base

of the robot planning system. OWL format will then be used to represent the robot

actions in an ontological manner.

3.4 Graphical Models

This section introduces basic notions of Probabilistic Graphical Models (PGMs). It

describes two graphical models, namely Markov Networks (MNs) and Markov Logic

Networks (MLNs). Their related formulas will be presented, along with examples of

how MLNs serve as templates for constructing MNs. Chapter 5 will describe existing

algorithms for learning and inference within MLNs.

Although classical logics provide a flexible framework for the representation of

knowledge, they essentially ignore the fact that, under real-world conditions, knowledge

is, to a large degree, subject to uncertainty. The class of graphical models is frequently

used as a representational paradigm for representing uncertain knowledge.

The dependencies between variables, which usually reflect some knowledge and aspects

of the real world properties, are conveniently represented by graphical models.

Moreover, most aspects of the world can be sufficient to model the dependencies of its

variables, so graphs of such dependencies are particularly desirable. It is easy for

60

humans to semantically visualise dependencies between nodes in graphs as edges,

which facilitate understanding. Therefore, the modelling process of the knowledge in

the problem is more readable. The knowledge structure should be expressed explicitly

in intelligent systems in order to allow algorithms to exploit this structure to increase

efficiency.

Probabilistic graphical models, such as Markov random fields and Bayesian networks

(Koller and Friedman 2009) are widely used for representing statistical knowledge. In

short, these models represent the probability distributions of system variables in a brief

manner by taking advantage of independence. In the field of logic, graphical models are

referred to as restriction networks and they are commonly used to represent the structure

of constraint satisfaction problems.

 Markov Networks (MNs) 3.4.1

A large joint probability distribution can be broken down into a set of smaller

components within local views. These components can then be combined by

considering relative dependency measures, which concern only a subset of system’s

random variables, in order to obtain a global probability measure. Locally, a (non-

negative) numeric value is assigned to each particular configuration of each considered

variable. This value has meaning only in relation to other such values and is

proportional to the degree to which that configuration appears.

A graphical structure is implied between the considered variables within a local view. If

two variables appear within a local view, then an edge will connect them. The

framework of Markov networks formalises the way in which a full-joint probability

61

distribution can be specified based on local views and defines the relationship between

conditional independence and the graphical structure that is implied by the local views

under consideration.

Formally, a (discrete) Markov network or Markov random field (MRF) is a tuple

𝑀 = 〈𝑋, 𝐷, 𝐺, ϕ〉 representing a joint probability distribution over a set of random

variables X = {X1, …, XN} with corresponding (discrete) domains D = {D1, . . . , DN}.

The Markov network is an undirected graph 𝐺 = 〈𝑋, 𝐸〉 which contains one node for

every random variable in X, while its set of edges 𝐸 ⊆ {{𝑋𝑖, 𝑋𝑗}| 𝑋𝑖, 𝑋𝑗 ∈ 𝑋, 𝑖 ≠

𝑗} indicates dependencies between random variables. G is called the structure of the

model. Since the graph is undirected, MRFs belong to the class of undirected graphical

models (Koller and Friedman 2009).

The numerical sides of the distribution represented by M are given by a set of “potential

functions” ϕ. The model has a potential function for each clique in the graph, where

each potential function ϕk ∈ ϕ maps from the fully connected subgraph (clique) in G to

the non-negative real numbers, i.e. if Ck = {X1 , . . . , XNk} is the kth clique in G, then

 ϕk ∶ 𝐷1 ∗ … ∗ 𝐷𝑁𝑘
→ ℝ0

+ (3.1)

The combination of the range of the functions ϕk constitutes the model’s set of

parameters. The set of possible assignments of random variables to values (the set of

possible worlds), which is denoted by 𝒳 ∶= dom(𝑋) = ∏ 𝐷𝑖 . 𝑀N
i=1 , represents a

distribution over 𝒳 as

62

P(𝑋 = 𝑥) =
1

Z
 ∏ ϕk(𝑥{𝑘})

|ϕ|

𝑘=1

 (3.2)

Where 𝑥{𝑘} corresponds to the state of the kth clique in G. Z is a normalisation constant

and is given by

 𝑍 = ∑ ∏ ϕk(𝑥{𝑘})

𝑘𝑥∈𝒳

 (3.3)

The Markov blanket of a random variable Xi is defined precisely as the set MB(Xi) of

random variables that must be given for Xi to be independent of all other random

variables X \ MB(Xi) \ {Xi}.

A new piece of information can be flexibly acquired by an intelligent agent when the

probabilistic model represents a full-joint distribution over a set of random system

variables. When the model probabilities of assigning particular random variables

changes, then its beliefs should also change, leading to a belief update.

The process of obtaining new information from old information, which may be stored in

the knowledge base or evidence base, is called inference. The most common two

inference tasks are:

i. The computation of posterior marginal, i.e. the calculation of the conditional

probability distribution over dom(Q) (the query) given a known assignment E =

e (the evidence) for two different subsets 𝑸 ⊂ 𝑿 and 𝑬 ⊂ 𝑿. By introducing a

new set (U) with U:= X\ E\ Q, the posterior probability of an assignment Q = q

can be computed as

63

 P(𝑄 = 𝑞 | 𝐸 = 𝑒) =

𝑃(𝑄 = 𝑞, 𝐸 = 𝑒)

𝑃(𝐸 = 𝑒)

=
∑ 𝑃(𝑄 = 𝑞, 𝐸 = 𝑒 , 𝑈 = 𝑢)𝑢∈𝑑𝑜𝑚(𝑈)

∑ ∑ 𝑃(𝑄 = 𝑞′, 𝐸 = 𝑒, 𝑈 = 𝑢)𝑞′∈𝑑𝑜𝑚(𝑄)𝑢∈𝑑𝑜𝑚(𝑈)

(3.4)

ii. The determination of the most probable assignment to a subset 𝑸 ⊂ 𝑿 \𝑬 given

an assignment E = e, i.e. the computation of the maximum a posteriori (MAP)

hypothesis. With set U = X \ E \ Q, it is given by

 ∑ 𝑃(𝑄 = 𝑞, 𝑈 = 𝑢, 𝐸 = 𝑒)

𝑢∈𝑑𝑜𝑚(𝑈)

𝑞∈𝑑𝑜𝑚(𝑄)
arg 𝑚𝑎𝑥

 (3.5)

A related inference problem is the computation of the possible world, given the

evidence E = e, which has the highest probability, i.e. the determination of the most

probable explanation (MPE) of the evidence:

 𝑃(𝑋 = 𝑥)𝑥∈𝒳, 𝑥⊨𝐸=𝑒
arg 𝑚𝑎𝑥

 (3.6)

As an alternative to potential functions, a Markov network can be represented as a log-

linear model 〈𝑋, 𝐷, 𝐺, 𝑓, 𝑤〉 where X, D, and G are defined as above and the potential

functions ϕi are replaced by weighted features. Here a feature is a property that is either

present or absent (either true or false) in a given world 𝑥 ∈ 𝒳. Thus 𝑓 is a vector of

feature functions 𝑓𝑖: 𝒳 → {0,1}, and w is the associated vector of real weight values.

The distribution over 𝒳 is given by

64

𝑃(𝑋 = 𝑥) =

1

𝑍
 exp (∑ 𝑤𝑖. 𝑓𝑖(𝑥))

𝑖

 (3.7)

 Markov Logic Networks (MLNs) 3.4.2

Markov logic (Richardson and Domingos 2006) is a formalism that benefits from

simplicity and hence received much attention and publicity in recent years. MLNs have

high-level learning and reasoning capabilities, so they are a prime candidate for

equipping with a technical system.

Markov Logic is a combination of MNs and first order language (FOL). A knowledge

base (KB) is a set of (FOL formula) hard constraints on the set of possible worlds. In

this case, any worlds that violate even one formula have zero probability of existing.

Markov Logic is based on the idea that these constraints must be softened, i.e. when a

world violates one formula in the KB it is less probable, but not impossible.

If a world violates fewer formulas, then it is deemed to be more probable. Each formula

in Markov Logic has an associated weight that reflects how strong a constraint it is. The

weighted formulas define a template for the construction of a graphical model that

specifies a distribution over possible worlds. When the weight is high, this means a

great difference exists between the log probability of a world that satisfies the formula

and one that does not.

The ground Markov logic network specifies a probability distribution over the set of

possible worlds X as follows:

65

||

1

)(exp
1

)(
L

i

ii xnw
Z

xXP (3.8)

Where L is the Markov logic network language, wi is the formula weight, ni(x) is the

number of true grounding of formula in the world x, and Z is a partition function,

defined as:

Xx i ii xnwZ ')(exp ' (3.9)

The details of MLN components, the main inference and learning algorithms will be

presented in Chapter 5. The way that MLN can be used to solve the problem of planning

under uncertainty is also discussed.

3.5 Planning System Architecture

This section will give an overview of the main components which constitute the

proposed planning system in this study. Moreover, the interplay between these

components is described in order to better understand their role in the system. Figure

3.3 groups the components by their functionality.

The central component is the knowledge representation that provides the mechanisms to

store and retrieve all the different kinds of information in the system. Robots need very

powerful knowledge representations that are expressive enough to describe all aspects

of actions, objects, their properties and relations.

66

Lack of

Information

Methods

The ‘reasoning methods’ component is used to enable the robot to derive new

statements from the existing knowledge. Multiple general and special-purpose inference

methods are used in this system. Description logic inference is the basic mechanism. It

mainly deals with the types of things, and the automatic classification of things based on

their properties. While pure description logic inference is completely deterministic, it is

often desirable to represent uncertain information. The Markov Logic Networks allow

the drawing of probabilistic inferences that combine the expressiveness of first-order

logics with the representation of uncertainty.

Knowledge

Representation

Reasoning Methods

Integration with Robot Components

Figure 3.3: Planning System Architecture

Planner

DLs inference

Probabilistic Inference

Semantic

Similarity

Measures

Information

Gathering

Robot Operating System

(ROS) Middleware

67

Another module deals with situations of lack of information by using two techniques:

similarity measures and information gathering techniques. Measuring semantic

similarity between concepts enables a description of how close two concepts are in the

knowledge base. This similarity value can for instance be used to determine appropriate

storage locations for an object, namely where similar objects are stored. The

information gathering techniques are used to enrich the robot world state with new

information in order to recover the planning system from the incomplete information

situations.

Integration with robot component is used to interface to other parts of the robot’s

control system. On the one hand, it updates the belief state inside the knowledge base

based on external information; on the other hand, it offers knowledge and reasoning

services to other components. This system can access information via the ROS

communication middleware and provides this information into the reasoning process.

This system also provides a query interface that allows other components to send

queries via a ROS service.

3.6 Plan Generation under Deterministic and Probabilistic Conditions

The process of plan generation can be divided into deterministic and probabilistic types.

This section will briefly describe each of them, while more detail will be added in

Chapters 4, 5, 6 and 7 when presenting the contributions of this thesis.

In plan generation in deterministic conditions, the planner depends on the robot action

model details to generate plans. The action details consist of parameters, preconditions

68

and effects parts. These details are deterministic, which means that the conditions, the

necessary actions, and their consequences are clear and fixed. .

While in plan generation in probabilistic conditions, the planner also depends on the

action model details to generate plans when uncertainty exists in the world states (action

conditions), and in the effect of the actions. The probabilistic planning also depending

on the MLN unit in order to handle situations suffered from uncertainty in action

outcomes and robot world states.

Some of the related tools which are used in the present study are already available, but

other important tools are created to cover problems which are not addressed by the

available tools. Chapters 4, 5, 6 and 7 will present these tools as direct contributions of

this work.

3.7 Robot and Environment Specifications

The aim of this section is to describe the proposed Multi-Role Shadow Robotic System

for Independent Living (SRS)
1
 its environmental specifications that will be used in the

test scenarios.

i. Multi-Role Shadow Robotic System for Independent Living (SRS) is selected as a

proposed robotic system for testing scenarios. SRS robot is remotely-controlled,

semi-autonomous robotic system which is intended to work in a domestic

environment to help elderly people. The Care-O-bot®3 (Reiser et al. 2009) robot is

1
 http://srs-project.eu/

69

selected for the SRS project. The Care-O-bot®3 robot has the following

specifications:

1- Actuators and mobility: The system is able to handle general sized

household objects and door handles. Care-O-bot® 3 is equipped with a

highly flexible, commercial arm with seven degrees of freedom as well as

with a three-finger hand. This makes it capable of grasping and operating a

large number of different everyday objects. Using tactile sensors in the fingers,

Care-O-bot® 3 is able to adjust the rasping force.

2- Basic navigation and manipulation planning: The manipulators of Care-

O-bot®3 can be actuated by a simple control interface which allows

movements in joint and Cartesian space. According to the parameters given in

the configuration files, the robot is modelled by oriented bounding boxes,

which are used for collision avoidance calculations.

3- Basic environment perception: A multiplicity of sensors enables

Care-O-bot® 3 to detect the environment in which it is operating. These

range from stereo colour cameras and laser scanners to a 3D range

imaging camera. The sensors serve, for example, to detect and locate objects

for manipulation as well as relevant obstacles in the robot's environment.

ii. SRS Environmental Specifications: Environmental conditions are a key factor in

independent living for elderly people who prefer to live in their homes as long as

they can. The environment in which SRS will operate will be the elderly

person‘s home. As it is normal in any home, the master of the house will not be

the only human present in it.

70

Occasionally relatives or neighbours may visit the elderly, possibly with children. It

may be that the elderly person is occasionally caring for his grandchildren, so

they are present in the house. Other people also may occasionally be present,

such as people coming to the elderly person for offering services (nurse, delivery boy,

carrier, postman, etc.). The main objects in the elderly people environment are: washing

machine, dish washer, TV, telephone, etc.

3.8 Summary

This section has reviewed the theoretical basis and the planning domain and problem

formalism then the methods used to represent the semantic knowledge and the layout of

this knowledge. The review has highlighted the following points:

1. The planning domain and problem has been formalised by using planning

domain and definition language (PDDL). This formalism has been the standard

in the international planning competitions (IPC).

2. The PDDL has two structures: the first structure has been used to model the

planning domain while the second structure has been used to model the planning

problem.

3. The PDDL has used the STRIPS model to represent the main components of

each structure that PDDL has.

4. The Description Logics (DL) has been used to represent the semantic

knowledge, which consists of fragments of first order logic.

5. The Web Ontology Language (OWL) has been used to store the DL formulas in

an XML-based file format.

71

6. The SRS robot is not embedded with planner to generate plans to accomplish its

tasks. The novelty of this work is to engage a planner in SRS robot operation,

whereby endowing the robot the ability to work autonomously.

7. The generation of planning domain and problem files in PDDL style is prepared

manually in general and there is a need to generate PDDL files from a source of

knowledge automatically. So, the work in this thesis (as it will be seen in chapter

4) deals with developing an algorithm to generate planning domain in PDDL

style from robot knowledge base.

Having established the mechanisms of using the PDDL style, DL for representing the

knowledge and OWL for storing the DL formulas, next chapter will use them to model

the proposed planning system under deterministic conditions.

72

Chapter 4

Semantic Based Planning under Deterministic Conditions

4.1 Introduction

Knowledge is one of the most important tools enabling robots to provide a service in a

domestic environment. This knowledge supports them in intelligently completing their

service tasks in a real environment. A Semantic network (Berners-Lee et al. 2001),

ConceptNet (Liu and Singh 2004) can be used to represent this knowledge. These

techniques are capable of representing knowledge as concepts and the semantic

relations between these concepts. The description of the concepts and the relationships

between them is represented as ontology. The semantic information can improve robot

reasoning and knowledge inference. Actions are applied based on the knowledge in

order to change robot states, and these actions are also important.

First, the robot knowledge is represented as ontology representing the main concepts

and the relationships between them. Then, the robot actions are formed as models which

are also represented as ontology. This representation reflects action inputs,

preconditions, outputs and effects. Their arguments are then connected to the robot

knowledge base to enrich the planning domain with semantic facts about the objects and

places in the robot’s environment. Action models, in this sense, are somewhat similar to

web services (Martin et al. 2004).

Having reviewed, in Chapter 2, research works regarding the generation of robot plans

and strategies for dealing with unexpected situations, solutions to the problems

addressed in this thesis will now be presented. In this chapter, a novel approach is

73

presented for the intelligent generation of symbolic plans by mobile robots acting in

indoor environments such as offices and houses. The novelty of the approach lies in the

use of domain knowledge to derive implicit information related to the robot world states

and actions details. The robot planning system uses the immediately available evidence

database to check whether those expectations are met or violated during the robot work.

Depending solely on explicit knowledge to construct an action sequence implies that the

derived expectations are directly observable. For example, a mobile robot that has

generated the planned action move(robot,hall,r1), to enter the living room r1, would

query its self-localisation system to provide it with the explicit expectation in order to

hold in(robot ,r1) in its evidence base. In this manner, the plan generation process relies

entirely on the accuracy of the self-localisation system. Moreover, checking

expectations in real-world environments is an inherently complex process that goes

beyond checking what the robot directly observed.

This chapter proposes to increase the reliability of plan generation by incorporating

more advanced forms of reasoning. In particular, the semantic knowledge domain is

proposed to derive implicit knowledge about robot world states and the effects of

actions. Implicit knowledge means knowledge which can be logically derived from

explicit knowledge (the knowledge encoded in the action model or world states)

through the use of reasoning techniques. In the above example, if the action

move(robot,hall,r1) succeeded, and since r1 is an instance of the class LivingRoom, the

robot should expect to validate information about objects that are typical of a living

room (e.g. TV, sofa, etc.). If the robot sees an oven, it should conclude that it is not in

the living room, so that in(robot, r1) cannot be held as true in the evidence database.

74

Another example is the action grasp(robot,c1) which instructs the robot to grasp a cup

of coffee c1. Semantic knowledge could be queried to obtain the implicit knowledge

that the object in the gripper has properties such as being a container and having one

handle. Therefore, checking implicit expectations when acting in indoor environments

can help, among other things, to verify that the robot is in the correct room, and (1) is

not dislocated or (2) does not have an erroneous map.

Implicit expectation details would add complexity to the task planning if the task

planner is required to reason about them. Therefore, they are extracted from the

semantic knowledge base and action models, and encoded in a separate component.

They are used only when necessary, i.e. outside the planning engine of the task planner.

The rest of this chapter is organised as follows: Section 4.2 presents a motivating

example; Section 4.3 explains the robot semantic knowledge domain; Section 4.4

discusses the main components of the planning system framework; Section 4.5 gives an

overview of the planning approach and its algorithm; and Section 4.6 presents the

experiments which were used to validate the approach which is presented in this

chapter. Following this, the main outcomes of this chapter are discussed in Section 4.7.

4.2 A Motivating Scenario

To better illustrate this chapter hypotheses, a scenario will be described where a mobile

robot is operating in a house environment to accomplish a multitude of household tasks,

such as (i) cleaning the floor, (ii) serving drinks to guests, and (iii) doing laundry,

among others. Figure 4.1 shows a map of such a house where the robot can live and

serve. The house comprises rooms of different types such as bedrooms, kitchen, etc., as

75

well as objects of different types that can exist in different rooms. The object types

include sofas, beds, tables, chairs, kitchen appliances (oven, fridge, ...), plants, etc. The

environment is not specifically designed to be structured in a way that makes it easy for

the robot to act. The environment is also dynamic, as objects such as chairs and cups

can be displaced from one location to another, either by the robot itself or by the

humans living in the house without notifying the robot.

Figure 4.1: Robot Environment

76

The robot is supposed to act autonomously and is equipped with functionalities that help

it to accomplish its tasks. These include low-level navigation and manipulation

functionalities as well as high-level deliberation and problem solving capabilities. In

particular, an on-board planning engine is used to synthesise plans that specify the

actions required to accomplish a specific task. The robot is also granted access to a

knowledge base (KB) where information about its environment is stored. Suppose that

while the robot is busy cleaning the living room, it is asked to bring a cup of coffee

immediately. To do so, the robot must first suspend the task of cleaning and then call its

on-board planner to generate a plan that helps it to accomplish the assigned task of

bringing coffee.

The task planning system uses information about the current location of the robot as

well as the domain knowledge (e.g., cups are generally found in the cupboard, which is

located in the kitchen) to generate a task plan. This plan could include the following

actions:

move(robot,r4,hall),move(robot,hall,r5),open-cupboard(robot,cb1),take(robot,c1,r5),

fill(robot,c1,coffee),move(robot,r5,hall),move(robot,hall,r4),deliver(robot,c1,person1)'

where r5 and r4 are symbols denoting the kitchen and the living room respectively,

while the cupboard is referred to by the symbol cb1, and the cup by the symbol c1. The

final action specifies that the robot should deliver the cup of coffee to the person

person1 who ordered the cup of coffee. If the robot started from a position where it was

initially dislocated, then the generation of action move(robot,r4, hall) could result in the

robot being not in r4 but in r1 instead. A standard plan generator uses the available

information to generate the action move(robot,hall, r5), expecting that the robot will be

in room r5 based on the current location provided by the robot’s self-localisation

77

system. Due to an initial error in orientation, the location of the robot can be

erroneously computed to be r5.

Using semantic domain knowledge when generating plans makes it possible to provide

the planning system with the implicit effects arising from being in room r5. In

particular, since r5 is asserted to be a kitchen, the robot expects to find indications that

this room is a kitchen, such as seeing an oven, sink, or stove. If, for example, the robot

sees a bed, it should conclude that it is not in a kitchen, but in a bedroom. Such

information is derived from the semantics of the different rooms and the objects present

in the house. In this case the robot can depend on the generated plan to know that the

execution of the action take(robot,c1,r5) will be successfully executed by verifying not

only that its gripper is holding something but also that the description of the object

satisfies the object type Cup.

4.3 Robot Semantic Knowledge Base (Robot Environment Ontology)

As mentioned in Chapter 1, semantic knowledge refers to the meaning of objects

expressed in terms of their properties and relations to other objects. Objects that share

the same properties and relations are grouped into classes (or concepts). For instance,

objects of type Room, and which include a bed, are instances of the class BedRoom.

Similarly rooms with a sofas or a tv set are defined as the LivingRoom class. This

reasoning captures the way that humans organise knowledge about objects as instances

of general categories. Therefore, semantic knowledge can be used to help mobile robots

communicate with humans. For instance, in the work of (Theobalt et al. 2002), instead

of using metric data, a robot can ask humans about its location in terms of high-level

78

descriptions of locations. Semantic knowledge has also been used in other areas of

mobile robotics, such as scene analysis (Hois et al. 2006) and map building (Galindo et

al. 2005; Nüchter et al. 2006; Ekvall et al. 2007).

The semantic knowledge base should capture knowledge about the objects that form the

robot’s environment. The specification of such knowledge might initially appear to be a

simple task. However, indoor environments are usually congested with objects of

different types, which makes it difficult to provide knowledge about each of them.

In this chapter, the semantic knowledge is used for the purpose of generating symbolic

semantic plans, and provides knowledge about the task at hand, i.e. objects in the

generated plans. Therefore, the design of the semantic knowledge base takes into

accounts the formal definitions and details of the actions (action components) that form

the planning domains.

As a first step, the semantic action models are used to identify, in the parameter part, the

objects type, which are manipulated by an action, along with their properties. Then, the

knowledge about the different types of objects is provided to the planning system in

terms of object properties and relations to other objects. Next, the same process is

applied to add knowledge about the related objects, and so on. For instance, in a

navigation planning domain, the action move(robot,loc1,loc2) is used to model the

movement of the robot from location loc1 to location loc2. Consequently, the semantic

knowledge base includes knowledge about the different types of locations that exist in

the robot’s environment. These can be corridors, halls, and rooms. The knowledge base

also includes information about the different types of room (e.g., kitchen, office, etc.),

and also the typical objects of such rooms, such as ovens, desks, etc.

79

The knowledge base in this section is built to represent information that is clear for

humans, but not explicitly clear for robots. This knowledge base will be used to support

the task planner to build a more efficient and reasonable plan. The planner will take into

consideration the semantics of objects and places that make up the robot world. The

creation of a knowledge base is dependent on some known knowledge bases. The first

of these is the Common-Sense knowledge base which has been collected and made

publicly available by the Open Mind Indoor Common Sense project (OMICS) (Gupta

and Kochenderfer 2004). It is intended to be used in indoor mobile robotics. The second

known knowledge base is OpenCyc ontology (Lenat 1995), which was created by

experienced experts with the intention of building an ontology to be a general standard

for robot knowledge bases. It contains concepts forming an ontology in the domain of

human consensus reality and assertions (facts and rules) using relations that interrelate,

constrain and, in effect, (partially) define the concepts. The third known knowledge

base is KNOWROB (Tenorth et al. 2010b) which has been used to support the

KNOWROB knowledge processing system. All these knowledge bases are used in

creating SKB in order to provide the robots with the broad range of knowledge

necessary to accomplish their tasks.

The process of building the SKB is as follows:

1- From OMICS: the information that is clear for the human, but is not clear for the

robot has been extracted and inserted in the SKB. For example, turning off the

cooker after using it is clear for the human, but it is not clear for the robot and

should be defined explicitly as a property of using the cooker. OMICS focuses

on the kind of knowledge required by robots acting in indoor environments.

80

2- From OpenCyc: the SKB layout of the upper levels, including classes, their

hierarchy and properties, has been adopted from the OpenCyc ontology. Adopting

the ontological structure also means to adopt a certain way of thinking since the

vocabulary means that a language provides shape the way how things can be

described.

3- From KNOWROB: the modelling of objects and places in SKB is similar to the

representations in KNOWROB, whereas other parts like the description of

object locations and the place details have been developed specifically for SKB.

Figure 4.2 shows an excerpt of the knowledge that is used in this study and is

represented as hierarchical levels which reflects the robot environment ontology. This

knowledge base is stored as an OWL file to reflect the ontology of the environment that

consists of rooms (such as the kitchen and bathroom), and objects (such as the fridge,

TV, etc.). The knowledge about objects is restricted to be in terms of properties that the

robot can directly observe or are defined in terms of other observable properties. For

example, the definition of an object of type Cup might include that the object must be a

81

Figure 4.2: Robot Knowledge Ontology

82

container that has one handle. The container and handle are atomic concepts, and hence

they must be directly observable. Direct observability implies that it is the task of the

perception module to tell whether a perceived object is an instance of an atomic class,

e.g. whether a perceived object is a container. All these details are stored in the robot

evidence database.

The most important sections in the ontology are the Room, which contains descriptions

of the main rooms in the robot environment, and Object, which describes abstract

concepts such as LivingRoomObject or KitchenObject, as well as all the different object

classes. Most objects in the robot’s environment, together with pieces of furniture or

body parts, are subsumed under the Object class. Another notable branch is the Place

class, which describes locations and positions in the robot map.

The following example (which is based on Figure 4.2 and Protégé
2
 style) describes what

is meant by atomic classes and defined classes. The roles are used to restrict the

extension of certain classes.

Atomic classes: Room, Object.

Defined classes: Kitchen isA Room and isContained KitchenObject

 KitchenObject isA Object and isLocatedAt Kitchen

The arrangement of the ontology levels (which consist of many classes), their hierarchy

and their properties, has been adopted from the OpenCyc ontology (Lenat 1995) and

KNOWROB (Tenorth and Beetz 2009). This adaptation describes the way in which

things can be explained.

2
 http://protege.stanford.edu

http://protege.stanford.edu/

83

After the general semantic knowledge base is created, specific instances of classes can

be retrieved by creating a query which including the instances properties that reflect the

state of these instances in the environment. For example:

SELECT ?k1 ?f1

WHERE {?k1 rdf:type skpg:Kitchen

?f1 rdf:type skpg:KitchenObject

?k1 skpg:isContained ?f1}

returned that k1 is an instance of kitchen and f1 as an instance of KitchenObject. As a

result of the property isContained between these two instances, f1 is classified as one of

the kitchen objects. The instance k1 is also classified automatically as an instance of the

class Kitchen. Classification is performed based on the definitions of concepts and

relations to create a domain specific hierarchy. The hierarchy is structured according to

the superclass/subclass relationships that exist between entities. When new instances are

added to the knowledge base, they are classified according to what has been asserted.

4.4 Planning System Architecture

Figure 4.3 illustrates the main components of the proposed robot planning system. It

consists of:

 The semantic action model (SAM), which contains the main robot actions and

expresses the robot capabilities.

 The semantic knowledge base (SKB), which is described in Section 4.3.

84

 The ontology manager and the transformation algorithm, which convert SAM

and SKB from OWL style into PDDL style.

 Problem and domain definition in PDDL style, which result from step3.

 The planner, which is responsible for generating a robot plan for a given task.

The next subsections present details for each of these components (except SKB which

was described in the previous section).

4.4.1 Semantic Action Models (SAMs)

The domain definition begins with robot actions, which express the robot abilities. The

action model is formed in STRIPS-style to represent its preconditions and effects. This

model is stored as an OWL file that represents it as an ontology in order to connect

Semantic

Knowledge

Base

(SKB)

OWL

Ontology

Manager

Transformation

Algorithm

Plan

PDDL

Figure 4.3: Planning System Architecture

Semantic

Action

Models

(SAM)

Planner

85

action parameters to the main ontology (knowledge base). The idea of SAM is clear in

Figure 4.4 which explains the SAM model of the move action.

The main components of the proposed semantic action model, which are related to the

process of domain generation, are ID, Inputs, Preconditions, outputs and Effects. These

components are depicted in the Figure 4.5 (left side). These components are connected

to the knowledge base in a semantic way by referring to the SKB which contains the

class to which that component is related. For example, for the move action, the

precondition of the this action is at(robot,from) and represented as input to the process

“Input”. The parameters robot and from are connected to the SKB by using the name of

Figure 4.4: Semantic Action Model for Move Action (SAM)

86

the knowledge base and the name of the parameter’s class. Then the SAM is stored as

an OWL file (Bechhofer et al. 2004). The components of SAM are described as follows:

 Profile part shows an action as a function of three basic types of information: (i)

what robot part provides this action, (ii) what function the action does, and (iii)

what robot part hosts the features that specify characteristics of the action. The

profile describes the action inputs and outputs, the preconditions required for the

action to occur, and the expected effects that result from the execution of the

action.

 Process part is a specification of the ways a robot may interact with an action.

There are two types of processes: (i) the atomic process, which has one (or more)

simple input(s) and one simple output, and (ii) the composite process, which takes

more than one input and produces one or more outputs. The process part is the

main part of the action model. The algorithm that operates on it will be presented

in the next section. The process inputs and outputs and the world states are used to

produce new information, while preconditions and effects can produce change in

the robot world as a transition from one state to another state.

The process inputs represent information that is required for operating the process. The

process outputs represent the information provided to the user or the next action(s). The

process preconditions should all be verified in order for the process to be invoked

successfully. The process effects show the results of applying the actions.

There are some typical properties which are used to describe process functions and their

parameters. These properties are: hasInput (used to describe an action’s inputs); and

hasOutput (used to describe an action’s outputs). Sometimes, when necessary, other

87

properties are used to describe the action preconditions hasPrecondition and effects

hasEffect.

Figure 4.5 represents the matching process between the SAM in OWL format and SAM

in PDDL format. The ID in OWL will be the name of the action in PDDL, the inputs

and Preconditions in OWL will be the preconditions of the action in PDDL then the

Outputs and Effects in OWL will be the effect part of the action in PDDL.

Semantic Action Model

(SAM)

Action Profile Part

Action Process Part

Planning Domain

Figure 4.5: Mapping between Semantic Action Model and Planning Domain

ID

Inputs

Preconditions

Outputs

Effects

Name

Preconditions

Effects

88

4.4.2 Planner

The planner is at the core of the planning system. It takes as it’s input(s) the problem

and domain definitions in PDDL format. This format became a standard for planning

competitions since 1998. There are many different planners which have been developed.

In this thesis, two types of planners are used to produce the plan. The first is known as

Metric-FF (Hoffmann and Nebel 2001) and the second is LPG-td (Gerevini et al.

2003). These planners have become very popular during the last few years and have

received awards for best planner at several international planning competitions (IPCs).

The work in this study is not limited to these planners; any STRIPS-style planner can be

used. The Metric-FF and LPG-td planners are already undergoing redevelopment to

improve their computational efficiency in planning, so the overall improvement of the

proposed framework can be high.

Metric-FF is an open source implementation of the c++ actions within the design

algorithm, Graphplan (Blum and Furst 1997), which follows the STRIPS formalism. It

uses the advantages of efficient graph algorithms to reduce the search space and provide

better solutions. The LPG-td is the new, expanded and improved version of LPG. It is

based on local search and graphic design effects, and can produce good quality plans.

An important advantage of LPG-td is that it can produce more than one plan. Therefore,

for problems with high complexity, a greater time left to run means a greater chance of

finding an optimal solution (assuming such a plan can exist).

89

4.4.3 Semantic Action Model Transformation to Planning Domain

Definition Algorithm

This section deals with the algorithm that is used to transform SAM from OWL style to

PDDL style. Figure 4.5 shows the mapping process between SAM and the planning

domain. The algorithm uses that mapping process to generate a planning domain from

semantic action models.

Algorithm 4.1: Pseudo code shows that the first step in the translation process is to read

SAM in the OWL format. Then a loop is generated to read every action model in the list

M. For each m ∈ M, the transformation process extracts the following information:

 A set of m parameters, which are stored in the variable v.

 A set of m preconditions, which are a conjunction of all inputs and precondition

statements in m, which are stored in the variable preco.

 A set of m effects. These are a conjunction of all the output and effect statements

in m, and are stored in the variable effec.

 A combination of the variables v, preco, and effec in PDDL format, stored in

variable P. In the end this combination represents the planning domain.

90

4.4.4 Problem Definitions

A planning problem is modelled according to the Stanford Research Institute Planning

System (STRIPS) style (Fikes and Nilsson 1971) as a tuple <I, A, G> where I is the

initial state, A is a set of available actions and G is a set of goals. States in STRIPS are

represented as sets of atomic facts and predicates. Set A contains all the actions that a

robot has the ability to do, and can be used to modify states. Each action Ai has three

lists of facts containing (i) the preconditions of Ai, (ii) the facts that will be added to the

state and (iii) the facts that will be deleted from the state. These are denoted as

precondition(Ai), add(Ai) and del(Ai) respectively. The following points hold true for the

states in STRIPS notation:

1. An action Ai is applicable on a state S if precondition(Ai) ⊆S.

2. If Ai is applied to S, the generated state 𝑺− is calculated as

Algorithm 4.1

Procedure SAM to PDDL

Input: M = SAM set

Output: PDDL planning domain set P

P=0

For each m ∈ M

 v = input parameter group of m

 preco = (and(conjunction of all inputs and preconditions defined in model m))

 effect = (and (conjunction of all outputs and effects defined in model m))

 Add (m(v) preco effec) to P

End

91

𝑺− = (𝑺 − 𝒅𝒆𝒍(𝑨𝒊)) ∪ 𝒂𝒅𝒅(𝑨𝒊) .

3. The solution to a planning problem (plan) is a sequence of actions, which, if

applied to I, lead to a state 𝑺−such that 𝑺− ⊇ G.

According to Figure 4.5, the following rules are used to collect the predicates for each

of the lists above.

1. name(Ai) = SAMi.id

2. precondition(𝐴𝑖) =

⋃ SAMi. ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡. 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑓 ⋃ ⋃ SAMi. ℎ𝑎𝑠𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑓
𝑚
𝑓=1

𝑛
𝑓=1

3. add(𝐴𝑖) =

⋃ SAMi. ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡. 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑓 ⋃ ⋃ SAMi. ℎ𝑎𝑠𝐸𝑓𝑓𝑒𝑐𝑡. 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑓
𝑚
𝑓=1

𝑛
𝑓=1

4.5 Overview of the Approach

This section will give an overview of how semantic domain knowledge can be

integrated with semantic action models (SAMs). This generates the planning domain

and problem definitions in the process of constructing symbolic plans for the given

autonomous mobile robot tasks. Then, semantic knowledge base is used to extract the

implicit expectations of action effects. The process is meant to be used for deterministic

domains where both knowledge and action details are assumed to be expressed

explicitly. This section starts by describing the overall process of generating plans and

obtaining the implicit expectations of the effects produced by the actions. Then, an

overview is given of the algorithm involved in deriving and checking the implicit

expectations of the object in the action model.

92

4.5.1 The Overall Planning Process

The robot planning process tries to imitate the human decision making process. In

planning, a solution to a problem is given in the form of a sequence of basic actions that

transform a given initial situation of the environment into a desired or goal state. The

purpose of planning is to synthesise an abstract trajectory in a search space (also named

state space, since it consists of possible states of the world), predicting outcomes while

choosing and organising actions of different types to reach goals.

As explained in Chapter 2, the generation of symbolic plans is a model-based process

that exploits the explicitly modelled effects of an action to construct a sequence of

actions that together perform a given robot task. The explicit outcome of an action is

extracted from SAM using the OWL Ontology Manager module in the planning system.

A model of the action can also be used, together with knowledge of the objects

manipulated by the action, to compute a set of expectations that are not explicitly

encoded in that model. These expectations can then be verified using the perceptual

(evidential) information used to check the explicit effects.

There are two possible methods for using the information in the knowledge base with

SAM to produce the necessary information in robot states and support the planner to

generate the plans. The first method is to use the actions separately and then combine

their effects to produce a final result (or decision) about whether the generation of the

plan has succeeded. The second method is to use the result produced by the process of

constructing the plans, based on the implicit expectations. This can be used as an

additional check of the results produced by the process of generating plans from the

explicit effects of the action.

93

Using the first method implies having a mechanism that can handle situations where the

results of the two processes might be contradictory. For example, the process of

obtaining the explicit effects of generating the action move(robot,r4,r5) could deduce

that the planning has failed if, according to the self-localisation module, the robot is still

in room r4. On the other hand, the process of recording the implicit expectations can

declare that the room where the robot is located is a kitchen because an oven is observed

this room.

In this chapter, the second method is used. The process of validating the generated plans

is based on the implicit expectations, which are extracted from the action effects. This

process is called in order to validate the explicit effects of the action in the world state

that is produced by the current action. Hence, the final result of generating the plan

actions is the result returned by the process of embedding the checking of implicit

expectations of each action in the plan. Therefore, the schema of generating the plan

action (A) in a world state (ws) is comprised of the following steps:

1. The first step is a prediction, where the model of action (A) is used to compute the

explicit effects of (A) when applied to (ws).

2. In the second step, all the computed explicit effects are checked in the proposed

resulting world state. If all the explicit effects are verified, then the implicit effects

of generating (A) in (ws) are derived and checked in the current world state as

well. If one of the implicit expectations is found to be violated, a failure is

returned to the plan generator. Otherwise, the generation of the action has

succeeded, and success is returned to the plan generator.

3. If in the second step, some of the explicit or implicit effects were found to be

violated in the current world state, then a failure is returned to the plan generator.

94

4. The plan generator carries on the generation of the rest of the plan only if it gets

“success” from the step2. Otherwise a recovery procedure might be invoked to

recover from the encountered unexpected situation.

In order to formalise the planning approach in this thesis, some basic concepts related to

traditional AI planning are defined. These include logical predicates and planning states,

which are the basis of classical logical planners. Next, an operation is defined for

integrating planning states with action models.

4.5.2 Planning Basics

1- Logical Predicate: A logical predicate pred is an atomic sentence of a first-order

finite language L with n parameters such that: pred = (γ, Param), where γ is the

predicate symbol that represents a k-ary function, and Param is an ordered list of k

language constants which are the parameters of γ. Any components of a given predicate

pred, γ (pred) and Param(pred) can be referred to.

2- Planning State: A planning state, or a state for short, is a finite and consistent set of

logical predicates joined through two logical connectives: and (˄); or (˅). This set

represents some world information.

The set of all possible planning states over language L is denoted as Γ. Informally,

planning is the process that transforms an initial state that represents the current

information available from the world, into a goal state that represents the desired final

situation. Given a planning state S ∈ Γ, a function that yields a set containing the

distinct parameters from all logical predicates of S is defined as the State Parameters

95

function, SP(S). Similarly, a function that yields a set containing all distinct predicate

symbols of S is defined as the State Predicate Symbols function, SN(S),

More formally:

 𝑆𝑃(𝑆) = ⋃ 𝑝𝑎𝑟𝑎𝑚(𝑝𝑟𝑒𝑑)

𝑝𝑟𝑒𝑑∈𝑆

 (4.1)

 𝑆𝑁(𝑆) = ⋃ γ(𝑝𝑟𝑒𝑑)

𝑝𝑟𝑒𝑑∈𝑆

 (4.2)

3- Operator (O): An operator is a pair < Preco, Effec >. Preco is a set of logical

predicates representing the conditions under which the operator is applicable. Effec =

(add, del) contains two sets of logical predicates add and del that will be added and

removed respectively from the planning state in which the operator is applied, in order

to obtain a resulting state.

Thus, given a planning state S, an operator O can be applied if and only if the set of

logical predicates of its preconditions are true under S through a given instantiation of

the parameters of Preco(O). After the application of the operator, state S is transformed

into 𝑆−, using the set of effects Effec(O) instantiated in the same manner:

 𝑆− = [𝑆 ∪ add(𝑂)] − del(𝑂) (4.3)

4- Problem Space, Planning and Plan: A problem space is composed of a first-order

language (L), an initial state (Si), a goal state (Sg), and a set of finite operators (O).

Within a certain problem space, the planning process consists of searching a chained

96

sequence of operators, o1, o2, . . . , on, that transforms the initial state Si into the goal

state Sg. Such a sequence of operators is commonly called a plan.

4.5.3 Semantic Plan Generation Process

A process for plan generation based on semantic knowledge is outlined in Algorithm

4.2. The process typically checks if a planning time object fits the expected description

of an object. For instance, if the action to be inserted into the plan is grasp (robot,b1) to

grasp object b1 (the planning time object), then the object that will actually be

manipulated by the action grasp is the expected object; indeed, this needs to be checked

to verify if it matches the description of b1. The appending of the navigation action

move (robot,r1,r2) implies that the planning time object is the room where the robot

should end up, which needs to be checked against the description of r2 (the expected

object).

The process of Algorithm 4.2 begins by searching the type of the expected object obj,

which comes from the semantic action model. obj is derived from the Add part effects

of the selected action. Following this, the process continues by asking the SKB about

the super classes of the expected object obj step (classes = SKB[type(obj)]). Only the

direct classes are considered, since the semantic knowledge base can deduce that an

instance of a specific class is also an instance of all the more general classes. For

example, if r2 is confirmed to be a room and a kitchen, then only the kitchen class is

considered.

97

In step (temp-obj = Evidence[obj]), the evidence database is asked to return the

expected object which is given a temporary name by this process. The evidence

database is then queried in terms of the related properties and relations according to the

other observed objects of the expected object step (α = Evidence [properties-and-

relations(temp-obj)]).

In step (create- instance-of (temp-obj , α)), the evidential information relating to the

expected object is used to construct a temporary instance in the SKB. For example, if

the observation database has the element of room type which contains chair ch1 and bed

b1, then the planning process verifies those facts in the SKB by issuing the following

SPARQL command:

SELECT ?temp ?ch1 ?b1

WHERE {?temp rdf:type skpg:Room

 ?ch1 rdf:type skpg:Chair

 ?b1 rdf:type skpg:Bed

 ?temp skpg:isContained ?ch1

 ?temp skpg:isContained ?b1

Algorithm 4.2

The pseudo code of the semantic knowledge based plan generation

process

PlanGen(obj)

classes = SKB[type(obj)]

temp-obj = Evidence[obj]

α = Evidence [properties-and-relations(temp-obj)]

create- instance-of (temp-obj , α)

if ∀ c ∈ classes: is-instance-of(temp-obj , c) then success

else if ∃ c ∈ classes: is-not-instance-of(temp-obj, c) then failure

else ambiguous outcome

End

98

 }

where temp is a temporary symbol used to refer to the current room (where the robot is

actually located), i.e. the planning-time object. SKB classifies the newly created

instance based on the properties and the relations to the other observed objects, i.e. the

chair ch1 and the bed b1. Once the SKB has completed the classification of the

planning-time object, the planning process sends another query to the SKB to verify

whether or not the classification is consistent with the asserted classes of the expected

object obj step (if ∀ c ∈ classes: is-instance-of(temp-obj , c)). In step (else if ∃ c ∈

classes: is-not-instance-of(temp-obj, c)), the planning process establishes whether the

available observed information reveals a violation of one of the constraints in the

definition of the expected object’s classes. For the previous example, this is performed

by sending the following two queries to the SKB, with the second query only asked

when the answer to the first one is “NO”.:

ASK { ? temp rdfs:subClassOf BedRoom }

ASK NOT EXISTS { ? temp rdfs:subClassOf BedRoom }

4.6 Experiments

In this section, two main testing environments are used to validate the methods

presented earlier in the chapter. The first environment is based on analysis of the

generated plans in scenario of planning under deterministic conditions with exact plans.

The second testing environment method is to analyse the performance of the planning

system by using metrics for performance analysis (such as true positive rate etc.). This

99

analysis tool supports the investigation of the proposed planning system’s behaviour.

Navigation and manipulation actions are considered in this scenario.

4.6.1 Environment Setup for Plan Analysis

In this environment, the experiments were conducted according to the programming

languages and software available to model the robot environment. The SAMs and SKB

were built using Protege
3
. The knowledge base is integrated with a Pellet inference

system (Sirin et al. 2007) which is used for reasoning purposes. The task planner was

implemented using the Metric-FF (Hoffmann and Nebel 2001) and LPG-td (Gerevini et

al. 2004) planners. The algorithm was applied using the Java programming language

which is interfaced with Pellet, OWL, and the planners through Java Application

Programming Interface (Java API). The ontology of the knowledge base was coded by

hand, whereas the planning domain and problem were created automatically by

Algorithm 4.1.

Figure 4.1 shows the robot environment which is used to test the benefits of employing

a semantic action model along with a knowledge base to support the robot task planner.

This environment is divided into eight rooms, namely the Kitchen, Office, BedRoom,

BathRoom, LivingRoom, Library, DiningRoom and UtilityRoom. Each room is divided

into places, which are represented as small squares, to represent the possible locations

that can be used by the robot to navigate around its current room or to go out toward

other rooms. This environment also contains some objects related to each room, such as

a microwave, table, TV, etc. The ontology representation of this environment is shown

3
 http://protege.stanford.edu

http://protege.stanford.edu/

100

in Figure 4.2. The following conventions are used in these scenarios: r denotes robot; pi

denotes position i.

4.6.1.1 Knowledge Based Deterministic Planning (Exact Plan)

The utility of the framework proposed in this chapter is demonstrated by explaining

some useful scenarios in different situations. There are two scenarios used to verify how

the robot task planner is supported by SAMs and SKB. The first of these is a navigation

scenario, while the second is a manipulation scenario.

1. Navigation Scenario

Initially, according to Figure 4.1, the robot was placed in the BedRoom in position

1, and the user gave an order to the robot to go to the DiningRoom at position 12.

Assume that, within BedRoom, a bed object is at position 4 and there are two

doors at positions 5 and 10. There are two scenarios that are used to test the

framework in this environment. The first one explains the navigation without

using the semantic knowledge base, whereas the second one explains the using of

a semantic knowledge base in the navigation.

i. Navigation without Knowledge Base

The planning domain of this scenario contains the following definition of the

move action, which is gained by feeding the SAM shown in Figure 4.4 into

Algorithm 4.1 .

(:action move :parameters (?r-robot ?from-place ?to-place)

:precondition (and (robot ?r-robot) (place ?from-place)(place?to-lace)

(at?r-robot ?from-place) (isconnectedto ?from-place ?to-place))

101

:effect (and (at?r-robot?to-place) (not (at?r-robot?from-place)))

The generated plan contains the following sequence of actions:

move(r,p1,p4),move(r,p4,p5),move(r,p5,p8), move(r,p8,p10), move(r,p10,p11),

move(r,p11,p12)

It is clear that the robot will make contact with the bed in position 4 as the robot

does not take into consideration the fact that the bed is an obstacle that must be

avoided. This situation may hence lead to the robot sustaining damage.

ii. Semantic Knowledge Based Navigation Planning

The planning domain in this scenario is the same as above, but with the addition

of a new obstacle definition:

(or(not(obstacle ?to-place)))

The plan, according to this domain, is described below. It is clear that the robot

will avoid hitting the bed by moving to position 2 and then position 5, before

continuing on its path to position 12. This is evidence that when a robot is aware

of the semantics of a situation it can avoid critical situations. According to this

modification the generated plan is:

move(r,p1,p2), move(r,p2,p5), move(r,p5,p8), move(r,p8,p10), move(r,p10,p11),

move(r,p11,p12)

2. Manipulation Scenario

102

In this scenario, the environment includes (in addition to the environment

described above) some additional objects such as a milk box, table, etc. The user

ordered the robot to bring the milk box from the kitchen to the living room and

put it in any suitable place. This scenario follows the same steps as in the previous

scenario to generate the planning domain, so only the generated plan will be

displayed here.

i. Manipulation Planning without Knowledge base

The generated plan is:

take(r,milkbox,p28), move(r,p28,p29), move(r,p29,p32), move(r,p32,p34),

move(r,p34,p37), move(r,p37,p40), drop(r, milkbox,tv)

It is clear that the robot could put the milk box on the TV because the planner

does not take into account the fact that objects must be put on a flat surface. This

information can be gleaned only from semantic knowledge.

ii. Manipulation Planning with Knowledge base

In this situation, the planner gets support from the knowledge base and it defines

the object workspaces as any object that has a flat surface. The new generated

plan is therefore:

take(r,milkbox,p28), move(r,p28,p29), move(r,p29,p32), move(r,p32,p34),

move(r,p34,p37), move(r,p37,p36), drop(r, milkbox,table)

103

4.6.2 Testing Planning System Efficiency Using Performance Metrics

In this environment the experiments consisted of two scenarios: a manipulation scenario

and a navigation scenario. The simulated environment was run under the Robot

Operating System (ROS) (Quigley et al. 2009). This ROS is a set of software libraries

and tools that help to build robot applications.

4.6.2.1 Metrics for Performance Evaluation

In order to recover from the issue of a lack of benchmark systems in generating

symbolic plans under deterministic conditions the evaluation is based on the metrics of

false positive rate (FPR) and true positive rate (TPR). Both metrics assume a binary

classifier that tries to classify a set of instances as either positive or negative.

𝐹𝑃𝑅 =

The number of negative instances that are
 erroneously classified as positive

The total number of actual negative instances
=

FP

N

(4.4)

𝑇𝑃𝑅 =

The number of positive instances that are
correctly classified as positive

The total number of actual positive instances
=

TP

P

(4.5)

4.6.2.2 Analysing Planning System Behaviour using Performance

Metrics

The performance of the deterministic plan generation process was tested in both

navigation and manipulation scenarios. For the manipulation scenario, each experiment

104

consisted of generating the high-level action take(robot,obj,place) to pick the object obj

that was in the fridge by use of a robot arm. The high-level definition of the take action

will be given in Table 7.1.

The checking process was called once the planner reported that it had succeeded in

performing the take action. The robot was assumed that it equipped with a camera used

to acquire perception information about the picked-up object. This information was then

stored in the evidence database.

The take experiment was run such that obj was asserted to be one of 4 types: cup, bowl,

glasswater, and milkbox. For each type, the experiment was run 20 times, giving a total

of 80 runs. In each run, the type of the object was correctly selected from the 4 available

types depending on its description in the problem definition.

Similarly, the navigation scenario consists of the action move(robot,from,to) to move

the robot from a room identified by from to another room identified by to. The type was

asserted to be one of the eight available room types, i.e. BedRoom, LivingRoom, etc.

Each room type was considered 20 times, resulting in 160 runs in total. For each run,

the type of the final location of the robot was selected successfully from the 8 available

types.

The problem definition contains objects that are consistent with the actual location, for

example the oven object is placed in the kitchen room. The selection of the number of

objects related to each room depends on the parameter Th. In the case of navigation, the

Th represents the allowed number of objects in each room. In the case of manipulation,

Th represents the allowed number of objects which are related to the object in the

manipulation action, e.g. the handle object is related to the cup object. In these

105

experiments, the selected values of Th are: 3, 5 and 7 objects. These objects are added to

the evidence database while other objects, if available, are hidden.

Table 4.1 shows the results obtained for the three different values of Th. The rows of the

table represent the grounding process of action parameters, i.e., the replacement of

action parameters with suitable value from task planner work space. The first row of

each scenario represents the positive grounding result, i.e. the runs where the planning

time outcome of the action is the same as the expected outcome. The second row

represents a negative grounding result, i.e. runs where the planning time outcome of the

action is different from the expected outcome. The columns represent the results of

checking the implicit expectations of the expected object (grounded object), so the

results are either Matched (M), Unmatched (U), or Ambiguous (A).

Table 4.1: Results from Running the Planning System under

Deterministic Conditions for the Actions take and move. The Cells

Represent Number of Runs that result in Matched (M), Unmatched

(U) or Ambiguous (A) Outcomes.

Th = 3objects Th = 5objects Th = 7objects

M U A M U A M U A

Navigation
M 6 0 20 8 0 20 12 0 20

U 0 110 24 0 112 20 0 116 12

Manipulation
M 2 0 16 6 0 14 10 0 12

U 0 12 50 0 18 42 0 21 37

In these results, the deterministic planning is able to show a high number of true

positives (positive instances that are correctly classified) and zero instances of false

positives (negative instances that are erroneously classified as positive). The true

106

negatives (failure situations) are detected at different rates for the navigation and

manipulation scenarios. The values are high in navigation (82%, 85%, 90%) and small

in manipulation (19%, 30%, 36%).

The difference in failure detection rates between these scenarios comes from the

differences in class definition. In the case of manipulation, a small number of

restrictions are used to define each class in the scenario, so a large number of conditions

will be treated as negative evidence, and hence ambiguous results will be high. In case

of navigation, the classes in the scenario are highly constrained, so fewer numbers of

conditions are treated as negative evidence and ambiguous results are low.

The details of the true positive rate (TPR) and true negative rate (TNR) for the different

types of the expected object are shown in Figure 4.6 and Figure 4.7. For the

manipulation actions, all the successful cases were from plans where the expected

object to manipulate was a cup or an oven. For the navigation actions, all the successful

cases were from plans where the robot planner successfully generated a move action

into either the kitchen or the hall. This is due to the fact that the planning system could

use objects that were defined to be specifically related to those types of rooms and

objects. For instance, relating a bed to a room was sufficient to conclude that it is a

bedroom, while relating a handle to the object (container) in the take action caused that

object to be classified as a cup.

On the other hand, the proper detection of failure situations is also important, as it saves

the robot from executing incorrect plans. The true negative rate (TNR) is therefore

considered to explain the rate of failure detections, and its value is not zero. This leads

to the observation that, if SKB contains restrictions specifically identifying classes of

107

objects, the planning system can properly generate plans with lower rates of failure

cases.

Table 4.2 displays the true positive rate (TPR) and false positive rate (FPR) for the

navigation and manipulation scenarios obtained by taking two different cases and

Figure 4.6: True Positive Rate (TPR) and True Negative Rate (TNR) Achieved by

Planning System for Different Types of Objects.

Cup WaterGlass Bowl Towel Oven MilkBox Bed Toilet PC

TPR 0.62 0.53 0.25 0.51 0.76 0.43 0.56 0.57 0.3

TNR 0.23 0.66 0.7 0.43 0.34 0.55 0.32 0.45 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.7: True Positive Rate (TPR) and True Negative Rate (TNR) Achieved by

Planning System for Different Types of Rooms.

Kitchen LivingRoom office BedRoom BathRoom Library UtilityRoom DiningRoom Hall

TPR 0.92 0.33 0.25 0.6 0.76 0.2 0.81 0.57 0.95

TNR 0.53 0.65 0.86 0.43 0.65 0.83 0.39 0.9 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

108

dealing with the ambiguous results. In the first case, the planning system takes the open

world approach and considers the ambiguous results as matched because there is no

negative evidence in these situations. In the second case, the planning system takes the

closed world approach and considers the ambiguous results as unmatched because for

some conditions it is not specifically determined whether they are hold or not.

Table 4.2: The Percentage (%) Rates of True Positives (TPR) and False Positives

(FPR) of Planning System under Deterministic Conditions for the Actions take and

move. Two World Features are Considered: Open World Treating Ambiguous as a

Successful Case and Closed World Treating Ambiguous as a New Case.

Th = 3 Objects Th = 5 Objects Th = 7 Objects

World

Feature
TPR FPR TPR FPR TPR FPR

Navigation
Open 100 17.91 100 15.15 100 9.38

Closed 23.08 0 28.57 0 37.5 0

Manipulation
Open 100 80.65 100 70 100 63.79

Closed 11.11 0 30 0 45.46 0

The open world approach detects 100% of successful planning cases, but at the same

time it suffers from higher rates of false positives in the case of the manipulation

scenario.

 Both open and closed worlds give a good performance with a low number of objects

Th. This is because, in closed world approach, the planning system achieves 0% false

positives, i.e. 100% specificity and sensitivity (TPR) never equal zero. When using an

open world approach this gives 100% of true positives and an FPR less than TPR.

Therefore, it can be concluded that the proposed planning system is successful in

diagnosing incorrect plans, but it is less good at diagnosing correct plans.

109

4.6.3 Statistical Analysis of the T-Test

To check the statistical significance of the result generated by the planning system, a T-Test

is performed. The T-Test checks the relationship between two variables, in this case two

different sets of parameters of the same planning system and it tries to answer the following

two questions:

1. What is the probability that a relationship exists?

2. If it does, how strong is the relationship?

T-test requires a null hypothesis or an expectation to test against. In this case, for the

planning system, the null hypothesis is that there is no difference in the performance of the

planning system when generating the plans depending on explicit and implicit expectations.

The T-Test assesses whether the means of two groups are statistically different from each

other by providing an alpha (α) parameter. If alpha (α) is less than 0.05 then there is a

significant difference in the group means.

According to Table 4.1, for each scenario, there are 3 cases that are tested by T-Test

depending on the value of the variable Th. The American Psychological Association

(APA) style (American Psychological Association 2005; Fisher 2015) is used to report

about the result of the T-Test. The T-Test in APA style is represented as: “t(degrees of

freedom) = value, p = value”. In addition the mean (M) and the standard deviation

(Stddev) are reported. Where:

 Th: represents the allowed number of objects which are related to the places or object.

degrees of freedom: is the number of values in the final calculation of a statistic that are

free to vary.

p: is used to determine statistical significance in a hypothesis test.

110

M: is the average of the numbers (results)

Stddev: is a measure of how spreads out numbers (results) are.

i. Navigation scenario

 Th = 3 shows that, there was a significant difference in the reported performance

level of results which obtained from the planning system to generate the plans

depending on explicit (M = 3.25, Stddev = 2.12) and implicit (M = 0.75, Stddev =

0.89) expectations, t(14) = 3.08, p = 0.01 (p < 0.05).

 Th = 5 shows that, there was a significant difference in the reported performance

level of results which obtained from the planning system to generate the plans

depending on explicit (M = 3.50, Stddev = 2.07) and implicit (M = 1.00, Stddev =

1.07) expectations, t(14) = 3.03, p = 0.01 (p < 0.05).

 Th = 7 shows that, there was a significant difference in the reported performance

level of results which obtained from the planning system to generate the plans

depending on explicit (M = 4.00, Stddev = 2.83) and implicit (M = 1.50, Stddev =

1.31) expectations, t(14) = 2.27, p = 0.04 (p < 0.05).

These results suggest that implicit expectations really do have an effect on the planning

system. Specifically, these results suggest that when the planning system uses semantic

knowledge base (the source of implicit expectations), the planning system performance

increases in navigation scenario.

ii. Manipulation scenario

 Th = 3 shows that, there was a significant difference in the reported performance

level of results which obtained from the planning system to generate the plans

depending on explicit (M = 4.50, Stddev = 2.52) and implicit (M = 0.50, Stddev =

1.00) expectations, t(6) = 2.95, p = 0.03 (p < 0.05).

111

 Th = 5 shows that, there was a significant difference in the reported performance

level of results which obtained from the planning system to generate the plans

depending on explicit (M = 5.00, Stddev = 2.00) and implicit (M = 1.25, Stddev =

0.50) expectations, t(6) = 3.64, p = 0.01 (p < 0.05).

 Th = 7 shows that, there was a significant difference in the reported performance

level of results which obtained from the planning system to generate the plans

depending on explicit (M = 5.25, Stddev = 2.99) and implicit (M = 1.25, Stddev =

0.50) expectations, t(6) = 2.64, p = 0.04 (p < 0.05).

These results suggest that implicit expectations really do have an effect on the

planning system. Specifically, these results suggest that when the planning system

uses semantic knowledge base (the source of implicit expectations), the planning

system performance increases in manipulation scenario.

These values indicate that the results obtained by the planning system by depending on the

explicit and implicit expectations are significantly (statistically) different with a confidence

level 95%.

4.7 Discussion

This chapter has presented a novel high-level approach for generating symbolic plans

for robots working in indoor environments. The novelty of the approach comes from

using the semantic knowledge domain to calculate implicit expectations that are to be

checked and verified when plan actions are successfully generated. These implicit

expectations are then checked during the planning time.

Although semantic knowledge plays an important role in many application areas, such

as the semantic web (Berners-Lee et al. 2001), its use is still uncommon in mobile

robotics. Notable exceptions include applications for creating a knowledge processing

112

system (Tenorth and Beetz 2013b), for classifying map spaces for navigation tasks

(Galindo et al. 2005), and for publishing and sharing knowledge in multi-robot

environments (Chella et al. 2002). The process of symbolic plan generation needs to be

implemented at different layers, from creating the planning domain and problem

definitions to high-level planning. This means that semantic knowledge can contribute

to a multi layered planning process.

The use of semantic knowledge in task planning aids the diagnosis of incorrect plans

that cannot be diagnosed by traditional planning approaches. The reason for this is that

planning, in many situations, depends only on the explicit effects of actions. This is not

sufficient for diagnosing unexpected situations. A direct consequence of using semantic

knowledge in creating plans is that the process of planning to achieve tasks becomes

less computationally demanding. This is due to the task planner not reasoning about the

details of the objects manipulated by the planning domain actions.

The open world and closed world features are used to provide the planning system with

two abilities to deal with the ambiguous results that appear in table 4.1. In the case of

open world feature, the ambiguous results are treated as matched (success) cases. This

leads to high percentage of TPR (100%) which means high rate of correct classification,

in the same world feature the rate of FPR is not zero which means that some negative

results are classified erroneously as positive.

While in the case of closed world feature, the ambiguous results are treated as new

cases. This leads to low percentage of TPR which means low rate of correct

classification, in the same world feature the rate of FPR is zero which means that all

negative results are not classified erroneously as positive.

113

Although the proposed approach helps in developing more robust plan generation, it

still suffers from the failure to handle uncertainty in world states as well as actions with

more than one possible outcome. In the next chapter, another approach of semantic

knowledge based plan generation will be presented that aims to handle uncertainty in

action details and world states. The goal is to develop an approach that can be applied to

different world scenarios. The quality of the ontology of robot environment is not tested

separately, but the overall performance of the planning system (including ontology) was

evaluated by using the performance evaluation metrics such as FTP and TPR. It is a

good idea to test the robot ontology separately before adding it into the planning system.

The main contributions of this chapter are:

 The robot knowledge base is modelled as ontology which represents objects, places

and the relations between each of them. This ontology becomes the source of

information necessary to support the robot task planner in generating plans for robot

tasks.

 The robot high-level actions are described in a new model called a Semantic Action

Model (SAM). SAMs consists of two parts: the profile part and the process part.

Then the variables for the action components, i.e. inputs, outputs, preconditions and

effects, are related to semantic knowledge base on the semantics of the action

parameters.

 The robot knowledge base is integrated with a Semantic Action Model (SAM) to

generate a planning domain that will be used to support the task planner and thereby

improve the robot efficiency. This integration makes the robot more aware of the

facts and information that an ordinary human is expected to know.

114

 A new algorithm is created to engage the information in an action model (SAM) with

its relevant data in the knowledge base, and to produce a planning domain

represented in PDDL format. The planning domain is then fed into an external

planner to produce the plans for robot tasks.

 Then, a general purpose planning algorithm has also been defined, which can support

planning under deterministic conditions, and is based on using ontology to represent

SKB.

4.8 Summary

This chapter represented the robot semantic knowledge as ontology which is stored in

the OWL format. This representation endows the planning system with reasoning

capabilities to infer new information to support the task planner in generating symbolic

plans for robot tasks. This chapter also presented a new model representation of high-

level robot actions. This type of model is called a semantic action model (SAM). This

representation describes action components (parameters, preconditions and effects) as

ontology which is represented in OWL style. It facilitates the integration of action

components with the knowledge base. This integration provides the robot with the

ability to be more aware of the semantics of the places and objects in its environment.

This awareness allows the robot to avoid potential pitfalls such as hitting obstacles,

losing its way to other rooms, and putting objects in wrong workspaces. It also allows

the robot to detect whether or not it is possible to carry objects. These features make the

robot more flexible in completing its task. The chapter then presented a novel high-level

approach for generating symbolic plans for robot tasks in indoor environments.

115

Chapter 5

Semantic Based Planning under Probabilistic Conditions

5.1 Introduction

Generating plans in real world environments using a mobile robot planner is a

challenging task due to the large amount of information, uncertainty and dynamics in

the robot environment. With this in mind, task planning should take these issues into

consideration when generating plans. The ability of a robot to reliably generate task

plans and detect failures is essential to its performance and autonomy.

The semantic knowledge domain has been proposed as a source of information for

deriving implicit information and generating semantic plans. In this chapter, a method is

proposed and used to increase the reliability of generating symbolic plans. This method

is to extend the semantic knowledge base (SKB) plan generation to take into account

the amount of information and uncertainty related to (i) existing objects, (ii) their types

and properties, and (iii) their relationships with each other. This approach constructs

plans by depending on probabilistic values which are derived from statistical relational

learned models such as Markov Logic Networks (MLN).

An MLN module will be established for probabilistic learning and inference and

combined with semantic information to provide a basis for plausible learning and

reasoning services in support of robot task planning. The MLN module is created by

using an algorithm to transform the knowledge stored in SKB into domains, predicates

and formulas. These represent the main building blocks of the module, which is one of

the main contributions of this chapter.

116

Following this, the semantic domain knowledge is used to derive implicit expectations

of world states and the effects of the action which is nominated for insertion into the

task plan. These expectations are matched against MLN answers. MLN answers are

based on evidence obtained from robot perceptions and fed into the trained MLN model

during the inference phase. By providing a means of modelling uncertainty in planning

system architecture, task planning serves as a supporting tool for robotic applications

that can benefit from probabilistic inference within a semantic domain. This approach is

illustrated using test scenarios run in a domestic environment using ROS.

5.2 Overview of the Approach

Plan generation by an autonomous robot planner acting in human environments is a

complex task. It involves dealing with uncertainty and nondeterministic situations in

which a variable number of objects may be relevant to its tasks and these objects may be

related in various ways. Uncertainty is a feature related to robots acting in real

environments, and may sometimes cause failure in a robot’s operation.

To deal with unexpected planning contingencies, robotic task planning employs

probabilistic inference procedures, based on the reasoning techniques or learned models,

to ensure the generation of its plans does not deviate from their intended course of

action (Bouguerra et al. 2007a). Most approaches to plan generation focus on: (i)

deterministic information about the robot environment, i.e. exact objects and their

properties, for instance “in the kitchen, there is a fridge and an oven”; and (ii) explicit

actions' details (preconditions and effects), for example the explicit effect of grasping a

glass of water would be that the robot is holding a glass of water.

117

In a real world environment this is not always realistic as planning with uncertainty is a

complex process. Therefore, more advanced forms of probabilistic reasoning should be

proposed which engage with semantic knowledge to derive probabilistic implicit

information about the existence of objects and their types. For example, a robot moving

into a living room could be expected to see at least a tv-set and a sofa. If the robot is

entering a kitchen instead, it should have more probability of seeing a fridge and a sink.

These probabilities are details that would add more complexity to the task planner, if the

task planner has been left to reason about them. Therefore, it is important to build a

separate unit from a semantic knowledge base and the robot action description. This

unit would have the ability to learn from a knowledge base (SKB at object level) and

then infer probable information about the robot environment from the evidence database

to support robot task planning.

In this chapter, the robot semantic knowledge base is represented with Description

Logic (DL) (Lukasiewicz 2008), which has the ability to infer the types of things

(objects and places) and the automatic classification of things based on their classes and

properties. This approach enables the robot to derive new statements from its existing

knowledge. Pure description logic inference is completely deterministic, so it is often

desirable as a way of representing uncertain information in a way that can be more

useful to the robot planner.

Markov Logic Networks allow the drawing of probabilistic inferences that combine the

expressiveness of first-order logics with the representation of uncertainty (Richardson

and Domingos 2006). Such relational structures which include variable sets of objects

can have an influence on the propositions relevant to the robot’s tasks. Therefore, they

cannot be accounted for in a model that involves a fixed set of propositions. What is

118

required is unification, within a single representation formalism, of the principles of: (i)

first-order logic, which makes objects and relations the main building blocks of the

representation; and (ii) probabilistic graphical models, which enable reasoning in the

face of uncertainty. This approach enables, by combining the respective semantics, a

language that possesses a sufficient level of expressiveness for robots to be equipped

with the much-needed capability of reasoning about situations as they arise in real-

world applications.

The main contributions of this chapter are (i) the construction of an MLN from the

semantic knowledge base to support the robot task planner in situations of uncertain

object existence and object type, (ii) an algorithm for creating an MLN model from the

semantic knowledge base and (iii) the development of a probabilistic planning approach

which is able to take into account uncertainty in world states, action effects, and the way

that expectations are interpreted in the semantic domain knowledge. Thus a probabilistic

quantitative model of uncertainty, such that actions are allowed to have different

outcomes, each with a probability of occurrence, can cause planning to be unreliable.

Using probabilities make it possible to go beyond a Boolean treatment of whether an

expectation is verified.

The MLN template has the ability to learn from training data which is extracted from

the knowledge base. The trained model is then ready to answer queries concerning

information uncertainty that are issued during the planning process. These queries are

issued from the planning system when the knowledge base has no answer about

uncertain information, because it cannot handle uncertainties (this was the limitation of

the approach presented in Chapter 4). The answer describes the state of the objects

(places or entities) by predicting their place of existence and type.

119

Chapter 4 showed how semantic domain knowledge can be used in the process of

generating symbolic robot plans. The key idea is to use such knowledge to compute

implicit expectations of the objects that can be recorded at planning time by the robot.

This ensures the plans are constructed correctly. The approach addressed actions with

deterministic effects (i.e. having only one outcome), and world states. The result of

evaluating the implicit expectations was treated in a Boolean setting, that is either true,

false, or unknown. These limitations arise predominantly due to the fact that the process

does not represent inherent uncertainty of world states.

As uncertainty is an ever-present feature in mobile robotics, it has an impact on the

actions of robots as well as their description of their environment. In the presence of

uncertainty, even the best prepared plans can fail. In particular, the task planning

process can combine different evidence in a systematic way. Therefore, given the priori

probabilities of the possible action outcomes, the available semantic knowledge, and the

evidences the task planner is able to estimate the probability of whether a certain

expectation is verified. An output example may be: “the robot is in a kitchen with 0.9

probability”. In the framework proposed in Chapter 4, that example would have resulted

in a planning fail. Moreover, the fact that a probability can be estimated for each

outcome of an action enables a more informed decision about how to proceed (plan

generation successful, plan generation failed, or more information needed) than with

just a Boolean approach.

120

5.2.1 Motivation

Chapter 4 discussed the effects of uncertainty on plan generation. The plan generation

can be facilitated by supporting the robot task planning with techniques that give it the

ability to reason about uncertain cases. Therefore, robot planning systems which include

statistical relational models allow their plans to represent different situations adequately.

As those plans are generated off-line, the effects of their actions need to be estimated at

planning time, since the actual effects are not known beforehand. To estimate the actual

effects of actions effectively, the planning process also needs to reason about the

uncertainty inherent in the action outcomes and world states.

This section describes a different plan generation process that is able to reason about

uncertainty. A model is developed that takes into account quantitative uncertainty in the

form of possible world probabilities, and the semantic knowledge is used to interpret

expectations.

More specifically, world states can encode different possible outcomes, each with a

given probability of occurrence depending on the evidence base and action effects . As

a result of using probabilities, it is possible to go beyond a simple Boolean treatment of

whether an expectation is verified. In other words, a probability for whether a certain

expectation of the world state is verified during the planning process. An example

would be “the robot is in the bedroom with probability of 0.90” instead of returning an

ambiguous or false planning result. Moreover, the fact that an estimated probability of

each possible world state can be support a more informed decision about how to

proceed by considering the plan generated as successful, failed, or lack of information.

Indeed, this is the main advantage of probabilistic planning approach over deterministic

121

planning approach as it uses the Boolean (true or false) approach. The probabilistic

planning process works as follows:

• For each possible world state outcome whose related objects and places are involved

in the planning process, a set of implicit expectations is determined.

• Those expectations are used to estimate a probability distribution over the actual world

state. For instance, the implicit expectation of finding an oven in the kitchen implies

that the probability of finding a bed is zero, while the probability of finding one or more

beds in a bedroom is strictly greater than zero. Although reasoning under uncertainty in

description logics is an ongoing research activity (Lukasiewicz 2008), there is

unfortunately no available DL system that supports probabilities. Thus, in this work, the

probability distributions of the expected state of the world are computed by statistical

relational models such as MLN.

Besides uncertainty about the world state, uncertainty in observation is taken into

account by a model that expresses the probability of what is observed for a given world

state. In its general form, the observed model (evidence base) reveals:

• Whether or not an object that exists in the real world can be seen.

• How a seen object is classified, i.e. the model accounts for misclassification of objects

when they are seen. For instance, a mistake may happen when a bed is classified as a

sofa.

• Ways to classify objects by depending on their associated properties such as their

place, function or position.

122

A semantic knowledge base is proposed to support the robot planning system by

handling the issues of (i) uncertainty regarding the existence of objects in a certain place

or (ii) predicting types of objects or places, as well as the relationships between them.

For instance, to insert an action such as move(robot,bedroom1,kitchen1) into the robot

plan, it might be necessary to provide the robot planner with descriptions of the next

room that the robot should move to. If the task requires the robot to fetch a milk box and

there is no assertion about the milk box’s location, it is necessary for the planner to

obtain support from the probabilistic module to provide it with the most probable

location of the milk box. If the probabilistic module answers, with high probability, that

the most probable location of the milk box is the kitchen (because it is a kitchen object),

then the best next location in the move action is the kitchen. Planning involving

uncertainty in predicting the types of objects or places is conducted in the space of

weights associated with a formula in MLN that describes them.

In order to support the task planner efficiently, probabilistic models are needed to

represent the probability distributions of uncertain information in the planning domain.

There are several statistical relational models represented as extensions of undirected

(Richardson and Domingos 2006), directed graphical models (or Multi-Entity Bayesian

Networks) (Laskey 2008) or Bayesian Logic networks (Jain et al. 2009). These models

can make use of learning and inference methods which have been developed for their

underlying representations. Markov Logic Networks (MLN) are used in this thesis as a

statistical relational model to support the task planning process.

The planning process uses the prior probability distribution over the possible spectrum

of the world states, which are stored in the trained MLN as formula weights, together

with the semantic knowledge base and the observed model to compute the state of the

123

possible world probability. The method brings with it constraints over atomic classes of

observable objects, and it is easy to add constraints over values of other attributes, e.g.

color ∈ {red, yellow, white}.

Example: Assume that the planning system needs to append the navigation action

move(robot,loc1,loc2) whose world state has two possible statuses. The first status, i.e.,

S =1, is when the robot remains unintentionally in loc1, while the second status, i.e., S =

2, is when the robot moves effectively to loc2. If the only classes of observable objects

that can exist in either location are beds and sinks, then S1 and S2 respectively state

whether there are actual beds and sinks that exist in one of loc1 or loc2. O1 and O2

respectively explain the observed beds and sinks in the current location.

5.3 Probabilistic Planning System Architecture

Figure 5.1 represents the probabilistic planning system architecture proposed in this

chapter. Two new units are added in this framework: the ‘SKB to MLN’ Algorithm, and

the MLN module. Other components have the functionalities which were explained in

Chapter 4 (Section 4.4). The following sections describe the new components and how

they are used in this chapter

124

5.3.1 Markov Logic Networks (MLNs)

The formal definition of an MLN L is given as a set of pairs <Fi , wi>, where Fi is a

formula in first-order logic and wi is a real-valued weight. For each finite domain of

constants D, an MLN L defines a ground Markov network ML,D = <X,G> as follows.

More details are given in (Jain 2011a):

* X is a set of Boolean variables. Each possible grounding for every predicate appearing

in L adds a Boolean variable (ground atom) to X.

* G is a set of weighted ground formulas, i.e. a set of pairs <Fj’, wj’>, where Fj’ is a

ground formula and wj’ is a real-valued weight.

Semantic

Knowledge

Base

Transformation

Algorithm

OWL

Ontology

Manager
PDDL

Plan

Planner

SKB to

MLN

Algorithm

Markov

Logic

Networks

Module

Semantic

Action

Model

(SAM)

Figure 5.1: Probabilistic Planning System Architecture.

125

The ground Markov network ML,D specifies a probability distribution over the set of

possible worlds X as follows:

||

1

''
||

1

)(exp
1

)(exp
1

)(
G

j

jj

L

i

ii xfw
Z

xnw
Z

xXP (5.1)

Xx j
jjXx i ii xfwxnwZ '')(exp)(exp '''' (5.2)

where Z is a normalisation constant and ni(x’) denotes the number of true groundings of

Fi in x. There are two phases of MLN working here: learning and inference.

5.3.2 MLN Learning Phase

The learning of a statistical relational model involves the construction of a model from

observed training data. The structure of the model can be known a priori, leaving only

the parameters to be determined, as shown by Kok and Domingos (2005). It can also be

part of the learning problem. One consequently differentiates parameter learning from

the harder problem of structure learning. The first approach towards learning the

structure of MLNs was presented by Kok and Domingos (2005). Structure learning is

clearly important if Artificial Intelligence (AI) systems are to build up probabilistic

models with as little human assistance as possible. As such, parameter learning is the

most important aspect for knowledge engineers who typically qualitatively assess the

properties of a distribution and indicate the dependencies between the variables but

cannot quantitatively define the degree to which these variables depend on each other.

126

In an MLN, the goal of parameter learning is to set the weights of the model’s formulas

such that they reflect observations that have been made about the particular part of the

world with which the model is concerned. The observations that were made are

representative of the particular aspects of the world that are to be captured by the model.

As such they allow the model to extract precisely the general principles. The

observations used for learning can be stored in a training database that uses the same

language as the model.

Since MLNs use logical predicates, the database should thus contain the truth values of

a number of ground atoms. The entities appearing in the training database implicitly

define a set X of ground atoms. Any ground atoms in X whose truth values are not given

in the training database are assumed to be false (closed world assumption). Under this

assumption, the training database thus specifies a full assignment X = x.

In the case of the planning system which is proposed in this chapter, the MLN will be

created from the SKB, in particular from the class level in the ontology. The training

database will be created from objects in the SKB, in particular from object level in the

ontology. The different types of component which are involved in the learning phase are

shown in Figure 5.2.

There are several different types of learning methods that can be used to train MLN

models. In this study, two types of learning method are used, as discussed in the next

paragraphs.

Maximum Pseudo-Likelihood Learning: This method operates by maximising the

Pseudo-Likelihood:

127

))(|()(*

||

1

kxk

x

k

k XMBxXPxXP

(5.3)

where Xk is a ground atom, xk is Xk’s truth value in x, and MBx(Xk) is the assignment of

Xk’s Markov blanket in x (Richardson and Domingos 2006). The Pseudo-Likelihood

approximates P(X = x) by making strong independence assumptions, and thus avoiding

an expensive inference process.

Discriminative Learning: The most attractive feature of undirected models, and

therefore MLNs, is that they can also be trained discriminatively. This means that they

can be trained to represent a conditional distribution rather than a full-joint distribution.

Assuming that there is a strict separation between observable and unobservable

variables in the application at hand (e.g. a classification task, where only the classes are

unknown and everything else is given), discriminative training can yield models with

superior performance. Methods for the discriminative training of MLNs were

introduced by (Singla and Domingos 2005).

Training

Database

MLN Model

Learning Phase

Learning Method

Learned

MLN

Figure 5.2: MLN Learning Phase

128

In many applications, a priori is known whereby the predicates will be evidence and

ones will be queried. The goal is to correctly predict the latter given the former. If the

ground atoms in the domain are partitioned into a set of evidence atoms X and a set of

query atoms Y, then the conditional likelihood of Y given X is:

𝑃(𝑦|𝑥) =

1

𝑍𝑥
 exp (∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑦))

𝑖∈𝐹𝑌

 =
1

𝑍𝑥
exp (∑ 𝑤𝑗

𝑗∈𝐺𝑌

𝑔𝑗(𝑥, 𝑦)) (5.4)

where FY is the set of all MLN clauses, with at least one grounding involving a query

atom; ni(x, y) is the number of true groundings of the ith clause involving query atoms;

GY is the set of ground clauses in ML,C involving query atoms; and gj (x, y) = 1 if the jth

ground clause is true in the data and 0 otherwise. When some variables are hidden (i.e.

neither query nor evidence), the conditional likelihood should be computed by summing

them out, although for simplicity’s sake, all non-evidence variables are treated as query

variables. The gradient of the conditional log-likelihood (CLL) is thus:

 𝜕

𝜕𝑤𝑖

log 𝑃𝑤 (𝑦|𝑥) = 𝑛𝑖(𝑥, 𝑦) − ∑ 𝑃𝑤(𝑦′

𝑦′

|𝑥) 𝑛𝑖(𝑥, 𝑦′)

= 𝑛𝑖(𝑥, 𝑦) − 𝐸𝑤[𝑛𝑖(𝑥, 𝑦)]

(5.5)

5.3.3 MLN as Inference Engine

The probabilistic semantics of Markov logic networks are defined via ground Markov

random fields, so inference can essentially be handled by applying standard inference

methods for Markov networks. There are different types of inference methods used to

129

infer new information from a learned model of an MLN, so in this study two of these

methods are used. Figure 5.3 explains the main components which are used in the

inference phase (query phase) of the MLN.

Markov chain Monte Carlo (MCMC) (Koller and Friedman 2009) is essentially an

approximate, sampling-based method where the individual samples are not drawn

independently but are taken from a Markov chain, i.e. a model describing sequences of

states.

Formally, a Markov chain over a state space X is given by an initial state distribution

π0: X ∈ [0, 1] and a probabilistic transition model that makes the first-order Markov

assumption: For any given state x ∈ X, the probability distribution over successor states

x0 is given by T (x x’) := P(x’ | x).

MC-SAT can soundly handle distributions with deterministic and near-deterministic

dependencies, which, given the possibility of logical modelling, abound in Markov

logic networks. MC-SAT applies slice sampling to Markov logic, using SampleSAT

(Wei et al. 2004) to sample a new state given the auxiliary variables. In the Markov

network obtained by applying an MLN to a set of constants, each ground clause ck

corresponds to the potential function:

 𝜙𝑘(𝑥) = exp𝑤𝑘 𝑓𝑘(𝑥) (5.6)

which has value e
wk

 if ck is satisfied, and 1 otherwise. More details are given by Poon

and Domingos (2006).

130

Algorithm 5.1

Input: SKB Classes (C), Properties (P), Roles (R)

Output: MLN

Types = null

Domain = null

Predicate = null

Formulas = null

For every c in C

 If c is atomic class

 Type = Type + c

 Domain = Domain + Individuals(c)

For every p in P

 Parameter = (Domain (p), Range (p))

 Predicate = Predicate + p(Parameter)

For every r in R

 Formulas = Formulas + Create formula (r)

MLN = combine (Predicate + Formulas)

Return MLN

5.3.4 SKB to MLN Algorithm

Algorithm 5.1 is the proposed algorithm which is used to create an MLN from an SKB

as follows:

Testing

Database

Query

About

Objects

MLN Learned Model

(Inference Phase)

Inference Method

MLN Query

Results

Figure 5.3: MLN Inference (Query) Phase

131

5.3.5 Examples

1- Suppose that the planner has to insert the movement action move(robot, r2, r1),

where r2 is a living room and r1 may be a bedroom or an office. There are therefore two

possible values for r1. Thus it is assumed that the r1 value depends on the result of the

query that is returned from the trained MLN model. If the result shows that r1could be a

bedroom with probability of 0.2 or an office with probability of 0.8, then the move

action should be move(robot,r2, r1) with r1 = office.

2- Continuing the example above, the implicit expectations of being in r1 are

determined based on the type of r1. If r1 is asserted to be a bedroom and bedrooms are

defined as rooms having a bed (S1) and no sink (S2), then the implicit expectations

could be E1 = having bed and E2 = having no sink. The conditional probabilities of the

state variables given that the robot is in a bedroom might be determined as follows:

having a bed, i.e. S1 in a bedroom can be P(S1 = true|bedroom) = 1, while is the

probability of having no sink in a bedroom P(S2 = 0| bedroom) = 1.

5.4 Testing Scenarios

This section presents experimental simulations to collect data for the purpose of

statistically evaluating the performance of the proposed framework. Due to a lack of

benchmark systems in generating symbolic plans under probabilistic conditions, the

evaluation is based on the metrics of performance, such as TPR, etc. (which were

explained in Chapter 4), along with accuracy, precision and recall which will be

explained in Section 5.4.2.

132

The testing scenario involves performing navigation and manipulation tasks in a house

environment. The house consists of 9 rooms: Kitchen, Office, BedRoom, BathRoom,

Library, UtilityRoom, LivingRoom, Hall and DiningRoom. The block diagram of this

environment has been shown in Chapter 4 in Figure 4.1. In these scenarios, the rooms

have not yet been identified and the robot depends on the MLN module to identify

them. The environment setup for this chapter follows the same setup procedures of

Chapter 4 Section 4.6.2.

5.4.1 Simulation Results

In this section, the Probabilistic Cognition for Technical Systems(Jain 2011b) software

was used to train the MLN model and to infer new information from it in the

experiments. The data of plan generation for manipulation and navigation actions inside

a house environment have been collected.

The process of creating an MLN from an SKB depends upon Algorithm 5.1. The

interface process between the planner, SKB, SAMs and the MLN unit is achieved via

java API and OWLAPI under ROS environment.

5.4.2 Metrics for Performance Evaluation

The same metrics defined in Section 4.6.2.1 for performance evaluation are used in this

section. In order to recover from the issue of a lack of benchmark systems in generating

symbolic plans under probabilistic conditions the evaluation is based on accuracy,

precision and recall metrics in addition to TPR and FPR.

133

The accuracy shows how close a measured value is to the actual value and represents

the proportion of all the instances that are correctly classified, i.e.:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 (5.7)

Precision shows how close the measured values are to each other, and represents the

proportion of correctly classified positive instances:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑝 + 𝐹𝑃
 (5.8)

The recall shows how many of the true positives were recalled (returned) and is

represents by:

𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.9)

5.4.3 Manipulation Scenario

In the first scenario, the robot will take an object from the fridge and place it on its tray

so that it can be carried to another location in the house. There is a general class Object

to which all of the object’s subclasses belong. Some objects have specific properties in

terms of restrictions over relations to other atomic objects. For example ‘handle is

related to cup’. In this environment, there are 18 objects, 4 of which can be picked up.

134

5.4.4 Navigation Scenario

In this scenario, the robot is acting in a house environment that comprises 8 rooms of

different types (kitchen, office, etc.). In each room there are furniture items that are

typical for that type of room. For instance, in a kitchen, there is an oven, a sink, etc. In

total, there are 18 different types of objects that can exist in any room. The semantic

knowledge used in this scenario is more complex than in the previous scenario. The

objects’ definitions contain more restrictions, and there are more related objects to take

into account in order to classify a room. Indeed, there are certain types of objects that,

when observed, do not affect the classification process, e.g. lights.

The task is for the robot to move from one room to another room. The robot can face the

situation where it is uncertain about the rooms or the places it has passed, so it is the

role of the probabilistic planning system to guide the robot in the right way.

5.4.5 Threshold for Decision Making

The probability of selecting the desired predicates from the trained MLN depends on the

standard deviation (Stddev), which is a statistical measure used to quantify the dispersion

or variation in a distribution. Stddev is calculated from the weights associated with all the

formulas in the MLN model. It is used with the mean values of the formula weights and

compared against the values associated with the queried action object in the current

plan. This answer is derived from the MLN model in an inference engine phase as

depicted in Figure 5.3. There are three types of answer: matched, when the probability

associated with each predicate is greater than (mean + Stddev); unmatched, when the

probability associated with each predicate is below (mean- Stddev); lack of information

135

when the value of the probability that associated with the predicate lays between (mean

+ Stddev) and (mean- Stddev). There are 3 cases which are considered to obtain the value

of (Stddev) and each depends on the variable (Th). This variable represents the number of

related objects in the room or in relation to other objects. The considered cases are when

the number of related objects equals 3, 5 and 7.

5.4.6 Example

This example shows how a trained MLN can be created from a template of MLN by

using training data. Firstly, classes’ names, roles definitions, training data and MLN are

presented. Then, by using test data (evidence database), this example shows how the

trained MLN will answer the queries.

The house environment is explained above, and consists of 9 rooms and 18 objects. For

simplicity, only 4 of the rooms and 4 of objects are presented here. These rooms and

objects have not been identified yet and the robot depends on the MLN module to

identify them. The semantic knowledge base contains, among other things, the

following class and role definitions:

Classes

Room, Object

Properties:

isContained, its domain is Room and its Range is Object.

isLocatedAt, its domain is Object and its Range is Room.

Rules

R1: Kitchen is Room and Kitchen isContained KitchenObject

R2: Office is Room and Office isContained OfficeObject

R3: BedRoom is Room and BedRoom isContained BedRoomObject

R4: KitchenObject is Object and KitchenObject isLocatedAt Kitchen

136

R5: OfficeObject is Object and OfficeObject isLocatedAt Office

R6: BedRoomObject is Object and BedRoomObject isLocatedAt BedRoom

These definitions are then translated from SKB style into MLN style by using

Algorithm 5.1 to create the MLN model:

Domains:

Place = {kitchen1, office1, bedroom1}

Object = {cup1, pc1, bed1, cup2, pc2, bed2}

Predicates:

Room(place), Object(entity)

isContained(place, entity), isLocatedAt(entity, place)

Formulas:

Room(x) ^ KitchenObject(y) ^ isLocatedAt(y, x) => Kitchen(x)

Room(x) ^ OfficeObject(y) ^ isLocatedAt(y, x) => Office(x)

Room(x) ^ BedRoomObject (y) ^ isLocatedAt(y, x) => BedRoom (x)

Kitchen(x) ^ Object(y) ^ isContained(x, y) => KitchenObject(y)

Office(x) ^ Object(y) ^ isContained(x, y) => OfficeObject(y)

BedRoom (x) ^ Object(y) ^ isContained(x, y) => BedRoomObject (y)

This model becomes a template, and can be trained by using training data e.g.:

Objects:

Room(k1), Room(o1), Room(b1),

Object(cup3), Object(pc3), BedRoomObject (bed3), KitchenObject(oven1),

KitchenObject (fridge1), KitchenObject (milkbox), OfficeObject(pc3),

OfficeObject (chair1)

Relations:

isContained(k1,oven1), isContained(k1,fridge1), isContained(o1,pc3),

isContained(o1,chair1), isContained(k1,milkbox), isLocatedAt(oven1,k1),

isLocatedAt(fridge,k1), isLocatedAt(pc3,o1), isLocatedAt(chair1,o1),

isLocatedAt(milkbox, k1)

137

The training process will begin when it receives all the necessary information (as shown

in Figure 5.2) and the planning system requests for the process to start. The learning

process results in a trained MLN which is ready for any query issued by the planning

system. The resulting learned MLN is as follows:

0.564 Room(x) ^ KitchenObject(y) ^ isLocatedAt(y,x) => Kitchen(x)

0.325 Room(x) ^ OfficeObject(y) ^ isLocatedAt(y,x) => Office(x)

0.129 Room(x) ^ BedRoomObject (y) ^ isLocatedAt(y, x) => BedRoom (x)

0.212 Kitchen(x) ^ Object(y) ^ isContaining(x,y) => KitchenObject(y)

0.184 Office(x) ^ Object(y) ^ isContaining(x,y) => OfficeObject(y)

0.091 BedRoom (x) ^ Object(y) ^ isContained(x, y) => BedRoomObject (y)

Next, this learned MLN model is used to predict and infer the probability of (i) an

object's existence, (ii) its type and (iii) its relations to other places or objects. For

example, consider the robot generates the following perception data (evidence database

or testing data):

Room(r1),Room(r2),Room(b2),

KitchenObject(table), KitchenObject(microwave), KitchenObject(washingmachine),

OfficeObject(chair), OfficeObject(sofa), OfficeObject(pc),isContained(r1,table),

isContained(r2,chair),isContained(r2,pc),isContained(r1,microwave),

isContained(r1,washingmachine),isContained(r2,sofa),

isLocatedAt(table,r1),isLocatedAt(chair,r2),isLocatedAt(pc,r2),

isLocatedAt(microwave,r1),isLocatedAt(washingmachine,r1),isLocatedAt(sofa,r2).

The planning system selected the MCMC inference method and queried about the type

of room r1, which is in the plan and associated with the action move(robot, r2, r1). The

result is shown in Table 5.1.

138

Table 5.1: The Result of Querying

About the Type of Room r1

No. Things Probability
1 Kitchen(r1) 0.791
2 Office(r1) 0.28
3 BedRoom(r1) 0.071

According to the values of mean = 0.25 and standard deviation = 0.158, then r1 type is

determined to be kitchen.

5.4.7 Probabilistic Plan Generation

In this section, the same experimental setup as in Chapter 4 (Section 4.6.2) is used to

evaluate the performance of the probabilistic semantic knowledge planning system.

However, the world states for the planning system have more than one possible state,

each with a given probability of occurrence. This is due to the action effects each having

two possible outcomes. For the manipulation scenario, i.e. the take(robot,obj,place)

action, the first world state expresses the possibility of generating this action to take the

desired object obj, while the other state expresses the possibility of generating the take

action and taking a different object.

For the navigation scenario, the action move(robot,from,to) is used to move the robot

from its initial room from to its destination room to. The first state reflects the situation

where the planning system generates the move action but the robot stays unintentionally

in the from room. The other state expresses the case where the planning system

generates the move action and the robot effectively ends up in room to. Probabilistic

139

planning was also provided with an observed data set (evidence database), which

specified the probabilities of not observing or missclassifying an object.

The probabilistic planning system was evaluated using three values of standard

deviation. Each one was calculated based on the number of objects that related to the

rooms or other objects in the robot environment. The value of each Stddev is computed

from the weights associated with the formulas in the trained MLN model.

Experiments were run whereby the two objects (involved in the action outcomes) could

be asserted to be of any of the available types. The action model for both scenarios has

two possible outcomes, each with their associated probability. These probabilities

represent the possible effects of the action on the next generated world state. The

probable outcomes of the actions are represented as out_1 and out_2. The out_1

outcome represents the incorrect action effect while out_2 represents the correct action

effect. Three probability distributions relate to these outcomes: for the first distribution

p(out_1) = 0.3, and p(out_2) = 0.7, the second distribution p(out_1) = 0.7, and p(out_2)

= 0.3 whereas for the third one p(out_1) = 0.5, and p(out_2) = 0.5 . For example,

consider the action outcome of move(robot, r1,r2), designed to move the robot from

LivingRoom r1 to Kitchen r2. When p(out_1) = 0.3 and p(out_2) = 0.7, the effect of the

action is: the robot ends up in the kitchen. This effect will be compared with the answer

returned from the MLN when the planning system asks it about the type of r2. If is the

two results match then the planning system will continue to generate the other actions

needed to accomplish the task. If it is unmatched, then the other possible outcome will

be considered and the same sequence of checking will be started. If the other outcome

also does not match, then the planning system will ask another module such as the

140

Information Gathering module (which will be explained in Chapter 6) or SRRM (will be

explained in Chapter 7) to extend the robot world states with new information.

For each combination of object, room type, and probability distributions of action

effects, the experiment was repeated 10 times. Therefore the total number of runs was

1920 for the navigation. While for the manipulation, the experiment was repeated 20

times so the total number of runs was 960.

Table 5.2 and Table 5.3 summarise the results of the probabilistic planning of both

types of action, i.e. manipulation and navigation, with open and closed world features.

The rows represent the action outcome with the highest probability in the action model,

while the columns show the results of the MLN answer to compute the possible world.

These were computed by selecting the outcome with the highest weight. Hence there are

two possible outputs: Matched and Unmatched.

The true positive rate (TPR) and the false positive rate (FPR) for probabilistic planning

were computed by considering the outcome (as explained above) out_2 as the positive

case and out_1 as negative case. Table 5.4 shows TPR and FPR for both types of action

in the navigation and manipulation scenarios. The results indicate good performance

because TPR tends to be high and FPR tends to be low. As in the case of deterministic

planning (Section 4.6.2), one can notice that the performance improves when (Th) is

higher. Similarly, one can notice that the performance in the navigation scenario is

much better than that of the manipulation scenario. This is due to the number of

constraints and the number of related objects in the environment.

141

Table 5.2: Results from Running the Planning System under Probabilistic Conditions

for the Actions take and move with Open World Feature. Each Cell Represents the

Number of Runs that Result in Matched (M) between Action Outcome (out_1 or

out_2) and Probabilistic Results, or Unmatched (U) between Action Outcome (out_1

or out_2) and Probabilistic Results.

Th = 3 Objects Th = 5 Objects Th = 7 Objects

U M U M U M

Navigation
out_1 650 142 686 130 704 112

out_2 96 1032 72 1032 24 1080

Manipulation
out_1 339 117 366 90 396 48

out_2 168 336 152 352 96 420

Table 5.3: Results from Running the Planning System under Probabilistic Conditions

for the Actions take and move with Closed World Feature. Each Cell Represents the

Number of Runs that Result in Matched (M) between Action Outcome (out_1 or

out_2) and Probabilistic Results, or Unmatched (U) between Action Outcome (out_1

or out_2) and Probabilistic Results.

Th = 3 Objects Th = 5 Objects Th = 7 Objects

U M U M U M

Navigation
out_1 736 104 760 80 752 64

out_2 146 934 98 982 74 1030

Manipulation
out_1 328 104 352 80 424 32

out_2 168 360 156 372 84 420

Table 5.4: The Percentage (%) Rates of True Positive Rate (TPR) and False Positive

Rate (FPR) of the Planning System under Probabilistic Conditions for the Two

Actions move and take. Two World Features are Considered: Open and Closed World

Features.

Th = 3 Objects Th = 5 Objects Th = 7 Objects

World

Property
TPR FPR TPR FPR TPR FPR

Navigation
Open 91.49 17.93 93.48 15.93 97.83 13.73

Closed 86.48 12.38 90.93 9.52 93.3 7.84

Manipulation
Open 66.67 25.66 69.84 19.74 81.4 10.81

Closed 68.18 24.07 70.45 18.52 83.33 7.02

142

The results of accuracy, precision and recall are given in Table 5.5, Table 5.6 and Table

5.7 respectively. It can be noticed that the probabilistic planning system is highly

accurate in detecting successful and failed planning in the navigation scenario, but is

less accurate in the manipulation scenario. As with FPR and TPR, accuracy, precision

and recall improve when the environment contains a greater number of related objects

(Th is higher).

Table 5.5: Accuracy of Planning System under Probabilistic Conditions in

Navigation and Manipulation Actions Using the Two World Features Open and

Close. The results are given as percentages (%).

World

Property

Th = 3 Objects Th = 5 Objects Th = 7 Objects

Accuracy Accuracy Accuracy

Navigation
Open 87.60 89.48 92.92

Closed 86.98 90.73 92.81

Manipulation
Open 70.31 74.79 85.00

Closed 71.67 75.42 87.92

Table 5.6: Precision of Planning System under Probabilistic Conditions in

Navigation and Manipulation Actions Using the Two World Features Open and

Close. The results are given as percentages (%).

World

Property

Th = 3 Objects Th = 5 Objects Th = 7 Objects

Precision Precision Precision

Navigation
Open 87.90 88.81 90.60

Closed 89.98 92.47 94.15

Manipulation
Open 74.17 79.64 89.74

Closed 77.59 82.30 92.92

143

Table 5.7: Recall of Planning System under Probabilistic Conditions in Navigation

and Manipulation Actions Using the Two World Features Open and Close. The

results are given as percentages (%).

Th = 3 Objects Th = 5 Objects Th = 7 Objects

World

Property
Recall Recall Recall

Navigation
Open 91.49 93.48 97.83

Closed 86.48 90.93 93.30

Manipulation
Open 66.67 69.84 81.40

Closed 68.18 70.45 83.33

5.4.8 Sabotaged SAMs

Experiments were run to test the effect of incorrect action models on the performance of

probabilistic planning. In these experiments, the SAM used by the probabilistic

planning was sabotaged. This means that the probabilities assigned to the possible

action outcomes were not always correct. In these experiments, the planning system

only generated plans for the navigation scenario using the closed world feature. The

action model gave a probability of 0.3 to the first outcome and a probability of 0.7 to the

second outcome, i.e., p(out_1) = 0.3, p(out_2) = 0.7.

Experiments were conducted whereby the two rooms assigned to the two possible

outcomes of move(robot,from,to), may be any of the available room types (5 rooms

involved in this experiment). For each possible collection of types, 10 experiments were

run, so that the total number of experiments run was 250. Each time, the destination to

room of the robot was selected from the robot world state and compared with the result

returned from MLN.

144

In order to analyse the results of the probabilistic planning system with a sabotaged

action model (SAM), the same experiments were repeated where the action model was

not corrupted. Table 5.8 summarises the results achieved by the planning process when

both action models are used, i.e. sabotaged vs non-sabotaged models. The

corresponding rates of false positives (FPR) and true positives (TPR) are given in Table

5.9.

The results explain the performance of the planning system, in terms of FPR and TPR,

by a comparison between the sabotaged action model and the accurate action model.

The planning system with a sabotaged action model is less accurate and less precise

than planning system with an accurate action model. Yet, the difference in accuracy and

precision is small, as shown in Table 5.10. It can be concluded that semantic knowledge

supports robot task planning to reliably generate plans even when the SAM model is

sabotaged.

Table 5.8: The Results from Running the Planning System under

Probabilistic Conditions for Navigation Actions with Accurate and

Sabotaged SAM Models. Each Cell Represents the Number of Runs that

Result in Matched (M) between Action Outcome (out_1 or out_2) and

Probabilistic Results, or Unmatched (U) between Action Outcome (out_1 or

out_2) and Probabilistic Results.

 Th = 3 Objects Th = 5 Objects Th = 7 Objects

U M U M U M

Accurate

SAM

Model

out_1 36 15 38 12 39 9

out_2 8 191 6 194 6 196

Sabotaged

SAM

Model

out_1 57 26 60 21 63 17

out_2 10 157 8 161 6 164

145

Table 5.9: The Percentage (%) Rates of True Positives Rates (TPR) and False

Positives Rates (FPR) of the Planning System under Probabilistic Conditions

Using Accurate and Sabotaged Navigation SAM Models.

 Th = 3 Objects Th = 5 Objects Th = 7 Objects

 TPR FPR TPR FPR TPR FPR

Accurate SAM

Model
95.98 29.41 97.00 24.00 97.03 18.75

Sabotaged SAM

Model
94.01 31.33 95.27 25.93 96.47 21.25

Table 5.10: Accuracy and Precision of the Planning System under Probabilistic

Conditions Using Sabotaged and Accurate SAM Models in Navigation Actions. The

Results are Given as Percentage (%).

Th = 3 Objects Th = 5 Objects Th = 7 Objects

Accuracy Precision Accuracy Precision Accuracy Precision

Accurate

SAM Model
90.80 92.72 92.80 94.17 94.00 95.61

Sabotaged

SAM Model
82.80 84.41 86.00 86.56 88.40 88.65

5.5 Discussion

The results reported in this chapter show that the semantic knowledge domain can

effectively help robots to achieve good performance in generating symbolic plans for

robot tasks in uncertain situations. When the planning considers uncertainty in world

states and action effects, the performance is even better than that of a deterministic plan

(Chapter 4). This demand is validated by the high rates of true positives (TP) and the

low rates of false positives (FP) achieved in task planning for two different types of

actions. The improved performance resulted from the fact that the expectations are not

Boolean in manner, i.e. true, false or ambiguous.

146

Furthermore, in probabilistic planning, decisions about whether the plan of actions has

failed or succeeded are based on how likely it is that each expectation will be verified or

violated. These decisions are based on the given evidence information.

The drawback of probabilistic planning is that it is unable to detect failure cases when

the expected object has a similar description to the planning time object. A typical

example of such cases in the experiment is when the robot planner is expected to

generate a take action to take a glass of water but ends up generating an action to take a

bowl instead. Such situations will always result in an ‘ambiguous’ planning result. To

recover from such an issue, concepts should be defined to be totally exclusive, by

providing more restrictions involving the properties of their instance objects.

Similar situations arise when both the expected object and the planning time object are

instances of the same class. An example for this could be if the robot asked to bring

book1, but ends up in bringing book2. This is typically a situation that cannot be

handled by considering only general semantic knowledge. Extra information should be

provided about the expected object (e.g. the size of book1), or properties related to it

(e.g. book1 is a green book) to give it the ability to deal with such unexpected

situations.

It should be noted that the performance of probabilistic planning is also reduced when

applied in such situations, but to a lesser extent. The resulting probability of action

outcomes is highly influenced by the prior probabilities given in the action model. In the

case where the expected and the planning time objects are instances of the same class,

the last probabilities of the outcomes will always be the same as the prior ones.

147

5.6 Summary

In summary, semantic knowledge is used to compute implicit expectations for each

possible action outcome. Then, a probability distribution is estimated by asking the

trained MLN model to investigate how the world state appears while taking into account

the implicit expectations and their probabilities. Moreover, a probabilistic MLN model

is provided to reason about uncertainty in a given world state. Thus, the result of

planning is a probability distribution over the different action outcomes.

The use of an MLN to model uncertainty in acting gives a well-founded treatment, but

providing the needed probability values can be a difficult task for large domains. In this

implementation, a Markov approach is taken to interpret probability values as measures

of belief. The task of providing conditional probabilities for the SAM model is

simplified by making assumptions that allow it to use well known learning algorithms to

train the MLN. This enables it to encode the probability of classifying the objects as

well as misclassifying them when they are seen.

148

Chapter 6

Semantic Task Planning Based on Information Gathering

6.1 Introduction

Chapter 4 presented the planning process, which depended on the use of an immediately

available semantic knowledge base and evidence information to evaluate and check

implicit expectations regarding the effects of the generated actions. The outcome of the

evaluation enables the assertion of whether these expectations are confirmed, violated,

or ambiguous. When the result of the evaluation is ambiguous, this means that the

planning system cannot determine whether expectations of the object are matched with

the planning time object or not. This may be due to the knowledge and evidence bases

containing only a few properties and relation details about the locations or objects.

This chapter will tackle the problem of mismatch between implicit expectations and

evidence. This chapter extends the deterministic planning system developed in Chapter

4 to deal with conditions suffering from incomplete information by using the

information gathering approach.

An effective information gathering scheme for modelling and reasoning about

uncertainty due to lack of information is presented. This scheme is used to collect the

necessary information to support the assessment of the implicit expectations with

ambiguous truth values. The treatment in this case does not include probabilities. While

a probability is used to choose the information that is likely to achieve the highest

reduction in uncertainty and then plan to collect it.

149

This chapter will use the planning system to generate the necessary actions that the

robot can use in order to reduce or eliminate uncertainty due to incomplete information.

This choice is motivated by the fact that the planning system can be provided with the

ability to handle complex situations involving a lack of information in an effective and

automatic way. The concept stems from the ability to model the occurring situation as a

planning task according to the information available. In this regard, the initial state of

the task planning is represents a situation of incomplete information, while the goal

represents a situation where that information is available. Therefore, the generated plan

includes the necessary movement, exploration, searching or matching actions needed to

gather the required information.

6.2 Motivations

In this section three key concepts are defined which concern information gathering for

task planning:

1. The planner’s initial set of information about the world is incomplete. When the

size and nature of the robot domain is considered, it is not possible to assume

that the planner will have gathered all the information needed to devise a plan.

2. The robotic system should gather the necessary information through planning.

While all the information relevant to a problem may not have already been

gathered, it is desirable for the planning system to have the ability to gather new

information as needed. The relevance of possible information should be

determined during plan generation, so it makes sense to gather that information

through planning.

150

3. The planning system may not return the required information quickly, or at all.

Executing plans to obtain the information will typically take more time than the

planner would spend generating plans. In some cases, it will not be known a

priori which action gives the necessary information, and it will be necessary to

search a planning domain to find the appropriate action. However, it may not

possible to find those actions at all. In this case the system should not stop

planning while waiting for answers to its queries, but should keep planning and

looking for other possible plans that do not depend on answering those specific

queries.

As a motivation example, suppose that the robot is in the bedroom r5 and it has been

ordered by the user to clean the dining room r4 before dinner time. To achieve the task,

the robot task planner generates a plan that could include the following actions:

(move(robot,r5,hall) ;move (robot,hall,r4) ; clean(robot, r4)).

Now suppose that the robot planner has just finished the generation of the move(robot,

hall, r4) action, and the checking process is triggered to see if the specifications of r4

are matched to its specifications in the knowledge base. Assuming that the problem

domain contains only the available properties of r4, then the knowledge base is queried

about the implicit information of being in the dining room. The knowledge base will

depend on its available information to answer the queries.

Suppose that all the robot had stored in its entire knowledge database was a chair and a

table. As chairs and tables can be found in rooms of different types, this information is

not enough to help the planning process to establish whether r4 is a dining room.

Therefore, the initial result of the checking process is unmatched. At this stage, this

151

process can assume that the robot is in room r4, since it could not find any evidence

against r4 being a dining room.

If the robot is to be sure that the task is planned successfully (i.e. the robot does not end

up cleaning a room that is not the desired one), it needs to gather more information to

help it establish that it is in the right room. It is important to look for information which

is needed to decide whether the implicit expectations of being in the dining room are

verified or violated. For example, the planning system might generate a plan to gather

information which specifies with low probability of finding a sink in a dining room, in

order not to violate the dining room definitions. It can also look for a dining table, as a

dining room is expected to contain at least one dining table.

Considering that the amount of available information about the robot environment is

large, a planner should gather the information as needed by the planning process. Since

gathering information may take a considerable amount of time, it would be wise for the

planner to continue planning while the queries are being processed.

6.3 Gathering Information by Planning

The issue faced by the robot in the above example was an unexpected situation that

arose due to lack of information. The information is needed to determine whether the

robot planner has scheduled its actions successfully. It cannot always be determined

whether some implicit expectations hold true or not.

In the following, a careful approach will be taken whereby the planning system must

search for information required to support the planner to generate its plan and assess

152

such expectations and to establish whether the actions have been successfully

scheduled. The information gathering approach which is proposed in this chapter is

based on automatically analysing and representing an unexpected situation as a planning

problem with incomplete information about the robot world state.

Planning is used to solve the problem at hand. The solution is a plan that includes a

schedule of actions designed to collect information for supporting task planning, and to

determine whether implicit expectations are met or not. The procedure of handling a

state involving lack of information using planning can be summarised as follows:

1. Case estimation: when a state of lacking information appears, it is analysed with the

aim of creating a planning problem from the specification of an initial state and a goal to

achieve. In this stage, the initial state of incomplete information problem encodes, as a

set of assumptions, the properties of objects and places that currently have ambiguous

truth values. These assumptions represent one possible assignment of truth values to

objects and places properties. Conditions under which the planning system needs

information must also consider the relationships between objects and places.

2. Plan generation: the created planning problem is then passed to the planner so that it

can be solved by generating a plan containing, for example, movement, exploration and

any other information gathering actions. The movement actions are intended to put the

robot in a state where it can execute the information gathering actions. For instance, this

could mean moving to a location where it is possible to observe other parts of a room.

An example of an explore action is the rotating of an object held by the gripper of the

robot in order to record a hidden side of that object.

153

3. Updating: updating of the planning domain or the problem based on the new

information which is obtained from step 2.

4. Querying: the action of querying the knowledge base to gather information during

planning about the state of the world before the planning began (i.e. about the initial

state).

6.4 Predicting Information Gathering under Uncertain Planning

This section deals with planning under uncertainty in predicting, i.e. the prediction if IG

can solve the problem of lack of information in acceptable criteria or not. The primary

concern here is the need for feedback from the planner whilst its works to generate

plans. During planning time, a world state may encounter a lack of information, so the

planner cannot continue with finishing the plan. In this case the decision maker is

prepared to deal with any state it may encounter (O’Kane et al. 2006).

6.4.1 Decision Making

Consider the problem of making a decision when there is a lack of information

regarding the world state. This case is modelled as a decision to be made by the decision

making unit. To formalise this decision problem, the following entities should be

defined:

1. A set of robot actions, 𝑨, that have the ability to add information into robot

world states (information gathering actions).

154

2. A set of decision maker parameters, 𝚯. This set should encode all of the lack of

information (or uncertainty in the case of probabilistic conditions) in the world

state input to the decision maker.

3. A cost function, 𝑳: 𝑨 × 𝚯 → ℝ, which encodes the relative undesirability of each

possible case. This is the quality that should be minimised. Inversely, it can be

useful to find a reward function that should be maximised.

4. A lack of information (uncertainty) model for 𝚯. This is the possibility of the

needed 𝛉 (or distribution 𝐏(𝛉) under probabilistic uncertainty).

The objective function is to choose an action, 𝑎, that will result in the smallest possible

𝐿(𝑎, θ) and provide the necessary information in the robot world state. Under lack of

information (or uncertainty), the best course of action is to consider the worst case cost.

The worst case optimal decision, a∗, is given by:

 𝑎∗ = 𝐿(𝑎,𝜃∈Θ
 𝑚𝑎𝑥

𝑎∈𝐴

𝑎𝑟𝑔𝑚𝑖𝑛
 θ) (6.1)

With the probabilistic uncertainty model, the choice of 𝜃 is random, so the relevant

measure is the expected cost. The decision ‘𝑎∗ ’ that minimises the expected cost is:

 𝑎∗ = 𝐸𝜃[𝐿(𝑎, 𝜃)]𝑎∈𝐴
𝑎𝑟𝑔𝑚𝑖𝑛

 = ∑ 𝑃(

𝜃∈Θ

𝑎∈𝐴
𝑎𝑟𝑔𝑚𝑖𝑛

𝜃) 𝐿(𝑎, 𝜃) (6.2)

In either case, a plan is simply a choice of some 𝑎 ∈ 𝐴.

155

6.4.2 Including an Evidence Space

The previous formulation did not give the decision maker any special information about

what selection would be made for θ on a particular task. This model is extended by

including an evidence space 𝑉. Each 𝑣 ∈ 𝑉 corresponds to a measurement or reading

that is given to the decision maker to facilitate the selection of θ. In case of probabilistic

planning, this depends on the properties or probabilities of objects and places returned

from the trained MLN in the inference phase.

The decision maker is given some value of 𝑣 ∈ 𝑉 and can use this value when selecting

a value for 𝑎 ∈ 𝐴. Thus, a plan is a decision rule (or strategy/policy), i.e. γ: 𝑉 → 𝐴. The

presence of evidence changes the models of lacking information (uncertainty) to be

conditioned on the value of 𝑣. Two cases are using evidence space:

 Nondeterministic: assume that 𝒗 restricts the set of choices available for θ. This

can be expressed as a function 𝑭: 𝑽 → 𝟐𝚯 so that 𝑭(𝒗) ⊆ 𝚯 represents possible

choices for θ given 𝒗. Now the optimal decision rule 𝛄∗ is simply the one that

makes the best worst-case decision for each 𝒗:

 𝛾∗(𝑣) = 𝐿(𝑎,θ∈𝐹(𝑣)
 𝑚𝑎𝑥

𝑎∈𝐴
𝑎𝑟𝑔𝑚𝑖𝑛

 θ) (6.3)

Notice that the only change from (6.1) is that the max operation is over only F(v), i.e. v

is related to θ, rather than all of Θ.

 Probabilistic: The distribution for θ is now conditioned on 𝒗. That is, for each

𝒗 ∈ 𝑽 and θ ∈ Θ, the conditional probability P(θ| 𝒗) is known. Given 𝒗 and 𝒂,

156

the expected cost (also called conditional Bayes risk in this context) is expressed

as:

 Eθ[𝐿(𝑎, θ)] = ∑ P(

θ∈Θ

θ|𝑣)𝐿(𝑎, θ) (6.4)

The decision rule (comparable to a cost function in machine learning) to minimise this

is given by:

 γ∗(𝑣) = ∑ P(

θ∈Θ

θ|𝑣)𝐿(𝑎, θ)𝑎∈𝐴
argmin

 (6.5)

Two common examples of decision-making with evidence are parameter estimation

(Berger 1985; Degroot 2004) and classification (Devyver and Kittler 1982; Duda et al.

2000; Mitchell 1997). In both cases, they have A = Θ and L(a, θ) = 0 if and only if a =

θ. The observation v will give some information about θ, perhaps as a feature vector of

θ.

6.5 Gathering Information from Knowledge Bases

The definitions for variables, constants (i.e., objects), logical atoms, states, actions,

operators, and plans are presented in a STRIPS style. A world state is complete if it

contains all of the atoms that are true in the environment; otherwise, it is incomplete. A

plan is a sequence of actions (i.e. ground operator instances). In STRIPS, a plan is

denoted as an ordered set of a ground instances of an operator, for example {o1,

157

o2,...,ok}, where each oi is a ground instance of an operator and every ground operator is

an action ai in STRIPS style. Thus, Plan (Π) = {a1, a2, …, ak}.

When the planning system requires more information about the task at hand, it issues a

query. In this chapter, the expression of the query is of the form:

 𝑄(𝑥′) ← 𝐶(𝑦′) (6.6)

where Q is the unique label of the query, C is a conjunction of (possibly ungrounded)

literals, 𝑦′ is the set of variables appearing in C and 𝑥′ is the set of variables whose

values are being searched. In this study, it is required that 𝑥′ = 𝑦′. The Q is said to be

grounded when 𝑥′ = 𝑦′ = ∅, i.e. no variables in the query expression. The intent of a

query is to gather information during planning about the state of the world before

planning started (i.e. about the initial state).

For example: suppose the robot is ordered to find within the house environment the

kitchen, where an oven is located in order to cook the food. Suppose also that the robot

knowledge base has types such as Oven, Kitchen, and Cooking, along with the relations

isContained(Kitchen,Oven), isLocatedIn(Oven, Kitchen), and isProvided(Oven,

Cooking). Given these relations, the corresponding query can be written as:

Q(O,K) ← Oven(O) ∧ isLocatedIn(O,K) ∧ Kitchen(K) ∧ isContained(K,oven1) ∧

isProvided (oven1,cooking)

where oven1 and cooking are objects, and O and K are variables. The answer to the

query Q(𝑥′) ← C(𝑦′) in a state S is a set of variable substitutions = { 𝜌1, 𝜌2,..., 𝜌n },

158

where 𝜌k specifies a value for each variable in x such that all the positive atoms in 𝜌k(C)

are in state S and none of the negative atoms in 𝜌k(C) are in S.

A knowledge base (KB) is defined to be any external source, such as the SKB or the

evidence database that can provide information during planning. The specification of a

knowledge base describes the contents of the information provided. More formally, the

specification of a knowledge base is expressed as:

 KB(𝑥𝑖 , 𝑥𝑜) → 𝐵(𝑦) (6.7)

where KB is the unique label of the knowledge base representing the head of the

formula, B is a conjunction of logical atoms representing the body of the provider

description, y is the set of variables appearing in B, x
i
 is a set of input variables, and x

o

is a set of output variables. If y = x
i
 ∪ x

o
, then the knowledge base formula is completely

explicit. In this chapter, it is required that the knowledge base specifications should be

completely explicit.

Example (Knowledge base). Suppose that there is a knowledge base that returns all the

rooms (R) located in a house (H) for any given house. The specification of this provider

would be: KB(H,R) → House(H) ∧ hasRoom(H,R) ∧ Room(R).

The explanation for the requirement that KB must be completely explicit is that the

answer to a query is a value assigned to a variable. This value is defined for each

variable in the head of the query. That variable substitution is applied to the body of the

provider description and the ground predicates can be inserted into the state of the

world.

159

A knowledge base (KB) can be queried by supplying a variable substitution V that

specifies a value for each of the input variables in x
i
. The result of the execution of the

KB is a set of variable substitutions, i.e. Result(KB, V) = {𝜌1, 𝜌2,..., 𝜌n}, where each 𝜌k

is a variable substitution that specifies a value for every variable in x
o
 such that 𝜌k(V(B))

is true in the world. This means that the information returned is robust, but may not be

complete, i.e. Result(KB, V) may not contain all of the possible substitutions that make

V(B) true.

Let X be a set of knowledge bases (in this thesis the knowledge bases are the SKB and

the evidence).The total amount of knowledge that can be gathered from these providers

can be defined as δ(X). Formally,

𝛿(𝑋) = ⋃ 𝜌(𝑉(𝐵))

KB∈𝑋

𝜌∈Result(KB,𝑉)

 (6.8)

for every variable substitution V that specifies a value for every input variable in KB.

6.5.1 Complete vs Incomplete Information Planning Domain

A complete information planning problem is a tuple 𝛲𝐶 = 〈𝑆𝐶 , 𝐺, 𝐷〉, where 𝑆𝐶 is a

complete initial state, G is a goal (a goal state that represents a world state that suffers

from incomplete information), and D is a planning domain description that consists of a

set of planning operators O. A solution for the planning problem P
C
 is a sequence of

actions (i.e. ground operator instances) that, when executed in the initial state,

accomplishes the goal G.

160

An incomplete information planning problem is a tuple 𝛲𝐼 = 〈𝑆𝐼 , 𝑋, 𝐺, 𝐷〉 , where 𝑆𝐼

is a set of ground atoms that are initially known, X is a set of knowledge bases, G is a

goal, and D is a planning domain description. The total knowledge available about the

initial state is given by 𝑆𝐼 ∪ δ(X), where 𝑆𝐼 denotes an incomplete state of the world,

and X is the set of available knowledge bases.

If 𝑆𝐼 ∪ δ(X) ⊆𝑆𝐶, then the incomplete information planning problem P
I
is consistent

with a complete information planning problem P
C
. The results returned from knowledge

bases will be assumed to be fixed during the course of planning. Therefore, for a

knowledge base KB, Result(KB,V) is fixed and does not change during planning, so

δ(X) is also fixed. This assumption specifies a class of robot task planning problems in

which the information collected from the semantic knowledge and evidence is static

during the planning process.

Knowledge bases, i.e. knowledge bases (such as the SKB and the evidence) are defined

as a database that returns information about the initial state only, and does not have any

world-altering effects. In this chapter, a new type of SAM is developed, is called

Semantic Action Model for Information Gathering (SAM_IG) , which has the ability to

return knowledge from KB provided that the inputs, outputs, preconditions and effects

of the action are known. The output parts of the new SAMs_IG are related to enrich the

knowledge of the incomplete information problem.

Example 3 (Knowledge providing by SAM_IG action).

By referring to example 2, the semantic description of SAM_IG is as follows:

define atomic process FindRooms(

inputs: (h-house),

161

outputs: (r-room),

precondition: (),

result: (hasRoom(h, r))

The information gathering in the semantic knowledge phase is formalised as a tuple

𝑃𝑆 = 〈𝑆𝐼 , 𝑊, 𝐶, 𝐾〉, where 𝑆𝐼 is an (possibly incomplete) initial state, 𝑊 is a set of

knowledge providing models (KB) that are available during the planning process, 𝐶 is a

goal, and K is a collection of SAMs_IG’ process models such that 𝐶 ∈ K. A solution for

𝑃𝑆 is a sequence of atomic SAM_IG processes that, when executed, achieves the

functionality desired by the process 𝐶.

𝑃𝑆 is equivalent to an incomplete information problem 𝛲𝐼 = 〈𝑆𝐼 , 𝑋, 𝐺, 𝐷〉, where G is

the goal 𝐶, D is the planning domain description generated by using the translation

algorithm of Chapter 4 (i.e. by applying Algorithm 4.1 on K to produce PDDL), and X

is the knowledge base specifications for actions in W generated as explained above (i.e.

δ(X) = δ(W)). The Information Gathering (IG) algorithm (Algorithm 6.1) uses the

knowledge base specifications to decide which action provides relevant information

during planning. Figure 6.1 shows the mapping process between the semantic

knowledge phase and the process of gathering information from the incomplete-

information state space.

Algorithm 6.1 shows the IG algorithm which is used to decide which action (SAM_IG)

provides relevant information during planning when information is incomplete. The

algorithm starts as soon as incomplete information detected. The incomplete

information is the goal that should be verified by world state in order, for the main

planning task, to continue its work. So, a temp is generated from the goal (G) and the

Plan which returns the necessary sequence of actions that solved the problem.

162

The G is partitioned into gi, which represents the sub goals that should be verified. If the

status of gi is verified, then searching for the SAM_IG action that have gi as a

precondition in addition to the other preconditions of the action in order to create query

to access the knowledge base to extract the necessary information to enrich the world

state with new information. Then a sequence of SAM_IG is returned as a plan to the

planner to execute it and recover from incomplete information.

Planning under

Semantic Knowledge

Information Gathering

Formalism (𝑃𝑆)

Planning under

Incomplete-Information

Planning Domain (Ρ𝐼)

Figure 6.1: Mapping between Semantic Knowledge Information Gathering and the

Incomplete Information Planning Domain

𝑆𝐼

𝑊

𝐶

𝐾

𝑆𝐼

𝑋

𝐺

𝐷

163

6.5.2 Semantic Action Model for Information Gathering (SAM_IG)

Semantic action models for information gathering are new type of actions which are

concerned in the purpose of accessing the knowledge bases and obtaining new

information. This information is used to support the robot planning system to recover

from unexpected situations which are caused by lack of information.

SAM_IG is applied on the head of the equation (6.7), i.e., KB(𝑥𝑖, 𝑥𝑜) which consists the

input and the output query variables. These variables are related to process part of

SAM_IG and from the type of these variables the knowledge bases can be specified.

Then the body part of the query (𝐵(𝑦)) is grounded from the related knowledge bases.

Algorithm 6.1

IG (P
I
) = Plan

Plan = 0

temp = (G,Plan)

Loop

 If temp is Null then return failure

 Take G from temp and remove it

 If G is Null the return Plan

Loop from i = 1 to i < |G|

 Choose gi from G

 If status(gi) is true

 Let (a) be the action which gi in its preconditions

 If no such action then return failure

 Let (pre) be the preconditions of action (a)

 D(y) = KB(gi,pre)

 Append (a) in Plan

 S
I
 = S

I
+D(y)

Return (Plan)

164

Figure 6.2 explains the process part of the find action for information gathering.

6.6 Planning Process

STRIPS-style planners (Metric-FF, LPG-td) require the specification of an initial

(belief) state and a goal formula as input. The following subsections will discuss these

requirements and how they are represented in information gathering situations.

6.6.1 Initial Belief State

Generating plans to successfully collect information implies that (i) the planner takes

into account the issue of lack of information in the robot environment and (ii) the initial

Figure 6.2: Semantic Action Model for Information Gathering SAM_IG.

165

state of the planning domain is incomplete. To this end, belief states are used to

represent the robot’s incomplete and uncertain knowledge about its world at some point

in time, i.e. a belief state represents a set of hypotheses about the actual state of the

world given past evidence information, i.e., hypothesis (expectation|evidence).

The initial belief state contains hypotheses about the truth value of each expectation that

must be checked. This is accomplished by asserting that the expectations can be true or

false. The initial belief state also includes other information needed for the planning

task, e.g. the robot’s whereabouts, knowledge about the workspace, etc.

The new gathered information is used in two ways: firstly to enrich the initial state with

new information to support the planner to generate plans, and secondly to evaluate the

truth values of the implicit information which is related to the effects of the plan

actions.

Example Suppose that the robot planner has just decided to insert the action

move(robot,hall,r1), where r1 is an instance of BedRoom, which is defined as follows:

Bedroom is a Room and isContained (min 1 bed and exactly 1 sofa))

Suppose that the planner could establish (by depending on the problem definition) that

the final location of the robot will be a room, with its explicit expectation room r1

verified. Suppose also that the KB has not recorded any sofa or bed inside this room, so

that the implicit expectations corresponding to the constraints (isContained (min 1 bed

and exactly 1 sofa)) are not known to be held or violated.

The belief state has four hypotheses (possible worlds) that result from the different

combinations of the truth values of the expectations. Notice that the symbol r1 in this

166

situation is a temporary symbol that refers to the planning time location (or object) of

the robot, which might be different from the expected location.

The process in charge of creating the initial belief state needs to incorporate other

information that is needed to create the task plan. This includes a symbolic description,

within the knowledge base, of the places , that the planning system is likely to find

individual objects or features related to an ambiguous implicit expectation. For instance,

the planning system can generate a plan to access the knowledge bases and hence

provide new information to the problem initial state to support the planner in generating

the task plan. This plan also can find any object related to its room or any negative

evidence object. Thus, isContained(bedroom, bed) etc., will be added to robot initial

(belief) state.

Another solution will depend on the information sources to be queried, i.e.:

KB(𝑏𝑒𝑑, 𝑟𝑜𝑜𝑚) → 𝑖𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑(𝑟𝑜𝑜𝑚, 𝑏𝑒𝑑).

This applies to all rooms which have beds in them. The planning system can then decide

if r1 is one of the bedrooms or not.

6.6.2 Goal Specification

The goal state to be reached by the plan is specified by a modal formula containing a

conjunct of the predicates associated with the expectations whose truth values are

ambiguous. The goal represents the body part (B(y)) of Equation (6.7). The predicates

are assigned the expected truth value of their corresponding expectations. For the

167

previous example, the goal formula that could be passed to the problem domain of the

planner is:

isContained(r1,bed) and isContained(r1,sofa)

which expresses that the information gathering plan should try to reach a state where

room r1 has a bed and a sofa.

6.6.3 Plan Generation

Both planners (Metric-FF, LPG-td) were used to generate the information gathering

plans. They take as input an initial belief state and a goal formula, and they generate

conditional plans can be applied to the initial belief state to result in a state where the

goal formula is verified.

To be able to resume the task at hand within the scope of the top-level task plan,

information gathering plans are restricted to include only actions that do not alter the

state of the top-level task plan in any relevant way. For example, the information

gathering plan to verify the implicit expectations of room r1 is not allowed to include

actions to search for information about other rooms. This restriction is sufficient in

navigation scenarios that involve only observation and movement actions, where the

top-level actions are used only to move to a certain room.

To prevent the information gathering process from altering the robot world state, one

flexible approach is to restrict the process to hold certain conditions at the end of the

information gathering process. For example, in the manipulation scenario, when the

goal is to take a spoon from the kitchen, the world state should contain a predicate that

168

requires the robot to be in the same room. This would make it possible to include

actions to explore other rooms in the KB, to acquire the possible new location of the

spoon outside kitchen.

Example The following plan is generated by the LPG-td planner for checking whether

r1 is a bedroom. It begins with the situation where the truth values of the implicit

expectations (isContained(r1,bed) and isContained(r1, sofa)) are ambiguous.

findObjectIn(bed,r1), findObjectIn(sofa,r1)

This results in a search of the KB to verify the truth value of the restrictions

(isContained(r1,bed) and isContained(r,sofa)) and to change the value of the ambiguous

implicit expectations to matched or unmatched.

Note that the fact that the plan includes movement and searching actions is specific to

navigation scenarios and is not a restriction. In other scenarios movement actions might

not be needed, but searching actions will always be necessary, since the aim is to gather

information. For example, if the planner generates the action grasp(robot,c21), where

the symbol c21 refers to a cup that contains coffee, the searching plan would include

actions to check the contents of the cup, but no actions to change the location of the cup.

The planning system concludes that the implicit expectations are verified when the last

planned action of the information gathering plan is successfully completed. Reaching a

failed action implies that there was at least one violated expectation.

169

6.7 Information Gathering for Planning under Probabilistic Cases

Chapter 5 discussed situations where the evidence is not sufficient to compute a

probability of the possible world that matches what was predicted by the task planner.

For instance, the planner might have predicted that, after the construction of a move

action, the robot will be either in the living room r4 or in the kitchen r5. Thus, if the

robot evidence database does not have anything to support its decision, then the

planning process will not be able to determine which room the robot is in with any

precision.

The probabilistic planning process (which was discussed in Section 5.3) can select the

outcome with the highest possible world probability as the resulting outcome. Chapter 5

also mentioned that the outcome with the highest posterior probability that exceeds a

given restriction, i.e. (Stddev+ mean), can also be selected. However, there can be cases

where no outcome satisfies the criterion due to the high uncertainty in the computed

possible world related to the action outcomes.

As in the case of deterministic planning, the robot can gather useful information in order

to reach a situation where uncertainty in the action outcomes or world states is

minimised or even removed entirely. This section presents an alternative approach

which explains how such information can be specified without planning all the way to a

state where all the uncertainty is eliminated.

The principle of the approach is to choose the information that is likely to achieve the

highest reduction in uncertainty and then plan to collect it. In Section 6.8.2, a test

scenario is presented where information gathering is applied to reduce the uncertainty

surrounding the possible world of a navigation action.

170

6.7.1 Information Gain

One measure that can be used to select the information to gather is called information

gain. This measure expresses the average reduction in the uncertainty of a random

variable. More formally, the gain in information achieved for the random variable R

(which denotes the possible action outcomes,) with known values of an observation

(evidence) variable Oi is given as follows:

 GI (𝑅|Oi) = E (𝑅) – E (𝑅|Oi) , (6.9)

where the quantity E(R) is known as the information entropy. This is the average

amount of information contained in a random variable. E(R|Oi) is the conditional

entropy of R given Oi. The quantity E(R) is used to measure uncertainty in a discrete

random variable R, so it is hence defined as:

 𝐸(𝑅) = − ∑ 𝑝(𝑟)log (𝑝(𝑟))𝑟∈𝑅 . (6.10)

The conditional entropy E(R|Oi) represents the average uncertainty in R, taking into

account that the value of Oi is known, i.e.:

 𝐸(𝑅|Oi) = ∑ 𝑝(oi)𝐸(𝑅|Oi = oi)

oi∈Oi

 (6.11)

The conept of information entropy was introduced by Shannon (2001). Information

entropy is as a measure of the information contained in a message composed of a finite

set of symbols.

171

For the purpose of information gathering to reduce uncertainty about action outcomes

and world states, all observation variables should be taken into account to computing

the information gain. In other words, Equation (6.9) is applied to all observed random

variables Oi, and the variable that gives the highest information gain is selected as the

useful information to collect. If obs is the observation to be collected, then obs is

determined as follows:

 𝑜𝑏𝑠 = 𝑎𝑟𝑔max
Oi

𝐺𝐼(𝑅|Oi) (6.12)

Once obs = Ok is determined, the planner can generate a plan to look for objects that are

instances of the class Ck. For instance, if Equation (6.12) reveals that obs = O1, which

denotes the sink object, then the planning system can issue a query to ask the

knowledge base about all the rooms that contain a sink.

A decision-theoretic approach that takes into account the cost of information gathering,

and can be selected by defining an utility function U. For instance, (Takeuchi and

Furuhashi 1998) define the utility associated with a sensing action as a decrease in

uncertainty about the robot location, where uncertainty is measured by entropy. The cost

of each sensing action is then subtracted from its utility, and the action that has the

highest expected utility is thereby selected.

In this case, it is required to associate an utility with each observed random variable Oi.

This can be measured by the information gain function specified in Equation (6.9). As a

result, the observation that achieves the highest difference between its utility and its cost

is selected as the information to gather. Given the utility U(Oi) and costs C(Oi) of all

observations Oi, the robot hence selects the observation obs as follows:

172

 𝑜𝑏𝑠 = 𝑎𝑟𝑔max
𝑂𝑖

(𝑈(Oi) − 𝐶(Oi)) (6.13)

where 𝑈(Oi) = GI(𝑅|𝑂𝑖). Once the information to collect has been identified, a plan

can be generated to collect it, for example by searching different rooms in a KB to

discover the facts that were initially hidden. The advantage of planning to collect only

one piece of information at a time is that the planning problem becomes much less

complex.

6.8 Experimental evaluation

The experiments will investigate how well the information gathering algorithm would

perform in planning problems where some of the information is completely unavailable.

6.8.1 Information Gathering for Deterministic Planning

This section describes test scenarios that examine the capacity of the deterministic

planning process to reason about situations involving a lack of information. The goal

was to test the planning approach proposed in Section 6.6, to compute solutions (plans)

for gathering the information needed to check implicit expectations.

Information gathering is a careful approach that can be used to deal with conditions

when deterministic planning cannot be certain about the truth values of implicit

expectations.

173

Experiment 1. This experiment examines how the number of solutions (plans) found by

the planners (LPG-td and Metric-FF) is affected by the amount of information available

during planning. In this experiment, the problems on the robot delivery domain are

used. In these problems, a robot is ordered to deliver every object in the house to the

correct place. The robot needs to gather information from all the rooms in the house

regarding the objects’ locations to prepare its strategy for solving the problem. Such

information is provided by SAM_IG. The goal is to generate a sequence of actions to

solve the problem.

In these experiments, the planner was applied to 50 randomly generated problem

instances. For each problem instance, the planner was run several times, each time

varying the amount of information available about the initial state by varying the

following quantities: |S
I
|, the number of atoms of S

C
 initially given; and | 𝛿(𝑋)|, the

amount of atoms of S
C
 that were made available through the input knowledge bases X,

where S
C
 is the set of all possible ground atoms in the domain.

The percentage of times that the planner could determine a plan is measured as a

function of the quantity:
|𝑆𝐼∪δ(𝑋)|

|𝑆𝐶|
.

This quotient represents the portion of atoms regarding the initial state that are available

during the planning stage. In this experiment, the value of
|SI∪δ(X)|

|SC|
 is varied from f = 0

% to f = 100 % in steps of 10 %. This was achieved as follows: (i) A set of atoms was

randomly chosen for |S| such that the size of this set is equal to the fraction specified by

the particular f value; (ii) For each atom in this set, it was randomly decided whether the

atom should go into incomplete initial state, 𝑆𝐼, or whether it should be provided from

the SAM_IG in X. Using this setup, the planner performed 50 runs for each value of

174

|𝑆𝐼∪δ(𝑋)|

|𝑆𝐶|
. The results in Figure 6.3 show that the success rate of the planner finding the

plan increases as
|𝑆𝐼∪δ(𝑋)|

|𝑆𝐶|
 increases. The planner was able to solve 100 % of the problem

instances even when
|𝑆𝐼∪δ(𝑋)|

|𝑆𝐶|
 was as low as 70 %.

Experiment 2: In order to recover from the issue of a lack of benchmark systems in

generating symbolic plans under the situations suffer from lack of information the

evaluation is based on the metrics of false positive rate (FPR) and true positive rate

(TPR). Both metrics assume a binary classifier that tries to classify a set of instances as

either positive or negative.

The performance of the planning system when supported by the information gathering

approach was tested in both navigation and manipulation scenarios. The experiments

relating to the manipulation scenario consisted of generating the high-level action

take(robot,obj,place). This required the robot to pick up the object obj that was on the

Figure 6.3: The Percentage of Times the Information Gathering Algorithm Supports

the Planning System to Find Plans for the Robot Delivery and Arrange Problem as

a Function of the Amount of Information Available During Planning.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

P
e

rc
e

n
ta

ge
 o

f

P
ro

b
le

m
s

So
lv

e
d

Percentage of
Information Available

175

table by using a robot arm. In this scenario, the information about the types of objects

on the table was incomplete, so the planner stopped at that action and asked the IG unit

to gather more information about the target object. There are 4 types of object could be

on the table, i.e. cup, bowl, milk box and glass of water. The planning system depended

on the IG process to enrich the robot work space with new information about the

properties of objects on the table in order to verify the implicit information of these

objects. The SAM_IG that relate to this scenario is find as it is used to query the KB to

find more properties related to the target object. Each object was asserted to be one of

the objects 20 times, so that the total number of runs was 80.

Similarly, the navigation scenario consists of the action move(robot,from, to) to move

the robot from a room identified by from to another room identified by the symbol to

and whose type was asserted to be one of the available room types, i.e. BedRoom,

LivingRoom, etc. Each room type should be specified according to the type of object

inside it and the implicit information of being in that room should be verified. Thus, the

planning system has been supported by the IG process to extend the initial state of the

robot environment with new information. The IG unit used the explore SAM_IG in

order to query the KB for more information about the target room. Each room type was

considered 20 times, so the total number of runs was 160. For each run, the type of the

final location of the robot was selected successfully from the 8 available types.

Table 6.1 shows the results according to three different values of (Th). The row and

column specifications are the same as those explained in Section 4.6.2.2, but this

experiment deals with the situation of possessing incomplete information in the world

state and the method of using an information gathering process to recover from that

situation.

176

In these results, the planning system with an information gathering process is able to

show a high percentage of true positives (positive instances correctly classified) and a

low percentage of false positives (negative instances erroneously classified as positive).

The true negatives (failure situations) are detected with different percentage for the

navigation and manipulation scenarios. High percentages are observed for the

navigation task (95 %, 98 %, 98 %), and small percentages for the manipulation task

(61 %, 67 %, 74 %).

The favourable results in this case, compared to deterministic planning case (4.6.2.2),

comes from the fact that the IG approach extends the robot world state with new

information. This information helps the planning system to verify the truth values of the

implicit expectations. This leads to minimisation of the number of ambiguous results

and maximisation of the number of positive and negative instances.

Table 6.2 presents the true positive rate (TPR) and false positive rate (FPR) for the

navigation and manipulation scenarios by taking two different cases for which to handle

the ambiguous results. In the first case, the planning system takes the open world

approach and considers the ambiguous results as matched because there is no negative

evidence in these situations. In the second case, the planning system takes the closed

world approach and considers the ambiguous results to be unmatched because it is not

specifically determined whether some conditions are held or not.

177

Table 6.1: Results from Running the Information Gathering Plan Generation for

the Actions find and explore. The Cells Represent Number of Runs that result in

Matched (M), Unmatched (U) or Ambiguous (A) Outcomes.

Th = 3 Objects Th = 5 Objects Th = 7 Objects

M U A M U A M U A

Navigation
M 27 0 7 31 0 5 32 0 3

U 0 120 6 0 121 3 0 122 3

Manipulation
M 18 0 6 22 0 4 24 0 3

U 0 34 22 0 36 18 0 39 14

Table 6.2: The Percentage (%) Rates of True Positives (TPR) and False

Positives (FPR) for the Information Gathering Plan Generation for the Actions

find and explore. Two World Features are Considered: Open World Treating

Ambiguous Cases as Successful, and Closed World Treating Ambiguous Cases

as a New Case.

Th = 3 Objects Th = 5 Objects Th = 7 Objects

World

Property
TPR FPR TPR FPR TPR FPR

Navigation
Open 100 4.76 100 2.42 100 2.4

Closed 79.41 0 86.11 0 91.43 0

Manipulation
Open 100 39.29 100 33.33 100 26.42

Closed 75 0 84.62 0 88.89 0

6.8.2 Information Gathering for Probabilistic Planning

This section will test scenarios where the probability of the action outcomes computed

by the probabilistic planning system involved information gathering. This was

discussed in Sections 5.3 and 6.7. A typical scenario where information gathering

needed while the planner was generating a conditional task plan for cleaning the living

room r3, starting from the bedroom room r1. This is expressed as follows:

178

move(robot,r1,hall) ; move (robot,hall,r3) ; clean(robot,r3).

The generation of the action move(robot,hall,r3) could result in two alternative

outcomes. In the first outcome (out1), the robot stays unconsciously in hall, with

probability 0.1. In the second outcome, (out2), the robot moves successfully into room

r3, with probability 0.9.

As the plan generator requires a clear answer about the location of the robot to continue

the generation of a plan, the matching process returned the outcome that had a posterior

probability greater than the threshold T = 0.7.

If no outcome satisfied the criterion (the action outcome that used to estimate world

state probability was below the threshold T), an information gathering process was

launched to gather information that was likely to reduce the uncertainty in the posterior

of the outcomes or states. If after the information gathering there was still no possible

world (resulted from outcome) that satisfied the selection criterion, the outcome that led

to possible world with the highest probability was returned to the plan generator.

When the planner generated the action move(robot,hall,r3), it could deal with only one

table in the room r3 as its evidence database contains objects related to the living room.

Consequently, the computed possible world of the action outcomes using the inference

phase was: P(out1) = 0.42; P(out2) = 0.58. As none of the outcomes had a possible

world probability greater than 0.7, an information gathering episode was initiated to

search for objects which would reduce the uncertainty about the location of the robot.

This resulted in a search for objects of type sofa as, on average, observing a sofa was

predicted to achieve the highest information gain. Therefore, the planning system issued

179

a query to the knowledge base through an (IG) algorithm about which of the rooms

might contain a sofa.

There are two possible answers from the knowledge base in this scenario. The first is

that the knowledge base could return a sofa in r3, so that the possible world

probabilities of the two outcomes were as follows:

P(out1) = 0.18; P(out2) = 0.82

As P(out2) >T, the probabilistic planning process returned r3 to the planner as the

resulting outcome of the action move(robot,hall,r3). This meant that the next action for

the task planner to generate was clean(robor,r3).

The second potential knowledge base answer is that no objects were returned during the

information gathering phase except for table. Thus, the possible world that was

computed before the information gathering would not change, i.e. P(out1) = 0.42 and

P(out2) = 0.58. Because neither outcome had a posterior greater than 0.7, the planning

process returned the one that had the highest possible world. In other words, r3 was

returned to the planner as the resulting outcome of generating the action

move(robot,r,r3).

Figure 6.4 shows the probability of finding a plan in three cases which depend on the Th

values.

180

6.9 Discussion

This chapter has considered the case when the initial state of the robot domain suffers

from a lack of information. A method has been proposed to deal with this problem. The

method is based on the concept of gathering new information to enrich the problem

space and hence support the robot task planner to continue its work and generate a

suitable plan for a given task. The fundamental principle is to model the situation of

incomplete information as a planning problem where some information needs to be

gathered in order to evaluate expectations with uncertain statuses.

Using the planner for different tasks that involve information gathering has been

investigated in several previous studies. For example, information gathering is used to

achieve safer robot navigation by (Taniguchi and Sawaragi 2004). However, no work to

Figure 6.4: The Probability of Finding Plans When the Planning System is Supported

by the Information Gathering Algorithm.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

P
ro

b
ab

ili
ty

 o
f

ge

n
er

at
in

g
P

la
n

s

Percentage of
Information Given

TH =3

TH = 5

TH = 7

181

date has addressed the use of information gathering based planning to collect

information for the purpose of supporting semantic based robot task planning.

The planning system has the flexibility to deal with a variety of unpredictable and

complex situations involving incomplete information, which is one of the advantages of

using planning in information gathering. The key benefit is that the definition of one

planning domain can lead to the automatic computation of solutions for a multitude of

situations involving information shortages.

Additionally, when the planner can access semantic domain knowledge, the proposed

planning approach can also support the plan execution. This is, according to (Berger

1985), a desirable ability of autonomous robotic systems acting in uncertain

environments. In fact, the task planner can reason on a more abstract level (office,

kitchen, etc.) to generate the task plan. The execution process depends on that plan, and

takes care of other related details at execution-time such as checking and monitoring.

The approach in this chapter differentiates between the information gathering actions

(SAMs_IG), i.e. actions that have the ability to access the knowledge bases and extend

the robot’s initial state with new information from their effect part, from these types of

actions that are world-altering (SAMs), i.e. actions that generate effects which change

the status of the robot and its environment. The preconditions of information gathering

actions include conditions may need to call other actions to validate their truth.

Therefore, queries must be issued to the knowledge base to provide information to the

initial world or current state.

In this chapter, the actions that provide information will not alter the world because the

correctness of the generated plans cannot be guaranteed. This is because the changes

182

made by the information gathering actions may invalidate some of the steps the planner

already takes. However, this restriction is not necessary when the effects of the

information gathering actions do not interact with the plan being searched for. In

general, safety can be established when the original planning problem and information

gathering problem correspond to two disconnected planning tasks that can be

accomplished without any interaction. Verifying that there is no relationship between

the two problems is a challenging task that will be addressed in future work.

The information gathering algorithm should have the ability to issue queries about any

state during planning. This will allow query results to be added to a problem space and

allow conditional plans to be generated based on the answers returned by the knowledge

base.

6.10 Summary

To summarise the contributions of this chapter, it is important to start from the

motivation statement that, it is sufficient to define one planning domain in order to

automatically compute solutions for a multitude of cases of incomplete information.

These solutions start from explaining the necessity of using an information gathering

approach to recover from situations that suffer from incomplete information. Planning

under the uncertainty of incomplete information was discussed and associated

techniques for decision making were presented. These included the use of evidence in

the case of uncertainty arising from incomplete information.

183

Modelling the planning problem under complete and incomplete information was

explained. A new type of action was modelled which has the ability to access the

knowledge bases and obtain new information to extend the robot initial state with new

information. This information supports the planning system in dealing with the problem

of incomplete information.

The situation of a planning process running under incomplete information has been

explained, including the modelling of the initial (belief) state, the goal state, and the

plan generation. Information gathering under probabilistic conditions was also

explained. This chapter ended with an experimental evaluation that revealed the

advantages of using the IG approach to support the robot planning system.

184

Chapter 7

Planning under Extended Conditions

7.1 Introduction

This chapter describes the approach of generating symbolic plans for robot tasks in

situations that suffer from lack of information, in particular, missing information. This

approach is different and independent from the approach of information gathering

which was explained in chapter 6. Techniques for estimating similar objects to the

original object in the plan action are used in the proposed approach in this chapter.

The entire process is characterized by a semantic knowledge realisation, which is

performed on robot ontology. In this way it is possible to include semantic information

during planning and applied semantic refreshment where it is necessary. After creating

new plans, methods are proposed to calculate the quality of these alternative plans in

order to select the best suitable one.

The planning system consists of concept relevance operations which are used to detect

similarities between objects in the robot world ontology. The concepts of similarity

exploit the knowledge which is obtained from ontology to support the planning system

in generating useful plans and extend the robot world state with new similar

information. This new information with the original information can recover the

planner from the condition of lack of information.

In this chapter, the similarity methods are applied on the action details (preconditions

and effects) and world states in order to obtain extended action details and world

states. There are different similarity measurements that can be used to obtain similar

185

objects and these measurements are depending on the hierarchical relationships, for

instance superclass, and semantic similarity, for instance calculating the distance of

the original object from the similar objects. Sections 7.3.2 and 7.3.3 will explain these

methods for measuring similarity.

The rest of this chapter is organised as follows: Section 7.2 presents a motivating

example; Section 7.3 explains the function of the semantic realisation and refreshment

module and the techniques used for measuring the similarity; and Section 7.4 presents

the experiments which will be used to validate the approach which is presented in this

chapter. Following this, the main outcomes of this chapter are discussed.

7.2 A Motivation

This chapter deals with the same problem that explained in chapter 6, which was the

problem of lack of information. This problem means that the robot task planner cannot

continue to generate the plan for robot task due to missing information. The approach

presented in chapter 6 dealt with this problem by generating a plan which consists of

sequence of actions restricted to gather the necessary information from the knowledge

bases. This new information was used to check the implicit expectations of the action

effects and enrich the robot world states with this new information to support the robot

planner to continue its work for generating plans for robot tasks.

The issue with information gathering problem was it took long time to recover the

planning system from the situation of incomplete information. The new generated

plan, which is directed to solve the problem, delayed the main job of the planner to

generate the plan until the information gathering plan is generated and executed. The

186

information gathering process depends on the planner to generate the plan for solving

the lack of information problem.

In this chapter, another approach of solving the problem of lack of information will

present. This approach is depending, not on the planner, but on the similarity

techniques to extend the robot world states and action details with new similar objects

to the original object in the action. The original object in the action was the reason to

cause either failure or delay the planner work.

For example, by returning to the same example of chapter 6, i.e., when the user

ordered the robot to clean the dining room. So, when the robot started cleaning and its

planner generate the action take(robot,vacuum1,place), to pick up the vacuum to clean

the dining room. The robot faced unexpected situation, where it did not find the

vacuum, therefor the robot either to answer fail in performing the cleaning or obtain

support from other unit in its planning system.

By depending on the approached that will be explained in this chapter, the robot can

find another object which has the similar functionality to vacuum in order to perform

its task. This approach depends on the similarity techniques to search in the robot

ontology to find which object is the most similar to vacuum, i.e., for example sweeper.

7.3 Recovering from Unsuccessful Planning

When the planning system cannot create a plan for a given task, i.e. when point 4 in

Section 4.5.1 reports a failure in generating the plan, a recovery procedure should be

used to recover from that situation. This section describes the second technique which

is used to deal with unexpected situations, in particular, the situation when the world

state is missing some necessary information for the planning system. Chapters 5 and 6

187

reported the other techniques that were used to recover from unexpected situations.

The next subsection explains the role of a new module in the planning system. This

module is concerned with realising the semantics of world states and action effects,

and refreshing them to endow the task planner with new information to support its

work. The following subsection will explain how to extend the initial state with new

information. Finally, the last subsection will explain how to test the quality of the

alternative plans. Figure 7.1 shows the enhanced planning system architecture which

takes into account instances when no plan can be created according to the available

world states and planning domain.

Semantic

Knowledge

Base

Transformation

Algorithm

OWL

Ontology

Manager
PDDL

Plan

Planner

Ontology

Parser

Semantic

Realization and

Refreshment

Module

(SRRM)

No

Yes

Accuracy

OK

Semantic

Action

Model

(SAM)

Figure 7.1: Enhanced Planning System Architecture with

Semantic Realisation and Refreshment Module (SRRM).

188

7.3.1 Semantic Realisation and Refreshment Module (SRRM)

Several methods have been developed to analysis semantic knowledge which is stored

as ontology. Certain criteria can be used to measure the equivalence or similarity

between concepts in the ontology (Hariri et al. 2006). Semantic knowledge, within the

details of a SAM, should be invested to recover the planning system from failure

situations that occur when generating the plan for a given task. The ontology, which

reflects the knowledge base, is used to annotate parameters as inputs, outputs,

preconditions and effect components of each SAM. Managing of this ontology

requires inference techniques to compute the inferred ontology relationships between

ontology concepts. Sometimes it is necessary to get support and feedback from a

reasoner such as Pellet DL (Sirin et al. 2007).

Moreover, the criteria for class (actions, objects or places ontologies) relevance are

applied to determine semantically equivalent or similar classes to a specific class in

the query. The ontology classes are considered relevant if and only if: (i) they have

specific hierarchical relationships, and (ii) their semantic distance does not exceed a

predefined threshold (Hatzi et al. 2012). The measure of equivalence or similarity can

be categorised into two general groups: Lexical Measures and Structural Measures

(Hariri et al. 2006). Lexical measures depend on flat similarities such as the Universal

Resource Identifier (URI) of entities (the details of this measure is out of the scope of

this thesis). Structural Measures consider similarities by studying the kinship of the

nodes and structures residing in the ontology graphs.

189

7.3.2 Hierarchical Relationships

Several possible hierarchical relationships can exist between two ontology concepts.

The SRRM supports the following hierarchical relationships between concepts X and

Y:

1. Equivalent (X, Y): The two concepts should have the same URI or they should be

equivalent in terms of OWL class equivalence, such as X = Y or 𝑋 ≡ 𝑌.

2. Subclass (X, Y): The concept X should be subsumed by the concept Y, such

that 𝑋 → 𝑌.

3. Superclass (X, Y): The concept X should subsume the concept Y, such that 𝑌 → 𝑋.

4. Sibling (X, Y): The two concepts have a common, direct or indirect, superclass T,

such that 𝑋 → 𝑇 and 𝑌 → 𝑇.

7.3.3 Semantic Similarity

In this work, the SRRM will implement the following two measures to estimate the

similarity between concepts in ontology:

1. Upward Cotopic Similarity: defines the similarities between concepts according to

a set of super classes of the concept in the question including itself. This method can

be calculated using the following formula (Hariri et al. 2006):

7. 1
𝛿(𝑐1, 𝑐2) =

|𝑈𝐶(𝑐1, 𝐻) ∩ 𝑈𝐶(𝑐2, 𝐻)|

|𝑈𝐶(𝑐1, 𝐻) ∪ 𝑈𝐶(𝑐2, 𝐻)|
 (7.1)

where H is the ontology hierarchy, and UC(c, H) is the set of super classes of c.

190

2. Wup Similarity: measures the similarity between concepts according to the

following formula (Wu and Palmer 1994):

7. 2

𝑠𝑖𝑚(𝑐1, 𝑐2) =

2 ∗ 𝑑(𝑠)

𝑑𝑠(𝑐1) + 𝑑𝑠(𝑐2)
 (7.2)

Where S is the least common super concept of c1 and c2, d(c) is the (lowest) depth of

concept c in the ontology, and dS(c) is the (lowest) depth of concept c in the ontology

when taking a path through super concept S of C.

7.3.4 Formal Conditions of Classes’ Relevance

Implement a relevancy measure with a certain threshold for the distance between

concepts, to define the concepts contained in the ontology with respect to a given

concept (query concept).

Suppose that c denotes the set of available classes belonging to different ontologies, H

denotes the set of selected hierarchical relationships, and T is the threshold of the

distance between classes. In the case of the similarity of depth (Wu and Palmer 1994),

T is the maximum number of edges present in the shortest path between two classes,

with T ≥ 0. T = 0 means there may be no distance between classes, and therefore

equivalent mapping is allowed. In the case of the distance upwards cotopic, the

threshold T, where T ∈ [0,1], directly reduces the distance between two classes. It

defines the maximum distance acceptable between these two classes, i.e. the distance

must be δ(c1, c2) ≤ T.

191

For each state space (S) of objects, its extended state ES, is defined as the union of all

the relevant objects of S (Ro) according to their hierarchical relationships and

threshold. This is expressed formally as:

7. 3

𝐸𝑆 = ⋃ 𝑅𝑜

∀𝑜∈𝑆

 (7.3)

7.3.5 Extending Initial State and Action Details by Semantic

Realisation and Refreshment Module

When the task planner cannot generate a plan for a given task, it is necessary to use

certain techniques to recover from this unexpected situation. In this section, a

procedure is presented for extending the initial state of the robot world with concepts

which are equivalent or similar to original ones. This procedure is used to enrich the

world state with new information. The procedure does not stop at this stage, but goes

on to extend the action details, which are preconditions, and effect components.

In a pre-planning step, the purpose of the SRRM module is to first realise the

semantics of the concepts in the initial states and action details, and then refresh these

areas with objects derived from hierarchical relationships and similarity

measurements. For the implementation of semantic realisation and refreshment, the

produced planning domain and problem are enhanced with semantic information, thus

maintaining planner independence in this procedure.

Semantic refreshment is based on the following assumptions:

192

1. The initial state (IS) is extended with semantically equivalent or similar concepts to

the concept in the query; thereby an Extended Initial State (EIS) will be generated.

2. The goal state of the problem remains the same because it depends on initial user

request.

3. The action details are enhanced with concepts that are semantically equivalent or

similar to the concept in the query of the generated plan, such that the enhancement

covers action preconditions and effects. In this manner an Extended Action Set (EAS)

is generated.

Algorithm 7.1 summarises all the steps within the Semantic Realisation and

Refreshment procedure.

Algorithm 7.1

Procedure: making Semantic Realisation and Refreshment when no exact plan can be

generated

Input: I: Initial State,

 P={ Ai,…, An}: plan,

 O={o1,…, ok}: set of ontology objects,

 T: Threshold

Output: EI: extended initial state,

 EA: Extended action details

for i=1 to n

for j = 1 to k

if similar (Ai.hasInput(hasPrecondition),oj) ≥ T

I = I ∪ oj

preco(Ai) = preco(Ai) ∪ oj

end if

if similar (Ai.hasOutput(hasEffect),oj) ≥ T

effect (Ai) = effect(Ai) ∪ oj

end if

end for

end for

EI=I;

EA= Ai

End

193

To better understand the Semantic Realisation and Refreshment procedure, suppose

that the initial state I and goals G of the problem are:

I = {MilkBox, GlassofWater, Kitchen, Fridge}

G = {BottleofWater}

and suppose that there are the following two available operators:

OpenFridge:

prec ={ inFrontOf(Robot,Fridge), at(Robot,Kitchen)}

effect ={OpenedFridge(Fridge)}

TakeGlassofWaterFromFridge:

prec ={ inFrontOf (Robot, Fridge), OpenedFridge(Fridge), at(Robot,kitchen)}

effect ={ Holding(GlassofWater) }

The SRRM for a given combination of hierarchical relationships H and a threshold T

detects the following concepts:

Fridge similar to Refrigerator,

GlassofWater like BottleofWater,

In the pre-planning phase of the planning system, the problem definition is changed as

follows:

EIS = { MilkBox, GlassofWater, Kitchen, Fridge, Refrigerator }

EGS = { BottleofWater or GlassofWater }

EAS: OpenFridge:

prec ={ Refrigerator or Fridge, Kitchen }

effect ={ OpenedFridge or OpenedRefrigerator }

TakeGlassofWaterFromFridge:

prec ={ OpenedFridge or OpenedRefrigerator, kitchen }

effect ={ BottleofWater or GlassofWater }

At this point, the planning system will double all operators in size after the extended

set of EAS and resulting in the following:

OpenFridge:

prec ={ inFrontOf(Robot,Fridge), at(Robot,Kitchen)}

effect ={ OpenedFridge(Fridge) }

OpenFridge _EX:

prec ={ inFrontOf(Robot,Refrigerator), at(Robot,Kitchen)}

effect ={ OpenedRefrigerator(Refrigerator) }

194

TakeGlassofWaterFromFridge:

prec ={ inFrontOf (Robot, Fridge), OpenedFridge(Fridge), at(Robot,kitchen)}

effect ={ GlassofWater }

TakeGlassofWaterFromFridge _EX:

prec={inFrontOf(Robot,Refrigerator),OpenedFridge(Refrigerator),

at(Robot,kitchen)}

effect ={BottleofWater }

The new problem <EIS, EAS, EGS> then formalised in PDDL and prompted the

planning system to obtain the solution.

7.3.6 Plan Accuracy Assessment

In many cases, the planning system produces more than one plan because of the

semantic refreshment and the use of multiple operators in this system. In order to

present a good plan, the planning system should be embedded with statistical and

quality measures to apply to each plan it generates. Such measures include the number

of operations and levels in one plan, as well as quality measures based on distance,

which reflect the precision of the plan.

If there is no semantic refreshment during the planning time, then each plan quality is

considered approximately equal one. Therefore, these plans are preferable and

reasonable as they have fewer levels and the total time of their execution is small.

However, when semantic refreshment is involved, it is important to measure the

quality of the plans based on distance of each similar concepts from the original

concept. Precise plans are preferred even if they include more actions and levels. To

calculate the quality based on a distance, every object that appears in the state space

195

must be labeled with the semantic distance from the original object and the selected

similarity measure.

Additionally, the type of hierarchical relationship that exists between each selected

object and the original object is considered, i.e. superclass, subclass or sibling. The

Wup measure is calculated as a linear combination of the distances of all the objects

that appear in the space.

For a set of N objects, each object class is denoted as ci, and has an associated

semantic distance di (obtained from SRRM), and weight ri (depending on its

hierarchical relationship with the original object). The value of the quality measure is

hence calculated according to Equation 7.4.

In the case of no exact match between the action preconditions and the world states,

the planning system will depend on extended an initial state (EIS) and extended an

action set (EAS) to generate alternative plans for the task at hand. This solution works

better for cases where the quality of the new plan is high, because the alternative plans

have a different quality. It is important for the robot to use the plan with the highest

quality.

For the computation of the distance quality metric, each object in the plan is annotated

with its semantic distance from the original object and the selected similarity metric.

Each object is also annotated with the type of hierarchical relationship it has with the

original object (superclass, subclass or sibling). When an exact plan can be generated,

the quality of this plan is 1. If an exact plan is not possible, the quality of the plan is

calculated using Wup similarity (Wu and Palmer 1994) by:

196

7. 4

Plan Quality = ∑ 𝑟𝑖 ∗ 𝑑𝑖

𝑁

𝑖=1

 (7.4)

where ri is hierarchical relationship, di is the semantic distance from the original

concept, and N is the number of concepts in the plan.

The upwards cotopic distance is calculated as the product of the distances of all the

concepts that appear in the foreground, excluding concepts that are equivalent to the

original. As before, for a total of N concepts, each concept ci is marked with a

semantic distance di, and a weight wi. The value of the quality measure is then

calculated as:

7. 5

∏ 𝑤𝑗𝑑𝑖 , 𝑑𝑗 ≠ 0

𝑁

𝑗=0

 (7.5)

7.4 Experiments

In this section, two main testing environments are used to validate the methods

presented earlier in the chapter. The first environment is based on analysis of the

generated plans in main scenarios of planning under deterministic conditions with re-

planning.

The second testing environment method is to analyse the performance of the planning

system by calculating the planning time under deterministic conditions with re-

planning. Then this performance time will be compared with the planning under

deterministic, probabilistic and incomplete information conditions. In both testing

environments, navigation and manipulation actions are considered.

197

7.4.1 Environment Setup for Plan analysis

In this environment, the experiments were conducted according to the programming

languages and software available to model the robot environment. The SAMs and

semantic knowledge base were built using Protégé
4
. The knowledge base is integrated

with a Pellet inference system (Sirin et al. 2007) which is used for reasoning purposes.

The task planner was implemented using the Metric-FF (Hoffmann and Nebel 2001)

and LPG-td (Gerevini et al. 2004) planners. The algorithm was applied using the Java

programming language which is interfaced with Pellet, OWL, and the planners

through API. The ontology in the knowledge base was coded by hand, whereas the

planning domain and problem were created automatically by Algorithm 4.1 in chapter

4.

In chapter 4 (Figure 4.1), showed the robot environment which is used to test the

benefits of employing a semantic action model along with a knowledge base to

support the robot task planner. This environment is divided into eight rooms, namely

the Kitchen, Office, BedRoom, BathRoom, LivingRoom, Library, DiningRoom and

UtilityRoom. Each room is divided into places, which are represented as small

squares, to represent the possible locations that can be used by the robot to navigate

around its current room or to go out toward other rooms. This environment also

contains some objects related to each room, such as a microwave, table, TV, etc. The

ontology representation of this environment was shown in Figure 4.2. The following

conventions are used in these scenarios: r denotes robot; pi denotes position i.

4
 http://protege.stanford.edu

http://protege.stanford.edu/

198

7.4.1.1 Knowledge-Based Deterministic Planning and Re-Planning

The aim of this section is to demonstrate the application of the suggested framework

and approach presented in Section 7.3. First, the quality of the plan generated by the

planning system is evaluated. Then the applicability of the proposed approach to

generate alternative plans with missing information related to action parameters is also

tested.

Table 7.1 shows the details of several robot actions. The following subsections will

explain the scenarios that are used to verify that the task planner can be supported by

SAMs and the knowledge base to recover from a missing information scenario.

The environment setting for this scenario follows the same steps as Section 4.6.1 in

chapter 4, except that Algorithm 7.1 is used in this scenario to extend the robot initial

state and action details.

1. Bringing Glass of Water Scenario

This scenario concerns a user request for the robot to bring him/her a glass of water

to the DininingRoom at P14. The goal state of this scenario is therefore:

at(robot,P14) and on(robot_tray, glass_water). If all the objects which are related

to this task are available, then the robot planner will generate an exact plan (with

quality = 1) to accomplish this scenario. However, if the robot moves to the kitchen

and cannot find a glass of water, what will it do? There are two possible outcomes.

The first outcome is that the robot will return a fail, and state that there is no glass

of water in the kitchen.

199

Table 7.1: Robot Actions

No.

Action

Name

Inputs Preconditions Outputs Effects

1 Move robot,from,to

at(Robot,from),

isConnected(from,to)

at(robot,to) not(at(robot,from))

2 Take robot,object,place

isIn(object,place),

at(robot,place),

empty(robot-tray)

carry(robot,object)

not(isIn(object,place),

not(empty(robot-

tray))

3 Drop robot,object,place

is-droppingposition(

place),

at(robot,place),

carry(robot, object)

dropped(object)

is-in(object, place),

not(carry(robot,

object),

empty(robot-tray)

The second possible outcome is that the robot planner generates an approximate

plan according to an accuracy threshold defined by the user.

As explained in Section 7.3, approximate plans are generated by depending on

equivalent or similar objects to the ones in the action parameters (in this task the

object is a glass of water). Table 7.2 shows the degree of similarities between objects

stored in the knowledge base where the calculation of these similarities is based on

Figure 7.2. In this case the most similar object to a glass of water is a bottle. Because

of the structural hierarchy and inheritance features of the ontology, water inherits

liquid features and can then be put in a bottle. The generated plan to solve this task is

thus:

take(r, bottleofwater, p31),move (r,p31,p32),move (r,p32,p34),move (r,p34,p21),

200

move (r, p21, p8),move (r, p8, p10),move (r, p10, p13),move (r, p13, p14)

drop (r, bottleofwater, table).

The quality of this plan according to Equation 7.4 (Wu and Palmer 1994) is (66%).

Table 7.2: Percentage (%) of

Object Similarity.

Objects Bottle Bowl Spoon

Glass 66 33 33

Plate 33 66 33

Figure 7.2: Robots can Find Objects Based on their Properties

201

7.4.1.2 Time Performance of the Planning System under Extended

Conditions

The experimental results for deterministic planning times are presented in Table 7.3.

These results were obtained from experiments on a 2.50 GHz CORE i5 Intel computer

processor at with 8GB RAM. These results’ times in milliseconds for pre-planning,

transformation of SAMs descriptions in PDDL operators and for the planning

operations with LPG-td and Metric-FF. They are acquired after a number of different

executions of the system then the average of these results were obtained.

The measurements were applied for domains of different size, i.e. 7, 10 and 13 SAMs.

Some of the tests were implemented without semantic refreshment and others were

performed with semantic refreshment by using the Wup measurement or the upwards

cotopic technique. Table 7.3 shows the ability of the planning system to scale up and

efficiently maintain 7, 10 and 13 SAMs.

Pre-planning times did not show significant variation. This is because they depend

only on the number and structure of the planning related ontologies, and not on the

number of SAMs. Pre-planning hence does not need to be performed again if the

domain ontologies are not seriously changed.

The scalability of the system is important because the total transformation time

increases as the number of SAMs is increased. However, the estimation of the average

transformation time per SAM reveals it to be approximately 2.32 milliseconds for both

the exact and the Wup distance metric cases. In the case of the upward cotopic metric

distance, the increase in the average transformation time appears to increase as the

202

number of SAMs is increased. This overhead, which is introduced during the planning

system, goes deep in the ontology searching for similar concepts.

By comparing the planning time of Metric-ff and LPG-td, it was found that the

planning time in Metric-ff increases as the number of actions increases. However, it is

still reasonably fast, as it uses graph structures to exclude unrelated operators early in

the planning process. Planning time is not the most important feature affecting system

performance, as the planning system is not restricted to a specific planner. Semantic

refreshment does not force additional overheads to planning, as it does not increase the

number of operators.

Table 7.3: Preplanning Time Measurements in Milliseconds

for Experiments in the Planning System.

Number of SAMs 7 10 13

Preplaning Time 14512 15264 15344

Total

Transformation

Time

Exact 387 698 973

Wup 395 740 995

Cotopic 489 871 1200

Transformation

Time per SAM

Exact 55 70 75

Wup 56 74 77

Cotopic 70 87 92

Planning Time

(Metric-FF)

Exact 40 26 28

Wup 30 32 33

Cotopic 30 28 26

Planning Time

(LPG-td)

Exact 26 30 24

Wup 23 29 23

Cotopic 20 27 21

Plan Quality

Exact 1 1 1

Wup 0.963 0.878 0.78

Cotopic 0.74 0.65 0.64

203

7.4.2 Comparing Time Performance of Planning under Extended

Conditions with other Planning Methods

The experimental results in terms of time taken for planning with deterministic,

probabilistic and information gathering situations are presented in Table 7.4. These

results were obtained from experiments on a 2.50 GHz CORE i5 Intel computer

processor with 8GB RAM. The results relate to durations in units of milliseconds for

the processes of (i) pre-planning, (ii) transformation of SAMs descriptions in PDDL

operators and planning operations with LPG-td and Metric-FF, and acquired after a

number of different executions of the system.

Measurements were taken for domains of different sizes, including 7, 10 and 13 SAMs

descriptions. Some experiments were conducted without semantic relaxation, i.e. the

demand for accurate identification of the inputs and outputs of individual SAMs.

These are shown in the table columns labelled as “Fix” or “Pure”. Semantic

refreshment is allowed to find approximations of plans, and is labelled as “Sim”, while

information gathering under probabilistic conditions is labelled “Prob.”. The labels

“Det.Plan”, “Prob.Plan” and “IG.Plan” refer to deterministic, probabilistic and

information gathering planning respectively.

It can be seen from Table 7.4 that planning with information gathering takes more

time than the other types of planning. This is due to the fact that planning with IG

requires the planner to generate a plan more than once. First the normal plan is

generated, and then additional plans are generated to gather new information.

204

7.5 Discussion

The use of semantic knowledge in task planning aids the generation of alternative

plans in unexpected situation which might face the robot operation. This situation

could be missing some objects which are important in grounding the robot action

parameters, i.e., replacing the parameters in the action model with possible values

from the semantic knowledge domain. This chapter is tackling this problem by using

techniques for estimating the similarity between the original object, which is necessary

to ground the operator, and the similar objects which are obtained from the robot

environment ontology.

Number of

SAMs

Fix Sim Pure Prob. Fix Sim Pure Prob. Fix Sim Pure Prob.

Average

Preplaning

Time

14612 16300 18945 17523 20845 15274 17840 19542 17942 22750 15542 18235 21861 18687 25231

Average

Number of

Actions per

Plan

10 11 13 11 12 10 13 13 13 14 10 14 14 13 15

Average Total

Transformation

Time

398 425 497 410 500 411 501 583 456 530 500 598 680 573 693

Average

Planning Time

(Metric-FF)

25 28 28 25 28 25 30 31 26 32 26 31 3 29 40

Average

Planning Time

(LGP-td)

20 22 25 21 26 21 23 26 21 28 23 27 30 24 35

Average

Number of

Plans

1 2 3 2 3 1 2 3 2 3 1 3 3 3 3

Average Plan

Quality
1 0.93 0.738 0.878 0.75 1 0.93 0.728 0.821 0.74 1 0.94 0.681 0.82 0.65

System

7

IG. PlanDet. Plan Det. Plan IG. Plan Det. Plan

10 13

IG. PlanProb.

Plan

Prob.

Plan

Prob.

Plan

Table 7.4: Measurements of Time in Milliseconds for Experiments Conducted in the

Planning System for Three Different Situations: Deterministic, Probabilistic and

Information Gathering.

205

This chapter explains the construction of Semantic Realisation and Refreshment

Module (SRRM), which implements the similarity techniques and has the

responsibility to extend the robot world state and action models with similar objects. A

direct consequence of using SRRM in creating alternative plans is that the process of

planning to achieve tasks becomes less computationally demanding. This is due to the

task planner not in charge of handling the unexpected situation, but this function is left

in a separated unit, i.e. SRRM, to be used when dealing with unexpected cases.

The SRRM is also responsible to estimate the quality of the alternative plans to the

original one. The quality of the plan is estimated by depending on the type of the

similarity techniques used and the type of the hierarchical relationships between the

original object and the new similar objects.

The main contributions of this chapter are:

 The planning system which was proposed in chapter 4 has been developed by

adding new module which is called Semantic Realisation and Refreshment Module

(SRRM). This module has the ability to calculate the similar objects to the original

object in the action by using similarity methods and then extend the robot actions

and world states with these similar objects.

 An algorithm, which is based on DL reasoning ability, has been developed. This

algorithm has been invoked when no plan can be generated (no exact matching

between action inputs in the planning domain and information available in robot

world states). Therefore, this algorithm generates an extension to the initial state

and the action details by appending semantically equivalent or similar predicates

onto both of them.

206

 The quality of the alternative plans is then tested in order to assess which plan is the

best one to select. Assessment methods are used to measure the accuracy of each

plan.

7.6 Summary

This chapter tackle the problem of lack of information in the robot world states in the

approach which is different from the approach which was presented in chapter 6. So

this chapter started by presenting the advantage of using the techniques of measuring

the similarity between the original object and other objects. Then a motivation

example was presented to explain the necessity of the proposed method in this chapter.

So, the robot planning system can deal with and recover from unexpected situations in

which the initial states suffer from missing information. Missing of information causes

the task planner fails in generating the suitable plan to solve the robot task. The

solution can be obtained by creating alternative plans to the original one by extending

the robot initial state and action set with new concepts by using objects that are

semantically equivalent or similar to the object in the query. The quality of these new

plans is tested in order to select the most suitable plan for the current task.

207

Chapter 8

Conclusions, Contributions and Future Work

8.1 Conclusions

This thesis has addressed the topic of semantic based symbolic plan generation by

autonomous mobile robots acting in domestic environments. The main concentration

has been on the ability of a mobile robot’s planning system to generate plans and to

detect unexpected situations at planning time. The thesis has also discussed the case of

recovering from unexpected situations, with a particular focus on uncertainty and lack

of information which are required for correct generation of robot task plans.

The successful generation of robot action plans enables the required feature of

autonomy to take place. This is a fundamental requirement of mobile robots. Existing

symbolic plan generation approaches depend mainly on the results of checking the

explicit effects of given actions. Effects encoded in the action model are compared

against the evidence database (perception information) to determine whether they are

verified or not. These approaches require that the action effects should be clearly

noticeable by the robot and this is not always the case in the real world. To deal with

this issue, this thesis has proposed to increase the reliability of the process of plan

generation by using more developed forms of knowledge representation and reasoning

techniques.

A Semantic Knowledge Base (SKB) has been proposed as a source of knowledge to

derive implicit expectations about the effects of actions, and to check these

expectations using the available information in the evidence database. A new model of

208

the high-level robot actions has also been developed. This model represents the robot

actions as ontology that describes the details of the action, i.e. its parameters,

preconditions and effects, by applying semantic knowledge. This model is called a

Semantic Action Model (SAM). SKB and SAM have been integrated in order to

provide the robot with the ability to be more aware of the semantics of the places and

objects in its environment. While a few studies have used semantic knowledge in

general robotics applications (Ekvall et al., 2007; Galindo et al., 2005; Bouguerra et

al., 2007), this study is the first to use SKB and SAM for the purpose of semantic plan

generation.

A general algorithm has been developed for planning systems which are based on

robot knowledge ontology in order to control the process of generating a robot plan for

a given task. The knowledge ontology is represented by description logics that have

the ability to reason about semantic details of objects and places. This provides the

planning system with the ability to express general knowledge about the concepts of

places and objects in a precise representation. Moreover, the ontology allows the

derivation of implicit knowledge from the explicit knowledge. This enables large

information sets about the objects’ details to be stored as implicit information. In this

case the semantic knowledge base will contain less explicit details about objects and

places in the robot environment, leaving the implicit details to be inferred by the

planning system using techniques of reasoning.

SKB is also used in the case of uncertainty. Uncertainty is a common feature in

robotics applications, and therefore a probabilistic planning system to deal with

uncertainty in action effects and world states has been developed. The ability to

reason about uncertainty endows the planning system with the ability to infer whether

209

a particular action effect is more likely to be selected given the available evidence

information.

The probabilistic planning system considered uncertainty through creating a model

that expresses the properties and rules of the semantic knowledge base in a

probabilistic way. This model is called a Markov Logic Networks (MLN) and contains

the predicates (properties in the SKB), and formulas (rules in the SKB). This model is

trained by using the data in the evidence base, allowing it to become a learned model

which is ready to answer most of the queries generated by the planning system. The

MLN model permits a statement of the probability of finding or not finding an object

in the robot’s environment. The model also accounts for classifying places and objects

which appear in the action details.

The experimental results have shown that semantic knowledge can contribute to

support plan generation techniques, especially when uncertainty in the robot world

states and action effects are explicitly taken into account. The main objective of this

work was to support the robot task planning to generate a semantic plan by evaluating

the explicit and implicit effects of plan actions. These effects could consist of the new

position of the robot (in the navigation scenario), or the type of object (in the

manipulation scenario).

The other objective of this thesis is to enable robots to deal with unexpected situations,

so that a robot could continue functioning and complete its task successfully. Coping

with unexpected situations can endow the robot planning system with the automation

to keep running and to generate alternative plans to accomplish its tasks.

210

In this thesis, two types of unexpected situations are considered. The first is caused by

a lack of information, i.e. incomplete information available in the robot world state.

Chapter 6 presented a solution to this problem by using the information gathering

method to fill in the blanks where information is lacking. The new information

obtained from information gathering techniques is used in two ways. The first is to

extend the robot work space with new information in order to support the robot task

planning in generating the plan for its current task. The second is used to evaluate the

implicit expectations whose truth values cannot be validated by depending on the

available world state. In this work a new type of action is developed which has the

ability to access the knowledge bases and return new information to robot world space

suffering from a lack of information. These actions are called Semantic Action Model

for Information Gathering or SAM_IG for short.

The second type of unexpected situation is caused by missing information, e.g. the

target object is missing from the robot environment. The planning system dealt with

this issue by depending on the concept of similarity between the target object and

other objects in the knowledge base. The similarity techniques are used to enrich the

robot world state with similar or equivalent objects and to extend the action details

(preconditions and effects) with these similar objects. Two types of similarity

techniques are used: cotopic similarity and Wup similarity (which are discussed in

Chapter 7). The situation of missing information results in alternative plans being

generated, each with different qualities. In this case, the quality of each plan is

calculated in order to select the most suitable one.

The proposed information gathering method includes steps for modelling the occurring

incomplete information as a planning problem. It also includes steps to generate the

211

planning domain from the SAM_IGs. The planner is then invoked to generate a course

of actions which are responsible for collecting the necessary information to solve the

lack of information problem. The use of planning to collect new information from the

knowledge bases was motivated by its ability to handle complex situations involving a

lack of information in an automatic and flexible way.

Although the experiment and results were obtained from simulation, there is no reason

that prevents it being applied to a real robot. The work in this thesis is conducted at

high levels of robot planning (symbolic level). Study on real robots needs working on

low level (actuation and signals).

The planning process is a computationally expensive system, specifically if the

planner has to reason about recovering from unexpected and uncertain cases

observable in the environment. This study therefore frees the planning from that

overhead, and lets it to do the main job, which is to find the plan. The computational

demands of reasoning, extending the robot work space with new information and

information gathering methods are allocated to separate units such as SRRM, MLN

and IG.

8.2 Contributions

The main contributions of the work reported in this thesis are in the area of plan

generation in mobile robotics. These contributions are:

 The concept of using the Semantic Knowledge Base (SKB) to support the

robot task planner under deterministic conditions is defined. A new model of

212

high-level robot actions has been defined, and this model represents the details

of robot action as ontology. This model is thus known as the Semantic Action

Model (SAM). An algorithm that integrates SKB and SAMs has also been

developed. This algorithm creates the planning domain in the Planning Domain

Definition Language (PDDL) style. This is used as input to the planner to

generate the plan for robot tasks. Then, a general purpose planning algorithm

has also been defined, which can support planning under deterministic

conditions, and is based on using ontology to represent the semantic

knowledge base. Although the use of a semantic knowledge base is becoming

more commonplace in some mobile robotic areas (such as mapping and human

robot interaction), it is virtually non-existent in details in plan generation. This

work is the first to propose the use of SKB and SAM to generate semantic

robot plans, and that area is therefore considered to be a major contribution of

this thesis. Chapter 4 has presented the aforementioned contribution. It

describes (a) SKB, (b) SAMs, (c) an algorithm for generating PDDL from SKB

and SAM, and (e) general purpose task planning algorithm.

 A further contribution relates to the development of a probabilistic approach to

deal with uncertainty in semantic knowledge based task planning. Chapter 5

has presented the probabilistic approach and discusses how uncertainties in

action effects and world states are taken into account by the planning process.

This contribution also served to resolve situations of confusion in finding an

object relevant to the successful generation of an action during task planning.

The accuracy related to this type of planning, in average, is (90.10%) in

navigation scenario.

213

 An additional contribution is the study of using the planning system to respond

to unexpected situations which are caused by lack of information. This

contribution is formalised as a general approach that models events of

incomplete knowledge as a planning problem. This result in developing a new

type of action which is known as a Semantic Action Model for Information

Gathering (SAM_IG). These actions have the ability to access the knowledge

base to retrieve the necessary information to support the planning system when

it is faced with incomplete information. The information gathering approach is

also used to gather the necessary information in order to check the implicit

expectations of the generated actions. The correct classification related to this

type of planning in navigation scenario in average is (92.83 %). Chapter 6 has

presented this approach.

 Another contribution is the study of using semantic similarity methods to

support the planning system to recover from situation of missing information

(target) problem. This result in developing Semantic Realisation and

Refreshment Module (SRRM) which has the ability to estimate the similarities

between objects in order to extend the robot world states with new similar

objects to the original object in the action model. Also, the SRRM has been

used to estimate the quality of the alternative plans. The quality of the

alternative plans could be similar to the original plan, in average, by 93%.

Chapter 7 has presented this approach.

214

8.3 Limitations

The semantic plan generation, which is based on the semantic knowledge domain, is

applicable on domains that have expressive semantic information available. This

means that the knowledge base should have information about how its objects are

grouped into classes and how the properties between those classes are structured and

restricted.

The limitation in the semantic based planning system approach is the choosing of the

object within the action that has to check its details constraints, i.e. its implicit

information, against the available evidence data during plan generation. In the

proposed planning system, the process of checking begins with the selection of objects

in the add list of action effects (add(o)).

Then all the objects’ implicit details should be verified. This process is well if the

number of objects available in the positive effect part of the action is low. But if the

number of objects is large then the process may be difficult in terms of computational

time and memory resources. For example, in the deterministic planning system, the

action move(robot,hall,r1) has the effect at(robot,r1), which explains that the robot

should end up in room r1. The object to be checked in this case is r1. This process is

fine for a small number of objects related to r1, but becomes difficult for higher

numbers of objects. This issue hence warrants further investigation in order to find

alternative approaches to dealing with it in the planning system.

215

8.4 Future Work

There were a few cases that required deeper exploration in order to improve the

proposed planning system such that this system be better exploit the semantic domain

knowledge. These cases are described below.

In the probabilistic planning system process, the MLN models are completely

dependent upon the knowledge available within the SKB. This knowledge base also

contains the explicit definitions of the classes and relationships between these classes.

The implicit information of the objects inside the SKB is obtained by using reasoning

techniques, so implicit information, according to the proposed planning system, cannot

be engaged in the created MLN. This issue needs further investigation in order to add

the implicit information into the process of creating an MLN. Another issue in the

MLN model is related to the time required for the learning algorithm to learn the

MLN. It can take varying degrees of time to learn this model. Hence enhancing the

learning time of the MLN should also be considered in future work.

Regarding the proposed planning system that deals with situations which lack some

information, there are two open issues that need to be addressed. The first one is

related to the interaction between the main planning task and the information gathering

task. In the current implementation, information gathering tasks are not allowed to

modify the world state of the robot that was reached by the planner. This is a severely

limiting condition that might hinder the information gathering plan in completing its

task. For this reason, further investigation is needed to find an approach which

coordinates the generation of both plans so that the assigned task is achieved

successfully.

216

The second issue is that the situations involving a lack of information might need to

validate a large number of implicit expectations which have ambiguous values. This

issue complicates the information gathering approach. One possible solution to this

issue would be to identify only a small set of expectations to be checked, then generate

a plan to collect information related to them. This set of expectations should be more

suitable for solving the problem of incomplete information.

Integrating knowledge with the task planner is an interesting pursuit within the field of

Artificial Intelligence and robotics applications. This thesis has attempted the

challenge of exploring and developing a high-performance robot task planner that

integrates deterministic and uncertain operations within the planning system.

However, much remains to be achieved before AI systems can reach human levels of

intelligence. A powerful knowledge representation system can lead to more facilities

to deal with unexpected situations that might face a robot in the real world. The

knowledge ontology that is stored as descriptive logics in OWL format provides

flexibility in the planning system when generating its plan. This thesis has also made a

concerted effort to build powerful algorithms for dealing with tasks that might be

deterministic or suffered from missing, incomplete or uncertain information.

217

Appendix

Appendix A

A.1 Semantic Knowledge Base

A.1.1 Navigation Domain

Properties

 isContained :domain Room :range Object

isLocatedAt :domain Object :range Room

isInside :domain Object :range Container

hasObject :domain Place :range Object

Atomic Classes

Room Oven Tv-Set WashingMachine

Object Bed Sink Pc

Place Sofa Chair Iron

Hall Table Tub DiningTable

Defined Classes

BathRoom

 and (isContained only BathRoomObject) and (isContained max 0 (BedRoomObject or

DiningRoomObject or KitchenObject or LibraryObject or LivingRoomObject or

OfficeObject or UtilityRoomObject))

218

Kitchen

and (isContained only KitchenObject) and (isContained max 0 (BathRoomObject or

BedRoomObject or DiningRoomObject or LibraryObject or LivingRoomObject

 or OfficeObject or UtilityRoomObject))

LivingRoom

 and (isContained only LivingRoomObject) and (isContained max 0 (BathRoomObject

 or BedRoomObject or DiningRoomObject or KitchenObject or LibraryObject

 or OfficeObject or UtilityRoomObject))

DiningRoomObject

 and (isLocatedAt only DiningRoom) and (isLocatedAt max 0 (BathRoom or BedRoom

 or Kitchen or Library or LivingRoom or Office or UtilityRoom))

LibraryObject

 and (isLocatedAt only Library) and (isLocatedAt max 0 (BathRoom or BedRoom or

DiningRoom or Kitchen or LivingRoom or Office or UtilityRoom))

A.1.2 Manipulation Domain

Properties

hasHandle :domain Cup :range Handle

hasCover :domain Container :range Cover

219

hasCap :domain Bottle :range Cap

Atomic Classes

Handle

Cover

Cap

Container

Defined Classes

Cup

and (isA Container) and (hasHandle only Handle) and (hasCover max 0 Cover) and

(hasCap max 0 Cap)

GlassofWater

and (isA Container) and (hasHandle max 0 Handle) and (hasCover max 0 Cover) and

(hasCap max 0 Cap)

Bottle

and (isA Container) and (hasCap max 1 Cap) and (hasHandle max 0 Handle) and

(hasCover max 0 Cover)

Bowl

and (isA Container) and (hasCap max 0 Cap) and (hasHandle max 0 Handle) and

(hasCover max 0 Cover)

A.2 Evidence Base

220

 Figure A.1: Evidence Base

221

A.3 Robot Planning Domain

(define (domain experiment)

(:requirements :typing :fluents)

(:types location object robot tray)

(:constants robot - object)

(:predicates

(at ?robot – robot ?loc - location)

(free ?obj - object)

(on ?obj1 - object ?obj2 - object)

(in ?obj1 - object ?obj2 - object)

(free-robot - robot)

(taken ?obj - object)

(closed ?obj - object)

(opened ?obj - object)

(can-move ?robot - robot ?x - location ?y - location)

(charge-station ?x - location)

(isconnected ?x - location ?y - location)

(empty?robot- tray)

(carry ?robot-robot ?obj-object)

(is-ropping-position ?loc-location)

(dropped ?obj-object)

222

(is-in ?obj - object ?loc - location)

)

(:functions

(time-to-move ?l1 ?l2 - location)

 (time)

)

(:action move

:parameters

 (?robot - robot ?loc-from - location ?loc-to - location

)

:precondition

(and (at ?robot - robot ?loc-from) (can-move ? robot - robot ?loc-from ?loc-to)

(isconnected ?loc-from ?loc-to) (isconnected ?loc-to ?loc-from)

)

:effect

(and (not (at robot - robot ?loc-from)) (at ?robot-robt ?loc-to)

(increase (time) (time-to-move ?loc-from ?loc-to))

)

)

 (:action takeout

223

:parameters

(?obj - object ?obj2 - object ?loc - object

)

:precondition

(and (at robot - robot ?loc - location) (at ?obj2 - object ?loc - location) (in ?obj -

object ?obj2 - object) (opened ?obj2 - object) (free-robot - robot)

)

:effect

(and (not (free-robot - robot)) (not (at ?obj - object ?loc - location)) (taken ?obj -

object) (not (in ?obj - object ?obj2 - object)))

)

(:action take

:parameters

(?robot – robot ?obj - object ?loc - location

)

:precondition

(and (at robot – robot ?loc - location) (is-in ?obj - object ?loc - location)

(free ?obj - object) (free-robot - robot) (empty ?tray-tray)

)

:effect

(and (not (free ?obj - object)) (not (free-robot - robot)) (not (at ?obj - object ?loc -

location)) (carry ?robot-robot obj-object) (taken ?obj - object) (not) (is-in ?obj - object

?loc - location)) (not(empty ?tray-tray)))

224

)

(:action remove

:parameters

(

?obj - object ?obj2 - object ?loc - location

)

:precondition

(and (at ? robot - robot ?loc - location)

(at ?obj - object ?loc - location)

(on ?obj1 - object ?obj2 - object)

(free ?obj - object)

(free-robot - robot)

)

:effect

(and (not (free ?obj - object)) (not (free-robot - robot)) (not (at ?obj - object ?loc -

location)) (taken ?obj - object))

)

(:action give

:parameters

(?obj - object ?loc - location

)

225

:precondition

(and (at ? robot - robot ?loc - location) (taken ?obj - object)

)

:effect

(and (not (taken ?obj - object)) (at ?obj - object ?loc - location) (free-robot ? robot -

robot))

)

(:action putdown

:parameters

(?obj1 - object ?obj2 - object ?loc - location

)

:precondition

(and (at ? robot - robot ?loc - location) (at ?obj1?loc - location) (at ?obj2 - object ?loc -

location) (on ?obj1- object ?obj2 - object) (free ?obj1 - object))

:effect

(and (not (on ?obj1 - object ?obj2 - object)) (free ?obj - object))

)

(:action drop

:parameters

?robot-robot ?object-object ?place-location

:precondition

226

(is-droppingposition ?place-location) (at robot-robot ?place-location) (carry ?robot-

robot ?object-object)

:effect

(dropped ?object-object) (is-in ?object-object ?place-location) (not(carry ?robot-robot

?object-object) (empty ?robot-tray-tray)

)

)

227

References

Al-Moadhen, A., Packianather, M., Setchi, R., and Qiu, R. 2014. Automation in

Handling Uncertainty in Semantic-knowledge based Robotic Task-planning by Using

Markov Logic Networks. Procedia Computer Science 35, pp. 1023–1032.

Al-Moadhen, A., Qiu, R., Packianather, M., Ji, Z., and Setchi, R. 2013. Integrating

Robot Task Planner with Common-sense Knowledge Base to Improve the Efficiency

of Planning. Procedia Computer Science 22, pp. 211–220.

American Psychological Association. (2005). Concise Rules of APA Style.

Washington, DC: APA Publications.

Anderson, M.L. 2003. Embodied Cognition: A field guide. Artificial Intelligence

149(1), pp. 91–130.

Baader, F., Horrocks, I. and Sattler, U. 2008. Description Logics. In: Harmelen, F. van

et al. eds. Handbook of Knowledge Representation. 1st ed. Elsevier, pp. 135–179.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. and Patel-Schneider, P.F.

2010. The Description Logic Handbook: Theory, Implementation and Applications.

2nd ed. Cambridge University Press.

Bacchus, F. 2001. AIPS 2000 Planning Competition. AI Magazine 22(3), p. 47.

Bechhofer, S. Harmelen, F.V., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-

Schneider, P.F., and Lynn, Andrea S. 2004. OWL Web Ontology Language Reference

[Online] Available at: http://www.w3.org/TR/owl-ref/ [Accessed: 15 December 2013].

Beetz, M. Stulp F., Esden-Tempski, P., Fedrizzi, A., Klank, U., Kresse, I., Maldonado,

A. and Ruiz, F. 2009. Generality and legibility in mobile manipulation. Autonomous

Robots 28(1), pp. 21–44.

Berger, J.O. 1985. Statistical Decision Theory and Bayesian Analysis. 2nd ed. New

York: Springer-Verlag.

Berners-Lee, T., Hendler, J., and Lassila, O. 2001. The Semantic Web. Scientific

American 284(5), pp. 34–43.

Bickhard, M.H. and Terveen, L. 1995. Foundational issues in artificial intelligence

and cognitive science. Elsevier Science.

Blodow, N., Goron, L. C., Marton, Z., Pangercic, D., Ruhr, T., Tenorth, M., and Beetz,

M. 2011. Autonomous semantic mapping for robots performing everyday

manipulation tasks in kitchen environments. In: 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, pp. 4263–4270.

228

Blum, A.L. and Furst, M.L. 1997. Fast planning through planning graph analysis.

Artificial Intelligence 90(1-2), pp. 281–300.

Bohren, J., Rusu, R. B., Jones, E. G., Marder-Eppstein, E., Pantofaru, C., Wise, M.,

Mosenlechner, L., Meeussen, W. and Holzer, S. 2011. Towards autonomous robotic

butlers: Lessons learned with the PR2. In: 2011 IEEE International Conference on

Robotics and Automation. IEEE, pp. 5568–5575.

Bonet, B., Loerincs, G., and Geffiner, H. 1997. A robust and fast action selection

mechanism for planning. In: in Proceedings of the 14th International Conference of

the American Association of Artificial Intelligence. Providence, Rhode Island, pp.

714–719.

Bonet, B. and Geffner, H. 1999. Planning as Heuristic Search: New Results. In:

Proceedings of the 5th European Conference on Planning. Durham, UK.

Bouguerra, A. Karlsson, L. and Saffiotti, A. 2007a. Handling uncertainty in semantic-

knowledge based execution monitoring. In: Proceedings of the 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). San Diego, CA,

USA, pp. 437–443.

Bouguerra, A. Karlsson, L. and Saffiotti, A. 2007b. Semantic Knowledge-Based

Execution Monitoring for Mobile Robots. In: Proceedings of IEEE International

Conference on Robotics and Automation. IEEE, pp. 3693–3698.

Bouguerra, A. and Karlsson, L. 2004. Hierarchical Task Planning under Uncertainty.

In: In 3rd Italian Workshop on Planning and Scheduling. Perugia, Italy.

Brooks, R.A. 1990. Elephants don’t play chess. Robotics and Autonomous Systems

6(1-2), pp. 3–15.

Brooks, R.A. 1991. Intelligence without representation. Artificial Intelligence 47(1-3),

pp. 139–159.

Bylander, T. 1994. The Computational Complexity of Propositional STRIPS Planning.

Artificial Intelligence 69, pp. 165–204.

Chan, K.S.M., Bishop, J. and Baresi, L. 2007. Survey and Comparison of Planning

Techniques for Web Services Composition. South Africa.

Chapman, D. 1987. Planning for conjunctive goals. Artificial Intelligence 32(3), pp.

333–377.

Chella, A., Cossentino, M., Pirrone, R. and Ruisi, A. 2002. Modeling ontologies for

robotic environments. In: Proceedings of the 14th international conference on

Software engineering and knowledge engineering - SEKE ’02. New York, New York,

USA: ACM Press, p. 77.

229

Coradeschi, S. and Saffiotti, A. 2003. An introduction to the anchoring problem.

Robotics and Autonomous Systems 43(2-3), pp. 85–96.

Deacon, T.W. 1998. The Symbolic Species: The Co-evolution of Language and the

Brain. W. W. Norton & Company.

Degroot, M. 2004. Optimal Statistical Decisions. Wiley-Blackwell; WCL Edition

edition.

Devyver, P.A. and Kittler, J. 1982. Pattern recognition: A statistical approach.

Prentice-Hall.

Duda, R.O., Hart, P.E., and Stork, D.G. 2000. Pattern Classification. 2nd ed. New

York: Wiley.

Edelkamp, S. and Hoffmann, J. 2004. PDDL 2.2: The Language for the Classical Part

of IPC-4. In: in Proceedings of the International Planning Competition International

Conference on Automated Planning and Scheduling (Whistler 2004). pp. 1–7.

Eich, M. and Goldhoorn, M. 2010. Semantic Labeling: Classification of 3D Entities

Based on Spatial Feature Descriptors. In: IEEE International Conference on Robotics

and Automation (ICRA 2010).

Ekvall, S., Kragic, D. and Jensfelt, P. 2007. Object detection and mapping for service

robot tasks. Robotica 25(2), pp. 175–187.

Erol, K., Hendler, J. and Nau, D.S.,. 1994. HTN Planning: Complexity and

Expressivity. In: In Proceedings of the Twelfth National Conference on Artificial

Intelligence (AAAI-94). pp. 1123–1128.

Fichtner, M., Großmann, A. and Thielscher, M. 2003. Intelligent execution monitoring

in dynamic environments. Fundamenta Informaticae 57(2-4), pp. 371–392.

Fikes, R.E. and Nilsson, N.J. 1971. Strips: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence 2(3-4), pp. 189–208.

Fisher, A. 2015. Reporting t-tests in APA Style [Online] Available at:

www.simplypsychology.org/t-test.html [Accessed: 13 June 2015].

Fox, M. and Long, D. 2003. PDDL2.1: An extension to PDDL for expressing temporal

planning domains. Journal of Artificial Intelligence Research 20, pp. 61–124.

Fujii, T. and Ura, T. 1996. Development of an autonomous underwater robot ?Twin-

Burger? for testing intelligent behaviors in realistic environments. Autonomous Robots

3(2-3), pp. 285–296.

Galindo, C., Fernandez-Madrigal, J.A. and Gonzalez, J. 2004. Improving Efficiency in

Mobile Robot Task Planning Through World Abstraction. IEEE Transactions on

Robotics 20(4), pp. 677–690.

230

Galindo, C., González, J. and Fernández-Madrigal, J.A. 2004. Interactive Task

Planning through Multiple Abstraction: Application to Assistant Robotics. In: In 16th

European Conference on Artificial Intelligece. Valencia, Spain.

Galindo, C., Fernandez-Madrigal, J.A., Gonzalez, J., Saffiotti, A., and Buschka, P.

2007. Life-Long Optimization of the Symbolic Model of Indoor Environments for a

Mobile Robot. IEEE Transactions on Systems, Man and Cybernetics, Part B

(Cybernetics) 37(5), pp. 1290–1304.

Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-Madrigal, J.A., and

Gonzalez, J. 2005. Multi-hierarchical semantic maps for mobile robotics. In: 2005

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp.

2278–2283.

Galindo, C., Fernández-Madrigal, J.A., González, J., and Saffiotti, A. 2008. Robot task

planning using semantic maps. Robotics and Autonomous Systems 56(11), pp. 955–

966.

Galindo, C, Fernandez-Madrigal, J.A., Gonzalez, J., and Saffiotti, A. 2007. Using

Semantic Information for Improving Efficiency of Robot Task Planning. In:

Proceeding of the ICRA-07 Workshop on Semantic Information in Robotics. Rome,

Italy.

Galindo, C. and Saffiotti, A. 2013. Inferring robot goals from violations of semantic

knowledge. Robotics and Autonomous Systems 61(10), pp. 1131–1143.

Gerevini, A., Saetti, A., Serina, I. and Toninelli, P. 2004. LPG-TD: a fully automated

planner for PDDL2.2 domains. In: 14th International Conference on Automated

Planning and Scheduling (ICAPS-04) International Planning Competition abstracts.

Whistler, Canada.

Gerevini, A., Saetti, A., and Serina, I. 2003. Planning Through Stochastic Local

Search and Temporal Action Graphs in LPG. Journal of Artificial Intelligence

Research 20, pp. 239–290.

Gerevini, A. and Long, D. 2005. Plan Constraints and Preferences in PDDL3. Italy.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.

and Wilkins, D. 1998. PDDL -- the Planning Domain Definition Language. New

Haven, CT.

Giunchiglia, F. and Traverso, P. 2000. Planning as Model Checking. In: In the

Proceedings of 5th European Conference on Planning, ECP’99. Durham, UK:

Springer Berlin Heidelberg, pp. 1–20.

Gupta, R. and Kochenderfer, M.J. 2004. Common sense data acquisition for indoor

mobile robots. In: Proceedings - Nineteenth National Conference on Artificial

Intelligence (AAAI-2004): Sixteenth Innovative Applications of Artificial Intelligence

Conference (IAAI-2004). San Jose, CA, pp. 605–610.

231

Haigh, K.Z. and Veloso, M.M. 1997. High-level planning and low-level execution. In:

Proceedings of the first international conference on Autonomous agents -

AGENTS ’97. New York, New York, USA: ACM Press, pp. 363–370.

Hamilton, A.G. 1978. Logic for Mathematicians. Cambridge, UK: Cambridge

University Press.

Hariri, B.B., Abolhassani, H. and Khodaei, A. 2006. A new Structural Similarity

Measure for Ontology Alignment. In: Proceedings of the International Conference on

Semantic Web and Web Services. Las Vegas, USA, pp. 36–42.

Hatzi, O., Vrakas, D., Nikolaidou, M., Bassiliades, N., Anagnostopoulos, D., and

Vlahavas, I. 2012. An Integrated Approach to Automated Semantic Web Service

Composition through Planning. IEEE Transactions on Services Computing 5(3), pp.

319–332.

Hauser, L. 1997. Selmer Bringsjord, What Robots Can and Can’t Be, Studies in

Cognitive Systems. Minds and Machines 7(3), pp. 433–438.

Hoffmann, J. 2000. A Heuristic for Domain Independent Planning and its Use in an

Enforced Hill-Climbing Algorithm. In: 12th International Symposium, ISMIS 2000

Charlotte, NC, USA, October 11–14, Proceedings. Charlotte, USA, pp. 216–227.

Hoffmann, J. and Nebel, B. 2001. The FF Planning System: Fast Plan Generation

Through Heuristic Search. Journal of Artificial Intelligence Research 14(1), pp. 253–

302.

Hois, J., Wünstel, M., Bateman, J. A. and Röfer, T. 2006. Dialog-Based 3D-Image

Recognition Using a Domain Ontology. Spatial Cognition V: Reasoning, Action,

Interaction, International Conference Spatial Cognition 2006, pp. 107–126.

IPC 2004. International Planning Competition 2004 [Online] Available at:

http://ipc.icaps-conference.org/ [Accessed: 10 August 2014].

Jain, D., Waldherr, S. and Beetz, M.. 2009. Bayesian logic networks. Intelligent

Autonomous Systems Group, Technische Universität München, Technical Report.

Jain, D. 2011a. Knowledge engineering with markov logic networks: A review.

Evolving Knowledge in Theory and Applications , page 16.

Jain, D. 2011b. ProbCog Toolbox [Online] Available at:

http://ias.in.tum.de/software/probcog [Accessed: 21 March 2014].

Kautz, H. and Selman, B. 1998. BLACKBOX: A New Approach to the Application of

Theorem Proving to Problem Solving. In: In Proceedings of the AIPS-98 Workshop on

Planning as Combinatorial Search. Pittsburgh, Pennsylvania, pp. 58–60.

Kautz, H. and Selman, B. 1992. Planning as Satisfiability. In: in Proceedings of the

10th European Conference on Artificial Intelligence. Vienna, Austria, pp. 359–363.

232

Kautz, H. and Selman, B. 1996. Pushing the Envelope: Planning, Propositional Logic,

and Stochastic Search. In: In Proceedings of the 13th National Conference on

Artificial Intelligence. Portland, Oregon, pp. 1194–1201.

Kemke, C. and Walker, E. 2006. Planning with Action Abstraction and Plan

Decomposition Hierarchies. In: 2006 IEEE/WIC/ACM International Conference on

Intelligent Agent Technology. IEEE, pp. 447–451.

Knoblock, C.A. and Yang, Q. 1993. A Comparison of the SNLP and TWEAK

Planning Algorithms. In: In Working Notes of the AAAI Spring Symposium Series:

Foundations of Automatic Planning: The Classical Approach and Beyond. pp. 73–77.

Koehler, J., Nebel, B., Hoffmann, J. and Dimopoulos, Y. 1997. Extending planning

graphs to an ADL subset. In: In Proceedings of the 4th European Conference on

Planning. Toulouse, France., pp. 273–285.

Kok, S. and Domingos, P. 2005. Learning the structure of Markov logic networks. In:

Proceedings of 22nd International Conference on Machine Learning. ACM Press, pp.

441–448.

Koller, D. and Friedman, N. 2009. Probabilistic Graphical Models: Principles and

Tecniques. The MIT Press.

Laborie, P. and Ghallab, M. 1995. IxTeT: an integrated approach for plan generation

and scheduling. In: Proceedings 1995 INRIA/IEEE Symposium on Emerging

Technologies and Factory Automation. ETFA’95. IEEE Comput. Soc. Press, pp. 485–

495.

Laskey, K.B. 2008. MEBN: A language for first-order Bayesian knowledge bases.

Artificial Intelligence 172(2-3), pp. 140–178.

Lenat, D.B. 1995. CYC: a large-scale investment in knowledge infrastructure.

Communications of the ACM 38(11), pp. 33–38.

Lim, G.H., Hwang, W., Suh, H.W. W., Choi, J.H. and Park, Y.T. 2007. Ontology-

based multi-layered robot knowledge framework (OMRKF) for robot intelligence. In:

2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,

pp. 429–436.

Liu, H. and Singh, P. 2004. ConceptNet: A Practical Commonsense Reasoning

Toolkit. BT Technology Journal (22), pp. 211–226.

Long, D. and Fox, M. 1999. Efficient Implementation of the Plan Graph in STAN.

Journal of Arti cial Intelligence Research 10, pp. 87–115.

Lukasiewicz, T. 2008. Expressive probabilistic description logics. Artificial

Intelligence 172(6-7), pp. 852–883.

233

Martin, D., Ankolekar, A., Burstein, M., Denker, G., Elenius, D., Hobbs, J., Kagal,

L.,Lassila, O., McDermott, D., McGuinness, D., McIlraith, S., Paolucci, M., Parsia,

B.,Payne, T., Sabou, M., Schlenoff, C., Sirin, E., Solanki, M., Srinivasan, N., Sycara,

K. and Washington, R. 2004. OWL-S 1.1 Release [Online] Available at:

http://www.daml.org/services/owl-s/1.1/ [Accessed: 15 March 2013].

Mcallester, D. and Rosenblitt, D. 1991. Systematic Nonlinear Planning. In: In

Proceedings of the 9th National Conference on Artificial Intelligence (AAAI-91).

Anaheim, California, pp. 634–639.

Mcdermott, D. 1996. A Heuristic Estimator for Means-Ends Analysis in Planning. In:

In Proceedind of International Conference on AI Planning Systems (AIPS-96). pp.

142–149.

McDermott, D. 2002. Estimated-Regression Planning for Interactions with Web

Services. In: In Proceedings of the 6th International Conference on Artificial

Intelligence Planning Systems. AAAI Press.

McDermott, D. 2005. Opt manual [Online] Available at: http://cs-

www.cs.yale.edu/homes/dvm/papers/opt-manual.pdf.

Mcdermott, D. 2000. The 1998 AI Planning Systems Competition. AI Magazine 21,

pp. 35–55.

McDermott, D. 1999. Using regression-match graphs to control search in planning.

Artificial Intelligence 109(1-2), pp. 111–159.

Mitchell, T.M. 1997. Machine Learning. Internatio. New York: McGraw-Hill Higher

Education.

Motik, B., Patel-Schneider, P.F., Parsia, B., Fokoue, A., Haase, P., Hoekstra, R.,

Horrocks, I., Ruttenberg, A., Sattler, U. and Smith, M. 2009. OWL 2 Web Ontology

Language Structural Specification and Functional-Style Syntax (Second Edition)

[Online] Available at: http://www.w3.org/TR/owl2-syntax/ [Accessed: 10 March

2015].

Mozos, O., Jensfelt, P., Zender, H., Kruijff, G. and Burgard, W. 2007. From Labels to

Semantics: An Integrated System for Conceptual Spatial Representations of Indoor

Environments for Mobile Robots. In: Proceedings of the IEEE ICRA Workshop:

Semantic information in robotics. pp. 33–40.

Muscettola, N. 1994. HSTS: Integrating Planning and Scheduling. In: Fox, M. S. and

Zweben, M. eds. Intelligent Scheduling. San Mateo, CA: Morgan Kaufmann, pp. 169–

212.

Muscettola, N., Nayak, P.P., Pell, B. and Williams, B. C. 1998. Remote Agent: to

boldly go where no AI system has gone before. Artificial Intelligence 103(1-2), pp. 5–

47.

234

Newell, A. and Simon, H.A. 1976. Computer science as empirical inquiry: symbols

and search. Communications of the ACM 19(3), pp. 113–126.

Newell, A. and Simon, H.A. 1963. GPS, a program that simulates human thought.

New York: McGraw-Hill.

Nualláin, S.Ó., Mc Kevitt, P. and Aogáin, E. M. 1997. Two Sciences of Mind:

Readings in cognitive science and consciousness. John Benjamins Publishing.

Nüchter, A., Wulf, O., Lingemann, K., Hertzberg, J., Wagner, B. and Hartmut, S.

2006. 3D Mapping with Semantic Knowledge. In: RoboCup 2005: Robot Soccer

World Cup IX. pp. 335–346.

O’Kane, J.M., Tovar, B. and Cheng, P. 2006. Algorithms for planning under

uncertainty in prediction and sensing. In: Series in Control Engineering. Marcel

Dekker.

Ong, S.C.W., Shao, W. P., Hsu, D. and Wee, S. L. 2010. Planning under Uncertainty

for Robotic Tasks with Mixed Observability. The International Journal of Robotics

Research 29(8), pp. 1053–1068.

Papadimitriou, C.H. and Tsitsiklis, J.N. 1987. The Complexity of Markov Decision

Processes. Mathematics of Operations Research 12(3), pp. 441–450.

Penberthy, S.J. and Weld, D.S. 1992. UCPOP: A Sound, Complete, Partial Order

Planner for ADL. In: In Proceedings of the Third International Conference on

Principles of Knowledge Representation and Reasoning (KR’92). pp. 103–114.

Poon, H. and Domingos, P. 2006. Sound and efficient inference with probabilistic and

deterministic dependencies. In: Proceedings of the 21st national conference on

Artificial intelligence (AAAI). AAAI Press, pp. 458–463.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,

Wheeler, R. and Ng A. 2009. ROS: an open-source Robot Operating System. In: ICRA

Workshop on Open Source Software. pp. 1–9.

Reiser, U. , Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs,

T., Parlitz, C., Hagele, M. and Verl, A. 2009. Care-O-bot
®
 3 - creating a product

vision for service robot applications by integrating design and technology. In: 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp.

1992–1998.

Richardson, M. and Domingos, P. 2006. Markov logic networks. Machine Learning

62(1-2), pp. 107–136.

Sacerdott, E.D. 1974. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5(2), pp. 115–135.

235

Saffiotti, A. and Broxvall, M. 2005. PEIS Ecologies: Ambient intelligence meets

autonomous robotics. In: Proceeding of the International Conference on Smart

Objects and Ambient Intelligence (sOc-EUSAI). pp. 275–280.

Shannon, C.E. 2001. A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review 5(1), p. 3.

Singla, P. and Domingos, P. 2005. Discriminative training of Markov logic networks.

In: Proceedings of the 20th national conference on Artificial intelligence (AAAI).

AAAI Press, pp. 868–873.

Sirin, E. , Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. 2007. Pellet: A practical

OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide

Web 5(2), pp. 51–53.

Srinivasa, S.S., Ferguson, D., Helfrich, C. J., Berenson, D., Collet, A., Diankov, R.,

Gallagher, G., Hollinger, G., Kuffner, J. and Weghe, M. V. 2009. HERB: a home

exploring robotic butler. Autonomous Robots 28(1), pp. 5–20.

Takeuchi, I. and Furuhashi, T. 1998. Self-organisation of grounded symbols for

fusions of symbolic processing and parallel distributed processing. In: 1998 IEEE

International Conference on Fuzzy Systems Proceedings. IEEE World Congress on

Computational Intelligence. IEEE, pp. 715–720.

Taniguchi, T. and Sawaragi, T. 2004. Self-organization of inner symbols for chase:

symbol organization and embodiment. In: 2004 IEEE International Conference on

Systems, Man and Cybernetics (IEEE Cat. No.04CH37583). IEEE, pp. 2073–2079.

Tenorth, M., Jain, D. and Beetz, M. 2010. Knowledge Representation for Cognitive

Robots. In Künstliche Intelligenz, Springer 24(3), pp. 233–240.

Tenorth, M., Kunze, L., Jain, D. and Beetz, M. 2010a. KNOWROB-MAP -

knowledge-linked semantic object maps. In: 2010 10th IEEE-RAS International

Conference on Humanoid Robots. IEEE, pp. 430–435.

Tenorth, M., Kunze, L., Jain, D. and Beetz, M. 2010b. KNOWROB-MAP -

knowledge-linked semantic object maps. In: 2010 10th IEEE-RAS International

Conference on Humanoid Robots. IEEE, pp. 430–435.

Tenorth, M. and Beetz, M. 2013a. Exchanging Action-related Information among

Autonomous Robots. In: Intelligent Autonomous Systems 12. Springer, pp. 467–476.

Tenorth, M. and Beetz, M. 2009. KNOWROB — knowledge processing for

autonomous personal robots. In: EEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, pp. 4261–4266.

Tenorth, M. and Beetz, M. 2013b. KnowRob: A knowledge processing infrastructure

for cognition-enabled robots. The International Journal of Robotics Research (IJRR)

32(5), pp. 566–590.

236

Theobalt, C., Bos, J., Chapman, T., Espinosa-Romero, A., Fraser, M., Hayes, G.,

Klein, E., Oka, T. and Reeve R. 2002. Talking to Godot: dialogue with a mobile robot.

In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp.

1338–1343.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., Hahnel,

D., Rosenberg, Ch., Roy, N., Schulte, J. and Schulz, D. 1999. MINERVA: a second-

generation museum tour-guide robot. In: Proceedings 1999 IEEE International

Conference on Robotics and Automation (Cat. No.99CH36288C). IEEE, pp. 1999–

2005.

Veloso, M.V., Carbonell, J., Pérez, A., Borrajo, D. and Blythe, J. 1995. Integrating

Planning and Learning: The PRODIGY Architecture. Journal of Experimental and

Theoretical Artificial Intelligence 7, pp. 81–120.

Vrakas, D. Tsoumakas, G., Bassiliades, N. and Vlahavas, I. 2005. HAPrc: An

Automatically Configurable Planning System. AI Communications 18(1), pp. 41–60.

Vrakas, D, Refanidis, I., Milcent, F. and Vlahavas, I. 1999. On the Parallelization of

Greedy Regression Tables. In: In Proceedings of the 18th Workshop of the UK

Planning and Scheduling Special Interest Group. Manchester, UK, pp. 180–189.

Wei, W., Erenrich, J., Selman, B. 2004. Towards Efficient Sampling: Exploiting

Random Walk Strategies. In: Nineteenth National Conference on Artificial

Intelligence. AAAI Press, pp. 670–676.

Wu, Z. and Palmer, M. 1994. Verbs Semantics and Lexical Selection. In: Proceedings

of the 32nd Annual Meeting on Association for Computational Linguistics.

Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 133–138.

Yang, Q. and Tenenberg, J.D. 1990. ABTWEAK: Abstracting a nonlinear, least

commitment planner. In: In Proceedings of the Eighth National Conference on

Artificial Intelligence. pp. 204–209.

