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Genome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 

susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci 

are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS 

and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 

controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project. The 

combined analysis identified new, significant associations with CRC at 1p36.2 marked by 

rs72647484 (minor allele frequency [MAF]=0.09) near CDC42 and WNT4 (P=1.21×10−8, odds ratio 

[OR]=1.21 ) and at 16q24.1 marked by rs16941835 (MAF=0.21, P=5.06×10−8; OR=1.15) within the 

long non-coding RNA (lncRNA) RP11-58A18.1 and ~500kb from the nearest coding gene FOXL1. 

Additionally we identified a promising association at 10p13 with rs10904849 intronic to CUBN 

(MAF=0.32, P=7.01x10-8; OR=1.14). These findings provide further insights into the genetic and 

biological basis of inherited genetic susceptibility to CRC. Additionally, our analysis further 

demonstrates that imputation can be used to exploit GWAS data to identify novel disease-

causing variants.  
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INTRODUCTION 

 

Twin studies indicate that heritable factors account for 35% of the variation in risk of developing 

colorectal cancer (CRC)1. However, only 5% of CRC can be attributed to the inheritance of high-

penetrance mutations in the known genes2,3. Genome-wide association studies (GWAS) conducted 

primarily in European4-12 but also Asian13-16 populations have vindicated the long-held belief that 

part of the heritable risk of CRC is attributable to common, low-risk variants. These GWAS have 

provided insights into the biological basis of CRC, highlighting the role of genes within the bone 

morphogenetic protein signalling pathway (BMP2, BMP4, GREM1 and SMAD7) 4,11 and some 

candidate genes (e.g. CDH1/CDH3), as well as genes not previously implicated in CRC (e.g. POLD3, 

TERC, CDKN1A and SHROOM2) 8,10.  

 

Despite the success of GWAS the risk SNPs so far identified in European populations account for 

only 8% of the familial CRC risk (Supplementary Table 1). Together with the over-representation of 

association signals in GWAS strongly suggests that additional risk SNPs remain to be discovered. 

The statistical power of individual GWAS is limited by the modest effect sizes of the genetic 

variants and the requirement for a stringent threshold to establish statistical significance in order 

to avoid type 1 errors. Meta-analysis of GWAS data therefore offers the opportunity to identify 

new CRC risk loci and provide further insights into tumour biology. Furthermore, imputation of 

untyped variants in GWAS data using publicly available reference datasets increases the number of 

variants that can be tested for an association with CRC risk. 

 

To identify new CRC susceptibility loci, we conducted an independent primary scan of CRC using 

patient samples from the COIN trial and performed a genome-wide meta-analysis with five 

previously published GWAS. To recover untyped genotypes, thereby maximising the prospects of 

identifying risk variants, we imputed over 10 million SNPs in the six GWAS datasets, using data 

from the 1000 Genomes Project 17 as reference (see Materials & Methods for details).  
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METHODS 

 

Primary GWAS 

The COIN GWAS was based on 2,244 CRC cases (64% male, mean age 61 years, SD=10) ascertained 

through two independent Medical Research Council clinical trials of advanced/metastatic CRC; 

COIN and COIN-B 18. Cases were genotyped using Affymetrix Axiom Arrays according to the 

manufacturer's recommendations (Affymetrix, Santa Clara, CA 95051, USA), using duplicate 

samples and sequencing of significantly associated SNPs in a subset of samples to confirm 

genotyping accuracy. For all SNPs >99% concordant results were obtained. For controls, we made 

use of Wellcome Trust Case Control Consortium 2 (WTCCC2) Affymetrix 6.0 array data on 2,674 

individuals from the UK Blood Service Control Group. Individuals were excluded with: <95% 

successfully genotyped SNPs (n = 122), discordant sex information (n = 8), classed as out of bounds 

by Affymetrix (n = 30), duplication or cryptic relatedness (identity by descent >0.185, n = 4),  

evidence of non-white European ancestry using PCA in conjunction with HapMap samples (n = 

130; cut-off based on the minimum and maximum values of the top two principal components of 

the controls; Supplementary Figure 2). The details of all sample exclusions are provided in 

Supplementary Figure 3. We excluded SNPs from the analysis with: call rate <95%; different 

missing genotype rate between cases and controls at P<10−5; MAF <0.01; departure from Hardy–

Weinberg equilibrium in controls at P<10−5. The adequacy of the case–control matching and the 

possibility of differential genotyping of cases and controls were assessed using quantile-quantile 

(Q–Q) plots of test statistics.  

 

Published GWAS 

We made use of five published and previously described GWAS (see Supplementary Methods): 

UK1 (CORGI) 10 comprised 940 cases with colorectal neoplasia, Scotland1 (COGS) 10 included 1,012 

CRC cases and 1,012 cancer-free population controls, VQ58 comprised 1800 CRC cases 19 and 

2,690 population control genotypes from the WTCCC2 1958 birth cohort 20, CCFR1 comprised 

1,290 familial CRC cases and 1,055 controls 21, CCFR2 included a further 796 cases and 2,236 

controls from the Cancer Genetic Markers of Susceptibility (CGEMS) studies of breast and prostate 

cancer 22,23 . 

 

The VQ, UK1 and Scotland1 GWA cohorts were genotyped using Illumina Hap300, Hap240S, 

Hap370, Hap550 or Omni2.5M arrays. 1958BC genotyping was performed as part of the WTCCC2 
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study on Hap1.2M-Duo Custom arrays. The CCFR samples were genotyped using Illumina Hap1M, 

Hap1M-Duo or Omni-express arrays. CGEMS samples were genotyped using Illumina Hap300 and 

Hap240 or Hap550 arrays. After applying the same quality control as that performed for COIN and 

COIN-B, data on 7,577 CRC cases and 9,979 controls were available for the meta-analysis 

(Supplementary Figure 1).  

 

The study was conducted in accordance with the declaration of Helsinki. Written informed consent 

was obtained from all subjects and the study was approved by respective ethical review boards at 

host institutions.  

 

Statistical and bioinformatic analysis 

Analyses were undertaken using R(v3.02)24 and PLINK25 software. The association between each 

SNP and the risk of CRC was assessed by the Cochran–Armitage trend test. ORs and associated 

95% CIs were calculated by unconditional logistic regression. Phasing of GWAS SNP genotypes was 

performed using SHAPEIT(v2.644)26. Prediction of the untyped SNPs was carried out using 

IMPUTE(v2.3.0)27 based on the data from the 1000 Genomes Project (Phase 1 integrated variant 

set, v3.20101123)28 as reference. Imputed data were analyzed using SNPTEST(v2.4.1)29. 

Association meta-analyses only included markers with info scores >0.4, imputed call rates/SNP 

>0.9 and MAFs >0.01. The fidelity of imputation, as assessed by the concordance between 

imputed and sequenced SNPs, was examined in a subset of 200 UK cases. Meta-analyses were 

carried out using META(v2.4-1)30, under an inverse-weighted fixed-effects model using the 

genotype probabilities from IMPUTE, where a SNP was not directly typed. We calculated Cochran's 

Q statistic to test for heterogeneity and the I2 statistic to quantify the proportion of the total 

variation that was caused by heterogeneity - I2 values ≥75% are considered characteristic of large 

heterogeneity31. Associations by sex, age and clinico-pathological phenotypes were examined by 

logistic regression in case-only analyses. The familial relative risk of CRC attributable to a variant 

was calculated as detailed by Houlston et al 32. The overall familial risk of CRC, as shown in 

epidemiological studies, is 2.233.  

 

To explore epigenetic profiles of association signals, we used ChromHMM 34.  States were inferred 

from ENCODE Histone Modification data on the CRC cell line HCT116 (DNAse, H3K4me3, 

H3K4me1, H3K27ac, Pol2 and CTCF)35 binarized using a multivariate Hidden Markov Model. 
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To examine whether any of the SNPs or their proxies (i.e. r2>0.8 in 1000genomes CEU reference 

panel) annotate putative transcription factor binding/enhancer elements we used the CADD 

(combined annotation dependent depletion) web-server 36. We assessed sequence conservation 

using: PhastCons (<0.3 indicative of conservation), Genomic Evolutionary Rate Profiling 37 (GERP)  

(−12 to 6, with 6 being indicaƟve of complete conservaƟon) and CADD (>10.0 deemed to be 

deleterious). 

 

Analysis of TCGA data  

To examine for a relationship between SNP genotype and mRNA expression we made use of 

Tumor Cancer Genome Atlas (TCGA)38 RNA-seq expression and Affymetrix 6.0 SNP data (dbGaP 

accession number: phs000178.v7.p6) on 223 colorectal adenocarcinoma (COAD) and 75 rectal 

adenocarcinoma samples using a best proxy where SNPs were not represented directly. 

Association between normalised RNA counts per-gene and SNP genotype was quantified using the 

Kruskal-Wallis trend test. The frequency of somatic mutations in CRC was obtained using the 

CBioPortal for Cancer Genomics39,40 and TumorPortal web servers41.  

 

Pathway analysis 

To determine whether any genes mapping to the three newly identified regions act in pathways 

already over-represented in GWAS regions we utilized the NCI pathway interaction database42. All 

genes within the LD block containing each tagSNP, or linked to the SNP through functional 

experiments (MYC) were submitted as a Batch query using the NCI-Nature curated data source. 

 

Assignment of microsatellite instability (MSI), KRAS, NRAS and BRAF status in cancers 

Tumour MSI status in CRCs was determined using the mononucleotide microsatellite loci BAT25 

and BAT26, which are highly sensitive MSI markers. Samples showing more than or equal to five 

novel alleles, when compared with normal DNA, at either or both markers were assigned as MSI-H 

(corresponding to MSI-high)43.  

 

Tumours from the COIN study were screened for mutations in KRAS codons 12, 13, and 61 and 

BRAF codon 600 by pyrosequencing 18. Additionally, KRAS (all three codons), BRAF (codons 594 

and 600), and NRAS (codons 12 and 61) were screened for mutations by MALDI-TOF mass array 

(Sequenom, San Diego, CA, USA)44. 
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RESULTS 

 

In the primary scan, 2,244 advanced (stage IV) CRC cases ascertained through the Medical 

Research Council (MRC) trials COIN 18 and COIN-B 45 were analysed with control data on 2,674 

individuals from the WTCCC2 UK National Blood Service Control Group. After applying strict quality 

control criteria (Materials and Methods), we analysed 234,675 autosomal SNPs for association 

with CRC risk in 1,950 cases and 2,162 controls. A Q–Q plot of observed versus expected χ2-test 

statistics showed little evidence for an inflation of test statistics, thereby excluding the possibility 

of substantive hidden population substructure, cryptic relatedness among subjects or differential 

genotype calling (inflation factor λ = 1.05; Supplementary Figure 1). 

 

We performed a meta-analysis of our primary scan data with five non-overlapping GWAS case-

control series of Northern European ancestry, which have been previously reported 

(Supplementary Table 2). The adequacy of the case-control matching and possibility of differential 

genotyping of cases and controls was assessed using Q-Q plots of test statistics. λGC values 46 for 

the UK1, Scotland1, VQ58, CCFR1 and CCFR2 studies were 1.02, 1.01, 1.01, 1.02 and 1.03 

respectively (Supplementary Figure 1). Any ethnic outliers or individuals identified as related were 

excluded (Supplementary Figure 2).   

 

After quality control procedures, the six GWAS provided data on 7,577 CRC cases and 9,979 

controls. To maximise the prospects of identifying novel risk variants, we imputed over 10 million 

variants using 1000 Genomes Project Pilot data as a reference panel. Q-Q plots for all variants 

post-imputation did not show evidence of substantive over-dispersion introduced by imputation 

(Supplementary Figure 1). 

 

Meta-analysis 

Associations for all 23 established European CRC risk SNPs showed a direction of effect consistent 

with previously reported studies, with eight of the loci having a P-value of <5.0×10−8 

(Supplementary Table 3; Figure 1). Additionally six SNPs previously identified in GWAS in Asian 

populations as determinants of CRC risk showed evidence for an association in this meta-analysis; 

albeit at varying degrees of significance (P-values ranging from 3.64x10-2 to 1.71x10-3; 

Supplementary Table 3); thereby providing support for trans-ethnic effects.  
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Excluding SNPs (including those correlated with r2 > 0.8) mapping to the risk loci, five variants in 

distinct regions of linkage disequilibrium (LD) were associated with CRC at P<1.0×10−7 (Table 1; 

Figure 1). 

 

We assessed the fidelity of imputation in 200 UK cases by comparing imputed genotypes with 

those obtained by sequencing. For the three common variants (MAF >0.05), rs72647484, 

rs16941835 and rs10904849 which each had imputation info scores >0.9 there was high 

correlation between imputed and directly typed genotype (r2= 0.98, 1.00 and 0.99, respectively). 

For the rare variant rs79900961 (MAF=0.016), the correlation was poor (r2=0.60). The call rate for 

the rare Indel on chromosome 5q15 (rs202110856) in the sequencing data was only 71% and both 

imputed heterozygotes were sequenced as homozygous reference. Therefore, only the three 

common variants at 1p36.12, 10p13 and 16q24.1 were subject to further analyses. 

 

In the combined analysis of the six GWAS datasets, rs72647484, which maps to chromosome 

1p36.12 (22,587,728 bps; NCBI build 37), showed the strongest evidence for association with CRC 

(P=1.21×10−8; Phet =0.33, I2=14%; Figure 2a). rs72647484 maps within a 300kb block of LD 

encompassing WNT4 (wingless-type mmtv integration site family, member 4; MIM 603490) and 

CDC42 (cell division cycle 42, MIM 116952; Figure 3a). The second strongest association was 

provided by rs16941835 (P=5.06×10−8; Phet =0.40, I2=3%; Figure 2c) which localises to the long non-

coding RNA (lncRNA) RP11-58A18.1 at chromosome 16q24.1 (86,659,720bps; NCBI build 37) 

within a 65kb region of LD (Figure 3c). The nearest coding gene, ~500kb away, is the transcription 

factor FOXL1. The third strongest association was provided by rs10904849 (P=7.01×10−8; Phet 

=0.83, I2=0%; Figure 2b) which localises to chromosome 10p13 (16,997,266bps; NCBI build 37) 

within intron 31 of the gene encoding cubulin (CUBN; alias intrinsic factor-cobalamin receptor 

[IFCR], MIM 602997; Figure 3b). 

 

Bioinformatic analysis of risk variants 

To gain insight into the biological basis of the associations we analysed publicly available RNA-seq 

expression and SNP data from TCGA on 223 colonic and 75 rectal cancers using rs10904850 and 

rs2744753 as proxies for rs10904849 (r2=0.97; D’=1.00) and rs72647484 (r2=0.64; D’=0.89) 

respectively. After adjustment for multiple testing, no significant associations were seen between 
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SNP genotype and expression of genes mapping to any of the three risk loci (Supplementary 

Tables 4).  

 

We examined whether any of the SNPs or their proxies (i.e. r2>0.8 in 1000 Genomes CEU reference 

panel) lie at putative transcription factor binding/enhancer elements and derived GERP and 

PhastCons scores to asses sequence conservation at these positions (Supplementary Table 5).  

 

rs16941835 maps to a regulatory feature with histone modification suggestive of an enhancer 

element. rs10904852, in LD with rs10904849 (r2=0.95, D’=1.00) is conserved (GERP and PhastCons 

scores of 1.20 and 0.47 respectively) with CADD score of 11.53. A moderate CADD score (8.21) was 

associated with rs7267484 (22,590,125bps) which is strong LD with rs72647489 (r2=0.93, D’=1.00). 

Six proxy SNPs in LD with rs16941835 showed some evidence of transcription factor binding 

(Supplementary Table 5). We made use of TCGA data to examine the frequency of somatic 

mutation of CDC42, WNT4, FOXL1 or CUBN in CRC. None of these genes showed evidence of 

significant somatic mutation. Next, we conducted pathway analysis to determine whether any 

genes mapping to the three newly identified regions act in pathways already over-represented in 

GWAS. Pathways containing three or more genes are shown in Supplementary Table 6. While this 

analysis identifies the BMP-signalling pathway as expected, no catalogued pathways were 

discernable involving genes mapping to any of the newly identified regions.  

 

It is increasingly recognized that some genetic variants can have pleiotropic effects, influencing the 

risk of more than one cancer type. To explore the possibility that rs72647484, rs10904849 or 

rs16941835 affects the risk of other malignancies, we examined the association with lung cancer 
47, acute lymphoblastic leukaemia 48, multiple myeloma 49, glioma 50 and meningioma 51 using data 

from previously reported GWASs. However, for these cancers, there was no evidence of 

rs72647484, rs10904849 or rs16941835 (or correlated SNP r2≥0.8) being associated with tumour 

risk (i.e. P > 0.05).  

 

Finally, the relationship between clinico-pathological variables (sex, age at diagnosis, family history 

of CRC, tumour stage or microsatellite instability (MSI), KRAS-mutant status and BRAF-mutant 

status) and genotype at rs72647484, rs10904849 and rs16941835 was assessed by case-only 

logistic regression (Supplementary Table 7). There was evidence of a relationship between 

rs72647484 and KRAS-mutant status (P=0.03) with the T risk allele associated with KRAS-mutant 
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CRC; however this finding was not significant after accounting for multiple testing. None of the 

other SNPs showed any association with any of the clinico-pathological variables examined (i.e. 

P>0.05).  
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DISCUSSION 

 

We have provided evidence supporting the existence of new susceptibility loci for CRC at 1p36.12, 

10p13 and 16q24.1. The 1p36.12 association implicates WNT4 and/or CDC42 as possible 

determinates of CRC risk. WNT4 is part of a family of structurally related genes that encode 

cysteine-rich secreted glycoproteins that act as extracellular signalling factors. WNT4, WNT14, and 

WNT16 may play redundant roles in signalling through the CTNNB1-mediated canonical Wnt-

pathway 52 which is known to play a central role in colorectal tumorigenesis. Additionally, WNT4 

signalling appears to play a pivotal role during organogenesis, acting as an autoinducer of 

mesenchyme-to-epithelial transition. Inactivating germline mutations in WNT4 cause mullerian 

aplasia and hyperandrogenism (MIM 158330) and are responsible for the autosomal recessive 

SERKAL syndrome (Sex Reversal and Kidney, Adrenal, and Lung dysgenesis; MIM 611812). A priori 

dysfunction of either WNT4 or CDC42 could be the biological basis for the 1p36.12 association. 

Cdc42 is a Ras-related GTP-binding protein with roles in establishment of cell polarity, regulation 

of cell morphology, motility, and cell cycle progression in mammalian cells, and malignant 

transformation 53. Notably, Cdc42 regulates the actin cytoskeleton through activation of WASP 

proteins and cell polarity through GSK3-beta and APC. Rho-GTPase signalling has a documented 

role in the development of CRC 54. Activation of Rho GTPase Cdc42 promotes adhesion and 

invasion in CRC 55 and targeting Cdc42 with AZA197 suppresses primary colon cancer growth and 

prolongs survival in a xenograft model through down regulation of PAK1 56. 

 

Since rs10904849 is intronic to CUBN and the region of LD does not encompass any other genes or 

transcripts, there is a high likelihood that the functional basis of the 10p13 association is mediated 

through CUBN. Cubilin is the intestinal receptor for the endocytosis of intrinsic factor-vitamin B12 

and a receptor in epithelial apoA-I/HDL metabolism 57. Additionally cubilin is an important co-

receptor in the endocytic pathway for retrieval of 25(OH)D3-DBP complexes by megalin-mediated 

endocytosis in the kidney 58. Germline mutations in CUBN cause recessive megaloblastic anemia-1 

(MGA1; MIM 261100). It is conceivable that common genetic variance in CUBN, while being 

insufficient to cause a “MGA type phenotype” would have physiological effects by virtue of long 

term effect on the cellular bioavailability of B12. Although it is entirely speculative, as 

epidemiological studies have yet to convincingly establish levels of B12 as a risk factor for CRC 59,60, 

its role in DNA biosynthesis makes genetically determined variation in B12 availability a plausible 

candidate for a role in the development of CRC.  
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LncRNAs are regulators of transcription and are increasingly recognised as playing a role in cancer 

biology. While there is currently no evidence to implicate the RP11-58A18.1 lncRNA in CRC, 

lncRNAs CCAT1 and CCAT2 probably do play such roles 61,62, and it is entirely plausible that the 

impact of variation at 16q24.1 on risk is mediated through similar long range effects.  

 

One of the reasons for the failure to identify these CRC-loci previously is that, in addition to the 

issue of study power, they were not optimally tagged by SNPs featured on many commercial 

arrays. The power of our study to detect the major common loci conferring risks of 1.2 or greater 

(such as the 18q24 variant) was high. Hence, it is very unlikely there are additional CRC SNPs with 

similar effects for alleles with frequencies >0.2 in populations of European ancestry.  

 

In this study, we have only considered SNPs showing evidence of an association with a stipulated 

P-value threshold of <1x10-7. There exist, however, many variants with P-values just above this 

threshold which may also warrant investigation in a further study (Figure 1). Hence further efforts 

to expand the scale of GWAS meta-analyses, in terms of both sample size and SNP coverage, and 

to increase the number of SNPs taken forward to large-scale replication, may identify additional 

variants for CRC. 

 

In conclusion, we have provided evidence for 3 new susceptibility loci for CRC. Our data also 

provide further evidence for the value of meta-analysis and the value of imputation as a means of 

enhancing the detection of novel risk loci thereby extending the utility of GWAS data. 
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TABLE AND FIGURE LEGENDS 

 

Figure 1: Genome-wide P-values (–log10P, y-axis) plotted against their respective chromosomal 

positions (x-axis). Known regions attaining genome-wide significance (i.e. P=5.0x10-8) are labelled 

with their chromosomal location. Variants in grey lie in novel regions that reach the significance 

threshold level (P=1.0x10-7) required for variants to be analysed further in this study. Variants in 

black lie in novel regions attaining genome-wide significance. 

 

Figure 2:  Forest plot of the odds ratios for the association between rs72647484, rs16941835, 

rs10904849 and CRC. Studies were weighted according to the inverse of the variance of the log of 

the OR calculated by unconditional logistic regression. Horizontal lines: 95% confidence intervals 

(95% CI). Box: OR point estimate; its area is proportional to the weight of the study. Diamond (and 

broken line): overall summary estimate, with confidence interval given by its width. Unbroken 

vertical line: null value (OR = 1.0). 

 

Figure 3: Regional plot of association results and recombination rates for the (a) 1p36.12, (b) 

10p13 and (c) 16q24.1 risk loci. Association results of both genotyped (triangles) and imputed 

(circles) SNPs in the GWAS samples and recombination rates within the loci at 1p36.12 (a), 10p13 

(b) and 16q24 (c). For each plot, −log10 P values (y axis) of the SNPs are shown according to their 

chromosomal positions (x axis). The top imputed SNP in each combined analysis is shown as a 

large triangle and is labelled by its rsID. The colour intensity of each symbol reflects the extent of 

LD with the top SNP: white (r2 = 0) through to dark red (r2 = 1.0), with r2 estimated from the 1000 

Genomes Phase 1 data. Genetic recombination rates (cM/Mb), are shown with a light blue line. 

Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative 
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positions of genes and transcripts mapping to each region of association. The lower panel shows 

the chromatin state segmentation track (ChromHMM). 
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Table 1: Summary statistics for variants showing an association with CRC risk at P<1.0x10-7. For each variant shown along with meta-analysis test 
statistics are the P-values from the six individual studies and imputation Information scores. Risk alleles are given in bold. 
 

       Individual study P-values Meta-analysis 

Locus Nearest 
gene(s) 

SNP Position 
(bps) 

Alleles RAF INFO UK1 Scotland1 VQ58 CFR1 CFR2 COIN OR (95% CI) P Phet 

1p36.12 WNT4/ 
CDC42 

rs72647484 22,587,728 TC 0.91 0.94 
(0.85-0.99) 

3.25x10-2 3.32x10-5 4.99x10-2 4.08x10-2 4.58x10-2 3.47x10-2 1.24 (1.15-1.33) 1.21x10-8 0.33 

5q15 ERAP1 rs202110856 96,129,872 GGC 0.99 0.79 
(0.66-0.92) 

2.97x10-1 5.96x10-8 2.81x10-2 4.43x10-1 3.35x10-1 3.67x10-1 1.51 (1.23-1.86) 6.67x10-8 0.13 

10p13 CUBN rs10904849 16,997,266 GT 0.68 0.98
(0.97-1.00) 

2.90x10-2 3.39x10-1 2.36x10-2 8.68x10-3 7.73x10-2 1.29x10-3 1.13 (1.08-1.19) 7.01x10-8 0.83 

16p13.2 C16orf72 rs79900961 9,297,812 GA 0.98 0.70 
(0.61-0.74) 

2.21x10-1 8.68x10-2 1.04x10-3 2.54x10-2 2.41x10-1 1.02x10-3 1.49 (1.26-1.76) 4.93x10-8 0.76 

16q24.1 FOXL1 rs16941835 86,695,720 GC 0.21 0.97 
(0.92-0.99) 

1.04x10-1 1.17x10-1 1.57x10-4 3.74x10-3 1.25x10-2 3.65x10-1 1.16 (1.09-1.22) 5.06x10-8 0.40 

 
INFO, imputation Information score; P-het, P-value of heterogeneity between studies; RAF, risk allele frequency 
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