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Abstract 

 

Repeated low doses of alcohol have been shown to progressively enhance locomotor 

activity in mice and this phenomenon is designated as behavioral sensitization. 

Thymoquinone, a major active component of Nigella sativa oil has been investigated in a 

number of studies for its neuroprotective effects against a variety of ailments. This study 

was conducted to explore the therapeutic potential of thymoquinone on the acquisition and 

expression of alcohol-induced behavioral sensitization. Mice treated with alcohol 

(2.2g/kg/day) or saline for 13 days and subsequently challenged with an acute alcohol dose 

(2.2g/kg) 5 days later were orally administered acute doses of thymoquinone (10, 20 and 30 

mg/kg). Thymoquinone subacute treatment with all doses throughout alcohol exposure 

significantly inhibited both the development and expression phases of alcohol behavioral 

sensitization in a dose dependent manner. However, acute treatment with thymoquinone 

(30mg/kg) only reversed the expression phase of sensitization. These findings are explained 

in terms of the known GABA promoting action of thymoquinone in relation to the motive 

circuit within the limbic component of the basal ganglia. It is concluded that thymoquinone 

may be a potential therapeutic option for the treatment and prevention of alcohol induced 

behavioral sensitization. 

 

 



 
 

 

INTRODUCTION 

Behavioral sensitization is a process whereby repeated administration of a stimulus or drug 

results in the progressive amplification/augmentation of a response (Shettleworth, 2010). The 

neural mediators which  are thought to actuate long-term expression of behavioral sensitization 

are centered in a group of interconnected limbic nuclei, termed the ‘motive’ circuit (Pierce and 

Kalivas, 1997). 

Ethanol (alcohol) induced behavioral sensitization has been postulated to play a key role in 

alcohol addiction (Robinson and Becker, 1986). This hypothesis has been supported by a 

considerable body of evidence. In this context, sensitization occurs to the enhanced 

locomotor activity induced by drugs of abuse such as alcohol, nicotine, amphetamine, and 

opioids (Vanderschuren and Kalivas, 2000). Moreover, this enhanced response is 

considered to underlie the motivational effects of drugs and the cues associated with them 

(Lett, 1989; Shippenberg and Heidbreder, 1995; Harmer and Phillips, 1999; Taylor and 

Horger, 1999). Consequently, those drugs which produce incentive sensitization are capable 

of restoring drug seeking behavior (De Vries et al., 1998, Steketee and Kalivas, 2011). 

The phenomenon of alcohol-induced behavioral sensitization occurs because of neuronal 

adaptations in dopaminergic, glutamatergic and GABAergic circuitary linked through the 

ventral tegmental area (VTA), nucleus accembens (NAc), prefrontal cortex, and amygdala 

(Stephans and Yamamoto, 1995; Pierce and Kalivas 1997; Cador et al., 1999, 

Vanderschuren and Kalivas, 2000; Nestler, 2001; Zhang et al., 2001; Carlezon and Nestler, 

2002; Nordahl et al., 2003; Steketee and Kalivas, 2011; Miyazaki et al., 2013). 

 

Behavioral sensitization has been characterized by two temporally distinguishable 

components, namely the initiation and expression phases. In this respect, the initiation 

domain is believed to be mediated anatomically through the ventral tegmental area (VTA), 

and the expression phase is considered to be associated with the NAc (Kalivas and Duffy, 

1993, Vanderschuren and Kalivas, 2000).  

 

Alcohol-induced behavioral sensitization is associated with repeated alcohol administration 

(Bahi and Dreyer, 2012) and the progressive persistent nature of addiction suggests that the 

http://en.wikipedia.org/wiki/Stimulation


 
 

neuroadaptive responses that develop as a result of repeated exposure play an important role in 

this condition. Moreover, like addiction, sensitization persists for prolonged periods after 

cessation of drug use (Fish et al., 2002) and these characteristics support the idea that 

sensitization may contribute significantly to the addiction process (Robinson and Berridge, 

1993).  

 

It has been reported that the GABAB agonist baclofen but not THIP (GABAA agonist) 

obviates ethanol-induced locomotor behavioural sensitization without affecting its 

pharmacokinetics. Hence, GABAB receptors in particular play an important role in the 

development of behavioral sensitization to ethanol (Broadbent and Harless, 1999). 

Likewise, the benzodiazepine antagonist/inverse agonist flumazenil  inhibits stress 

sensitization of the ethanol withdrawal-induced reduction in social interaction. Hence, adaptive 

changes in either neurotransmitter release or receptor function associated with GABA-containing 

pathways are likely to contribute to stress-induced sensitization of alcohol withdrawal reduction 

in social interaction (Breese et al., 2004) 

 

Thymoquinone is an active principle of Nigella sativa that was first extracted by El-

Dakhakhany (1963) and later isolated from the essential oils of this plant (Gali-Muhtasib et 

al., 2006). This compound has also been isolated from various other plant species including 

Eupupatorium ayapana, the leaves of Origanum species, the heartwood essential oils of 

Calocedrus decurrens, the oil of different Saturaga species, Thymus vulgaris and also from 

Nepeta distans (Trang et al., 1993; Lukas et al., 2009; Manter et al., 2007; Grosso et al., 2010; 

Hussain et al., 2010; Gohari et al., 2012).   

 

Thymoquinone is not only an antioxidant, but also a potent  neuroprotective agent against 

alcohol-induced apoptotic neurodegeneration (Ullah et al., 2012). Intracerebroventricular 

injection of the compound suppresses epileptic seizures in rats which are reversed by both 

flumazenil and naloxone and it has been proposed that these effects are elicited through an 

opioid receptor-mediated increase in GABAergic tone (Hosseinzadeh et al., 2005). More 

recently, in stressed mice, thymoquinone exhibited anxiolytic activity, accompanied by a 

decrease in plasma nitrite and a reversal of a decrement in brain GABA levels suggesting an 

involvement of nitric oxide-cGMP and GABAergic pathways in the anxiolytic-like activity 

(Gilhotra and Dhingra, 2011). 



 
 

 

 

To date, there are no reports in the literature on thymoquinone regarding any activity on alcohol-

induced behavioral sensitization. In view of its GABAergic-benzodiazepine activity, this study 

was designed to establish whether thymoquinone modifies the acquisition and expression of 

ethanol-induced behavioral sensitization in mice. 

 

 

 

MATERIALS AND METHODS 

 

Drugs 

Alcohol (ethanol 99.9% v/v; Merck, Brazil) was diluted with 0.9% (w/v) NaCl solution to 

produce 15% (v/v) ethanol solution and it was administered via the intraperitoneal (i.p) 

route at a dose of 2.2g/kg/day. Control (Saline treated) animals were given an equivalent 

volume of saline via the i.p route. Thymoquinone (Santa Cruz USA), was also dissolved in 

0.9% saline.  

 

Subjects 

Five groups of adult female mice (24-34g body weight) were supplied by the animal house 

facility at COMSATS Institute of Information Technology Abbottabad. They were divided 

into the following groups and administered: 

Group 1: Normal saline (control group, n=8). 

Group 2: ethanol alone (n=8). 

Group 3:  thymoquinone (10mg/kg), as a single dose during the expression phase (n=8) or daily 

from day 1-13 (n=8).  

Group 4:  thymoquinone (20mg/kg), as a single dose during the expression phase (n=6) or daily 

from day 1-13 (n=8).  

Group 5: thymoquinone (10, 20 and 30 mg/kg), as a single doses during the expression phase 

(n=8) or daily from day 1-13 (n=8). 

 

Animals were housed in standard Plexiglas cages with access to food and water ad libitum. 

They were allowed to habituate to the colony room for a minimum of 12 days before the 



 
 

start of experiments and maintained on a 12h/12h light/dark cycle with lights on at 0800 

hours. All the experiments were conducted between 10.00 and 13.00 hrs and all procedures 

were carried out following approval by the “Ethical Care and Research committee” of CIIT 

Abbottabad. 

 

Apparatus 

Animal locomotor activity was measured in one of a bank of six activity boxes measuring 

45.6 x 45.6 cm divided internally into quadrants (22.8 x 22.8cm) by lines on the floor. 

Activity boxes were cleaned and swabbed between trials and activity was monitored using a 

VideoLAN client (VLC) media player on a PC coupled to a digital camera installed 300 cm 

above the boxes. 

 

Procedures 

Over a total of 5 days, all the animals were habituated to the experimental room for one hour. On 

habituation day-1, all animals were administered an i.p injection of normal saline and five  

minutes after injection, they were placed in the activity boxes. The incidence of line crossings by 

the animals signified their locomotor activity. The same procedure was repeated on habituation 

day-2. On day-3 (Experimental Day-1), all the alcohol treated groups were given i.p. injections 

of 15% alcohol (v/v) at a dose of 2.2g/kg/day. Five minutes after injection, they were placed in 

the activity boxes and locomotor activity was recorded for a period of 30 minutes. The control 

group received an equivalent volume of normal saline via i.p. injection. On Day-2, alcohol 

treated groups were given i.p. alcohol injections (2.2g/kg/day), and an equivalent volume of 

saline was administered intraperitoneally to control groups, but the locomotor activity test was 

not performed i.e. animals after injections were placed into their home cages. Locomotor activity 

tests were performed on days 1, 5, 9, and 13. Following 13 days of treatment, all the animals 

were abstained from their respective treatments for a period of 5 days (i.e. day14 - 18). On the 

treatment day (i.e. day19), alcohol treated animals were administered thymoquinone doses (10, 

20 and 30mg/kg) orally (p.o.) one hour before alcohol according to their respective groups and 

the saline and alcohol only groups received corresponding equivalent volumes followed by 

locomotor activity recording. 

The experimental paradigm for the subacute experiment was identical with the exception of 

subacute administration of thymoquinone doses orally one hour before i.p alcohol administration 

to the respective treatment groups. 



 
 

 

 Statistcal analysis 

 

Graphpad prism-5 was used for statistical analysis. Data was expressed as mean ± sem   for 

different groups and Student t-tests, one way ANOVA followed by Bonferroni’s test were 

applied. Data were considered significant at *(P<0.05), **(P<0.01), and ***(P<0.0001). 

 

 

 

 

RESULTS 

 

Ethanol challenge during the expression of ethanol-induced behavioral sensitization. 

 

As shown in the Fig. 1, there was no variation in the expression of locomotor activity in the 

alcohol-treated group from day 1 – 9 (P=0.0818).  Locomotor activity testing was performed on 

day 9 and day13. On day 13 there was significant hyperlocomotor activity (P <0.01).  

 

After five days of abstinence, a subsequent challenge injection of alcohol (2.2g/kg) on the 

treatment day significantly increased (P=0.0091) the locomotor activity of the alcohol treated 

group as compared to saline controls indicating the presence of behavioral sensitization with 

respect to locomotor activity. 

 

 

 

 

Acute action of thymoquinone on the expression of alcohol-induced behavioral 

sensitization. 

 

Acute administration of thymoquinone at the two lower doses (10 and 20 mg/kg) on day 19 of 

the protocol did not significantly modify the expression of behavioral sensitization and there was 

no significant difference in the locomotor activity in either case from the synchronized controls 

on day 19 (P>0.05) (data not shown). However, thymoquinone (30 mg/kg) on its own as a 

control induced less locomotor activity than the group treated with saline plus alcohol on 



 
 

treatment day 19. Additionally, it was clearly evident that this acute dose of thymoquinone 

reversed the expression of alcohol-induced behavioral sensitization, there being a highly 

significant difference in locomotor activity expression (P<0.01) between the alcohol control 

saline group (alcohol sensitization)  and the alcohol plus thymoquinone acutely treated group 

(Fig 2).  

 

 

 

 

 

 

Activity of subacute thymoquinone treatment on the acquisition of ethanol induced 

behavioral sensitization. 

 

As shown in Fig 3, thymoquinone administered daily on a subacute basis orally by itself, 

induced some reduction in locomotor activity by protocol day 19 at the highest dose (30 mg/kg). 

However, when given subacutely one hour before alcohol, it also produced a dose graded 

inhibition of ethanol induced sensitization as signified by a progressive decrement in  

hyperlocomotion. In the case of the 10 mg/kg dose, the onset of activity occurred by protocol 

day 13 (P<0.05) (Fig 3A) whilst at the two higher doses (20 and 30 mg/kg) expression of this 

declination occurred earlier on day 9 (20 mg/kg, P<0.05; 30 mg/kg, P<0.01) and by day 19 the 

following decreases were observed:  10mg/kg = - 50.8%, P<0.01;  20 mg/kg  = - 56.3%, 

P<0.001 ; 30 mg/kg = - 65.6%, P<0.001 (Fig 3B and C). 

 

 



 
 

 

DISCUSSION 

 

There are two distinguishable components to alcohol-induced sensitization which comprise 

induction and expression phases.  The former phase is indicative of transient neuronal 

maladaptive alterations occurring during the acquisition of sensitization and the latter phase 

reflects neuronal adaptive alterations evoked by persistent alcohol exposure (Camarini et al., 

2000; Robinson and Berridge, 1993). In this study, alcohol treatment over 13 days followed by 

abstinence from day 13-19 instigated locomotor sensitization. Acute administration of 

thymoquinone at the highest dose examined (30 mg/kg) in the absence of alcohol, did yield some 

reduction in locomotor activity (Fig. 2). This accords with the findings of Hosseinzadeh and 

Parvardeh (2004) who reported that thymoquinone doses in excess of 20 mg/kg reduced 

locomotion in the open-field. Moreover, when given acutely one hour before alcohol challenge 

during the alcohol sensitization expression phase on the protocol treatment day (i.e day 19) (Fig. 

2), thymoquinone was found to suppress the manifestation of alcohol-induced sensitization only 

at the highest dose (30 mg/kg) (Fig 2) but not at 10 or 20 mg/kg. This response may indicate a 

potential of thymoquinone to diminish the behavioral sensitization response which ultimately 

stems from synaptic plasticity at the level of the nucleus accumbens (Steketee and Kalivas, 

2011). Interestingly, It has been reported in rodents that at higher doses, thymquinone induces 

abnormal liver and kidney parameters and accordingly, dose levels of 30mg/kg or lower have 

been recommended to avoid this prospect in experimental studies (Kurt et al., 2015). In light of 

this, acutely administered thymoquinone (20 mg/kg) reverses a decline in brain GABA content, 

there being an added involvement of nitric oxide-cGMP associated with consequential 

anxiolytic-like activity (Gilhotra and Dhingra, 2011). Similarly, elevated GABAergic tone, 

probably arising from an opioid receptor mechanism in response  to peripherally or centrally 

administered thymoquinone attenuates pentylenetetrazole-induced epileptic seizures 

(Hosseinzadeh and Parvardeh, 2004; Hosseinzadeh et al., 2005). In addition to the action on 

GABA, thymoquinone has been reported to raise both noradrenaline and dopamine brain 

concentrations whilst decreasing the content of serotonin (5-HT) (Hamdy and Taha, 2009). 

However, repeated dosing with Nigella sativa oil (containing thymoquinone) during a four week 

period brought about an increase in 5-HT but a decrease in its turnover (Perveen et al., 2009; 

2014). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hosseinzadeh%20H%5BAuthor%5D&cauthor=true&cauthor_uid=14971722
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hosseinzadeh%20H%5BAuthor%5D&cauthor=true&cauthor_uid=14971722


 
 

 Subacutely administered thymoquinone treatment, in combination with daily alcohol,  

significantly inhibited the developmental stages of alcohol sensitization at all three doses tested 

(10, 20 and 30 mg/kg). There was a differential between the lowest dose and the two higher 

doses with respect to the chronology of onset since the appearance of suppressed sensitization 

occurred earlier within the protocol in the case of the two higher doses than at 10 mg/kg (Fig. 3).  

This may reflect a therapeutic potential for thymoquinone to inhibit alchohol-enhanced 

behavioral sensitization. A possible mechanism underlying the sensitization phenomenon derives 

from alcohol induced adaptations that are believed to motivate misuse, develop addiction and 

consequently relapse because of alcohol induced positive reinforcement (Grahame et al., 2000, 

Hunt and Lands, 1992).  

Among the neurotransmitters initiating neuronal changes and expressing alcohol-induced 

sensitization, GABA is notable in mediating alcohol reinforcement and reward (Koechling et al., 

1991, Vlachou and Markou, 2010). Likewise, a GABAergic-benzodiazepine activity is thought 

to be implicated in sensitization of alcohol withdrawal-induced reduction in anxiety-like 

behavior. In this context, it has been concluded that agents which increase brain levels of GABA 

and GABAA receptor activity may diminish the stimulant effects of alcohol by accentuating its 

intoxicating and sedative properties (Holstein et al., 2009). On the other hand, selective 

activation of GABAB receptors specifically counteracts alcohol generated stimulation, implying 

that GABAB agonists may exhibit proclivity as pharmacotherapies for alcohol use disorders 

(Holstein et al., 2009). 

Corresponding to this tenet, GABAB receptors localized in the reward pathway have been 

associated with acute and chronic alcohol induced psychomotor effects (Boehm et al., 2002; 

Vlachou and Markou, 2010). Hence, the GABAB receptor agonist baclofen, when 

coadministered with alcohol, has been reported  to attenuate alcohol-induced hyperlocomotion  

(Holstein et al., 2009). Additionally, baclofen blocks both the induction and expression phases of 

alcohol psychomotor sensitization (Broadbent and Harless, 1999) and this concurs with our 

findings on thymoquinone. Moreover, a study conducted recently by Gilhotra and Dhingra 

(2011), evaluated  anxiolytic-like effects of thymoquinone in mice which coincided with an  

enhancement of brain GABA levels. In a similar vein, an anticonvulsant activity of 

thymoquinone has been proposed via an opioid receptor-mediated increase in GABAergic tone 

(Hosseinzadeh et al., 2005).  



 
 

A brain circuitry model within the limbic component of the basal ganglia has been proposed for 

agents causing behavioural sensitization (Pierce and Kalivas, 1997). In the model, there are 

reciprocal GABAergic projections between the core of the nucleus accumbens (NAc) and the 

ventral pallidum (VP). The NAc core and VP are further sources of GABAergic connections to 

the ventral tegmental area (VTA) and there is also a GABAergic projection from the VP to the 

mediodorsal thalamus (M-D Thal). In addition, a dynorphin (Dyn) input to the VTA from the 

NAc core has been described in this motive system (Fig. 4) (Pierce and Kalivas, 1997) and 

studies have shown that activation of this opioid system through its κ-receptors decreases DA 

transmission (Shippenberg, 2009). The circuitry is completed by glutamatergic pathways from 

the M-D Thal to the prefrontal cortex and then back to the VTA (Pierce and Kalivas, 1997) and 

NAc core (Pierce and Kumaresan, 2006). 

In this circuitry, alcohol may facilitate DA release in the NAc by increasing the firing rate of DA 

neurons in the VTA (Bunney et al., 2001) and increased DA transmission is consistently 

associated with sensitization (Pierce and Kalivas, 1997). The expression of sensitization also 

involves a reduction in GABA transmission in the VTA which can stimulate the frequency of 

firing or even the bursting  activity of dopamine neurons (Lacey et al., 1988; Grace et al., 1984;  

Johnson et al., 1992) promoting DA release in the NAc (Garris et al., 1994). 

 

Contrary to the sensitizing mechanisms outlined above, stimulation of GABAB receptors in the 

VTA  inhibits spontaneous motor activity (Kalivas et al., 1990) and increased GABA 

transmission in the VP may also act to limit sensitized motor responses (Pierce and Kalivas, 

1997). Thus, thymoquinone is likely to inhibit sensitization through an opioid receptor-mediated 

increase in GABAergic tone (Hosseinzadeh et al., 2005) in the NAc core pathway to the VTA 

and also by promoting GABA transmission from the VP to the VTA both of which are 

conducive to reduced DA activity and inhibition of alcohol sensitization (Fig. 4). It is 

noteworthy, in relation to this concept, that an earlier study indicated that supraspinal μ- and κ- 

but not б-opioid receptor subtypes were implicated in thymoquinone mediated antinociception 

(Abdel-Fattah et al., 2000). Indeed more recently, concurrent administration of thymoquinone 

(10mg/kg) with morphine in a 7-day paradigm offset the development not only of tolerance to 

morphine antinociception but also dependence. This was thought to be the outcome from 

inhibition of morphine-augmented brain glutamate, oxidative stress and nitric oxide 

overproduction (Abdel-Zaher et al., 2013) . 

http://www.ncbi.nlm.nih.gov/pubmed?term=Abdel-Fattah%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=10913589


 
 

There is a hypothesis that positive GABA modulators such as thymoquinone (Gilhotra and 

Dhingra, 2011) possess advantages in the management of alcohol/drug dependence due to a 

better side-effect propensity attributable to a lack of intrinsic agonist activity in the absence of 

GABA itself. Such agents only exert their modulatory actions in tandem with endogenous 

GABAergic function. Therefore, GABA positive modulators, embracing elevated GABAB 

receptor function, represent promising therapeutic prospects for aspects of dependence including 

initiation, maintenance and relapse to subtances of abuse such as alcohol (Vlachou and Markou, 

2010). Thymoquinone appears to show promise since it resides in this category. 

 

Conflict of interest 

The authors declare no competing interests 

 

REFERENCES                                 

Abdel-Fattah AM, Matsumoto K, Watanabe H. 2000. Antinociceptive effects of Nigella sativa 

oil and its major component, thymoquinone, in mice. Eur J Pharmacol 400: 89-97.  

Abdel-Zaher AO , Mostafa MG , Hanan M. Farghly HM, Hamdy MA, Omran GA, Al-Shaibani 

NKM. 2013. Inhibition of brain oxidative stress and inducible nitric oxide synthase 

expression by thymoquinone attenuates the development of morphine tolerance and 

dependence in mice. Eur J Pharmacol 702: 62–70. 

Bahi A, Dreyer J-L. 2012. Involvement of tissue plasminogen activator "tPA" in ethanol-induced 

locomotor sensitization and conditioned-place preference. Behav Brain Res 226: 250-

258. 

Boehm II SL, Piercy MM, Bergstrom HC. Phillips TJ. 2002. Ventral tegmental area region 

governs GABAB receptor modulation of ethanol-stimulated activity in mice. Neurosci 

115: 185-200. 

 

Breese G R, Knapp DJ, Overstreet DH. 2004. Stress sensitization of ethanol withdrawal-induced 

reduction in social interaction: inhibition by CRF-1 and benzodiazepine receptor 

antagonists and a 5-HT1A-receptor agonist. Neuropsychopharmacol 29: 470-482. 

 

Broadbent J, Harless WE. 1999.  Differential effects of GABAA and GABAB agonists on 

sensitization to the locomotor stimulant effects of ethanol in DBA/2J mice. 

Psychopharmacology 141: 197-205. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Abdel-Fattah%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=10913589
http://www.ncbi.nlm.nih.gov/pubmed?term=Matsumoto%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10913589
http://www.ncbi.nlm.nih.gov/pubmed?term=Watanabe%20H%5BAuthor%5D&cauthor=true&cauthor_uid=10913589
http://www.ncbi.nlm.nih.gov/pubmed?term=Breese%20GR%5BAuthor%5D&cauthor=true&cauthor_uid=12955093
http://www.ncbi.nlm.nih.gov/pubmed?term=Knapp%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=12955093
http://www.ncbi.nlm.nih.gov/pubmed?term=Overstreet%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=12955093
http://www.ncbi.nlm.nih.gov/pubmed/12955093


 
 

 

Bunney EB, Appel SB, Brodie MS. 2001. Electrophysiological effects of cocaethylene, cocaine, 

and ethanol on dopaminergic neurons of the ventral tegmental area. J Pharmacol Exp 

Ther 297: 696-703. 

  

Cador M, Bijou Y, Cailhol S, Stinus L. 1999. D-Amphetamine-induced behavioral sensitization: 

implication of a glutamatergic medial prefrontal cortex ventral tegmental area 

innervation. Neurosci, 94: 705-721. 

 

Camarini R, Marcourakis T, Teodorov E, Yonamine M, Calil HM. 2011. Ethanol-induced 

sensitization depends preferentially on D1 rather than D2 dopamine receptors. Pharmacol 

Biochem Behav 98: 173-180. 

 

Carlezon WA, Nestler EJ. 2002. Elevated levels of GluR1 in the midbrain: a trigger for 

sensitization to drugs of abuse? Trends Neurosci 25: 610-615.  

 

De Vries TJ, Schoffelmeer ANM, Binnekade R, Mulder H, Vandershuren LJMJ. 1998. Drug-

induced reinstatement of heroin•and cocaine•seeking behaviour following long-term 

extinction is associated with expression of behavioural sensitization. Eur J Neurosci 10: 

3565-3571. 

 

El-Dakhakhany M. 1963. Studies on the chemical constitution of Egyptian N. sativa L. seeds. 

Planta Med 11: 465–470. 

 

Fish EW, Debold JF, Miczek KA. 2002. Repeated alcohol: behavioral sensitization and alcohol-

heightened aggression in mice. Psychopharmacol 160: 39-48. 

 

Gali-Muhtasib H, Roessner A, Schneider-Stock R. 2006. Thymoquinone: a promising anti-

cancer drug from natural sources. Int J Biochem Cell Biol 38: 1249-1253. 

 

Garris PA, Ciolkowski EL, Pastore P, Wightman RM. 1994. Efflux of dopamine from the 

synaptic cleft in the nucleus accumbens of the rat brain.  J  Neurosci 14: 6084–6093. 

 

Gilhotra N, Dhingra D. 2011. Thymoquinone produced antianxiety-like effects in mice through 

modulation of GABA and NO levels. Pharmacol Rep 63: 660-669. 

 

Gohari AR, Ostad SN, Moradi-Afropoli F, Malmir M, Tavajohi S, Akbari H, Saeidnia S. 2012. 

Evaluation of the cytotoxicity of Satureja spicigera and its main compounds. Sci World J 

203861: 1-5.      doi:10.1100/2012/203861 

 

Grahame NJ, Rodd-Henricks K, Li TK, Lumeng 2000. Ethanol locomotor sensitization, but not 

tolerance correlates with selection for alcohol preference in high-and low-alcohol 

preferring mice. Psychopharmacol 151: 252-260. 

 



 
 

Grace AA, Bunney BS. 1984. The control of firing pattern in nigral dopamine neurons: burst 

firing. J Neurosci 4: 2877–2890. 

 

Grosso C, Figueirdo AC, Burillo J, Mainar AM, Urieta JS, Barroso JG, Coelho JA, Palavra AM. 

2010. Composition and antioxidant activity of Thymus vulgaris volatiles: comparison 

between supercritical fluid extraction and hydrodistillation. J Separation Sci 33: 2211-

2218. 

Hamdy NM, Taha, RA. 2009. Effects of Nigella sativa oil and thymoquinone on oxidative stress 

and neuropathy in streptozotocin-induced diabetic rats. Pharmacol 84: 127-134. 

Harmer CJ, Phillips GD. 1999. Enhanced dopamine efflux in the amygdala by a predictive, but 

not a non-predictive, stimulus: facilitation by prior repeated D-amphetamine. Neurosci 

90: 119-130. 

 

Holstein SE, Dobbs L, Phillips TJ. 2009. Attenuation of the stimulant response to ethanol is 

associated with enhanced ataxia for a GABAA, but not a GABAB, receptor agonist. 

Alcoholism: Clin Exp Res 33: 108-120. 

 

Hosseinzadeh H, Parvardeh S. 2004. Anticonvulsant effects of thymoquinone, the major 

constituent of Nigella sativa seeds in mice. Phytomed 11: 56-64. 

 

Hosseinzadeh H, Parvardeh S, Nassiri-Asl M, Mansouri, M-T. 2005. Intracerebroventricular 

administration of thymoquinone, the major constituent of Nigella sativa seeds, 

suppresses epileptic seizures in rats. Med Sci Monit 11: BR106-110. 

 

Hunt WA, Lands WE. 1992. A role for behavioral sensitization in uncontrolled ethanol intake. 

Alcohol 9: 327-328. 

 

Hussain J, Bukhari N, Hussain H, Rehman NU, Hussain SM. 2010. Chemical constituents of 

Nepeta distans. Nat Prod Commun 5: 1785-1786. 

 

Johnson SW, Seutin V, North RA. 1992. Burst firing in dopamine neurons induced by N-methyl-

D-aspartate: role of electrogenic sodium pump. Science 258: 665–667. 

 

Kalivas PW, Duffy P, Eberhardt  H. 1990. Modulation of A10 dopamine neurons by GABA 

agonists.  J Pharmacol Exp Ther 253: 858–866. 

 

Kalivas PW, Duffy P. 1993. Time course of extracellular dopamine and behavioral sensitization 

to cocaine. I. Dopamine axon terminals. J Neurosci 13: 266-275. 

 

Koechling UM, Smith BR, Amit Z. 1991. Effects of GABA antagonists and habituation to 

novelty on ethanol-induced locomotor activity in mice. Alcohol  Alcoholism 26: 315-322. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hosseinzadeh%20H%5BAuthor%5D&cauthor=true&cauthor_uid=14971722
http://www.ncbi.nlm.nih.gov/pubmed?term=Parvardeh%20S%5BAuthor%5D&cauthor=true&cauthor_uid=14971722
http://www.ncbi.nlm.nih.gov/pubmed/14971722


 
 

 

Kurt E, Dede S, Ragbetli C. 2015. The investigations of total antioxidant status and biochemical 

serum profile in thymoquinone-treated rats. Afr J Tradit Complement Altern Med 12: 68-

72. 

 

Lacey MG, Mercuri NB, North RA. 1988. On the potassium conductance increase activated by  

             GABAB and dopamine receptors in rat substantia nigra neurones.  J Physiol 40: 437-454. 

 

Lett BT. 1989. Repeated exposures intensify rather than diminish the rewarding effects of 

amphetamine, morphine, and cocaine. Psychopharmacol 98: 357-362. 

 

Lukas B, Schmiderer C, Franz C, Novak J. 2009. Composition of essential oil compounds from 

different Syrian populations of Origanum syriacum L.(Lamiaceae). J Agric Food Chem 

57: 1362-1365. 

 

Manter DK, Kelsey RG, Karchesy JJ. 2007. Antimicrobial activity of extractable conifer 

heartwood compounds toward Phytophthora ramorum. J Chem Ecol 33: 2133-2147. 

 

Miyazaki M, Noda Y, Mouri A, Kobayashi K, Mishina M, Nabeshima T, Yamada K. 2013. Role 

of convergent activation of glutamatergic and dopaminergic systems in the nucleus 

accumbens in the development of methamphetamine psychosis and dependence. Int J 

Neuropsychopharmacol 16: 1341-1350. 

 

Nestler EJ. 2001. Molecular basis of long-term plasticity underlying addiction. Nature Rev 

Neurosci 2: 119-128. 

 

Nordahl TE, Salo R, Leamon M. 2003. Neuropsychological effects of chronic methamphetamine 

use on neurotransmitters and cognition: a review. J Neuropsychiat Clinical Neurosci 15: 

317-325. 

 

Perveen T, Haider S, Kanwal S, Haleem D J. 2009 Repeated administration of Nigella sativa 

decreases 5-HT turnover and produces anxiolytic effects in rats.  Pak. J. Pharm. Sci 22: 

139-144. 

 

Perveen T,
 
Haider S, Zuberi NA, Saleem S, Sadaf S, Batool Z. 2014. Increased 5-HT levels 

following repeated administration of  Nigella sativa L. (Black Seed) oil produce 

antidepressant effects in rats. Sci Pharm 82: 161–170. 

 

Pierce RC, Kalivas PW. 1997. A circuitry model of the expression of behavioral sensitization to 

amphetamine-like psychostimulants. Brain Res Rev 25: 192-216. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Perveen%20T%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haider%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zuberi%20NA%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saleem%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sadaf%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Batool%20Z%5Bauth%5D


 
 

Pierce RC, Kumaresan V. 2006. The mesolimbic dopamine system: The final common pathway 

for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30: 215-238. 

 

Robinson TE, Becker JB. 1986. Enduring changes in brain and behavior produced by chronic 

amphetamine administration: a review and evaluation of animal models of amphetamine 

psychosis. Brain Res 11: 157-198. 

 

Robinson TE, Berridge KC. 1993. The neural basis of drug craving: an incentive-sensitization 

theory of addiction. Brain Res Rev 18: 247-291. 

Shippenberg TS. 2009. The dynorphin/kappa opioid receptor system: a new target for the 

treatment of addiction and affective disorders? Neuropsychopharmacol 34: 247. 

  
Shippenberg TS, Heidbreder CH. 1995. Sensitization to the conditioned rewarding effects of 

cocaine: pharmacological and temporal characteristics. J Pharmacol Exp Ther 273: 808-

815.    

 

Shettleworth SJ. 2010. Cognition, Evolution and Behavior (2nd Ed) New York:Oxford ISBN: 

9780195319842 

 

Steketee JD, Kalivas PW. 2011. Drug wanting: behavioral sensitization and relapse to drug-

seeking behavior. Pharmacol Rev 63: 348-365. 

 

Stephans SE, Yamamoto BY. 1995. Effect of repeated methamphetamine administrations on 

dopamine and glutamate efflux in rat prefrontal cortex. Brain Res 700: 99-106. 

 

Taylor JR, Horger BA. 1999. Enhanced responding for conditioned reward produced by intra-

accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacol 

142: 31-40. 

 

Trang NT, Wanner MJ, Phuong Le VN, Koomen GJ, Dung NX. 1993. Thymoquinone from 

Eupatorium ayapana. Planta Med 59: 99. 

 

Ullah I, Ullah N, Naseer MI, Lee HY, Kim MO. 2012. Neuroprotection with metformin and 

thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat 

cortical neurons. BMC Neurosci. 13:11. 

 

Vanderschuren LJ, Kalivas PW. 2000. Alterations in dopaminergic and glutamatergic 

transmission in the induction and expression of behavioral sensitization: a critical review 

of preclinical studies. Psychopharmacol 151: 99-120. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ullah%20I%5BAuthor%5D&cauthor=true&cauthor_uid=22260211
http://www.ncbi.nlm.nih.gov/pubmed?term=Ullah%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22260211
http://www.ncbi.nlm.nih.gov/pubmed?term=Naseer%20MI%5BAuthor%5D&cauthor=true&cauthor_uid=22260211
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20HY%5BAuthor%5D&cauthor=true&cauthor_uid=22260211
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20MO%5BAuthor%5D&cauthor=true&cauthor_uid=22260211
http://www.ncbi.nlm.nih.gov/pubmed/22260211


 
 

Vlachou S, Markou A. 2010. GABAB receptors in reward processes. Adv Pharmacol 58: 315-

371. 

 

Zhang Y, Loonam TM, Noailles PA, Angulo JA. 2001. Comparison of cocaine-•and 

methamphetamine-evoked dopamine and glutamate overflow in somatodendritic and 

terminal field regions of the rat brain during acute, chronic, and early withdrawal 

conditions. Ann NY Acad Sci  937: 93-120. 

 

 

 

 
 

 

Figure 1. Behavioural locomotor sensitization response to alcohol treatment. Groups of mice 

(n=8) were treated with alcohol or saline vehicle i.p. daily for13 days and locomotor activity was 

tested on days 1, 5, 9 and 13. This was followed by 5 days of abstinence then locomotor activity 

was retested on day 19 (treatment day). Each column represents the mean ± sem. **P<0.01 

compared with the saline vehicle control. 

 

 

 

 

 



 
 

 

  

 
 

 

 

 

 

 

 

Figure 2. Activity of acute thymoquinone administration on the expression of alcohol-induced 

behavioural locomotor sensitization. Groups of mice (n=8) were treated i.p with alcohol (grey 

bars) or saline vehicle and no alcohol (black bars) daily for 13 days and locomotor activity was 

tested on days 1, 5, 9 and 13. This was followed by 5 days of abstinence then thymoquinone 30 

mg/kg was administered p.o (TQ 30) and one hour later, locomotor activity was retested on day 

19 (treatment day). A further group of animals was treated with saline vehicle for 13 days and 

locomotor activity was tested on days 1, 5, 9 and 13. This was followed by 5 days of no 

treatment and then thymoquinone 30 mg/kg was acutely administered p.o (TQ 30 Control, open 

bar) and one hour later, locomotor activity was retested on day 19 (treatment day). Each column 

represents the mean ± sem. *P<0.05 compared with the saline vehicle control. 



 
 

 
Figure 3. Activity of subacute administration of thymoquinone on the expression of alcohol-

induced behavioural locomotor sensitization. Groups of mice (n=8) were treated subacutely with 

either saline vehicle p.o (black bars) or (A) thymoquinone 10 mg/kg p.o (TQ 10, striped bars), 

(B) thymoquinone 20 mg/kg p.o (TQ20, grey bars) or (C) thymoquinone 30 mg/kg p.o (TQ 30, 

patterned bars) plus alcohol one hour later (black bars) daily for 13 days and locomotor activity 

was tested on days 1, 5, 9 and 13. This was followed by 5 days of abstinence then thymoquinone 

(A) 10, (B) 20 or (C) 30 mg/kg was administered respectively p.o and one hour later, locomotor 

activity was retested on day 19 (treatment day). In each case, groups (n=8) subacutely treated 

with corresponding control doses of thymoquinone alone (n=8, open bars) were run. Each 

column represents the mean ± sem. *P<0.05, ** P<0.01. ***P<0.001 compared with the 

corresponding alcohol plus saline treated control. 



 
 

 

 
 

 

 

Figure 4. Schematic illustration of prospective sites of action for thymoquinone on alcohol 

locomotor sensitization within the motive circuitary of the limbic component of the basal 

ganglia. Thymoquinone promotion of neurotransmitter function is indicated by the positive 

signs. GABA, γ-aminobutyric acid; DA, dopamine; Dyn, dynorphin; NAc, nucleus accumbens; 

VTA, ventral tegmental area; VP, ventral pallidum; M-D Thal, mediodorsal thalamus. 

 

 

 

 


