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Abstract

Inclusion of prebiotics in the diet is known to be advantageous, with positive influences both on health and growth. The
current study investigated the differences in the hepatic transcriptome profiles between chickens supplemented with inulin
(a storage carbohydrate found in many plants) and controls. Liver is a major metabolic organ and has been previously
reported to be involved in the modification of the lipid metabolism in chickens fed with inulin. A nutrigenomic approach
through the analysis of liver RNA hybridized to the Affymetrix GeneChip Chicken Genome Array identified 148 differentially
expressed genes among both groups: 104 up-regulated ($1.4-fold) and 44 down-regulated (#0.6-fold). Quantitative real-
time PCR analysis validated the microarray expression results for five out of seven genes tested. The functional annotation
analyses revealed a number of genes, processes and pathways with putative involvement in chicken growth and
performance, while reinforcing the immune status of animals, and fostering the production of long chain fatty acids in
broilers supplemented with 5 g of inulin kg21 diet. As far as we are aware, this is the first report of a microarray based gene
expression study on the effect of dietary inulin supplementation, supporting further research on the use of this prebiotic on
chicken diets as a useful alternative to antibiotics for improving performance and general immunity in poultry farming,
along with a healthier meat lipid profile.
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Introduction

Prebiotics (e.g. fructans including inulin-type fructans [inulin

and fructooligosaccharides]) are nondigestible food ingredients,

whose beneficial effects on the host result from the selective

stimulation of growth and/or activity of members of the gut

microbiota, specifically bifidobacteria and lactobacteria [1].

Inulin, generally extracted from chicory roots (Cichorium intybus

L.), is a prebiotic formed by a chain of fructose molecules

connected by b-(2–1) glycosidic bonds, terminated by one glucose

molecule, which is not decomposed by digestive enzymes due to its

chemical structure [2]. However, it is a perfect carbon source for

health-promoting gut bacteria. Although the inclusion of pre-

biotics in the diet is known to be advantageous, their use in farm

animals has been scarce [3]. Fructans supplementation is known to

produce positive influences both on health and growth [4,5]: in

fish, they increase intestinal growth relative to whole body weight,

potentially enhancing nutrient absorption [6,7]; in broilers, a

decrease in body fat deposition [8], serum cholesterol concentra-

tion and abdominal fat weight has been reported [4,5,7,9]; in

rodents and, to a lesser extent in humans, inulin-type fructans can

alter lipid metabolism by reducing plasma triglyceride and

cholesterol concentrations [10,11]; in several animal models and

in birds, these prebiotics also modify the hepatic metabolism of

lipids [5]; finally, prebiotics have also other positive effects on

health, improving body functions and bone health, decreasing

disease risks, reinforcing immune functions, preventing infections

and intestinal diseases, and enhancing bioavailability of minerals

(calcium and magnesium) [7,12,13]. However, the mechanisms

through which these effects develop are not clear: it is thought to

be a direct effect of the prebiotic on the host immune system by

triggering receptors in the gut epithelium, which induces an

immune response and activates the immune system without it

becoming overactive [14]; withal, many of the desired effects are

brought about by the manipulation of the gut flora, with the

prebiotics providing substrates that preferentially encourage

beneficial strains of bacteria to proliferate [1].

In this study, we perform a nutrigenomic approach to

understand the molecular mechanisms underlying inulin supple-

mentation effects to assess its impact in the commercial broiler. We

chose to study the liver transcriptome as it is a major metabolic

organ involved in many physiological processes including energy

metabolism, detoxification and innate immunity. Moreover,

previous results obtained in chickens by Rebolé et al. [4] and

Velasco et al. [5] pointed to the modification of the hepatic

metabolism of lipids by inulin. The different expression patterns

from a nutrigenomic point of view help understand the

mechanisms by which inulin modulates both metabolism and
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general immunity. Results outlined below indicate major changes

in transcription of a number of genes implicated in development

and maintenance of different tissues, particularly muscle and

nervous system, fatty acid and protein metabolism, and immune

system, gene transcription, and cell development and maintenance

processes in the liver.

Material and Methods

A flow diagram of study design and results is shown in Fig. S1.

Animals
The animal protocol was approved by the Animal Care and

Ethics Committee of the Universidad Complutense de Madrid

(Spain) (CEA-UCM/32). Birds were handled according to the

principles for the care of animals in experimentation established by

the Spanish Royal Decree 1201/2005 [15].

A total of 80 one-day-old female broiler chicks (Cobb 500

genetic line) obtained from a commercial hatchery (Cobb

Espanola S.A., Alcalá de Henares, Spain) were randomly allocated

into 16 pens with eight replicates per treatment and five chicks per

pen as described by Velasco et al. [5]. The bird groups were

assigned to two dietary treatments: 1) control diet without inulin;

and 2) control diet plus 5 g of inulin kg21 of diet, which gave the

best results on decreasing blood concentrations of triacylglycerides

and increasing the capacity of sunflower oil to enhance the ratio of

polyunsaturated (PUFA) to saturated (SFA) fatty acids of

intramuscular fat in broilers [5]. The control basal diet (Table 1)

was formulated to be adequate in all nutrients [16] and was

prepared in mash form. The inulin source used in the current

study was a commercial product (Prebiofeed, Qualivet, Las Rozas,

Spain) obtained from chicory (C. intybus L.) roots containing 746 g

kg21 inulin-type fructans as determined in our laboratory [4];

therefore, the amount of this product added to the corresponding

control diet at the expense of the entire diet was 6.7 g of product

kg21 of diet to obtain 5 g of inulin kg21 of diet. Diets in mash form

and water were offered ad libitum through the 34 day feeding trial.

Mortality was lower than 3%. At the end of the experiment, birds

were weighed and killed by cervical dislocation and liver tissue

(,1 g) was placed in RNAlater (Ambion) and stored at 4uC for

24 h followed by long term storage at 220 uC prior to RNA

extraction.

RNA extraction, cDNA synthesis and microarray analysis
Total RNA was extracted from 25 mg of liver tissue using the

RNeasy Tissue Mini Kit (QIAGEN, Izasa, Spain). Four pools

were produced consisting each in four equivalent amounts of liver

samples mixed together according to the supplemented and

control groups (Fig S1). Each experimental group resulted in eight

samples combined in two pools which were RNA extracted for

hybridization in microarray. Changes in gene expression were

analyzed by microarray technology using the Affymetrix Gene-

Chip Chicken Genome Array. Briefly, 200 ng of total RNA from

each sample were processed, labeled, fragmented, and hybridized

to the GeneChipChicken Genome Array according to the

manufacturer recommendations.

The microarray normalization was carried out using functions

from the Babelomics [17]. Normalized data were further analyzed

using R (version 3.0.2) and the Bioconductor Limma package [18].

Differential gene expression was measured by empirical Bayes t-

statistics and P-values were adjusted for false discovery rate

correction [19]. Only the genes with P-value #0.09 and log fold

change greater or equal than 1.4-fold for up-regulated genes and

lower or equal than 0.6-fold for down-regulated genes were

screened out as differentially expressed genes.

Gene ontology analysis and visual pathway analysis
The Database for Annotation, Visualization and Integrated

Discovery (DAVID) v6.7b [20] was used to determine pathways

and processes of major biological significance and importance

through the Functional Annotation Cluster (FAC) tool based on

the Gene Ontology (GO) annotation function. DAVID FAC

analysis was conducted on two independent gene lists containing

up-regulated genes ($1.4-fold) and down-regulated genes (#0.6-

fold) at P#0.09. High stringency ease score parameters were

selected to indicate confident enrichment scores of functional

significance and importance of the given pathways and processes

investigated.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

tool was used to visually map clusters of the same chicken genes

involved in common pathways and processes for both pathway-

specific and molecular overview purposes. KEGG pathway tools

were utilized through DAVID online tools.

Real-time PCR validation
To confirm microarray data, regulated genes in the liver tissue

(ITIH5, DIO2, GIMAP5, USP18, KIAA1754, CCDC79) were

selected for further validation by qRT-PCR. A total of 16

samples, eight corresponding to the inulin supplemented, and

eight corresponding to the non supplemented chickens (all

included in the four pools used to hybridize the microarray) were

used. The total RNA was used for RT-cDNA synthesis using

Superscript II First Strand cDNA Synthesis kit (Invitrogen). The

resulting cDNA template was used to conduct real-time assays for

all six target genes and four commonly reference genes, beta-actin

(ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),

hypoxanthine phophoribosyl-transferase (HPRT) and glucose-6-

phosphate dehydrogenase (G6PDH), by using an iCycler IQ Real-

Time PCR thermocycler (Bio-Rad) and Dynamo HS SYBR

Green qPCR Kit (Finnzymes, Vitro, Spain) as master mix. Primers

were designed based on public available sequences (Table S1)

using primer 3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/). Af-

ter the selection of the most adequate annealing temperature,

standard curves and the sample assays were produced in triplicate

for each gene, together with the no-template controls. The

following experimental run protocol was used: quantification

program consisting of 42 cycles of 95uC for 30 s, 30 s at annealing

temperature and 40 s at 72uC, ending with a melting program of

155 cycles of 10 s at 55uC and continuous fluorescence

measurement. The results were exported into Microsoft Excel’s

based software Gene Expression Macro Version 1.1 (Bio-Rad

Laboratories, http://www.bio-rad.com/) to calculate and normal-

ize the expression of each gene.

The expression stability and level of the reference genes were

measured using three different statistical algorithms to rank the

genes by their stability values, geNorm [21], NormFinder [22] and

Bestkeeper [23], being this a necessary process to guarantee that

the reference genes are constitutively expressed in the tissue and

treatment in question for a correct normalization. The target gene

data were analyzed using PROC GLM procedure of the SAS

statistical package v. 9.1.3 [24] to estimate the 2DCt differences

between treatments. Relative Expression Software (REST), which

follows the Pfaffl method [25] was also used. This mathematical

algorithm computes an expression ratio based on qRT-PCR

efficiency and the crossing point deviation of the sample compared

to a control group: R = [(E target gene)DCt target gene (control-

sample)]/[(E Ref gene)DCt Ref gene (control-sample)], where E is PCR
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efficiency of the gene transcript determined by standard curve

using a serial dilution of cDNA. Normalization of the expression

levels of the target genes was performed through three reference

genes (GAPDH, G6PDH and ACTB). When differences between

samples of either experiment (with or without inulin) were

subjected to random, a test was carried out and the alternative

hypothesis accepted for a P value lower than 0.08.

Results

Transcriptome profile and differential expression
A total of four Affymetrix GeneChip Chicken Genome arrays

were hybridized with RNA pools resulting from mixing equal

amounts of four different RNA samples from each experiment.

Comparative transcriptome profiling of liver RNA samples from

experimental inulin fed group versus control cDNA pools

identified 112 genes over-expressed according to the elected

threshold $1.4-fold and 46 down-regulated #0.6-fold (P#0.09)

(Table S2) from a total of 38,450 probes corresponding to over

28,000 chicken genes. The widespread use of arbitrary fold change

cut-offs of above 2 and significance P-values of ,0.02 in the

analysis of microarray results was discarded here as it leads data

collection to look only at genes which vary wildly amongst other

genes, and raises questions as to whether the biology or the

statistical cutoff are more important within the interpretation [26].

In this paper we analyzed data giving priority to the biological

signification of the results and set the fold change threshold at $

1.4-fold for over-expressed genes and #0.6-fold for down-

regulated genes. Among these 158 sequences, 139 shared

significant homology with genes encoding proteins of known

function, 9 shared homology with genes encoding proteins of

unknown function, and 10 shared no significant homology with

any database accession (Table S2). Out of the 148 chicken

sequences with homologs, 104 were up-regulated and 44 were

down-regulated in the presence of dietary inulin.

Functional annotation analyses
The expression data was analyzed using the DAVID FAC tool,

obtaining enrichment scores per cluster under high stringency

conditions as an indication of the biological significance of the

gene groups analyzed (Table S3). From the 148 sequences with

homologs, DAVID FAC analysis included 95 up-regulated and 35

down-regulated sequences in the analysis, revealing 102 enriched

Table 1. Ingredients and nutrient composition of experimental control diet (g kg21 as fed basis).

Ingredient

Corn 451.8

Soybean meal (44% CP) 418.7

Sunflower oil 90.0

Calcium carbonate 10.0

Dicalcium phosphate 18.5

Sodium chloride 3.0

DL-Methionine 1.5

Antioxidant (butylated hydroxytoluene) 1.5

Vitamin and mineral premix1 5.0

Nutrient composition

CP2 217.0

Lysine2 12.8

Methionine2 5.2

Methionine plus Cystine3 9.2

AMEn
3 (kcal kg21) 3,152

Fatty acids2,4 (g kg21 of total fatty acids)

C16:0 85.2

C18:0 36.6

C18:1n-9 299.1

C18:2n-6 548.0

SFA 121.8

MUFA 308.8

PUFA 556.6

UFA 865.4

PUFA:SFA 4.6

UFA:SFA 7.1

1Premix supplying (mg kg21 diet): 3 retinol, 55 cholecalciferol, 25 dl-a-tocopheryl acetate, 2.5 menadione, 3 thiamine, 6 riboflavin, 7 pyridoxine, 0.2 folic acid, 0.02
cyanocobalamin, 0.2 biotin, 25 calcium pantothenate, 50 niacin, 1300 choline chloride, 60 Mn, 80 Fe, 50 Zn, 5 Cu, 0.1 Se, 0.18 I, 0.5 Co, 0.5 Mo.
2Determined.
3Calculated.
4SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids; UFA = unsaturated fatty acid.
doi:10.1371/journal.pone.0098942.t001
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functional clusters with strong confident enrichment scores in the

up-regulated sequences for development and maintenance of

different tissues, particularly muscle and nervous system, cell

processes, protein metabolism, gene transcription, response to

hormones, and immune system processes, whereas the down-

regulated sequences -although showing only 26 enriched func-

tional clusters with lower enrichment scores- highlighted mainly

fatty acid metabolism and intracellular organelles (Table S3,

Fig. 1).

The KEGG database retrieved five pathways (Table 2, Fig. S2):

Adipocytokine Signaling Pathway, Glycosphingolipid Biosynthesis,

Glutathione Metabolism, Drug Metabolism - Cytochrome P450,

and Metabolism of Xenobiotics by Cytochrome P450. The list of

differentially expressed genes encoding proteins of known function

but not included in the DAVID FAC analysis (9), along with those

genes encoding proteins of unknown function (9) is shown in Table

S4.

Validation of microarray data by real-time RT-PCR
In order to validate the microarray results, qRT-PCR was

performed to determine the expression levels of six chicken genes -

ITIH5, DIO2, USP18, CCDC79, KIAA1754, GIMAP5- selected

from the list of sequences differentially expressed across individuals

from inulin and control groups. Also, to obtain reliable qRT-PCR

results, the stability of four commonly used housekeeping genes

was determined (HPRT, ACTB, GAPDH, and G6PDH). The results

of three programs (GeNorm, BestKeeper, and NormFinder)

revealed that ACTB, GAPDH, and G6PDH were good candidate

reference genes (Table 3). Despite a non significant 1.3 fold

differential expression in the microarray results for HPRT, this

gene was significantly differentially expressed when analyzed

through qRT-PCR. Thereof, HPRT was not suitable as an

endogenous control for the analysis of gene expression in the liver

tissue in chickens.

The qRT-PCR expression results using REST software (Table 4)

correlated with the microarray expression data for 4 out of the 6

genes tested, plus the up-regulation of HPRT. The qRT-PCR

determination of ITIH5, DIO2, KIAA1754, GIMAP5, and HPRT

mRNA levels showed a 2.2, 6.2, 2.4, 2.5, and 1.9-fold increase

respectively in inulin supplemented chickens over controls, these

results comparing favorably to the 2.2, 4.3, 3.3, 3.2, and 1.3–fold

increase in expression determined by the microarray analysis.

Among the significant differentially expressed genes, ITIH5,

DIO2, GIMAP5, and HPRT showed significant 2DCt differences

between treatments when analyzed using PROC GLM procedure

(SAS) (Table 5). The activity of ITIH5, DIO2, GIMAP5, and HPRT

genes explained 30%, 39%, 26% and 49% of the total variability

(P,0.08), respectively.

However, the expression analysis of USP18 and CCDC79 by

qRT-PCR was not significant, in contrast with the microarray

data which showed both genes to be down-regulated by 0.5-fold.

Discussion

The use of inulin-type fructans in poultry feeding is known to

produce positive influences both on chicken health and growth, by

improving the performance [3,4], increasing the absorption of

nutrients by modifications on the intestinal mucosal structure

[27,28,29], stimulating the growth and/or activity of beneficial

intestinal bacteria and preventing colonization by pathogenic

bacteria [1]. Also, they decrease body fat deposition and improve

its profile [4,5,7,8,9], along with other positive effects on health

Table 2. List of chicken genes from KEGG pathway maps differentially expressed in liver from animals supplemented with 5 g of
inulin kg21 diet and controls, with expression ratio, annotated gene description and KEGG ID.

Gene Symbol Expression Ratio With vs. Without Gene Name KEGG ID

Adipocytokine Signaling Pathway - KEGG pathway

TNFRSF1B 1.9 Tumor necrosis factor receptor superfamily member 1B TNFR1

ACSL6 1.4 Acyl-CoA synthetase long-chain family member 6, transcript variant X5 FACS

PPARA 1.7 Peroxisome proliferator-activated receptor alpha PPARa

Glycosphingolipid Biosynthesis - Ganglio Series - KEGG pathway

ST3GAL5 1.6 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 2.4.99.9

ST3GAL1 1.9 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 2.4.99.4

Glutathione Metabolism - KEGG pathway

GSTA 0.6 Glutathione S-transferase class-alpha 2.5.1.18

GSTT1 0.6 Glutathione S-transferase theta 1 2.5.1.18

RRM2B 1.5 Ribonucleotide reductase M2 B (TP53 inducible) 1.17.4.1

Drug Metabolism - Cytochrome P450 - KEGG pathway

GSTA 0.6 Glutathione S-transferase class-alpha 2.5.1.18

GSTT1 0.6 Glutathione S-transferase theta 1 2.5.1.18

Metabolism of Xenobiotics by Cytochrome P450 - KEGG pathway

GSTA 0.6 Glutathione S-transferase class-alpha 2.5.1.18

GSTT1 0.6 Glutathione S-transferase theta 1 2.5.1.18

doi:10.1371/journal.pone.0098942.t002
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[7,12,13]. This study adds the characterization of the genetic

expression patterns promoted by inulin to the evaluation on the

effects of its dietary supplementation in poultry. Moreover,

understanding the molecular mechanism underlying inulin effects

can be a useful approach to help finding natural alternatives to the

overdependence on antibiotics to enhance animal production

(given that it has been directly related to the growing number of

antibiotic resistances [30], which has lead to the ban of antibiotics

for growth promotion by the European Union since 2006 [31] and

the calls to restrict its use in other countries).

Functional analysis of the differentially expressed genes using

the GO term annotations showed that the differentially expressed

genes can be functionally grouped in three main classes: (i) basal

processes including tissue development and maintenance (partic-

ularly muscle, nervous system processes, cell organelles processes,

protein metabolism, gene transcription, and response to hor-

mones); (ii) immune system processes; and (iii) fatty acid

metabolism.

Basal processes – development and maintenance of
different tissues

Although liver was the tissue explored, genes involved in the

development and maintenance of different tissues, particularly

nervous system and muscle, showed the highest enrichment score

in the FAC analysis of up-regulated genes (Fig. 1(a)). DAVID

analyses identified 46 genes with an expression range of 1.4 to 4.5

that functionally clustered into common GO terms related to

nervous system, muscle, respiratory, bone, and embryonic

development, or neurological, circulatory and reproductive

processes (Table S3). Thus, several differentially expressed genes

may relate to other tissue-specific processes that, up to now, have

not been described as expressed in liver. As an example, the high

enrichment scores of neurological pathways may be due to the

involvement of a neurological mechanism, e.g. through the

participation of neuronal tissue in liver tissue composition.

Alternatively, it could indicate that genes currently described as

involved in neurological pathways, may have basic functions

common to other tissues.

FAC analysis also identified protein metabolism as a significant

biological process up-regulated by the addition of inulin to the

chicken diets (Fig. 1(a)). DAVID analyses identified 33 genes with

an expression range of 1.4 to 4.3 that functionally clustered into

common GO terms related to regulation of protein metabolism,

translation, peptidase activity, post-translational protein modifica-

tion, protein activity, proteolysis, or protein localization (Table

S3). Among them, CAV2, TPPP, MLH1, AHCTF1, NRG1, NEFL,

and DVL1 were also involved in the improvement of growth

performance by inulin supplementation, showing the highest

enrichment scores.

DAVID analyses identified 43 genes with an expression range of

1.4 to 4.3 that functionally clustered into common GO terms

related to regulation of transcription and biosynthesis, chromo-

some organization, DNA, RNA and nucleotide binding, or

transcription activity (Fig. 1(a), Table S3), showing an increased

cellular activity in the presence of the prebiotic.

Finally, regarding cell organelles and cellular processes, DAVID

analyses included all up-regulated genes (expression range of 1.4 to

Table 3. Stability of four reference genes on liver from animals supplemented with 5 g of inulin kg-1 diet and controls, measured
through three different software: Bestkeeper, GeNorm and NormFinder.

Bestkeeper GeNorm NormFinder

Stability value Ranking Stability value Ranking Stability value Ranking

ACTB 0.959 1 0.659 1 0.247 3

GAPDH 0.934 2 0.690 3 0.304 2

G6PDH 0.921 3 0.727 1 0.372 1

HPRT 0.835 4 0.805 4 0.466 4

doi:10.1371/journal.pone.0098942.t003

Table 4. Differential expression results of the genes studied in the liver by Real-time PCR assay from animals supplemented with
5 g of inulin kg21 diet and controls using REST software (P,0.08).

Gene Type Expression Std. Error 95% C.I. P(H1) Result

ACTB REF 0.828

GAPDH REF 1.093

G6PDH REF 1.106

ITIH5 TRG 2.185 0.88–5.3 0.40–7.4 0.080 UP

DIO2 TRG 6.175 2.29–17.6 1.00–33.6 0.003 UP

USP18 TRG 1.082 0.44–3.0 0.16–6.4 0.880

CCDC79 TRG 1.484 0.35–4.3 0.12–16.6 0.538

KIAA1754 TRG 2.376 0.89–6.0 0.44–11.3 0.070 UP

GIMAP5 TRG 2.543 1.04–6.0 0.62–14.2 0.042 UP

HPRT TRG 1.860 1.33–2.8 0.63–3.7 0.015 UP

doi:10.1371/journal.pone.0098942.t004
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4.5) into common GO terms related to these main groups (Fig. 1,

Table S3).

All these data suggested an important influence of inulin on

processes and pathways that lead to the increase of growth and

performance, which is in agreement with the results reported by

Rebolé et al. [4] and Velasco et al. [5], who found a quadratic body

weight gain in chickens supplemented with inulin, and with those

of Tacchi et al. [6], who suggested an improvement in nutrient

absorption as a consequence of the increase of intestinal growth

caused by the addition of inulin to fish diets.

Immune system processes
The addition of inulin to the diet of chickens stimulated various

immune system processes (Fig. 1(a)). DAVID analyses identified 20

up-regulated genes with an expression range of 1.4 to 4.5 that

functionally clustered into common GO terms related to immune

system processes, immunoglobulins, response to virus and biotic

stimulus, regulation of apoptosis, immune system development

and activation, immune response, or cellular response to stress and

DNA damage stimulus (Table S3).

KEGG pathway visual analysis identified three genes

(TNFRSF1B, ACSL6, PPARA) in the Adipocytokine Signaling

Pathway that were up-regulated with inulin supplementation by

1.56 to 7.56 fold (Fig. S2(a), Table 2). However, ACSL6 and

PPARA were not included in the functional clusters related to

immune system processes by DAVID FAC tool (Table S3).

TNFRSF1B has anti-apoptotic activity by stimulating antioxidative

pathways and is considered a marker of activation of T-helper

subsets regulatory T-cell (Tregs) [32]. ACSL6 encodes an enzyme

that catalyzes the formation of acyl-CoA from fatty acids, ATP,

and CoA, using magnesium as a cofactor, and as such was

included in the mitochondrion, membrane, fatty acid metabolism,

metal ion binding and carboxylic acid metabolism DAVID clusters

(Table S3). Finally, PPARA, found in different clusters, is a

member of peroxisome proliferator-activated receptors (PPARs),

which plays a major regulatory function of genes involved in

energy metabolism, affects the expression of target genes involved

in cell proliferation and differentiation, and in immune and

inflammation responses (see e.g. Gervois & Mansouri [33]).

Interestingly, Glutathione Metabolism is found among the

pathways identified by KEGG (Fig. S2(c), Table 2). Glutathione

plays important roles in antioxidant defense, nutrient metabolism,

and regulation of cellular events (including gene expression, DNA

and protein synthesis, cell proliferation and apoptosis, signal

transduction, cytokine production and immune response, and

protein glutathionylation); its deficiency contributes to oxidative

stress, which plays a key role in the aging and the pathogenesis of

many diseases [34]. Three genes where included in this pathway:

GSTT1 is a member of a superfamily of proteins that catalyze the

conjugation of reduced glutathione to a variety of electrophilic and

hydrophobic compounds identified as having an important role in

human carcinogenesis; together with GSTA form the Glutathione

S-transferase cluster, and both genes were down-regulated in

contrast to the up-regulated RRM2B, which is found to act in

Trypanosoma cruci as a mechanism to minimize the reactive oxygen

species (ROS) produced by host defense [35].

These results pointed towards an effect of inulin supplementa-

tion on the reinforcement of chicken immune status by the

activation of genes and pathways implicated in immune processes,

while conferring a higher ability to avoid ROS.

Fatty acid metabolism
Fatty acid metabolism showed the highest enrichment score in

the FAC analysis of down-regulated genes (Fig. 1(b)). DAVID

analyses identified 5 genes with an expression range of 0.5 to 0.6

that functionally clustered into common GO terms related to lipid,

monocarboxylic acids, carboxylic acids, oxoacids, organic acids,

and ketone metabolic processes (Table S3).

Inulin supplementation seemed to foster the production of

beneficial long chain fatty acid [36], as deduced from the higher

expression of genes as PPARA, FASN, and ACSL6, and the down

regulation of genes involved in the degradation of long branched

fatty acids (ACOX2), hydrolysis of fatty acids, specifically

phospholipids (JMJD7-PLA2G4B), cleavage of the ether bond of

alkylglycerols (TMEM195), and in processes specifically linked

with the mitochondrion and cytoplasma (CYP2J2). The down-

regulation of a fatty acid elongase (ELOVL2) can be explained by

its particular substrate: whereas ELOVL2 can efficiently elongate

C20 and C22 polyunsaturated (PUFA) fatty acids, it cannot

elongate C18 PUFA nor monounsaturated fatty acids (MUFA) or

saturated fatty acids (SFA) [37], and its down-regulation is in

concordance with the observed effect of dietary inulin addition on

the increase of C18:2n-6 [5].

As supported by Rebolé et al. [4] and Velasco et al. [5], the

addition of inulin-type fructans to the diet decreases body fat

deposition [8], serum cholesterol concentration, and abdominal fat

weight of chickens [9], which is in agreement with the gene

regulation found here and explained also the increased function of

the mitochondrion linked to the different fatty acid metabolism.

Validation of microarray data by real-time RT-PCR
In order to validate the microarray results, six chicken genes,

selected from the list of genes differentially expressed across

controls and inulin supplemented individuals, were used in qRT-

Table 5. ANOVA results of the genes studied in the liver by Real-time PCR assay from animals supplemented with 5 g of inulin
kg21 diet and controls.

Dependent Variable Mean Square Error R-Square Coeff Var Pr . F

ITIH5 48.4 11.2 0.302 71.3 0.0642

DIO2 607.5 94.7 0.390 88.5 0.0297

USP18 55.9 82.5 0.063 113.4 0.4296

CCDC79 179.5 216.0 0.077 123.4 0.3835

KIAA1754 37.2 19.1 0.178 87.8 0.1962

GIMAP5 78.6 22.7 0.257 80.1 0.0922

HPRT 6.2 0.63 0.495 34.1 0.0106

doi:10.1371/journal.pone.0098942.t005
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PCR. To avoid bias, the tested genes were chosen from an array of

different processes including biological regulation (Deiodinase

iodothyronine type II, DIO2), biologic and metabolic process

(Inter-alpha globulin inhibitor H5, ITIH5), immune system

processes (IMAP family member 5, GIMAP5), protein metabolism

(Ubiquitin Specific Protease 18, USP18), gene transcription and

regulation processes (Coiled-coil domain containing protein 79

CCD79, CCDC79), and cell development and maintenance

processes (Inositol 1,4,5-trisphosphate receptor interacting protein,

similar to KIAA1754-like) FAC groups. HPRT, initially chosen as

reference gene, failed as housekeeping gene for the analysis of gene

expression in liver tissue in broiler chickens due to its significant

differential expression when analyzed with qRT-PCR, highlight-

ing the importance of the correct selection of reference genes [38].

Among the genes showing differential expression, it is worth

highlighting ITIH5, which explained 30% of the total variability

Figure 1. DAVID Functional Annotation Cluster (FAC) analysis of differentially expressed genes between chickens with and without
5 g of inulin kg-1 diet supplementation. DAVID FAC analysis was conducted on two independent gene lists containing 95 up-regulated genes
($1.4-fold) and 35 down-regulated genes (#0.6-fold) and P#0.09. High stringency ease score parameters were selected, to indicate confident
enrichment scores of functional significance and importance of the given pathways and processes investigated. (A) Grouped major FACs for up-
regulated genes ($1.4-fold). (B) Grouped major FACs for down-regulated genes (#0.6-fold). Significance is determined by corresponding enrichment
scores.
doi:10.1371/journal.pone.0098942.g001
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found between the two feeding groups, DIO2 -39%-, GIMAP5 2

26%-, and HPRT 249%-. ITIH5 encodes a secreted protein and is

known to be highly expressed in subcutaneous adipose tissue, and

associated with measures of body size and metabolism [39]. The

protein encoded by DIO2 belongs to the iodothyronine deiodinase

family and activates thyroid hormone, which acts on nearly every

cell in the organism -increases the basal metabolic rate, affects

protein synthesis, helps regulate long bone growth and neural

maturation-, being essential to proper development and differen-

tiation of all cells types and the regulation of protein, fat, and

carbohydrate metabolism [40]. KIAA1754 is an intracellular

channel protein that mediates calcium (Ca2+) release from the

endoplasmic reticulum, and is involved in many biological

processes (e.g. fertilization, muscle contraction, secretion, cell

growth, differentiation, apoptosis, and synaptic plasticity) [41].

The protein encoded by HPRT gene plays a central role in the

generation of purine nucleotides through the purine salvage

pathway [42]. Thereof, the up-regulation of ITIH5, DIO2,

KIAA1754 and HPRT by inulin supplementation is in agreement

with the higher basal activity required by an increased body

weight gain reported in chickens by Rebolé et al. [3] and Velasco

et al. [4].

GIMAP5 encodes a protein belonging to the GTP-binding

superfamily and to the immune-associated nucleotide (IAN)

subfamily of nucleotide-binding proteins, and has been implicated

in autoimmune diseases, lymphocyte homeostasis and apoptosis

[43].

Down-regulation of USP18 gene, which belongs to the

ubiquitin-specific proteases (UBP) family of enzymes, and

CCDC79, one of the principal subunit oligomerization motifs in

proteins, in inulin supplemented chickens was not validated by

qRT-PCR. While qRT-PCR results are usually accurate and gene

specific, it is possible that the microarray hybridization results can

be biased for genes encoded by multigene families.

Conclusion

As far as we have notice, this is the first report of a microarray

based gene expression study on the effect of inulin supplementa-

tion in any animal species. The results obtained here highlighted

the functional significance and importance of inulin supplemen-

tation on processes and pathways that lead to an increase in

growth and performance, while reinforcing the immune status of

chickens, and fostering the production of long chain fatty acids in

broilers supplemented with 5 g of inulin kg21 diet. Additional

information on the molecular mechanism underlying the inulin

effects on gene activity and the cellular basis of feed efficiency in

broilers is also provided. This nutrigenomic study supports further

research on the supplementation of chicken diets with the

prebiotic inulin at 5g kg21 diet as a possible and useful alternative

to the use of antibiotics for improving animal production and

general immunity in poultry farming, along with a healthier meat

lipid profile.
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