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Summary

NDM-producing bacteria are associated with extensive antimicrobial

resistance (AMR). This thesis reports on detailed molecular analysis, including

whole genome sequencing, of Acinetobacter spp. and Vibrio cholerae

isolates.

A study of clinical Acinetobacter baumannii isolates from India,

demonstrated spread of a single strain containing blaNDM-1 but with evidence of

significant genetic plasticity between isolates. A novel plasmid, pNDM-32, was

fully characterised in isolate CHI-32. This contained multiple AMR genes

including blaNDM-1 and the aminoglycoside methyltransferase gene armA. A

repAci10 replicase gene was identified but no conjugation machinery and the

plasmid could not be transferred in conjugation experiments.

A single isolate of Acinetobacter bereziniae from India contained

plasmid, pNDM-40-1, harbouring blaNDM-1, which was closely related to

plasmids from NDM-producing Acinetobacter spp. isolated in China, and was

readily transferred into Escherichia coli and Acinetobacter pittii by conjugation.

Five blaNDM-1 positive Acinetobacter spp. isolated from a faecal screening

study in Pakistan also included three, clonal, Acinetobacter haemolyticus

isolates harbouring a similar plasmid.

Three environmental V. cholerae strains from India and a blood isolate

from a traveller returning to the UK from India were found to include three

distantly related strains. 2 isolates of a single strain contained an IncA/C

plasmid, pNDM-116-17, harbouring AMR genes including blaNDM-1. In one

isolate pNDM-116-17 had become integrated into a chromosomal region

containing a SXT-like element. In the other isolates blaNDM-1 and other AMR

determinants were localised to a large plasmid, pNDM-116-14, with a novel

replicase and a full complement of conjugative transfer genes, and a novel

genomic island, SGI-NDM-1.

Most previous studies have focused on Enterobacteriaceae. The

current work contributes to an understanding of the full extent of the genetic

diversity of blaNDM-1 contexts, and their dissemination. Such knowledge should

help to infer factors which contribute to the spread of AMR in bacterial

pathogens.
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Chapter 1

General Introduction

1.1 Introductory notes

The New Delhi metallo-β-lactamase (NDM) enzymes are amongst the

most recently described carbapenemases; bacterial enzymes capable of

hydrolysing and inactivating antimicrobials of the carbapenem class (Yong et

al. 2009b; Dortet et al. 2014). Production of these enzymes in many species is

associated with multi-drug resistant (MDR) phenotypes and seriously

compromises the treatment options for infections with these organisms.

Despite not being described in bacteria isolated prior to 2005 (Castanheira et

al. 2011; Berrazeg et al. 2014; Jones et al. 2014a), blaNDM-1 has since been

described in many species, strain backgrounds and located on a diverse

range of mobile genetic elements (MGE) (Kumarasamy et al. 2010; Walsh et

al. 2011; Johnson and Woodford 2013; Dortet et al. 2014). A brief review is

provided here of some of the key areas of background relevant to this thesis

namely; antimicrobial resistance (AMR); NDM-producing bacteria;

mechanisms of horizontal gene transfer (HGT); MGE associated with

dissemination of AMR genes and plasticity of their genetic contexts; and the

species of Gram-negative bacilli (GNB) harbouring blaNDM-1 studied in this

thesis.
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1.2 Antimicrobial Chemotherapy

1.2.1 Antimicrobial drug discovery

The introduction into clinical practice in the 1930’s and 1940’s of the

sulphonamides and penicillin, respectively, resulted in a transformation in the

prognosis of many bacterial infections, from being predominantly fatal, to

being readily treatable (Powers 2004). A period of rapid and extensive drug

discovery and development followed, with new classes of antimicrobials being

identified and chemically modified, in order to alter their spectra of activity

and/ or their pharmacological properties (Figure 1.1) (Powers 2004; Livermore

2011; Silver 2011). Figure 1.1 demonstrates how the pipeline of drug

discovery has slowed considerably. No representative of a novel class of

antimicrobials has been licensed for systemic use since daptomycin in 2003,

although new derivatives of existing antimicrobial classes continue to be

introduced into clinical practice (Pucci and Bush 2013). Theoretically if

resistance has already emerged to a class of antimicrobials, there is a good

chance that resistance will develop readily against any new agent of the same

class, as has occurred in the past.
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Figure 1.1 – Illustration of the “discovery void” of antimicrobial agents.

Dates indicated are those of reported initial discovery or patent. Reproduced

with permission from Silver LL, Clin Microbiol Rev. 2011;24:71-109 (Silver

2011).

1.2.2 AMR: intrinsic and acquired.

Bacteria can be intrinsically resistant to a drug or class of

antimicrobials, but soon after the introductions of sulphonamides and

penicillins the capacity of these organisms to develop acquired resistance to

antimicrobials became apparent (McDonald 2006; Toleman and Walsh 2011).

Today the global spread of AMR amongst a diverse range of bacterial

pathogens is of major public health concern. In recent years the extent of
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resistance and its rapid dissemination amongst various species of GNB has

been particularly worrisome (Magiorakos et al. 2012; Tzouvelekis et al. 2012).

Acquired resistance to an antimicrobial can occur because of a small

number of general mechanisms. An altered drug target site can reduce the

affinity of the drug for its target, for example, an altered penicillin binding

protein (PBP) which renders the organisms resistant to some β-lactams.

Alternatively mechanisms exist which reduce the access of the drug to its

target site, as with reduced permeability of Gram-negative outer membrane

(see Figure 1.2), for example by outer membrane porin loss, or increased

efflux of drug across the outer membrane (Blair et al. 2015). Bacteria can also

produce enzymes which breakdown or modify the active drug and render it

inactive, as with β-lactamases and aminoglycoside modifying enzymes (Bush

and Jacoby 2010; Ramirez and Tolmasky 2010).

In some cases the extent of resistance depends on a balance of many

different factors. For β-lactam resistance in Gram-negative organisms, for

example, the permeability of the outer bacterial membrane, drug efflux

mechanisms, the affinity of any β-lactamase enzymes produced to the

antibiotic in question, and the level of expression of the enzyme(s) will all

affect the level of resistance (Livermore 2012; Blair et al. 2015). Permeability

and efflux in particular vary greatly with the bacterial species in question and

can be affected by mutational changes, interruption of genes and the

acquisition of genes on MGE (Hancock 1998).
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Figure 1.2 – Normal structure of the Gram-negative outer membrane and

interaction with antimicrobials. Antimicrobials A and B are able to pass

through the outer membrane. A is an example of a β-lactamase which is then

able to interact with the PBP at the inner membrane. B is able to pass through

the porin channel but is efficiently removed by an efflux pump. C is unable to

pass through the available porin channel. Reproduced with permission from

Blair JM et al., Nat Rev Microbiol. 2015 13(1):42-51 (Blair et al. 2015).

It is important to note that the clinical impact of resistance to β-lactams

is greater because of resistance to other agents. β-lactamase (bla) genes,

including blaNDM-1-like genes are commonly found in bacteria with multiple other

mechanisms of resistances and resistance genes are often clustered within

MGEs, integrons or genomic islands (GEI) (Tzouvelekis et al. 2012). An

important implication of this is that the competitive advantage of resistant

bacteria on exposure to antimicrobials is likely to result in co-selection, where

MDR populations of bacteria are selected for by exposure to multiple agents
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(Cantón and Ruiz-Garbajosa 2011). This explains why in some studies cycling

of antimicrobials does not apparently result in any benefit.

1.2.3 Resistance to β-lactams in GNB

The β-lactams are a large group of antibiotics, structurally related to

penicillin. These bind to penicillin binding proteins (PBPs) at the cytoplasmic

membrane, and by a complex variety of mechanisms, probably including

interference with cell wall biosynthesis and release of autolytic enzymes,

result in inhibition of growth and eventually cell lysis and death (Ogawara

1981). Whilst most GNB are relatively resistant to the earlier penicillins, a

large number of β-lactams of the penicillin, cephalosporin and carbapenem

subclasses have been developed with clinically relevant activity against these

organisms. As these agents are well tolerated and efficacious they are

amongst the most widely prescribed, and are prominent in treatment

guidelines for many infections, including Gram-negative sepsis (Koliscak et al.

2013; Cooke et al. 2014; Paul et al. 2014). Despite the multifactorial nature of

β-lactam resistance it is widely believed that the production of β-lactamase

enzymes are the most epidemiologically significant mechanisms of resistance

in many species of GNB (Hawkey 2008; Bush 2010; Livermore 2012).

β-lactamases can be classified according to molecular or functional

classification schemes (Bush and Jacoby 2010). The phenotypic properties,

molecular and functional groups of a few of the key groups of β-lactamases

found in GNB are summarised in Table 1.1. The molecular class A, C and D

enzymes all have a serine residue at their active site involved in hydrolysis of

the β-lactam ring. The class B, metallo-β-lactamases (MBLs), invariably have
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zinc residues at their active site. Enzymes of different classes have varying

hydrolytic profiles and epidemiology. Particularly significant, for example,

amongst the Enterobacteriaceae has been the dissemination, probably by

HGT, of extended spectrum β-lactamases (ESBLs) (Hawkey 2008; Livermore

2012). In particular CTX-M type ESBLs spread globally amongst E. coli and K.

pneumoniae, and have been associated with particularly successful

pathogenic strains of these bacteria.
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Functional
group

Molecular
class

(subclass)

Distinctive substrate Inhibited by Defining characteristics Representative
enzymes

CA or TZB EDTA

1 C Cephalosporins No No Greater hydrolysis of cephalosporins
than benzylpenicillin; hydrolyzes
cephamycins

E. coli AmpC,
ACT-1, CMY-2,
FOX-1, DHA-1

2b A Penicillins, early
cephalosporins

Yes No Similar hydrolysis of benzylpenicillin
and cephalosporins

TEM-1, TEM-2,
SHV-1

2be A Extended-spectrum
cephalosporins,
monobactams

Yes No Increased hydrolysis of oxyimino-β-
lactams (cefotaxime, ceftazidime,
ceftriaxone, cefepime, aztreonam)

TEM-3, SHV-2,
CTX-M-15,

2d D Cloxacillin Variable No Increased hydrolysis of cloxacillin or
oxacillin

OXA-1, OXA-10

2df D Carbapenems Variable No Hydrolyzes cloxacillin or oxacillin
and carbapenems

OXA-23, OXA-58,
OXA-40, OXA-48

2f A Carbapenems Variable No Increased hydrolysis of
carbapenems, oxyimino-β-lactams,
cephamycins

KPC-2

3a B Carbapenems No Yes Broad-spectrum hydrolysis including
carbapenems but not
monobactams

NDM-1, VIM-1,
IMP-1

Table 1.1 – Classification schemes for bacterial β-lactamases. Adapted with permission from Bush K and Jacoby GA AAC

2010, 54(3): 969-976. CA – clavulanic acid; TZB – Tazobactam.
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Enzymes capable of hydrolysing carbapenems with sufficient efficiency

to result in clinically relevant resistance are often referred to collectively as

carbapenemases. These include the molecular class A and D enzymes of the

KPC and OXA groups, and MBLs (class B), most notably of the IMP, VIM and

NDM groups (Walsh 2010; Tzouvelekis et al. 2012). KPC producing

Enterobacteriaceae have probably had the greatest clinical impact so far, with

the enzyme particularly associated with the successful ST258 strain of K.

pneumoniae, which has caused significant outbreaks in several countries (see

Figure 1.3) and with evidence of increased mortality associated with

bacteraemia caused by KPC producing K. pneumoniae (Munoz-Price et al.

2013). Most OXA carbapenemases are associated with carbapenem

resistance in A. baumannii, although OXA-48 and OXA-181 have emerged as

important causes of reduced carbapenem susceptibility in Enterobacteriaceae

(Poirel et al. 2012b). Carbapenem resistance caused by MBLs in

Enterobacteriaceae, especially associated with VIM and NDM enzymes, is

now increasingly identified and of greater clinical concern.
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Figure 1.3 – Worldwide dissemination of Enterobacteriaceae producing

KPC. Based on published data as of February 2015.

Although the epidemiology of carbapenem-resistant

Enterobacteriaceae (CRE) is poorly established there is considerable

evidence that some geographical regions have a significant problem, for

example in the Indian subcontinent (see section 1.3). In Europe, where there

are established monitoring systems, CRE, predominantly K. pneumoniae, is

more frequent in some Southern European countries such as Greece and

Italy (Cantón et al. 2012; European Centre for Disease Prevention and

Control 2014), as shown in Figure 1.4. Even in countries like the United

Kingdom where the prevalence of CRE remains low, this number has risen

rapidly in recent years (Cantón et al. 2012), as shown in Figure 1.5 .
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Figure 1.4 – Percentage of invasive isolates of K. pneumoniae resistant

to carbapenemases, by country, EU/EEA countries, 2013. Reproduced

from the Annual report of the European antimicrobial resistance surveillance

network, 2013 (European Centre for Disease Prevention and Control 2014).

Figure 1.5 – Numbers of UK laboratories referring at least one

carbapenemase-producing Enterobacteriaceae (CPE) isolate to the

Antibiotic Resistance Monitoring and Reference Laboratory (ARMRL)

(Health Protection Agency). Reproduced with permission from Cantόn R et

al. Clin Microbiol Infect. 2012, 18: 413-431 (Cantón et al. 2012).
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1.3 NDM-producing bacteria

1.3.1 First identification of NDM-1, properties of NDM enzymes and their

host species

The first description of the NDM-1 enzyme was from a urinary K.

pneumoniae isolate in 2008 from a patient in Sweden, following transfer from

a hospital in New Delhi, India (Yong et al. 2009b). The patient was later found

to have gut colonisation with an NDM-1 producing E. coli. The enzyme is only

distantly related to other MBLs sharing closest amino acid (AA) identity

(~32%) with the VIM-1 and VIM-2 enzymes (Yong et al. 2009b). NDM-1 has a

hydrolytic profile similar to other MBLs with relatively efficient hydrolysis which

includes meropenem, imipenem and most other β-lactams, with the exception

of aztreonam. As of 5th January 2015 the Lahey clinic website listed 13

variants of NDM-1, all of which are very closely related. Studies on the

kinetics of NDM variants have not, so far, consistently shown any significant

differences in kcat/Km values for carbapenems (Makena et al. 2014; Tada et

al. 2014; Wang et al. 2014a).

In general NDM-producing GNB (NPGNB) are resistant to most

antimicrobials, with many Enterobacteriaceae being resistant to all

antimicrobials with the exception of colistin, tigecycline and fosfomycin, and

Acinetobacter spp. often only being susceptible to colistin (Kumarasamy et al.

2010; Johnson and Woodford 2013; Dortet et al. 2014). Susceptibility profiles

amongst other NPGNB, including to the carbapenems, are more

unpredictable than for Enterobacteriaceae and Acinetobacter spp (Nordmann

et al. 2011b; Walsh et al. 2011). Of NDM-producing Enterobacteriaceae (NPE)

the predominant species are K. pneumoniae and E. coli, with Citrobacter spp.
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and Enterobacter spp. being less frequent, and other species including

Salmonella spp. and Shigella spp. being encountered uncommonly

(Kumarasamy et al. 2010; Walsh et al. 2011; Johnson and Woodford 2013;

Berrazeg et al. 2014; Dortet et al. 2014). The majority of NPE are resistant to

aztreonam because of the co-production of ESBL or plasmidic AmpC type β-

lactamases (Kumarasamy et al. 2010; Dortet et al. 2014).

1.3.2 Epidemiology of NPGNB

Although the naming of the enzyme after New Delhi proved to be

controversial (Walsh and Toleman 2011b), this first report was followed by

further evidence of the enzyme being prevalent in India and other parts of

South Asia, including Pakistan, Bangladesh and Nepal (Kumarasamy et al.

2010; Castanheira et al. 2011; Perry et al. 2011; Bharadwaj et al. 2012; Tada

et al. 2013; Datta et al. 2014; Islam et al. 2014; Rahman et al. 2014; Stoesser

et al. 2014). A study published in 2010 reported on a survey of CRE from

multiple sites from around India and Pakistan (see Table 1.2) from 2009 and

from the UK from 2003-2009 (Kumarasamy et al. 2010). In the UK the first

NPE was identified in 2008 and through to the end of 2009, 37 NPE were

referred to the UK reference laboratory. Of these at least 17 had a history of

travel to India or Pakistan within the last 12 months (Kumarasamy et al.

2010). The bacterial isolates from all of the study centres were from a range

of clinical sample types including urine, blood and respiratory secretions but

many patients from Chennai and Haryana had community acquired infections.
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Country Year Source of isolates No. NPGNB (prevalence) Species of NPGNB (No.) Reference
IND 2006-

2007
Clinical ENT isolates. 15 (1% of 1,443 isolates) EC (6), KP (6), ECL (3) (Castanheira et

al. 2011)
IND 2007-

2011
ENT isolates from neonatal

blood.
15 (14% of 105 isolates) EC (6), KP (6), ECL (3) (Datta et al.

2014)
IND and

PAK
2009 Clinical ENT isolates. CHE 44 (1.2% of 3521), HAR 26 (13%

of 198). 73 other sites.
EC (19), KP (40), ECL (7),
PRSP (2), CF (1), KO (1)*

(Kumarasamy
et al. 2010)

IND 2009 CRE from intra-abdominal
infections.

33 isolates EC (8), KP (18), ECL (5),
PR (1), MM (1)

(Lascols et al.
2011)

IND 2009 CRE clinical isolates. 22 (out of 24 CRE) EC (9), KP (9), MM (1),
ESP (2), KOZ (1)

(Deshpande et
al. 2010)

IND 2010 Clinical isolates of GNB. 20 (2.3% of 885 isolates) ASP  (13), PSE (7) (Bharadwaj et
al. 2012)

BGD 2010 Clinical isolates of GNB. 14 (3.5% of 403 isolates) EC (2), KP (9), AB (3),
PR (1), CF (1).

(Islam et al.
2012)

PAK 2012 Clinical Isolates of GNB. 31 (8.7% of 356 isolates) PSE (15), KP (13),
EC (3)

(Nahid et al.
2013)

IND 2012 EC isolates from urinary
samples.

45 (15% of 300 isolates) EC (45) (Khajuria et al.
2014)

BGD 2007-
2009

1789 EC and 90 SHG spp.
isolated from diarrhoeal faeces.

0 - (Islam et al.
2013)

IND 2008-
2012

3GCR isolates from faeces of 40
volunteers + 150 paediatric pts.

0 - (Shahid et al.
2012)

PAK 2010 ENT on selective isolation from
faecal screening.

37 samples (18.5% of 200), 64 isolates. EC  (30), KP (3), ECL (21),
CSP (8), PR (2)

(Perry et al.
2011)
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Country Year Source of isolates No. NPGNB (prevalence) Species of NPGNB (No.) Reference
BGD 2012 ENT on selective isolation from

diarrhoeal faeces.
9 samples (9% of 100), 13 isolates. EC (6), KP (4), ECL (1),

PAN (1), AB (1)
(Islam et al.

2014)
PAK 2011 ENT on selective isolation from

diarrhoeal faeces.
13 samples (8.6% of 152), 16 isolates. EC (8), KP (5), ECL (1),

CF (1), KG (1)
(Day et al.

2013b)
PAK 2011 GNB on selective isolation from

faecal screening.
32 samples (18.3% of 175), 37 isolates. EC (21), KP (11),

ECL (4), CF (8)
(Day et al.

2013a)
IND 2010 New Delhi tap water and

seepage water samples.
12 (7% of 171) seepage samples,

2 (4% of 50) water, 20 isolates.
11 genera inc. 12 PSE (6),

EC (3), SHG (1), VC (2)
(Walsh et al.

2011)
IND 2012 GNB from 77 drinking water, 10

drain and 3 sewage samples
0 - (Shahid et al.

2012)

Table 1.2 – Summary of literature on prevalence of NPGNB in South Asia. Isolated case reports, small case series and

outbreak reports not included. Highlighted in colour according to source of study isolates: Blue – clinical; Green – faecal

colonisation; Pink – environmental contamination. ENT – Enterobacteriaceae; CHE – Chennai; HAR - Haryana. Country codes:

BDG – Bangladesh; IND – India; PAK – Pakistan. Organism codes: AB – A. baumannii; CF – C. freundii; CSP – Citrobacter spp.;

EC – E. coli; ECL – E. cloacae; ESP – Enterobacter spp.; KOZ – Klebsiella ozonae; KO – Klebsiella oxytoca; KP – K. pneumoniae;

KG - Kluyvera georgiana MM – Morganella morganii; PR - Providencia rettgeri; PRSP – Proteus spp.; ASP – Acinetobacter spp.;

PAN – Pantoea sp.; PSE – Pseudomonas spp.; SHG – Shigella spp.; VC – Vibrio cholerae.
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The data that has since been published on clinical infections and

colonisation with NPGNB from South Asia provides a limited picture of their

epidemiology. Studies vary markedly in their methodologies, the prevalence

and predominant species of NPGNB, and contain relatively little data on

clinical outcomes. Some of the key studies are summarised in Table 1.2. It is

noteworthy that, although Enterobacteriaceae represent the majority of

isolates, NDM-producing Acinetobacter spp. and P. aeruginosa predominate

in some clinical studies. Several other case series not shown in Table 1.2

have also reported NDM producers of these species from clinical isolates,

especially in intensive care unit patients (Karthikeyan et al. 2010; Khajuria et

al. 2013; Sartor et al. 2014; Shanthi et al. 2014; Jones et al. 2015).

A further environmental study sampled river water at two sites in

February and June 2012 (Ahammad et al. 2014), but is not shown in Table 1.2

as it is methodologically very different to the other studies. In the Yamuna

river, as it passes through Delhi, blaNDM-1 was consistently detectable at high

levels based on quantitative PCR. By contrast, in the upper Ganges, at a site

which experiences an influx of pilgrims from across India in May/June, the

abundance of blaNDM-1 increased significantly in June. Considered as a whole

the studies cited in this section suggest that in parts of South Asia, the source

of NDM producing pathogens may be community acquisition and the

environment rather than healthcare acquisition, as is commonly felt to be the

case for other MDR pathogens.

Since the first report of NDM in 2009 NPGNB have been reported from

around the world, as shown in Figure 1.6. In many countries the findings have

been similar to those from the UK, in that cases have been mainly sporadic
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and have included a significant number in which patients have a history of

travel to South Asia, not always with healthcare contact (Centers for Disease

Control and Prevention (CDC) 2010; Chen et al. 2011; Poirel et al. 2011d;

Cantón et al. 2012; Escobar Pérez et al. 2013; Govind et al. 2013; Johnson

and Woodford 2013; Berrazeg et al. 2014; Jain et al. 2014; Peirano et al.

2014; Qin et al. 2014). As a result it has been proposed by many authors that

the worldwide dissemination of NPGNB is probably largely attributable to

spread from South Asia. However, as more NPGNB have been identified

worldwide it has become increasingly evident that there is significant

complexity to their epidemiology.

Figure 1.6 – Worldwide distribution of NPGNB. Based on published data

as of February 2015.



18

More recent UK data shows that for 250 patients with NPE, travel

histories were available for only 101 (40%), but that of these 52% (53/101)

had a history of travel to India (Jain et al. 2014). More than 40% had no

history of foreign travel outside the UK and some cases were being managed

in General Practice, suggesting the possibility of community spread. Similar

findings, although with smaller numbers of isolates are reported from several

European countries, America, Canada and Australasia (Centers for Disease

Control and Prevention (CDC) 2010; Cantón et al. 2012; Williamson et al.

2012; Decousser et al. 2013; Johnson and Woodford 2013; Rasheed et al.

2013; Dortet et al. 2014; Peirano et al. 2014; Shoma et al. 2014).

Although the numbers are modest in comparison with those imported

from South Asia, sporadic cases of colonisation or infection with NPGNB from

around Europe have travel histories to countries in the Balkans, the Middle

East or North Africa (Struelens et al. 2010; Bonnin et al. 2012b; Johnson and

Woodford 2013; Dortet et al. 2014; Meletis et al. 2014). Data from these

regions themselves are currently limited, although a study from Serbia

identified seven P. aeruginosa producing NDM-1 in 2010 (Jovcic et al. 2011).

Subsequently there have been reports of clinical NPE isolates from Croatia,

Romania and Serbia, as well as a significant outbreak of K. pneumoniae

producing NDM in Greece (Mazzariol et al. 2012; Mirovic et al. 2012; Szekely

et al. 2013; Deshpande et al. 2014; Voulgari et al. 2014; Zujic-Atalic et al.

2014). Several papers have also reported NPGNB, mostly A. baumannii, from

the Middle East and North Africa (Espinal et al. 2011; Kaase et al. 2011; Poirel

et al. 2011c; Ghazawi et al. 2012; Bakour et al. 2014). In keeping with this,

many of the cases presumed to have been imported to Europe from North
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Africa and the Middle East were A. baumannii (Decousser et al. 2013;

Johnson and Woodford 2013).

In China most of the patients from which NPGNB have been isolated

have no apparent travel history to other parts of the world (Chen et al. 2011;

Fu et al. 2012; Ho et al. 2012; Yang et al. 2012; Hu et al. 2013; Qin et al.

2014). Initial studies suggested that NPE were rare in China but they have

been recognised increasingly frequently since then (Hu et al. 2014; Qin et al.

2014). However, most reports of NPGNB have been Acinetobacter spp (Chen

et al. 2011; Fu et al. 2012; Hu et al. 2012; Wang et al. 2012; Yang et al. 2012;

Zhou et al. 2012; Sun et al. 2013b; Zhang et al. 2013a; Wang et al. 2014b;

Zhang et al. 2014). These have included a number of A. baumannii isolates

(Chen et al. 2011; Zhang et al. 2013b; Wang et al. 2014b) but have mainly

been other species. In addition one study demonstrated that PCR for blaNDM-1

of faecal samples was positive in 14.8% and that blaNDM-1 positive bacteria

could be isolated for 7.9 % of patients, with most isolates being Acinetobacter

spp. (Wang et al. 2013).

1.3.3 Clinical impact of NPGNB

There is no evidence that any of the plasmids and other MGE which

harbour blaNDM-1-like genes contain significant virulence determinants (Sekizuka

et al. 2011; Carattoli et al. 2012; Hu et al. 2012; Dolejska et al. 2013;

Hishinuma et al. 2013; Dortet et al. 2014). Therefore the species and strain

backgrounds of NPGNB probably determine their virulence potential (Peirano

et al. 2013; Dortet et al. 2014). So far blaNDM-1-like genes have not established

a strong association with strains which have had significant clinical impact.
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However, pathogenic strains previously associated with resistant phenotypes

have been found to harbour blaNDM-1-like genes, including ST101 and ST131 E.

coli, ST11 and ST14 K. pneumoniae and ST1 A. baumannii (Mushtaq et al.

2011; Peirano et al. 2011c; Giske et al. 2012; Jones et al. 2014a).

Despite the paucity of information, an increasing number of papers

reporting clinical outcomes of patients with NPGNB have been published.

Results of key publications are summarised in Table 1.3. The combined crude

mortality rates from these studies are 48.5% (32/66) and 27.4% (23/84) for

neonates and adults (excluding data from Greece for which crude mortality is

not stated) respectively. These figures should be interpreted with caution

given that no meaningful comparator groups are available and the

heterogeneity of the studies. Of note, whilst most of the reported neonatal

cases had blood stream infections, many of the adult cases had isolates from

other sites such as urine and respiratory secretions, and so the two figures

are not comparable with one another.
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Country Year Pt
group

Study
type Source Species

(strains) Clinical Outcome Reference

IND 2007-
2011

NEO Case-
control

Blood EC, KP, ESP
(clonally diverse)

Crude mortality NPE 13.3% (2/15) vs non-
NPE 22.2% (20/90), p=0.66.

(Datta et al.
2014)

IND 2009 NEO Outbreak Blood EC (clonal by
PFGE)

Crude mortality 100% (4/4). (Roy et al. 2011)

NPL 2011-
2012

NEO Outbreak Blood KP (ST15) Crude mortality NPE 64% (16/25).
Unit wide 46% (45/98) during outbreak, 27%

(32/117) following year.

(Stoesser et al.
2014)

COL 2011-
2012

NEO Outbreak Blood KP (ST1043). Crude in hospital mortality 33.3% (2/6). (Escobar Pérez
et al. 2013)

NPL 2012-
2013

NEO Outbreak Blood ECL
(clonal by WGS)

Crude mortality 46% (6/13) (Stoesser et al.
2015)

IND 2010 Adult/
Child

Case
series

Blood, Pus,
RS, PF, CSF

ASP, PSE Crude mortality: Adult 13.3% (2/15), Child
0% (0/5).

(Bharadwaj et
al. 2012)

CHN 2011-
2012

Adult/
Child/
NEO

Case
series

Urine, Blood,
RS, WND

EC, KP, KO,
ECL, CF

(Clonally diverse)

Crude mortality: Adult 18.2% (2/11),
Child 50% (1/2), Neonate 66.7% (2/3)

(Qin et al. 2014)

KEN 2007-
2009

Adult Case
series

Urine, Pus KP (ST14) Crude mortality 14.3% (1/7)
Attributable mortality 0% (0/7).

(Poirel et al.
2011d)

GRC 2010-
2013

Adult Outbreak Blood KP (ST11) Attributable mortality 35% (6/17). (Voulgari et al.
2014)
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Country Year Pt
group

Study
type Source Species

(strains) Clinical Outcome Reference

BGR 2012 Adult Outbreak Urine, RS,
Stool, Blood

EC (ST101) Crude mortality 80% (4/5) (Poirel et al.
2014)

IND 2012 Adult Case
series

Urine, Blood,
Pus, RS, CSF

EC, KP, CSP,
ESP, PRO

(Clonally diverse)

Crude mortality 24.6% (14/57). (Rahman et al.
2014)

FRA 2013 Adult Outbreak RS, Blood AB (ST85) Crude mortality 50% (2/4) (Decousser et
al. 2013)

Table 1.3 – Summary of papers reporting clinical outcome for NPGNB. Case reports and small case series not included.

Studies highlighted in colour according to study type: Pink – Case-control study; Blue – Outbreak investigation; Green – Case

series. Country codes: BGR – Bulgaria; CHN – China; COL – Colombia; FRA – France; GRC – Greece; IND – India; KEN – Kenya;

NPL – Nepal. Organism codes: AB – A. baumannii; CF – C. freundii; CSP – Citrobacter spp.; EC – E. coli; ECL – E. cloacae; ESP –

Enterobacter spp.; KO – Klebsiella oxytoca; KP – K. pneumoniae; PRO – Providencia spp. Other abbreviations: NEO – neonate;

PFGE – Pulsed field gel electrophoresis; CSF – cerebrospinal fluid; PF – pleural fluid; RS – respiratory secretions; WND – Wound

swab.
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Although several other outbreaks are reported involving adults, in many

cases most or all patients were colonised rather than infected (Gaibani et al.

2011; Poirel et al. 2011d; Borgia et al. 2012; Kim et al. 2012; Koo et al. 2012;

Yang et al. 2012; Lowe et al. 2013; Pisney et al. 2014). All other reports of

patient outcomes are from isolated case reports or small case series

(Bogaerts et al. 2011; Chan et al. 2011; Peirano et al. 2011a; Stone et al.

2011; Darley et al. 2012; Oteo et al. 2012; Karczewski et al. 2014; Qin et al.

2014; Seija et al. 2015).

1.3.4 Genetic contexts of blaNDM-1-like genes

It should be noted that the terminology with regards to genetic contexts

is often not defined and can lead to confusion. The term “genetic context” is

used in this thesis as a general term to refer to the strain background, MGE(s)

and DNA sequences immediately flanking the gene(s) referred to. To refer to

only the sequences immediately flanking the gene(s) the term “immediate

genetic context” will be used. Where a specific bacterial species, strain or

mobile element is referred to these will be named in the text.

The genetic contexts in terms of species, strain background and MGE

harbouring blaNDM-1-like genes are varied. In many cases blaNDM-1-like genes are

found on plasmids of differing size and incompatibility type. The most common

incompatibility types identified have been IncA/C, IncF, IncN, IncL/M and IncH,

although in many cases the type could not be identified (Kumarasamy et al.

2010; Walsh et al. 2011; Carattoli 2013; Johnson and Woodford 2013; Sartor

et al. 2014; Stoesser et al. 2014; Stoesser et al. 2015). Strikingly, most of the

Acinetobacter spp. isolates for which plasmids have been characterised in



24

detail all contain conjugative plasmids, which are very closely related, but

have no identifiable replicase or origin of replication (Hu et al. 2012; Zhang et

al. 2013b; Jones et al. 2015). These plasmids are discussed in detail in

Chapter 4.

Many isolates have also been described in which blaNDM-1-like genes are

apparently located on the chromosome (Kumarasamy et al. 2010; Walsh et al.

2011; Poirel et al. 2012a). However, most of these contexts have not been

sequenced, or only a limited amount of the flanking sequence has been

defined. As a result it is not known whether blaNDM-1-like genes are associated

with GEIs. There are few exceptions to this so far, one of which is described in

Chapter 5. A Proteus GEI has also been described that harbours blaNDM-1

(Girlich et al. 2014).

There is quite significant variation in the immediate genetic contexts

found associated with blaNDM-1-like genes (Nordmann et al. 2011b; Poirel et al.

2011b; Partridge and Iredell 2012; Poirel et al. 2012a; Toleman et al. 2012;

Dortet et al. 2014). The immediate contexts are discussed in some detail in

the results chapters; however, some general points should be noted and

examples of immediate contexts intended to illustrate them are shown in

Figure 1.7. As discussed in Chapter 3, it is believed that blaNDM-1-like genes

were established in Acinetobacter spp. prior to dissemination into other GNB,

and that sequences from these species represent the earliest known blaNDM-1-

like contexts. In many Acinetobacter spp. NDM is found in a composite

transposon (Tn), Tn125, formed by two copies of ISAba125, as represented

by the A. baumannii and A. lwoffii contexts shown in Figure 1.7 (Pfeifer et al.

2011; Partridge and Iredell 2012; Poirel et al. 2012a).
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Figure 1.7 – Examples of immediate genetic contexts of blaNDM-1 in Enterobacteriaceae and Acinetobacter spp. The

examples chosen are not representative of the full range of variation in terms of immediate contexts but are intended to illustrate

key points highlighted in the main text. ORFs are colour coded with the direction of transcription indicated by arrow heads,

truncated remnants of ORFs are shown as rectangles. Red – blaNDM-1; lime green – usually immediately downstream of blaNDM-1;

blue – from a common context in Xanthomonas and Pseudoxanthomonas; dark grey – ISCR27 transposase; light grey – IS

transposases, note transposases are labelled with IS name; orange – other AMR genes; yellow – genes commonly found as part of

the backbone of pNDM-BJ01-like plasmids. ble – bleomycin resistance gene; trpF – phosphoribosylanthranilate isomerase gene;

tat – twin-arginine translocation pathway signal sequence domain gene; cutA1 – periplasmic divalent cation tolerance gene; groES

– co-chaperonin gene; groEL – chaperonin gene; ISCR27 – insertion sequence common repeat 27 transposase gene; oriIS – origin

of insertion of ISCR27; Δmfs – interrupted major facilitator superfamily (MFS) metabolite/H+ symporter gene; aphA6 –

aminoglycoside O-phosphotransferase, aminoglycoside resistance gene; Δrhs – interrupted gene coding for a type IV secrtion

protein; ∆blaDHA-1 – fragment of AmpC type β-lactamase gene; ampR – lysR family blaDHA-1 regulator gene; sul1 – dihydropteroate

synthase gene mediating sulphonamide resistance; qacEΔ1 – multidrug resistance exporter gene; hypA – gene coding for

hypothetical protein.
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There is much greater variety in immediate blaNDM-1-like contexts in other

species, with most of those which have been characterised so far being from

Enterobacteriaceae (Nordmann et al. 2011b; Partridge and Iredell 2012;

Toleman et al. 2012; Dortet et al. 2014). Some Enterobacteriaceae sequences

contain an intact ISAba125 but in many others ISAba125 is truncated by other

ISs (Toleman et al. 2012). However, in all known examples a fragment of

ISAba125 is preserved which contains the -35 sequence motif of the blaNDM-1-

like promoter sequence. This promoter has been shown to result in strong

expression of blaNDM-1-like genes and also acts as the promotor for ble, which

codes for a bleomycin resistance protein and is immediately downstream of

blaNDM-1-like genes.

In most contexts in GNB, other than Acinetobacter spp., ble and trpF

are still found downstream of NDM but the rest of the contents of Tn125 are

often absent (Poirel et al. 2011b; Dortet et al. 2012; Partridge and Iredell

2012). A relatively common finding downstream of trpF is of a truncated

blaDHA-1 gene and its transcriptional regulator gene, ampR followed by

conserved region of a complex class 1 integron, including an ISCR element.

In general immediate blaNDM-1-like contexts contain multiple AMR genes, ISs

and complete or partial class 1 integrons (Ho et al. 2011; Poirel et al. 2011a;

Sekizuka et al. 2011; Carattoli et al. 2012; Hu et al. 2012; Dolejska et al. 2013;

Hishinuma et al. 2013; Huang et al. 2013; Girlich et al. 2014).

Although it is a common finding that AMR genes are associated with a

number of genetic backgrounds and have variability in their genetic contexts,

many of the most successful ones are predominantly associated in clinical

practice with a limited number of successful strains and/ or MGE responsible
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for their acquisition (Higgins et al. 2010; Woodford et al. 2011; Tzouvelekis et

al. 2012; D'Andrea et al. 2013; Munoz-Price et al. 2013). This has not yet

occurred with blaNDM-1-like genes and so the genetic variation associated with

these genes is somewhat greater than has commonly been observed with

other successful AMR genes.

1.4 Integrons, MGE and HGT

The following section introduces the MGE that are responsible for HGT

between bacteria and plasticity of the immediate genetic contexts associated

with blaNDM-1-like genes and other AMR genes. HGT describes the transfer of

DNA sequences between living cells followed by integration into and stable

maintenance in the new host. There are three main mechanisms by which

HGT between prokaryotes occurs; transformation, transduction and

conjugation.

The importance of HGT between bacteria and archaea to prokaryotic

evolution, including clinically relevant features, like AMR and virulence factors,

is increasingly recognised, despite the fact that it challenges conventional

views of gradual, step-wise evolutionary change (Boto 2010; Stokes and

Gillings 2011). Thus prokaryotic organisms can be seen as having access to a

“communal” gene pool, which is an economical way of maintaining access to

a wide range of phenotypic characteristics, allowing the population as a whole

to remain more responsive to changing ecological circumstances (Stokes and

Gillings 2011).

Although HGT events are often difficult to prove conclusively, several

lines of evidence suggest that HGT has had a significant impact on
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prokaryotic evolution. Thus divergent phylogenies, regions of altered codon

usage or GC % and the presence of gene/ protein sequences, where the

closest homologues are from different species or genera, all suggest the

influence of HGT (Koonin et al. 2001; Boto 2010). The presence of complete

operons, GEIs or plasmids with significant regions of synteny, found in

multiple species or genera, strongly suggests that HGT events have occurred

at some time in evolution (Koonin et al. 2001; Stokes and Gillings 2011).

1.4.1 Conjugation – plasmids and integrative and conjugative elements

(ICE)

Plasmids are MGE which usually exist in an extrachromosomal form

and replicate autonomously (Carattoli et al. 2005; Frost et al. 2005). Many can

be transferred to a new host by conjugation, either utilising conjugation

machinery coded for by the plasmid itself (self-conjugative), or along with

another plasmid which provides the conjugation machinery (mobilizable)

(Smillie et al. 2010). Some plasmids are not capable of conjugative transfer

(non-mobilizable), although they may occasionally be horizontally transferred

by transformation or transduction (see below).

Plasmidic conjugation requires mating pair formation by direct physical

contact between donor and recipient cells (Frost et al. 2005; Smillie et al.

2010).  This is most often achieved by a type IV secretion system (T4SS).

These form a conjugation pilus, produced by the donor cells. Single stranded

plasmid DNA is produced after nicking at the origin of transfer by a relaxase

enzyme and a nucleoprotein complex, called the relaxosome, is formed.  This

structure docks with the T4SS and is transferred from the donor cell to the
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recipient.  Plasmid complementary strands are then synthesised in both cells

so that the donor and recipient both harbour the plasmid, as shown in Figure

1.8 (Frost et al. 2005).

Figure 1.8 – Schematic representing mechanisms of HGT between

bacterial cells and genetic plasticity associated with MGEs. Details of

these processes are described in the main text of section 1.4. Figure shows

transduction by phages (1); conjugation (2); transposition and transfer of gene

cassettes between integrons (3). Phage genome – yellow; Bacterial

chromosome of donor – dark blue; Bacterial chromosome of recipient – red;

Conjugative plasmids – orange; Tns – pink; Integrons – dark green; gene

cassettes – brown. Reproduced with permission from Frost LS et al., Nature

Rev Microbiol. 2005, 3: 722-732 (Frost et al. 2005).
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The complexity of the conjugation machinery means that conjugative

plasmids are large and because of the metabolic requirements imposed on

the host, require additional genes to help stably maintain themselves (Frost et

al. 2005; Sengupta and Austin 2011). All plasmids possess functional modules

of genes which mediate replication of the plasmid in close co-ordination with

the growth cycle of the host. This is necessary to ensure that plasmids are

stably maintained, rather than lost from cells at the time of cell division, but

with control of the copy number of the plasmid present. Many plasmids also

code for “addiction systems.” These usually take the form of a toxin-antitoxin,

which result in the killing of cells which fail to maintain the plasmid (Sengupta

and Austin 2011).

Plasmids have traditionally been classified according to their replicon,

comprising of the origin of replication, replicase and its regulatory factors

(Carattoli et al. 2005). Plasmids which share very closely related replicons

cannot usually be maintained alongside each other in a bacterial cell and are

thus said to be incompatible (Novick 1987). This is the basis of incompatibility

(Inc) typing. In practice Inc typing is increasingly based on sequence analysis

or PCR based methods because of the laborious nature and technical

limitations of incompatibility typing (Carattoli et al. 2005; Bertini et al. 2010;

Carattoli 2011). A growing number of MGE are being recognised which

incorporate both phage and conjugative plasmid related genes, arranged in

functional modules (Wozniak et al. 2009; Wozniak and Waldor 2010;

Guglielmini et al. 2011; Toleman and Walsh 2011).  Various terms have been

used to describe these elements including integrative and conjugative

elements (ICE), conjugative Tns and integrative plasmids. The similarities in
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terms of structure and function suggest that these terms all describe a single

class of MGE, which will be referred to here as ICEs.  The model proposed for

the properties of ICEs is that they normally replicate integrated into the host

chromosome but are capable of excision and replication, forming an extra-

chromosomal circular intermediate (Wozniak and Waldor 2010).  They can

independently of other MGEs initiate conjugation between the host and a

suitable donor.  The double stranded extra-chromosomal intermediate is

nicked at the origin of transfer and a single strand is transferred by the

conjugation machinery to the recipient.  Thus both donor and recipient now

harbour the ICE, which is then capable of reintegration into the chromosome

of the host and the recipient. Integrative and mobilizable elements (IMEs) are

similar to ICEs, but lack the ability to mediate conjugative transfer

independently, and thus rely on the conjugation machinery of another MGE

(Douard et al. 2010).

Plasmids, ICEs and IMEs frequently harbour a large number of genes

which have phenotypically important functions, including genes conferring

resistance to antimicrobials, disinfectants or heavy metals (Frost et al. 2005;

Wozniak and Waldor 2010; Carattoli 2013). Frequently these are found in

common “hot spots” for the insertion of accessory genes. These regions often

contain many of the genetic elements discussed later in this section such as

insertion sequences (ISs), IS common regions (ISCRs), Tns and class 1

integrons, which are likely to have been responsible for the acquisition of the

genes of phenotypic importance.
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1.4.2 Transduction

Transduction describes the transfer of DNA by bacteriophages (viruses

which infect bacteria, commonly referred to as phages) or phage like particles

(Lang et al. 2012; Penadés et al. 2014). The main life cycles of successful

bacteriophage infection are the lytic and lysogenic cycles. The lytic cycle

results in the “hijacking” of the cellular machinery to produce new phages,

which are released following cell lysis. The lysogenic cycle results in

integration of phage DNA into the host chromosome as a prophage (see

Figure 1.8). These replicate along with the host DNA unless the lytic cycle is

triggered. Phages play a significant role in the acquisition of some key

bacterial virulence functions, including toxins. However, phages are thought to

be capable of transferring any bacterial gene (Lang et al. 2012), and recent

evidence suggests they could also play a significant role in the HGT of AMR

genes (Modi et al. 2013; Quirós et al. 2014).

This HGT can occur by generalised transduction, where during the lytic

cycle bacterial DNA is mispackaged into the phage capsid (Lang et al. 2012;

Arber 2014). Infection with other phages may result in “specialized

transduction,” where host genes near to the phage insertion site on the

bacterial chromosome are packaged in the phage capsid along with the

phage genome (Lang et al. 2012; Arber 2014). When compared to other

characterised mechanism of HGT, transduction does not require the close cell

to cell interactions involved in conjugation and the transducing DNA is

protected from destruction by the phage capsid (Penadés et al. 2014). A major

limitation of transduction has been thought to be the narrow host ranges of

most phages, but transducing particles may be capable of HGT to a broader
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range of hosts than have been shown to support phage replication (Chen and

Novick 2009; Penadés et al. 2014).

1.4.3 Transformation

Transformation describes the uptake by bacteria of free DNA into the

cytoplasm, which is then integrated into the new host (Chen and Dubnau

2004; Mell and Redfield 2014).  DNA can be abundant in the external

environment either because of release at the time of cell death or due to

active excretion of DNA by some organisms.  In order for this to take place the

organism must be “competent,” that is with the necessary machinery to

actively uptake and regulate the extracellular DNA.  A number of bacterial

species are naturally competent but most only become so under certain

physiological conditions. A few bacteria have been shown to limit uptake of

DNA unless certain sequence motifs are present, favouring transformation

with DNA of related bacteria.

Once the DNA has been taken into the cytoplasm recombinases can

integrate the DNA into the chromosome of the new host, or free plasmids

introduced by transformation can be maintained extrachromosomally.

Integration is either by homologous recombination, where DNA is integrated at

sites with a significant degree of sequence homology (Chen and Dubnau

2004; Mell and Redfield 2014), or rarely by illegitimate recombination with

sequences of limited homology or no homology (Hülter and Wackernagel

2008).  A limitation of this form of HGT may be that in the environment DNA is

vulnerable to degradation, although experiments suggest that extracellular
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DNA is abundant in all environmental sources tested (Lorenz and

Wackernagel 1994) .

1.4.4 Integrons

Integrons are gene capture and expression systems (Cambray et al.

2010; Gillings 2014), the structure and function of which are summarised in

Figure 1.9. An integrase is coded for by intI, which mediate recombination

between the attI site of the integron with the attC recombination sites of gene

cassettes. Gene cassettes are circular genetic elements, which in most cases

comprise a single open reading frame (ORF) and an attC site. Integrons

usually contain arrays of multiple gene cassettes. A promoter sequence within

the integrase coding sequence, or between the integrase and attI, results in

strong expression of the adjacent gene cassette, with weaker expression of

cassettes further downstream (Cambray et al. 2010; Toleman and Walsh

2011; Gillings 2014).
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Figure 1.9 – Schematic representing the structure of integrons and a

model of the incorporation of circular gene cassettes at the attI site.

Reproduced with permission from Cambray G et al. Ann Rev Genet. 2010, 44:

141-66 (Cambray et al. 2010).

Integrons have access to a vast array of ORFs, most of which code for

proteins of unknown function, and are thought to have a significant impact on

the genetic plasticity of bacteria in many environments. This has been

exemplified by a small number of classes of integrons (class 1, 2 and 3),

which have played an important part in the evolution of AMR in bacteria

(Toleman and Walsh 2011; Gillings 2014). Most widespread in clinically
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relevant bacteria are class 1 integrons. These usually have a small number of

gene cassettes (0-8). The ancestors of modern class 1 integrons probably

conferred significant selective advantage in clinical environments because

they contained qacE, coding for an efflux pump conferring resistance against

quaternary ammonium compounds, which were widely used in disinfectants

(Toleman and Walsh 2011; Gillings 2014). This structure then became

associated with Tn402, a Tn which targets res sites of plasmids, favouring

dissemination to new genetic backgrounds (Minakhina et al. 1999).

The 3’ conserved sequence (3’CS) of modern class 1 integrons was

formed by an event which deleted the 3’ end of qacE including its associated

attC site, and placed a sulI gene downstream, which codes for a

sulphonamide resistant dihydropteroate synthase (Gillings 2014). This same

insertion event probably resulted in the deletion of some of the transposition

genes of Tn402 (Toleman and Walsh 2011). Class 1 integrons have

subsequently become associated with other genetic elements, for example in

some ISCR1 is found next to the 3’CS (see below) (Toleman et al. 2006;

Toleman and Walsh 2011).

1.4.5 ISs, Tns and ISCRs

A growing number of genetic elements have been identified which are

capable of transposition to new genetic locations within a genome, including

to new replicons, independently of homologous recombination (Darmon and

Leach 2014). Insertion sequences (IS) are short genetic elements which

usually contain one or two ORFs coding for a transposase. Intact ISs have

terminal inverted repeats and on insertion into the host DNA usually result in
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direct repeats (DRs) of the insertion target flanking the IS. Excision from the

original location at the IS boundaries and insertion at the new genetic location

is catalysed by the elements transposase(s) (Mizuuchi 1992).

IS can have important effects as they may interrupt and inactivate

genes or directly affect the expression of adjacent genes. Altered expression

occurs if the IS sequence contains a complete promoter or -35 promoter motif

the correct distance from a -10 promoter motif (Darmon and Leach 2014), as

occurs with ISAba125 and blaNDM-1-like genes (Poirel et al. 2011a). ISs can also

lead to genetic changes in the host sequence in a number of ways. IS

transposition may only mobilise the IS sequence, but a few elements, such as

ISEcp1, IS911 and ISCR elements, can also transpose flanking DNA

sequences (Toleman et al. 2006; Toleman and Walsh 2011). However, two

similar ISs near to one another within a replicon can form a composite Tn,

where both ISs and any intervening host sequence are mobilised by a single

transposition event (Darmon and Leach 2014). Alternatively, IS sequences

can lead to significant genetic changes because of homologous or illegitimate

recombination between similar ISs, resulting in large deletions or

chromosomal re-arrangements.

Tns are larger genetic elements which are structurally and functionally

diverse. They usually harbour genes not related to their own transposition

which have important phenotypic properties, such as AMR genes. Like ISs

they usually have flanking IRs and DRs (Darmon and Leach 2014). The

simplest Tns, including composite Tns, function similarly to ISs and have a

limited number of ORFs coding for transposases and sometimes other

proteins thought to be involved in initiating and regulating transposition
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between genetic locations, limited to the host cell, but not to a single replicon.

Other much larger and more complex elements are considered by some

authors to be Tns, for example the ICEs.

ISCR were first described as “common regions” adjacent to the 3’CS of

class 1 integrons (Toleman et al. 2006). It was later proposed that these

elements were novel ISs, which transposed by a rolling circle replication

mechanism as previously characterised for IS91-like elements. Importantly,

unlike IS91-like elements, ISCR elements are frequently found associated

with AMR genes. A single ORF codes for a transposase but ISCRs do not

contain IRs characteristic of most IS. Rolling circle transposition is thought to

be mediated by the transposase and to commence at the origin of replication,

oriIS. Replication normally terminates at a termination signal, terIS, upstream

of the ORF. In IS91-like elements a proportion of the time the terIS signal is

not recognised and instead a DNA sequence upstream of the element is

transposed. It is hypothesised that ISCRs behave in a similar manner. In the

case of ISCR1, all of the sequences described are linked to the 3’CS of the

class 1 integrons, and there is no sequence with identity to terIS from other

ISCR or IS91-like elements, suggesting that earlier in evolution the terIS

sequence was deleted. This being the case, it would suggest that ISCR1

transposition would then more frequently result in the transposition of a

variable length of the class 1 integron upstream of it.

1.4.7 Genomic islands (GEIs)

The term GEIs has been used to refer to regions of DNA which differ

between closely related strains, often have nucleotide characteristics, like the
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GC content, which vary from that of the strain in which they reside and which

may in some cases represent elements which are mobile by some

mechanism, or have been mobile in the past (Juhas et al. 2009).  Many GEIs

harbour regions coding for genes of significant phenotypic importance, so

they are often referred to according to the predominant function of these

genes as pathogenicity islands, resistance islands, symbiosis islands and so

on.  To make the nomenclature more confusing a proportion of these

elements are likely to be ICEs.  Other features which many GEIs share is that

they are often flanked by base pair direct repeats and integrated at tRNA gene

sites, features that they share with some ICEs. ISs, Tns and integrons are

frequently found within GEIs.

1.5 Gram-negative species analysed in this thesis

The following section introduce the species of GNB in which blaNDM-1

contexts were investigated in this thesis. An overview of these species is

offered in terms of their clinical significance, AMR, mechanisms of HGT and

MGEs associated with these species.

1.5.1 Acinetobacter spp.

The genus Acinetobacter includes a growing number of species of non-

fermentative Gram-negative cocco-bacilli, including 37 named species at the

time of writing (http://www.bacterio.cict.fr/a/acinetobacter.html, see Table 1.4).

Identification to species level by traditional biochemical methods is unreliable,

with species now defined by a variety of molecular methods (Towner 2009).

Acinetobacter baumannii has emerged in recent years as an important
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pathogen. Other members of the A. baumannii complex (ABC), Acinetobacter

pittii (previously Acinetobacter genomospecies 3) and Acinetobacter

nosocomialis (previously Acinetobacter genomospecies 13TU) are also

strongly associated with hospital infections (Nemec et al. 2011; McConnell et

al. 2013). These species are biochemically indistinguishable from each other

and it is likely that studies of A. baumannii have often included other members

of the ABC. Other Acinetobacter spp. are probably infrequent causes of

opportunistic infections.

Acinetobacter sp. Proposed reservoir

A. apis Unknown – initial isolation honey bee intestine.

A. baumannii Unknown – hospital associated coloniser & pathogen.

A. baylyi Unknown – initial isolates from activated sludge.

A. beijerinckii Unknown – early isolates all human/ clinical source.

A. bereziniae Early isolates clinical and hospital environment.

A. boissieri Unknown – initial isolates from floral nectar.

A. bouvetii Unknown – initial isolates from activated sludge.

A. brisouii Unknown – initial isolate from peat.

A. calcoaceticus Soil or wastewater.

A. gandensis Unknown – initial isolates from horses and cattle.

A. gerneri Unknown – initial isolates from activated sludge.

A. grimontii Unknown – initial isolates from activated sludge.

A. guangdongensis Unknown – initial isolates from lead-zinc ore mine site.

A. guillouiae Unknown – initial isolates sewage, soil and clinical.

A. gyllenbergii Unknown – early isolates all human/ clinical source.

A. haemolyticus Unknown – early isolates all human/ clinical source.

A. harbinensis Unknown – initial isolate from river water.

A. indicus Unknown – initial isolate hexachlorocyclohexane dump site.

A. johnsonii Human and animal flora, food spoilage.

A. junii Unknown – early isolates all human/ clinical source.

A. kookii Unknown – initial isolates isolated soil and sediment.
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Acinetobacter sp. Proposed reservoir

A. lwoffii Human and animal skin flora, food spoilage flora.

A. nectaris Unknown – initial isolates from floral nectar.

A. nosocomialis Unknown – hospital associated coloniser & pathogen.

A. parvus Unknown – most initial isolates clinical.

A. pittii Unknown – hospital associated coloniser & pathogen.

A. puyangensis Unknown – initial isolates from tree bark.

A. qingfengensis Unknown – initial isolates from tree bark.

A. radioresistens Human and animal skin flora, food spoilage flora.

A. rudis Unknown – initial isolates from milk and wastewater.

A. schindleri Unknown – early isolates all human/ clinical source.

A. soli Unknown – initial isolation soil, clinical isolates reported.

A. tandoii Unknown – initial isolates from activated sludge.

A. tjernbergiae Unknown – initial isolates from activated sludge.

A. towneri Unknown – initial isolates from activated sludge.

A. ursingii Unknown – early isolates all human/ clinical source.

A. venetianus Unknown – initial isolates from lagoon water.

Table 1.4 – Named Acinetobacter spp. and their sources of isolation

(Bouvet and Grimont 1986; Di Cello et al. 1997; Nemec et al. 2001; Carr et al.

2003; Kim et al. 2008; Nemec et al. 2009; Towner 2009; Anandham et al.

2010; Nemec et al. 2010; Vaz-Moreira et al. 2011; Malhotra et al. 2012; Choi

et al. 2013; Li et al. 2013; Álvarez-Pérez et al. 2013; Feng et al. 2014;

Kitanaka et al. 2014; Li et al. 2014a; Li et al. 2014b; Smet et al. 2014).

Species names in bold indicate that NDM-producing isolates studied in this

thesis.
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Although ABC have been identified in some studies as colonisers in the

community and from environmental, animal samples and lice, these reports

are infrequent, and vary considerably between studies and between

geographic locations (Eveillard et al. 2013). Thus the nature of any

environmental reservoir for the ABC is controversial. Other Acinetobacter spp.

are probably largely environmental in origin, although for some species their

reservoirs are poorly established (Towner 2009).  Others, like A. johnsonii, A.

lwofii and A. radioresistens, are most often associated with human or animal

skin colonisation, as well as food spoilage. Several species, most notably A.

calcoaceticus (which is sometimes grouped with members of the ABC as the

Acinetobacter calcoaceticus - baumannii complex) and A. johnsonii, are found

mainly in soil or wastewater (Towner 2009; Evans et al. 2013).

Infections caused by A. baumannii predominantly occur in hospitalised

patients and particularly in the most vulnerable patients, such as those on

intensive care or burns units (McConnell et al. 2013). These organisms have

been found to cause many, often quite difficult to control outbreaks of infection

on such units (Dijkshoorn et al. 2007; Zarrilli et al. 2013). Reasons for this

probably include their resistance to desiccation and disinfectants, allowing

persistence in hospital environments. Due to the frequency of MDR

phenotypes, antimicrobial selection pressure is also likely to be an important

driver of nosocomial spread.

A. baumannii has been associated with a wide range of infections but

is most commonly associated with pneumonia, blood stream and burn wound

infections (McConnell et al. 2013). Pneumonia is most often ventilator

associated, although community acquired pneumonia caused by A. baumannii
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is reported. Blood stream infections are most likely to be secondary to

intravascular device infections, pneumonia or burn wound infections. For

several years A. baumannii infections were encountered in soldiers returning

with injuries sustained during fighting in Iraq and Afghanistan. Unusually in

this context it has been associated with significant skin and soft tissue

infections, including cases of necrotising fasciitis, and with osteomyelitis.

Significant crude mortality has been associated with VAP (40-70%) and

blood stream infections (28%-43%) caused by A. baumannii (McConnell et al.

2013). However, as A. baumannii infections are most common in patients who

are severely unwell, defining the attributable mortality is not straight forward.

Although there are limitations to the evidence, meta-analysis of available

observational studies have concluded that A. baumannii infections are

associated with significant attributable mortality (Falagas et al. 2006; Falagas

and Rafailidis 2007). A review of outcomes of treatment of infections with

carbapenem susceptible versus non-susceptible A. baumannii also suggested

that mortality was higher in the latter group (Lemos et al. 2014).

Acinetobacter spp. are not intrinsically resistant to many of the

antimicrobials used to treat GNB, and it remains the case that most isolates of

the “environmental” species have low MICs to most of these antimicrobials

(Towner 2009). Acinetobacter spp., in particular A. baumannii have proven to

be particularly adept at acquiring resistance mechanisms. Rates of resistance

to carbapenems, which had become the drugs of choice for treating most A.

baumannii infections, have risen alarmingly in many parts of the world

including the USA, parts of Asia and in Southern Europe (Higgins et al. 2010;

Evans et al. 2013; Lemos et al. 2014). A recent report looking at a global
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collection of A. baumannii isolates showed that the only antimicrobials for

which more than 50% of isolates were susceptible were colistin, doxycycline

and minocycline (Castanheira et al. 2014).

Globally the nosocomial spread of resistant A. baumannii is strongly

associated with certain strains (Higgins et al. 2010; Karah et al. 2012; Zarrilli

et al. 2013). These have been able to acquire multiple AMR determinants,

which have then probably been selected for by the extensive use of broad

spectrum antimicrobials in healthcare. Terminology has become relatively

confusing as our understanding, and the techniques employed for strain

typing, have developed. The European clones I-III were initially defined by

amplified fragment length polymorphism (AFLP) analysis. Subsequently these

were found to be globally distributed, and thus renamed global clones, and

found to closely correspond to strain types and clonal complexes as defined

by multilocus sequence typing (MLST) typing schemes and pulsed field gel

electrophoresis (PFGE) types.

More recently analysis of WGS data for core genome single nucleotide

polymorphisms (SNPs) and indels has been utilised to provide a finer level of

differentiation (Zarrilli et al. 2013). This has allowed the tracking of different

patterns of transmission of closely related isolates. In the near future WGS will

probably replace these other techniques for the epidemiological investigation

of A. baumannii. In the meantime more extensive investigation with other

typing methods has led to the proposal of further global clones, although

these are not recognised as frequently as the original three (Higgins et al.

2010; Karah et al. 2012).
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The predominant β-lactamases of clinical importance in A. baumannii

are the OXA enzymes (Poirel and Nordmann 2006a).  Many of the OXA β-

lactamases of A. baumannii and other Acinetobacter spp. have some activity

against carbapenems and are associated with clinically relevant resistance to

carbapenems. However, the hydrolysis of carbapenems by OXAs is not

particularly potent, and so clinically relevant carbapenem resistance probably

requires the presence of other mechanisms. This is supported by

experimental evidence from gene knockouts and transfer of various blaOXA

genes to A. baumannii recipients, in whom levels of resistance are modest

unless mechanisms such as AdeABC efflux pumps are also present (Evans et

al. 2013).

There are five groups of OXA β-lactamases described in A. baumannii

to date (Evans et al. 2013). The OXA-23-like and OXA-58-like enzyme

producers have caused outbreaks of carbapenem-resistant A. baumannii in

many countries. OXA-40-like (OXA-40 was originally named OXA-24)

enzymes have been reported in various geographic locations but seem to be

particularly important in Spain and Portugal (Poirel et al. 2010; Evans et al.

2013). Recently the enzymes OXA-143 and the related enzyme OXA-182

have been described from A. baumannii isolates from Brazil and Korea,

respectively. The genes coding for these enzymes were probably acquired by

HGT in A. baumannii.

Most A. baumannii in addition harbour a blaOXA-51-like carbapenemase

gene on their chromosome (Turton et al. 2006b; Evans et al. 2013). There

remains uncertainty as to how significant these enzymes may be to

carbapenem resistance because of the limited hydrolytic profiles of the
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variants which have so far been tested (Evans et al. 2013). However, it has

been proposed that if the gene has an ISAba1 element upstream, and the

promoter associated with it, the increase in expression can result in clinically

relevant levels of resistance (Turton et al. 2006a). Of note the acquired OXA

type β-lactamases like blaOXA-23 are very often associated with ISs and their

promoters (Corvec et al. 2007).

In addition to the OXA type β-lactamases most A. baumannii harbour

ADCs (Acinetobacter-derived cephalosporinsases), which are AmpC type

chromosomal enzymes (Lopes and Amyes 2012; Evans et al. 2013). At

intrinsic levels of expression these are associated with resistance to narrow

spectrum penicillin and cephalosporins. However, insertion of certain ISs

upstream of these genes can enhance their expression and result in

resistance to extended spectrum cephalosporins (Evans et al. 2013). Less

frequent in A. baumannii, but associated with high level carbapenem

resistance, are MBL enzymes, a number of which have been described in A.

baumannii, including NDM-1 and NDM-2.

More recent genetic investigations of A. baumannii facilitated by WGS

have demonstrated that there is evidence of extensive recombination between

strains and significant variation in genetic determinants of resistance, even

between closely related strains, suggesting that HGT has played a significant

part in shaping this species’ evolution (Adams et al. 2010; Snitkin et al. 2011;

Wright et al. 2014). ISs and plasmids are intimately associated with AMR

determinants in A. baumannii. Plasmid replicon types in Acinetobacter spp.

are distinct from those in Enterobacteriaceae (Bertini et al. 2010).
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Also strongly associated with AMR genes in A. baumannii are several

GEIs. In particular a family of closely related GEIs is found inserted within the

comM gene, especially in global clones I and II (Adams et al. 2010; Hamidian

and Hall 2011; Karah et al. 2012; Nigro and Hall 2012). These islands are

called AbaR islands and consist of a backbone Tn, with additional Tns, ISs,

class 1 integrons and AMR determinants, making up their variable regions.

Competence has been extensively studied in A. baylyi but has not

been widely observed in other members of the genus (Young et al. 2005). A

naturally competent A. baumannii strain, A118, has been recently sequenced

(Traglia et al. 2014). Most of the proposed competence genes of A. baumannii

showed high levels of AA identity between A118 and a set of other A.

baumannii strains. However, the proposed competence gene, comM, was not

interrupted in A118, unlike in many clinical A. baumannii isolates (Adams et al.

2010; Karah et al. 2012; Traglia et al. 2014). An intriguing study has recently

shown that when grown on semi-solid agar several A. baumannii isolates are

able to utilise their type 4 pilus for twitching motility and are transformable

under these conditions (Wilharm et al. 2013). A separate mechanism of HGT

from A. baumannii has also been proposed secondary to the release of outer

membrane vesicles, which have been experimentally shown to be able to

transform an A. baumannii recipient with DNA containing blaOXA-24/40 (Rumbo

et al. 2011).

1.5.2 Vibrio cholerae

V. cholerae is a Gram-negative, spiral shaped bacillus found in coastal

and estuarine waters and closely associated with copepods and shellfish
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(Harris et al. 2012). It is best known for causing the disease cholera,

characterised by profuse watery diarrhoea and vomiting. In severe cases

cholera can result in profound dehydration and multi-organ failure and death

(Harris et al. 2012). However, there is a range of disease severity, with most

cases of V. cholerae infections with epidemic strains having either mild or

asymptomatic disease (Morris 2003).

Rapid fluid and electrolyte replacement is the mainstay of treatment

(Morris 2003; Harris et al. 2012). Antimicrobials may be of some benefit as

adjunctive therapy but treatment guidelines currently advise restricting their

use to severe cases, in which they may reduce the duration of illness and

excretion of the organism (Kitaoka et al. 2011). The WHO advises doxycycline

or tetracycline as first line treatment for adults and erythromycin for children or

pregnant women (Global Task Force on Cholera Control 2010). Resistance to

all agents currently recommended for V. cholerae has been reported,

predominantly in South Asia (Kitaoka et al. 2011; Harris et al. 2012). Notably

β-lactams are not advised but NDM-producing V. cholerae (NPVC) have been

identified from environmental and clinical samples (Walsh et al. 2011; Darley

et al. 2012; Mandal et al. 2012).

V. cholerae is regarded as an important re-emerging pathogen.

Cholera remains endemic in many countries in Asia and Africa, and epidemic

outbreaks of disease continue to emerge. Worldwide, reported cases of

cholera fluctuate year on year. According to WHO data, the most recent peak

occurred in 2011, when there were 589,854 cases and 7816 deaths reported

(World Health Organization 2012). However, estimates suggest that in reality

there are likely to be in the region of 3 – 5 million cholera cases each year,
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associated with 100,000 – 130,000 deaths (World Health Organization 2010).

The 7th worldwide pandemic of cholera is still ongoing. It commenced in

Indonesia in 1961, before spreading to other parts of Asia, Africa, Europe and

Latin America (Mutreja et al. 2011; Harris et al. 2012), as illustrated by Figure

1.10. The previous 6 pandemics occurred between 1817 and 1925, before

which the disease was probably largely confined to the Indian subcontinent

(Harris et al. 2012).

V. cholerae strains have traditionally been distinguished by their O

antigen serogroup, of which more than 200 have been described (Zo et al.

2009). Epidemic cholera is predominantly associated with V. cholerae strains

of serogroups O1 or O139 (Karaolis et al. 1998; Morris 2003; Mutreja et al.

2011; Harris et al. 2012). The O1 serotype is divided into two biotypes,

classical and El Tor. The classical biotype was responsible for the 5th, 6th and

possibly earlier pandemics. V. cholerae 01 El Tor has largely been responsible

for the 7th Pandemic (Mutreja et al. 2011; Harris et al. 2012). There are two

major serotypes of V. cholerae O1, Inaba and Ogawa (Harris et al. 2012).

These vary in relative prevalence over time and with geographic region

(Harris et al. 2012; World Health Organization 2012, 2013). In 1992 the O139

serogroup was first identified as a cause of a cholera epidemic in South Asia,

where it has since remained confined (Ramamurthy et al. 2003; Blokesch and

Schoolnik 2007; Harris et al. 2012).



51

Figure 1.10 - Transmission events inferred for the seventh-pandemic based on a phylogenetic analysis of SNP differences

across the whole core genome, excluding probable recombination events, drawn on a global map. Reproduced with

permission from Mutreja A et al., Nature 2011, 477: 462-465 (Mutreja et al. 2011).
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The epidemic strains of V. cholerae all possess two important pathogenicity

regions, both of which are absent in most non-O1, non-O139 strains (Karaolis et al.

1998; Morris 2003; Chun et al. 2009; Harris et al. 2012). The cholera toxin is a

protein exotoxin coded for by genes which are found within the CTXΦ prophage

(Waldor and Mekalanos 1996). A second pathogenicity region, which also has

features suggestive of a phage origin, is the Vibrio Pathogenicity Island-1 (VPI-1)

(Karaolis et al. 1998; Karaolis et al. 1999). This element contains genes necessary

for the colonisation of the gut and the toxin co-regulated pilus (TCP) (Morris 2003).

Other serogroups of V. cholerae have been associated with gastrointestinal

infection and with occasional outbreaks (Karaolis et al. 1998; Morris 2003).

Sometimes these strains can cause invasive infections and sepsis. >90% of non-

O1/O139 serogroup strains produce a polysaccharide capsule, unlike 01 serogroup

strains which are very rarely associated with sepsis (Morris 2003). In Asia various

groups of immunocompromised patients, especially with cirrhosis of the liver, have

been identified as being vulnerable to blood steam infections with V. cholerae (Ko et

al. 1998; Morris 2003; Petsaris et al. 2010). Although such infections are uncommon

they are associated with significant mortality, with studies reporting rates of 24-62%,

although estimating the attributable mortality is problematic (Ko et al. 1998; Morris

2003; Petsaris et al. 2010).

WGS has shown that 7th pandemic isolates have conserved core genomes

(Mutreja et al. 2011). Epidemic O139 isolates have substantially different O-antigen

biosynthetic gene clusters to O1 El Tor isolates, despite being from a common

genetic lineage (Ramamurthy et al. 2003; Chun et al. 2009; Mutreja et al. 2011). It is

thought, therefore, that this gene cluster was acquired horizontally from another

strain (Ramamurthy et al. 2003; Blokesch and Schoolnik 2007; Chun et al. 2009).
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That this can occur is supported by experimental data (Blokesch and Schoolnik

2007). Conversely, several strains have been identified which are distantly

genetically related despite sharing a common serogroup (Chun et al. 2009; Mutreja

et al. 2011). Indeed, classical strains seem to be an independent lineage from El Tor

strains (Mutreja et al. 2011). Other differences between 7th pandemic isolates are

largely as the result of differences in the presence of various GEIs (Chun et al.

2009). Relatively few environmental and non-O1/O139 isolates have been

sequenced but they appear to be genetically diverse (Chun et al. 2009; Mutreja et al.

2011).

Given the right environmental conditions, including the presence of chitin,

which is widely present in marine environments and present in the exoskeletons of

copepods, with which Vibrio spp. are associated, V. cholerae are naturally

transformable (Lo Scrudato and Blokesch 2012; Sun et al. 2013a). This may be one

mechanism by which V. cholerae strains are able to share genetic information in the

environment. Experiments on chitinous surfaces have demonstrated serogroup

transformation of O1 to O139 and O37 serogroups (Blokesch and Schoolnik 2007).

Several broad host range MGEs associated with antibiotic resistance genes

have been identified in V. cholerae, most notably ICEs of the SXT/ R391 family.

These elements were absent from the 01 El Tor strains in the first wave of the 7th

pandemic, but present in most isolates from the second and third waves of

transmission (Pugliese et al. 2009; Kitaoka et al. 2011). SXT/ R391 ICEs have also

been found in non-O1/O139 strains and in many other species of GNB (Burrus et al.

2006; Wozniak et al. 2009; Ceccarelli et al. 2013). In vitro SXT can be transferred

efficiently to various recipients including E. coli (Beaber et al. 2004). SXT in V.

cholerae was initially associated with trimethoprim/ sulphamethoxazole and
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streptomycin resistance (Kitaoka et al. 2011) but subsequently variants have been

identified harbouring a variety of different resistance genes (Burrus et al. 2006;

Wozniak et al. 2009; Kitaoka et al. 2011). In addition resistance plasmids, especially

IncA/C plasmids, have been described in V. cholerae (Pan et al. 2008; Pugliese et al.

2009; Kitaoka et al. 2011). IncA/C plasmids are genetically similar to SXT/ R391

ICEs, have a broad host range and are readily transferred to several Gram-negative

species in vitro (Wozniak et al. 2009; Carattoli et al. 2012; Johnson and Lang 2012).

V. cholerae strains, as well as often harbouring class 1 integrons (Jain et al.

2008; Kitaoka et al. 2011; Kumar and Thomas 2011), also have a super integron on

chromosome 2 associated with more than 100 gene cassettes (Rowe-Magnus et al.

1999; Baharoglu et al. 2012). Although most of the gene cassette ORFs code for

proteins of unknown function, the variability in super-integrons suggests that they

may contribute to adaption and plasticity in response to changing environmental

conditions (Rowe-Magnus et al. 1999; Gao et al. 2011; Baharoglu et al. 2012). Both

types of integron and SXT have been shown to be influenced by recA mediated

“stress” responses. In the case of SXT exposure to antibiotics like ciprofloxacin are

among the SOS response stimulators shown to enhance conjugation rates (Beaber

et al. 2004; Kitaoka et al. 2011). Conjugation and natural transformation have also

been shown to lead to increased gene cassette recombination secondary to SOS

induction (Guerin et al. 2009; Baharoglu et al. 2012).

1.6 Concluding remarks

The work reported in this thesis focuses on the genetic contexts associated

with blaNDM-1 in two very different groups of GNB; namely, Acinetobacter spp. and V.

cholerae. This helps to expand the knowledge regarding the diversity of contexts
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associated with blaNDM-1 beyond the Enterobacteriaceae, in which most work has

been conducted. Acinetobacter spp. were of interest in that the genus includes

important nosocomial pathogens and is proposed to be genus from which blaNDM-1-like

genes have spread to other GNB. V. cholerae is also of clinical importance and was

felt to be an interesting model organism in view of its dissemination in the

environment and potential for genetic plasticity. In studying the genetic contexts and

MGEs associated with the spread of blaNDM-1 it is hoped to gain insights into how this

resistance gene and other AMR determinants disseminate and why certain contexts

are more successful than others. Ultimately the objective of such work is to

contribute to the debate on necessary action that might stem the spread of MDR

pathogens and provide impetus for greater commitment to develop new therapeutic

strategies.
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Chapter 2

Materials and Methods

2.1 Bacterial isolates studied

All of the bacterial strains used in this thesis are shown in Table 2.1. The 2005

Acinetobacter spp. isolates from Tamil Nadu, India, were supplied by K.

Kumarasamy from Chennai University. The 2013 Acinetobacter spp. were isolated in

Cardiff from faecal screening samples collected in Karachi, Pakistan, from March to

August 2012. These samples were supplied by A. Mushtaq from Dow Medical

College, Karachi. Further details of this study are reported in Chapter 4. The 2010

environmental isolates of V. cholerae were isolated by Prof. Walsh’s group in Cardiff

(Walsh et al. 2011). V. cholerae BRV8 was provided by Dr E. Darley (Darley et al.

2012). Further details on the V. cholerae isolates are given in Chapter 5.

K. pneumonia 05-506 was used as a blaNDM-1 positive control in some

experiments. The strains Escherichia coli UAB190 (Mata et al. 2011) and A. pittii

AG3528 were used as recipients in mating experiments and were provided by

Caterina Mata, of Universitat Autònoma de Barcelona, and Dr Mandy Wootton at the

Specialist Antimicrobial Chemotherapy Unit, Cardiff, respectively. The blaNDM-1

positive transconjugants used in further experiments are also shown in Table 2.1.

The strains E. coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were

used as controls for antimicrobial susceptibility testing
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Isolate Species Source Location isolated Year
isolated

CHI-16 Acinetobacter baumannii Blood Tamil Nadu, India 2005

CHI-18 Acinetobacter baumannii Blood Tamil Nadu, India 2005
CHI-32 Acinetobacter baumannii Blood Tamil Nadu, India 2005
CHI-34 Acinetobacter baumannii Sputum Tamil Nadu, India 2005
CHI-40-1 Acinetobacter bereziniae Pus Tamil Nadu, India 2005
CHI-40-2 Acinetobacter baumannii Pus Tamil Nadu, India 2005
CHI-41 Acinetobacter baumannii Sputum Tamil Nadu, India 2005

CHI-44 Acinetobacter baumannii Endotracheal
aspirate Tamil Nadu, India 2005

CHI-45-1 Acinetobacter baumannii Endotracheal
aspirate Tamil Nadu, India 2005

73261-EC Acinetobacter haemolyticus Faecal screening Karachi, Pakistan 2012

70114-EC Acinetobacter haemolyticus Faecal screening Karachi, Pakistan 2012

69122-EW Acinetobacter haemolyticus Faecal screening Karachi, Pakistan 2012

74312-EC Acinetobacter schindleri Faecal screening Karachi, Pakistan 2012

73668-ECT Acinetobacter towneri Faecal screening Karachi, Pakistan 2012
116-17a Vibrio cholerae Seepage water New Delhi, India 2011
116-17b Vibrio cholerae Seepage water New Delhi, India 2011
116-14 Vibrio cholerae Seepage water New Delhi, India 2011
BRV8 Vibrio cholerae Blood Bristol, England 2011

UAB190 Escherichia coli
Laboratory strain
derived from
HB101

Barcelona, Spain

AG3528 Acinetobacter pittii Wound swab Cardiff, Wales 2011
UAB190NDMP1 Escherichia coli Transconjugant Cardiff, Wales 2012
UAB190NDMP2 Escherichia coli Transconjugant Cardiff, Wales 2012
UAB190NDMP3 Escherichia coli Transconjugant Cardiff, Wales 2012
AG3528NDMP1 Acinetobacter pittii Transconjugant Cardiff, Wales 2012
AG3528NDMP2 Acinetobacter pittii Transconjugant Cardiff, Wales 2012
AG3528NDMB1 Acinetobacter pittii Transconjugant Cardiff, Wales 2012
AG3528NDMB2 Acinetobacter pittii Transconjugant Cardiff, Wales 2012
KP 05-506 Klebsiella pneumonia Urine Őrebro, Sweden 2008
ATCC 25922 Escherichia coli Clinical isolate Seattle
ATCC 27853 Pseudomonas aeruginosa Clinical isolate Boston

Table 2.1 – List of study isolates.



58

2.2 Reagents and media

Ready-made reagents supplied directly from the manufacturers are given in the main

text of this Chapter. Recipes for reagents made up locally are provided in Appendix

2.1 and a full list of media used is included in Appendix 2.2.

2.3 Bacterial identification

Preliminary identification of V. cholerae and 2005 Acinetobacter spp. isolates

was performed using the BD phoenix automated identification system (Becton

Dickinson, Franklin Lakes, USA), according to manufacturer’s instructions. In brief,

isolates were inoculated in Phoenix ID broth to give a suspension of 0.5-0.6

McFarland. A drop of AST indicator solution and 25 µl of the bacterial suspensions

were added to Phoenix AST Broth. These suspensions were poured on to the ID and

AST ports of Gram-negative Phoenix panels respectively. Organism identification

were then provided by the automated system, with susceptibility results where

applicable.

Following the introduction of matrix-assisted laser desorption/ ionization time

of flight mass spectrometry (MALDI-TOF, Bruker, Billerica, USA) as a means of

bacterial identification in the Specialist Antimicrobial Chemotherapy Unit, this was

adopted as the main method of preliminary identification. MALDI-TOF was used to

provide preliminary identification for all 2012 Karachi Acinetobacter spp. isolates and

the 2005, Tamil Nadu Acinetobacter spp. isolate CHI-40-1, which earlier experiments

had not provided a reliable identification for. It was also used to confirm species

background of putative transconjugants obtained by conjugation experiments (see

section 2.16). Most samples were tested by the direct transfer method only, following

manufacturer’s instructions. Single colonies from overnight growth on solid media
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were directly applied to a Bruker MSP 96 target, polished steel plate. Samples were

overlaid with 1 µl of α-cyano-4-hydroxycinnamic acid (HCCA) matrix solution

(Bruker) and allowed to air dry. The plates were then loaded onto the MALDI

biotyper. Scores of reliability of ≥2.0 were required for species level identification. For

samples yielding lower reliability scores, MALDI-TOF was repeated following protein

extraction.

For the extraction process 300 µl of Sigma molecular water was inoculated

with 1 µl loop full of the test isolate and vortexed. 900 µl of absolute ethanol was

then added to suspensions and these were vortexed for ~1 min, then centrifuged for

2 min at 13,000 rpm. The supernatants were discarded, the samples centrifuged

again for 2 min at 13,000 rpm and then air dried. 10-50 µl of 70% formic acid solution

was mixed with each sample, in proportion with the size of the pellet. Equal volumes

of 100% acetonitrile were then added and mixed. Samples were centrifuged for 2

min at 13,000 rpm. 1 µl of extract supernatants were then applied to the Bruker MSP

96 target plate and then processed as above.

For A. baumannii isolates, support for initial identification was provided by

PCR for blaOXA-51-like genes (see section 2.7), which are universally present in A.

baumannii but rarely described in other species (Turton et al. 2006b). Amplicons

were sequenced. Isolates which underwent whole genome sequencing (WGS) were

also subjected to ribosomal MLST (rMLST) (see sections 2.15 and 2.16). For other

Acinetobacter spp. the identification provided by MALDI-TOF was supplemented by

sequencing of 1378 bps of their 16S rRNA genes (sections 2.7, 2.8 and 2.16). All V.

cholerae isolates underwent WGS and speciation was supported by rMLST.
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2.4 Susceptibility testing

Initial susceptibility testing for all 2005 Acinetobacter spp. isolates was

provided by BD phoenix (see section 2.2). Additional susceptibility testing of 2005

Acinetobacter spp. isolates and testing of all other study isolates was with gradient

strip methods using E-test (Biomerieux, LaPlane, France) and MIC test strips

(Liofilchem®, Roseto degli Abruzzi, Italy). 0.5 McFarland inoculums of test isolates

were spread on Mueller Hinton (MH) agar to give a continuous lawn of growth and

then gradient strips applied after allowing to dry. Interpretation of minimum inhibitory

concentration (MIC) results was according to manufacturer’s advice, using European

Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (version

3.1) for Acinetobacter spp. and transconjugants. For V. cholerae interpretation was

according to CLSI guidelines for Vibrio spp. other than V. cholerae, in the absence of

any species specific breakpoints available from EUCAST or CLSI (Clinical and

Laboratory Standards Institute 2006).

2.5 Restriction digests and S1 nuclease treatment of genomic DNA and pulsed

field gel electrophoresis

For all work reported in Chapters 3 and 4, relating to Acinetobacter spp. and

blaNDM-1 positive transconjugants, genomic DNA was prepared in agarose plugs

following Antibiotic Resistance: Prevention and Control (ARPAC) guidance for A.

baumannii strain typing (ARPAC 2009). Strains were grown on Luria Bertani (LB)

agar with 1 µg/ml of meropenem for blaNDM-1 positive strains, or LB agar without

meropenem for blaNDM-1 negative strains overnight and checked for purity.  Pure

cultures were harvested and suspended in 2 ml 1× TE buffer to optical density of 1.8

to 2.0 at a wavelength of 600 nm.  350 μl of cell suspensions were warmed to 50 °C
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on a heating block, mixed with an equal volume of LMP agarose and loaded into

plug moulds.  After setting these were placed in universals containing 3 ml of ES

buffer with 1 mg/ml proteinase K (Sigma Aldrich, St. Louis, USA) and incubated for 3

h at 55°C.  Plugs were then washed in 5 ml of 1× TE buffer at 4°C 4 times for at least

3 h.

For V. cholerae strains the above protocol produced degraded genomic DNA.

A new protocol was developed based on the PulseNet V. cholerae PFGE SOP

available at http://www.cdc.gov/pulsenet/PDF/vibrio_pfge_protocol-508c.pdf but

utilising equipment and reagents which were readily available in our laboratory.

Strains were grown on LB agar (with 1 µg/ml of meropenem for blaNDM-1 positive

strains) and inoculated into 3 ml of cell suspension buffer (CS buffer) to an optical

density of 0.9 to 1.1 at a wavelength of 600 nm. 400 μl of cell suspensions were

warmed to 50 °C, mixed with 20 µl of 20 mg/ml proteinase K and then with 400 μl of

low melting point (LMP) agarose and loaded into plug moulds. After setting each plug

was placed in 2 ml of proteolysis buffer supplemented with 10 µl of 20 mg/ml of

proteinase K and incubated at 50 °C overnight. The following day plugs were

washed 5 times in 1× TE buffer at 50°C for 30 min for each wash.

For digestion with ApaI (Thermo Fisher Scientific, Waltham, USA) plugs were

washed once with 1 ml 1× TE buffer for 15 minutes and twice with 1× ApaI buffer

(Thermo Fisher Scientific) for 20 min, all at 4 °C.  20 units of ApaI were applied direct

to the plugs and then diluted with 200 μl of fresh 1× ApaI buffer and incubated at 30

°C overnight in a moist box. For digestion with NotI (Thermo Fisher Scientific), plugs

were washed in 0.1× TE with shaking for 30 min at room temperature, then twice for

15 min in 1× buffer O (Thermo Fisher Scientific) at 4 °C. 20 units of NotI were

applied direct to the plugs and then diluted with 100 μl of fresh 1× buffer O and
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incubated at 37 °C overnight in a moist box. For digestion with endonuclease S1,

plugs were washed in 0.1× TE with shaking for 30 min at room temperature, twice for

15 minutes each time in 2× S1 buffer and once for 15 min in 1× S1 buffer at 4 °C.

Plugs were incubated with S1 nuclease at 37 °C for 45 min, with final concentrations

of 5x10-3 u/μl for Acinetobacter and 1.25x10-4 u/μl for Enterobacteriaceae and V.

cholerae. Previous experiments had shown that higher concentrations of the enzyme

were required to achieve optimal results in Acinetobacter compared to

Enterobacteriaceae.  For all enzymes the following day the enzyme and buffer were

aspirated and plugs were washed in 0.5× TBE buffer and loaded onto a 1.5% pulsed

field agarose gel made with 0.5× TBE buffer.

Fragments were separated using a CHEF DR III (Bio-Rad Laboratories, Inc.,

Hercules, USA) apparatus. PFGE conditions varied with the enzyme used to digest

genomic DNA and the species being investigated: for ApaI an initial switch time of 5

s, a final switch time of 13 s, a field angle of 120°, 6 V/cm for 20 h at 14°C, as per

ARPAC guidance (ARPAC 2009); for NotI digestion of V. cholerae isolates an initial

switch time of 2 s, a final switch time of 10 s, a field angle of 120°, 6 V/cm for 13 h,

followed by an initial switch time of 20 s, a final switch time of 25 s, a field angle of

120°, 6 V/cm for 6 h at 14 °C; for NotI digestion of A. baumannii isolates an initial

switch time of 2 s, a final switch time of 12 s, a field angle of 120°, 6 V/cm for 13 h at

14 °C; for S1 nuclease an initial switch time of 5 s, a final switch time of 45 s, a field

angle of 120°, 6 V/cm for 18 h at 14 °C. The electrophoresis tank was filled with 2L of

0.5× TBE buffer. Gels were stained in molecular grade water (Corning, New York,

USA) containing 1 µg/ml of ethidium bromide (Sigma Aldrich) for ~30 min and

destained in molecular grade water for ~60 min.  Gels were read under UV light and

photographed.
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2.6 In gel hybridisation with 32P labelled gene probes

PFGE or standard electrophoresis gels were placed on a sheet of filter paper

and incubated at 50 °C overnight.  When ready to use gels were rehydrated in sterile

distilled water for 45 min, placed in denaturing solution for 45 min and then

neutralising solution for 45 min.  The gel was then transferred to a hybridisation tube

with 20 ml of pre-hybridisation solution and incubated at 65 °C overnight.

Gel purified PCR amplicons were used as gene probe templates. A list of the

gene probes used in the course of this thesis is given in Table 2.2 along with details

of the PCR amplicons and genomic DNA templates used to prepare them. Gene

probes were made by the random primer method, incorporating CTP 32P

(PerkinElmer, Waltham, USA) using a Prime-It II Random Primer Labelling Kit

(Agilent technologies, Santa Clara, USA) as previously described (Patzer et al.

2009).  15 µl of template DNA was mixed with 10 µl of random primers and 8 µl of

molecular grade water and boiled for 5 min in a water bath. 2.5 µl of CTP 32P, 10 µl

dCTP buffer and 1 µl Klenow (Agilent technologies) fragment were rapidly added,

prior to incubation for 15 min at 37 °C. The mixture was then added to a Nick

column and allowed to run through with 320 µl of 0.1 M Tris HCL buffer at pH 7.5. A

further 430 µl of Tris HCL buffer was run through the column, and the labelled probe

was collected in a new microcentrifuge tube, boiled again and applied directly to the

gel, with pre-hybridisation buffer and incubated overnight at 65 °C in a hybridisation

oven. All gels had been pre-treated with pre-hybridisation buffer at 65 °C overnight.

The following day the probe was disposed of and gels were washed twice for

30 min each with 2× SSC (with 0.1% SDS) and with 0.1 SSC (with 0.1% SDS).

Probed gels were wrapped in cling film and placed with film in an X-ray cassette.
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These were placed at -80°C for at least 24 hours.  Finally autoradiographs were

developed using Sigma Aldrich Kodack developer and fixer (Sigma Aldrich).

Probe target PCR Primers* Template# Species tested

blaNDM-1
NDM 1F
NDM 1R

K. pneumoniae
KP-506

Acinetobacter spp.
(Chapters 3 and 4),
V. cholerae (Chapter 5)

ISAba125 ISAba125 5F
ISAba125 3R

A. baumannii
CHI-45-1

A. baumannii,
A. bereziniae (Chapter 3)

IS15-Δ VibIS26F
IS26gapR2

A. baumannii
CHI-45-1

A. baumannii,
A. bereziniae (Chapter 3)

ISCR27 insE 5F
ISCR27g2R

A. bereziniae
CHI-40-1

A. baumannii,
A. bereziniae (Chapter 3)

traA traA F1
traA R2

A. bereziniae
CHI-40-1

Acinetobacter spp.
(Chapter 4)

Table 2.2 – List of gene probes, with primers and templates used to produce

probes, and species tested. *Primers used in PCR reactions, PCR amplicons were

used to make gene probes. #Isolates used as template in PCR reactions.

2.7 Preparation of whole cell genomic DNA

Preparation of genomic DNA as PCR template and for WGS of Acinetobacter

spp. and V. cholerae was performed using a method based on that described by K.

Wilson (Wilson 2001). Overnight growths on LB agar (with 1 µg/ml meropenem for

blaNDM-1 positive isolates) were harvested and suspended in 9.5 ml of TE buffer.  To

these suspensions 50 μl of 20 mg/ml proteinase K was added, followed by 500 μl of
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10% SDS. This mixture was then incubated for 1hr at 37 °C.  1.8 ml of 5 M NaCl

solution was added and suspensions were left to stand for 10 min. CTAB NaCl

solution was added and samples incubated at 65 °C for 20 min.  Equal volumes of

24:1 chloroform (Thermo Fisher Scientific): isoamyl alcohol solution (Thermo Fisher

Scientific) were added and samples placed on a rotary mixer for approximately 80

min. Samples were centrifuged at 3,600 rpm for 30 min and the top layers

transferred to fresh tubes with an equal volume of isopropanol.  Precipitated DNA

was removed and added to 2 ml of 70% ethanol (Thermo Fisher Scientific).  Excess

ethanol was discarded and then the containers placed in a 55 °C incubator to

evaporate residual ethanol.

For isolates obtained during the passage experiment genomic DNA was

prepared using the Wizard® Genomic DNA Purification Kit (Promega, Madison,

USA) according to manufactures instructions, and used as template for the real time

quantitative PCR experiments. Isolates were grown overnight in LB broth (with or

without meropenem, depending on the strain, see section 2.18) on a rotary mixer at

37 °C. 1 ml of overnight cultures was centrifuged for 2 min at 13,000 rpm to pellet the

cells and the supernatants discarded. 600 µl of Nuclei Lysis Solution (Promega) was

added to the pellets and samples were incubated at 80°C on a heating block for 5

min, then allowed to cool to room temperature. 3 µl of RNase Solution (Promega)

was added to the cell lysates. The solutions were incubated at 37 °C for 60 min and

allowed to cool to room temperature. 200 µl of Protein Precipitation Solution

(Promega) was added to the cell lysates and vortexed vigorously, incubated on ice

for 5 min and then centrifuged at 13,000 rpm for 10 min. The supernatants were

transferred to clean 1.5 ml Eppendorf tubes containing 600 µl of isopropanol

(Thermo Fisher Scientific) and chilled to 4 °C. These were gently mixed by inversion,
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centrifuged at 13,000 rpm for 5 min, the supernatants discarded and the tubes

drained on absorbent paper. 600 µl of room temperature 70% ethanol was added

and samples were centrifuged at 13,000 rpm for 10 min. The ethanol was carefully

removed and samples placed in a 55 °C incubator to air dry the pellets for ~10-15

min. Pellets were rehydrated in 100 µl of molecular grade water overnight at 4 °C.

2.8 Polymerase chain reaction (PCR) and standard gel electrophoresis

Many PCR reactions were used in the course of the experiments performed

for this thesis. These were used for the detection of resistance genes (eg blaNDM-1,

blaOXA-23), for aiding in identification (eg 16S rRNA gene sequencing), for the

detection of pNDM-BJ01-like plasmids (see Chapter 4) and for the closure of wider

blaNDM-1 contexts, including complete plasmid sequences, from WGS contigs.

Immediate blaNDM-1 contexts in some Acinetobacter isolates were analysed by primer

walking, using PCR of overlapping sequences and amplicon sequencing. For A.

baumannii isolates and A. bereziniae CHI-40-1 this data was later supplemented by

WGS. The sequence of the immediate blaNDM-1 context from A. haemolyticus was

obtained from primer walking results only. In view of the large number of PCR

primers used a full list of primers used for work associated with each chapter is given

in Appendices 3.2, 4.2, 5.2, 5.4, 5.6 and 5.8. Most PCRs employed as template 1 µl

of genomic DNA, prepared as described above. For initial confirmation of the

presence of blaNDM-1 in study isolates and confirmation of the presence of blaNDM-1 in

putative transconjugants, templates were prepared by emulsifying single colonies in

50 μl of molecular grade water. Some of the PCR and amplicon sequencing

experiments for the Karachi Acinetobacter spp. isolates were performed by Dr Maria
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Carvalho, while primer design, planning and analysis was performed by myself for all

experiments.

For every 1 μl of template DNA PCR reactions contained 5 μl PCR ReddyMix

PCR Master Mix (Thermo Fisher Scientific), 3 μl of molecular grade water and 0.5 μl

of forward and reverse primers.  PCRs were run on G-Storm GS1 Thermal Cycler

(G-storm, Somerton, UK). For some PCRs, including that for blaNDM-1, optimum

annealing temperatures were determined using temperature gradients. Given the

number of different PCR reactions used to achieve closure of WGS, optimisation for

all primer combinations was impractical, and a default annealing temperature of 60

°C was employed. For PCRs which failed to amplify a product of the expected size or

for which products of multiple lengths were seen, and for which no alternative

assembly was confirmed by PCR, optimisation of annealing temperature was

attempted. This represented a small minority of the PCRs performed to achieve

closure. For all PCRs extension times were determined by expected product size,

based on 1 minute per kb of expected size, with a minimum of 1 minute.  PCR

reactions were as follows 95°C for 5 min followed by 35 cycles of 95°C for 1 min,

annealing temperature variable for 1 min, extension 68°C for variable time, 68°C for

10 min after cycles finished.   Products were loaded onto 1% HiRes standard

agarose gels (AGTC Bioproducts Ltd., Hull, England) stained with ethidium bromide

and standard electrophoresis run at 280 V for approximately 45 min.

2.9 Gel purification of PCR amplicons and Sanger sequencing of products

For sequencing, gel fragments were excised and purified using a QIAquick gel

extraction kit (Qiagen, Limburg, Netherlands). Excised gel fragments were weighed

and 3 volumes of Buffer QG (Qiagen) added to 1 volume of gel. Agarose blocks were
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incubated at room temperature in Buffer QG, for approximately 2 hours. For PCR

amplicons of <500 bp or >4 kb 1 gel volume of isopropanol was also added to the

samples. Samples were applied to QIAquick columns (Qiagen) in 2 ml collection

tubes, up to maximum volumes of 800 µl, and centrifuged for 1 min at 13,000 rpm on

a table-top microcentrifuge. The flow-through was then discarded. For samples

larger than 800 µl columns were then reloaded and centrifuged a second time.  500

µl of fresh QG buffer was then applied to the column and centrifuged again for 1 min

at 13,000 rpm, and follow through discarded. 750 µl of Buffer PE (Qiagen) was then

applied to the columns to wash. These were left to stand for ~2 min, centrifuged as

previously, the flow throughs discarded and then centrifuged again. The columns

were then transferred to clean 1.5 ml Eppendorf microcentrifuge tubes. 50 µl of

molecular grade water (between pH 7.0 and 8.5) was then applied to the columns,

which were centrifuged as previously. 5 µl of the resulting purified DNA samples

were analysed for appropriate size and yield by electrophoresis, conditions as

above.

DNA concentrations were determined using a Jenway 7315

Spectrophotometer (Bibby Scientific Ltd., Stone, United Kingdom). Purified products

were submitted for Sanger sequencing to Euofins MWG operon (Ebersberg,

Germany). 15 µl of the purified PCR product was submitted at a concentration

determined by Eurofins guidance (2 ng/µl for amplicons 150-300 bp; 5 ng/µl for

amplicons 300-1000 bp; 10 ng/µl for amplicons > 1000 bp). Samples were pre mixed

with 2 µl of the primer for sequencing at a concentration of 10 µM. Chromatograms

were checked and edited using Chromas Lite (Technelysium Pty Ltd, South

Brisbane, Australia). Reference sequences were downloaded from NCBI/ ENA

databases. Reference sequences and sequenced PCR amplicons were analysed in
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Geneious (Drummond et al. 2012) to confirm amplification of the expected PCR

product.

2.10 Real time quantitative PCR

Real-time quantitative PCR (qPCR) was performed to quantify changes in

blaNDM-1 and traA copy number present in bacterial cells over the course of the

passage experiment. The single copy chromosomal gene rpoB was used as the

reference gene. qPCR primers and probes are shown in Appendix 4.2. PCRs were

optimised for annealing temperature (50-70°C), MgCl2 concentration (2-5 mM),

primer concentration (0.25-0.75 µM) and probe concentration (0.2-0.4 µM). Dual

labelled probes with fluorescent dye and quenchers were synthesized by Eurofins

MWG Operon (Ebersberg, Germany). PCRs were performed on a Rotorgene Q

HRM (Qiagen, Manchester, UK). qPCR for blaNDM-1 and traA were run as duplex

reactions at 95°C for 15 min, then 35 cycles of 95°C for 10 s and 60°C for 30 s. The

qPCR for the rpoB references was different for each strain background. For CHI-40-

1 and AG3528NDMP1 the same primer pair was used (rpoB Ac F1 and rpoB Ac R1) but

the probes differed (rpoB 40-1 and rpoB AG3, respectively). For UAB190NDMP2

passaged isolates the primers rpoB Ac F3 and rpoB Ac R3 were used with probe

rpoB Ec. All rpoB qPCR runs were performed using the conditions 95°C for 15 min,

then 40 cycles of 95°C for 10 s and 58°C for 30 s. All qPCR reactions were

performed with a final volume of 20 µl, with 2 µl of Lightcycler FastStart DNA Master

HybProbe (Roche, Mannheim, Germany) and 5 µl of template. Final concentrations

of primers, probes and MgCl2 were as indicated in Appendix 4.2. blaNDM-1 and traA

fluorescence cycle threshold values (Ct) were compared to rpoB Ct values and

quantification was performed by the ΔΔCt method as previously described (Johnson
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et al. 2013). Regression analysis was performed using Excel 2007 (Microsoft,

Redmond, USA). A validation experiment showed that ΔCt values were linear over

the range of values detected in the passage experiment (see Chapter 4). All

experiments were performed in triplicate and the mean values and 2 standard

deviations calculated for the regression analysis.

2.11 Whole genome sequencing (WGS) and de novo assembly

A list of the isolates for which WGS was performed is shown in Table 2.3.

Isolates were sequenced using an Illumina HiSeq 2000 at the Wellcome Trust

Sanger institute, Cambridge. A unique index-tagged insert library was prepared to

allow processing of the sample data following multiplex sequencing with other

libraries on 8 channels of an Illumina Genome Analyzer GAII cell to give 100bp

paired end reads, as previously described (Mutreja et al. 2011). Reads were

assembled de novo using the Velvet Assembly Tool (Abbott et al. 2005; Carver et al.

2005; Zerbino and Birney 2008) (Version 1.2.10). Acinetobacter spp. assemblies

were performed by Dr T. Connor and V. cholerae assemblies by Dr A. Mutreja, on the

Sanger Institute server.
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Sequenced isolates Reference sequences (Accession number)

A. baumannii CHI-32,
CHI-34 and CHI-45-1

A. baumannii plasmid pWA3 (JQ241791)
A. baumannii AYE (CU459140)
E. coli, pNDM102337 (JF714412)
Citrobacter freundii plasmid pCTX-M3 (AF550415)
A. baumannii A85 (KC118540)

A. bereziniae CHI-40-1 A. lwoffii plasmid pNDM-BJ01 (JQ001791)

V. cholerae 116-17a and
116-17b

E. coli plasmid pNDM-1_Dok01 (AP012208)
V. cholerae SXT ICE (AY055428)

V. cholerae 116-14
Vibrio harveyi ZJ0603 scaffold 7 (JH720477)
C. freundii plasmid pNDM-CIT (JX182975)
V. cholerae SXT ICE (AY055428)

V. cholerae BRV8

Salmonella Typhimurium DT104 SGI-1 (NC_022569.1)
C. freundii plasmid pNDM-CIT (JX182975)
V. cholerae N19161 chromosome 1 (AE003852)
V. cholerae SXT ICE (AY055428)

Table 2.3 – List of isolates which underwent WGS and reference sequences

used in analysis and annotation.

2.12 Identification and closure of WGS contigs associated with blaNDM-1

contexts

Initially contigs containing blaNDM-1 (or other gene(s) of interest) were identified

using nucleotide BLAST searches, using the MEGABLAST algorithm. Query

sequences (e.g. blaNDM-1 reference sequence from K. pneumoniae 05-506F,

accession number N396876) were used to search all WGS contigs for an isolate.

Once contigs of interest were identified, potentially overlapping contigs could be

identified by using that contig as the query sequence to run further BLAST analysis.
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In most instances this would identify small overlaps between contigs at the extreme

5’ and 3’ prime end of the contig used as the query (see Figure 2.1 for example).

Potential assemblies with overlapping contigs were then determined using the de

novo assembly tool in Geneious version 5.6. Several pieces of information simplified

the identification of potentially linked contigs of interest. Contigs from a specific

plasmid had sequence coverage which, in many cases, were similar to each other

and usually higher than that of chromosomal contigs. Looking at annotation of

contigs (see Section 2.14) often made it possible to predict correctly contigs which

were linked, on the basis of similarity with reference sequences. Putative links

between contigs were confirmed by PCR across contig boundaries, with sequencing

of amplicons, as described above.

2.13 Sequence alignment and comparison

Nucleotide and protein sequences were aligned and analysed in Geneious

version 5.6 (Drummond et al. 2012). For short, closely related nucleotide sequences

the de novo assembly tool was used. For longer nucleotide sequences and protein

sequences the MAFFT plugin was used, using the default settings defined in

Geneious. The only exception to this was the nucleotide sequence assembly used to

align rMLST loci for Acinetobacter spp. reported in Chapter 4. This work was done

before the MAFFT plugin became available and so was performed using the

MUSCLE alignment tool (Edgar 2004) at http://www.ebi.ac.uk/Tools/msa/muscle/,

using default settings. All alignments were checked visually in Geneious, and

trimmed or corrected manually if necessary.
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Figure 2.1 – Example of BLAST output used to identify putative contig links. Example shows output of contig 136 from the

WGS of A. bereziniae CHI-40-1 against all contigs from the same strain, saved as a single FAS file. The graphic shows that a

single contig has a high alignment score ≥ 200 (in red), which is contig 136 itself. At either end the contigs shown in pink have

alignment scores of between 80 and 200. The graphic and query coverage given in the table below shows that only a small part of

these contigs have significant identity. The table also shows, however that they have 100% identity over the sequences with

similarity and low E values. The contigs actually linked were inferred by comparison to the reference sequence, pNDM-BJ01

(JQ001791), and the assembly confirmed by the methods stated elsewhere in section 2.12.
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2.14 Annotation of nucleotide sequences

WGS and final assemblies of the MGE analysed were submitted to the RAST

online annotation pipeline (Aziz et al. 2008). Final annotation for some sequences

(e.g. pNDM-40-1), for which very closely related reference sequences were available

were refined using the transfer annotations tool on aligned sequences in Geneious.

Only coding sequences with 98% identity were transferred and were then compared

with the RAST gene models. The annotation models were compared, edited and

finalised using Artemis. Details of the reference sequences, including their Accession

numbers, are given in Table 2.3. For pNDM-116-14, the plasmid from V. cholerae

116-14, and A. baumannii CHI-32 no useful references were identified for the

majority of the plasmid sequences. In these cases the final annotations were refined

from the RAST output with reference to BLASTP analysis of translated protein

sequences, and for the relaxase and T4SS proteins of pNDM-116-14 by the output of

ConjScan online tool available at http://mobyle.pasteur.fr/cgi-

bin/portal.py#forms::CONJscan-T4SSscan., which identifies conserved domains

using a hidden Markov model as described by Guigliumani et al (Guglielmini et al.

2011). The ResFinder 2.0 online tool available at

http://cge.cbs.dtu.dk/services/ResFinder/ was used to identify acquired AMR genes

in the WGS assemblies of all isolates, using a threshold identity of 70% and a

minimum length of 60% (Zankari et al. 2012).

2.15 Multilocus sequence typing (MLST) and ribosomal MLST (rMLST)

MLST of A. baumannii isolates was initially performed according to the

method described by Turton et al (Turton et al. 2007). PCR was performed for the

genes csuE, ompA and blaOXA-51-like, amplicons were sequenced (see sections 2.9
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and 2.10) and sequences used to identify matching loci. For A. baumannii isolates

which underwent WGS the full 7 loci Pasteur MLST scheme was applied to confirm

results. A BLASTN search of all contigs for each isolate were performed using

reference sequences for each of the MLST loci. Loci identified in this way were used

to search the A. baumannii MLST sequence type database at:

http://www.pasteur.fr/cgi-bin/genopole/PF8/mlstdbnet.pl?file=acin_profiles.xml.

Ribosomal multi-locus sequence typing (rMLST) (Jolley et al. 2012) was

applied to isolates which underwent WGS. All 53 rMLST loci were identified in each

of the isolates studied and in other sequences used in phylogenetic analysis using

TBLASTX searches against the loci from an appropriate reference sequence,

downloaded from the Bacterial Isolate Genome Sequence database (BIGSDB)

available at http://rmlst.org/. The reference sequences used were V. cholerae N1961

(AE003852) for Vibrio spp. and A. johnsonnii SH046 (NZ_ACPL00000000.1) for

Acinetobacter spp. Further sequences with annotated rMLST loci were downloaded

from BIGSDB for use in phylogenies. Translated protein sequences for all rMLST loci

for each sequence were then concatenated in Geneious and aligned as described

above.

2.16 Phylogenetic analysis

For phylogenetic analysis of 16S rRNA genes, concatenated rMLST loci, and

individual proteins from pNDM-116-14, protein or nucleotide alignments were first

performed as described above. Final alignments were used to create maximum-

likelihood (ML) phylogenetic trees using PhyML 3.1 (Guindon et al. 2010) in SeaView

(Galtier et al. 1996), with 100 bootstraps on the most likely tree (other parameters

default settings).
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RAST and ConjScan identified genes coding for putative replicase, relaxase

and T4SS proteins in pNDM-116-14. BLAST searches of the NCBI reference

sequence protein database identified potential homologues, and sequences with

relatively close identity and well characterised proteins were chosen to be included in

phylogenetic analysis for the replicase protein, RepE, the relaxase, TraI, and the

ATPase, TraC. Protein alignments were performed using MAFFT as above.

Complete protein sequences of RepE and TraC were used but in the case of the

TraI, BLAST searches and alignments were restricted to the first 300 bp, in which the

relaxase domain is normally found, as done by Garcillán-Barcia et al. (Garcillán-

Barcia et al. 2009). ML phylogenetic trees were drawn using PhyML 3.1 as above.

The phylogenetic tree of V. cholerae core genome SNPs was performed by Dr

T. Connor. This tree includes a subset of the isolates included in a similar analysis by

Mutreja et al. (Mutreja et al. 2011), with a full list given in Appendix 5.1. Reads from

each of the isolates were mapped to the reference assembly of V. cholerae N16961

(created by concatenating the two chromosomes together; accession numbers

AE003852 and AE003853 for chromosomes I and II respectively) and high quality

SNPs identified as described previously (Harris et al. 2010). Using the resultant SNP

alignment, an approximately-ML phylogeny was produced using FastTree 2.1 (Price

et al. 2009, 2010). FastTree was run on the nucleotide SNP alignment using

a general time-reversible model with gamma correction (with 4 rate categories) for

among-site rate variation. Only reads mapped to the reference and present in all

isolates included in the tree were used for this analysis.
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2.17 Conjugation experiments

Conjugation experiments were performed using blaNDM-1 positive

Acinetobacter spp. and V. cholerae BRV8 as donors (see Table 2.5) and E. coli

UAB190 or A. pittii AG3528 (both rifampicin resistant) as recipients. Mating

experiments were initially performed as described previously in LB broth and on CBA

plates at 30°C and 37°C, incubated overnight (Walsh et al. 2011). Strains were

initially grown overnight in LB broth at 37°C and adjusted to give about 108 cfu/ml of

donor and 107 cfu/ml of recipients in each of the mating mixtures. In order to

maintain antimicrobial selection of the MGEs harbouring blaNDM-1 in the donor cells,

overnight LB broth cultures were supplemented with 10 µg/ml of meropenem

(AstraZeneca, London, UK) for Acinetobacter spp. and ampicillin 100 µg/ml (Sigma-

Aldrich, St. Louis, USA) for BRV8. Prior to setting up the mating mixtures cells were

pelleted by centrifugation for 5 min at 3,600 rpm and re-suspended in LB broth to a

final concentration of 108 cfu/ml. Selection was performed on BrillianceTM UTI Clarity

Agar or LB agar supplemented with 200 µg/ml rifampicin (Sigma-Aldrich) for recipient

selection; ampicillin 100 µg/ml and rifampicin 200 µg/ml, or meropenem 0.5 µg/ml

and rifampicin 200 µg/ml, for UAB190 background transconjugants, or meropenem 1

µg/ml and rifampicin 200 µg/ml for AG3528 background transconjugants. For BRV8

the experiment was also attempted with SOS induction as described by Beaber et al

(Beaber et al. 2004). In brief 30 µl of overnight broths were added to 3ml of fresh LB

and incubated for 2 hours. Ciprofloxacin was then added to the BRV8 broth culture

to a final concentration of 0.5 µg/ml, and both cultures incubated for one further hour

prior to setting up mating mixtures.

Five colonies with the morphology of the recipient background on selective

media were subcultured with continued antimicrobial selection. Colonies from the
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subculture were then checked for purity, and blaNDM-1 PCR and MALDI-TOF were

performed. For the successful mating experiments with Acinetobacter spp. described

in Chapter 4, preliminary results suggested that plate mating at 30°C were the most

efficient conditions tested. These conditions were therefore used for replicates to

calculate the mating efficiency, defined as the number of transconjugants per

recipient cell. Results given are the average of three duplicate experiments.

Unsuccessful mating experiments were repeated at least 3 times by broth and plate

mating methods.

2.18 Passage experiments

A passage experiment was performed on CHI-40-1 and its transconjugants

UAB190NDMP2 and AG3528NDMP1. Cultures from selective plates were inoculated into

5 ml of LB broth with and without antibiotic selection and incubated overnight at

37°C. The following day 10 µl of the overnight cultures was re-inoculated into 5 ml of

fresh broth with the same selection as the starting culture. CBA plates were

inoculated daily to check purity and cultures were stored each day in LB broth with

10% glycerol at -80°C. This procedure was repeated on 14 consecutive days.

Antibiotic selection was with meropenem (10 µg/mL) for CHI-40-1 and AG3528NDMP1

and meropenem (1 µg/mL) for UAB190NDMP2. Stored cultures were then investigated

by S1 PFGE and probing for blaNDM-1 and traA, as described, as well as qPCR (see

above).
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Chapter 3

Plasmid carriage of blaNDM-1 in clinical Acinetobacter

baumannii isolates from India.

3.1 Introduction

As discussed in Introduction section 1.3.2 NPGNB have been isolated around

the world, with many cases linked to travel, especially to South Asia (Yong et al.

2009b; Kumarasamy et al. 2010; Nordmann et al. 2011a; Johnson and Woodford

2013). The group of pathogens for which there is the most clinical and public health

concern are the Enterobacteriaceae. However, A. baumannii has also been found to

harbour blaNDM-1-like genes and has been the subject of clinical concern and scientific

interest for a variety of reasons. Firstly, as discussed in Introduction section 1.5.1, A.

baumannii has in the past decades been established to be a successful nosocomial

pathogen worldwide, with certain strains associated with MDR phenotypes

(Diancourt et al. 2010; Higgins et al. 2010; Zarrilli et al. 2013). Carbapenem

resistance is relatively common in some of these strains, but this is predominantly

due to the presence, and increased expression of, intrinsic and acquired OXA-type

β-lactamases, combined with increased expression of multi-drug efflux pumps and

reduced outer membrane permeability (Vila et al. 2007; Higgins et al. 2010; Zarrilli et
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al. 2013). Secondly, NDM-producing A. baumannii (NPAB) have been reported from

clinical samples more frequently than other bacterial species, outside

Enterobacteriaceae (Chen et al. 2011; Nordmann et al. 2011b; Bonnin et al. 2012b;

Johnson and Woodford 2013; Jain et al. 2014).

Finally, genetic analysis has identified a strong likelihood that blaNDM-1-like

genes arose by a fusion between an ancestral MBL and an aminoglycoside

resistance gene called aphA6 (Toleman et al. 2012). This fusion event probably

occurred in bacteria of the Acinetobacter genus. blaNDM-1-like genes have, so far,

always been found in association with ISAba125, although in many

Enterobacteriaceae sequences only a 3’ fragment of the element is present (Poirel et

al. 2011b; Poirel et al. 2012a; Toleman et al. 2012). This IS was first described in

Acinetobacter spp. and most complete ISAba125 elements in the database are in

Acinetobacter spp. This same IS has been associated with aphA6, which is also

predominantly found in Acinetobacter spp. (Lambert et al. 1990; Nigro et al. 2011).

Alignments of sequences from ISAba125 to aphA6 and ISAba125 to blaNDM-1 show

that the sequences share 100% identity extending from the 3’ end of ISAba125 up

until the first 20 bps of blaNDM-1 (see Figure 3.1) (Toleman et al. 2012).
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Figure 3.1 – Alignment of 500bp sections of DNA including the 5’ ends of

blaNDM-1 and aphA6 genes and 260bp of upstream sequence. Reproduced from

Toleman et al 2012 (Toleman et al. 2012). ORFs are depicted as coloured blocks

with arrows indicating the direction of transcription. The double-ended arrow

indicates the region of sequence that is 100% identical. The right inverted repeat of

ISAba125 is depicted as a thick arrow at the end of the transposase ORFs. Promoter

sequences are depicted as a blue arrow at -35 and a yellow arrow at -10. The trace

underneath each sequence is the %GC which is calculated using a sliding window of

45 bp and the dotted vertical line indicates the point at which the GC% changes from

below 50% to above 50% within the blaNDM-1 sequence.

However, it is likely that the ancestral MBL originates from some other

environmental bacterial species. Acinetobacter spp. are organisms with a low GC

percentage of around 30-40%. In Acinetobacter spp. blaNDM-1 is usually found on a

composite Tn formed by two ISAba125 elements, Tn125 (See General Introduction

section 1.3.4, Figure 1.7 and Figure 3.6) (Poirel et al. 2012a; Toleman et al. 2012).

The contents of Tn125 are generally highly conserved in Acinetobacter spp. with the

occasional exceptions resulting from truncation by insertion of ISs (Espinal et al.

2011; Poirel et al. 2012a; Bonnin et al. 2013). Most of the contents of Tn125, from
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blaNDM-1-like until just prior to the downstream ISAba125, is of a high GC% of between

60-70% (Poirel et al. 2012a). This means that neither the ancestral MBL nor its

surrounding context is likely to originate from Acinetobacter. A large part of this

sequence includes gene coding regions which show synteny with sequences from

Xanthomonas and Pseudoxanthomonas species (Sekizuka et al. 2011). A.

baumannii is commonly associated with healthcare settings but other Acinetobacter

species are mainly found at environmental sites, including soil (Diancourt et al. 2010;

Visca et al. 2011). Therefore, they could be found in similar ecological niches to the

Xanthomonads, which are recognised as plant pathogens, and so have the

opportunity to acquire foreign DNA from them.

Tn125 is found inserted in several different genetic locations, with direct

repeats at either end indicating movement by transposition. Isolates from Europe

and the Middle East, which have had the blaNDM-1 contexts analysed in detail contain

Tn125 in a chromosomal location (Espinal et al. 2011; Pfeifer et al. 2011; Bonnin et

al. 2012b; Bonnin et al. 2013). In China blaNDM-1 is also associated with Tn125 but

the Tn is reported mostly on plasmids in both A. baumannii and other Acinetobacter

spp. (Hu et al. 2012; Wang et al. 2012; Zhou et al. 2012; Zhang et al. 2013b).

At present the clinical importance and epidemiology of NPAB are poorly

defined. A small number of studies have reported on NPAB, causing infections in

intensive care patients in Indian hospitals (Karthikeyan et al. 2010; Bharadwaj et al.

2012). Clinical cases and colonisation with NPAB have also been reported from

Pakistan and Bangladesh (Islam et al. 2012; Hasan et al. 2014; Sartor et al. 2014).

In China blaNDM-1 has been frequently identified in Acinetobacter spp, including A.

baumannii, both in clinical cases and from environmental sources (Chen et al. 2011;

Hu et al. 2012; Wang et al. 2012; Zhang et al. 2013b). European countries have
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reported an increasing number of NPAB isolates, with many cases having

epidemiological links with travel to North Africa or occasionally the Balkans (Bonnin

et al. 2012b; Poirel et al. 2012a; Bonnin et al. 2013). Notably in France a clonal

outbreak occurred involving 7 patients on a surgical intensive care unit, in which a

patient repatriated from Algeria was the likely index case (Decousser et al. 2013). In

the United Kingdom 16 isolates of NPAB were submitted to the Antimicrobial

Resistance and Healthcare Associated Infections (AMRHAI) from 2008 to 2013,

making it the most commonly identified non-fermentative GNB in the series (Jain et

al. 2014). Studies from the Middle East (Espinal et al. 2011; Ghazawi et al. 2012;

Espinal et al. 2013; Rafei et al. 2014) and North Africa (Bakour et al. 2014) have

reported significant number of isolates from clinical or screening samples. Recent

case reports have also identified NPAB in Honduras, Brazil and Kenya (Revathi et al.

2013; Waterman et al. 2013; Pillonetto et al. 2014).

Of note few of the cases which have undergone MLST profiling are within

clonal complex 1-3 (CC1-3, previously global/ European clones I-III) according to the

definition of Diancourt et al (Diancourt et al. 2010). Most of the isolates from France

were ST85, including the recent outbreak strain, as were isolates from one Algerian

hospital and isolates from injured Syrian civilians treated in Lebanon (Decousser et

al. 2013; Bakour et al. 2014; Rafei et al. 2014). Most of the isolates from another site

in Algeria and sporadic isolates from other parts of the world, including France, were

ST25 (Decousser et al. 2013; Revathi et al. 2013; Waterman et al. 2013; Bakour et

al. 2014; Pillonetto et al. 2014). A. baumannii isolated in Egypt and the Middle East

which harboured blaNDM-2 were all ST103 (note all ST numbers quoted according to

the Pasteur MLST typing scheme, ST numbers differ for the PubMLST scheme and
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the three locus scheme) (Espinal et al. 2011; Kaase et al. 2011; Ghazawi et al.

2012).

This chapter reports on the genetic contexts of blaNDM-1 in A. baumannii

obtained from clinical samples from Tamil Nadu, India. Part of this data has been

published previously and is included as Appendix 3.1 (Jones et al. 2014a). Strain

background, the presence of and mobility of plasmids carrying blaNDM-1 and plasmid

sequences were determined, representing the first extensive genetic characterisation

of NPAB isolates from India. South Asia, as far as current data can determine, has a

higher incidence of NPE than other parts of the world. As Acinetobacter spp. are

proposed to have been the source of blaNDM-1-like genes, NPAB isolates in Indian

hospitals were of potential significance. Any MGEs in these strains could act as

significant vectors for the dissemination of blaNDM-1-like genes into Enterobacteriaceae.

3.2 Nucleotide sequence accession numbers

WGS assemblies have been deposited under project accession PRJEB8567

for A. baumannii isolates CHI-32, CHI-34 and CHI-45-1. Accession numbers for CHI-

32 contigs are CVLF01000001-CVLF01000164, and for plasmid pNDM-32

LN833432. Accession numbers for CHI-34 and CHI-45-1 contigs are

CVLD01000001-CVLD01000140 and CVLE01000001-CVLE01000165 respectively.
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3.3 Results

3.3.1 Preliminary findings

Nine Acinetobacter spp. isolates from a hospital in Tamil Nadu, India,

collected in 2005 were studied (see Methods Table 2.1). Most isolates were from

patients on intensive care and were isolated from blood, pus and respiratory

secretions (see Table 3.1). Further details with regards to patient demographics,

clinical state and outcomes were not available. Initial identification by BD phoenix did

not consistently identify isolates as Acinetobacter spp. However, all isolates were

blaOXA-51-like positive by PCR, consistent with being A. baumannii (Turton et al.

2006b), except CHI-40-1. Susceptibility testing showed that all isolates were

extensively-drug resistant (XDR) according to the definition of Magiorakos et al

(Magiorakos et al. 2012). The A. baumannii isolates were resistant to all drugs tested

except colistin and in two cases amikacin (see Table 3.1). Seven isolates were

positive for blaNDM-1 by PCR, with CHI-41 and CHI-44 being the only blaNDM-1

negative isolates (see Table 3.2).
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Isolate Specimen type Azt Caz Taz Imp Mem Ami Gent Tob Cip Col Rif Tig

A. baumannii
CHI-16 Blood >16 ≥256 >16/4 ≥32 ≥32 6 ≥256 32 ≥32 ≤1 6 2

A. baumannii
CHI-18 Blood >16 ≥256 >16/4 ≥32 ≥32 ≥256 ≥256 ≥256 ≥32 ≤1 4 3

A. baumannii
CHI-32 Blood >16 ≥256 >16/4 ≥32 ≥32 ≥256 ≥256 ≥256 ≥32 ≤1 6 2

A. baumannii
CHI-34 Sputum >16 ≥256 >16/4 ≥32 ≥32 6 ≥256 48 ≥32 ≤1 4 2

A. bereziniae
CHI-40-1 Pus >16 ≥256 >16/4 ≥32 ≥32 48 ≥256 12 ≥32 ≤1 ≥256 0.75

A. baumannii
CHI-40-2 Pus >16 ≥256 >16/4 ≥32 ≥32 ≥256 ≥256 ≥256 ≥32 ≤1 6 2

A. baumannii
CHI-41 Sputum >16 ≥256 >16/4 ≥32 ≥32 ≥256 ≥256 ≥256 ≥32 ≤1 6 1.5

A. baumannii
CHI-44

Endotracheal
aspirate >16 ≥256 >16/4 ≥32 ≥32 ≥256 ≥256 ≥256 ≥32 ≤1 6 2

A. baumannii
CHI-45-1

Endotracheal
aspirate >16 ≥256 >16/4 ≥32 ≥32 ≥256 ≥256 ≥256 ≥32 ≤1 3 2

Table 3.1 – Study isolates, specimen type and MIC (mg/L) results for Acinetobacter isolates. Table cell red – resistance;

green – sensitive; grey – no breakpoint. Species specific Acinetobacter spp. breakpoints not available for aztreonam, ceftazidime,

piperacillin-tazobactam or tigecycline, for which results are based on EUCAST PK/PD non-species specific breakpoints. Ami –

amikacin; Azt – aztreonam; Caz – ceftazidime; Cip – ciprofloxacin; Col – colistin; Imp – imipenem; Mem – meropenem; Taz –

piperacillin-tazobactam; Tob – tobramycin.



87

CHI-32 CHI-34 CHI-45-1
Aminoglycoside

aadA1 aadA1
aadA2 aadA2

aac(3)-Ia aac(3)-Ia
aac(3)-IId aac(3)-IId aac(3)-IId

aph(3')-Ia aph(3')-Ia
armA armA

β-lactam
blaNDM-1 blaNDM-1 blaNDM-1

blaOXA-23 blaOXA-23 blaOXA-23

blaOXA-69 blaOXA-69 blaOXA-69

blaADC-25/
blaADC-30

blaADC-25/
blaADC-30

blaADC-25/
blaADC-30

blaTEM-1D blaTEM-1D

MLS - Macrolide-Lincosamide-StreptograminB
msr(E) msr(E)
mph(E) mph(E)

Phenicol
floR floR floR

catA1 catA1
Sulphonamide

sul1 sul1 sul1
Tetracycline

tet(A) tet(A)
Trimethoprim

dfrA12 dfrA12

Table 3.2 – Resistance genes detected by Resfinder search of WGS contigs

from A. baumannii CHI-32, CHI-34 and CHI-45-1. Colour of table cells indicates

approximate % ID with reference genes used for Resfinder searches: Dark green –

100% ID; Light green – 99% ID; Grey – 98% ID.
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All the A. baumannii isolates carried blaOXA-23-like genes, confirmed to be

associated with ISAba1 in CHI-32, CHI-34 and CHI-45-1, and so with a strong

upstream promoter (Turton et al. 2006a; Corvec et al. 2007), by PCR (see Figure

3.2). Sequencing of the blaOXA-51-like gene PCR amplicons showed that all A.

baumannii isolates contained blaOXA-69, except for CHI-41 and CHI-44 (both also

blaNDM-1 negative), which contained blaOXA-66 (see Table 3.2). PCR with primers

designed to see if blaOXA-69 was also linked to an ISAba1 element failed to produce a

PCR product for CHI-32, CHI-34 and CHI-45-1. Later analysis of WGS contigs for

these isolates showed that blaOXA-69 was not linked to any IS. The blaOXA-69 gene was

present on large contigs (~160 kb for CHI-32 and ~220 kb for CHI-34 and CHI-45-1)

with close identity to part of the chromosomal sequences of several A. baumannii

isolates, including A. baumannii AYE. The β-lactamase is flanked by ORFs proposed

to code for a phosphinotricin acetyltransferase and a suppressor of F exclusion of

phage T7 (see Figure 3.3). However, the chromosomal AmpC type β-lactamase of A.

baumannii has ISAba1 and its promoter sequence upstream of it, exactly as found

in, for example, A. baumannii NCGM 237 (see Figure 3.4). ISAba1 has also been

shown to be associated with increased expression of blaADC genes and

cephalosporin resistance (Heritier et al. 2006; Lopes and Amyes 2012). The AmpC

β-lactamase in A. baumannii CHI-32 differs by 1 AA from ADC-30 (as in A.

baumannii NCGM 237) and ADC-25.
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Figure 3.2 – Context of blaOXA-23 in A. baumannii CHI-32 compared to A. baumannii D36 as a reference. A. baumannii CHI-32

results are shown as an example but identical contigs were present in A. baumannii CHI-34 and CHI-45-1. Image shows an

assembly of two A. baumannii CHI-32 contigs and sequence products of PCR with the primers oxa-23-likeR and ISAba1 5R against

a reference blaOXA-23 context from A. baumannii D36 (Accession number JN107991). ORFs shown as yellow arrowed boxes. MGEs

shown as grey arrowed boxes. The blaOXA-23 gene shown as green arrowed box. The -35 and -10 sequence of the blaOXA-23

promoter sequence are shown as red triangles. Primers used in PCR reactions and sequencing marked as light green triangles.

Black lines show sequence with 100% identity across assembly. Bases with less than 100% identity appears as grey lines in the

sequence. Image drawn in Geneious version 5.6.
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Figure 3.3 – Gene map of blaOXA-69 context from A. baumannii CHI-32. Annotation transferred in Geneious from the identical

sequence in A. baumannii AYE. Sequence also identical in A. baumannii CHI-34 and CHI-45-1. CDS yellow arrowed boxes, genes

– green arrowed boxes. Numbers above sequence line denote the position in the complete contig 254 of WGS assembly of CHI-32.

Figure 3.4 – Context of chromosomal blaADC-30-like gene in A. baumannii CHI-32 compared to A. baumannii NCGM 237 as a

reference. A. baumannii CHI-32 results are shown as an example but identical contigs were present in A. baumannii CHI-34 and

CHI-45-1. Image shows an assembly of A. baumannii CHI-32 contigs against a reference AmpC context from A. baumannii NCGM

237 (Accession number AP013357). Labelling as for Figure 3.2 and 3.3.
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Further AMR genes were detected in the WGS assemblies of CHI-32, CHI-34

and CHI-45-1. A summary of the results is shown in Table 3.2. As will be seen later in

this chapter, most of the genes present in CHI-32 were present on the plasmid

pNDM-32, which harboured blaNDM-1. In CHI-34 and CHI-45-1 the genes are probably

found predominantly on a plasmid similar to pNDM-32 and on a chromosomal

resistance island which is truncated in CHI-32 (see later and Figure 3.19). Other than

the β-lactamases already discussed the only exception to this in all of the isolates

was floR. This is found on relatively small contigs, ranging in size from 2,534 bp in

CHI-32 to 4,092 bp in CHI-45-1. In all cases floR is probably flanked by IS1008 and

an IS most closely related to ISAba19. Although the same or related ISs were also

present in the assembly of pNDM-32, the contig harbouring floR from CHI-32 was

not demonstrated to be a part of this plasmid by PCR analysis. The location of these

contigs has not been established for any of the isolates.

The only documented difference in the susceptibility profiles of CHI-32, CHI-

34 and CHI-45-1 was in the aminoglycoside results. CHI-32 and 45-1 showed high-

level resistance to all of the agents tested, while CHI-34 is susceptible to amikacin

and has an MIC to tobramycin of 32 mg/L, which is well above the clinical resistance

breakpoint of >4 mg/L, but significantly lower than the MICs in CHI-32 and CHI-45-1

of ≥ 256 mg/L. CHI-34 only contains one fairly broad spectrum enzyme, aac(3) IId,

which has activity conferring resistance to tobramycin in addition to gentamicin. CHI-

32 and CHI-45-1 also contains the 16S rRNA methyltransferase gene, armA, which

would be expected to confer high-level resistance to amikacin as well as gentamicin

and tobramycin.
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3.3.2 MLST and PFGE typing

A. baumannii isolates were typed by the MLST method described by Turton et

al. (Turton et al. 2007) and by pulsed field gel electrophoresis (PFGE) of ApaI

digested genomic DNA. A summary of typing results is given in Table 3.3. All A.

baumannii producing NDM-1 were within group II by MLST, which corresponds with

CC1 (Turton et al. 2007; Diancourt et al. 2010). Later the full 7 loci MLST typing

scheme for A. baumannii (Diancourt et al. 2010) was applied to the isolates CHI-32,

CHI-34 and CHI-45-1 which had undergone WGS. This was consistent with the

earlier results, with all three isolates being ST1 (part of CC1). CHI-32, CHI-34 and

CHI-45-1 also had identical rMLST profiles to several strains in the rMLST database

including the multi-drug resistant ST1 strain AYE. Phylogenetic analysis of the

rMLST profile of CHI-40-1 later confirmed that this was an Acinetobacter bereziniae

isolate (see Chapter 4). The two blaNDM-1 negative isolates were within group I by the

Turton MLST scheme, corresponding to CC2 (formerly global clone II) (Diancourt et

al. 2010). ApaI profiles were similar but not identical for all group II A. baumannii

isolates and differed substantially from group I isolates and A. bereziniae CHI-40-1

(see Figure 3.5).
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Isolate blaNDM-1-like
PCR

blaOXA-51-like
PCR

3 Locus
MLST Type

7 Locus
MLST type rMLST PFGE group

A. baumannii CHI-16 blaNDM-1 blaOXA-69 group II ND ND A
A. baumannii CHI-18 blaNDM-1 blaOXA-69 group II ND ND A

A. baumannii CHI-32 blaNDM-1 blaOXA-69 group II ST1 100% ID A.
baumannii AYE A

A. baumannii CHI-34 blaNDM-1 blaOXA-69 group II ST1 100% ID A.
baumannii AYE A

A. bereziniae 40-1 blaNDM-1 NEG NA NA Groups with
A. bereziniae* C

A. baumannii CHI-40-2 blaNDM-1 blaOXA-69 group II ND ND A
A. baumannii CHI-41 NEG blaOXA-66 group I ND ND B
A. baumannii CHI-44 NEG blaOXA-66 group I ND ND B

A. baumannii CHI-45-1 blaNDM-1 blaOXA-69 group II ST1 100% ID A.
baumannii AYE A

Table 3.3 – Results of blaNDM-1 and blaOXA-51-like PCR and results of typing methods applied to study Acinetobacter spp.

isolates. Subtypes of blaNDM-1-like and blaOXA-51-like genes were determined by sequencing of PCR products. See methods for details

of different typing schemes. *See ML phylogenetic tree based on rMLST profiles of different Acinetobacter spp. presented in

Chapter 4. Table cell colours represent: Green – blaNDM-1 PCR positive; Red – PCR negative for blaNDM-1 or blaOXA-51-like; Blue – all

typing results for PFGE group A isolates; Yellow – all typing results for PFGE group B isolates; Orange – all typing results for PFGE

group C isolates.
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Figure 3.5 a) ApaI profile of Acinetobacter spp. isolates; b) Autoradiograph of

a) directly labelled with blaNDM-1. 1 λ ladder (~50-1000 kb); 2 CHI-16; 3 CHI-18; 4

CHI-32; 5 CHI-34; 6 CHI-40-1; 7 CHI-40-2; 8 CHI-41; 9 CHI-44; 10 CHI-45-1; 11 λ

ladder

3.3.3 Immediate blaNDM-1 contexts

Although the wider blaNDM-1 contexts were later defined using WGS data,

initially the local contexts were characterised using a primer walking strategy (see

Appendix 3.3). As primer walking PCR results were consistent for all three isolates

studied, PCR amplicons were only fully sequenced for CHI-45-1. The full Tn125

structure normally associated with blaNDM-1 was present; however, the ISCR27

transposase gene contains an IS15-Δ insertion (99% nt sequence identity with IS26,

see figure 3.6). Other than this insertion the context showed 99.9% identity with the

sequence from A. baumannii 161/07 (Pfeifer et al. 2011), the only difference being 4
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SNPs in the upstream ISAba125 transposase gene (nucleotide co-ordinates from

HQ857107: 1,245G>A; 1,264C>T; 1,267C>T; 1,453A>C). Sequence analysis of

PCR amplicons revealed that the fragment of ISCR27 downstream of the IS15-Δ

insertion is present both in its normal position and upstream of blaNDM-1 (see figure

3.6).

Figure 3.6 – Gene maps of the genetic context of blaNDM-1 in A. baumannii CHI-

45-1 compared to A. baumannii 161/07. ORFs are colour coded with the direction

of transcription indicated by arrow heads, truncated remnants of ORFs are shown as

rectangles. Red – blaNDM-1; lime green – usually immediately downstream of blaNDM-1;

blue – from a common context in Xanthomonas and Pseudoxanthomonas; dark grey

– ISCR27 transposase; light grey – IS transposases, note transposases are labelled

with IS name; ble – bleomycin resistance gene; trpF – phosphoribosylanthranilate

isomerase gene; tat – twin-arginine translocation pathway signal sequence domain

gene; cutA1 – periplasmic divalent cation tolerance gene; groES – co-chaperonin

gene; groEL – chaperonin gene; ISCR27 – ISCR27 transposase gene; oriIS – origin

of insertion of ISCR27; Δmfs – major facilitator superfamily (MFS) metabolite/H+

symporter gene.
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3.3.4 S1 plasmid analysis, restriction analysis and gene probing

PFGE gels of S1 digested genomic DNA from all isolates revealed that all of

the Acinetobacter spp. isolates studied contained multiple plasmids. Probing of the

S1 gel showed that blaNDM-1 was on bands, ranging in size from ~45kb to ~500kb.

For A. baumannii isolates, bands of increasing size, in intervals of approximately the

size of the smallest band for each isolate, and reducing intensity were noted (see

Figure 3.7). There are some exceptions to this pattern. For example, CHI-32 has a

band of ~85 kb, a fainter band of ~170 kb and then a band of intermediate intensity

at ~310 kb. Results of probing with ISCR27, IS15- Δ and ISAba125 showed that

each sequence was also present on bands of similar size to that which blaNDM-1 was

located in A. baumannii isolates (see Figures 3.8-3.10). The size of the smallest

blaNDM-1 positive band, and thus the size of the interval between bands of larger size,

differed between isolates. For example, in CHI-34 the smallest band was ~50 kb

whilst in CHI-32 and CHI-45-1 it was ~85 kb. In addition in many cases the gene

probes also hybridised with chromosomal bands. CHI-40-1 contained blaNDM-1,

ISAba125 and ISCR27, but not IS15-Δ, on bands of ~50 kb and ~250 kb. Results

from this isolate are discussed in more detail in Chapter 4.

Gene probing of ApaI gels showed that blaNDM-1 was present on bands of

various sizes and intensities. The brightest bands were all of the same size and

considerably smaller than the smallest unit of λ ladder size marker used. Results of

probing NotI gels with blaNDM-1 and IS15-Δ for CHI-32 and CHI-45-1 showed that

these genes were both present on bands which had migrated slightly further than the

smallest λ molecular weight marker (See Figure 3.11).
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Figure 3.7 – a) S1 endonuclease digests of Acinetobacter spp. isolates; b)

Autoradiograph directly labelled with blaNDM-1. 1 – λ (~50-1000kb); 2 – K.

pneumoniae 05-506 (NDM positive control); 3 – E. coli UAB190 (NDM negative

control); 4 – CHI-16; 5 – CHI-18; 6 – CHI- 32; 7 CHI-34; 8 – CHI-40-1; 9 – CHI-40-2;

10 – CHI-45-1; 11 – λ

Figure 3.8 – a) S1 endonuclease digests of Acinetobacter spp. isolates; b)

Autoradiograph of S1 gel directly labelled with ISAba125. 1 – λ (~50-1000kb); 2

– K. pneumoniae 05-506; 3 – E. coli UAB190; 4 – CHI-16; 5 – CHI-18; 6 – CHI- 32; 7

CHI-34; 8 – CHI-40-1; 9 – CHI-40-2; 10 – CHI-45-1; 11 – λ
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Figure 3.9 – a) S1 endonuclease digests of Acinetobacter spp. isolates; b)

Autoradiograph of S1 gel directly labelled with IS15-Δ. 1 – λ (~50-1000kb); 2 – K.

pneumoniae 05-506; 3 – E. coli UAB190; 4 CHI-16; 5 CHI-18; 6 CHI-32; 7 CHI-34; 8

CHI-40-1; 9 CHI-40-2; 10 CHI-41; 11 CHI-44; 12 CHI-45-1; 13 λ ladder.

Figure 3.10 – a) S1 endonuclease digests of Acinetobacter spp. isolates; b)

Autoradiograph of S1 gel directly labelled with ISCR27. 1 – λ (~50-1000kb); 2 –

K. pneumoniae 05-506; 3 – E. coli UAB190; 4 CHI-16; 5 CHI-18; 6 CHI-32; 7 CHI-34;

8 CHI-40-1; 9 CHI-40-2; 10 CHI-41; 11 CHI-44; 12 CHI-45-1; 13 λ ladder.
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Figure 3.11 – a) and c) NotI restriction digests of NDM producing Acinetobacter

spp. and controls; b) In gel hybridisation of a) with blaNDM-1; d) in gel

hybridisation of c) with IS15-Δ. 1 – CHI-45-1; 2 – CHI-40-1; 3 – CHI-32; 4 – λ (~50-

1000kb).

3.3.5 Conjugation experiments

Mating experiments with A. baumannii CHI-32, CHI-34 and CHI-45-1, and A.

bereziniae CHI-40-1 as donors and E. coli UAB190 and Acinetobacter pittii AG3528

as recipients were performed multiple times in broth and on solid media. No

transconjugants were obtained using A. baumannii donors but were obtained using

the CHI-40-1 donor in both recipient backgrounds. Results of these experiments are

presented in more detail in Chapter 4.
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3.3.6 Sequence of pNDM-32 from CHI-32 and comparison with related genetic

contexts

Further analysis of the blaNDM-1 positive A. baumannii isolates was performed

on WGS assemblies of CHI-32, CHI-34 and CHI-45-1. Final assembly of the blaNDM-1

plasmid with closure of contig gaps was finally only attempted for CHI-32 plasmid,

designated pNDM-32 (LN833432). This isolate was chosen as the whole genome

sequence of CHI-32 did not contain as many contigs which appeared to be linked to

IS15-Δ, which was an immediate part of the blaNDM-1 context, thus reducing the

number of permutations that needed to be investigated by PCR and sequencing .

The final assembly of the plasmid pNDM-32 was 84,623 bp long, with a total

GC% of 44.8 %, containing 108 ORFs (see Figure 3.12 and Appendix 3.4). These

included 22 coding for IS transposases (a further 4 ORFs shown in 3.12 probably

represent truncated and inactivated transposase derivatives), 8 coding for AMR

determinants and 44 for hypothetical proteins of unknown function. The plasmid

contained a sequence coding for a replicase protein identical to that from A.

baumannii plasmid pWA3 (Accession number JQ241791, see Figure 3.13). Fu et al.

designated the replicase of pWA3 repAci10 and also detected the same replicase

gene in a number of different Acinetobacter spp. harbouring blaOXA-58 and their

transformants (Fu et al. 2014). As in pWA3 next to the replicase is a gene coding for

a partition protein, parA. However, no type IV secretion system or relaxase could be

identified in the plasmid sequence.
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Figure 3.12 – Gene map of complete A. baumannii CHI-32 plasmid, pNDM-32 (LN833432). ORFs are colour coded as in Figure

3.6, with the direction of transcription indicated by arrowheads. In addition: blue – other AMR genes; light orange – genes from
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conserved sequences of class 1 integrons; dark grey – ISCR elements; turquoise – plasmid replicase, repB dark brown – plasmid

partition gene, parA; pink – phage like integrase, int; light brown – ORF proposed to code for proteins of known function; yellow –

ORF proposed to code for hypothetical protein of unknown function. Gene names used where ORF sequence previously

designated with a gene name. Where no known gene name, labels given are with an abbreviation of the proposed product of the

ORF. As previously ISs are labelled with the name of the element but the figure shows the transposase ORF. In addition to

annotations already given in Figure 3.6: repB – plasmid replicase gene; parA – plasmid partition gene; aac3 (IId) – aminoglycoside

resistance gene coding for aminoglycoside 3-N-acetyltransferase; msrE and mphE – macrolide resistance genes; armA –

aminoglycoside resistance gene, coding for a 16S rRNA methyltransferase; aadA2 – aminoglycoside resistance gene, coding for

aminoglycoside O-nucleotydyltransferase; dfrA12 – trimethoprim resistance gene, coding for dihydrofolate reductase;

exodexoyribonuclease – putative exodexoyribonuclease VII large subunit, degrades single stranded DNA; dienelactone hydrolase

– putative dienelactone hydrolase coding sequence; thiF – sulfur carrier adenylyltransferase gene;  patatin – putative patatin like

phospholipase; int – phage like integrase gene; xre – XRE-family transcriptional regulator; umuD – error prone DNA repair gene;

umuC – error-prone, lesion bypass DNA polymerase V gene. Blue line on the inside of the sequence indicates GC content

averaged over a sliding window of 180 residues.
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Figure 3.13 – Comparison of pNDM-32 repB and hipA contexts to pWA3 and p3ABYE, respectively. BLAST comparison run

using WebAct. Figure drawn using Easyfig 2.1. Areas with BLAST hits in same orientation shown by bars between sequences

ranging from red to yellow. BLAST hits for sequences in reverse orientation ranging from dark to light blue, key shows % ID of

BLAST hit matching to bar colours. ORFs are colour coded and annotated as for Figure 3.6 and 3.12. In addition to annotations

already given in Figure 3.13: parB – plasmid partition gene; alk phos – putative alkaline phosphatase gene; hipA – gene for HipA

toxin; hipB – gene for transcriptional regulator/ antitoxin of HipA; fic – putative cell filamentation gene; blaOXA-58 – OXA-58 β-

lactamase gene; araC1 – transcriptional regulator gene; lysE – threonine efflux gene; inner memb – putative inner membrane

protein coding sequence.
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Immediately upstream of this is an approximately 11.5 kb region with

significant identity to part of plasmid p3ABAYE from A. baumannii AYE (Accession

number CU459140, See Figure 3.13). Most of the ORFs in this region are proposed

to code for hypothetical proteins of no known function but it also-contains an ORF

proposed to code for the protein HipA. HipA forms part of a toxin-antitoxin system,

with transcription controlled by HipB in models studied in E. coli and Shewanella spp.

(Germain et al. 2013; Wen et al. 2014). A BLASTP search with HipA from pNDM-32

detected identity with three conserved domains of HipA; namely, couple_hipA,

hipA_C, and hipA_N. A MAFFT alignment of the protein sequences of the putative

HipA of pNDM-32 showed 19.3% identity with HipA from E. coli K12. Upstream of

HipA in pNDM-32 is a sequence coding for a putative transcriptional regulator

according to the RAST annotation. However, BLASTP identified a hipB type

transcriptional regulator domain and the protein shared 20.8% ID with HipB from E.

coli K12. This region also contains sequences coding for a putative protein involved

in cell division, Fic, and an alkaline phosphatase.

The immediate blaNDM-1 context is identical to that described for CHI-45-1, as

predicted by the results of the earlier PCR analysis of CHI-32. Assembly of pNDM-32

was only possible with the CHI-45-1 context B from Figure 3.4, in which a fragment

of ISCR27 has been moved upstream of blaNDM-1. The location of the alternative

context (CHI-45-1 context A in Figure 3.4) was not formally confirmed. With the

exception of the contigs harbouring blaNDM-1 and the 3’ fragment of ISCR27, the only

contigs which were identified by BLAST analysis to be linked to ISAba125 probably

represented part of the A. baumannii chromosome, in that they had lower coverage

than the plasmid contigs and close identity to chromosomal contexts from other A.

baumannii isolates.
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In pNDM-32 the IS15-Δ element upstream of blaNDM-1 has interrupted an

ISCfr1 insertion sequence. Upstream of this are several coding sequences for

hypothetical proteins, a putative tunicamycin resistance protein and an aac3 gene

coding for an aminoglycoside N(3')-acetyltransferase III. An identical context is

present in several publicly available plasmid sequences from Enterobacteriaceae

and Acinetobacter spp, some of which also contain blaNDM-1. An example is given in

Figure 3.14 of one of these plasmid sequences from E. coli, pNDM102337

(Accession number JF714412), which is most similar to the context in pNDM-32.

A second region containing AMR genes also has close identity to sequences

from several plasmids in Enterobacteriaceae, including some harbouring blaNDM-1,

and from both plasmid and chromosomal A. baumannii sequences. A comparison

with one of the most closely related contexts, from the C. freundii plasmid pCTX-M3

(Accession number AF550415) is shown in Figure 3.15. This region contains a class

1 integron, although in pNDM-32 the integrase has become truncated, with an aadA2

gene, coding for an aminoglycoside O-adenylyltransferase, as a gene cassette. The

3’ conserved sequence contains the usual qacEΔ1 and sul1 genes, and an ISCR1,

as seen in complex class 1 integrons. Downstream of the integron there are two ISs,

an armA gene, coding for a ribosomal RNA methyltransferase responsible for broad

spectrum aminoglycoside resistance, and the genes mphE and msrE which are

responsible for macrolide resistance.
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Figure 3.14 – Comparison of aac3 and blaNDM-1 contexts from pNDM-32 and pNDM102337. BLAST comparison run using

WebAct and shown as in Figure 3.13. Figure drawn using Easyfig 2.1. ORFs are colour coded and annotated as for Figure 3.6 and

3.13. For ISs with multiple ORFs both gene names associated with the ORF and full IS name are given. In addition to annotations

already given in Figures 3.6 and 3.13: acyltrans – putative acyltransferase gene; tunic. res. – putative tunicamycin resistance gene;

aphA6 – aminoglycoside resistance gene coding for aminoglycoside O-phosphotransferase; rhs – rearrangement hotspot gene

(widely distributed GNB but of uncertain function).
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Figure 3.15 – Comparison of class 1 integron, armA and macrolide resistance context from pNDM-32 and pCTX-M3. BLAST

comparison run using WebAct and shown as in Figure 3.13. Figure drawn using Easyfig 2.1. ORFs are colour coded and annotated

as for Figure 3.6 and 3.12. In addition to annotations already given in Figures 3.6 and 3.12: tnp – putative transposase, permease –

putative permease gene; Δint – truncated class 1 integron integrase gene; ΔISCfr1 – truncated ISCfr transposase; tnp Tn3-family –

Tn3-family transposase; ΔmphE1/ E2 – truncated derivatives of macrolide phosphotransferase gene; sul1 – dihydropteroate

synthase gene mediating sulphonamide resistance; qacEΔ1 – multidrug resistance exporter gene; blaTEM-1 – TEM-1 β-lactamase

gene.
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In addition pNDM-32 harbours a cluster of genes, probably containing a

cobalt-type nitrile hydratase operon and a gene coding for an amidase. This 10 gene

cluster spans 7,792 bp and has close sequence identity with several similar gene

clusters found in K. oxytoca (e.g. 98.8% ID with the sequence from K. oxytoca E718,

accession CP003683, see Figure 3.16). Although similar sequences can be identified

in many species of bacteria the sequence in pNDM-32 has much closer identity with

that in K. oxytoca and the gene cluster has a GC content of 59.8%, considerably

higher than the average GC content of pNDM-32 and closer to that expected in K.

oxytoca (the GC% of the chromosome of K. oxytoca KCTC 1686 is 56.0%, while that

of the full A. baumannii CHI-32 assembly is 39%). BLAST searches based on the

protein sequences of the α and β subunits of the nitrile hydratase targeted at

Acinetobacter genus refseq proteins revealed homologues in several species but not

A. baumannii. BLASTX searches of A. baumannii CHI-32 contigs failed to detect any

other homologues of the nitrile hydratase α or β subunits.
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Figure 3.16 – Comparison of Nitrile hydratase/ amidase operon from pNDM-32 and the chromosome of K. oxytoca E718.

BLAST comparison run using WebAct and shown as in Figure 3.13. Figure drawn using Easyfig 2.1. ORFs are colour coded and

annotated as for Figure 3.6 and 3.12. In addition to annotations already given in Figures 3.6 and 3.12: tnp – transposase coding

sequences, cyanoglobin – putative haemoglobin-like gene, possibly involved in non-haem co-factor binding; amidase – see main

text; NHase α and β – cobalt containing nitrile hydratase genes, α and β subunits (see main text); GTPase – putative metal

chaperone involved in NHase activation; cbtA – putative cobalt transporter gene; phos mutase – putative phosphoglycerate mutase

gene.
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A region of pNDM-32 of ~23 kb is not shown in any of the comparison figures,

although large sections showed substantial identity with Acinetobacter spp. whole

genome sequence contigs, for example A. baumannii BZICU-2 scaffold25_3

(Accession NZ_ALOH01000133.1) and A. baumannii Naval-57 contigs

7180000008033 and 7180000008032 (Accession numbers NZ_AMFP01000069.1

and NZ_AMFP01000016.1). This region contains an ORF coding for a putative P4-

type phage like integrase with substantial identity to proteins conserved in

Acinetobacter spp. As well as ORFs coding for several transposases and

hypothetical proteins, it also contained ORFs proposed to code for a dienelactone

hydrolase, an exodexoyribonuclease VII large subunit, a sulfur carrier

adenylyltransferase, a patatin like phospholipase, an XRE-family transcriptional

regulator, an error prone DNA repair protein and an error-prone, lesion bypass DNA

polymerase V.

3.3.7 Contigs with identity to pNDM-32 in CHI-34 and CHI-45-1

The complete sequences of the plasmids in CHI-34 and CHI-45-1 were not

confirmed as for pNDM-32. Equivalent contigs to those found in CHI-32 were found

in both CHI-34 and CHI-45-1 (See Figure 3.17). However, CHI-34 lacked a large

region found in pNDM-32 containing the class-1-integron harbouring aadA2 and

dfrA12, the mphE-msrE context and the sequences coding for the putative NHase

and amidase proteins. The concatenated sequences of the pNDM-32 related contigs

in CHI-34 came to a combined length of 53,827 bp and those in CHI-45-1 came to

83,054 bp.
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Figure 3.17 – ACT comparison of contigs from A. baumannii CHI-34 and CHI-32 which have substantial regions with close

identity to pNDM-32 from A. baumannii CHI-32. BLAST comparison run using WebAct and shown as in Figure 3.13. Contigs with

identity initially identified by BLAST searches. Contigs larger than the size of pNDM-32, small areas of identity < 100 bp and/or <

90% identity were not included in the ACT comparison. Figure drawn in EasyFig 2.1. Contigs shown as alternate red or blue

rectangles on sequence line in ACT comparison.
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3.3.8 Contigs with identity to AbaR3 in CHI-34 and CHI-45-1

The resistance genes identified in the WGS assemblies of CHI-34 and CHI-

45-1 but absent in CHI-32 were found to be clustered together on a small number of

contigs. These contigs were found to share 99-100% identity to regions of an A.

baumannii resistance island, Aba3R, present in A. baumannii A85. In these two

isolates there were contigs with close identity to the entire A. baumannii A85 AbaR3.

Figure 3.18 shows the contigs from A CHI-34, with closest identity to AbaR3,

mapped to the A. baumannii A85 reference sequence (Accession KC118540).

AbaR3 is a ~63 kb mobile element found interrupting the comM gene, which is

thought to code for a bacterial competence protein. The AMR genes are located

within a ~26 kb region. At the 5’ end of this are the tetracycline resistance gene and

its regulator gene, tetM and tetR. Immediately downstream are a gene coding for a

possible multidrug transporter superfamily protein and the chloramphenicol

resistance gene, catA1. The blaTEM-1 β-lactamase gene is found as part of a

truncated Tn1 and the aminoglycoside resistance gene, aphA1, is flanked by two

copies of IS26/ IS15-Δ. Two other aminoglycoside resistance genes, aac(3)-Ia and

aadA1, are present as gene cassettes within a class-1-integron. In addition AbaR3

contains arsenic and mercury resistance operons and numerous other ISs and Tns.

Tn6108, carries a copper/ zinc/ cobalt exporter gene and its regulator. Duplicates of

this Tn bound the multiple antibiotic resistance region. Analysis of A. baumannii CHI-

32 showed that contigs are present with identity to the AbaR3 sequence, excluding

the region between the two copies of Tn6108 (see Figure 3.19).
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Figure 3.18 – A. baumannii CHI-34 contigs mapped to the multi-drug resistance genomic island AbaR3 from A. baumannii

A85 (Accession KC118540). Annotation is as for Figure 3.6 and Figure 3.12, except that genes interrupted by the insertion AbaR3

and the multi-drug resistance region are shown in red. Note that contigs 27 and 71 appear multiple times in the assembly. In

addition to ORF annotated in earlier figures: comM – bacterial competence gene; usp – universal stress protein gene; trkA –
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putative flavoprotein involved in K+ transport gene; tniCADBE – genes predicted to code for transposition proteins; trxB – putative

thioredoxin reductase gene; ars locus – arsenical resistance gene locus; cadRA – transcriptional regulator and copper/ zinc/

cadmium efflux system genes; ispA – lipoprotein signal peptidase gene; top – DNA topoisomerase I gene; mer locus – mercury

resistance gene locus; tetRA – transcriptional regulator and tetracycline resistance genes; pecM – multidrug transporter superfamily

gene; catA1 – chloramphenicol resistance gene; aph(3’)-Ia – aminoglycoside resistance gene, coding for aminoglycoside O-

phosphotransferase; resX – resolvase/ invertase gene; trbI – conjugal transfer gene; sup – sulphate permease gene.
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Figure 3.19 – ACT comparison of contigs from A. baumannii CHI-32, CHI-34 and CHI-45-1 with AbaR3 from A. baumannii

A85. BLAST comparison run using WebAct and shown as in Figure 3.13. Contigs with identity initially identified by BLAST

searches. Contigs with closest identity to A. baumannii A85 AbaR3 context shown. For some regions similar contigs with lower

identity also identified. Figure drawn in EasyFig 2.1. Contigs shown as alternate red or blue rectangles on sequence line in ACT

comparison. A. baumannii A85 annotations as shown in Figure 3.18. Note that the region absent in A. baumannii CHI-32 flanked by

the two copies of Tn6108.
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3.4 Discussion

The A. baumannii isolates analysed in this study are the earliest found to

produce NDM-1, having been initially identified in 2005 (Berrazeg et al. 2014; Jones

et al. 2014a). This is the first time that genetic contexts from A. baumannii isolates

from the Indian subcontinent have been analysed in detail. That these clinical

isolates of NPAB were clonally related demonstrates the potential for blaNDM-1

establishing itself in successful strain backgrounds capable of disseminating in the

hospital environment and further compromising therapeutic options in the treatment

of significant bacterial pathogens. Furthermore with the full genome sequence it was

shown that the strain involved was not only of the globally successful ST1 strain but

that it also had an identical rMLST profile to other MDR ST1 isolates like A.

baumannii AYE. Although blaNDM-1 producing ST1 strains have been previously

described in Switzerland (with a proposed Balkan origin) and Algeria, the majority of

isolates, for which ST types have been determined, internationally are ST25 and

ST85 for NDM-1 producers and ST103 for NDM-2 producers (Espinal et al. 2011;

Bonnin et al. 2012b; Decousser et al. 2013; Bakour et al. 2014). This may reflect

differences in epidemiology of NDM producers locally, regionally or a temporal shift,

since the isolates described in this chapter were first identified several years prior to

most of the other isolates studied.

In the present study no comparison of SNPs in the core genomes of these

isolates was undertaken, which would have offered the highest level of discrimination

between strains. Such an analysis, however, would have been most informative if

more isolates had been sequenced and if further information were available with

regards to when and where these isolates were obtained, in order to potentially track

transmission events. Other WGS studies have shown that core genomes, excluding
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regions of high recombination, from common STs or CCs are very closely related in

A. baumannii, despite the inclusion of some isolates acquired over several years and

from different geographical locations (Adams et al. 2008; Adams et al. 2010; Wright

et al. 2014). However, even closely phylogenetically related A. baumannii isolates

can exhibit significant genetic and phenotypic differences between one another, as a

result of regions of apparently high recombination and differences in gene content.

The latter is probably largely as a result of differences in MGEs present and IS

mediated deletion events (Snitkin et al. 2011; Wright et al. 2014). The finding that the

isolates which underwent WGS in this study had identical rMLST profile to one

another, and to other ST1 isolates but had marked differences in the number of AMR

genes present and the size of their MGEs is consistent with the more in depth

analysis conducted in these other studies.

In the present study clinical data on the patients infected with NDM producing

Acinetobacter spp. are lacking, so it is not possible to assess their clinical

significance. However, it is of note that three of the isolates were from blood

samples, suggesting that they were most likely to be causing significant infections

(although contamination or transient bacteraemia cannot be excluded) and that the

acquisition of blaNDM-1 has probably not significantly attenuated the pathogenic

potential of these organisms.

In these NPAB isolates several factors suggest that there is a degree of

redundancy in the AMR genes present. Therefore the phenotypic and clinical

significance of the acquisition of blaNDM-1 and the MGEs associated with it in A.

baumannii may be limited. MDR, including carbapenem resistance, is well

recognised in A. baumannii, without the need for blaNDM-1 (Higgins et al. 2010; Zarrilli

et al. 2013). The blaNDM-1 negative isolates obtained in this study had susceptibility
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profiles similar to the NPAB isolates. All of the isolates analysed in detail had blaOXA-

23 and blaADC-30-like genes associated with ISAba1. These genes, associated with a

strong promoter from ISAba1, are likely to have been sufficient to result in clinically

relevant resistance to all available β-lactams in A. baumannii (Turton et al. 2006a;

Lopes and Amyes 2012; Villalon et al. 2013). However, factors effecting membrane

permeability or drug efflux which may also be important to the β-lactam resistance

profile (Vila et al. 2007) have not been investigated. These isolates all also had

multiple aminoglycoside resistance genes, many of which had relatively limited, and

similar, predicted spectra of activity (Ramirez and Tolmasky 2010). The presence of

armA would be expected to be of phenotypic significance, since it has far broader

activity (Wachino and Arakawa 2012). In its absence CHI-34 was susceptible to

amikacin whereas CHI-32 and CHI-45-1 were resistant.

The findings with regards to the local blaNDM-1 context, and the year of isolation

of these organisms, are compatible with the hypothesis that blaNDM-1 could have

disseminated from Acinetobacter to Enterobacteriaceae in South Asia. However,

they do not provide strong evidence for this having occurred. In these isolates Tn125

has been disrupted by IS15-Δ (similar to IS26) and subsequent re-arrangement,

possibly resulting from homologous recombination based around ISAba125, has

resulted in blaNDM-1 being within an IS15-Δ composite Tn, which could potentially

mobilise blaNDM-1. Otherwise the genes usually found on Tn125 are conserved and

so the genetic context is compatible with being the progenitor of blaNDM-1 contexts in

many of the Enterobacteriaceae for which sequences are available (Partridge and

Iredell 2012).

The appearance of the S1 gels hybridised with blaNDM-1, ISCR27, ISAba125

and IS15-Δ were unusual since all were present on multiple bands in the NPAB
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isolates, with the bands spaced at regular intervals in most cases. It was

hypothesised that this is likely to represent concatemers of the plasmids containing

blaNDM-1. Concatemer formation can occur for a number of reasons and is part of the

transposition process for IS6 family elements like IS15-Δ (Mahillon and Chandler

1998), of which there are 4 copies in the assembly of pNDM-32, including the 2

which flank the immediate context of blaNDM-1. It is possible that the A. baumannii

strains studied were recombination deficient resulting in failure to resolve

concatemers (Lambert et al. 1994; Mahillon and Chandler 1998). However, various

studies suggest that a significant amount of recombination often occurs in A.

baumannii.

Alternatively there could have been a failure to resolve replicative

concatemers because of some feature of the plasmid, the bacterial strain or the

growth conditions (Summers 1998; Sengupta and Austin 2011; Pinto et al. 2012). For

some plasmids it is reported that in certain genetic backgrounds or during

bacteriophage infection plasmid replication can proceed with linear concatemers of

the plasmid replicon (Viret et al. 1991). This can result in failure of plasmid partition

leading to the plasmid loss in some daughter cells (Viret et al. 1991; Sengupta and

Austin 2011). Stability was not formally analysed for these isolates and for general

subculture of all of the blaNDM-1 positive isolates investigated in this thesis

antimicrobial selection pressure was maintained to avoid plasmid loss. Thus, it is

possible that without this expedient stability would have been poor. It should also be

noted that the submitting laboratory in India had found CHI-41 and CHI-44, the two

ST2 isolates, to be blaNDM-1 positive, whilst in multiple PCR and probing experiments

performed for this thesis, these isolates were consistently negative.
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As blaNDM-1 was located on plasmids in these isolates it was initially thought

that these might have mobile potential. However, mating experiments failed to

demonstrate conjugation, at least into an E. coli or A. pittii background. Furthermore

the assembly of pNDM-32 did not demonstrate any known plasmid relaxase or

transfer genes, suggesting that the plasmids harbouring blaNDM-1 are non-mobilizable.

However, in this regard several points need to be considered. Firstly it is possible

that amongst the ORFs present in the assembly of pNDM-32 there are sequences

coding for previously uncharacterised relaxase and conjugative transfer proteins.

Despite the increasing number of sequences of Acinetobacter plasmids published

(Bertini et al. 2010; Fondi et al. 2010; Carattoli 2013) relatively little research has

focused on plasmid function in Acinetobacter spp.  The plasmid pNDM-40-1 from

CHI-40-1 (which is discussed in detail in Chapter 4) contains no identifiable replicase

sequence, despite the fact that a replicase is a prerequisite for a functional plasmid

and that there is quite good evidence that pNDM-40-1 and related plasmids are

autonomously replicating plasmids with conjugative potential.

Secondly, it must be considered that the assembly could be in error. The final

assembly of pNDM-32 was particularly challenging because of the large number of

ISs present and the fact that results of in gel hybridisation with blaNDM-1 of S1 and

ApaI gels suggest that the blaNDM-1 context and the plasmids may exist in several

forms. These results and the results of the probed NotI gels are; however, consistent

with the assembly representing the predominant form of the blaNDM-1 context and the

PCRs and sequencing experiments (confirming all proposed contig links to be

present) suggest that the assembly is accurate. However, a substantial amount of

additional experimental work would be required to exclude all other potential
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permutations of the plasmid sequence and other potential blaNDM-1 contexts on the

chromosome.

Finally, even if pNDM-32 is non-mobilizable it is possible that the plasmid

could still be spread to new hosts by transformation or transduction, although this is

predicted to be more likely for smaller plasmids (Viret et al. 1991; Smillie et al. 2010).

Alternatively the IS15-Δ composite Tn could transfer blaNDM-1 to new MGE by

transposition (Lambert et al. 1994) or part of the plasmid sequence could be

introduced to a different replicon by homologous recombination events (Darmon and

Leach 2014). It has been proposed that A. baumannii may be naturally competent,

as one means to explain the species apparent ability to readily acquire resistance

genes and the large number of ORFs which show evidence of recombination (Traglia

et al. 2014; Wright et al. 2014). As discussed in Introduction section 1.5.1 there is,

however, limited in vitro evidence that A. baumannii are naturally transformable,

other than rare strains (Traglia et al. 2014), although recent studies suggest that

transformation may be more readily demonstrable under appropriate experimental

conditions (Rumbo et al. 2011; Wilharm et al. 2013).

The appearance of the probed ApaI PFGE gel, with blaNDM-1 on fragments of

multiple sizes, could be as a result of the plasmid concatemer formation discussed

above, as well as being compatible with the PCR studies suggesting that two forms

of the immediate blaNDM-1 context exist. Further alternative contexts not defined by

the experiments done here could also exist. Alternatively it is conceivable that not all

of the genomic DNA had been successfully digested by the ApaI enzyme, although

this seems less likely in view of the other findings already cited.
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As expected with resistance plasmids, including those associated with blaNDM-

1, the plasmids from the A. baumannii strain harboured multiple AMR determinants

and MGEs, including Tns, ISs including ISCRs and a class 1 integron (Carattoli

2013). Much of the sequence containing resistance determinants showed high

degrees of identity with those identified in other resistance plasmids, both with and

without the blaNDM-1 gene, in Enterobacteriaceae and Acinetobacter spp. These

various contexts however, were arranged in a novel fashion, in a plasmid type not

previously associated with these resistance determinants (as far as could be

determined by the results of the BLAST searches carried out). There was also

evidence of ongoing plasticity, in view of the fact that different isolates contained

different forms of the plasmid, the different versions of the immediate blaNDM-1 context

discussed above and the loss of most of AbaR3 in CHI-32. This novel plasmid is

likely to have resulted from a combination of transposition events mediated by Tns

and ISs, and homologous recombination events, based around the large number of

repetitive sequences present.

An unusual feature of pNDM-32 was the large gene cluster that included

sequences coding for a nitrile hydratase operon and an amidase. A BLASTN search

showed high levels of identity only with chromosomal sequences from K. oxytoca,

with the entire 7.8 kb sequence in perfect synteny. The GC % of the region was also

compatible with an acquisition from K. oxytoca or a related species. Some

microorganisms are known to be able to utilise nitrile compounds for growth, as a

carbon and/ or nitrogen source (Kobayashi and Shimizu 1998; Brandão et al. 2003).

Nitrile hydratases and amidases form one pathway that has been shown to allow

some bacteria to do this.
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These processes have been studied extensively in some bacterial species,

such as Rhodococcus spp., because of their practical applications in the industrial

production of useful amide compounds and bioremediation of nitrile contaminated

environments (Kobayashi and Shimizu 1998; Brandão et al. 2003). Despite this, and

the fact that nitrile metabolism has been described for a large number of bacteria

isolated from various sites, including environments contaminated with nitrile

compounds from industry and agriculture, relatively little is known about how

widespread these genes are in bacteria and their primary purpose (Kato et al. 2000).

Pubmed searches for papers on nitrile hydratases in Acinetobacter and Klebsiella

produced no references. The results of the BLAST searches based on the protein

sequences of the α and β subunits of the nitrile hydratase suggested that closely

related proteins are probably uncommon in A. baumannii and that there were no

homologues in A. baumannii CHI-32.

Further work would be required on A. baumannii CHI-32 to establish whether

the genes in this operon are significantly expressed and whether the strain has the

ability to utilise nitrile compounds. However, given that contamination of the

environment with synthetic nitrile compounds by waste water from industry and

agriculture is known to occur, and that there are many naturally occurring nitrile

compounds (Kato et al. 2000; Brandão et al. 2003), it is conceivable that the sharing

of such sequences on MGE could offer a further selection advantage to bacteria in

the environment. This could create an additional selection pressure for the

maintenance of this resistance plasmid and the survival of strains harbouring it,

including for A. baumannii survival in environmental niches not usually associated

with this species.
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A further region of interest in pNDM-32 was the putative hipAB toxin-antitoxin

locus. HipA is associated with a bacterial persistence phenotype, resulting in a

decreased rate of growth but continuing survival in the face of bactericidal

antimicrobials (Germain et al. 2013). Thus this locus in pNDM-32 may allow the

induction of a persistence phenotype under appropriate environmental conditions.

The putative HipA was only distantly related (19.3% AA identity) to HipA in E. coli

K12, in which the hipAB operon has been extensively studied. However, it is of note

that in Shewanella oneidensis MR-1 the hipAB operon has been shown to have

similar effects, despite the fact that the HipA protein studied shared only 28% identity

with that of E. coli K12 (Wen et al. 2014). If this region in pNDM-32 represents a

functional hipAB locus it could provide a further selection advantage for plasmid

acquisition and maintenance. However, persistence has been observed in many

bacterial pathogens, and it is also possible that the A. baumannii isolates studied

here could have multiple other mechanisms mediating persistence, including other

homologues of HipA. This has not been studied further at the present time.

The decision not to attempt full assembly of the plasmids in CHI-34 and CHI-

45-1 was partly determined by the fact that early analysis indicated that the plasmids

in these other isolates were very similar to pNDM-32. On the basis of the BLAST and

ACT comparisons between pNDM-32 and the WGS contigs in CHI-34 and CHI-45-1

it is predicted that CHI-34 contains a related plasmid which has either not acquired,

or lost, a large region containing several of the AMR genes and the NHase/ amidase

functions. CHI-45-1 contains a plasmid which is mostly identical to pNDM-32. The

combined length of the contigs in CHI-34 with close identity to pNDM-32 is also

consistent with the predicted size of the plasmid in this isolate on the basis of the S1

in gel hybridisation results.
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A feature of MDR A. baumannii isolates that have undergone extensive

molecular investigation has been the presence of several MDR islands (Adams et al.

2010; Hamidian and Hall 2011). Although the main focus of the current work was the

MGEs associated with blaNDM-1 it had been the intention, once the decision was

made to analyse WGS data, to look to see whether these isolates also contained

MDR GEIs. Of the three isolates which underwent WGS only A. baumannii CHI-32

did not contain a complete element with close identity to AbaR3. That the isolate

chosen for most detailed analysis of the wider blaNDM-1 context was the only isolate

which did not contain this island was not by chance. As stated above A. baumannii

CHI-32 was chosen because the complexity of the assembly options was reduced

because there were less contigs linked to IS15-Δ. As can be seen from Figure 3.19a

the reference AbaR3, and in all likelihood the related element in A. baumannii CHI-

34 and CHI-45-1, contains 3 copies of IS26/ IS15-Δ. Thus the additional assembly

options were linking the plasmid contigs to the AbaR3-like element. As these links

were not investigated and the assembly links between AbaR3-like contigs in A.

baumannii CHI-34 and CHI-45-1 it cannot be excluded that these elements contain a

further copy of blaNDM-1. As blaNDM-1, ISCR27, ISAba125 and IS15-Δ are all present

on the chromosome by the S1 hybridisation studies it is reasonable to hypothesise

that blaNDM-1 could have been transferred to this region by IS15-Δ mediated

transposition/ co-integration. However, PCR results suggest it is likely that one

chromosomal copy is flanked by ISAba125 at both ends and so is in a different

chromosomal location.

Results for A. bereziniae CHI-40-1 have been discussed relatively little in the

current Chapter. Some results are presented here for convenience, as initial

experiments were done on all isolates simultaneously. However, as the genetic
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context and strain background were so different, detailed genetic analysis is

presented separately. As will be discussed at the beginning of Chapter 4, although A.

baumannii is of greater clinical interest than other Acinetobacter spp., there is no

particular reason to think that A. baumannii is more likely to have been an

intermediate step in the spread of blaNDM-1-like genes to Enterobacteriaceae than other

Acinetobacter spp. As the only strain containing a plasmid harbouring blaNDM-1 which

could be conjugatively transferred into other bacterial species, A. bereziniae CHI-40-

1 seemed more likely to have potential to contribute to the dissemination of blaNDM-1

and its immediate genetic context. This was therefore the focus of subsequent study,

rather than seeking to resolve some of the questions raised in the foregoing

discussion with regards to the A. baumannii isolates which were the main subject of

the current chapter.
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Chapter 4

Characterisation of plasmids harbouring blaNDM-1 in

extensively drug-resistant (XDR) Acinetobacter species

from India and Pakistan

4.1 Introduction

As discussed in the General Introduction section 1.5.1 and Chapter 3, A.

baumannii is the primary Acinetobacter species of medical importance, but many

other Acinetobacter spp. are commonly found in the environment and occasionally

cause opportunistic infections in humans (Higgins et al. 2010; Visca et al. 2011).

Evidence was presented in Chapter 3, suggesting that blaNDM-1 was formed in an

Acinetobacter background (Toleman et al. 2012). Although it has been proposed that

this occurred in A. baumannii there is no good evidence to suggest that these events

occurred in one species of Acinetobacter over another. Tn125 harbouring blaNDM-1-like

genes are found in many species of Acinetobacter, sequence data deposited at

NCBI indicate that both ISAba125 and aphA6 are found in many other Acinetobacter

spp. and all Acinetobacter have fairly similar GC contents.

There are only a few published examples of transfer of blaNDM-1 from A.

baumannii to other bacteria (see General Introduction section 1.4.1 and Chapter 3).

The analysis of the plasmids harbouring blaNDM-1 in A. baumannii, reported in

Chapter 3, did not suggest that they were conjugative plasmids. However, if blaNDM-1

and its immediate context was initially established in Acinetobacter spp. then
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significant HGT must have occurred to result in the rapid appearance of blaNDM-1

genes in so many species of GNB.

The published examples of conjugative transfer of blaNDM-1 from A. baumannii

are from studies conducted on isolates from China. NPE are apparently uncommon

in China, despite quite extensive efforts to detect them (Chen et al. 2011; Ho et al.

2011; Lai et al. 2011; Fu et al. 2012; Ho et al. 2012; Hu et al. 2012; Wang et al. 2012;

Yang et al. 2012; Zhou et al. 2012; Hu et al. 2013; Wang et al. 2013). However,

blaNDM-1 has been observed more often in Acinetobacter spp., including A.

baumannii, in strains identified from clinical, environmental and farm animal samples

(Chen et al. 2011; Hu et al. 2012; Yang et al. 2012; Zhou et al. 2012; Zhang et al.

2013a; Zhang et al. 2013b). The plasmids harbouring blaNDM-1 that have been

sequenced so far from China are very closely related to one another, despite being

reported in many different species including A. baumannii, A. pittii, A. junii and A.

lwoffii (Chen et al. 2011; Chen et al. 2012; Fu et al. 2012; Hu et al. 2012; Yang et al.

2012; Zhou et al. 2012; Sun et al. 2013b; Zhang et al. 2013b). Here after these

plasmids will be designated as pNDM-BJ01-like, after the first such plasmid

sequenced, from A. lwoffii BJ01 (rMLST analysis below suggests this isolate is in

reality an Acinterobacter johnsonnii strain). As pNDM-BJ01-like plasmids have been

shown repeatedly to be transferable to recipient bacteria, including Escherichia coli,

in vitro, they represent a potential vector for the spread of blaNDM-1 between species

of bacteria. As these plasmids have most often been described in “environmental”

Acinetobacter spp. this could suggest that A. baumannii should not be regarded as

being the species from which blaNDM-1 is most likely to have disseminated.

However, blaNDM-1 appears to be much less frequent in Enterobacteriaceae in

China, which argues against a major dissemination of NDM-1 from Acinetobacter to
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Enterobacteriaceae having taken place there. It was hypothesized that pNDM-BJ01-

like plasmids, or other conjugative plasmids, could be detectable in clinical and/or

environmental Acinetobacter spp. isolates in countries reporting a higher prevalence

of NPE, including India and Pakistan. In Chapter 4 the further characterisation of

CHI-40-1, first reported in Chapter 3, is described. By analysis of WGS data this

isolate was found to contain a conjugative plasmid harbouring blaNDM-1 that is very

similar to pNDM-BJ01. Further phenotypic analysis of this plasmid is presented and

it is shown that closely related plasmids carrying blaNDM-1, are present in

Acinetobacter spp. isolated from faecal samples from patients in Karachi, Pakistan.

4.2 Nucleotide sequence accession numbers

Accession numbers for pNDM-40-1, from A. bereziniae CHI-40-1, and the

partial sequence from pNDM-69122, from A. haemolyticus 69122-EW, are KF702385

and LN611576 respectively. A. bereziniae CHI-40-1 assembly contigs are deposited

under study accession PRJEB7120, contig accession numbers CDEL01000001-

CDEL01000324.

4.3 Results

4.3.1 Preliminary results on all isolates

Most of the data from this Chapter has been published previously (Jones et al.

2015) and is included in Appendix 4.1. The Indian clinical isolate CHI-40-1 and the

five isolates from the Pakistani faecal samples included four different Acinetobacter

spp. that were all blaNDM-1 positive. MIC results are shown in Table 4.1. All isolates

were resistant to most drugs tested including all β-lactam antibiotics, with the

exception that the A. haemolyticus isolates were susceptible to aztreonam. Notably
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all strains were sensitive to colistin and resistant to tigecycline and the A.

haemolyticus and A. schindleri isolates were sensitive to co-trimoxazole. There are

no Acinetobacter or PK/PD breakpoints defined by EUCAST for fosfomycin, but the

MICS of all isolates were below breakpoints used for Enterobacteriaceae causing

urinary tract infections. Species identification by MALDI-TOF and phylogenetic

analysis of 16S rRNA gene sequences were concordant for all but CHI-40-1. CHI-40-

1 was confirmed as an A. bereziniae by analysis of rMLST loci. The 16S rRNA gene

and rMLST phylogenetic trees are shown in Figure 4.1. Sequences for two other

blaNDM-1 positive Acinetobacter spp. for which WGS were available, are included in

both trees. A. lwoffii WJ10621 (Accession AFQY00000000.1) contains plasmid

pNDM-BJ01 harbouring blaNDM-1 and A. pittii D499 (NZ_AGFH00000000.1) contains

the similar plasmid pAB_D499. Both strains were isolated from clinical samples in

China (Hu et al. 2011; Yang et al. 2012). The phylogenetic trees suggest that strain

WJ10621 is in fact an A. johnsonnii isolate. The rMLST ML phylogenetic tree clearly

shows that CHI-40-1 comes from a genetic background distinct from the other

blaNDM-1 positive Acinetobacter spp included. This reflects levels of nucleotide identity

of 91.3% and 91.7% across all rMLST loci with A. pittii D499 and A. johnsonnii

WJ10621, respectively.
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AZT CAZ IMP MEM PTZ AMI GENT TOB CIP COL FOS RIF SXT TIGE

CHI-40-1 48 ≥256 ≥32 ≥32 96 48 ≥256 12 ≥32 0.75 8 ≥256 ≥32 0.75

69122-EW 3 ≥256 ≥32 ≥32 24 32 2 8 ≥32 0.75 32 4 0.25 1

73261-EC 4 ≥256 ≥32 ≥32 32 32 2 12 ≥32 1 24 6 0.25 0.75

70114-EC 4 ≥256 ≥32 ≥32 32 32 2 8 ≥32 1 24 6 0.19 0.75

73668-ECT 16 ≥256 ≥32 ≥32 48 6 192 ≥256 ≥32 0.5 4 ≥256 0.25 0.5

74312-EC 48 ≥256 ≥32 ≥32 ≥256 48 96 12 ≥32 0.5 16 ≥256 ≥32 0.75

AG3528 16 3 0.75 0.75 2 2 0.75 0.75 4 1 16 - 0.125 -

UAB190 0.125 0.25 0.38 0.047 2 2 8 1.5 0.006 0.5 3 - 0.094 -

AG3528NDMP1 16 ≥256 ≥32 ≥32 96 3 0.75 0.75 3 1 16
-

0.125
-

UAB190NDMP2 0.064 ≥256 24 4 256 2 8 1.5 0.006 0.5 3
-

0.094
-

Table 4.1 – MIC (mg/L) for all NDM-1 producing Acinetobacter isolates, mating experiment recipients and representative

transconjugants.

Red - Resistant; Orange - Intermediate resistance; Green – Sensitive; Grey – no breakpoint; White – not done. Species specific

Acinetobacter spp. breakpoints not available for aztreonam, ceftazidime, piperacillin-tazobactam or tigecycline, for which results are

based on EUCAST PK/PD non-species specific breakpoints. AZT – aztreonam; CAZ – ceftazidime; IMP – imipenem; MEM –

meropenem; PTZ – piperacillin-tazobactam; AMI – amikacin; GENT – gentamicin; TOB – tobramycin; CIP – ciprofloxacin; COL –

colistin sulphate; FOS – fosfomycin; RIF – rifampicin; SXT – co-trimoxazole; TIGE – tigecycline.
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Figure 4.1 – Phylogenetic trees of Acinetobacter spp. a) Based on 1378 bps of the 16s rRNA gene; b) Based on 53 rMLST

loci. Performed with 100 bootstraps. Only bootstrap values of < 70 are shown. Isolate names shown in red are blaNDM-1

Acinetobacter spp. characterised for this study. Isolate names shown in blue are blaNDM-1 Acinetobacter spp. for which WGS are

publically available from the NCBI database. All other sequences are from Acinetobacter spp. isolates that do not harbour blaNDM-1

available from NCBI nucleotide, draft genome or complete genome databases or in the rMLST database.
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S1 PFGE and blaNDM-1 probing showed that CHI-40-1 harboured multiple plasmids,

with blaNDM-1 present on bands of ~45kb and ~250kb (Figures 3.7 in Chapter 3 and

Figure 4.2). ISCR27 and ISAba125 were also present on bands of the same size,

although in the case of ISAba125 this was also present on 3 other plasmid bands

and the chromosome (Figures 3.8 and 3.10). IS15-Δ; however, was only present on

bands of ~100 kb and faintly visible on a band of ~230 kb (i.e. not associated with

blaNDM-1, Figure 3.9) Probing for the conjugative relaxase, traA, of pNDM-BJ01-like

plasmids showed that the gene was present on bands of the same size (Figure 4.3).

PFGE performed on CHI-40-1 DNA subjected to an S1 concentration gradient

showed that the higher the S1 concentration the fainter the 250kb band appeared

(Figure 4.4). The blaNDM-1 gene was present on a single ApaI restriction fragment of

~45 kb (Figure 3.5).

PCR analysis showed that sequences with significant identity to the pNDM-

BJ01 plasmid backbone were present in CHI-40-1 and that blaNDM-1 was found within

a Tn125 element (see Appendix 4.3). To allow detailed analysis of the blaNDM-1

context and the strain background CHI-40-1 was submitted for WGS.
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Figure 4.2 – a) Pulsed field gel of S1 digested genomic DNA from CHI-40-1,

recipients and transconjugants; b) in gel hybridisation with blaNDM-1 gene

probe. 1 – λ concatemer (~50-1000kb); 2 – CHI-40-1; 3 – UAB190; 4 – AG3528; 5 –

UAB190NDMP1; 6 – UAB190NDMP2; 7 – UAB190NDMP3; 8 – AG3528NDMP1; 9 –

AG3528NDMP2; 10 – AG3528NDMB1; 11 – AG3528NDMB2 12 - λ .

Figure 4.3 – a) Pulsed field gel of S1

digested genomic DNA from A. bereziniae

CHI-40-1 and control strains; b) in gel

hybridisation with traA gene probe. 1 – λ

concatemer (~50-1000kb); 2 – K.

pneumoniae 05-506, 3 – CHI-45-1 , 4 – CHI-

40-1
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Figure 4.4 – a) Pulsed field gel showing genomic DNA from A. bereziniae CHI-

40-1 digested with different concentrations of S1 nuclease; b) Direct gene

probe of pulsed field gel in a) with blaNDM-1. 1 – λ concatemer (~50-1000kb); 2-7 –

CHI-40-1 digested S1 nuclease: 2 – neat; 3 – 1 in 10 dilution; 4 – 1 in 50 dilution; 5 –

1 in 100 dilution; 6 – 1 in 500; 7 – 1 in 1000 dilution; 8 – λ concatemer.
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4.3.2 Sequence of pNDM-40-1 from CHI-40-1 and comparison with related

genetic contexts

Following de novo assembly of CHI-40-1 WGS, 324 contigs were obtained,

with a mean GC content of 38% and a combined size of 4.78Mb. BLAST searches

identified 23 contigs with 99-100% nucleotide identity to pNDM-BJ01 (Accession

number JQ001791). The complete plasmid sequence was closed by PCR and

sequencing of amplicons (See Figure 4.5 and Appendix 4.4). The plasmid, pNDM-

40-1 (Accession number KF702385), is 45,827bp and has substantial similarity to

NDM plasmids sequenced from several Acinetobacter spp. backgrounds. The GC

content of the entire plasmid is 40.1%. However, the GC content of the plasmid

backbone is 36.2% and that of the variable region (from ISAba14 to the end of

Tn125, nts 5,427-16,280) is 52.5%.

At the time of writing, complete sequences of 9 pNDM-BJ01-like plasmids

were available in GenBank. The backbone of pNDM-40-1 is 100% identical at the

nucleotide level to that of pNDM-BJ01 (bases 1-5,684 and 17,987-47,274, Accession

number JQ001791), pNDM-BJ02 (JQ060896), pAbNDM-1 (JN377410) and pXM1

(AMXH01000087). pNDM-AB (KC503911), pM131_NDM-1 (JX072963), pNDM-Iz4b

(KJ547696) exhibit minor differences to the backbone of pNDM-BJ01 and to one

another. pNDM-AB differs the most, because of a 3.5 kb insertion containing the

genes traD, insB and a putative Type I restriction-modification system

methyltransferase (Figure 4.5a and Table 4.2). The gene traD as annotated in

pNDM-AB is 454bp longer than in pNDM-40-1, although the gene as annotated in

pNDM-40-1 retains the complete traD functional domain. These plasmids were all

identified in isolates from China, and were found in 5 different Acinetobacter spp.

(see Table 4.2).
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Figure 4.5 – a) Maps of plasmids pNDM-BJ01, pNDM-40-1 and pNDM-AB. b) Immediate blaNDM-1 context from pNDM-40-1, A.

haemolyticus 69122-EW and related sequences in Acinetobacter and Enterobacteriaceae. ORFs are colour coded with the

direction of transcription indicated by arrow heads, truncated remnants of ORFs are shown as rectangles. Red – blaNDM-1; orange –

other antibiotic resistance; lime green – usually immediately downstream of blaNDM-1; blue – from a common context in

Xanthomonas and Pseudoxanthomonas; dark grey – ISCR27 transposase; light grey – IS transposases, note transposases are

labelled with IS name, and as tnp for uncharacterised elements; yellow – resolvase and zeta-toxin from pNDM-BJ01-like plasmids;

dark green – named plasmid backbone genes; white – hypothetical proteins. Regions with a light blue shaded background contain

plasmid backbone with close identity amongst pNDM-BJ01-like plasmids. The pink shaded regions represent genes normally found
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in the blaNDM-1 context in Acinetobacter spp. Regions from pNDM-AB with a yellow background represent genes with no significant

identity to those in pNDM-40-1. oriT –origin of transfer; traD – conjugal transfer gene; traA – MobA/L type relaxase gene; res –

resolvase gene; nuc – nuclease homologue; virB1-B11 and VirD4 – putative T4SS genes; trg – putative lytic transglycosylase gene;

parA – putative plasmid partition gene; insB – putative transposase, ISAba14-like; rms – putative type I restriction-modification

system methyltransferase subunit gene; aphA6 – aminoglycoside resistance gene; ble – bleomycin resistance gene; trpF –

phosphoribosylanthranilate isomerase gene; tat – twin-arginine translocation pathway signal sequence domain gene; cutA1 –

periplasmic divalent cation tolerance gene; groES – co-chaperonin gene; groEL – chaperonin gene; ISCR27 – insertion sequence

common repeat 27 transposase gene; oriIS – origin of insertion of ISCR27; res – putative resolvase gene; msr(E) and mph(E) –

macrolide resistance genes.
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Species/ strain Plasmid Accession No. Backbone compared to pNDM-BJ01 Resistance region compared to pNDM-BJ01 Country of
isolation

Travel
History Reference

A.lwoffii
WJ10621 pNDM-BJ01 JQ001791 NA NA China (Hu et al.

2012)

A. bereziniae
CHI-40-1 pNDM-40-1 KF702385 Identical

17,688C>T, 17,760T>C in 3' ISAba125,
10,121_11,420del including 3’ end of ble to 5’ end
of tat, 15,761_15,912del within ISCR27.

India This work

A. calcoaceticus
XM1570 pXM1 AMXH01000087 Identical 17,688C>T, 17,760T>C in 3' ISAba125. China (Sun et al.

2013b)

A.lwoffii
WJ10659 pNDM-BJ02 JQ060896 Identical 16,859_17,969del including most of 3’ ISAba125,

excluding only 3’ 18bp. China (Hu et al.
2012)

A. baumannii
GF216 pNDM-AB KC503911 47,274_1ins – 3,530bp long containing part

of traD, insB, methyltransferase
12,036-18,237 from cutA to 3' ISAba125 replaced
by sequence including msr(E) and mph(E). China (Zhang et

al. 2013b)

A. pittii D499 pAB_D499 AGFH01000030 32,541T>A in virB10, 46,541_46,712del.
8,364A>G in 5' ISAba125, 10,531C>G in trpF,
16,866-18,101 containing 3' ISAba125, ISAba11-
like insertion 3’ end, 18,123T>A.

China (Yang et al.
2012)

A. baumannii
ZW85-1 pAbNDM-1 JN377410 Identical

17,132A>G, 17,151T>C, 17,154T>C, 17,340C>A,
17,688C>T, 17,760T>C and 17,984_17,985insCC
in 3’ ISAba125.

China -

Acinetobacter
sp. M131 pM131_NDM-1 JX072963 47,200T>C in hypothetical protein coding

sequence.
16,866-18,101 containing 3' ISAba125, ISAba11-
like insertion 3’ end. -

A. lwoffii Iz4b pNDM-Iz4b KJ547696 504G>A in traA, 31,694T>G in virB11,
40,341_40,342insC, 43,781_44,487del

8,328A>C in 5’ ISAba125, 17,688C>T and
17,760T>C in 3’ ISAba125. -

A. soli TCM341 Unnamed
(contig 5) JAPY01000005 20,767G>T and 20,977_21,019del in

putative zeta-toxin coding sequence.

8,174A>G in 5’ ISAba125, 16,859_17,969del
including most of 3’ ISAba125, excluding only 3’
18bp.

-

A.  schindleri
MRSN 10319 Unnamed Not applicable > 99.9% identity Unclear from report USA Afghanistan (McGann

et al. 2013)

A. pittii 2012276 Unnamed Not applicable Similar based on partial sequencing Full Tn125 as in JQ001791 Belgium India and
Egypt

(Bogaerts
et al. 2011)

A. baumannii
MRSN 12227 Unnamed Not applicable >99% identity Full Tn125 as in JQ001791 Honduras (Waterman

et al. 2013)

Table 4.2 – Strain details and sequence differences for fully sequenced or published reports of pNDM-BJ01-like plasmids.



141

The blaNDM-1 context in pNDM-40-1 is similar to that found in pNDM-BJ01 and

many other Acinetobacter blaNDM-1/2 contexts (Espinal et al. 2011; Pfeifer et al. 2011;

Bonnin et al. 2012b; Hu et al. 2012). The structure of Tn125 containing blaNDM-1-like

genes is described in detail in Chapter 3. Tn125 in pNDM-40-1 contains two

deletions relative to this: 150bp are missing within ISCR27 and a 1,298bp deletion

from the 3’ end of ble to tat (Figure 4.5b). Otherwise, Tn125 in pNDM-40-1 is

identical to that in pNDM-BJ01 with the exception of the downstream ISAba125 in

which there are two SNPs.  The context is largely identical in other pNDM-BJ01-like

plasmids. However, pNDM-BJ02 and contig 5 from Acinetobacter soli TCM341 lack

the 3’ ISAba125, whilst in pAB-D499 and pM131_NDM-1 there is an ISAba11

inserted at the 3’ end of the element. In pNDM-AB a large part of the context from

cutA1 to the 3’ ISAba125 is replaced by the macrolide resistance genes msr(E) and

mph(E) (Figure 4.6b and Table 4.2) (Zhang et al. 2013b). In all pNDM-BJ01-like

plasmids the aminoglycoside resistance gene aphA6 is found immediately upstream

of Tn125.

GenBank searches show that blaNDM-1 contexts in Enterobacteriaceae have

high degrees of identity with the blaNDM-1 context from pNDM-BJ01-like plasmids. In

most cases this is restricted to genes that make up part of the full Tn125 element

harbouring blaNDM-1, with at least a fragment of the ISAba125 upstream of blaNDM-1

and the ble and trpF genes being present in almost all cases. Four sequences from

Enterobacteriaceae with regions of close identity to the blaNDM-1 context in pNDM-

BJ01, which included part of the plasmid backbone, were available at the time of

writing (Figure 4.6b) (Partridge and Iredell 2012). These were in plasmids found in P.

rettgeri (KF295828), Providencia stuartii (JN687470), E. coli (AP012208), and E.

cloacae (KC887917). Plasmid pPrY2001 from P. rettgeri contains the most extensive
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region of identity. The sequence is nearly identical to that found in pNDM-BJ01 from

the far 3’ end of traA to the resolvase gene, with the main difference being the

absence of the 3’ ISAba125.

All pNDM-BJ01-like plasmids share a common region with putative genes

coding for a type IV secretion system (T4SS). These are involved in constructing the

conjugation machinery and mediating conjugative transfer of plasmid DNA to

recipient bacteria (Juhas et al. 2008). traA codes for a putative MobA/L type

relaxase, which nicks the plasmid at the origin of transfer leading to unwinding of the

supercoiled plasmid prior to conjugative transfer. A putative oriT was identified

upstream of traA. This contained a nic site with 67% nucleotide identity to the

consensus sequence of the nic sites of several MobQ type plasmids adjacent to

imperfect inverted repeats characteristic of this family of oriTs (Figure 4.6) (Francia

et al. 2004).
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Figure 4.6 – Putative oriT of pNDM-BJ01 and comparison with other MobQ

family nic sites. a) Sequence of putative oriT of pNDM-40-1; b) Sequence of

oriT in plasmid RSF1010; c) MUSCLE alignment of MobQ family nic sites

against the putative site in pNDM-40-1. Images drawn in Geneious 5.6.

pNDM-BJ01-like plasmids all contain parA genes proposed to code for a

plasmid partition system and a putative zeta-toxin, which may contribute to plasmid

stability by a toxin-antitoxin addiction system. However, it has so far not been

possible to identify the replicase or the origin of replication of these plasmids.

Replicon typing schemes for Enterobacteriaceae and Acinetobacter, have previously
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been applied in silico to pNDM-BJ01-like plasmids (Hu et al. 2012; Zhang et al.

2013b). None of the putative genes from the glimmer gene model had significant

identity with known replicase genes.

Several sequences in blaNDM-1 negative Acinetobacter spp. contain regions

with significant identity to the backbone of pNDM-BJ01-like plasmids (Figure 4.7 and

Table 4.3). Most closely related are multiple contigs from A. ursingii NIPH 706 that

contain 37 ORFs in synteny with the genes in pNDM-40-1, coding for proteins with

amino-acid sequence identities between 88-100%. One of these contigs contains the

resolvase gene adjacent to ISAba14. The rest of the genes in the blaNDM-1 context

are absent. Less closely related but complete plasmid sequences are present in

Acinetobacter spp. NIPH 2168 and A. radioresistans WC-A-157. These contain

genes with substantial identity to the T4SS genes, parA and traA, from pNDM-BJ01-

like plasmids. The NIPH 2168 plasmid does not contain any identifiable regions

coding for antibiotic resistance or other known phenotypically important genes. pWC-

A-157; however, codes for genes,  including copA and arsB2, proposed to be

associated with resistance to copper, arsenic and other transition or heavy metals

(Rosen 2002; Teixeira et al. 2008; Davolos and Pietrangeli 2013). A. radioresistans

SK82 probably contains a plasmid very similar to pWC-A-157, with the same T4SS

and heavy metal resistance regions present on separate contigs. The A.

radioresistens sequences both contain an identifiable replicase gene downstream of

parA which is absent in the plasmids harbouring blaNDM-1.
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Figure 4.7 – Gene maps of complete sequence of pNDM-BJ01 and related sequences not harbouring blaNDM-1. ORFs in the

immediate context of blaNDM-1 are colour coded as in figure 4.5. All other ORFs are coded dark green for named genes, coding for

putative proteins with function based on conserved functional domains within the translated product or close identity with a protein
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of known function. ORFs coding for hypothetical proteins of unknown function are white. repB in pWCA157-71 is lime green.

Regions with a light blue shaded background contain related ORFs found in the plasmid backbones. The pink shaded regions

represent ORFs normally found in the blaNDM-1 context in Acinetobacter spp. Regions with a shaded yellow background represent

ORFs with no significant homology to pNDM-BJ01 but which are inserted within regions with otherwise conserved gene order. Dark

blue and red lines mark the boundaries between A. ursingii NIPH 706 contigs. Percentages above ORFs represent degree of

amino-acid sequence identity of translated protein sequences in pNDM-40-1, based on MUSCLE alignments. For ease of

comparison, where alternative names are used for ORFs in different sequences, the gene names used to annotate pNDM-40-1 are

used for all sequences. oriT – putative origin of transfer; traD – putative conjugal transfer gene; traA – putative MobA/L type

relaxase gene; orfA, orfB – transposase genes of ISAba14; res – resolvase; ztx – putative zeta toxin gene; nuc – nuclease

homologue gene; virB1-B11 and VirD4 – group of putative T4SS genes necessary to mediate conjugative transfer; trg – putative

lytic transglycosylase gene; parA – putative plasmid partition gene; insB – putative integrase gene rms – putative type I restriction-

modification system methyltransferase subunit gene; repB – putative plasmid replicase gene.
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Strain Plasmid Accession Backbone compared to pNDM-BJ01 Resistance region compared to JQ001791 Country of
isolation

A. ursingii NIPH 706 APQB00000000.1 6 contigs contain 36 genes with 85.5-100% AA
identity. blaNDM-1 and Tn125 absent. Czech Republic

Acinetobacter sp. NIPH 2168 APRW01000001.1 Contains 26 genes with 42.8-89.3% AA identity. blaNDM-1 and Tn125 absent. Netherlands

A. radioresistens WC-A-157 pWCA157-71 ALIR01000019.1 Contains 24 genes with 51.5-91.1% AA identity.
50kb of the 70kb plasmid has little identity.

blaNDM-1 and Tn125 absent. Contains copper
and arsenic resistance regions. Not specified

A. radioresistens SK82 ACVR00000000.1 1 contig contains 24 genes with 51.5-91.1% AA
identity, in synteny.

blaNDM-1 and Tn125 absent. Contains copper
and arsenic resistance regions as in
pWCA157-71 present on another contig.

Not specified

Table 4.3 - Strain details for Acinetobacter spp. isolates containing sequences related to pNDM-BJ01-like plasmids but

lacking the blaNDM-1 gene.
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Several other antibiotic resistance genes were identified in the CHI-40-1

contigs. A blaOXA-58 gene, coding for a carbapenem hydrolysing OXA-type β-

lactamase, was present with fragments of ISAba3-like elements at either end of the

contig. blaOXA-58 is usually flanked by interrupted ISAba3-like elements. The 5’

ISAba3-like fragment usually provides a strong promoter signal to the gene (Poirel

and Nordmann 2006b) and this was also present on the CHI-40-1 contig

(CDEL01000322). arr-3, dfrA1 and sul1, coding for genes associated with resistance

to rifampicin, trimethoprim and sulphonamides, respectively, were all identified as

part of a class-1-integron (CDEL01000320). Sequences coding for aminoglycoside

resistance genes strA, strB (CDEL01000323) and aacC2 (CDEL01000324), the

sulphonamide resistance gene, sul2 (CDEL01000319), and macrolide resistance

genes, msr(E) and mph(E) (CDEL01000321) were also identified. There appear to

be two copies of aphA6. One of the contigs making up part of the aphA6 sequence

from pNDM-40-1 has high coverage relative to other contigs that make up the

plasmid sequence (CDEL01000117). There are also two contigs with very close

identity to contigs that make up the sequence of aphA6 in pNDM-40-1

(CDEL01000157 and CDEL01000138). It is further likely that the second copy has

ISAba125 upstream of the gene, since contig 151 (CDEL01000151) could be

potentially linked to aphA6 as well as blaNDM-1, and also has high coverage. CHI-40-1

also contains a mercury resistance island, most similar to that found in Acinetobacter

spp. LS56-7 but with substantial identity to sequences present in many

Acinetobacter spp. and Enterobacteriaceae (CDEL01000139).
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4.3.3 Conjugation experiments

Donor UAB190 AG3528

CHI-40-1 7.267x10-4 ± 1.206x10-3 1.598x10-5 ± 1.291x10-5

69122 EW 1.251x10-5 ± 2.945x10-5 2.279x10-4 ± 1.575x10-4

74312 EC <1x10-9 5.060x10-4 ± 5.382x10-6

73668 ECT <1x10-9 <1x10-9

Table 4.4 – Conjugation rates obtained from plate mating experiments.

Numbers shown are means of 3 separate experiments with 2 standard deviations,

calculated as transconjugant cfu/ recipient cfu.

From the two donor strains containing pNDM-BJ01-like plasmids, CHI-40-1

and 69122 EW, transconjugants were obtained in both UAB190 and AG3528

recipients. Transconjugants were also obtained from the 74312 EC donor in AG3528

but not UAB190. Mating rates are shown in Table 4.4. Antimicrobial susceptibility

results for CHI-40-1 transconjugants and their recipient strains are shown in Table

4.1. MICs to all β-lactams except aztreonam increased but UAB190NDMP2 MICs to

meropenem were in the intermediate range only.

S1 PFGE and in gel hybridisation with blaNDM-1 for transconjugants obtained

with CHI-40-1 as a donor are shown in Figure 4.2. In A. pittii transconjugants blaNDM-1

positive bands were ~45kb as expected for pNDM-40-1. However, UAB190

transconjugants were positive for blaNDM-1 either on the chromosome or on a ~90kb

plasmid.
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4.3.4 Passaging Experiment

Probing of PFGE gels of S1 digested genomic DNA from CHI-40-1,

UAB190NDMP2 and AG3528NDMP1 over the course of the 14 day passage showed that

in all cases blaNDM-1 bands did not alter in size (see Figure 4.8). Intensity of the

blaNDM-1 bands in CHI-40-1 was relatively similar over the course of the experiment

with and without meropenem selection. The intensity of the blaNDM-1 bands for both

transconjugant strains was stable with antibiotic selection but decreased significantly

over the course of the passage without meropenem selection. S1 digests of

passaged transconjugant strains probed with traA demonstrated that this gene was

on fragments of the same size as blaNDM-1 (see Figure 4.9). The size of the bands did

not alter over the course of the passage but the intensity of the traA bands increased

over the course of the passage.

A more accurate assessment of the loss of blaNDM-1 and traA gene copies over

the course of the experiment with meropenem selection versus without selection was

obtained by qPCR. Regression analysis of ΔΔCt values (Figures 4.10 and 4.11)

showed that there were statistically significant falls in the quantity of both blaNDM-1

and traA template present over the course of the passage experiment for both

transconjugant strains without meropenem selection. For the donor strain A.

bereziniae CHI-40-1 the opposite trend was seen. Although the trend was statistically

significant for blaNDM-1 (p=0.038), the size of the effect was small. blaNDM-1 and traA

both remained detectable throughout the 14 day passage experiment, even in the

absence of antibiotic selection.
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Figure 4.8 – Pulsed field gels of S1 digested genomic DNA from passaged

isolates and in gel hybridisation with blaNDM-1 gene probe. a) Pulsed field gel of

CHI-40-1 and AG3528NDMP1 at start of passage (D0) and after 14 day passage

without antibiotics (D14N) and with meropenem (D14M); b) in gel hybridisation

of a); c) Pulsed field gel of UAB190NDMP2 at D0, D14N and D14M; d) in gel

hybridisation of b). 1 - λ concatemer (~50-1000kb); 2 – CHI-40-1 D0; 3 – CHI-40-1

D14N; 4 – CHI-40-1 D14M; 5 – AG3528NDMP1 D0; 6 - AG3528NDMP1 D14N; 7 -

AG3528NDMP1 D14M; 8 – λ; 9 – UAB190NDMP2 D0; 10 – UAB190NDMP2 D14N; 11 –

UAB190DMP2 D14M
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Figure 4.9 – Pulsed field gels of S1 digested genomic DNA from passaged

isolates and in gel hybridisation with traA gene probe. a) Pulsed field gel of

AG3528NDMP1 at start of passage (D0) and after 14 day passage without

antibiotics (D14N) and with meropenem (D14M); b) in gel hybridisation of a); c)

Pulsed field gel of UAB190NDMP2 at D0, D14N and D14M; d) in gel hybridisation

of b). 1 - λ concatemer (~50-1000kb); 2 – AG3528NDMP1 D0; 3 – AG3528NDMP1 D14N;

4 - AG3528NDMP1 D14M; 5 – λ; 6 – UAB190NDMP2 D0; 7 – UAB190NDMP2 D14N; 8 –

UAB190DMP2 D14M
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Figure 4.10 – Estimated quantity of blaNDM-1 gene present relative to rpoB gene

over the course of the passage experiment with meropenem selection versus

no antibiotic selection by ΔΔCT method. Results are shown for a) the blaNDM-1

positive donor strain CHI-40-1 and transconjugants b) UAB190NDMP2 and c)

AG3528NDMP1. Note that a positive slope indicates a fall in quantity of blaNDM-1 gene

detected relative to reference in the absence of antibiotic selection. Results based on

means of three replicate real time PCRs, error bars show 2 standard deviations.
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Figure 4.11 – Estimated quantity of traA gene present relative to rpoB gene

over the course of the passage experiment with meropenem selection versus

no antibiotic selection by ΔΔCT method. Results are shown for a) the blaNDM-1

positive donor strain CHI-40-1 and transconjugants b) UAB190NDMP2 and c)

AG3528NDMP1. Note that a positive slope indicates a fall in quantity of traA gene

detected relative to reference in the absence of antibiotic selection. Results based on

means of three replicate real time PCRs, error bars show 2 standard deviations.
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4.3.5 Genetic contexts of blaNDM-1 in Acinetobacter spp. isolates from Karachi

Analysis of blaNDM-1 positive Acinetobacter spp. isolates from Pakistan was

undertaken to see if a similar context to that found in CHI-40-1 was present. Probing

of S1 PFGE gels showed that blaNDM-1 was present on ~45kb plasmids in A.

haemolyticus isolates but was on a plasmid ~50kb in A. towneri 73668-ECT and

possibly a ~300kb in A. schindleri 74312-EC (see Figure 4.12). ApaI profiles showed

that the three A. haemolyticus strains were clonally related, with the other strains

having unique profiles (See Figure 4.13).

PCR analysis revealed that the A. haemolyticus strain contained sequences

similar to several sections of the pNDM-BJ01 backbone and that the blaNDM-1 context

could be linked to traA and res genes found in these plasmids. The immediate

context differed from that described in pNDM-BJ01 in that most of Tn125 was

missing. PCR analysis revealed that the A. haemolyticus strain, but not the other two

Acinetobacter spp. isolates from Karachi, contained several regions of a pNDM-

BJ01-like plasmid backbone. The immediate blaNDM-1 context in 69122-EW was

linked to pNDM-BJ01-like backbone genes traA upstream and the resolvase gene

downstream (Figure 4.5b and Appendix 4.5). The immediate genetic context differed

from that described in pNDM-BJ01 in that most of Tn125 was missing. A previously

uncharacterised insertion sequence, ISAha3, most similar to ISAlw1 (95% AA identity

between transposases), was inserted between ble and the putative resolvase gene.

No direct repeats (DRs) were observed, but this was not uncommon with other

closely related ISs deposited in ISFinder. It is possible that transposition of ISAha3

resulted in deletion of the sequence often found between ble and res and also

resulted in the loss of one of the DRs (Weinert et al. 1983).  S1 PFGE and in-gel
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hybridisation showed that blaNDM-1 was present on ~45kb plasmids in 69122-EW,

pNDM-69122 (see Figure 4.12).

For 74312-EC and 73668-ECT no sequence from pNDM-BJ01-like plasmids

was detected. In both cases the genes aphA6 and ISAba125 were detected

upstream of blaNDM-1 and the ble gene was downstream. In 74312-EC trpF and tat

were also detected downstream of ble. However, the rest of the genes usually

associated with Tn125 harbouring blaNDM-1/2 in Acinetobacter spp. appear to be

missing in these strains.

Figure 4.12 – a) Pulsed field gel of S1 digested genomic DNA from

Acinetobacter spp. Isolates from Karachi; b) in gel hybridisation with blaNDM-1

gene probe. 1 – λ, 2 AG3528, 3 CHI-40-1, 4 – 70114-EC, 5 – 73261-EC, 6 – 69122-

EW, 7 – 74312-EC, 8 – 73668-ECT, 9 – λ



157

Figure 4.13 – Pulsed field gel of ApaI digested genomic DNA from

Acinetobacter spp. Isolates from Karachi. 1 – λ concatemer (~50-1000kb), 2 CHI-

45-1, 3 CHI-40-1, 4 – 74312-EC, 5 – 70114-EC, 6 – 73261-EC, 7 – 69122-EW, 8 –

73668-ECT, 9 – λ.

4.4 Discussion

Many of the complete NDM plasmid sequences from Acinetobacter spp. in the

NCBI database are from Chinese isolates; are ~45-50kb and are very similar to

pNDM-BJ01. pNDM-BJ01 contains a single ApaI restriction site, in keeping with the

~45kb bands present in both the S1 and ApaI gels. PFGE performed on A.

bereziniae CHI-40-1 DNA subjected to an S1 concentration gradient showed that the

higher the S1 concentration the fainter the 250kb band appeared (Figure 4.3). It was

concluded that the strain harboured just one NDM-1 plasmid, which was likely to be

similar to pNDM-BJ01, and that the 250kb band represented residual supercoiled

plasmid DNA that had not been nicked by the enzyme (See original description of S1
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method for comparison of S1 PFGE gels of digested and undigested genomic DNA)

(Barton et al. 1995).

The complete sequence of pNDM-40-1 shares close sequence identity with

the other fully sequenced pNDM-BJ01-like plasmids harbouring blaNDM-1, suggesting

that these plasmids share a close common ancestor. The pNDM-BJ01-like plasmids

have a GC content similar to that of most Acinetobacter spp. WGS deposited in

GenBank (~40%). The small number of related sequences not associated with

blaNDM-1, are more distantly related to pNDM-BJ01-like plasmids, but are also

exclusively found in Acinetobacter spp. It is proposed that these findings are

compatible with this plasmid lineage having evolved within the Acinetobacter genus

and with the acquisition of blaNDM-1 being a relatively recent event. As previously

reported for pNDM-BJ01-like plasmids, the GC proportion of the region within Tn125,

which includes blaNDM-1, is much higher than that of the rest of the plasmid, strongly

suggesting that, with the exception of the gene fusion at the 5’ end of blaNDM-1, this

entire sequence is derived from an unrelated species of bacteria (Hu et al. 2012;

Toleman et al. 2012).

Recent reports suggest that NPE may be more common than originally

demonstrated in China (Qin et al. 2014; Zhou et al. 2014) and it is possible that the

spread of blaNDM-1 into Enterobacteriaceae could have occurred in China. However,

the high prevalence in some regions of the Indian subcontinent of NPE has been

well documented and most reports of travel-associated colonisation with NPGNB

involved the subcontinent (Kumarasamy et al. 2010; Johnson and Woodford 2013).

The characterisation of pNDM-40-1 in A. bereziniae from India and the identification

of pNDM-BJ01-like plasmids in clonal A. haemolyticus isolates from Pakistan is

therefore potentially significant.
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blaNDM-1 was also recently identified on pNDM-BJ01-like plasmids from clinical

isolates of A. schindleri recovered from a soldier returning from Afghanistan

(McGann et al. 2013), of A. pittii from a patient who had travelled to both Egypt and

India (Bogaerts et al. 2013) and from a patient with peritonitis with A. baumannii in

Honduras (Waterman et al. 2013). A plasmid with many pNDM-BJ01-like features

(~45 kb, readily transferred by conjugation, sequence of the immediate blaNDM-1

context similar) was also identified in an A. pittii isolate from a patient from Turkey,

with no significant travel history, in 2006 (Roca et al. 2014). Insufficient data is

available to establish whether these cases could be linked to recent spread from

China or whether these plasmids are prevalent in a wider geographical region

including the Indian Subcontinent, and further systematic studies would be required

to clarify this point.

Including the results reported here, pNDM-BJ01-like plasmids have been

reported in nine different species of Acinetobacter. The three strains harbouring

pNDM-BJ01-like plasmids for which whole genome sequences are available appear

on distinct branches of the rMLST phylogentic tree, reflecting significant differences

in the nucleotide identity across the concatenated rMLST loci. However, the methods

used to define the species of Acinetobacter harbouring these plasmids in some

publications are questionable, as demonstrated by the fact that the strain WJ10621,

in which pNDM-BJ01 was identified, was reported on the basis of phenotypic tests to

be an A. lwoffii (Hu et al. 2012), while in this study it is shown that the strain clusters

with A. johnsonnii strains by both 16S rRNA gene and rMLST phylogenetic analysis.

The rMLST method provides robust speciation, with results similar to core

Acinetobacter genus genome analysis (Chan et al. 2012; Jolley et al. 2012). In

contrast, speciation by the phenotypic tests used by the majority of microbiology
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laboratories is unreliable (Visca et al. 2011). In the absence of WGS results for

Pakistani isolates, phylogenetic analysis of 16S rRNA genes and MALDI-TOF results

were concordant in all cases, providing a reasonably robust identification. However,

identity of 16S rRNA genes, even using very stringent similarity scores to define

common species, can be inaccurate for several genera, including Acinetobacter

(Chan et al. 2012). Accordingly, 16S rRNA gene should not be used for phylogenetic

inferences where WGS are available.

Of the species identified in this study, A. bereziniae, A. schindleri and A.

haemolyticus have all been isolated from clinical samples, including normally sterile

sites, despite the first two species only being fully described in recent years

(Castellanos Martinez et al. 1995; Nemec et al. 2001; Dortet et al. 2006; Quinteira et

al. 2007; Gundi et al. 2009; Nemec et al. 2010; Figueiredo et al. 2012). They have all

also been previously associated with XDR phenotypes and production of

carbapenem hydrolysing enzymes (Quinteira et al. 2007; Bonnin et al. 2012a;

Figueiredo et al. 2012; Park et al. 2012; McGann et al. 2013; Yamamoto et al. 2013).

There is very little information published on A. towneri and to my knowledge no

publications reporting clinical isolation of this organism (Carr et al. 2003). The clinical

significance of these organisms is therefore uncertain, although blaNDM-1 is also

associated with A. baumannii and A. pittii which are better recognised as

opportunistic nosocomial pathogens (Chen et al. 2011; Visca et al. 2011; Yang et al.

2012; Bogaerts et al. 2013; Zhang et al. 2013b).

Most descriptions of conjugative transfer of blaNDM-1 from Acinetobacter spp.

in vitro are from isolates with pNDM-BJ01-like plasmids (Chen et al. 2011; Hu et al.

2012; Yang et al. 2012; Zhang et al. 2013b). Conjugation rates were similar for the

pNDM-BJ01-like plasmids, pNDM-40-1 and pNDM-69122, into E.  coli and A. pittii
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recipients. In the transconjugant strains E. coli UAB190NDMP2 and A. pittii

AG3528NDMP1, containing pNDM-40-1, both blaNDM-1 and traA copy number were

stable in the presence of meropenem but decreased in its absence. Despite this,

both genes were still detectable by qPCR at the end of the antibiotic free passage.

These results are similar to those described by Huang et al (Huang et al. 2013) for

the plasmid pKPX-1 in K. pneumoniae KPX, although in that study the increase in

blaNDM-1 copy number with increasing imipenem exposure was mediated by tandem

repeats of an 8.6kb cassette rather than simply influenced by plasmid copy number

and stability. In contrast Chen et al (Chen et al. 2011) reported that E. coli

transconjugants obtained by mating with NPAB lost blaNDM-1 following a single

passage. However, the plasmids described were not sequenced, so may be very

different to the pNDM-BJ01 plasmids, a different recipient strain was used and the

method employed to test for blaNDM-1 was not fully explained and may have been less

sensitive than that employed in this study. To our knowledge, no other groups have

specifically tested the stability of known pNDM-BJ01-like plasmids.

Representative E. coli and A. pittii transconjugants had higher MICs to all β-

lactams, with the exception of aztreonam, compatible with the acquisition of blaNDM-1

alone being responsible for the change in susceptibility profile. There was no change

in the susceptibility of other antimicrobials in transconjugants, compared to their

recipient backgrounds, including in susceptibility profile to aminoglycosides. Although

pNDM-40-1 contains aphA6, it has already been reported that identical sequences

from pNDM-BJ01-like plasmids are not associated with amikacin resistance in other

isolates, and that there is not an identifiable promoter sequence upstream of aphA6

in these plasmids (Hu et al. 2012; Waterman et al. 2013). In contrast, when

ISAba125 and its promoter are upstream of aphA6, it is associated with amikacin
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resistance (Nigro et al. 2011). Although CHI-40-1 contains other aminoglycoside

modifying enzymes these do not explain the high-level of resistance to amikacin in

this isolate. However, analysis of the contigs in CHI-40-1 suggests that there is a

second copy of the gene which does have ISAba125 upstream of it. PCR analysis to

confirm the assembly of this alternative context has not; however, been undertaken.

The location of this second copy of aphA6 has also not been analysed.

It was not initially anticipated that the stability of blaNDM-1 and traA would be

similar in UAB190NDMP2 to that in AG3528NDMP1. As well as being much more closely

related to the donor strain, A. pittii is a species in which pNDM-BJ01-like plasmids

have been isolated on several occasions (Yang et al. 2012; Bogaerts et al. 2013).

However, in all E. coli UAB190 transconjugants subjected to S1 analysis, blaNDM-1

and the plasmid relaxase from pNDM-40-1, traA, were found on the chromosome or

larger plasmids. It may be that the only way that pNDM-40-1 can replicate in this

host is by integration in the chromosome or another replicating plasmid.  This may in

turn explain the relative stability of blaNDM-1 and traA in UAB190NDMP2. Stability was

not studied in other transconjugants, in which chromosomal integration was

observed, and so may have been very different. WGS of the E. coli transconjugants

would have also been useful, to allow analysis of whether the full pNDM-40-1 was

integrated into new replicons, where the sequence was integrated and to generate

hypotheses as to the mechanism of integration. The small decrease in blaNDM-1 and

traA copy number in the presence of meropenem in CHI-40-1 was also unexpected.

This may be related to the presence in CHI-40-1 of a second carbapenemase,

blaOXA-58. Hence, even with meropenem exposure the blaNDM-1 gene might not offer

any significant survival advantage at the concentrations used in the current

experiment.
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No complete pNDM-BJ01-like plasmid has yet been described in

Enterobacteriaceae. However, sequence data now strongly suggests that at least

some blaNDM-1 contexts in Enterobacteriaceae are derived from pNDM-BJ01-like

plasmids, since several examples demonstrate high levels of identity with the

plasmid backbone sequences that flank ISAba14, aphA6 and Tn125 containing

blaNDM-1. The results of the mating and passage experiment make it feasible that

these plasmids could have been transferred into Enterobacteriaceae and maintained

for long enough for other MGE to move blaNDM-1 and its immediate context to a new

genetic location, for example Tn125 or Tns formed by other ISs, as with the IS903

elements in the E. coli plasmid pNDM-Dok-01 (Sekizuka et al. 2011).

Although pNDM-40-1 was maintained in UAB190NDMP2 in the passage

experiment, if it was not able to replicate autonomously, this element would be

unlikely to have the same evolutionary success in Enterobacteriaceae as would

result from blaNDM-1, and its immediate context, being transferred onto MGEs that

were fully functional in these backgrounds. For example, pNDM-Dok-01, is an incA/C

plasmid (Sekizuka et al. 2011), a lineage that has a broad host range and as well as

being one of the incompatibility types most often associated with blaNDM-1, has

previously been involved in the dissemination of blaCMY-2 amongst

Enterobacteriaceae (Carattoli et al. 2012). The diversity of MGEs associated with

blaNDM-1 in Enterobacteriaceae, in addition to the diversity of species and strains

carrying them, would suggest that blaNDM-1 contexts in Enterobacteriaceae are highly

plastic and mobile (Nordmann et al. 2011b; Walsh et al. 2011; Carattoli 2013). Why

this is the case is not clear. However, even if movement of the blaNDM-1 context from

pNDM-BJ01-like plasmids to a new mobile genetic element were to be quite a rare

event, the subsequent dissemination and diversification could occur rapidly.
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The lack of an identifiable replicase or origin of replication in any of the

pNDM-BJ01-like plasmids indicates that there is a considerable amount of work that

needs to be done to understand these MGEs. The ability to autonomously replicate

is a prerequisite for a plasmid (Francia et al. 2004). However, the wide range of

replication strategies already described for plasmids in different bacterial species

and the fact that very little work has been done on Acinetobacter plasmids other than

for A. baumannii mean that the lack of an identifiable replicase is not entirely

surprising (Francia et al. 2004; Carattoli et al. 2005; Bertini et al. 2010). One

possibility is that traA could serve the functions of a relaxase and a replicase gene.

This has been shown to be the case for RSF1010, the prototypical MobQ type

plasmid from E. coli, which has been well characterised (Frey et al. 1992). Although

RSF1010 is a mobilizable rather than conjugative plasmid it is noteworthy for having

a very broad host range, in common with pNDM-40-1. It has been proposed that

mobilizable and conjugative plasmids could all be classified with reference to their

relaxase gene sequences instead of replication region (Francia et al. 2004). In

accordance with this I propose that, in the absence of a known incompatibility or Rep

type, pNDM-BJ01-like plasmids be classified as MobQ type plasmids.
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Chapter 5

Vibrio cholerae: an environmental reservoir for mobile

elements and antimicrobial resistance genes including

blaNDM-1?

5.1 Introduction

The focus of study in terms of NPGNB has been on the clinical and molecular

epidemiology of the Enterobacteriaceae and A. baumannii (Gaillard et al. 2010;

Poirel et al. 2012a). This is understandable, given the emergence of XDR

phenotypes in important pathogens, like E. coli and K. pneumoniae, is of

considerable public health concern (Kumarasamy et al. 2010; Johnson and

Woodford 2013), and the proven potential of A. baumannii as a nosocomial

pathogen associated with MDR and XDR phenotypes (Higgins et al. 2010; Visca et

al. 2011). However, in Chapter 4 it was argued that the plasmids responsible for the

dissemination of blaNDM-1 genes from the genus Acinetobacter to the

Enterobacteriaceae were likely to have arisen in “environmental” species with less

pathogenic potential. In Chapter 3 it was noted that there is some evidence that the

contents of Tn125, the Tn commonly harbouring blaNDM-1 in Acinetobacter spp., was

probably assembled in some other environmental species (Poirel et al. 2012a;

Toleman et al. 2012).

In 2011 a study of seepage and tap water samples from around central New

Delhi showed that the blaNDM-1 gene could be detected by PCR at several sites.
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NPGNB were cultured from many of these samples. Most of these were not

Enterobacteriaceae but “environmental” organisms, such as Pseudomonas spp.,

Stenotrophomonas maltophilia and the aquatic organisms Aeromonas caviae and V.

cholerae (Walsh et al. 2011). Since this study “environmental” bacteria have been

found to harbour blaNDM-1 on many occasions, as summarised in the General

Introduction section 1.3.2 and Table 1.2. These have included bacteria isolated from

clinical specimens as both causes of opportunistic infections and colonising flora,

faecal screening samples and further environmental studies (Jovcic et al. 2011;

Perry et al. 2011; Bharadwaj et al. 2012; Darley et al. 2012; Liu et al. 2012; Wang et

al. 2012; McGann et al. 2013; Wang et al. 2013). These include many of the

“environmental” Acinetobacter spp. as discussed in Chapter 4, whilst Pseudomonas

spp. have also been prominent amongst carriage isolates (Jovcic et al. 2011;

Bharadwaj et al. 2012; Hu et al. 2012; Wang et al. 2012; Yang et al. 2012).

Our laboratory is currently involved in the largest clinical prevalence and risk

factor study ever undertaken of carriage and infection with NPGNB, carried out on

patients admitted to a public hospital in Karachi, Pakistan. In that study only a small

proportion of blaNDM-1 positive bacteria isolated are NPE, with many “environmental”

organisms including Acinetobacter spp. and Pseudomonas spp. representing the

bulk of the organisms identified. Other bacteria identified include Aeromonas spp.,

Comomonas aquatica and Achromobacter spp., all of which are associated with

aquatic environments (T.R. Walsh personnel communication).

Amongst the “environmental” organisms associated with significant clinical

infections caused by NPGNB two cases have involved V. cholerae. A case of clinical

cholera in a two-year-old boy in Puducherry, India, was reported in 2012 (Mandal et

al. 2012). An O1 El Tor Ogawa V. cholerae strain harbouring blaNDM-1 was isolated
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from the boy’s faeces. Although the strain was resistant to several antimicrobials,

including cefotaxime, it was not resistant to carbapenems and the boy was treated

successfully with fluid and electrolyte replacement and received ciprofloxacin, to

which the organism was sensitive (Mandal et al. 2012). In 2011 a V. cholerae strain

was isolated from the blood of a burns victim, who having sustained his injuries in

Bihar, India, travelled back to the UK and was treated at a burns unit in Bristol

(Darley et al. 2012). Very little else has been learned about blaNDM-1 in V. cholerae. It

was felt that the molecular epidemiology of blaNDM-1 in V. cholerae was worthy of

further investigation for a variety of reasons, relating to the clinical importance of

some strains of V. cholerae, the ecological niches which the organism occupies and

its potential for genetic plasticity.

There are several reasons to conclude that the role of HGT in the

environment is important to the evolution of V. cholerae. These are reviewed in more

detail in section 1.5.2 of the introduction. In summary V. cholerae is; naturally

transformable in the presence of chitin (Lo Scrudato and Blokesch 2012; Sun et al.

2013a); there is evidence for closely related strains switching serotype by acquisition

of GEIs with the genetic determinants of the o-somatic antigens (Ramamurthy et al.

2003; Blokesch and Schoolnik 2007; Chun et al. 2009); broad host range MGEs

associated with AMR genes are common in V. cholerae, especially SXT/ R391 ICEs

but with IncA/C plasmids also being identified (Burrus et al. 2006; Pan et al. 2008;

Pugliese et al. 2009; Wozniak et al. 2009; Ceccarelli et al. 2013); all contain super

integrons which probably contribute to their genetic plasticity (Rowe-Magnus et al.

1999; Baharoglu et al. 2012); and several elements associated with V. cholerae,

including SXT/ R391 ICEs and super integrons, are influenced by SOS induced

stress responses, potentially increasing plasticity in extreme environmental
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conditions, such as with antimicrobial exposure (Beaber et al. 2004; Guerin et al.

2009; Baharoglu et al. 2012).  Given that V. cholerae are naturally present in marine

environments, and can also be found in sewage and the human gut, these

organisms have the potential to share genetic information with both marine

environmental organisms and human commensals and pathogens (Harris et al.

2012).

Our laboratory’s culture collection includes all of the blaNDM-1 positive isolates

of V. cholerae so far identified, with the exception of the O1 El Tor isolate (Mandal et

al. 2012) from the clinical cholera case. I set out to better characterise these isolates

in terms of their strain background, the genetic contexts of blaNDM-1 and the presence

of other antimicrobial and heavy metal resistance determinants. In so doing the aim

was to better understand how these strains had acquired blaNDM-1 and assess the

impact that the dissemination of blaNDM-1 to V. cholerae could have on its further

spread amongst environmental and pathogenic strains of bacteria.

5.2 Nucleotide sequence accession numbers

WGS assemblies have been deposited under project accession PRJEB8515

for V. cholerae isolates 116-17a, 116-17b, 116-14 and BRV8. Accession numbers

are: CGII01000001-CGII01000203 for 116-17a contigs and LN831185 for plasmid

pNDM-116-17; CGHE01000001-CGHE01000186 for 116-17b contigs;

CGIJ01000001-CGIJ01000203 for 116-14 contigs and LN831184 for plasmid pNDM-

116-14; CTBD01000001-CTBD01000152 for BRV8 contigs (SGI-NDM-1 is located

on contig 38, accession CTBD01000091).
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5.3 Results

5.3.1 Origin of study isolates

Two environmental V. cholerae isolates, 116-14 and 116-17, were identified

from a single seepage water sample obtained from Gole Market, New Delhi, as part

of a study of NPGNB in the city environment (Walsh et al. 2011). In this study

seepage water sites, that is rivulets or pools of water in the streets, and tap water

samples were sampled within a 12 km radius of central New Delhi. 51/171 seepage

water samples and 2/51 tap water samples were positive for blaNDM-1 by PCR and/ or

in gel hybridisation. The sites positive for the blaNDM-1 gene within central New Delhi

are shown in Figure 5.1.

20 NPGNB were isolated on selective media, and identified biochemically by

BD phoenix or API 20E. For the presumptive V. cholerae isolates speciation was

supported by the use of the species specific trkA gene PCR and isolates were also

tested with strain specific anti-sera for 01 and 0139 serotypes. Of note only 5 of the

isolates identified in this study were Enterobacteriaceae but the method of isolation

used conditions that were designed to optimise the identification of CRE. Although

not reported in the original article, putative V. cholerae were isolated on TCBS agar

from several other sites around the city, although these isolates were not blaNDM-1

positive (T.R. Walsh, personal communication). Other organisms which are

associated with aquatic environments were found to be blaNDM-1 positive, including A.

caviae, Achromobacter spp., Pseudomonas spp. and S. maltophilia.

The blaNDM-1 positive V. cholerae isolates were not extensively characterised

for this study. However, S1 PFGE and in gel hybridisation with a blaNDM-1 gene probe

show that these isolates harboured blaNDM-1 on plasmids of approximately 170 kb in

116-17 and 400 kb in 116-14. In gel hybridisation with probes specific for different,
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well characterised, plasmid incompatibility types showed hybridisation of the 170 kb

plasmid with an IncA/C plasmid probe. However, none of the set of incompatibility

typing probes hybridised with the 400 kb plasmid. Conjugation experiments were

also carried out by broth and plate mating assays at room temperature, 30ºC and

37ºC overnight. From both V. cholerae isolates blaNDM-1 could be transferred into E.

coli J53 and Salmonella enteritidis R08/R10 at room temperature and 30 ºC but not

at 37 ºC.

Figure 5.1 – Map of blaNDM-1 positive samples from New Delhi centre and

surrounding areas. The site that the V. cholerae strains were isolated from is

highlighted on the map. Reproduced with modification from Walsh et al with

permission (Walsh et al. 2011).
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BRV8 originated from the blood of a burns patient. This 49-year-old British

man was admitted to Frenchay burns unit in April 2011 (Darley et al. 2012). He had

travelled to Bihar, in northern India. An accident in a faulty shower had resulted in

him sustaining a severe electric shock. The immediate history following the electric

shock is unclear but he had subsequently spent time in two hospitals in India and

received unspecified antibiotics. He presented at Bristol 4 days following the

electrocution, having flown back to the United Kingdom. At admission he was found

to have very extensive burns of his face, neck, chest, left arm, left leg and the soles

of his feet. He was hypotensive, had developed acute renal failure and required

emergency management, with resuscitation and intensive care treatment. His

wounds required extensive debridement and grafting. At admission he was found to

have a high temperature and raised inflammatory markers. Multiple wound swabs

and blood cultures were taken and on infection control and microbiology advice he

was kept in single room isolation, with contact precautions, and started on empirical

meropenem. The reason for the immediate isolation was the travel history, which

was identified as a risk factor for MDR infections, including with NPGNB.

This infection control approach was vindicated by the isolation of multiple

NPGNB. The blood cultures drawn soon after admission grew a possible Vibrio spp.,

which was identified at the Bristol microbiology laboratory as being resistant to all the

first line agents it was tested against, including meropenem, ciprofloxacin and the

aminoglycosides. It was subsequently identified as a V. cholerae and found not to

agglutinate with anti-sera for O1 or O139.
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5.3.2 Preliminary findings

The environmental isolates of V. cholerae 116-14, 116-17 and BRV8 had been

stored at -80 °C for further study. These were subcultured on to LB agar with 0.5

μg/mL of meropenem (LBMer0.5), TCBS and CBA. On these initial plates two

colonial morphotypes were seen for 116-14 and 3 for 116-17. Appearances on TCBS

and LB were similar except for colony size, but on CBA there was variation in colony

size, degree of haemolysis and colony colour. On subculture to LBMer0.5 agar and

CBA of each morphotype, only a single colonial type was identified. 116-14a and

116-14b were indistinguishable, as were 116-17a and 116-17c. However, colonies of

116-17b were smaller than other 116-17 subcultures and associated with less

haemolytic, small grey colonies on CBA. All isolates including each of the “colonial

variants” were re-identified by BD phoenix as V. cholerae, except for 116-17b which

was identified as a V. mimicus, and confirmed to be blaNDM-1 positive by PCR.

5.3.3 PFGE and in gel hybridisation

The relatedness of the V. cholerae isolates was further explored by PFGE of

NotI digested genomic DNA for each V. cholerae isolate. Results are shown in Figure

5.2a. Profiles for the “colonial variants” of 116-14 were identical, as were profiles for

116-17a and 116-17c. 116-17b, however, although being very similar to 116-17a

differed by several bands. 116-17, 116-14 and BRV8 each presented distinct profiles.

S1 PFGE was also performed and in gel hybridisation performed with blaNDM-1 gene

probes (Figure 5.2 b and c). This confirmed previous findings for all isolates with the

exception of 116-17b, in which blaNDM-1 was located on the chromosome, rather than

on a ~170kb plasmid as for 116-17a and as originally reported for 116-17 (Walsh et
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al. 2011). Subsequent analysis was performed on 116-17a, 116-17b, 116-14a and

BRV8.

Figure 5.2 PFGE profiles and in gel hybridisation of V. cholerae isolates: a) NotI

restriction digest PFGE profile; b) S1 digest PFGE profile; c) In gel

hybridisation with blaNDM-1 gene probe of S1 PFGE gel.

5.3.4 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing results for unique isolates are shown in

Table 5.1. All exhibit high level resistance to most β-lactams and increased MICs to

the carbapenems, although MICs remained just below sensitive-intermediate

breakpoints to meropenem in 116-14 and imipenem in 116-17b. The strains are

universally resistant to azithromycin but all sensitive to tetracycline. BRV8 and 116-

17b remain susceptible to trimethoprim-sulfamethoxazole and both 116-17a and b

are susceptible to chloramphenicol. Of note 116-17b had considerably lower MICs to

trimethoprim-sulfamethoxazole and slightly lower MICs to chloramphenicol than 116-

17a, despite being of a similar strain background. All of the isolates were sensitive to
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at least two classes of antimicrobials which have breakpoints for use in Vibrio spp.

according to CLSI guidelines (Clinical and Laboratory Standards Institute 2006).

MICs to gentamicin, tobramycin and amikacin were substantially higher for BRV8

than for the other isolates. The correlation with the genotype of each strain is

discussed below.

116-17a 116-17b 116-14a BR V8

Amoxicillin ≥256 ≥256 ≥256 ≥256

Ceftazidime ≥256 ≥256 ≥256 ≥256

Cefotaxime ≥32 ≥32 ≥32 ≥32

Imipenem 6 4 8 12

Meropenem 6 6 2 6

Aztreonam 1 0.75 1.5 1.5

Tetracycline 0.75 0.75 1 0.125

Tigecycline 0.125 0125 0.064 0.094

Co-trimoxazole* ≥32 0.047 ≥32 0.75

Ciprofloxacin 3 1 2 4

Azithromycin 8 8 8 3

Chloramphenicol 6 1 12 16

Gentamicin 0.25 0.25 0.5 >256

Tobramycin 1 1 1 >256

Amikacin 2 2 3 >256

Colistin 2 1 0.75 6

Table 5.1 – MICs (mg/L) as determined by MIC test strip for V. cholerae isolates.

Cells shaded red for resistant, amber for intermediate resistance, green for sensitive,

grey if no genus specific breakpoints available. Interpretation according to CLSI

criteria (Clinical and Laboratory Standards Institute 2006). *Trimethoprim-

sulfamethoxazole.
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5.3.5 De novo assembly results

WGS was performed on the four unique V. Cholera isolates. A summary of the

outputs of the de novo assemblies of the WGS of these isolates is shown in Table

5.2.

Strain No. of Contigs Genome size GC content (%)

116-17a 203 4,147,683bp 47.8

116-17b 186 4,125,773bp 47.8

116-14a 308 4,268,020bp 47.4

BRV8 158 4,105,007bp 47.6

Table 5.2 – summary statistics of de novo genome assemblies performed

using Velvet assembly tool. GC – guanine cytosine. Genome size and GC% both

based on a concatenation of all contigs, generated in Geneious.

5.3.6 Speciation by rMLST

Following WGS of the V. cholerae isolates, rMLST was used to provide a

robust speciation. The ML phylogenetic tree shown in Figure 5.3 shows that the

rMLST profiles of all the study isolates cluster with the V. cholerae strains and are

distinct from V. mimicus (the closest relative to V. cholerae) and other clinically

relevant Vibrio spp. 116-17b is not shown in the tree since its rMLST profile was

identical to that of 116-17a, except for a SNP in locus 1. Note that this is contrary to

the result obtained by automated biochemical testing performed by BD phoenix for

116-17b, which identified this isolate as a V. mimicus isolate.
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Figure 5.3 – ML phylogenetic tree of rMLST profiles of NPVC isolates

compared with related species. Study isolates are shown in red. Bootstrap values

for main branches (100 replicates) are shown.
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5.3.7 Core genome phylogeny

To investigate the phylogenetic relationships between the study isolates and

other V. cholerae isolates an approximately-ML phylogenetic tree of core genome

SNPs was constructed (see Figure 5.4, full list of included isolates given in Appendix

5.1). This confirmed that 116-17a and 116-17b are representatives of the same

strain, with almost identical core genomes. The blaNDM-1 positive isolates cluster

together; however, there is significant phylogenetic diversity between strains. They

show substantial phylogenetic separation from the other V. cholerae sequences

included in the tree, including classic and 7th pandemic isolates. They are closest to

the L4 group which is comprised of the non-conventional, 01 serotype, clinical

isolates A215, isolated in California in 1985, and A325, isolated in Argentina in 1993

(Mutreja et al. 2011).

5.3.8 Sequence analysis of pNDM-116-17 from 116-17a

The contig containing the blaNDM-1 gene and linked contigs were identified as

outlined in the Methods (see Chapter 2, section 2.11). 10 contigs were assembled to

give the complete sequence of pNDM-116-17, an IncA/C plasmid of 167,382 bp with

a GC content of 51.6%, coding for 194 putative ORFs (See Figure 5.5 and

Appendices 5.2 and 5.3).
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Figure 5.4 – Approximately-ML phylogenetic tree based on core genome SNPs: comparison of NPVC isolates with an

international collection of V. cholerae of environmental and clinical origin. A full list of isolates included in the tree is shown in

Appendix 5.1.
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Figure 5.5 – Gene map of IncA/C plasmid pNDM-116-17 (LN831185) from 116-17. Arrows indicate direction of gene

transcription. ORFs are colour coded: red – blaNDM-1; blue – other AMR genes; light orange – genes from conserved sequences of

class 1 integrons; dark grey – ISCR1; light green – trpF and ble genes usually present downstream of blaNDM-1; dark green –

mercury resistance genes; light grey – IS (note ORFs are shown rather than the complete IS); turquoise – plasmid replicase, repA;

purple – relaxase and T4SS genes, tra; dark brown – plasmid partition genes, parA and parB; pink – phage like integrase and

excisionase genes, int and xis; light brown – other genes coding for proteins with proposed functions; yellow – genes coding for

hypothetical proteins. Coloured bars on the outside of the map indicate regions of functional importance: purple – conjugative

transfer; blue – AMR genes; green – mercury resistance. Base pairs numbered around outside of the map. Blue line on the inside

of the sequence indicates GC content averaged over a sliding window of 300 residues. Identity of genes are given in the main text.
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The blaNDM-1 gene is contained within a large variable region containing many

AMR genes and a group of genes associated with resistance to the heavy metal

mercury. The sequence of pNDM-116-17 contains sequences with close identity to

all of the genes proposed to be essential for IncA/C plasmid replication, maintenance

and conjugative transfer. In addition to the IncA/C plasmid replicase, repA, these

include the conjugative relaxase, traI, the components of the Type IV secretion

system, traBCDEFGHKLNUVW and the plasmid partition genes parA and parB

(Johnson and Lang 2012). pNDM-116-17 also contains the genes int and xis, coding

for putative phage integrase and excisionase, respectively. These are present in

many IncA/C plasmids, although their function is not known. IncA/C plasmids

normally replicate autonomously, although chromosomal integration of IncA/C

plasmids has been described previously (Johnson and Lang 2012).

Most sequenced IncA/C plasmids have close backbone identity with each

other, with most variability occurring within regions which appear to be hotspots for

the integration of foreign DNA (Carattoli et al. 2012; Johnson and Lang 2012). The

core regions of pNDM-116-17 display >99% identity with many IncA/C plasmids

identified from NCBI databases, including 8 harbouring blaNDM-1. These plasmids are

E. coli NDM-1 Dok01 plasmid pNDM-1_Dok01 (AP012208); E. coli N10-0505

plasmid pNDM10505 (JF503991); E. coli N10-2337 plasmid pNDM102337

(JF714412); K. pneumoniae ATCC BAA-2146 plasmid pNDM-US (CP006661); K.

pneumoniae KP1 plasmid pKP1-NDM-1 (KF992018); K. pneumoniae Kp7 plasmid

pNDM-KN (JN157804); K. pneumoniae N10-0469 plasmid pNDM10469 (JN861072);

and P. stuartii plasmid pMR0211 (JN687470).

The immediate blaNDM-1 context within pNDM-116-17 varies from that

previously described in other IncA/C plasmids harbouring the gene and is instead



182

most similar to that of IncL/M plasmids pNDM-OM (JX988621, from K. pneumoniae

601) and pNDM-HK (HQ451074, from E. coli strain HK-01) (see Figure 5.6 and 5.7).

A small part of the context around blaNDM-1 is shared with several examples

sequenced from Enterobacteriaceae, including the two plasmids just mentioned.

Only a small fragment of the ISAba125 element upstream of blaNDM-1 remains,

having been interrupted by an IS26 element. The promoter sequence at the 3’ end of

the element, upstream of blaNDM-1 is, however, intact. Downstream of blaNDM-1 the

genes ble and trpF are followed by a fragment of the AmpC-type β-lactamase gene,

blaDHA-1, and its regulator gene, ampR. The genes qacΔE1, sul1 and ISCR1, exactly

as found in the 3’ conserved sequence of some class 1 integrons, are found after

ampR. The rest of the class 1 integron is missing.

The pNDM-116-17 context then differs from other closely related sequences in

that ISEc29 and the macrolide resistance genes, msr(E) and mph(E), are

immediately downstream of ISCR1, rather than being preceded by ISEc29 and the

16s RNA methylase gene, armA, as is the case in pNDM-HK. mph(E) is followed by

a common arrangement, with a gene coding for a hypothetical protein, a gene

proposed to code for a replicase from an Acinetobacter spp. plasmid, an IS26

element and then an interrupted transposase gene. pNDM-116-17 again diverges

from related sequences in that a class 1 integron containing genes coding for

aminoglycoside (aadA1), β-lactam (blaOXA-10), chloramphenicol (cmlA7) and

rifampicin (arr3) are found next, although class 1 integrons are a common feature of

many blaNDM-1 contexts in Enterobacteriaceae. The immediate blaNDM-1 contexts

identified in all the V. cholerae isolates sequenced in this study and other sequences

available from public databases are discussed further in a later section of this

chapter.
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Figure 5.6 – ACT comparison of complete sequence of pNDM-116-17 with the IncA/C plasmid pNDM-Dok01 and the IncL/M

plasmid pNDM-HK. BLAST comparison run using WebAct. Figure drawn using Easyfig 2.1. Areas with BLAST hits in same

orientation shown by bars between sequences ranging from red to yellow. BLAST hits for sequences in reverse orientation ranging

from dark to light blue, key shows % ID of BLAST hit matching to bar colours. Coloured boxes indicate gene regions as shown in

the key on the left side of the figure.
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Figure 5.7 – ACT comparison of antibiotic and mercury resistance region of pNDM-116-17 with the resistance regions from

pNDM-Dok01 and pNDM-HK. ORFs are colour coded as in Figure 5.5. The direction of transcription is indicated by arrow heads,

truncated remnants of ORFs are shown as rectangles. BLAST comparison run using WebAct. Figure drawn using Easyfig 2.1.

BLAST hits shown as in Figure 5.6. Annotations are given in the main text except: dfrA12 – trimethoprim resistance gene, coding

for dihydrofolate reductase; Δztox – truncated sequence coding for putative zeta-toxin; res – resolvase gene; aacC2 –

aminoglycoside resistance gene coding for aminoglycoside 3-N-acetyltransferase; blaTEM-1 – TEM type β-lactamase gene.
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The 6 other IncA/C plasmids with similar backbones containing blaNDM-1 all

contain an insertion which includes the blaCMY gene at a different integration hotspot

to that harbouring blaNDM-1, located between some of the conjugation apparatus

genes. None of these plasmids possess the mercury resistance operon which is

found immediately upstream of blaNDM-1 in pNDM-116-17; although they do contain a

fragment of the merR gene (see Figure 5.7). The genes usually found within this

operon are; merA, which codes for a mercuric reductase; merC, merP and merT,

which all code for mercury transporter proteins; merR, which codes for the main

regulatory protein; and merD, which codes for a co-regulator (Mathema et al. 2011).

Mercury resistance operons with close identity to that found in pNDM-116-17 are

present in several other IncA/C plasmids (Johnson and Lang 2012).

5.3.9 Evidence of chromosomal integration of pNDM-116-17 in 116-17b

The assembly of 116-17b included 9 contigs with 99.8 to 100% nucleotide

identity over their entire length to sections of the pNDM-116-17 sequence,

encompassing almost the complete plasmid. However, no plasmid harbouring

blaNDM-1 was seen on the S1 PFGE gels. The 74 and 167 kb contigs which contain

most of the IncA/C plasmid backbone genes could be linked by PCR to large contigs

containing V. cholerae chromosomal genes and sequences with close identity to

SXT/R391 family ICEs. The position of the contigs with identity to pNDM-116-17

suggest that the entire plasmid had integrated at a hotspot within the ICE which

commonly contains AMR genes (Wozniak et al. 2009). Loss of resistance genes and

changes in the resistance profile of 116-17b relative to 116-17a also support this (see

discussion below). However, the insertion event seems likely to have been mediated

by IS10 elements, which are found at either end of the integrated IncA/C plasmid,
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linking it to the ICE context, rather than to the IncA/C plasmid having integrated in a

manner analogous to an ICE (see Figures 5.8 and Appendices 5.4 and 5.5).

5.3.10 Sequence analysis of pNDM-116-14 from 116-14

61 contigs from the 116-14 sequence were linked to assemble plasmid

pNDM-116-14 (LN831184), which is 354,308bp long and has a GC content of 44.4%.

pNDM-116-14 codes for 400 putative coding sequences (see Figure 5.9, Appendices

5.6 and 5.7). Of these 244 code for hypothetical proteins of unknown function. The

genes coding for proteins of known function, or proposed function based on

homology with known proteins, include 7 intact AMR genes, in addition to blaNDM-1, 7

metal resistance genes, 39 genes from ISs, 1 intact replicase gene, 2 plasmid

partition genes and 11 genes involved in conjugative transfer.
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Figure 5.8 – ACT Comparison of contigs linking SXT/R391-like ICE to pNDM-116-17 in 116-17b to pNDM-116-17 and

reference SXT/R391 ICE. Genes are colour coded as in Figure 5.5. BLAST comparison run using WebAct. Figure drawn using

Easyfig 2.1. BLAST hits shown as in Figure 5.6.
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Figure 5.9 – Gene map of

plasmid pNDM-116-14

(LN831184) from 116-14. All

labels and features are as

indicated for Figure 5.5.

Annotations are as given in the

main text.
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A large AMR region of more than 30 kb surrounds the blaNDM-1 gene.

Downstream of blaNDM-1 are the common ble and trpF genes. Downstream of trpF is

an ISCR1 element at the 3’ end of a complex class 1 integron. This class 1 integron

contains the chloramphenicol and rifampicin resistance genes, cmlA7 and arr3.

Downstream of the integrase gene, int, of the class 1 integron are the resolvase,

tnpR, and transposase, tnpA, genes of a Tn3 family IS. Immediately upstream of

blaNDM-1 is a fragment of ISAba125 which, as usual, retains the promoter sequence

for blaNDM-1. Unusually this fragment is present adjacent to the 3’ remnant of a blaOXA

beta-lactamase gene which had probably been inserted as a gene cassette within a

class 1 integron. Upstream of this gene fragment are an aadA1 gene cassette,

coding for an aminoglycoside 3’ adenyltransferase, followed by the 3’ conserved

sequence of a classic class 1 integron. The remaining 15kb of this region upstream

of blaNDM-1 includes several ISs, including 3 copies of IS26, and the macrolide

resistance genes, msr(E) and mph(E), and the tetracycline efflux gene, tetA, with its

transcriptional regulator, tetR. Comparison of the immediate context of blaNDM-1 in

pNDM-116-14 with related contexts is discussed further later in this chapter.

pNDM-116-14 shows extensive identity with scaffold 7 from the whole genome

sequence of V. harveyi ZJ0603 (see Figure 5.10). The majority of this 286kb scaffold

is present on pNDM-116-14 with nucleotide identities of between 98-100% between

the homologous regions. Most of the antibiotic resistance genes, including blaNDM-1,

present in pNDM-116-14 are absent in V. harveyi ZJ0603 but it does contain a class

1 integron in a similar location to that of the integron downstream of blaNDM-1 in

pNDM-116-14 (see Figure 5.10b). Despite containing different gene cassettes these

integrons have several features in common; ISCR1 is present in the 3’CS; similar

rifampicin resistance genes are upstream of the integrase and Tn3-like resolvase
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and transposase genes are downstream. Amongst the other regions absent from the

V. harveyi ZJ0603 scaffold are all of the heavy metal resistance genes and a region

containing several restriction modification genes with significant identity to genes

found in SXT/R391-like ICEs (see Figure 5.10c).

The repE gene coding for a putative replicase protein is present in both

pNDM-116-14 and the V. harveyi ZJ0603 scaffold 7. However, the next closest

homologue of this protein has only 49.4% AA identity across a 237aa conserved

region. A phylogenetic analysis (See Figure 5.11a) of the closest BLASTP hits to this

protein shows that the most closely related replicase homologues, for which the

incompatibility type has been experimentally determined, are IncF replicases, but

there is also some identity with IncN replicase genes. The sequence immediately

upstream of repE in pNDM-116-14 does not show significant identity with IncF or

IncN origins of replication. However, this region did contain five 21bp imperfect

repeats adjacent to an AT rich region. This could represent an iteron controlled origin

of replication similar to that found in several incompatibility types including IncF

replication regions (del Solar et al. 1998), but would require experimental

confirmation.
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Figure 5.10 – ACT comparison of: a) complete pNDM-116-14 with Scaffold 7 from V. harveyi ZJ0603; b) 3’ end of AMR

region in pNDM-116-14 with class 1 integron region of V. harveyi ZJ0603 scaffold 7; c) type 1 restriction modification gene

cluster in pNDM-116-14 and Shewenella frigidmarina NCIMB 400 ICE and its absence from V. harveyi ZJ0603 scaffold 7.

ORFs are colour coded as in Figure 5.5. The direction of transcription is indicated by arrow heads, truncated remnants of ORFs are

shown as rectangles. Top histogram represents GC% content of pNDM-116-14. BLAST comparison run using WebAct. Figure

drawn using Easyfig 2.1. BLAST hits shown as in Figure 5.6. Annotations as stated in the main text except: tniA and tniB –

transposase and transposition associated gene; orf5 – gene of unknown function associated with 3’ conserved sequence of class 1

integron; aadA16 – aminoglycoside O-nucleotydyltransferases, aminoglycoside resistance genes; int – phage integrase like genes;

dfrA27 – trimethoprim resistance, dihydrofolate reductase type XXVII gene; xre – transcriptional regulator gene.
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Figure 5.11 a) Phylogenetic tree of replicase proteins with identity to RepE of

pNDM-116-14; b) Phylogenetic tree of MobH relaxases with identity to TraI of

pNDM-116-14; c) Phylogenetic tree of VirB4/ TraC like ATPases from T4SS

related to TraC of pNDM-116-14. Bootstrap values shown on main branches.



195

Plasmid pNDM-116-14 also contains genes coding for a putative MobH group

relaxase (traI) and a full set of F plasmid-like type IV secretion system (T4SS)

proteins. Phylogenies were constructed for the TraI and the ATPase protein of the

T4SS, TraC. No substantial identity is found between the MobH relaxases and other

relaxase families (Garcillán-Barcia et al. 2009) so the tree was built using close

BLAST matches of TraI from pNDM-116-14 including known MobH type relaxases,

mainly from the MobH1 and MobH2 subgroups, with a MobH3 protein as an

outgroup. This demonstrates that TraI from p116-14 is located within the MobH1

phylogroup, which includes plasmid R27, SXT/ R391 ICEs and IncA/C plasmids (See

Figure 5.11b). Furthermore, traI and the genes of the T4SS preserved broad synteny

with these genes in other elements with MobH1 phylogroup relaxases.

The TraC phylogeny was used as being representative of the T4SS. Previous

phylogenetic studies have shown relaxases, homologues of the type IV coupling

protein, VirD4, and homologues of the ATPase protein VirB4/TraC seem to have

evolved independently. However, VirB4/TraC phylogenies cluster consistently in

clades which are representative of the 4 T4SS families (F, G, I and Ti) which have

thus far been identified in proteobacteria (Guglielmini et al. 2013). Examples of

VirB4/ TraC homologues for each of these 4 families were included. The tree shows

the monophyly of each group, with TraC of pNDM-116-14 firmly rooted within the F-

family and more closely related to proteins from IncA/C plasmids and SXT/ R391-like

ICEs than it is to the F-plasmid (See Figure 5.11c).



196

5.3.11 Sequence analysis of Salmonella Genomic Island-1-like element,

SGI-NDM-1, from BRV8

The wider chromosomal context of blaNDM-1 in BRV8 was defined by PCR

linking of 7 contigs to give a super-contig with a full length of 144,419bp

(CTBD01000091, See Appendices 5.8 and 5.9). Much of this contig contains genes

found commonly on chromosome 1 of V. cholerae but blaNDM-1 was contained within

a GEI similar to Salmonella Genomic Island-1 (SGI-1, see Figure 5.12). This

element, which was named SGI-NDM-1, is 51,342bp long and has a GC content of

47.1%. SGI-1-like elements include genes coding for a phage like integrase and

excisionase as well as three conjugative transfer proteins of the F plasmid family,

TraGHN and a replicase with similarity to that of IncW plasmids (Mulvey et al. 2006).

SGI-NDM-1, in common with other SGI-1-like elements was inserted with the direct

repeat which defines its 5’ end present within the 3’ end of the trmE gene (coding for

a tRNA GTPase), which is not interrupted by the insertion. Downstream of the SGI-

NDM-1 was the gene mioC (coding for a flavodoxin protein).
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Figure 5.12 – ACT comparison of SGI-NDM-1 (CTBD01000091) from BRV8 with SGI-1 from S. enterica Typhimurium DT104

and the plasmid pNDM-CIT from C. freundii. Genes are colour coded as in Figure 5.5. BLAST comparison run using WebAct.

Figure drawn using Easyfig 2.1. BLAST hits shown as in Figure 5.6. Annotations as described in main text except: yidC – inner

membrane translocase gene; trmE – tRNA GTPase gene; rep – incW like replicase gene; traN – putative mating pair stabilisation

gene; S006 – putative regulator gene; traG and traH – putative pilus assembly gene; S020 – putative integrase gene; pcrA – DNA

helicase gene; S024 – putative exonuclease gene; ftsH – putative cell division gene; res – resolvase gene; gidA – tRNA uridine 5-

carboxymethylaminomethyl modification; int2 – phage integrase pseudogene; urt – gene  coding for hypothetical protein; rt –

reverse transcriptase gene; yidY – putative drug translocase gene; cat – chloramphenicol acetyltransferase gene; met –

modification methylase gene; parB-like – putative partition protein.
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The first 26,414kb of SGI-NDM-1, from the imperfect repeat marking the 5’

boundary of the element to the start of the class 1 integron, shares >99% nucleotide

identity to SGI-1 in S. enterica Typhimurium DT104 and to several other examples of

SGI-1-like elements in S. enterica, Proteus mirabilis and V. cholerae. Variation

between these SGI-1-like elements occurs predominantly in a 3’ region which differs

greatly in length and gene content but is characterised by the presence of 1 or more

class 1 integrons, AMR genes and ISs. Some similarity is seen between the “variable

region” in SGI-NDM-1 with most other SGI-1-like elements because of the class 1

integrons, sometimes with common gene cassettes. However, the blaNDM-1 context

found in SGI-NDM-1 shows far greater identity with the contexts found in the plasmid

pNDM-CIT (JX182975, from C. freundii) and the plasmid pNDM-116-14 described

above (see Figures 5.12 and discussion below) than with the variable region of any

other SGI-1-like elements.

The blaNDM-1 gene has been identified on one other occasion in a related

genomic island, PGI1-PmPEL from P. mirabilis PEL. This element is similar to SGI-W

from Salmonella Heidelberg, but differs significantly from SGI-NDM-1 both in its

backbone and in the variable region, as shown in Figure 5.13. The conserved region

of PGI1-PmPEL is clearly related to SGI-1-like elements, with many of the genes in

synteny to their homologues in SGI-1-like IMEs, and some amino-acid sequence

identity of the coding sequences. For example, the integrase and putative mating

pair stabilisation proteins of PGI1-PmPEL share 84.6% and 53.9% AA identity,

respectively, to those in SGI-NDM-1. The sequences with high levels of identity in the

variable regions of these elements are based on the conserved regions of class 1

integrons and the blaNDM-1, ble, trpF gene cluster. The other AMR genes and ISs
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differ significantly between the two sequences, while PGI1-PmPEL also contains a

mercury resistance island.

At the 5’ end of the variable region of SGI-NDM-1 is a class 1 integron with a

single aadA2 gene cassette, coding for an aminoglycoside 3’ adenyltransferase and

an ISCR1 element at its far 3’ end. This is followed by the trpF gene, ble and blaNDM-

1. There is then a structure identical to that described in pNDM-116-14, with

remnants of a class 1 integron, with an intact aadA1 gene cassette, and a truncated

blaOXA gene cassette adjacent to the fragment of ISAba125 upstream of blaNDM-1.

This class 1 integron in SGI-NDM-1, however, terminates at its 3’ end with ISCR1,

rather than orf5 as in pNDM-116-14. The aminoglycoside resistance methylase gene,

armA, follows, flanked by ISEc29 and ISEc28 elements, followed by the msr(E) and

mph(E) genes, and then IS26. The far 3’ end of SGI-NDM-1, beyond IS26, is

conserved in most SGI-1-like elements and contains the 3’ end of a classic class 1

integron, truncated at sul1, with an intact orf5 and orf6; IS6100; a gene coding for a

hypothetical protein of unknown function; and the right hand direct repeat.
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Figure 5.13 – ACT comparison of SGI-NDM-1 from BRV8 with PGI1-PmPEL from P. mirabilis PEL. Genes are colour coded as

in Figure 5.5. BLAST comparison run using WebAct. Figure drawn using Easyfig 2.1. BLAST hits shown as in Figure 5.6.

Annotations as described in main text and Figure 5.12 except: thdF – tRNA modification GTPase; C1592 – putative regulator;

C1587 – integrase family protein; aacA4 – aminoglycoside N-acetyltransferase, aminoglycoside resistance genes; aadB –

aminoglycoside 2“ adenyltransferase, aminoglycoside resistance genes; dhfrA1 – trimethoprim-resistant dihydrofolate reductase

type I gene; blaVEB-1 – extended spectrum β-lactamase gene; aphA6 – aminoglycoside O-phosphotransferase, aminoglycoside

resistance gene; ∆blaDHA-1 – fragment of AmpC type β-lactamase gene; ampR – lysR family blaDHA-1 regulator gene; merRTPFADE –

genes making up a mercury resistance locus; tniRQBA – Tn genes; hipA – serine/threonine protein kinase gene; hipB –

transcriptional regulator gene.
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SGI-1-like elements do not possess a functional conjugative transfer system

but they can excise and exist in an extrachromosomal form in the same way as

ICEs. They can also be mobilised in trans by IncA/C plasmids but not by plasmids of

several other incompatibility groups (Wozniak et al. 2009; Douard et al. 2010). No

IncA/C plasmid sequence was detected in BRV8 and no large plasmids were seen

on S1 gels for this strain. The strain did, however, contain an SXT/R391-like ICE, the

conjugative transfer genes of which are similar to those found in incA/C plasmids

(Johnson and Lang 2012). Several experiments to see if blaNDM-1 positive

transconjugants could be obtained in an E. coli recipient were unsuccessful, both

with and without pre-treatment with ciprofloxacin to stimulate ICE excision and

transfer by SOS induction. Further analysis of the contigs containing the transfer

genes of the SXT/R391-like ICE revealed that the genes traFHG were missing.

These have previously been identified as being necessary for SXT/R391-like ICE

transfer (Wozniak et al. 2009).

5.3.12 Comparison of immediate genetic contexts of blaNDM-1

Figure 5.14 shows the immediate genetic context of blaNDM-1 in 116-17a, 116-

14 and BRV8 and examples of closely related blaNDM-1 contexts from other species.

The immediate context in 116-17b is not shown as the assemblies suggested that it

was identical to that in 116-17a. The V. cholerae contexts all contain class 1

integrons or fragments of class 1 integrons and ISCR1 elements, which form part of

the 3’CS of complex class 1 integrons (Toleman et al. 2006). All these contexts

contain several antibiotic resistance genes, some of which are present in all the V.

cholerae contexts. Most of these resistance genes are present either as gene

cassettes (e.g. aadA1) within class 1 integrons or are flanked by IS (e.g. msr(E),
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mph(E)). All these contexts contain one or more IS26 elements. They also contain a

fragment of ISAba125, with its associated promoter sequence, upstream of blaNDM-1

and the genes ble and trpF downstream.  This short sequence is the only part of the

V. cholerae blaNDM-1 context which is retained from the Tn125 sequence frequently

seen in Acinetobacter spp. (represented by pNDM-BJ01 in Figure 5.14) and thought

to be the precursor of blaNDM-1 contexts which have disseminated and diversified

amongst GNB. The genetic structure in the E. coli plasmid pNDM-1_Dok01 is

noteworthy since it may represent an evolutionary intermediate between the context

seen in pNDM-BJ01 and those most closely related to the V. cholerae contexts. In

pNDM-1_Dok01 most of the structure immediately downstream of blaNDM-1 is identical

to that in pNDM-BJ01 but further downstream are found a class-1-integron, ISCR1

and the macrolide resistance genes msr(E) and mph(E).
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Figure 5.14 – Gene maps of immediate blaNDM-1 contexts for V. cholerae strains 116-17, 116-14 and BRV8, compared to

related contexts in Enterobacteriaceae, Acinetobacter spp. and P. aeruginosa. Genes are colour coded as in Figure 5.5.

Gene fragments are shown without directional arrows. Coloured boxes around the gene maps highlight regions with at least 99%

nucleotide identity present in multiple contexts, with each colour indicating a different homologous region. Gene annotations not in

main text or previous Chapter 5 figures: aphA6 – aminoglycoside O-phosphotransferase, aminoglycoside resistance gene; tat –

twin-arginine translocation pathway signal sequence gene; cutA – periplasmic divalent cation tolerance gene; groES – co-

chaperonin gene; groEL – chaperonin gene; res – putative resolvase gene; ztox – putative zeta-toxin gene; dfrA12 – dihydrofolate

reductase type XII; aacA7 – aminoglycoside N-acetyltransferase, aminoglycoside resistance genes.
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Comparing the immediate blaNDM-1contexts in the V. cholerae strains with one

another and related contexts from other species there was evidence of substantial

genetic re-arrangements, gene acquisition and loss between related contexts. Many

of these changes can be hypothesised to result from the action of the IS, particularly

ISCR1, and homologous recombination events. The ISCR1 elements are thought to

mobilise in a fashion similar to the genetically related IS911 family of ISs (see

introduction section 1.4.5). This mechanism can result in transposition of the

sequence upstream of the element (Toleman et al. 2006), which would explain the

unusual genetic structure in which blaNDM-1 is found in both 116-14 and BRV8,

inserted within a remnant of a blaOXA gene cassette within a class 1 integron. This

mechanism could also explain the formation of the immediate context downstream of

blaNDM-1 in the P. stuartii plasmid pMR0211, in which ble and trpF have been replaced

with a sul gene, which is immediately upstream of ISCR1, as seen in the 3’CS of

class 1 integrons, but with the rest of the integron missing.

It is also likely that homologous recombination based on the 3’CS of class 1

integrons is responsible for some of the differences seen. For example, an extensive

region upstream of blaNDM-1 is identical in pNDM-116-14 and SGI-NDM-1 sequences.

However, upstream of blaNDM-1 the 3’CS contains orf5 in pNDM-116-14, as in

common class 1 integrons, but it contains ISCR1 in SGI-NDM-1, as is found in

complex class 1 integrons (Toleman et al. 2006). The most likely explanation for

these variants is homologous recombination based on the 3’CS, which has been

experimentally shown to occur.  As the resistance regions of SGI-1-like elements

usually contain one or more class 1 integrons and the V. harveyi context related to

pNDM-116-14 also contains a class 1 integron it is possible that homologous
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recombination events could have introduced the blaNDM-1 contexts into these

elements.

5.3.13 Relationship between AMR phenotype and genotype

Much of the resistance profile can be explained by the acquired resistance

genes present in these strains, most of which are found within the MGEs described

above. Some of these resistance genes, however, may have a limited impact on

resistance phenotype. 116-14 contains the tetracycline efflux gene, tetA, and its

regulator, tetR, but MICs to tetracycline are still within the sensitive range in 116-14

and not much higher than they are in the rest of the V. cholerae isolates. The

sulphonamide resistance gene, sul1, is present in all isolates, and the

chloramphenicol resistance gene, cmlA7, is present in all isolates except BRV8.

However, in the absence of the sulphonamide, trimethoprim and chloramphenicol

resistances genes sul2, dhfR18 and floR in 116-17b, this isolate has considerably

lower MICs than 116-17 to chloramphenicol and co-trimoxazole. These genes, along

with the aminoglycoside resistance genes strA and strB, are commonly found within

the same insertion hotspot of SXT/R391 family ICEs as the IncA/C plasmid has

inserted in, and so this event probably also resulted in their deletion in 116-17b.

116-17a, 116-17b and 116-14 all harbour the AmpC type β-lactamase blaCMY-4.

In the case of 116-17a the gene is probably chromosomal in location, having inserted

upstream of the rtxA gene encoding the RTX toxin. In 116-14 there are two copies of

blaCMY-4, one found within pNDM-116-14 at a site distant from blaNDM-1, and another

which is probably found on a second plasmid given the high coverage of the contigs

involved. In addition 116-17a and 116-17b harbour an intact blaOXA-10 gene. BRV8
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lacks these other β-lactamases but has similar MICs to the other V. cholerae isolates

to all of the β-lactam antimicrobials tested.

116-17a 116-17b 116-14 BRV8
Aminoglycoside

aadA1 aadA1 aadA1 aadA1
strA strA strA
strB strB strB

aadA2
armA

β-lactam
blaNDM-1 blaNDM-1 blaNDM-1 blaNDM-1

blaCMY-4 blaCMY-4 blaCMY-4

blaOXA-10 blaOXA-10

MLS - Macrolide-Lincosamide-StreptograminB
mph(E) mph(E) mph(E) mph(E)
msr(E) msr(E) msr(E) msr(E)

Phenicol
cmlA1 cmlA1 cmlA1
floR floR floR

Rifampicin
arr-3 arr-3 arr-2

Sulphonamide
sul1 sul1 sul1 sul1
sul2 sul2

Trimethoprim
dhfR18*

Tetracycline
tet(C)

Table 5.3 – Resistance genes detected in WGS contigs from V. cholerae

isolates. Colour of table cells indicates approximate % ID with reference genes used

for Resfinder searches: Dark green – 100% ID; Light green – 99% ID; Grey – 98%

ID.

* Not identified by Resfinder.
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All of the V. cholerae isolates studied have multiple aminoglycoside resistance

genes except for 116-17b. BRV8 has high MICs to all of the aminoglycosides tested,

which is in keeping with the presence of the RNA methylase gene, armA, in this

isolate, which is known to be associated with resistance against most clinically

available aminoglycosides. All other isolates have much lower MICs to the

aminoglycosides tested, in keeping with the narrow spectrum of the aminoglycoside

modifying enzymes coded for by the genes strA (aph(3’’)-Ib), strB (aph(6)-Id) and

aadA1.

5.3.14 Other MGEs present in NPVC isolates

De novo assembly contigs were compared to the full genome sequence of V.

cholerae N16961 using ACT. Comparison with this serotype 01, biovar El Tor strain,

the sequence of which has been fully closed and annotated, demonstrated that in all

cases both the VPI-1 island and the CTXΦ prophage were absent in their entirety

from the study isolates.

All of the genome assemblies contained contigs with high levels of identity to

SXT/R391 ICEs. The SXT/R391-like ICE sequence have not been closed but

comparison of contigs with regions of significant identity to a SXT/R391 reference

sequence (Accession AY055428) was performed using ACT, and are shown in

Figure 5.15. The SXT/R391-like ICEs present in 116-17 and 116-14 are very similar.

The 5’ end of these elements probably contain the AMR genes mentioned in the

preceding section, inserted in variable region III (see Figure 5.16) and in the same

gene order as in the reference sequence. The core SXT/ R391-like genes are all

present in both elements, but there are substantial differences from the reference in

other variable regions. The ICE in BRV8 also contains most of the core SXT/R391-
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like genes, with the exception of the traFHG genes already mentioned. However, in

this ICE there is no insertion within variable region III (Figure 5.16), with the rumB

gene remaining intact. Instead the genes strA, strB and floR are found at the 3’ end

of the ICE, close to the location where traFHG would usually be found.

5.4 Discussion

All the strains studied in this work lack the VPI-1 and CTXφ which are

understood to be crucial to the pathogenesis of cholera and found in all strains which

have been linked with epidemic and pandemic disease (Waldor and Mekalanos

1996; Karaolis et al. 1999; Muanprasat and Chatsudthipong 2013). This is in keeping

with these strains being non-O1, non-O139 serotypes and with the fact that they are

environmental and blood culture isolates. As discussed in the general introduction

non-O1, non-O139 strains have been associated with other clinical infections ranging

from mild gastroenteritis to sepsis associated with significant mortality (Ko et al.

1998; Morris 2003). The pathogenic potential of all the study strains is therefore

uncertain.
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Figure 5.15 ACT comparison of contigs from NPVC containing sequences with identity to SXT/R391-like ICEs with

reference SXT sequence (AY055428): a) 116-17a and 116-14 versus reference; b) BRV8 versus reference. Genes are colour

coded as in Figure 5.5. Green and blue arrows above the sequence line denote contigs from the NPVC isolates. BLAST

comparison run using WebAct. Figure drawn using Easyfig 2.1. BLAST hits shown as in Figure 5.6. Annotations as described in

main text or earlier figures in Chapter 5 except: int - SXT/ R391 integrase gene; rumB’ – gene for UV repair DNA polymerase,

truncated at 3’ end; ‘rumB – gene for UV repair DNA polymerase, truncated at 5’ end; tnp – genes coding for putative transposases

B.
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of IS; dct - deoxycytidine triphosphate deaminase gene; sulII - dihydropteroate synthase type II sulphonamide resistance gene;

s021 – gene with putative product similar to V. cholerae MutL involved in methyl directed DNA repair; rumA – UV repair gene; s024

– gene with product similar to polymerase epsilon subunit from R391; s039 – gene with product similar to lon protease from

Thermus thermophiles; traI – conjugative relaxase gene; traD – conjugative coupling factor gene; s043 – putative conjugative

coupling factor gene; traLEKBVACWUNFHG/ trhF – conjugative transfer genes; s052 – gene with product similar to ynd from pTi in

Agrobacterium tumefaciens; s053 – gene similar to ync from pTi in Agrobacterium tumefaciens; s054 – gene with putative disulfide

bond isomerase product; s062 – gene similar to nucM from Pectobacterium chrysanthemi; ssb – single-stranded DNA binding

protein gene; s065 – putative DNA recombination protein gene similar to bet from Bacteriophage 933W; s067 – gene similar to

cobS from pMT1 in Yersinia pestis; s071 –putative DNA repair radC gene; s074 – putative response regulator gene; s075 – putative

histidine kinase gene; setCD – transcriptional activator genes; setR – transcriptional repressor similar to cI from Bacteriophage 434.
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Figure 5.16 – Structure of the genomes of 13 SXT/R391 ICEs. (A) The upper line represents the set of core genes (thick arrows)

and sequences common to all 13 SXT/R391 genomes analyzed. Hatched ORFs indicate genes involved in site-specific excision

and integration (xis and int), error-prone DNA repair (rumAB), DNA recombination (bet and exo) or entry exclusion (eex). Dark gray

ORFs correspond to genes involved in regulation (setCDR). Light gray ORFs represent genes encoding the conjugative transfer

machinery, and white ORFs represent genes of unknown function. (B) Variable ICE regions are shown with colors according to the

elements in which they were originally described SXT (blue), R391 (red), ICEPdaSpa1 (green), ICESpuPO1 (purple), ICEVchMex1

(yellow), ICEPalBan1 (orange), ICEVchInd5 (turquoise), ICEPmiUSA1 (olive), ICEVchBan9 (pink), ICEVflInd1 (light green). Thin

arrows indicate the sites of insertion for each variable region and HS1–HS5 represent hotspots 1–5. Roman numerals indicate

variable regions not considered true hotspots. Cm, chloramphenicol; Hg, mercury; Kn, kanamycin; Sm, streptomycin; Su,

sulfamethoxazole; Tc, tetracycline; Tm, trimethoprim. * indicates that s073 is absent from ICEPdaSpa1. a ICEVchMoz10, which

lacks dfrA1 in the integron structure, does not confer resistance to Tm. b The purple gene content of ICEVflInd1 was deduced from

partial sequencing, PCR analysis and comparison with ICESpuPO1. Reproduced with permission from Wozniack RAF et al., PLOS

Genetics 2009;5 (12):1-13 (Wozniak et al. 2009).
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The clinical strain, BRV8, was isolated from a patient who was, at the time,

profoundly immunocompromised by the burn injuries he had sustained (Darley et al.

2012). Major burns constitute an immunosuppressed state because of the lack of

barrier function of the skin and also because of the effects of the major inflammatory

response. Furthermore, the clinical findings which suggested the presence of

systemic infection at the time the organism was isolated could also have been

partially, or completely, explained by the ongoing inflammatory response secondary

to his injuries (Greenhalgh et al. 2007). Therefore, even for this isolate it is difficult to

conclude with much confidence that the strain would have significant pathogenic

potential in a less compromised host. It is, however, noteworthy that despite having

wounds colonised with multiple XDR, NPE that the only organism isolated from blood

early in the clinical course was BRV8 (Darley et al. 2012).

Although some virulence determinants have been proposed for non-O1, non-

O139 V. cholerae, these are poorly characterised in these organisms (Morris 2003).

For this reason these genetic determinants have not been sought in the study

isolates, as no meaningful conclusions could be drawn about the strains pathogenic

potential from a genotypic analysis. Never the less, the resistance genes, and the

MGEs associated with them, identified in these organisms have significant clinical

and public health ramifications. Firstly, there is a high likelihood of these elements

being shared with other Vibrio spp. in aquatic environments because of the proven

potential for gene exchange within the species and the genus. blaNDM-1 has on at

least one occasion been acquired by a strain with epidemic/ pandemic potential

(Mandal et al. 2012). This has concerning implications for the potential of these

organisms to develop XDR phenotypes, even though β-lactam antibiotics are not

normally recommended for cholera treatment (Kitaoka et al. 2011; Harris et al. 2012).
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As seen in this study, and the wider literature, blaNDM-1 is commonly associated with

MGEs carrying a multitude of other resistance genes (Kumarasamy et al. 2010;

Carattoli 2013; Johnson and Woodford 2013) and so finding blaNDM-1 can be seen as

a marker for the sharing of such elements in populations of these bacteria.

Of the MGEs found to be associated with blaNDM-1 in this study perhaps the

most worrisome are the IncA/C plasmids. They are now observed as one of the

incompatibility types most frequently associated with blaNDM-1 and have previously

contributed to the dissemination of other β-lactamases, notably blaCMY-2 (Carattoli et

al. 2012; Johnson and Lang 2012; Carattoli 2013). The many differences described

here between the variable regions of pNDM-116-17 and other IncA/C plasmids which

harbour blaNDM-1 suggest that the acquisition of blaNDM-1 by pNDM-116-17 is likely to

be a separate evolutionary event to that which resulted in the blaNDM-1 context seen in

most other IncA/C plasmids that have been sequenced. IncA/C plasmids have a

broad host range, having first been identified in Aeromonas spp. and Vibrio spp. they

have subsequently been found in many Enterobacteriaceae (including S. enterica

and Yersinia pestis) and Xenorhabdus nematophila and can be transferred to

recipients of different species in vitro (Johnson and Lang 2012). It has previously

been reported that pNDM-116-17 could be transferred by conjugation in to an E. coli

recipient (Walsh et al. 2011). It has been hypothesised that IncA/C plasmids may be

unstable without selection pressure in some Enterobacteriaceae and that aquatic

organisms like Vibrio spp. are the source of IncA/C plasmids. Vibrio spp. may,

therefore, act as a reservoir from which other GNB could acquire these plasmids

(Johnson and Lang 2012).

Although blaNDM-1 has been identified in a chromosomal location on several

occasions the literature and sequence databases do not yet contain many examples
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of blaNDM-1 incorporated into GEIs. As noted above, an IME similar to SGI-NDM-1

described here, PGI1-PmPEL from P. mirabilis, has recently been described (Girlich

et al. 2014). However, these IMEs are only distantly related, with significant

sequence divergence between even their conserved regions, as well as having

major differences in their variable regions. Thus, these represent separate

acquisitions of blaNDM-1 by GEIs, and there is as yet no evidence of dissemination of

blaNDM-1 in any bacterial species by GEIs with mobile potential.

Theoretically, the chromosomal location of these elements would be expected

to result in greater genetic stability of the resistance gene contexts containing blaNDM-

1, than if found on a plasmid. Thus SGI-NDM-1 in V. cholerae could represent a

further stable reservoir of AMR genes, with mobile potential. Although it was not

demonstrated that SGI-NDM-1 has mobile potential in this study, it is possible that,

with the appropriate plasmid vector to transfer the element in trans, it would be so.

However, attempts to do this with PGI1-PmPEL were unsuccessful, although the

presence of the excised extrachromosomal form of the genetic element was

demonstrated (Girlich et al. 2014).

The rapid emergence of SGI-1-like elements associated with antibiotic

resistance in S. enterica serovars and later in P. mirabilis demonstrates their

potential to disseminate and acquire resistance genes in significant bacterial

pathogens (Mulvey et al. 2006; Boyd et al. 2008; Hall 2010; Siebor and Neuwirth

2013). Although there are 4 SGI-1-like sequences from V. cholerae available in the

NCBI database as of January 2015, a search of Pubmed did not identify any

publications relating to SGI-1-like elements in V. cholerae. SGI-1-like elements may

represent a group of elements which have contributed to the genomic plasticity of V.

cholerae strains, and warrant further study. Given the history of the rapid expansion
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of SXT (Burrus et al. 2006; Mutreja et al. 2011) in epidemic strains of cholera and of

SGI-1 in S. enterica Typhimurium the acquisition of blaNDM-1 by SGI-1-like elements

could threaten a similar event in pathogenic strains of bacteria, including in V.

cholerae.

The significance of the finding of blaNDM-1 on the mega-plasmid pNDM-116-14

is less easy to predict, since very little is known about plasmids of this type. Previous

work suggests the plasmid can be transferred to E. coli recipients (Walsh et al. 2011)

and pNDM-116-14 does contain genes which are homologues to all the genes

known to be required for conjugative transfer. That a sequence with large regions in

synteny with pNDM-116-14 has also been found in a V. harveyi isolate suggests that

in nature these elements have some mobile potential.

These findings with regards to the broader context of blaNDM-1 demonstrate

once again the variety of genetic contexts associated with blaNDM-1. There is also

evidence of significant genetic plasticity within the local genetic contexts, although

these are sufficiently closely related to have arisen from a recent, common source.

More data would be required in Vibrio spp. and other environmental organisms to

draw firm conclusions about the extent to which blaNDM-1 genetic contexts are being

shared between different species and whether the diversification of the contexts

observed here has occurred within V. cholerae. However, the nature of the MGEs

identified, which all have GC percentages similar to those in Vibrio spp. and have all

been identified previously in V. cholerae and/or other Vibrio spp., is compatible with

the broader genetic contexts having diversified within V. cholerae or related species.

The degree of variation observed in this small data set suggests that environmental

organisms could have an important influence on the shaping of genetic contexts and
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their subsequent dissemination and that V. cholerae could be a useful model

organism for studying this.

Another important un-answered question is whether blaNDM-1, or other AMR

genes of concern, like blaCMY-4 and armA, can be found relatively frequently in Vibrio

spp. Thus far we have not made any systematic attempt to look for resistant Vibrio

spp. in environmental or clinical samples. The NDM-1 producing strains identified so

far were found either by chance in clinical isolates or from environmental samples

using techniques optimised to identify CRE (Walsh et al. 2011; Darley et al. 2012;

Mandal et al. 2012). The diversity of the context observed in this small data-set, and

the means used to acquire these isolates, would seem to suggest that our findings

are the tip of the iceberg.

Recent work suggests that environmental bacteria could be a significant

reservoir of blaNDM-1 genes. Sharing of blaNDM-1 genes with organisms like V. cholerae

could contribute to the genetic diversity of blaNDM-1 contexts and increase the

chances of dissemination by successful MGEs to pathogenic strains of bacteria. It

also suggests that the environment could be an ongoing reservoir for MGEs and

AMR genes, including blaNDM-1, despite efforts targeted within clinical settings to

control the spread of MDR and XDR pathogens. More study is warranted into V.

cholerae, other aquatic organisms and organisms from different environmental

reservoirs on the prevalence of clinically important AMR determinants. Furthermore,

understanding MGEs associated with AMR determinants and the dynamics of HGT

in environmental settings could provide useful information to guide strategies to

contain the spread of AMR.
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Chapter 6

General Discussion

6.1 Methods to define molecular epidemiology and their limitations

It is hoped that by studying the genetic contexts of AMR genes like blaNDM-1

that greater understanding of both the epidemiology and the means of dissemination

of these resistance genes may be gained. However, the sequence data available

from blaNDM-1 contexts, including the data produced for this thesis, only provides a

small part of the story and the approach has several clear limitations.

Firstly, since blaNDM-1 has spread so widely amongst many bacterial species

(Kumarasamy et al. 2010; Nordmann et al. 2011b; Walsh et al. 2011; Berrazeg et al.

2014), the sequence can only provide a snap shot of existing genetic contexts.

Furthermore, although it has become increasingly straightforward and cheap to

sequence large numbers of bacterial WGS using next generation sequencing

technologies such as Illumina, sequence assembly can be challenging where large

numbers of repetitive sequences are present (Baker 2012; Miyamoto et al. 2014;

Wajid and Serpedin 2014). Thus, providing full assemblies of multiple, and

sometimes quite large (e.g. the mega-plasmid pNDM-116-14 was 354,308 bp in

length), is not a trivial undertaking and occupied a large amount of the time spent

analysing data for the current work. This means that the number of reliable
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assemblies of wider genetic contexts of resistance genes that can be produced with

currently accessible technology is much more limited than might be imagined.

This may change fairly rapidly if longer read sequencing platforms like

PACBIO become more widely applied and available because of falling monetary

costs, reduced sequencing error rates and increased throughput on sequencing and

assembly pipelines (Miyamoto et al. 2014). In the short term, a more realistic

strategy may be the selective application of sequencing methods like PACBIO on

highly selected isolates to provide fully assembled reference sequences, including

reliable, fully assembled MGEs (Miyamoto et al. 2014; Stoesser et al. 2014). These

can then be supplemented with the results of other sequencing studies using

Illumina or 454 sequencing, without necessarily attempting full assembly of MGEs, to

facilitate high throughput of samples and keep costs down.

In terms of optimising the utility of sequence data, ideally isolates need to be

sequenced which have been carefully selected to address specific questions,

collected in a systematic fashion and with as much provenance data as possible.

Given that the countries in which NPGNB are prevalent have resource poor

healthcare systems and the barriers to international collaboration on researching this

topic that exist in India now (Walsh and Toleman 2011a), this is challenging.

Evidently the sequence data is also a tiny part of the overall picture.

Understanding of the sequence data is made possible by annotating potential coding

sequences. Increasingly, annotation is provided by bioinformatic methods used to

define sequence similarities with known protein sequences, obtained by translation

of potential coding sequences (Aziz et al. 2008; Consortium 2014). However, with

novel sequences, including some of the sequences obtained for this thesis, the

quality of the annotation that can be produced in this way may be fairly poor. Many of
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the MGEs sequenced during this work have been annotated with large numbers of

potential coding sequences which are not known to produce any protein of known

function. Thus, sequencing technology is overtaking our knowledge of protein

structure and function, which in turn limits the interpretation of the sequence data.

Sequence data alone can give clues to how genetic structures have been

formed, but further experimental data is needed to support hypotheses generated in

this way. The majority of the information provided in this thesis is based on the

analysis of sequence data alone. Some attempt was made in each results chapter to

provide some functional information about MGEs and some phenotypic information

about the organisms studied. However, it proved challenging to take this work to its

logical conclusions within the constraints of the time available.

6.2 Overview of genetic contexts associated blaNDM-1

The striking thing about the epidemiology of NDM producers has been that

the gene is found in a large number of strains and species of GNB (Kumarasamy et

al. 2010; Walsh et al. 2011; Carattoli 2013; Berrazeg et al. 2014). A comparison of

the number of species in which blaKPC-2-like and blaNDM-1-like genes have been reported

in the published literature as of 2013 is shown in Figure 6.1. NPGNB include

organisms usually found in the environment, of probably limited pathogenic potential,

and strains of bacteria which are not strongly associated with human disease.

Furthermore, although the gene has been associated with some MGEs more

frequently, and these are likely to have played a more significant role in its

dissemination, there are a large number of different plasmids, Tns and some GEIs

which have been found to harbour blaNDM-1 (Nordmann et al. 2011b; Carattoli 2013;

Johnson and Woodford 2013; Girlich et al. 2014).
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Figure 6.1 – Graph showing the number of species in the published literature

which harbour blaNDM-1-like versus blaKPC-2-like genes producers. Graph courtesy

of Tim R Walsh.

Although representing a small proportion of the available sequence data, and

a highly selected sample, the results presented in this thesis are consistent with the

above statements. The A. baumannii clinical isolates described in Chapter 3

probably carried blaNDM-1 on very similar plasmids, but this was a reflection of clonal

spread of a successful strain within a single clinical setting (Jones et al. 2015), and

the plasmid was of a type not previously associated with blaNDM-1. Even in the case

of these Acinetobacter isolates there was evidence of genetic plasticity, with blaNDM-1

present in multiple genetic locations and examples of variants of the plasmid which

had lost large sections of the DNA sequence. This thesis also reports blaNDM-1 in four

other Acinetobacter spp. strains, with the gene present on different plasmids, albeit

that in two the plasmid backbone was almost certainly similar and shared close
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identity with plasmids that have been detected in Acinetobacter spp. in various

geographic locations, but predominantly China (Jones et al. 2015). Plasmids in the

other species seemed likely to be of a novel background, as far as association with

blaNDM-1, but have not been extensively characterised at present. blaNDM-1 was further

described in V. cholerae, in 3 strain backgrounds and associated with 2 different

plasmid types and a GEI. One of these plasmids was of a type which had been

poorly characterised previously and never associated with blaNDM-1. The other

plasmid was an IncA/C plasmid. These plasmids have been associated with blaNDM-1

on many occasions, but the variable region was different to those characterised

previously. The GEI showed some backbone similarity with a GEI which has been

associated with blaNDM-1 before, but in a different species background and with a

substantially different variable region (Girlich et al. 2014).

There are differences between the reported genetic diversity and

epidemiology of bacteria harbouring blaNDM-1 compared to that of other globally

successful β-lactamase genes like blaKPC-2, blaVIM-1, blaOXA-48 and blaCTX-M-15. Most of

these other genes have fairly conserved sequences immediately adjacent to them

(blaCTX-M-15 being an exception although it is usually associated with ISEcp1) and

many have been associated with a predominant species and/ or strains of bacteria

(Woodford et al. 2011; Tzouvelekis et al. 2012; D'Andrea et al. 2013; Munoz-Price et

al. 2013). For example blaKPC is predominantly identified in K. pneumoniae ST258

(Munoz-Price et al. 2013). These other β-lactamase genes are found in different

species of Enterobacteriaceae and occurrence in species of other genera, like P.

aeruginosa, does occur (Tzouvelekis et al. 2012; Munoz-Price et al. 2013). This

variability in host background is likely to be as result of dissemination by plasmids.

Some genes, like blaVIM-1, blaOXA-48 and blaCTXM-15 have so far been mainly associated
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with a limited range of plasmid Inc types, whilst others like blaKPC-2 are, like blaNDM-1,

associated with several different Inc types (Carattoli 2013). blaNDM-1-like genes have

been described in many diverse species of GNB, and amongst the predominant

species, like E. coli and K. pneumoniae, are associated with many different strain

types (Kumarasamy et al. 2010; Nordmann et al. 2011b; Walsh et al. 2011; Johnson

and Woodford 2013). This raises the question, if there is a difference in the genetic

diversity of blaNDM-1-like contexts compared to similar resistance genes in GNB, is

there some feature of these genes, their local genetic contexts, wider genetic

contexts, or the environment in which these genes are being spread, favouring broad

dissemination?

6.3 Immediate context and early evolution of blaNDM-1-like genes

As with all carbapenemases the level of carbapenem resistance of the host

bacteria associated with NDM-1-like enzymes are somewhat variable (Daikos et al.

2009; Nordmann et al. 2011b). Studies of the enzyme kinetics of NDM-1-like

enzymes do not suggest that the hydrolysis of carbapenems is greater than for other

clinically prevalent carbapenemases. The kcat/Km values reported for NDM-1 against

meropenem and imipenem are not substantially different to those reported for VIM-2

and KPC-2, and slightly higher than for OXA-48 (Yigit et al. 2003; Poirel et al. 2004;

Yong et al. 2009b; Tzouvelekis et al. 2012; Makena et al. 2014). So, although blaNDM-

1-like genes are more consistently identified in Enterobacteriaceae with significant

levels of carbapenem resistance than is the case with other genes, especially blaOXA-

48, this does not seem to be an intrinsic feature of the enzymes themselves (Daikos

et al. 2009). Instead this is more likely to be related to the level of expression of the
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enzyme and other features of the host strains favouring higher carbapenem MICs,

such as relative membrane impermeability or efflux mechanisms.

An almost universal feature of the genetic contexts of blaIMP and blaVIM genes

is that they are found as gene cassettes of class 1 integrons (Daikos et al. 2009;

Walsh 2010). This may reflect the fact that the evolutionary success of these genes

is associated with promotion of expression of gene cassettes near to the integrase

gene, combined with the genetic plasticity associated with these elements and the

selective advantage associated with other gene cassettes (Walsh et al. 2005;

Gillings 2014). blaNDM-1-like genes have not been described so far as gene cassettes.

However, ISAba125 has been shown to provide a strong promoter to blaNDM-1-like

genes (Hornsey et al. 2011; Poirel et al. 2011a; Dortet et al. 2012). ISAba125 has

also previously been associated with increasing the promotion of other resistance

genes including blaADC genes and probably aphA6 (Nigro et al. 2011; Lopes and

Amyes 2012). Indeed, in pNDM-BJ01 the aphA6 gene does not result in amikacin

resistance, which is proposed to be because the gene does not possess ISAba125

and its associated promoter upstream (Hu et al. 2012). A. bereziniae CHI-40-1,

described in Chapters 3 and 4, is amikacin resistant despite containing an identical

aphA6 context but its transconjugants have the same aminoglycoside susceptibility

profiles as their recipient backgrounds (Jones et al. 2015). A. bereziniae CHI-40-1

appears to contain a sequence variant of aphA6 which is probably associated with a

different promoter sequence in a second genetic context, explaining the apparent

inconsistency.

Close analysis of the ISAba125-blaNDM-1 sequence and related sequences

lead to the suggestion that blaNDM-1 is in fact a chimeric gene, that has incorporated a

small part of the 5’ sequence of aphA6 (Toleman et al. 2012), as discussed in
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Chapter 3. This same event probably resulted in the formation of the context that

placed the promoter sequence upstream of blaNDM-1. This has previously been

identified as a key evolutionary event in the formation of blaNDM-1-like genes and their

genetic contexts (Partridge and Iredell 2012; Poirel et al. 2012a; Toleman et al.

2012). As can be seen in Figure 3.1 in Chapter 3, there is a marked change in the

GC% after the small 5’ remnant of aphA6, which makes up part of blaNDM-1. This is

likely to reflect the fact that aphA6 and ISAba125 are from an Acinetobacter

background (most Acinetobacter spp. have total GC% in the region of 40%) while the

rest of the blaNDM-1 sequence has a much higher GC%, suggesting an alternative

original background (Poirel et al. 2012a; Toleman et al. 2012).

It is not known for sure what the original source of the ancestral metallo-β-

lactamase of blaNDM-1-like genes was (Sekizuka et al. 2011; Poirel et al. 2012a;

Toleman et al. 2012). NDM-1-like enzymes do not show substantial similarity to any

other known metallo-β-lactam (Yong et al. 2009b), with NDM-1 sharing 34.2% AA

identity with its closest relative VIM-1 (based on MAAFT alignment). On the basis of

the GC% of most of the blaNDM-1 context within Tn125 and phylogenetic analysis of

some of the coding sequences within Tn125, it has been proposed that this context

could have been acquired from an organism related to plant pathogens of the

Xanthomonas or Pseudoxanthomonas spp (Sekizuka et al. 2011).  The genes tat,

cutA1, groES and groEL are found in examples of these organisms in perfect

synteny.

An environmental reservoir for A. baumannii has not been clearly established,

notwithstanding its ability to persist in the hospital environment (Visca et al. 2011).

Other species of Acinetobacter; however, are found in various environmental and

animal reservoirs. Therefore, it can be hypothesised that a context containing the
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progenitor of blaNDM-1, ble, trpF, the genes from the context similar to that in

Xanthomonas spp. and ISCR27 could have been taken up by Acinetobacter from a

Xanthomonas spp., or similar species, in the environment. Two possible

mechanisms have been proposed for the formation of the blaNDM-1-like context with

ISAba125 upstream; either a deletion event or an ISCR27 rolling circle transposition

mechanism (Toleman et al. 2012). The latter mechanism would result in a fragment

of aphA6 being downstream of the oriIS of ISCR27, a sequence that has not ever

been observed in sequenced isolates in Acinetobacter or Enterobacteriaceae,

although it is feasible that the context could have evolved further prior to widespread

dissemination of blaNDM-1-like genes. If ISCR27 is functional it is possible that it could

have moved the entire context on a second occasion, so that aphA6 was no longer

present at the 3’ end of the element.

What factors could have influenced the genetic plasticity of the immediate

blaNDM-1-like context in Acinetobacter spp. and Enterobacteriaceae?

It is noteworthy that despite the fact that ISAba125 elements upstream of

blaNDM-1-like genes are frequently interrupted by the insertion of other ISs in

Enterobacteriaceae, and were truncated in all of the V. cholerae isolates described in

Chapter 5, no examples have yet been identified in which the promoter is interrupted

(Poirel et al. 2011b; Toleman et al. 2012; Dortet et al. 2014). It is likely that this

reflects selection bias, in that, in the absence of the promoter, carbapenem MICs

would fall significantly and most studies look for the presence of the gene in isolates

selected because they have reduced susceptibility to carbapenems. Alternatively,

there may be some feature of the sequence upstream of the promoter that

preferentially encourages insertion of transposable elements.
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One hypothesis suggests that this particularly marked change in GC%

encourages the insertion of ISs in some genetic backgrounds, given the large

number of examples in which an IS has inserted within ISAba125. If this were the

case, the sequences in the V. cholerae strains 116-14 and BRV8 would suggest that

this is also relevant to the insertion of ISCR elements, since it is proposed that

ISCR1 is likely to be responsible for the unusual genetic structure around blaNDM-1 in

these strains (see Chapter 5). In contrast, in all Acinetobacter contexts sequenced

so far, including all of the Acinetobacter spp. sequences described in Chapters 3 and

4, the ISAba125 elements upstream of blaNDM-1-like genes are intact (Decousser et al.

2013; Jones et al. 2014a; Jones et al. 2015). Thus in these strain backgrounds the

same sequence does not appear to be a hot spot for transposition events. A variation

of the earlier hypothesis could suggest that it is simply the low GC region of

ISAba125 relative to that of certain strain backgrounds, like Enterobacteriaceae and

V. cholerae, which acts as the transposition hotspot. Although some ISs/ Tns/ ISCRs

have specific target sites, for most, the factors dictating insertion targets are poorly

defined, and changes in GC% and DNA structural features are proposed as

influencing choice of insertion site (Meyer et al. 1980; Sengstag et al. 1986; Craig

1997). As it is a common finding that there are hotspots within MGEs and

chromosomal sites for the insertion of foreign DNA (Darmon and Leach 2014), it

does make sense that one potential way of targeting variation at a site containing

accessory, rather than housekeeping genes, would be regions with a different GC%.

As such, in an Acinetobacter background, ISAba125 would not be an obvious target

site because its GC content is similar to that of the background.

In this scenario, instead blaNDM-1-like genes, and most of the rest of the contents

of Tn125, would be potential hotspots for insertion. As with disruptions of the
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ISAba125 promoter it makes sense that if there are a large number of inactivated

blaNDM-1-like derivatives in Acinetobacter spp. we would not identify them because the

techniques used to detect blaNDM-1-like genes probably would not identify these

derivatives. Also, blaNDM-1-like genes may offer an evolutionary advantage to

Acinetobacter isolates containing it. Nevertheless, according to this hypothesis we

would expect that truncated versions of Tn125 would be more frequent, rather than

the full Tn125 element that is most often reported in Acinetobacter spp. containing

blaNDM-1-like genes (Poirel et al. 2012a; Decousser et al. 2013; Jones et al. 2015).

However, although the contents of Tn125 are rather better preserved in

Acinetobacter contexts than in Enterobacteriaceae many examples do vary from the

classic Tn125, to some extent.

None of the genetic contexts described in this thesis from Acinetobacter spp.

contain Tn125 without deletions or insertions (Jones et al. 2014a; Jones et al. 2015).

Tn125 in pNDM-40-1 from A. bereziniae is close to the original sequence described

from A. baumannii 161/07 (Pfeifer et al. 2011) but contains a couple of deleted

sections. In the A. baumannii isolates ISCR27 is interrupted by IS15-Δ and the

context seems to then be present in two forms, either a classic Tn125, with the IS15-

Δ insertion, or in a re-arranged form as found in the assembly of plasmid pNDM-32,

in which a copy of IS15-Δ and the 3’ fragment of ISCR27 are moved upstream of

blaNDM-1 (Jones et al. 2014a). In pNDM-69122 from A. haemolyticus an ISAha3

element is found between ble and pNDM-BJ01-like resolvase, possibly having been

responsible for deletion of the rest of the genes usually found within Tn125. The

blaNDM-1 contexts from A. schindleri 74312-EC and A. towneri 73668-ECT were not

well characterised, because for these isolates WGS was not undertaken and PCR

analysis was only able to determine a short sequence flanking blaNDM-1. However,
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this probably reflected the fact that the Tn125 context was significantly truncated in

these strains also (Jones et al. 2015).

That most other reports suggest that Tn125 remains intact, could suggest that

the contents of Tn125 offer an additional evolutionary advantage. If this was a major

factor this would not explain why most of this context is not preserved in

Enterobacteriaceae. This, however, would presuppose that the genes were

functional in both backgrounds and/ or conveyed their selective advantage in both

backgrounds. As ISAba125 is apparently an Acinetobacter spp. associated IS (Nigro

et al. 2011; Poirel et al. 2012a; Toleman et al. 2012), it may be Tn125 is not

functional in an Enterobacteriaceae background. Thus the diversification seen in

Enterobacteriaceae could only have occurred by blaNDM-1-like genes becoming

associated with different MGEs. In other words, in Enterobacteriaceae there would

be an evolutionary advantage of disruption by other ISs, while the opposite situation

would exist in Acinetobacter if, as seems to be the case, Tn125 can readily move the

blaNDM-1-like context to new genetic locations in this genus (Poirel et al. 2012a).

6.4 What role have different plasmid backgrounds played in the

dissemination of blaNDM-1 between Acinetobacter spp. and other GNB?

The plasmids containing blaNDM-1 in the A. baumannii isolates from India were

likely to be non-mobilizable, and could not be transferred in the conjugation

experiments (Jones et al. 2014a). The plasmids in two of the Acinetobacter spp. from

Karachi were not extensively characterised but one of these could also not be

transferred via conjugation, whilst the other could be transferred to an A. pittii but not

an E. coli recipient (Jones et al. 2015). Thus pNDM-BJ01 plasmids, which could be

transferred efficiently and can clearly be maintained in a fairly broad host range (at
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least within the genus Acinetobacter), would probably have an evolutionary

advantage, and so this may explain their apparent predominance amongst

sequenced plasmids from Acinetobacter spp.

In Chapter 4 a similar argument to that proposed above for the infrequency of

an intact Tn125 in Enterobacteriaceae, was proposed for the lack of any complete

pNDM-BJ01 plasmids in Enterobacteriaceae. It was demonstrated that both of the

pNDM-BJ01-like plasmids described here, pNDM-40-1 and pNDM-69122, could be

transferred by conjugation to Acinetobacter pittii and E. coli transconjugants (Jones

et al. 2015). This was in keeping with several other reports which have found that

pNDM-BJ01-like plasmids could be transferred to Enterobacteriaceae (Hu et al.

2012; McGann et al. 2013; Zhang et al. 2013b). It was also observed that there are a

number of Enterobacteriaceae sequences which contain fragments of the backbone

of these plasmids (Partridge and Iredell 2012; Jones et al. 2015). Thus it is a

reasonable hypothesis that these plasmids, which are relatively frequent in

Acinetobacter spp., have been responsible for some of the dissemination from

Acinetobacter to Enterobacteriaceae. Despite this no complete pNDM-BJ01-like

plasmids have yet been described in Enterobacteriaceae. The finding that three

transconjugants which underwent further investigation contained both blaNDM-1 and

traA on a larger plasmid or the chromosome, suggested that in UAB190 integration

into another replicon was required to maintain the plasmid. So, although it was

efficiently transferred and could be maintained, at least with antimicrobial selection,

pNDM-40-1 was not replicating autonomously in these backgrounds (Jones et al.

2015).

To some extent these findings pose more questions than they answer. To start

with only three transconjugant colonies were investigated, and it would have been
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interesting to investigate a larger number, to see if they all contained blaNDM-1 on

replicons larger than pNDM-40-1. Secondly, it would have been useful to investigate

where pNDM-40-1 had integrated, whether all of the sequence was intact and to try

to establish the mechanism of integration. Furthermore, seeing if transfer to other

Enterobacteriaceae species occurred as readily, and whether maintenance also

required integration into other replicons in these strain backgrounds, would have

helped to better establish whether these plasmids cannot successfully replicate

independently in Enterobacteriaceae. As the replicase and origin of replication of

pNDM-BJ01-like plasmids are not known (Hu et al. 2012), defining these would be

an important next step. This could be technically challenging if they were not

functional in an E. coli background. However, demonstrating that the plasmid

replicase could be functional cloned into a plasmid in a naturally transformable

Acinetobacter spp. strain like A. baylyi ADP1 (Young et al. 2005) but not in E. coli

would provide evidence suggesting that these plasmids could not be autonomously

maintained in Enterobacteriaceae. If this were shown to be the case then this would

provide an explanation as to why complete pNDM-BJ01-like plasmid sequences

have not been identified in Enterobacteriaceae.

Thus, in summary, the early success (allowing for the uncertainties outlined

above) of the spread of blaNDM-1-like genes could be attributed to a sequence of

chance evolutionary events: a) the gene fusion resulting in the efficient promotion of

the gene; b) the association with Tn125 allowing efficient movement to new contexts

in Acinetobacter spp.; c) the association with pNDM-BJ01-like plasmids allowing

efficient dissemination to new species of bacteria including Enterobacteriaceae; d)

the apparent tendency of the blaNDM-1 context, once present in non-Acinetobacter

GNB, to act as a hotspot for the insertion of new ISs/ Tns/ ISCRs, capable of moving
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the immediate blaNDM-1 context, to new genetic locations. What these key events are

missing is any clear idea of how the dissemination amongst Acinetobacter spp.

occurred. On the basis of the available evidence this seems to have been

predominantly through pNDM-BJ01-like plasmids in China (Hu et al. 2012; Yang et

al. 2012; Zhang et al. 2013b; Jones et al. 2015). However, “European” and Middle

Eastern or North African isolates have predominantly been reported to have blaNDM-1-

like on the chromosome, and no evidence answers the question as to how these

strains originally may have acquired these genes (Kaase et al. 2011; Decousser et

al. 2013; Espinal et al. 2013).

As far as the Indian subcontinent is concerned, despite being proposed to be

the epicentre for the spread of NPGNB (Kumarasamy et al. 2010; Nordmann et al.

2011b; Dortet et al. 2014), very little detailed characterisation of Acinetobacter spp.

has been carried out for isolates from this part of the world (Karthikeyan et al. 2010;

Bharadwaj et al. 2012; Jones et al. 2014a). Although pNDM-32 and related plasmids

were not found to be conjugative or mobilizeable, the hypothesis that natural

transformation may be an important means of dissemination of foreign DNA to A.

baumannii has recently been boosted by several strands of evidence, so these

plasmids may still have been vectors which contributed to the spread blaNDM-1

(Rumbo et al. 2011; Harding et al. 2013). Whether pNDM-BJ01-like plasmids are

important to the spread of blaNDM-1 between Acinetobacter spp. in other parts of

South Asia, as well as China, clearly requires further data. The fact that two out of

the five strains of Acinetobacter spp. studied here harboured pNDM-BJ01-like

plasmids, in addition to an isolate described elsewhere, from a soldier returning from

Afghanistan, at least suggests that the hypotheses that they are is worthy of further

study.
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6.5 What role have Enterobacteriaceae and “environmental” GNB including

V. cholerae played in the subsequent spread of blaNDM?

The subsequent dissemination between species of GNB is more complicated

and thus harder to track and explain. blaNDM-1-like contexts in Enterobacteriaceae and

other GNB, are very diverse, although they are more frequently associated with

certain species, like E. coli and K. pneumoniae (Kumarasamy et al. 2010; Nordmann

et al. 2011b; Dortet et al. 2014), and types of plasmid, for example IncA/C, IncHI1

and IncL/M plasmids (Carattoli 2013; Johnson and Woodford 2013). It may simply be

that the combination of an integration hotspot upstream of blaNDM-1-like genes,

encouraging multiple associations with new ISs, the selective advantage of a highly

expressed carbapenemase and subsequent chance associations with broad host

range MGEs, explains the wide dispersal and varied contexts of blaNDM-1-like genes.

It is already a well-established hypothesis that environmental bacteria and

HGT in the environment may be an important source of resistance determinants in

pathogenic bacteria (Stokes and Gillings 2011; Lupo et al. 2012; Woodford et al.

2014). It has been proposed here, and elsewhere, that the original spread of the

progenitor of blaNDM-1-like genes into an Acinetobacter spp. background probably

occurred from a high GC organism like a Xanthomonas spp. in the environment

(Sekizuka et al. 2011). Similarly many other β-lactamases of clinical importance are

thought to have been acquired from environmental species, with the proposed

source of CTX-M type ESBLs from Kluyvera spp. being a prime example (D'Andrea

et al. 2013). The potential for spread of β-lactamases and other genes of clinical

importance within the bacterial gene pool, between environmental, human

commensals and potentially pathogenic bacteria, has also been a growing area of
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scientific interest (Stokes and Gillings 2011; Lupo et al. 2012; Djordjevic et al. 2013;

Nesme and Simonet 2014). Ongoing dissemination could have important

implications for genetic plasticity, and thus potential adaptation of phenotypes of

GNB (Stokes and Gillings 2011).

Several studies and case reports have identified NPGNB isolates from the

environment, wild and livestock animals, as well as in faecal screening and clinical

samples (Perry et al. 2011; Walsh et al. 2011; Wang et al. 2012; Johnson and

Woodford 2013; Wang et al. 2013; Ahammad et al. 2014). A recent review showed

that colonising and environmental isolates represented a significant proportion of

NPGNB reported globally (Berrazeg et al. 2014). Furthermore, some of the bacterial

isolates from clinical and screening samples are organisms which are considered to

have an environmental source, such as P. aeruginosa, V. cholerae and many of the

Acinetobacter spp. (Darley et al. 2012; Hu et al. 2012; Carattoli et al. 2013; McGann

et al. 2013). As alluded to at the beginning of the general discussion, however, it is

an impractical undertaking to attempt to define genetic contexts in all of the

“environmental” organisms that blaNDM-1-like genes have been described in. Of the

many “environmental” organisms that our laboratory has identified, from a range of

studies from the environment, colonisation of humans and clinical isolates, V.

cholerae was selected as a potentially interesting model organism for reasons that

are expanded on in Chapter 5.

The data presented in Chapter 5 demonstrated once again the great variety of

genetic contexts associated with blaNDM-1. On the one hand, there are clear

evolutionary relationships between many of the local contexts blaNDM-1-like genes are

found in from GNB but there are significant genetic re-assortments observed. The

local contexts in the V. cholerae strains could well have evolved from a single
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common source. The wider genetic contexts, however, demonstrated significant

diversity, being associated with three distinct MGEs, in three strain backgrounds.

Whether this is a chance observation, given the small number of isolates analysed,

or reflects real evidence of significant spread between different strains of V. cholerae,

would require further study. To our knowledge, there are no systematic studies

designed to detect the presence of NPVC in environmental and clinical isolates, and

there are limited data for other resistance determinants (Kitaoka et al. 2011). Setting

up a collaboration to analyse this question, in a country where resistance rates in

other pathogens are high and cholera is a significant clinical problem would,

therefore, be of future interest.

Within the limitations acknowledged, the range of MGE blaNDM-1 was found

associated with in these strains was intriguing. The IncA/C plasmids have been

established as important vectors of resistance genes, including blaNDM-1 in

Enterobacteriaceae, but it seemed highly likely that the plasmid demonstrated in V.

cholerae 116-17a had acquired the blaNDM-1 context in an independent event to that

associated with any of the IncA/C plasmids containing the gene which have been

sequenced from Enterobacteriaceae (Carattoli et al. 2012; Johnson and Lang 2012;

Carattoli 2013). Furthermore these plasmids have been described in V. cholerae

previously and been hypothesised to originate from aquatic species such as V.

cholerae (Johnson and Lang 2012).

The other plasmid identified seemed to have a full complement of genes

required for conjugative transfer, previous data suggested it could be transferred by

conjugation in vitro (Walsh et al. 2011) and it was very closely related to a sequence

identified from a different environmental Vibrio spp. The SGI-NDM-1 element is one

of only two descriptions at present of blaNDM-1-like genes being in GEIs. Like IncA/C
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plasmids, these elements have previously been shown to have mobile potential in

vitro, although they require a conjugative element to mobilise them. SGIs have been

found in P. mirabilis, including the other example of one of these elements

harbouring blaNDM-1, and in Salmonella spp (Siebor and Neuwirth 2013; Girlich et al.

2014). Thus the dynamics of sharing of IncA/C plasmids and SGIs between

Enterobacteriaceae and Vibrio spp. could have significant evolutionary implications.

Experiments to look at how widespread these elements are in Vibrio species, the

efficiency of transfer between the different host backgrounds and the stability of

IncA/C plasmids would be interesting in this regard.

From the data available currently it is not possible to conclude whether

genetic contexts observed in V. cholerae were acquired from Enterobacteriaceae,

whether Enterobacteriaceae have acquired these contexts from Vibrio spp. and other

environmental species, or whether in fact there is a multi-directional sharing of these

genetic contexts between different bacterial genera, in different ecological niches. As

such it is not possible to draw firm conclusions about the importance of Vibrio spp. in

the dynamics of environmental sharing of AMR genes. However, the ecological

environments V. cholerae is associated with, it’s apparent potential for genetic

plasticity, acquisition and sharing of foreign DNA, combined with the data presented

here, suggest that this species has significant potential in this regard and is worthy of

further study.

A broader question stemming from the apparent importance of environmental

bacteria in the dissemination of blaNDM-1-like genes, and the diversity of species

involved, is to what extent this could be the case for other AMR genes. Studies have

shown that many AMR genes identified in bacterial pathogens, and a diverse array of

genes which are closely related to known AMR genes, can be identified in aquatic
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and telluric environments, as well as in wild, livestock and companion animals (Lupo

et al. 2012; Djordjevic et al. 2013; Nesme and Simonet 2014). ESBL producing

Enterobacteriaceae have been frequently identified in animals, raw meat and the

environment (Ewers et al. 2012; Liebana et al. 2013). There are fewer reported

isolates of other carbapenemase genes from environmental and animal sources than

there are for blaNDM-1-like genes, although this may simply reflect blaNDM-1-like genes

being sought in the environment more frequently following the well-publicised

reporting of contamination of the New Delhi environment with NPGNB (Walsh et al.

2011). However, a number of reports have identified environmental and animal

associated organisms harbouring of blaKPC, blaVIM, blaOXA-48, blaOXA-23 and other

carbapenemase genes (Guerra et al. 2014; Woodford et al. 2014).

6.6 What role has South Asia played in the spread resistance genes

including blaNDM-1-like genes amongst GNB?

There are substantial geographic differences in the rates of resistance of

bacterial pathogens globally. Despite limitations in global monitoring of AMR there is

evidence of significantly higher rates of AMR in pathogenic GNB in parts of Southern

Europe, South America and South Asia, when compared to North America and the

rest of Europe (Hawkey and Jones 2009; Gales et al. 2012; Mendes et al. 2013;

Jones et al. 2014b). Notwithstanding the initial negative response to the concerns

raised about the spread of NPGNB in South Asia from India (Kumarasamy et al.

2010; Walsh and Toleman 2011b), it has since been acknowledged by clinicians and

policy makers that AMR is a significant problem in India, culminating in the Chennai

Declaration in 2012 (Ghafur et al. 2013). Praiseworthy for its intent, its honesty and

its pragmatism, the Chennai Declaration is none-the-less a stark acknowledgement
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of the extent of the challenge facing Indian health services with regards to AMR

pathogens, which is conservative in its recommendations and unlikely to result in any

substantial improvement in the situation for the foreseeable future. The road-map

agreed suggests that, in the opinion of the experts involved in the meeting, control of

over-the-counter antimicrobials was virtually non-existent and strict controls would

not be implementable, most Indian hospitals had weak or absent infection control

and antimicrobial stewardship programs, microbiology laboratories were not

providing good quality standardised diagnostic services and there was no meaningful

systems in place to monitor either antimicrobial usage or AMR bacterial pathogens.

Several studies have previously suggested that travel to geographic regions

with a higher prevalence of ESBL producing Enterobacteriaceae, especially India, is

a risk factor for colonisation or infection with these organisms (Freeman et al. 2008;

Laupland et al. 2008; Tängdén et al. 2010; Peirano et al. 2011b). NPE have been

isolated fairly frequently in most studies reporting data from India, Pakistan and

Bangladesh (Kumarasamy et al. 2010; Perry et al. 2011; Islam et al. 2012; Johnson

and Woodford 2013). The global dissemination of NPE is proposed to stem from

travel to and from South Asia (Kumarasamy et al. 2010; Johnson and Woodford

2013; Jain et al. 2014; Peirano et al. 2014). However, some authors have disputed

this point (Kant and Haldar 2010) and there is increasing evidence of spread

occurring in some parts of the world which cannot be directly attributed to importation

from South Asia (Johnson and Woodford 2013; Berrazeg et al. 2014). NPGNB have

been identified from environmental sources in China (Zhang et al. 2013a) as well as

in India (Walsh et al. 2011) and Bangladesh (M. Toleman, unpublished data), but few

studies have reported on attempts to isolate organisms from the environment from
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other parts of the world (Isozumi et al. 2012; Berrazeg et al. 2014; Woodford et al.

2014).

Earlier in the discussion it was proposed that the variability of genetic

contexts, in terms of species, strains, MGEs and immediate contexts associated with

blaNDM-1-like genes, seems to be rather greater than has been observed for some

other important resistance genes. Potential reasons for the variability of blaNDM-1-like

contexts have been discussed, based on the features of these genetic contexts. A

further possibility is that the extent of spread, and thus the diversity of genetic

contexts observed, has to do with environmental and healthcare conditions where

NPGNB appears to be most prevalent, in South Asia.

Most South Asian countries are relatively poor. India may be one of the largest

economies globally but this is partly a reflection of its large population (~1.2 billion

people). In fact, about 32.7% of the population were estimated to live on less than $1

a day in 2012 (World Health Organization 2014). Within the region, health care

systems are poorly resourced and infant mortality rates are high. For example WHO

health statistics data for 2006-2013 suggest that India has only 7 physicians and

17.1 nursing and midwifery personnel per 10,000 population, compared to 27.9

physicians and 88.3 nursing and midwifery personnel per 10,000 in the UK (World

Health Organization 2014). The infant mortality rates in 2013 for India and the UK

were 41.4 and 3.9 per 1000 live births respectively. South Asian countries also have

relatively poor standards of waste management and provision of safe,

uncontaminated water (Cairncross 2003; Ensink et al. 2008; Ensink and van der

Hoek 2009; Akter et al. 2014; Cowling et al. 2014). There is very little data on

standards of infection control, cleaning and rates of healthcare associated infection

from this part of the world (Mehta et al. 2007; Chakravarthy et al. 2014), although
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anecdotally standards of infection control are poor in many hospitals, as would be

expected in resource poor settings. Antimicrobial stewardship is also poor, with many

drugs being widely available over the counter without a prescription (Kotwani and

Holloway 2011; Banerjee et al. 2013), and sometimes being of questionable quality

(Hadi et al. 2010). India is one of the major producers of generic pharmaceuticals for

the global market, and several studies have highlighted high levels of contamination

with drugs, including antibiotics in wastewater as a result of these industries (Fick et

al. 2009; Singh et al. 2014).

It is hypothesised that all of these factors could contribute to high rates of

resistance, the broad dissemination of blaNDM-1-like genes and other AMR

determinants, and the variability of the associated genetic contexts. Poor regulation

of antimicrobial usage in terms of appropriateness, dosage, duration of treatment

and quality of medication could all encourage sub-lethal exposure in patients,

encouraging colonisation with resistant bacterial flora in both community and hospital

settings. Poor standards of infection control and hygiene could then lead to spread of

resistant organisms between individuals in hospital and community settings. Human

waste would as a result be more likely to contain both resistant flora and residual

pharmaceutical products and their metabolites, contaminating the environment. In

contaminated environments it is highly likely that some human commensals and

pathogens are able to survive, and engage in exchange of genetic information by

HGT, with organisms which are naturally found in the environment (Stokes and

Gillings 2011).

Further contamination of the environment with by-products of industry could

encourage AMR in bacteria and spread of MGEs, either by offering a selective

advantage, from elements that harbour AMR and heavy metal resistance
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determinants, or from other effects of these compounds. A striking result of one study

was the very high rates concentrations in wastewater near factories in India

producing pharmaceuticals of fluoroquinolones, especially ciprofloxacin (Larsson et

al. 2007). It has been mentioned previously in the General Introduction and Chapter

5 that ciprofloxacin can induce the SOS response in some GNB and is associated

with increased conjugation rates of SXT/ R391-like ICEs (Beaber et al. 2004). SOS

responses are further associated with plasticity associated with integrons and

mutation rates, so could increase genetic plasticity in other ways. It is not known

what effect many pharmaceuticals, industrial by-products and drug metabolites might

have, but it is reasonable to hypothesise that some are likely to have ecological

effects relevant to AMR and genetic plasticity of bacteria.

Use of contaminated water supplies for bathing, washing and agricultural

purposes (Ensink et al. 2008; Ensink and van der Hoek 2009), as occurs not

infrequently in much of the developing world, including in South Asia, would then

bring humans, their livestock and companion animals, and their crops back into

contact with bacteria which have had the opportunity to engage in significant HGT

under significant selection pressure. It is not argued that the conditions described are

exclusive to South Asia, but simply that there are reasons to suppose that the

situation may be worse in some parts of South Asia than in many other geographic

locations.
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Figure 6.2 – Flow chart showing the potential transfer of bacteria, and the AMR

genes and the MGEs they harbour between different hosts and environmental

niches. Especially in resource poor settings where standards of hygiene and

infection control are not high, and people may live in close proximity to animals,

there is the potential spread of bacteria between different host species and

environmental niches, including the hospital environment. Figure courtesy of T.R.

Walsh.

A further factor that has been highlighted is the higher ambient temperatures

in South Asia and other parts of the world with significant problems with resistance in

GNB (Nordmann et al. 2011b). It may be that the ambient temperature encourages

environmental growth of some important groups of bacteria, and even has effects on

HGT. Walsh et al. reported higher transfer rates by conjugation when experiments

were conducted at 30°C, than at 25 °C or at the standard 37°C used to culture many
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bacterial pathogens and to conduct most conjugation experiments (Walsh et al.

2011). This paper further observed that 30°C fell within the range of mean high and

low ambient temperatures in New Delhi, where environmental NPGNB had been

isolated, for much of the year.

6.7 What are the implications of environmental spread of blaNDM-1-like genes

and other AMR genes?

It is possible that the widespread dissemination of blaNDM-1-like genes, which

encompasses GNB which are human pathogens, commensals and bacteria normally

found in several environmental niches, is a fairly unique evolutionary event. It is also

possible that this enzyme will not ever acquire the degree of clinical importance that

has been established for other β-lactamases like CTX-M (D'Andrea et al. 2013), KPC

and VIM (Tzouvelekis et al. 2012). However, it is feared that blaNDM-1-like genes are

likely to become more prevalent in successful pathogenic strains. There are already

sporadic examples where this has occurred, as with the dissemination of ST11 K.

pneumoniae in Greece (Voulgari et al. 2014), ST15 K. pneumoniae in Nepal

(Stoesser et al. 2014) and ST1 A. baumannii in Tamil Nadu reported here (Jones et

al. 2014a).

If it is also the case that many of the resistance genes which have contributed

to our problems with AMR in pathogens, also initially disseminated widely amongst

environmental species prior to emergence as clinical challenges, then this has

important implications. In an inter-linked, globalised world, preventing the spread of

AMR is unlikely to be as simple as adopting good antimicrobial stewardship and

infection control procedures within isolated healthcare settings. Instead far more

wide reaching solutions may be necessary including careful control of antimicrobial
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usage globally in human medicine, agriculture and aquaculture, as well as global

resistance monitoring in key pathogens. Furthermore, attempts to better control

environmental contamination with antibiotics and other chemicals, with provision in

all parts of the world of clean and safe water supplies and proper sewage treatment

would, amongst their many benefits, mitigate against the spread of AMR in the

environment.

This presents a massive political, scientific and economic challenge. Currently

many countries have limited or non-existent monitoring systems of clinical infections

and AMR. No global monitoring system currently exists, and despite the efforts of

various groups, the data on the presence of AMR and bacterial pathogens in the

environment, livestock and companion animals is even more limited (World Health

Organization 2001; Walsh and Toleman 2011b). These deficiencies are vital, since as

human movement becomes ever less constrained by geography, practices in one

geographical area which facilitate the spread of AMR pathogens within any

ecological setting, could lead to spread into human flora, and then dissemination

globally.

Our current position of ignorance, in the absence of any meaningful

international monitoring, prevents us from assessing either the extent of the problem

or planning a proportionate response. Is the experience with NPGNB the tip of an

iceberg, which warns of impending doom, or actually not representative of the

development of AMR in bacteria generally? Clarifying this will require considerable

work and investment. Control of antimicrobial use in any of the industries which

utilise them would in turn have major economic ramifications, and could impact on

our ability to continue to feed the global population according to current patterns of

consumption, let alone meet the increasing demand for meat which is likely to be a
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consequence of the burgeoning middle class in countries like India and China.

However, the alternative may be sleep walking into a post-antibiotic world, with

profound implications for the delivery of healthcare in the future.
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Appendix 2.1 – Recipes for reagent stock solutions made up locally.

Reagents purchased from one of the following companies: Thermo Fisher Scientific,

Waltham, USA; Sigma Aldrich, St. Louis, USA.

TBE Buffer (10×)

Tris (Fisher) 108 g

Boric Acid (Sigma) 54 g

Na2EDTA (Fisher) 7.44 g

Made up to 1 L with sterile distilled water.  Autoclaved before use.

TE Buffer (10×)

Tris (Fisher) 12.1 g

Na2EDTA (Fisher) 3.72 g

HCl (Fisher) 2 M 30 ml

Made up to 1 L with sterile distilled water. Autoclaved before use.

ES Buffer (Deproteination Buffer)

Na lauroyl sarcosine (Sigma) 10 g

Na2EDTA (Fisher) pH 8 18.61g

Made up to 100 ml with sterile distilled water. Filter sterilised.

CS Buffer

Tris (Fisher) pH 8 12.1 g in 10 ml of sterile distilled water

Na2EDTA (Fisher) pH 8 3.72 g in 20 ml of sterile distilled water

Made up to 100 ml with sterile distilled water. Filter sterilised.
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S1 Buffer

Na Acetate (Fisher) 2 g

Zn Acetate (Fisher) 0.1 g

HCl (Fisher) to pH 7.5

25 ml sterile distilled water and 25 ml glycerol (Fisher)

Denaturing solution

NaCl (Fisher) 87g

NaOH (Fisher) 0.5M

Made up to 1L in sterile distilled water.

Neutralising solution

Tris (Fisher) 78.5g

NaCL (Fisher) 87g

Conc HCl (Fisher) to pH 7.5

Tris and NaCl dissolved in 800mls of sterile distilled water, adjusted to pH 7.5 and

made up to 1L.

20× Saline-Sodium Citrate (SSC) solution

NaCl (Fisher) 17.5g

Na3citrate.H2O (Fisher) 8.8g

Adjusted to pH 7.0 with 1M HCl and made up to 100mls in sterile distilled water.

Pre-hybridisation solution
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20× SSC 6mls

5% Ficoll (Sigma) 400μL

5% Polyvinylpyrrolidone (Sigma) 400μL

10mg/ml Salmon testes DNA (Sigma) 300μL

UHT milk 400μL

10% SDS 1ml

Sterile distilled water 11.5mls

0.1M Tris HCl Buffer, pH 7.5

Tris (Fisher) 1.21g

HCl (Fisher) to pH 7.5

Made up to 100mls in sterile distilled water.

CTAB/ NaCl solution

NaCl (Fisher) 4.1g

CTAB (Sigma Aldrich) 10g

NaCl dissolved 80ml water, CTAB slowly added while stirring and heating up to 65°C

to dissolve.  Made up to 100mls with water.
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Appendix 2.2 – List of Culture Media

Columbia Blood Agar (CBA, E&O Laboratories Ltd, Bonnybridge, Scotland)

Used for primary culture and subculture of all isolates, and for plate mating assays.

Thiosulphate Citrate Bile Salts Sucrose (TCBS) Agar (E&O Laboratories Ltd)

Used for primary culture of V. cholerae isolates.

Luria Bertani (LB) Agar, Miller (Thermo Fisher Scientific, Waltham, USA)

Supplemented with antimicrobials for subculture and passage experiment.

LB Broth, Miller (Thermo Fisher Scientific)

Used for subculture, mating supplemented with antimicrobials for passage

experiment.

Mueller Hinton (MH) Agar (E&O Laboratories Ltd)

Used for gradient strip susceptibility testing.

BrillianceTM UTI Clarity Agar (Oxoid Ltd, Basingstoke, UK)

Supplemented with antimicrobials for selective isolation in mating experiments.
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Appendix 3.1 – Copy of  Jones et al. AAC 2014;58 (7):4211-4213. (Jones et al.
2014a)
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Appendix 3.2 – List of primers used for PCR and sequencing of PCR
amplicons for A. baumannii isolates. All PCRs run using 0.2 µM of each primer at
a Mg2+ concentration of 2.25 mM.

Primer Sequence
32 c102F TGCTCTGGCTGAAACGGTGA
32 c15F CGCGCTTGACAGACCCTAGA

32 c162F TGCACGCTGTACTGTTGCTC

32 c162R TCACCAAGTCAGGTGCTCGT

32 c184R ACTTCACCTTGAGGCTGACCA

32 c184R2 CGTAGTGCACGCATGACTTCAA

32 c248F TCATTCCGACAGAGGTGTGC

32 c248R TGCACACCTCTGTCGGAATG

32 c31F GGATGGAGCTGTTTCAGGCG

32 c31R GCAAGGTGCTGTGCACGGAT

32 c34 F AGCGAGAAGGAAAATGTCCAGT

32 c39F TTGTTGTTCGCAACGAGGGC

32 c39R CCAGAATTAGCCCTCGTTGCG

32 c44F TGCCAACGTTCTTCGCCATC

32 c44R GTCACCAGACATGGCGCAAAGAA

32 c51 F CCGGGTTTGTCGGAGAGTCA

32 c51F2 CCAAGGACAAACTTTGGAAGGC

32 c57 R2 ATGATGCAGTGGTGGGGAGA

32 c57F TGCTTCCCACTCTGTGAGCC

32 c57R TGCTAAACCACGCCAATCTGC

32 c68F AAGGCACCATTTGGAAATTTACGGCA
32 c68R TGCGCCACAGACACTGCAAA

32 c68R2 TTCGGTTTCTGTAAGCACAGC
32 c7R CGGGGATATTTTTGTTGATTGCTGG

32 c7R2 ACCGGGTTTGTCGGAGACTT
32 c86F CTCTCCGTGCCCAATCCTGT
32 c86R TACACATCTGCGGCCAGCGT
32 c90F CAGATCAGCCCGACCACCTT
32 c90R TCCTACAAATCGCATCAACACCA

32c133gapF TCAAACAACTCGAACGCGAA
32c164gapF AGCGTGCCAATGAAATTCTACG
32c53gapR GCGGTATAGACCCAGCCTGA
32c89gapR CCGTGTCGATACTTTCCATCCA

34c28F CATCCCTGTCGGTGTTGCTT
45c143F GTGGGGTAAAGGCAGGGTTC

45c143F2 CCTCGATTGACCCGGAGTTG
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Primer Sequence
45c143R ACGCTCCGCCATAATCGTTC
45c202F ACAGTGCCACTTTTATCGCT
45c202R TCCACGCTTCACAATAACTGGA
45c27R TTGAAGGACGCGCTGCTAAA
45c35F TGTTCGAGCAGCTATAGAAA

45c35F2 TGGCCCTGATGATCCGCTTT
45c35R CAAAAGACCACGCCCTCTCA
45c41F GTCGTCCGCCGCATCTATTT
45c41R CAGCGATAGGCCAGGTTCAG
45c9F GCTTTTTGGGTTTGCGTCCC

45con27F TGAAGGGTTCTGTTGGCACG
45intF GTTAGCAGCACTGTGGCGTA
45intR AGATGCACCAAAGCGCAGAA

45repAF GTCTCTCCACGATGTGCGAA
45repAR AATTGCGATCATTGCTGCTC
47c33 R ACGCTCCGCCATAATCGTTC

aadA1 3F CGGCAAAATCGCGCCGAAGG
armA FR TCTGGAAAGGAGAAGGGAATGGAAGAG
armAFF AGGATAGGCAGAATAGTAAGACCCCCA

BioNDM-MR CCGTTGGAAGCGACTGCCCC
ble3F CATGGTGGCATTGGTGAACGC
crff-r CGCTTGAGCCGTTGCGCCC

CRIS F GAGTGCCAAAACAGGGGGACCA
dctF CAGGGCGCTCACCGGCATAG

groeES-3F GGTGCTGGACAACGGCCAGG
groeES-F TCGGCCACCGAGAAGCCGAT

groeES-R2 CCTGGCCGTTGTCCAGCACC
groEL1FR GCTTCGGTGGTGATCATCAG

groel2ff CGCGAGATCGTCACCAATGC
groEL-5F2 GCGCAGGCGATGGACAAGGT

groEL-gapF TGAAGCGCGGCATCGACCAG
groEL-gapR CGCGCAGGGCGATCTGGATG
groEL-MF GGCGGCGTGGTGATTTCCGA
groEL-MR GCCTTCACCGCGCAGACCTT
groES-5R1 ATGACCACGCGGTCGTGCAG
groESgapR GCCGTCCAGCTTCACTTCGG
groSgapF CGCCGGGTTTTTCCACGTCA
insE-3F GCAACGGCTCAAGCGGGTCT
insE-3R CGAAGTGGGCGAGGATGGCG
insE-5R ACAGTGCTCGCAGACCACGC

IS125 5F3 CATAAGTGAAGCATTGGTATTTGGTGT
IS125 5R TGTGACCACGTCTACGTCTAGC

is125-DOWN GATCTTCAAAGTTAAGATGATGG
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Primer Sequence
IS125gapF GCAAAGGCAGAATCAGTGCG

IS125-NDMF TCGCATTTGCGGGGTTTTTAATGCT
IS125prom1 TGTCGCACCTCATGTTTGA
IS125prom2 TGTCGCACCTCATGTTTG

IS26gapF GCACCGGCCTTCGCGTTTGA
IS26-gapFF CACTCCGCGTTCAGCCAGCA
IS26-gapR CGGGGCCGCACTGTCGATTT
IS26gapR2 AACGGCTGCGCTGGTACTGG

ISAb125 TRANSIS_Fb CGAGCATTACCCAAGGGTGA
ISAb125 TRANSIS_R AAACAACGGATCGCTTCAAC

ISAb125_5F AACTTGAAGTGCGACATAAACCACCT
ISAb125_5F2 TCAAGAAAAGAAGGCTTTTCAGCCAG
ISAb125-3R CGCATGTGCCTTTTTGCCAGGG
ISAba1 5R ACAAGCATGATGAGCGCAAAGCAC
ISAba1 5R ACAAGCATGATGAGCGCAAAGCAC

ISAba125-3R(2) GCCAATCTAACGCCTTTCTAGGACGA
ISCR1 FR TTTAAACGGGGCGGTGGGGC
ISCR1FF GTCTGGTCGGGTTGGTGGCG

ISCR27-3R CCGGTAGTGCGCTTGCTCCA
ISCR27-gap1F GCCCGCTGCCCGAGTATGTG
iscr27-gap1R GAAGCGCAACGGGTACGGGA

ISCR27-gap2R ATTGCGCCACGGCGTCTTGA
Mph2FR GAGCAGCGGCCTCTCCTTTG
ndm 3f2 ATCGACGGCACCGACATCGC
NDM_5R CTCAGCTTCGCGACCGGGTG
ndm-1F GAAGCTGAGCACCGCATTAG
ndm-1R TGCGGGCCGTATGAGTGATT
ndm-3f GCCATTCCGCCCCCGATAGC

NDM-5R2 GGGCGGATTTCACCGGGCAT
NDM-APHF AGGAAAACTTGATGGAATTGCCCA

ndm-p1 CAGTTGCGGAGCTTTGAAGC
ndm-p2 CGCGTTAGATTGGCTTACAC
QACR CGGATGTTGCGATTACTTCG
qacR ff GACAACGGCGGAAGGGGCAA
tat-3R GGCACCGCACCTCGGTCAAG

tat-gapF CCAGGCCAGCGCGTCGTAAA
tat-gapR1 GTACCAGGGCTGCGCCGATG
tat-gapR2 GAGGGCAAGAGCCCACAGCC
trpF-gapF TATCGCGGTGCCTTGCCGTG

trpF-R CACGGCAAGGCACCGCGATA
VibIS26F GCGATGAGGCAGCCTTTTGTCT
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Appendix 3.3 – Geneious assembly of sequenced PCR amplicons used to initially define the context of blaNDM-1 in A.

baumannii CHI-45-1 by primer walking. Note that the presence of the full context below being present was also provided by a

long range PCR using pimers NDM-3F and ISCRgap2R, linking the 3’ end of blaNDM-1 to the 3’ fragment of ISCR27. Evidence for

context 2 as shown in Figure 3.6 was provided by PCR with the primers NDM_5R and insE-3F, linking the 5’ end of blaNDM-1 to the 3’

fragment of ISCR27.
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Appendix 3.4 – Geneious assembly of contigs making up pNDM-32 from the WGS of A. baumannii CHI-32. Note that several

contigs appear in the assembly more than once. Links between all contigs were confirmed by PCR and sequencing of amplicons,

this procedure completely resolved the two assembly gaps shown in the figure.
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Appendix 4.1 – Copy of  Jones et al. AAC 2015;59 (2):923-929. (Jones et al.
2015)
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Appendix 4.2 – List of primers and probes used for PCR and sequencing of PCR products

Primer Sequence Use Primer/ probe conc. (µM) Mg2+ conc. (mM)
27F (Henriques et
al. 2006) AGAGTTTTGATCCTGGCTCAG PCR and sequencing of 16sRNA locus 0.2 2.25

1492R (Henriques
et al. 2006) GGTTACCTTGTTACGACTT PCR and sequencing of 16sRNA locus 0.2 2.25

800R (Karah et al.
2011) CTACCAGGGTATCTAAT Sequencing 16s rRNA locus 0.2 2.25

ndm-1F (Yong et
al. 2009a) GAAGCTGAGCACCGCATTAG blaNDM-1 detection and sequencing 0.2 2.25

ndm-1R (Yong et
al. 2009a) TGCGGGCCGTATGAGTGATT blaNDM-1 detection and sequencing 0.2 2.25

aphA6-5F AATTGGTCAGTCGCCATCGG PCR  and sequencing blaNDM-1 context 0.2 2.25

IS125 5R TGTGACCACGTCTACGTCTAGC PCR  and sequencing blaNDM-1 context 0.2 2.25

IS125gapF GCAAAGGCAGAATCAGTGCG PCR  and sequencing blaNDM-1 context 0.2 2.25

NDM_5R CTCAGCTTCGCGACCGGGTG PCR  and sequencing blaNDM-1 context 0.2 2.25

ndm-p1 CAGTTGCGGAGCTTTGAAGC PCR  and sequencing blaNDM-1 context 0.2 2.25

ndm-3f GCCATTCCGCCCCCGATAGC PCR  and sequencing blaNDM-1 context 0.2 2.25

trpF-R CACGGCAAGGCACCGCGATA PCR  and sequencing blaNDM-1 context 0.2 2.25

tat-3R GGCACCGCACCTCGGTCAAG PCR  and sequencing blaNDM-1 context 0.2 2.25

tat-gapR1 GTACCAGGGCTGCGCCGATG PCR  and sequencing blaNDM-1 context 0.2 2.25

groEL-5F2 GCGCAGGCGATGGACAAGGT PCR  and sequencing blaNDM-1 context 0.2 2.25

groEL-MR GCCTTCACCGCGCAGACCTT PCR  and sequencing blaNDM-1 context 0.2 2.25

ISCR27-gap2F GGCAAGGTCGGCGGCTTCTC PCR  and sequencing blaNDM-1 context 0.2 2.25

ISCR27-gap2R ATTGCGCCACGGCGTCTTGA PCR  and sequencing blaNDM-1 context 0.2 2.25

resF AAAGACTGCCAAACGCCCTG PCR  and sequencing blaNDM-1 context 0.2 2.25

PN2F (Hu et al.
2012) TAGATTCGATTCACGGCATA PCR  and sequencing blaNDM-1 context 0.2 2.25

PN5R (Hu et al.
2012) CGTCTTTGTAGCCTTTATCTC PCR  and sequencing blaNDM-1 context 0.2 2.25
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Primer Sequence Use Primer/ probe conc. (µM) Mg2+ conc. (mM)
ble3F CATGGTGGCATTGGTGAACGC PCR  and sequencing blaNDM-1 context 0.2 2.25

res3F TGCAAAACAAATTAACGCCCAGTCTGA PCR  and sequencing blaNDM-1 context 0.2 2.25

res-gapR AGAAGGCGAGGATGAGGGACT PCR  and sequencing blaNDM-1 context 0.2 2.25

ISAba7like-FF GCCAGTAACCATACGTAAAGAAAGACG PCR  and sequencing blaNDM-1 context 0.2 2.25

ISAba7like-RR ATGCAACAAAGCCGTCGGGA PCR  and sequencing blaNDM-1 context 0.2 2.25

69122gapF TGGTGATATAAAACGGCGAATTCAAACA PCR  and sequencing blaNDM-1 context 0.2 2.25

45c143R ACGCTCCGCCATAATCGTTC PCR  and sequencing blaNDM-1 context 0.2 2.25

IS125 3R CGCATGTGCCTTTTTGCCAGGG PCR  and sequencing blaNDM-1 context 0.2 2.25

aphA6-3R TCAGCATTAAAAACCCCGCAAA PCR  and sequencing blaNDM-1 context 0.2 2.25

aphA6-5R AGTCATGATGAGTTCAGGCACC PCR  and sequencing blaNDM-1 context 0.2 2.25

5PgapF1 TCAGCACTCAATTCAGCAAGTGT PCR  and sequencing blaNDM-1 context 0.2 2.25

5PgapF4 GTTGGTGGGTTGGTGTCTGT PCR  and sequencing blaNDM-1 context 0.2 2.25

5PgapF5 TCTGCCCCCATCAAAACGTG PCR  and sequencing blaNDM-1 context 0.2 2.25

5PgapR1 TAAACCGCCACCAACCGAAC PCR  and sequencing blaNDM-1 context 0.2 2.25

5PgapR3 TGGGACTTTTGGATTTGCGGA PCR  and sequencing blaNDM-1 context 0.2 2.25

orfA F ACTGGGCCGCTTCAACCACA Gap closure pNDM-40-1 0.2 2.25

p40-1gap1 F ACGCTTTCCACGTTGCCCTGA Gap closure pNDM-40-1 0.2 2.25

p40-1gap2F TGCGGTTCTGCGGTCAGCTC Gap closure pNDM-40-1 0.2 2.25

p40-1gap3F TCAGAGCGACACCGCACGAA Gap closure pNDM-40-1 0.2 2.25

p40-1gap4F ACGGGGGAGTATGGGAAACT Gap closure pNDM-40-1 0.2 2.25

p40-1gap5F CTTGTAGGAATGTTGGCAGGGT Gap closure pNDM-40-1 0.2 2.25

AphA6gap5R AGTCATGATGAGTTCAGGCACC Gap closure pNDM-40-1 0.2 2.25

p40-1gap2R TTCGTGCGGTGTCGCTCTGA Gap closure pNDM-40-1 0.2 2.25

p40-1gap3R TCCCATACTCCCCCGTCATAGC Gap closure pNDM-40-1 0.2 2.25

p40-1gap5R AGGTACGCCAACGAAACAGC Gap closure pNDM-40-1 0.2 2.25
PN11F(Hu et al.
2012) AATGTGGTCTGCGGTGTA Detection of pNDM-BJ01-like plasmids 0.2 2.25

PN11R(Hu et al.
2012) GCCTGCTGTAACTTCTCAA Detection of pNDM-BJ01-like plasmids 0.2 2.25
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Primer Sequence Use Primer/ probe conc. (µM) Mg2+ conc. (mM)
PN6F (Hu et al.
2012) TCAGGATTCACCCACCAT Detection of pNDM-BJ01-like plasmids 0.2 2.25

PN6R (Hu et al.
2012) GGCTCAAGACTACAACGATA Detection of pNDM-BJ01-like plasmids 0.2 2.25

PN9F (Hu et al.
2012) ATCTACGATCTTGCCTTGTT Detection of pNDM-BJ01-like plasmids 0.2 2.25

PN9R (Hu et al.
2012) CTTGTTCTGACGAGCCTAA Detection of pNDM-BJ01-like plasmids 0.2 2.25

TraA F1 TGGTCAGCAAAACCCGCATGT TraA quantification by qPCR 0.5 4

TraA R3 GGTTAGCCCATTCTAGGCGGGT TraA quantification by qPCR 0.5 4

Tra Probe TCCAGTAAACCCTGAAAAGGGCGGTGCGGGT TraA quantification by qPCR 0.2 4

NDM RT F1 TGGGTCGAACCAGCAACCGC NDM quantification by qPCR 0.25 4

ndm RT R1 TGCCGAGCGACTTGGCCTTG NDM quantification by qPCR 0.25 4

NDM probe ACCCCGGCCCCGGCCACACCAGT NDM quantification by qPCR 0.2 4

rpoB Ac RT F1 ATGGCATACTCATATACCGA Acinetobacter rpoB reference for qPCR 0.75 (40-1 probe) 0.5 (AG3 probe) 3 (40-1 probe) 4 (AG3 probe)

rpoB Ac RT R1 TGGAGACCGATATCTTCGCG Acinetobacter rpoB reference for qPCR 0.75 (40-1 probe) 0.5(AG3 probe) 3 (40-1 probe) 4 (AG3 probe)

rpoB 40-1 probe TGCCCCAAGTCATGCATGCTCCGTACTTGC A. bereziniae rpoB reference for qPCR 0.2 3

RpoB AG3 probe TGCCCCAAGTAATGGATGCACCGTACTTAC A. pittii rpoB reference for qPCR 0.2 4

rpoB Ec F3 TCCTTTCTATCCAGCTTGACTCGT E. coli rpoB reference for qPCR 0.25 4

rpoB Ec R3 CGCAGTTTAACGCGCAGCGG E. coli rpoB reference for qPCR 0.25 4

RpoB Ec Probe ACGTCAGCTACCGCCTTGGCGAACCGGTGT E. coli rpoB reference for qPCR 0.2 4
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Appendix 4.3 – Geneious assembly of sequenced PCR amplicons obtained by primer walking of the immediate blaNDM-1

context in A. bereziniae CHI-40-1. As the image is zoomed out bases with 100% identity to the consensus appear as black lines.

Grey areas in the black lines indicate bases for which the assembly is not identical. However, there were no base pair ambiguities

in the final assembly. The assembly used for the image file also contains an annotated version of the final assembly.
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Appendix 4.4 – Geneious assembly of contigs making up pNDM-40-1 from A. bereziniae CHI-40-1. Note repetition of contig

85 cov 307. Contigs assembled sequentially and originally with PCR amplicons closing short gaps in sequence. PCR amplicons

have been removed from the assembly in the image, leaving four short sequence gaps. Contig links and sequence gaps were

closed by PCR and sequencing of amplicons.
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Appendix 4.5 – Geneious assembly of sequenced PCR amplicons obtained by primer walking of the immediate blaNDM-1

context in A. haemolyticus 69122-EW. As the image is zoomed out bases with 100% identity to the consensus appear as black

lines. Grey areas in the black lines indicate bases for which the assembly is not identical. However, there were no base pair

ambiguities in the final assembly. The assembly used for the image file also contains an annotated version of the final assembly.
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Appendix 5.1 – List of strains used to construct the whole genome
phylogenetic tree of Vibrio cholerae isolates shown in Figure 5.4. Background

colour of table cells matches the colour used to label each phylogenetic group in

Figure 5.4.

Strain Name Accession Isolation place Isolation
Year

Group Serotype
A46 ERS013160 N.I 1964 L1 Ogawa
A70 ERS013162 Bangladesh 1969 L1 Inaba
A49 ERS013161 N.I 1962 L1 Inaba
A68 ERS013171 Egypt 1949 L1 Inaba
A66 ERS013170 Bangladesh 1962 L1 Inaba
A61 ERS013169 India 1970 L1 Inaba
A60 ERS013168 Thailand 1958 L1 Inaba
A59 ERS013167 India 1970 L1 Inaba
A57 ERS013166 India 1980 L1 Ogawa
A51 ERS013165 Egypt 1949 L1 Ogawa
A50 ERS013164 Bangladesh 1963 L1 Ogawa
A76 ERS013163 Bangladesh 1982 L1 Inaba

A103 ERS013172 N.I 1990 L1 Inaba
A111 ERS013176 N.I 1990 L1 Inaba
A279 ERS013197 Sweden 1990 L1 Inaba
A389 ERS013203 Bangladesh(M) 1987 L1 Inaba
GP16 ERS013136 India 1971 L1 Inaba

O395_Combined CP000626 /
CP000627 India 1965 L1 Ogawa

A215 ERS013277 California 1985 L2 Inaba

MJ1236
CP001485/
CP001486 Bangladesh(M) 1994

L2
Inaba

MO10 AAKF03000000 India 1992 L2 O139
B33 ACHZ00000000 Mozambique 2004 L2 Ogawa

A219 ERS013194 Georgia 1986 L3 Inaba
A217 ERS013193 Louisiana 1986 L3 Inaba
A213 ERS013191 Georgia 1984 L3 Inaba
A209 ERS013190 Florida 1980 L3 Inaba
A325 ERS013280 Argentina 1993 L4 Inaba

TM11079-80 ACHW00000000 Brazil 1980 L4 Ogawa
M66 CP001233 /

CP001234 Indonesia 1937 L5 No information
MAK757 AAUS00000000 Celebes_Islands 1937 L5 Ogawa

NCTC_8457 AAWD01000000 Saudi_Arabia 1910 L6 Inaba
V52(O37) AAKJ02000000 Sudan 1968 L7 O37
BX330286 ACIA00000000 Australia 1986 L8 Inaba

116-17a ERR180907 New Delhi, India 2011 - non-01/ 0139
116-17b ERR180911 New Delhi, India 2011 - non-01/ 0139
116-14 ERR180910 New Delhi, India 2011 - non-01/ 0139
BRV8 ERR180912 Bristol, UK 2011 - non-01/ 0139
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Appendix 5.2 – List of primers used to confirm final assembly of pNDM-116-17.
Note all primers used for PCR and sequencing. For PCR reactions all primers used

at a final concentration of 0.2µM.

Primer name Primer sequence

NDM 5R CTCAGCTTCGCGACCGGGTG

V3  hypA R GTGCCGGGATAACATCAATA

V3 c101 R CAAAGTGCGGGTGCGTTATG

V3 c101F CGAAGTAATCGCAACATCCGC

V3 c162 F AACCAGATGAATATCGCCTC

V3 c162 R CTACGATTCCGAAAACAAGG

V3 c21 F CTTTCTTTTTCACGCACAGT

V3 c21 R ATCGCAAGCATCTTTTAACG

V3 c66 F GCGGATGAAAATTTAACGGT

V3 c66 R CCAGTCAGAACAATCAATGC
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Appendix 5.3 – Geneious assembly of contigs making up pNDM-116-17 from V. cholerae 116-17. Note repetition of contigs

133 cov 77 and 112 cov 74. Contigs assembled sequentially and all links were later confirmed by PCR and sequencing of

amplicons.
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Appendix 5.4 – List of primers used to confirm location of chromosomal
integration of pNDM-116-17 in V. cholerae 116-17b.
Other primers used to link contigs as shown in 5.2.

Primer name Primer sequence

V4 c220F AGTAAAGAGCTGCTTGGCGG

V4 c14R ACCATAGATGCTGCTGTGCG

V3 c101R CAAAGTGCGGGTGCGTTATG

V3 c162F AACCAGATGAATATCGCCTC
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Appendix 5.5 – Geneious assembly of contigs from V. cholerae 116-17b, including contigs with identity to pNDM-116-17

flanked by contigs with V. cholerae chromosomal genes and SXT/R391-like ICE. Note repetition of contigs 216 cov 65 and 187

cov 65. Contigs assembled sequentially. Links between contigs with chromosomal/ ICE genes to pNDM-116-17 contigs confirmed

by PCR and sequencing of amplicons.
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Appendix 5.6 – List of primers used to confirm final assembly of pNDM-116-14.
For PCR reactions all primers used at a final concentration of 0.2µM.

Primer name Primer sequence

aadA1 3F CGGCAAAATCGCGCCGAAGG

aadA1FF GAGATCACCAAGGTAGTCGG

IS26-gapFF CACTCCGCGTTCAGCCAGCA

ISCR1FF GTCTGGTCGGGTTGGTGGCG

QACR CGGATGTTGCGATTACTTCG

V6 c104 R ATTGGGCTGTCAGGAGCCGT

V6 c108 R AGGTTTCGGAGGCCGGTGGT

V6 c108F GCGGTCGGCACTGTAGCCAT

V6 c11 F AACACGCCCAACACCCGCAG

V6 c11 R CAACCGATCGACGCGGCCTT

V6 c114  R ACGGGGTTGGGCTGGAGAGA

V6 c114 F CGCAGTCGGCAGCACCTCAA

V6 c123 F TGAATCCCGAATCGCCTTGCG

V6 c123 R CACCAGGCACGACGGCGATT

V6 c131F CTGTGAACAAGGTTCGGCGT

V6 c132 5R GCCTGAGTTCGCTACTCTTCG

V6 c132 F ATATCCGCGCAGCCCAGTGC

V6 c15 R GTCGGCGGAGGTGAAAGCGG

V6 c15F GCGCCCGACGCCCTCTCTAT

V6 c169 F AGGCCCGAGTTGTCACCCCA

V6 c169 R ACGGTAACGCCTTTCGGCGG

V6 c182F ACGTTATCGCTGACCGGGGC

V6 c182R GCTTGTTGGCGAATAGATGGCGT

V6 c192 R CGCCGCAATACAGCACAGGGT

V6 c192F GCAGGCAGTAGGTAATGATGCTGTG

V6 c200 F CCCCGTGGGTCGACTCTGGT

V6 c200R TGGGGCTGCGTAAACCACACG

V6 c21 F ATAGTGGCCGGCGCGGTTTC

V6 c21 R CGCGCAAACTCACTGACACTGG

V6 c219 F ACGGGGGCTAGAGGGCGTTT

V6 c219 R TGCTGCTACCCAAACTCCTTCGG

V6 c230R GACGGGGCTTCCCAGAACAA

V6 c256F TGCGTATTTCGGTGATTGCG

V6 c26 F GCAGTGGTCAGGGCGTCGAG

V6 c26 R CGCCGTTGTGTGCGATGCAG

V6 c261 F GCCATCACCATCACCGGCGT

V6 c261 R GCGCGTGCCGGATAAGCAGA

V6 c28F CAGAGTTTGCGGCAGGGGCA

V6 c28R GCCATCTCAGGGGTGGTGCC
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Primer name Primer sequence

V6 c292 F TTGCCCCTGCTATTGTGCCTTT

V6 c29F GGGCGACGACGGCTTCTGAG

V6 c315 F GGCGGTGGGTCATCTCTTGCT

V6 c315 R GACTGCGATCTACGCGGGGC

V6 c326 F TGCGCATCAGAACGCCGAGA

V6 c326 R CGGCCAAAGTCAATCCTGACGC

V6 c330R CAACGTGCCCTGAACCGGGG

V6 c35 F GCGCAGGAGCTGAGCCTTCTT

V6 c35 R GGGGGCTTGGAGCGGTATGA

V6 c38F TGACGCATCTCGCTTCTTGT

V6 c38R AGAAGCGAGATGCGTCAAACGA

V6 C49 F CGGCAACCCCGCGCTTTTAC

V6 c49 R ACACCAACCTGCCCTAATTGTGGT

V6 c65 F ACTCAACTTCATGCCGGTCAGC

V6 c65 R TGTGCCCTTGGCCACCGTTC

V6 c68 F TCTGGCACCCCTTCACTCTGGA

V6 c68 R GTGTCGCCCAATGGCGCTCT

V6 c81 F CGGTGTCGCTCGATACGCCC

V6 c81 R ATACTGGCCGCAGCGTTGGT

V6 c82 F CCCCAAAGAGTGCCAGCGCA

V6 c82 R AAAGCGCCAGCTTCGGCACA

V6 c86 F CGCCAGCCAGCTCAATGCCT

V6 c86 R TGAACCAGGAGCCAGCACGA

V6 c94R TCAAAAGTGGTCGCCTGGAC

V6 c95F ACTCCAACAGAGGGTAGGAATCGGT

V6 c95R CCGTTTGCTTCTGGGTTCGGT

V8 c214R TAGTGCAGTTTGATCCTGAC
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Appendix 5.7 – Geneious assembly of contigs making pNDM-116-14 from V.

cholerae 116-14. Note that several contigs appear in the assembly more than once

and a few PCR amplicons required to achieve assembly in Geneious are included in

the figure. Links between all contigs were confirmed by PCR and sequencing of

amplicons.
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Appendix 5.8 – List of primers used to confirm assembly of chromosomal
context of blaNDM-1 in V. cholerae BRV8 including SGI-NDM-1.
Note all primers used for PCR and sequencing. For PCR reactions all primers used

at a final concentration of 0.2µM.

Primer name Primer sequence
aadA1 3F CGGCAAAATCGCGCCGAAGG

IS26-gapR CGGGGCCGCACTGTCGATTT

trpF-gapF TATCGCGGTGCCTTGCCGTG

V8 c214R TAGTGCAGTTTGATCCTGAC

V8 c38F GTTTGATGTTATGGAGCAGC

V8 c42F ATCGCAAGCATCTTTTAACG

V8 c42F ACAACGAGTTAATGAAGCCT

y-sul1R TCAAGAAAAATCCCATCCCC
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Appendix 5.9 – Geneious assembly of contigs from V. cholerae BRV8 which include SGI-NDM-1. Note repetition of contigs 72

cov 70, 170 cov 99 and 156 cov 68. Contigs assembled sequentially and all links were later confirmed by PCR and sequencing of

amplicons.
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