A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries

Gordon Webster,^{1,2*} Lynsey C. Watt,³ Joachim Rinna,^{2,3} John C. Fry,¹ Richard P. Evershed,⁴ R. John Parkes^{2,3} and Andrew J. Weightman¹

¹Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3TL, UK. ²School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3YE, UK.

³Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, England BS8 1RJ, UK.

⁴School of Chemistry, University of Bristol, Cantocks Close, Bristol, England BS8 1TS, UK.

Summary

Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 µM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the ¹³C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as ¹³C-enriched PLFA were common (16:0, 16:1, 18:1ω7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utiliz-

Received 24 January, 2006; accepted 28 March, 2006. *For correspondence. E-mail websterg@cardiff.ac.uk; Tel. (+44) 2920874928; Fax (+44) 2920874326.

able substrate, resulted in widespread incorporation consistent with the higher extent of ¹³C-incorporation (~10 times) into PLFA compared with 13C-acetate or ¹³C-pyruvate. ¹³C-PLFA in the ¹³C-acetate and ¹³C-pyruvate slurries were similar to each other and to those that developed in the ¹³C-glucose slurry after 4 days. These were more diagnostic, with branched oddchain fatty acids (i15:0, a15:0 and 15:1ω6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the ¹³C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In contrast, analysis of DGGE bands from ¹³C-DNA demonstrated that the candidate division JS1 and Firmicutes were actively assimilating ¹³C-acetate. Denaturing gradient gel electrophoresis also confirmed the presence of JS1 in the ¹³C-DNA from the ¹³C-glucose slurry. These results demonstrate that JS1, originally found in deep subsurface sediments, is more widely distributed in marine sediments and provides the first indication of its metabolism; incorporation of acetate and glucose (or glucose metabolites) under anaerobic, sulfate-reducing conditions. Here we demonstrate that PLFA- and DNA-SIP can be used together in a sedimentary system, with low concentrations of 13C-substrate and overlapping incubation times (up to 7 days) to provide complementary, although not identical, information on carbon flow and the identity of active members of an anaerobic prokaryotic community.

Introduction

Sulfate reduction plays a major role in the global sulfur cycle, and may be regarded as one of the oldest metabolic processes on Earth (Castresana and Moreira, 1999; Shen et al., 2001). Sulfate-reducing prokaryotes (SRP) constitute a large physiologically and phylogenetically diverse group of anaerobes utilizing a wide range of organic substrates (Rabus et al., 2000). They are ubiquitous and

important in almost all anoxic environments (Rabus *et al.*, 2000) especially marine sediments (Ravenschlag *et al.*, 2000).

Culture-independent approaches based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) profiles have been widely used to characterize sulfate-reducing bacteria (SRB) communities, including those in marine sediments (Parkes et al., 1993; Ravenschlag et al., 2000; Purdy et al., 2001). However, these methods do not provide an unambiguous link to the physiology or metabolic capabilities of a bacterium, particularly in phylogenetic lineages without cultured representatives. Functional genes encoding enzymes catalysing key activities have been successfully used to detect biogeochemically important prokaryotes in complex habitats. For example, SRP have been identified by analysis of dissimilatory sulfite reductase (dsrAB) gene sequences (Wagner et al., 1998) in estuarine and marine sediments (Joulian et al., 2001; Thomsen et al., 2001; Nercessian et al., 2005). However, the presence of functional genes within an environmental sample does not necessarily mean that the organisms from which they are derived are active in that system.

Recently, the technique of stable-isotope probing (SIP) has been used to link functional activity to microbial community structure by adding 13C-labelled substrates to environmental samples and identifying specifically labelled biomarkers (Boschker et al., 1998; Radajewski et al., 2000; Dumont and Murrell, 2005). Using this approach, Boschker and colleagues (1998) characterized the microbial community responsible for acetate oxidation in coastal sediments after incorporation of 13C-acetate, and concluded from ¹³C-enriched PLFA signature profiles that Desulfotomaculum acetoxidans was the dominant acetate oxidizer. Radajewski and colleagues (2000) added 13Clabelled methanol and CH4 to soil microcosms and identified specific active populations of methylotrophic bacteria from their labelled DNA, while Manefield and colleagues (2002) detected active microbial populations in an aerobic phenol-degrading bioreactor from ¹³C-labelled RNA molecules. Increasingly, other important physiological groups of prokaryotes are also being investigated using similar techniques, including the methanogenic Archaea (Lu et al., 2005), sulfur oxidizing (Knief et al., 2003), nitrifying (Whitby et al., 2001) and denitrifying bacteria (Gallagher et al., 2005).

To date, PLFA, DNA and RNA biomarkers have only been used separately for SIP to investigate active species in microbial populations (Boschker *et al.*, 1998; Manefield *et al.*, 2002; Radajewski *et al.*, 2002; Treonis *et al.*, 2004; Pombo *et al.*, 2005), partly because different concentrations of ¹³C-label and varying incubation times are needed for optimum PLFA and nucleic acid labelling (Boschker and Middelburg, 2002; Radajewski *et al.*, 2003). As membrane lipids and 16S rRNA genes are both widely used

as taxonomic biomarkers to identify bacteria, such as SRB, to the genus level (Kohring et al., 1994), it is important to assess the extent to which PLFA-SIP and DNA-SIP approaches result in identification of the same active organisms. Phospholipid fatty acid-based identification can be ambiguous particularly when applied to complex populations (Frostegard et al., 1993; Pombo et al., 2002), but offers a phenotypic index of identity and physiological information about a population, such as nutritional status and stress (Parkes, 1987). Analysis of rRNA genes and other genetic markers despite having biases associated with DNA extraction, polymerase chain reaction (PCR) and cloning seems to provide a more robust description of phylogenies (Dahlöff, 2002). Therefore, conducting SIP with both PLFA and DNA biomarkers may provide unique information about a prokaryotic community.

In this study we used SIP in combination for the first time with PLFA and DNA biomarkers to determine the active bacterial community structure within estuarine sediment sulfate-reducing slurry enrichments. Active bacterial populations were characterized using relatively short incubation times with low concentrations of different ¹³C-labelled organic substrates.

Results

Bacterial activity in sediment slurries

All Tamar estuary sediment slurries were pre-enriched with both glucose and acetate prior to ¹³C-substrate addition under anaerobic conditions to stimulate a simplified sulfate-reducing community and ease interpretation. Between 2 and 6 days of pre-enrichment, all sediment slurries had approximately a 10-fold increase in bacterial numbers from 7.7×10^7 cells per gram of dry weight sediment, after which the cell numbers remained relatively stable. Sulfate reduction became intense by 7 days with a marked decrease in sulfate concentrations (6.6-7.3 mM SO₄²⁻ per day) and a steady increase in dissolved sulfide (~2.6 mM S²⁻ per day). After further 5 days of sulfate reduction (sulfate concentrations < 2 mM), labelled ¹³Csubstrates (13C-glucose, 13C-acetate and 13C-pyruvate) were added to a final concentration of 100 μM and incubated for further 7 days during which time all sulfate was removed.

Total PLFA profiles of sediment slurries

Throughout the incubations with 13 C-labelled substrates, PLFA profiles of the sediment slurries were monitored and there were changes in the distribution of PLFAs with 16:0, 16:1, 18:0 and 18:1 ω 7 being major components in all slurries (Fig. 1A and B). This profile is similar to patterns observed previously for the Tamar estuary (Boschker

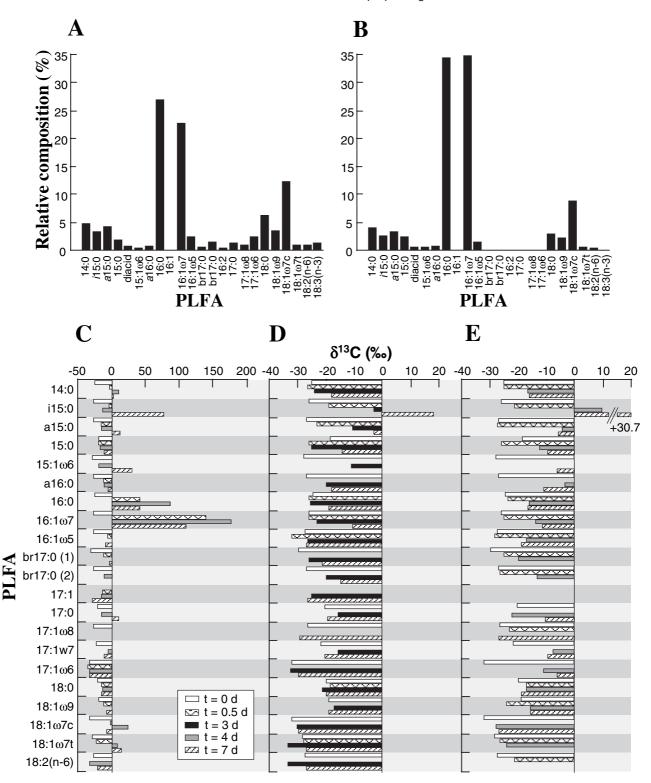


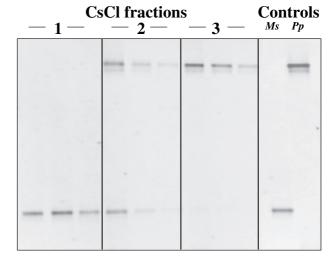
Fig. 1. Phospholipid fatty acid abundance as per cent of total PLFA in sediment slurries 4 days after ¹³C substrate addition: (A) ¹³C-glucose sediment slurry, (B) 13 C-acetate sediment slurry. Values of δ^{13} C measured in PLFA extracted at different time points from sediment slurries prior to and after addition of (C) 13 C-glucose, (D) 13 C-acetate and (E) 13 C-pyruvate.

et al., 1998) and other marine sediments (Guckert et al., 1985; Parkes et al., 1993).

Isotopic enrichment of PLFA

The average δ¹³C value of PLFA from the pre-¹³C-labelled samples was $-25.6 \pm 4\%$ (Fig. 1). In all experiments after 12 h of incubation there was detectable ¹³C enrichment in PLFA molecules (Fig. 1C-E). Although, greater (~10-fold) incorporation of δ^{13} C occurred with 13 C-glucose compared with other labelled substrates. Samples from the slurry incubated with ¹³C-glucose at 12 h and 4 days showed that the majority of the ¹³C-label (82-87%) was in evenchain fatty acids with 56-58% in unsaturated PLFA, 15-18% in branched chain fatty acids and 24-27% in saturated fatty acids. The highest δ^{13} C values were in the $16:1\omega7$ (+140% and +177%), 16:0 (+43% and +87%) and 18:1ω7c (-0.3‰ and +25‰) PLFAs. However, after a 7day incubation with ¹³C-glucose the PLFA *i*15:0 (+78‰) and a15:0 (+13‰) became noticeably more enriched and contained 17.5% and 6% of the ¹³C-label respectively (Fig. 1C). This coincided with a decrease in the ¹³C content of previously highly labelled PLFAs.

Enriched PLFA profiles from slurries incubated with ^{13}C -acetate or ^{13}C -pyruvate were almost identical throughout the 7-day incubation period with the extent of enrichment generally increasing. By 3–4 days incubation, 48–50% of the ^{13}C -label was in the branched chain fatty acids with the majority being in odd-chain fatty acids (Fig. 1D and E). For example, the major $\delta^{13}C$ PLFA compounds for the ^{13}C -acetate sediment slurry after 3 days incubation were \dot{n} 15:0 (–2.8%), a15:0 (–10.5%) and 15:1 ω 6 (–11.1%) with a small amount of $\delta^{13}C$ in 17:0, 17:1 ω 7 and br17:0 (Fig. 1D). A similar ^{13}C -enriched PLFA profile occurred in the ^{13}C -pyruvate slurry with the exception that after 7 days slightly more $\delta^{13}C$ was present in 17:1 ω 6 and 17:1 ω 7 than in the ^{13}C -acetate enrichment (Fig. 1E).


Denaturing gradient gel electrophoresis (DGGE) profiles of sediment slurries

Changes in bacterial populations of the sulfate-reducing sediment slurries were also monitored throughout the incubations with ¹³C-substrates using PCR-DGGE analysis of 16S rRNA genes (data not shown). During 7 days incubation no change in the DGGE profile was observed for the ¹³C-glucose sediment slurry compared with that prior to ¹³C-glucose addition (0 h). However, after only 12 h incubation with ¹³C-acetate or ¹³C-pyruvate there was some evidence of a change in the sediment population compared with time zero. New DGGE bands appeared, suggesting that growth of these organisms was stimulated by the utilization of either ¹³C-acetate or ¹³C-pyruvate (two and three new bands respectively). The bacterial popula-

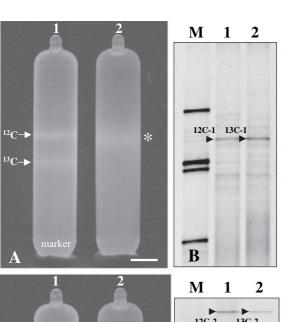
tions stimulated in these enrichments were stable for the remainder of the 7-day incubation. It is noteworthy that a DGGE band corresponding to the uncultured bacterial candidate division JS1, distantly related to the uncultured candidate division OP9 (Webster *et al.*, 2004) was present in all slurries at all time points.

Optimization of CsCl density gradient ultracentrifugation for separation of ¹²C- and ¹³C-labelled DNA

Separation of ¹³C-DNA from the unlabelled ¹²C-DNA is a critical step in DNA-SIP. Therefore, it was necessary to demonstrate effective separation of labelled and unlabelled DNA and to optimize the methodology of CsClethidium bromide density gradient ultracentrifugation. Optimization was also necessary as only limited concentrations of labelled DNA would be recovered from sediments enriched with low 13C-substrate concentrations. Separation of DNA mixtures containing Pseudomonas putida ¹³C-DNA and Mycobacterium smegmatis ¹²C-DNA was readily achieved using the conditions described. Both fractions were removed from the CsCl gradient and PCRamplified with bacterial 16S rRNA gene primers and analysed by DGGE (Fig. 2). The results show that there was no contamination of the 13C-DNA fraction with DNA derived from the 12C-DNA of M. smegmatis and vice versa, although there was both ¹²C- and ¹³C-DNA in the

Fig. 2. Polymerase chain reaction-DGGE analysis of 16S rRNA genes amplified from three fractions removed from CsCl/ethidium bromide density gradient separation of ¹²C- and ¹³C-DNA extracted from pure cultures of *Mycobacterium smegmatis* and *Pseudomonas putida* respectively. Lane numbers represent the sampling points from where DNA fractions were removed. Lanes marked 1, DNA fraction 1 (¹²C-DNA band); Lanes marked 2, DNA fraction 2 (between ¹²C- and ¹³C-DNA bands); Lanes marked 3, DNA fraction 3 (¹³C-DNA band); Lane *Ms, M. smegmatis*; Lane *Pp, P. putida*. Denaturing gradient gel electrophoresis analyses of fractions are shown in triplicate from PCRs on DNA template diluted 10°, 10⁻¹, 10⁻² prior to amplification (left to right).

zone between the two fractions. Lueders and colleagues (2004) quantitatively analysed DNA fractions from CsCl gradients by real-time PCR and obtained similar findings when fractions were sampled carefully.


Separation of 13C-labelled SRB and sediment DNA

DNA extracted from a pure culture of the acetoclastic Desulfobacter sp. grown on ¹²C- and ¹³C-labelled acetate was fractionated by CsCl-density gradient ultracentrifugation, confirming that acetate-utilizing SRB are amenable to the DNA-SIP approach (Fig. 3A and C; tube 1). DNA was only extracted from the 13C-substrate sediment slurries after 7 days incubation; it was considered at this time point that there might be sufficient incorporation of ¹³C into sulfate-reducing prokaryotic DNA to be separated from the ¹²C-DNA. Subsequently, it has been shown that sufficient ¹³C can be incorporated into DNA of benzoate-utilizing denitrifying bacteria after 1 h incubation and identified by SIP (Gallagher et al., 2005). DNA extracted from the

¹³C-labelled sediment slurries (glucose and acetate only) and centrifuged in a CsCl-ethidium bromide density gradient was visible as a faint diffuse 12C band (Fig. 3A and C). This suggested that the sediment DNA was comprised of unlabelled, partially labelled and fully ¹³C-labelled DNA, similar to the intermediately labelled DNA observed in other SIP experiments (Morris et al., 2002; Hutchens et al., 2004). Despite the apparent absence of a distinct ¹³C-DNA band, fractions were collected from the CsCl gradients guided by a 'marker' density gradient, containing Desulfobacter sp. ¹²C- and ¹³C-DNA (Fig. 3A and C).

Molecular analysis of 13C-DNA fractions

Bacterial 16S rRNA genes from the ¹³C- and ¹²C-DNA fractions from the 13C-labelled glucose and acetate slurries were amplified by PCR and analysed by DGGE. Analysis of the ¹³C-glucose slurry (Fig. 3B) showed that both fractions had identical profiles suggesting that all members of the dominant bacterial community were

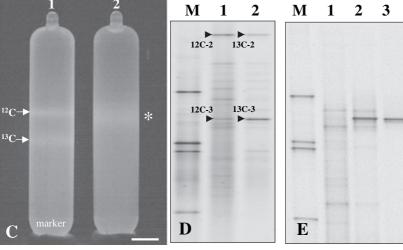


Fig. 3. Sediment DNA in CsCl/ethidium bromide density gradients after equilibrium centrifugation, and subsequent DGGE analysis of ¹²C- and ¹³C-DNA fractions.

- A. DNA extracted (tube 2; asterisk highlights DNA band) from the Tamar estuary sediment slurry incubated with ¹³C-glucose for 7 days alongside a tube containing DNA extracted from the SRB, Desulfobacter sp. DSM 2035 (grown on either 12C- or 13C-acetate as the sole carbon source) marker tube (tube 1) as a visual guide.
- B. Denaturing gradient gel electrophoresis analysis of 16S rRNA genes amplified by PCR primers 357F/518R from the 12C- and 13C-DNA from the 13C-glucose sediment slurry (tube 2 in
- C. DNA extracted (tube 2; asterisk highlights DNA band) from the Tamar estuary sediment slurry incubated with ¹³C-acetate for 7 days alongside the Desulfobacter sp. DNA marker tube (tube 1) as a visual guide.
- D. Denaturing gradient gel electrophoresis analysis of 16S rRNA genes amplified by PCR primers 357F/518R from the 12C- and 13C-DNA from the ¹³C-acetate sediment slurry (tube 2 in
- E. Denaturing gradient gel electrophoresis analysis of 16S rRNA genes amplified by nested PCR with JS1 primers 63F/665R and 357F/518R from the ^{12}C - and ^{13}C -DNA from the ¹³C-acetate sediment slurry (tube 2 in C). Lanes marked M, DGGE marker (Webster et al., 2003); 1, 12C-DNA fraction; 2, 13C-DNA fraction; 3, JS1 clone NankB-7 (Newberry et al., 2004). Labelled DGGE bands represent bands that were excised and sequenced (see Table 1). Bar = 1 cm.

© 2006 The Authors

Table 1. Closest 16S rRNA gene sequence matches to excised DGGE bands using the BLASTN search tool.

DGGE band identifier	Sulfate-reducing sediment slurry (DNA fraction)	Nearest two matches by BLASTN search (accession no.)	Sequence similarity (%)	Alignment length (bp)	Phylogenetic affiliation	Isolation environment of nearest matches
12C-1	¹³ C-Glucose (¹² C-DNA)	Uncultured bacterium clone ChCM-5 (AJ605563)	97	157	JS1 candidate division	Marine sediment, Chile Continental Margin
		Uncultured bacterium clone MB-B2-103 (AY093469)	96	157		Methane-hydrate bearing deep marine sediment, Nankai Forearc Basin
13C-1	¹³ C-Glucose (¹³ C-DNA)	Uncultured bacterium clone ChCM-5 (AJ605563)	100	168	JS1 candidate division	Marine sediment, Chile Continental Margin
		Uncultured bacterium clone MB-B2-103 (AY093469)	99	168		Methane-hydrate bearing deep marine sediment, Nankai Forearc Basin
12C-2	¹³ C-Acetate (¹² C-DNA)	Uncultured bacterium clone PeM37 (AJ576396)	87	149	Firmicutes	Pachnoda ephippiata midgut
		Firmicutes sp. oral clone BX005 (AY005049)	90	115		Human subgingival plaque
12C-3	¹³ C-Acetate (¹² C-DNA)	Uncultured bacterium clone ChCM-5 (AJ605563)	100	165	JS1 candidate division	Marine sediment, Chile Continental Margin
		Uncultured bacterium clone MB-B2-103 (AY093469)	99	165		Methane-hydrate bearing deep marine sediment, Nankai Forearc Basin
13C-2	¹³ C-Acetate (¹³ C-DNA)	Uncultured bacterium clone ZB13 (AY327215)	90	174	Firmicutes	Sulfide and sulfur-rich spring, Zodletone spring, Oklahoma
		Firmicutes sp. oral clone BX005 (AY005049)	91	112		Human subgingival plaque
13C-3	¹³ C-Acetate (¹³ C-DNA)	Uncultured bacterium clone ChCM-2 (AJ605563)	99	175	JS1 candidate division	Marine sediment, Chile Continental Margin
		Uncultured bacterium clone MB-B2-103 (AY093469)	98	175		Methane-hydrate bearing deep marine sediment, Nankai Forearc Basin

active and able to utilize glucose directly or indirectly via glucose degradation products. Sequencing the most intense DGGE band in the ¹²C- and ¹³C-DNA from the ¹³C-glucose slurry (Table 1) revealed that this PCR product had a high sequence similarity (96–100%) to members of the bacterial candidate division JS1 found in deep marine sediments (Reed *et al.*, 2002; Webster *et al.*, 2004).

Figure 3D shows that the acetate-utilizing bacterial population in the ¹³C-acetate sediment slurry was distinct from the total bacterial community structure (12C-DNA fraction). The ¹³C-acetate DGGE profile suggested that there was a subset of the bacterial population incorporating the ¹³Clabel, which produced two intensely stained DGGE bands against a background of other very faint bands. Sequencing of these prominent DGGE bands (Table 1) revealed that the bacteria able to utilize the 13C-acetate under sulfate-reducing conditions belonged to two different phyla; JS1 and Firmicutes. The sequences obtained were most similar to uncultivated bacterial phylotypes and not to cultivated SRB. Denaturing gradient gel electrophoresis band 13C-2 showed 90% sequence similarity to clone ZB13 previously derived from a sulfur-rich spring (Elshahed et al., 2003), and DGGE band 13C-3 had a high similarity to JS1 sequences from the Chilean Continental Margin (Webster et al., 2004) and the Nankai Trough (Reed et al., 2002).

Analysis of a small bacterial 16S rRNA gene library (20 clones) from the ¹³C-acetate slurry DNA fraction did not identify any JS1 sequences (Table 2), although four *Firmicutes*-like sequences were identified. Interestingly, some sequences were very closely related (97%) to known acetate-utilizing SRB *Desulfobacter postgatei* and *Desulfobacter latus* (Table 2). Other sequences included uncultured members of the *Gammaproteobacteria*, *Bacteroidetes*, *Actinobacteria*, *Alphaproteobacteria* and *Acidobacteria*.

Further investigation of the ¹³C-acetate slurry using PCR primers targeted to JS1 16S rRNA genes confirmed the presence of active JS1 within this sediment. Analysis of 10 randomly selected clones from the ¹³C-DNA fraction revealed that they were all closely related to each other (98.1–99.8%), and had a high similarity (> 97%) to phylotypes previously retrieved from sediment of the Chile Continental Margin (Webster *et al.*, 2004), Sea of Okhotsk (Inagaki *et al.*, 2003) and Nankai Trough (Reed *et al.*, 2002; Newberry *et al.*, 2004) suggesting they were from the same bacterial species. Further evidence indicating that JS1 was a member of the acetate-utilizing population in the sediment slurry was obtained by DGGE analysis of

Table 2. Closest 16S rRNA gene sequence matches to clone library sequences from 13C-DNA extracted from the 13C-acetate-enriched sulfatereducing sediment slurry.

16S rRNA gene clone	Nearest matches by BLASTN search (accession no.)	Sequence similarity (%)	Phylogenetic affiliation
13C16S1-3	Desulfobacter postgatei (AF418180)	97	Deltaproteobacteria
13C16S1-4	Arctic pack ice clone ARKIA-79 (AF468290)	96	Gammaproteobacteria
13C16S1-7	Moorella sp. AIP 246.00 (AY766037)	88	Firmicutes
13C16S1-16, 13C16S1-52	Deep sediment clone JTB215 (AB015270)	96–97	Firmicutes
13C16S1-26, 13C16S-53	Desulfobacter latus (AJ441315)	97	Deltaproteobacteria
13C16S1-28	Flavobacteria clone SIMO-1405 (AY710845)	94	Bacteroidetes
13C16S1-30	Carbonate-rich sediment clone pIR3BC03 (AY354165)	96	Actinobacteria
13C16S1-31	Uncultured <i>Bacteroidetes</i> clone <i>Paralvinella palmiformis</i> A/C 22 (AJ441238)	92	Bacteroidetes
13C16S1-32, 13C16S1-55	Sulfur-oxidizing endosymbiont (AY129120)	94	Gammaproteobacteria
13C16S1-33	Clostridium ganghwensis (AY903294)	96	Firmicutes
13C16S1-35	Tidal flat sediment clone JH12_C101 (AY568933)	91	Acidobacteria
13C16S1-36	Brevundimonas diminuta (X87274)	99	Alphaproteobacteria
13C16S1-37	Sediment clone P21 (AY553949)	98	Actinobacteria
13C16S1-38, 13C16S1-51	Arctic Ocean sediment clone Sva1007 (AJ241019)	98	Actinobacteria
13C16S1-39	Bacteroidetes bacterium Ko710 (AF550591)	96	Bacteroidetes
13C16S1-45	Seagrass rhizosphere clone B2M54 (AF223298)	98	Gammaproteobacteria

JS1 PCR products derived from both the 12C- and 13C-DNA fractions (Fig. 3E). This revealed that JS1 16S rRNA gene sequences dominated the ¹³C-DNA fraction, whereas the ¹²C-DNA fraction DGGE profile was made up of a diverse mixture of 16S rRNA genes. The JS1 targeted PCR primers are also known to amplify other sequences outside the JS1 candidate division (Webster et al., 2004), and therefore the limited number of sequences amplified from ¹³C-DNA by comparison with ¹²C-DNA showed the former represented a much less diverse bacterial population.

Phylogenetic analysis of 22 partial dsrA sequences from the ¹³C-acetate slurry ¹³C-DNA fraction revealed a large diversity of dsrA genes (Fig. 4), which when subject to rarefaction analysis predicted that the majority of phylotypes had been sampled (data not shown). Most of the dsrA sequences (59%) from the 13C-DNA fraction formed three distinct groups within Desulfobacteraceae: a Desulfobacter-like cluster (five sequences) related to D. latus, one sequence similar to *D. postgatei* and two clusters similar to environmental dsrA gene clones from marine sediments. A Desulfosarcina-like cluster with six 13C-DNAderived sequences similar to phylotypes from sediment of Kysing Fjord (Joulian et al., 2001) and another cluster (two sequences) within the uncultured group I dsrA sequences (Thomsen et al., 2001) from Kysing Fjord and anaerobic methane-oxidizing sediment from Aarhus Bay, Denmark. However, Desulfococcus multivorans also falls in this cluster (Fig. 4). Other dsrA genes from the 13Cacetate-enriched sediment slurry DNA fraction included sequences that grouped with Guaymas Basin clone B01P021 (Dhillon et al., 2003) and associated with members of the Syntrophobacteraceae, which includes other known SRB. Lastly, some deeply branching, phylogentically distinct dsrA sequences were related to uncultured dsrA groups III and IV (Thomsen et al., 2001; Dhillon et al., 2003) from Kysing Fjord, Aarhus Bay and Guaymas

Phylogenetic analysis of dsrA genes from the ¹²C-DNA fraction showed a similar level of diversity as in the ¹³C-DNA dsrA gene library (Fig. 4); however, rarefaction analysis predicted that not all probable unique phylotypes had been found (data not shown) in the ¹²C-DNA dsrA gene library. It is worth noting that two clones in the ¹²C-DNA library were assigned to the family Desulfobulbaceae, which comprises SRB that carry out incomplete oxidation and are unable to utilize acetate for sulfate reduction.

Discussion

In this study we have shown, for the first time, that PLFAand DNA-SIP can be used together to analyse active prokaryotic populations in a simplified sedimentary system, using low concentrations of ¹³C-labelled substrates and overlapping incubation times. On the basis of total PLFA and PCR-DGGE profiles none of the labelled substrates resulted in major changes to the bacterial community in sediment slurries. The major PLFAs remained the same (Fig. 1A and B) and DGGE profiles following ¹³Csubstrate addition were the same (13C-glucose) or similar (13C-acetate and 13C-pyruvate) to samples taken prior to addition. However, the ¹³C-PLFA labelling patterns showed distinct changes in δ^{13} C incorporation with all 13 Csubstrates.

In ¹³C-glucose sediment slurries, ¹³C-PLFA profiles changed distinctly with time, indicating altered patterns of carbon flow. Thus, in the 0.5-4 days period the bacterial population showed marked δ^{13} C incorporation into the main PLFA compounds (e.g. $16:1\omega7c$, 16:0 and $18:1\omega7c$) present in the sulfate-reducing sediment slurries prior to

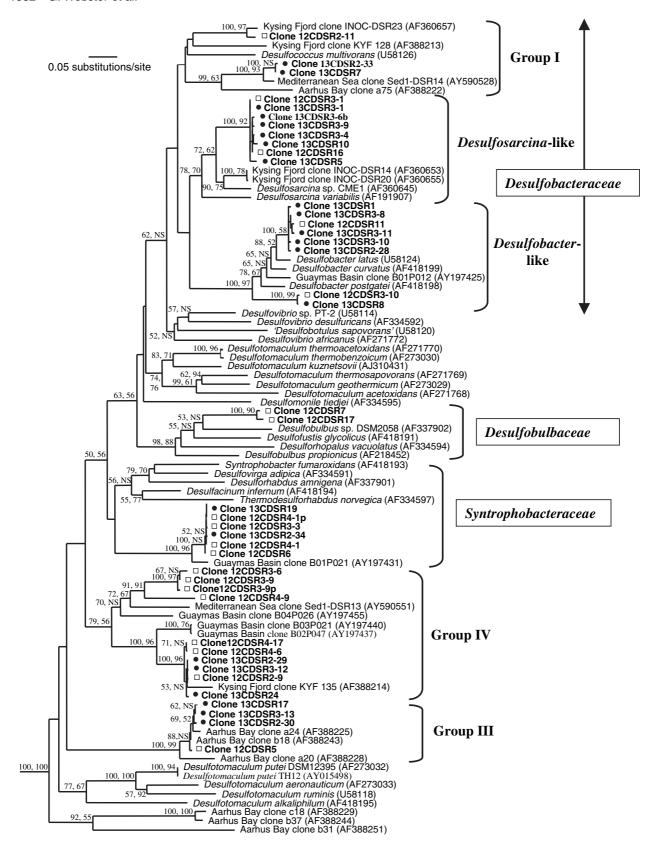


Fig. 4. Phylogenetic tree showing the relationship of the dsrA sequences from the ¹²C- and ¹³C-DNA fractions extracted from the ¹³C-acetateenriched sulfate-reducing sediment slurry to pure culture sulfate-reducing bacteria and environmental clone sequences. The minimum evolution tree was derived by LogDet/Paralinear distances of variable sites (estimated value of proportion of invariable sites = 0.1809). The tree is one of 72 equally good trees differing only by minor re-arrangements of some branches and is based on 435 aligned nucleotides. Bootstrap support values over 50% (1000 replicates) are shown, NS denotes support below 50%. First value, bootstrap derived by LogDet/Paralinear distances of variable sites; second value, derived by maximum parsimony of translated amino acid sequence. Sequences of Thermodesulfovibrio islandicus (AF334599) and Thermodesulfovibrio yellowstonii (U58122) were used as outgroup. Uncultured dsrA groups I, III and IV are as described in studies by Thomsen and colleagues (2001) and Dhillon and colleagues (2003). (□) ¹2C-DNA dsrA gene clones; (●) ¹3C-DNA dsrA gene clones.

labelling (data not shown). However, after 7 days this changed to incorporation into i15:0, a15:0, 15:1ω6 and 17:0, with a decrease in the previously labelled PLFAs. This may be explained by a change in the bacterial population from one dominated by organisms utilizing glucose directly, to domination by organisms utilizing glucose fermentation or oxidation by-products (e.g. pyruvate, lactate, ethanol and acetate). The acetate-oxidizing Dm. acetoxidans has the same major PLFAs (Dowling et al., 1986) as were present in the 0.5-4 days period and has been suggested to be important in estuarine and aquifer sediments based on ¹³C-acetate incorporation into PLFA (Boschker et al., 1998; Pombo et al., 2005). However, it seems unlikely that Dm. acetoxidans is dominant in the ¹³C-glucose slurry as it does not utilize glucose as an electron donor for sulfate-reduction or fermentation (Widdel and Pfennig, 1977; 1981). Also, the most dominant PLFA in Dm. acetoxidans (Dowling et al., 1986) is 16:0, whereas the highest δ^{13} C PLFA in the 13 C-glucose slurry was 16:1ω7c. It is possible that the ¹³C-labelled PLFA pattern is due to other uncultured or uncharacterized SRP. Recently, it has been shown that 16:1ω7c and 18:1ω7c are major PLFAs in some thermophilic Desulfotomaculum strains that grow on glucose (Goorissen et al., 2003) and in Desulfobulbus mediterraneus, a glucoseutilizing SRB (Sass et al., 2002). In addition, these PLFAs are common to a wide range of bacteria, including complex compound-degrading fermentative and acetogenic bacteria (James, 2001; Spring et al., 2003), many of which utilize glucose (Nealson, 1997; Chin et al., 1999). The odd-chain PLFAs observed in the ¹³C-glucose sediment slurry after 7 days are less common than the even-chain fatty acids that they displaced and are present in some SRB. For example, Ds. multivorans contains high amounts of all four of the 13C-PLFAs (5% i15:0, 30% a15:0, 5% 15:1ω6 and 1% 17:0; Rütters, 2001), and also has a broad substrate range, including lactate, ethanol and fatty acids (C3-C16; Rabus et al., 2000). The observed relative decrease in even-chain $\delta^{13}C$ PLFAs might also indicate recycling of ¹³C from the degradation of a previously labelled ¹³C-glucose-utilizing organism's biopolymers or from a combination of both carbon recycling and carbon flow from ¹³C-glucose.

In contrast to the ¹³C-PLFA profile changes, the DGGE profile of the dominant bacterial 16S rRNA genes in the

¹³C-DNA fraction from the ¹³C-glucose sediment slurry was identical to that of the ¹²C-DNA fraction (Fig. 3B), suggesting that the major bacterial groups were all actively utilizing glucose or its metabolites. Interestingly, a prominent band in both the 12C- and 13C-DNA fractions was assigned to the new candidate division JS1 (Webster et al., 2004). This uncultured group of Bacteria has only been shown to be present in anoxic environments, including deep subseafloor (Reed et al., 2002; Inagaki et al., 2003; Newberry et al., 2004; Parkes et al., 2005), brackish and coastal sediments (Webster et al., 2004), which is consistent with its presence in our estuarine sediment slurries.

Because acetate is the principal substrate for sulfate reduction and a key intermediate in the degradation of organic matter in marine sediments (Parkes et al., 1989), detailed molecular analysis of the ¹³C-acetate slurry was conducted. In this and the ¹³C pyruvate slurry, odd-chain and branched fatty acids (i15:0, a15:0, 15:1ω6) increasingly dominated the labelled PLFA profiles throughout the 7 days (Fig. 1D and E), suggesting active bacterial populations similar to those at 7 days with ¹³C-glucose. Previous ¹³C-acetate SIP in Tamar estuary and German Baltic sea sediments demonstrated labelling of 16:1ω7, 16:1ω5, 16:0 and 18:1ω7, characteristic of Dm. acetoxidans (Boschker et al., 1998; Boschker et al., 2001). Other workers have shown that the acetoclastic SRB Desulfobacter dominate estuarine sediments (Purdy et al., 2001), acetate-amended slurries (Parkes et al., 1993) and are commonly isolated on acetate from marine sediments (Widdel, 1987). However, *Desulfobacter* species are dominated by even-chain fatty acids, particularly 16:0, which can represent 30% of the total PLFA (Kohring et al., 1994), and this was not evident in the ¹³C-acetate slurry ¹³C-PLFA profile. It should be noted that *Desulfobacter* species grown on acetate in the presence of other volatile fatty acids (VFA), such as propionate, can change the PLFA profile to favour odd-numbered and branched fatty acids including i15:0, a15:0 and 15:1ω6, by incorporation as chain initiators (Dowling et al., 1986). Low concentrations of propionate and other VFA were present in the slurries (data not shown), presumably from breakdown of glucose in the initial pre-enrichment, and this may have resulted in limited formation of odd, branched chain PLFAs. However, the ¹³C-acetate-enriched PLFA profile probably indicates the presence of other active SRB populations (e.g. *Ds. multivorans*) or other prokaryotes similar to those in the later stages of the ¹³C-glucose slurry.

The 16S rRNA and dsrA gene libraries from the 13C-DNA fraction supported the presence of Desulfobacterlike organisms in the ¹³C-acetate slurry (Table 2; Fig. 4). Genes of dsrA belonging to the Desulfobacteraceae dominated the ¹³C-DNA library, which included *Desulfobacter*-, Desulfosarcina-like and dsrA group I (Thomsen et al., 2001) sequences that cluster with Ds. multivorans (Fig. 4). Other ¹³C-DNA dsrA sequences belonged to Syntrophobacteraceae and dsrA groups III and IV (Thomsen et al., 2001; Dhillon et al., 2003), but no Desulfotomaculum sequences. Syntrophobacteraceae includes acetateutilizing SRB, such as Desulfovirga, Desulforhabdus and Desulfacinum spp. (Rees et al., 1995; Tanaka et al., 2000). The PLFA of Desulforhabdus amnigenus are also dominated by odd-chain fatty acids with high amounts of C15 and C17 compounds (Rütters, 2001), similar to the ¹³C-PLFA from the ¹³C-acetate, ¹³C-pyruvate slurries and the later 13C-glucose slurry. However, D. amnigenus cannot utilize glucose and would have to rely on glucose breakdown products (e.g. pyruvate, ethanol and acetate), which may explain the change in the 13C-glucose PLFA labelling pattern with time and its similarities with the ¹³Cpyruvate and ¹³C-acetate slurries.

Uncultivated Actinobacteria, Firmicutes, Bacteroidetes, Proteobacteria and Acidobacteria sequences (Table 2) were also found in the 13C-acetate slurry, suggesting that a broad range of organisms were active and able to utilize or incorporate acetate directly, or in close syntrophic association with acetate-utilizers. All of these phylogenetic groups have been previously reported to be in sedimentary environments. Actinobacteria and Firmicutes have been found in sulfur-rich environments and/or involved in sulfur cycling in sediments (Boschker et al., 1998; Elshahed et al., 2003; Goorissen et al., 2003), Cultivated sulfur or thiosulfate oxidizers able to grow on acetate are found in the Alpha- and Gammaproteobacteria, and within members of the Bacteroidetes (Teske et al., 2000). Whereas, most members of the Acidobacteria are, as yet, uncultivated but they have been detected by molecular techniques in sediments and submarine vents (Sievert et al., 2000; Bowman and McCuaig, 2003). Candidates for novel sulfate reducers are not limited to taxa classically associated with this process (Loy et al., 2002). It is possible that some of the unidentified dsrA genes in the ¹³C-DNA of the acetate slurry (Fig. 4) belong to uncultured groups of SRB within the Firmicutes, Actinobacteria, Acidobacteria or others such as JS1 (Tables 1 and 2).

Polymerase chain reaction-DGGE analysis of bacterial 16S rRNA genes revealed that the dominant sequences in the ¹³C-acetate slurry belonged to uncultured members of the *Firmicutes* and the candidate division JS1 (Table 1).

The presence of JS1 in the ¹³C-acetate-DNA fraction was further confirmed (Fig. 3E) by the use of specific JS1 primers (Webster et al., 2004) suggesting that these organisms play a role in acetate-metabolizing sulfatereducing sediments. This is the first direct evidence for the metabolism of this uncultured bacterial group; previous studies have only inferred physiological properties. For example, JS1 have been identified in sulfate-reducing consortia able to mineralize benzene (Phelps et al., 1998), in methane hydrate bearing sediments (Reed et al., 2002), associated with anaerobic methanotrophic communities in sediments with high sulfate reduction rates (Teske et al., 2002; Dhillon et al., 2003), and in methaneand hydrocarbon-discharging, brine-soaked, mud breccias in a terrestrial mud volcano (Alain et al., 2006). In this study we have directly confirmed that JS1 is present and active under anaerobic sulfate-reducing conditions and able to utilize glucose (or glucose metabolites) and acetate, which may provide an insight into the ecology of this organism. In addition, members of JS1 might have odd, branched PLFAs similar to those that have been associated with sulfate-reducing populations in marine sediments (Pancost et al., 2000).

The differences in the dominant bacterial taxa between the two 16S rRNA gene approaches for the analysis of the ¹³C-acetate slurry might be explained by differences in specificity of the PCR primers used. It has been reported that different PCR primers target different phylogentic groups (e.g. Marchesi *et al.*, 1998; Webster *et al.*, 2006), and it may be that the approach used in this study, with multiple sets of PCR primers, has allowed a more comprehensive assessment of the active bacterial community.

In conclusion, this study has demonstrated that the combined use of DNA- and PLFA-SIP can contribute to understanding carbon flow, substrate utilization and population structure of an interacting, anaerobic prokaryotic community. Different bacterial populations were highlighted that seemed to utilize glucose compared with those populations utilizing acetate, pyruvate and glucose metabolites. The identification of *Desulfococcus* and *Desulfosarcina* from ¹³C-labelled PLFA and *dsrA* directly seemed to link these to acetate utilization, and ¹³C-DNA further indicated that the newly identified bacterial division JS1 and *Firmicutes* were active in sediment slurries. However, the interpretation of combined biomarker-SIP data is complex and presents both challenges and new opportunities for future SIP studies.

Experimental procedures

Pure cultures

Pseudomonas putida strain UWC1 was grown in SBS mineral medium (Slater *et al.*, 1979) supplemented with 0.1% (w/ v) 13 C-glucose (U- 13 C₆, 99%; CK Gas Products). *Mycobacte*-

rium smegmatis strain MC2155 was grown in nutrient broth with no ¹³C-substrate addition. *Desulfobacter* sp. DSM 2035 was grown on DSM medium 195 supplemented with either ¹²C-sodium acetate or ¹³C-sodium acetate (1,2-¹³C2, 99%; CK Gas Products).

Sediment slurry microcosms

Estuarine sediment cores (diameter 15 cm, depth 35 cm) were collected at low tide from tidal flats of the Tamar estuary, UK (50°21.25'N, 4°11.25'W) in November 2001. Sediment from the black sulfide-rich zone (1-10 cm depth) was used to establish replicate anaerobic sediment slurries. Sediment (250 ml) was pre-enriched in 750 ml of anaerobic mineral salts medium (Wellsbury et al., 1994) supplemented with 10 mM glucose, 10 mM sodium acetate, 18 mM sodium sulfate and 1 mM sodium sulfide contained within modified 1 l screw-capped Erlenmeyer flasks fitted with three-way stopcocks for sampling. The gas headspace was replaced with oxygen-free nitrogen. Flasks were incubated at 25°C in the dark on an orbital shaker (150 r.p.m.) until a stable state of acetate and sulfate decrease and sulfide increase was observed. Under these conditions of stimulated prokaryotic sulfate-reduction, labelled 13C-substrates were added to a final concentration of 100 uM, and incubated with ¹³C-glucose (U-13C6, 99%), 13C-acetate (1,2-13C2, 99%) or 13C-pyruvate (U-13C3, 99%; CK Gas Products) for further 7 days.

DNA extraction

Genomic DNA was extracted from all pure cultures of organisms using the FastDNA kit (Qbiogene). Sediment DNA was extracted from $5 \times 1~g$ ¹³C-enriched sediment slurry using the Fast DNA spin kit for soil (Qbiogene) with modifications and pooled as described by Webster and colleagues (2003). DNA extracts were visualized by standard agarose gel electrophoresis, and the DNA quantified against Hyperladder I DNA marker (Bioline) using the Gene Genius Bio Imaging System (Syngene).

CsCl density gradient ultracentrifugation

The CsCl density gradient and DNA fractionation conditions were initially optimized using ~10 μg of ¹³C-labelled DNA from P. putida and ~10 μg of ¹²C-labelled DNA from M. smegmatis. Ethidium bromide (100 μg ml⁻¹ DNA solution; Qbiogene) and CsCl (1 g ml⁻¹ DNA solution; Sigma) was added to the DNA solution, and the resulting solution transferred to a Quick-Seal pollyallomer ultracentrifuge tube (~13.5 ml; 16 × 76 mm; Beckman Coulter UK). DNA fractions were resolved following ultracentrifugation at 265 000 g (55 000 r.p.m.) using a VTi 65.1 vertical-tube rotor (Beckman Coulter UK) for 16 h at 20°C in a CsCl density gradient (Radajewski et al., 2000). The ¹²C- (M. smegmatis) and ¹³C-DNA (P. putida) fractions (< 0.5 ml) were carefully removed from the CsCl gradient tube with a 19-gauge hypodermic needle and collected into 1.5 ml tubes. DNA fractions were then extracted with sterile water-saturated 1-butanol three times and dialysed in a Microcon YM100 filter device (Millipore Corporation) with molecular grade water (MGW) (Severn Biotech) to remove ethidium bromide and CsCl contamination. Purified DNA fractions were finally eluted in 50 µl of MGW and stored at -20°C until analysis.

DNA (~5 µg) from the ¹³C-enriched sediment slurries was fractionated as described above. However, because of very low concentrations of ¹³C-DNA, and therefore no visible ¹³C band within the gradient tube, 12C- and 13C-DNA fractions were removed alongside a 'marker' tube containing Desulfobacter sp. DSM 2035 ¹²C- and ¹³C-DNA (~5 μg) as a visual guide (see Fig. 3). DNA fractions were then cleaned as described above and eluted in 30 µl of MGW.

16S rRNA gene PCR-DGGE analysis

Bacterial 16S rRNA genes were amplified from sediment slurry DNA extracts with primers 357F-GC and 518R (Muyzer et al., 1993) as previously described (Webster et al., 2003). Polymerase chain reaction amplimers were analysed by DGGE as described (Webster et al., 2003) using the DCode system (Bio-Rad) on 8% (w/v) polyacrylamide gels with a denaturant gradient between 30% and 60% [100% denaturant equals 7 M urea and 40% (v/v) formamide]. Gels were stained with SYBRGold nucleic acid stain (Molecular Probes), viewed under UV and images captured using a Gene Genius Bio Imaging System (Syngene). Denaturing gradient gel electrophoresis bands of interest were excised, re-amplified by PCR and sequenced as described (Webster et al., 2003).

Polymerase chain reaction amplification of bacterial and JS1 candidate division 16S rRNA genes and cloning

Bacterial and JS1 candidate division 16S rRNA genes were amplified from the 13C-acetate-enriched sediment slurry 13C-DNA fraction using PCR primers 27F-907R (Lane, 1991; Muyzer et al., 1998) and 63F-665R (Marchesi et al., 1998; Webster et al., 2004), respectively, and PCR conditions were as described (Newberry et al., 2004; Webster et al., 2004). Five PCRs were pooled, cleaned and concentrated using Microcon YM100 spin filters (Millipore Corporation) and eluted in 40 µl of sterile distilled water. Purified products were quantified and ligated into pGEM T-easy vector, and transformed into Escherichia coli JM109 competent cells (Promega Corporation). Clones containing the correct insert, after re-amplification with M13 primers were sequenced in an ABI PRISM 3100-Genetic Analyzer (Applied Bio-systems). Additionally, JS1 PCR products from both the ¹²C- and ¹³C-DNA fractions taken from the ¹³C-acetate-enriched sediment slurry were also analysed by a nested PCR-DGGE approach (Webster et al., 2004).

Polymerase chain reaction amplification of dsrA genes, cloning and phylogenetic analysis

Dissimilatory sulfite reductase (dsrA) gene sequences were amplified from the acetate-enriched sediment ¹²C- and ¹³C-DNA fractions using the PCR primers DSR1F and DSR4R (Wagner et al., 1998). Amplifications were performed with 0.2 pmol μ l⁻¹ of primers, 1 μ l of DNA template, 1× reaction buffer (Bioline), 1.5 mM MgCl₂, 2.0 U Biotag DNA polymerase (Bioline), 0.125 mM each dNTP, 10 µg of bovine serum albumin (Promega Corporation) in a 50 µl PCR reaction mixture with MGW (Severn Biotech). Controls with 1 µl of MGW and 1 µl of DNA from Desulfobacter sp. DSM 2035 were included in all sets of PCRs undertaken. Reactions were carried out at 95°C for 2 min followed by 40 cycles of 94°C for 30 s, 54°C for 45 s and 72°C for 90 s, with a final extension step at 72°C for 7 min in a DNA Engine Dyad Thermal Cycler (MJ Research). Five PCRs from each sample were pooled and the PCR products electrophoresed on a 1.2% (w/v) agarose gel stained with ethidium bromide. DNA bands of correct size were cut out and the DNA extracted using Quantum Prep Freeze 'N Squeeze™ Spin Columns (Bio-Rad). Gel extracted DNA was purified and concentrated using Microcon YM 100 spin filters (Millipore Corporation) and eluted in 40 µl of sterile distilled water, quantified and ligated into pGEM T-easy vector, and transformed into E. coli JM109 competent cells (Promega Corporation). Clones containing the correct insert, after reamplification with primers DSR1F and DSR4R, had their first 600 bp sequenced two times with the DSR1F primer in an ABI PRISM 3100-Genetic Analyzer (Applied Bio-systems). Clones were analysed by rarefaction (Kemp and Aller, 2004) to determine the extent to which the number of clones was sufficient to represent the diversity in dsrA clone libraries.

Sequence analysis

Sequence chromatographs were analysed using the Chromas software package version 1.45 (http://www.technelysium. com/au/chromas.html). Partial sequences and their closest identified by NCBI BLAST relatives were (http:// www.ncbi.nlm.nih.gov/). All nucleotide sequences were aligned using CLUSTALX (Thompson et al., 1997) with sequences retrieved from the database. Alignments were edited manually using BioEdit Sequence Alignment Editor version 5.0.9 (Hall, 1999) and regions of ambiguous alignment removed. Guide trees were constructed using neighbour-joining with the Jukes and Cantor correction algorithm in MEGA version 2.1 (Kumar et al., 2001). However, phylogenetic relationships between pairs of nucleotide sequences were calculated using LogDet/Paralinear distances of variable sites as the primary tool and implemented in PAUP*4.0b 10 (Swofford, 1998). The maximum-likelihood method was used to estimate the proportion of invariable sites (Webster et al., 2004). All LogDet/Paralinear distances trees were constructed by using the minimum evolution criterion and the data bootstrapped 1000 times to assess support for nodes. Additionally, phylogenetic analysis also included LogDet/ Paralinear distances with codon position 3 excluded to compensate for potential mutational saturation and nucleotide base composition heterogeneity (Horner et al., 2000), as well as maximum parsimony on translated amino acid sequences using PAUP*4.0b 10. All treeing methods resulted in similar tree topologies.

The new sequences reported here have been submitted to the database under accession numbers AM117992–AM118017 and AM162284–AM162293 for 16S rRNA gene sequences and AM117951–AM117991 for *dsrA* gene sequences.

Chemical analysis of bacterial activity and direct bacterial enumeration

Sulfide concentrations were determined spectrophotometrically by the methylene blue method (Cline, 1969). Sulfate concentrations were determined by Ion Exchange Liquid Chromatography (Dionex) using an AS4A anion-exchange column with AG4A guard column coupled to a micromembrane suppresser and conductivity detector. Total bacterial numbers were determined by acridine orange direct counts as previously described (Parkes *et al.*, 2005).

Lipid extraction, fractionation, derivatization and gas chromatographic determination

Lipids were extracted using a modified Bligh-Dyer method (Rütters et al., 2002) from 1 to 5 g of dry weight freeze-dried sediment. Total lipid extracts were fractionated into neutral lipids, free fatty acids (FFA) and polar lipids (including phospholipids) using an aminopropyl bond elut solid-phase extraction cartridge with 100 mg sorbent mass and 1 ml capacity. After conditioning/pre-extracting of the cartridge with 12 ml of n-hexane, the lipid extract was dissolved in 0.5 ml of 2:1 (v:v) dichloromethane:isopropanol (0.5 ml) and added to the top of the sorbent. Fractions were eluted sequentially with 7 ml of 2:1 (v:v) dichloromethane:isopropanol (neutral lipids), 7 ml of 2% glacial acetic acid in diethylether (FFA) and 7 ml of methanol (polar lipids). The fractions were dried under a stream of nitrogen and stored at -20°C. The polar lipid fraction containing PLFA was transesterified with 1 ml of 14% BF3 in methanol solution, of known 13C isotopic composition, at 50°C for 1 h. If necessary, structural identification of PLFA was improved by dimethyl disulfide and picolinyl ester derivatization (Christie, 1998) followed by gas chromatography-mass spectrometry (GC-MS) analysis.

The methyl esters were analysed with a gas chromatograph equipped with a flame ionisation detector (GC-FID; Varian 3500) on a Supelco Omegawax 320 column (polyethylene glycol phase, 30 m \times 0.32 mm i.d., 0.25 μ m film). Hydrogen was used as carrier gas, and the temperature of the oven was programmed as follows: 50-100°C at 10°C min⁻¹, 100-240°C at 4°C min⁻¹ (20 min isothermal). Quantification of each lipid was calculated using the peak areas, and by comparison with the known amount of a co-injected standard (C12 FAME or C19 alkane). Tentative identification based on retention time was confirmed on a GC-MS (Carlo Erba 5160) equipped with a Chromapack CPWax-52 CB column (50 m \times 0.32 mm i.d., 0.12 µm film). Helium was used as carrier gas (10 psi head pressure), and the GC was coupled via a heated transfer line (320°C) to a Finnigan MAT 4500 guadropole mass spectrometer scanning in the range of 50-650 m/z with a cycle time of 1 s. The same temperature program as for the GC-FID experiments was used. Carbon isotopic composition of PLFA was determined on a Varian 3500 gas chromatograph equipped with a ZB-Wax column (polyethylene glycol phase, 30 m \times 0.32 mm i.d., 0.12 μ m film) coupled via Finnigan type I combustion interface to a Finnigan MAT Delta-S isotope ratio mass spectrometer. Helium was the carrier gas (15 psi head pressure), and oven temperature was programmed as follows: 40°C (1 min isothermal), 40–100°C at 10°C min⁻¹, 100–240°C

at 4°C min⁻¹ (20 min isothermal). The carbon isotopic composition was corrected for the exogenous derivative methyl group (Rieley, 1994).

Phospholipid fatty acid nomenclature

The nomenclature for the PLFA is in the form A:BωC, where A designates the total number of carbons, B the number of double bonds and C the distance of the closest unsaturation from the aliphatic end of the molecule. The suffixes -c (cis) and -t (trans) refer to geometric isomers and the prefixes i-(iso) and a- (anteiso) refer to methyl branching (Ratledge and Wilkinson, 1988), and br to unresolved branching.

Acknowledgements

G.W. and J.R. were funded by the NERC Marine and Freshwater Microbial Biodiversity programme research grant numbers NER/T/S/2000/636, 2002/00593 and L.W. was supported by a NERC studentship. The work was also supported by the European Union contract number EVK3-CT-1999-00017. The authors would like to thank Dr Stefan Radajewski and Professor Colin Murrell (University of Warwick) for help and advice with DNA-SIP and Dr Henrik Sass (Cardiff University) for helpful discussions.

References

- Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., and Kruger, M. (2006) Microbiological investigations of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol 8: 574-590.
- Boschker, H.T.S., and Middelburg, J.J. (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40: 85-95.
- Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., et al. (1998) Direct linking of microbial populations to specific biogeochemical processes by ¹³Clabelling of biomarkers. Nature 392: 801-805.
- Boschker, H.T.S., de Graaf, W., Köster, M., Meyer-Reil, L.A., and Cappenberg, T.E. (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol Ecol 35: 97-
- Bowman, J.P., and McCuaig, R.D. (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69: 2463-2483.
- Castresana, J., and Moreira, D. (1999) Respiratory chains in the last common ancestor of living organisms. J Mol Evol 49: 453-460.
- Chin, K.J., Hahn, D., Hengstmann, U., Liesack, W., and Janssen, P.H. (1999) Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl Environ Microbiol **65:** 5042-5049.
- Christie, W.W. (1998) Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids **33:** 343-353.

- Cline, J.D. (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14: 454-458.
- Dahlöff, I. (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13: 213-217.
- Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., and Sogin, M.L. (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymass Basin. Appl Environ Microbiol 69: 2765-2772.
- Dowling, N.J.E., Widdel, F., and White, D.C. (1986) Phospholipid ester-linked fatty acid biomarkers of acetateoxidizing sulphate-reducers and other sulphide-forming bacteria. J Gen Microbiol 132: 1815-1825.
- Dumont, M.G., and Murrell, J.C. (2005) Stable isotope probing - linking microbial identity to function. Nature Rev Microbiol 3: 499-504.
- Elshahed, M.S., Senko, J.M., Najar, F.Z., Kenton, S.M., Roe, B.A., Dewers, T.A., et al. (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69: 5609-5621.
- Frostegard, A., Tunlid, A., and Baath, E. (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59: 3605-3617.
- Gallagher, E., McGuiness, L., Phelps, C., Young, L.Y., and Kerkhof, L.J. (2005) ¹³C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl Environ Microbiol **71:** 5192-5196.
- Goorissen, H.P., Boschker, H.T.S., Stams, A.J.M., and Hansen, T.A. (2003) Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. Int J Syst Evol Microbiol 53: 1223-1229.
- Guckert, J.B., Antworth, C.P., Nichols, P.D., and White, D.C. (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31: 147-158.
- Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser 41: 95-98.
- Horner, D.S., Foster, P.G., and Embley, T.M. (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17: 1695-1709.
- Hutchens, E., Radajewski, S., Dumont, M.G., McDonald, I.R., and Murrell, J.C. (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6: 111-120.
- Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., et al. (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69: 7224-7235.
- James, A.D. (2001) Membrane lipid composition response to growth conditions in prokaryotic extremophiles and nonextremophiles. PhD Thesis. Bristol, UK: University of Bristol.
- Joulian, C., Ramsing, N.B., and Ingvorsen, K. (2001) Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences

- retrieved from estuarine sediments. *Appl Environ Microbiol* **67:** 3314–3318.
- Kemp, P.F., and Aller, J.Y. (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47: 161–177.
- Knief, C., Altendorf, K., and Lipski, A. (2003) Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of ¹³C-labelled fatty acids. *Envi*ron Microbiol 5: 1155–1167.
- Kohring, L.L., Ringelberg, D.B., Devereux, R., Stahl, D.A., Mittelman, M.W., and White, D.C. (1994) Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119: 303–308.
- Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M. (2001) MEGA2: molecular evolutionary genetics analysis software. *Bioinformatics* 17: 1244–1245.
- Lane, D.J. (1991) 16S/23S rRNA sequencing. In *Nucleic Acid Techniques in Bacterial Systematics*. Stackebrandt, E., and Goodfellow, M. (eds). New York, NY, USA: John Wiley and Sons, pp. 115–175.
- Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., et al. (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulphate-reducing prokaryotes in the environment. Appl Environ Microbiol 68: 5064–5081.
- Lu, Y., Lueders, T., Friedrich, M.W., and Conrad, R. (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. *Environ Microbiol* **7**: 326–336.
- Lueders, T., Manefield, M., and Friedrich, M.W. (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. *Environ Microbiol* 6: 73– 78.
- Manefield, M., Whiteley, A.S., Griffiths, R.I., and Bailey, M.J. (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. *Appl Envi*ron Microbiol 68: 5367–5373.
- Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, J.C., and Wade, W.G. (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64: 795–799.
- Morris, S.A., Radajewski, S., Willison, T.W., and Murrell, J.C. (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. *Appl Environ Microbiol* 68: 1446–1453.
- Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700.
- Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H., and Wawer, C. (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In *Molecular Microbial Ecology Manual*. Akkermans, A.D.L., Van Elsas, J.D., and De Bruijn, F.J. (eds). Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1–27.
- Nealson, K.H. (1997) Sediment bacteria: who's there, what are they doing, and what's new? Ann Rev Earth Planet Sci 25: 403–434.

- Nercessian, O., Bienvenu, N., Moreira, D., Prieur, D., and Jeanthon, C. (2005) Diversity of functional genes of methanogens, methanotrophs and sulphate reducers in deepsea hydrothermal environments. *Environ Microbiol* 7: 118– 132.
- Newberry, C.J., Webster, G., Cragg, B.A., Parkes, R.J., Weightman, A.J., and Fry, J.C. (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. *Environ Microbiol* 6: 274–287.
- Pancost, R.D., Damste, J.S.S., de Lint, S., van der Maarel, M., and Gottschal, J.C. (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria. Appl Environ Microbiol 66: 1126–1132.
- Parkes, R.J. (1987) Analysis of microbial communities within sediments using biomarkers. In *Ecology of Microbial Communities*. Fletcher, M., Gray, T.R., and Jonres, J.G. (eds). Cambridge, UK: Cambridge University Press, pp. 147–177.
- Parkes, R.J., Gibson, G.R., Mueller-Harvey, I., Buckingham, W.J., and Herbert, R.A. (1989) Determination of the substrate for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. *J Gen Microbiol* 132: 1815–1825.
- Parkes, R.J., Dowling, N.J.E., White, D.C., Herbert, R.A., and Gibson, G.R. (1993) Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. *FEMS Microbiol Ecol* 12: 235–250.
- Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., et al. (2005) Deep subseafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390–394.
- Phelps, C.D., Kerkhof, L.J., and Young, L.Y. (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol 27: 269–279.
- Pombo, S.A., Pelz, O., Schroth, M.H., and Zeyer, J. (2002) Field-scale ¹³C-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer. *FEMS Microbiol Ecol* **41:** 259–267.
- Pombo, S.A., Kleikemper, J., Schroth, M.H., and Zeyer, J. (2005) Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulphate-reducing bacteria. *FEMS Microbiol Ecol* **51:** 197–207.
- Purdy, K.J., Nedwell, D.B., Embley, T.M., and Takii, S. (2001) Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments. FEMS Microbiol Ecol 36: 165–168.
- Rabus, R., Hansen, T.A., and Widdel, F. (2000) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In *The Prokary*otes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.3. Dworkin, D., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, NY, USA: Springer-Verlag [WWW document]. URL http://link.springer-ny.com/link/service/books/ 10125/.
- Radajewski, S., Ineson, P., Nedwell, D.B., Parekh, N.R., and Murrell, J.C. (2000) Stable-isotope probing as a tool in microbial ecology. *Nature* **403**: 646–649.
- Radajewski, S., Webster, G., Reay, D.S., Morris, S.A., Ineson, P., Nedwell, D.B., et al. (2002) Identification of active

- methylotroph populations in an acidic forest soil by stableisotope probing. Microbiology 148: 2331-2342.
- Radajewski, S., McDonald, I.R., and Murrell, J.C. (2003) Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotech 14: 296-302.
- Ratledge, S., and Wilkinson, S.G. (1988) Microbial Lipids. Sandiego, CA, USA: Academic Press.
- Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B.B., and Amann, R. (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66: 3592-3602.
- Reed, D.W., Fujita, Y., Delwiche, M.E., Blackwelder, D.B., Sheridan, P.P., Uchida, T., and Colwell, F.S. (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68: 3759-3770.
- Rees, G.N., Grassia, G.S., Sheehy, A.J., Dwivedi, P.P., and Patel, B.K.C. (1995) *Desulfacinum infernum* gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45: 85-89.
- Rieley, G. (1994) Derivatisation of organic compounds prior to gaschromatographic-combustion-isotope ratio mass spectrometric analysis: Identification of isotope fractionation processes. Analyst 119: 915-919.
- Rütters, H. (2001) Tracing viable bacteria in Wadden Sea sediments using phospholipid analysis. PhD Thesis. Oldenburg, Germany: Universität Oldenburg.
- Rütters, H., Sass, H., Cypionka, H., and Rullkötter, J. (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Methods 48: 149-160.
- Sass, A., Rütters, H., Cypionka, H., and Sass, H. (2002) Desulfobulbus mediterraneus sp. nov., a sulphate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177: 468-474.
- Shen, Y., Buick, R., and Canfield, D.E. (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 77-81.
- Sievert, S.M., Kuever, J., and Muyzer, G. (2000) Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66: 3102-3109.
- Slater, H., Lovatt, D., Weightman, A.J., Senior, E., and Bull, A.T. (1979) The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. J Gen Microbiol 114: 125-136.
- Spring, S., Merkhoffer, B., Weiss, N., Kroppenstedt, R.M., Hippe, H., and Stackebrandt, E. (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp nov., Clostridium lacusfryxellense sp nov., Clostridium bowmanii sp nov. and Clostridium psychrophilum sp nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp laramiense subsp nov. Int J Syst Evol Microbiol 53: 1019-1029.
- Swofford, D.L. (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA, USA: Sinauer Associates.
- Tanaka, K., Stackebrandt, E., Tohyama, S., and Eguchi, T. (2000) Desulfovirga adipica gen. nov., sp. nov., an adipate-

- degrading, Gram-negative, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50: 639-644.
- Teske, A., Brinkhoff, T., Muyzer, G., Moser, D.P., Rethmeier, J., and Jannasch, H.W. (2000) Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66: 3125-3133.
- Teske, A., Hinrichs, K.U., Edgcomb, V., Gomez, A.D., Kysela, D., Sylva, S.P., et al. (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68: 1994-2007.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997) The ClustalX-Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.
- Thomsen, T.R., Finster, K., and Ramsing, N.B. (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in marine sediments. Appl Environ Microbiol **67:** 1646–1656.
- Treonis, A.M., Ostle, N.J., Stott, A.W., Primrose, R., Grayston, S.J., and Ineson, P. (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36: 533-537.
- Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A. (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180: 2975-2982.
- Webster, G., Newberry, C.J., Fry, J.C., and Weightman, A.J. (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55: 155-164.
- Webster, G., Parkes, R.J., Fry, J.C., and Weightman, A.J. (2004) Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol 70: 5708-5713.
- Webster, G., Parkes, R.J., Cragg, B.A., Newberry, C.J., Weightman, A.J., and Fry, J.C. (2006) Prokaryotic community composition and biogeochemical processes in deep sub-seafloor sediments from the Peru Margin. FEMS Microbiol Ecol (in press). DOI: 10.1111/j.1574-6941.2006. 00147.x.
- Wellsbury, P., Herbert, R.A., and Parkes, R.J. (1994) Bacterial [methyl-3H]thymidine incorporation in substrateamended estuarine sediment slurries. FEMS Microbiol Ecol 15: 237-248.
- Whitby, C.B., Hall, G., Pickup, R., Saunders, J.R., Ineson, P., Parekh, N.R., and McCarthy, A. (2001) ¹³C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations. Lett Appl Microbiol 32: 398-401.
- Widdel, F. (1987) New types of acetate-oxidizing, sulphatereducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov. and D. curvatus sp. nov. Arch Microbiol 148: 286-291.
- Widdel, F., and Pfennig, N. (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112: 119-122.
- Widdel, F., and Pfennig, N. (1981) Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch Microbiol 129: 401-402.