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Abstract—In this paper we characterize the frequency 

response of net stock amplification when the Damped Trend 

forecasting is used in the Order-Up-To replenishment policy. We 

prove that the invertibility regions from forecasting perspective 

are identical to the stability regions in control theory. From these 

stable and invertible regions, we explore the desirable parameter 

regions that the forecasting and inventory control policy is able 

to avoid the bullwhip effect and reduce net stock amplification 

for any lead-times. The simulations of 62 sets of real-world 

demand verify our analytical results.  
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bullwhip; invertibility; frequency response 

I.  INTRODUCTION 

Since Damped Trend (DT) forecasting method was 
proposed [1], it has received considerable attentions in the 
literature. By dampening a linear trend, the method improves 
long-term forecast accuracy without significantly degrading 
short-term accuracy. A number of popular forecasting models 
such as Naïve, simple exponential smoothing, Holt’s linear 
trend method can also be accessed by tuning the parameters of 
the general DT model. This allows for model detection and 
forecasting of a wide range of time series with or without 
trends. Its superior accuracy has been recognized in many 
empirical studies [2] [3] and academic reviews [4] [5] [6].  

The DT method deserves more attention from supply chain 
management viewpoint. Economic benefits in terms of 
inventory, production, and shipping costs were reported in the 
applications in a real inventory scenario [7] and a real supply 
chain [8].  

Reference [9] is the only one discussed the DT method in 
supply chain or operations management journals. They focused 
on the supply chain dynamics induced by the DT method, and 
found the bullwhip avoidance behavior that has never been 
seen before when other forecasting methods are used in the 
order-up-to (OUT) policy. The bullwhip effect is important in 
supply chains. It describes the scenario that the demand 
fluctuations are amplified from downstream to upstream 
throughout a supply chain. It creates severe consequences such 
as excessive capacity investment, inefficient use of 
transportation, labor idling and over-time.  

In this paper, we focus on another important supply chain 
metrics, net stock amplification (NSAmp). NSAmp is related to 
the popular safety stock and fill rate concepts [10]. This paper 
also provides a proof that for the DT forecasting the 
invertibility regions and stability regions are identical, which 
means any stable DT forecasting model produces feasible 
forecasts. This allows us to study the model over the complete 
stability region from both control theory and forecasting 
perspectives. 

The paper is organized as follows: §2 introduces the model 
setup, §3 discusses the invertibility of the DT method, §4 
investigates the NSAmp of the DT/OUT system, §5 presents 
some simulation results and §6 concludes. 

II. MODEL SETUP 

A. Damped Trend Forecasting 

The single source of error correction form of Damped 
Trend forecasting is given by 
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 is the forecast for t kD   made at time t. It is a product 

of tA  (level) and tB  (trend).  , ,   are systems parameters 

in the DT model.  

The z-transfer functions of (1) are 
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For stability,  
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are required [9]. 

B. Damped Trend forecasting and Order-Up-To 

We follow the same model and assumptions in [9]. Let the 
replenishment lead-time from a manufacturer to a retailer, to be 

0

pT   periods. In each period t, the retailer receives goods 

and satisfies demand 
tD  from its on-hand inventory with 

complete backlogging of excess demand. Then, the retailer 
places order  
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to the manufacturer. Net stock level 
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finalizes the model. 

In (4), tWIP  is the work-in-progress, also known as 

inventory on-order. The time varying desired work-in-progress, 

1
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
  is the sum of the forecasts made at time t 

for the periods from 1t   to pt T . TNS is a safety stock used 

to ensure a strategic level of inventory availability. Under the 
assumptions of normally distributed forecast errors and piece-
wise linear convex inventory holding (h) and backlog costs (b), 

it is common to assume NSTNS z ; 
1 b

b h
z 


     . Here 

NS  is the standard deviation of the net stock levels and 

 1   is the inverse cumulative normal distribution function. 

NS  is also related to the inventory costs. When NSTNS z , 

the expected inventory costs per period is 

 £ [ ]NSJ b h z   , where  z  is the probability density 

function of the normal distribution evaluated at z.  

The net stock transfer function is 
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where    O z z  is the z-transfer function of orders. The 

close form of (6) is too large and complex to be presented at 
here, while all the necessary transfer functions including the 
order transfer function for the DT/OUT model have been 
documented in [9]. We found that the denominators of the 
order and net stock transfer functions have the same two poles 
as the transfer function of the DT forecasting system (2). This 
implies that the same stability conditions hold for the DT/OUT 
system as for the DT forecasting system. 

We assume that both the retailer and the manufacturer use 
the OUT policy. Negative order quantities are allowed, but 
average demand is sufficiently large so that the probability of 
negative demand or negative orders is negligible. 

III. INVERTIBILITY 

The concept of invertibility in time series analysis refers to 
the feasibility of the identification of the demand process 
structure from past observations of demand. Invertibility is 
related to linear moving average (MA) models or the MA part 
of autoregressive integrated moving average (ARIMA) models. 
If an MA model (or an MA part in ARIMA models) can be 
expressed as an autoregressive (AR) model of infinite order, 
the model is deemed invertible, and implies all relevant state 
variables are directly observable. By investigating the 
arithmetic relationship between stability and invertibility for 
the DT forecasting system, we found the invertibility region is 
the same as the stability region for DT method. 

All linear exponential smoothing methods have equivalent 
ARIMA models [11]. The pure DT method is equivalent to the 
ARIMA(1,1,2) model, which can be written as 
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where B is backward shift operator (similar to but not quite the 

same as 1z  in control theory), 1 1        and 

2     [12]. For the second-order MA part, it is invertible 

only if the roots of the characteristic equation 

   2
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lie outside the unit circle. 
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In fact, the denominator of the DT forecasting transfer 

function (2) can be rewritten using 
1  and 

2  as 2

1 2z z   . 

The stability condition in control theory requires the roots of 

 2

1 2 0z z     (9)

lie inside the unit circle. 

It is easy to notice that the roots of (8) are the inverse of the 
roots of (9). Remember the test for stability requires the roots 
of (9) be inside the unit circle, invertibility requires the roots of 
(8) to be outside the unit circle. So the results for invertible 
regions and stable regions should be identical. Or solving for 
the roots of (8) to find the invertibility, we obtain 

  2

1,2 1 1 24 2.H       (10)

There are two possible pairs of values, but this is not a 

problem. Solving the simultaneous inequalities 1iH   for 

1,2i  , both pairs give rise to identical calculations. The 

results are the same as our stability conditions in (3) when 

 ,   . Jury’s Inners approach [13] can also be used to 

study the invertibility region, and also returns the exactly same 
regions as the stability regions. 

Thus, we conclude the invertibility regions are the same as 
the stability regions for DT forecasting, even though the 
implications of stability and invertibility are different. The 
consistency between stability regions and invertibility regions 
becomes important, because now any stable DT parameter sets 
produce feasible forecasts. Therefore, it is interesting to 
investigate the system performance over the complete stability 
region. 

IV. NET STOCK AMPLIFICATION WITH BULLWHIP 

AVOIDANCE PARAMETERS 

A. Desirable Parameter Values 

Traditional suggestions advocate to restrict  , ,    to the 

 0,1  interval. However, we found in the previous section the 

DT forecasting is invertible and stable over a wide range of 
parameter values. In addition, [9] proved that the bullwhip 
avoidance behavior only occurs with some unconventional but 

stable  , ,   . They proposed a range of values that are able 

to reduce the bullwhip ratio to less than one.  

We extended their bullwhip analysis from 1pT   to 

different lead-time (details omitted for brevity), and found that: 

 The parametrical plane 1   still can enable the 

DT/OUT system to avoid the bullwhip effect. 

 For 0 1  , there is no change in the criteria  ,   

and the upper boundary of  . Only the lower boundary 

of   value increases with the lead-time (see Fig. 1). 

Table 1 details the bullwhip avoidance region when 
0 1   for different lead-times. Because the upper 

boundary of  , 
1

0





 , it is easy to conclude when 

0 1   the area of the parametrical plane that is able 

to avoid the bullwhip effect becomes smaller if the lead-
time increases. 

 

Fig. 1. Lower boundary of   changes with pT  

TABLE I.  BULLWHIP AVOIDANCE AREA 0 1   FOR DIFFERENT 

LEAD-TIMES 
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 The region within the parametrical plane 1 0    

where bullwhip is avoided changes in a complex 
manner. It has different shapes when the lead-time 
changes from odd to even.  
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 Any bullwhip avoiding areas of the parametrical plane 
1    disappears and reappears in sophisticated 

manners when the lead-time switches between an odd 
number and an even number. 

The bullwhip avoidance areas when 1   or 0 1   are 

less influenced by the lead-time compared to other planes. As 
the parametrical plane 0 1   enables the amplification for 

only a very few frequencies [9], which outperforms 1  , this 

paper mainly focuses on the performance when the value of DT 
parameters are selected from the bullwhip avoiding region 

0 1  . When 1pT  , this area is reduced to 

 0 1,(( 1) ) 0,( 1 ) (( 1) )                . 

B. Analyzing Net Stock Amplification 

NSAmp usually is measured by the ratio of variance of net 
stock over the variance of demand. For independently and 
identically distributed (i.i.d.) demand, by taking the sum of the 
squared impulse response from (6), we have 
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Equation (11) provides an interesting suggestion that it 

might be possible to achieve  2 21NS p DT   . This is a new 

finding considering that the OUT policy with other forecasting 

methods always require that  2 21NS p DT    for i.i.d. 

demand [14]. They show that the first unit of inventory 
variance is because of the order of events. From (11) it is easy 
to spot this inherent behavior as well. However, unlike the 
situations when other forecasting methods are used in the OUT 
policy, the DT method sometimes produces a negative function 

after 1 pT , therefore enabling the OUT policy to create less 

inventory variance. That means when there is no lead-time, 
inventory levels is able to vary less than the variation in the 
demand signal. In other words, it is possible to achieve a near 
zero inventory policy. 

For a general case of demand, we can study the frequency 
response of the net stock variance. Let the modulus of the 
transfer function be denoted by Amplitude Ratio (AR). 
Reference [9] characterized the frequency response plots for 

orders. Based upon that, they investigated the bullwhip creating 
or avoidance behavior of systems for arbitrary demand.  
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 . The initial value suggests that for low-

frequencies, the DT/OUT system is possible to avoid creating 
net stock variance amplification.  

The final value is  

2

2

2

( 2(1 ( 1) )( 1) ( 1) (( 1) 1

2 (1 ( 1) )( 1) ((( 1) 1)

(( 1) 1) (( 1) 1 (2 2( 1)

(3 ( 1) 4 )))))
.

2( 1) 2 (2 ) )(

p p

p

p p

p p

p

N

T T

T

T

S

T

T T

T

AR
 

  

   

   

 

    

       

     

        

  

    



  (13) 

When 1pT  , (13) is simplified to 
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Equation (14) is smaller than one if the parameters’ values 
are from the bullwhip avoidance area in [9]. This is suggesting 
that for the demand dominated by high-frequency harmonics, 
such as the AR(1) demand with i.i.d. noise when the demand 
correlation is negative, once the DT/OUT system can avoid 
creating the bullwhip, most likely it would also reduce the 
amplification in net stock variance. 

Fig. 2 illustrates an example of the frequency response plot 
of net stock. It acts as a low-pass filter, in which the low-
frequency harmonic magnitudes will be amplified, but NSAmp 
will be avoided when high-frequency harmonics dominate the 
demand. Note that with this setting, the DT/OUT system also 
acts as a low-pass filter in terms of orders [9].  

 

Fig. 2. AR plot of NSAmp when 0.5  , 0.9   , 1.01   , 1pT   
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More importantly, for general lead-time cases, the final 

value of 
NSAR  is always less than unity as long as the 

 , ,    is selected from Table 1. These suggest the bullwhip 

avoidance parameter settings given by  1
0 1, 0




 

     

probably have a desirable frequency response in terms of both 
orders and net stock levels for any lead-time. 

 

Fig. 3. Illustration of 62 real-world data sets 
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V. NUMERICAL SIMULATIONS  

In this section, 62 sets of real-world demand data are 
applied to verify our analytical results. These demand series 
came from previous research and projects conducted by the 
members of Logistics Systems Dynamics Group, Cardiff 
Business School. There are low-volume products as well as 
high volume products. The source of the data ranges from 
retailers, manufacturers, to logistics companies and 
distributors. Intermittent demand series are excluded.  

These 62 real-world demand series are first decomposed 
into frequency harmonics by the Fast Fourier Transform (FFT). 
Fig. 3 illustrates each data set in both the time and frequency 
domain via a plot of amplitudes obtained from FFT. It is easy 
to notice that the majority of them are dominated by low-
frequency harmonics, except for series 55, 56, 58, 59 and 62. 

We assume the lead-time 1pT  , which matched the real-

life scenario. In order to reduce the computing time, we 
narrowed down the search range to the desirable region 

 1 1 10 1,  0,  
 

  
          . This is also because 

within this area the DT/OUT system is most likely to have both 
good bullwhip and NSAmp as we explored in §4.  

Numerical optimization based on minimizing 
O  is first 

explored. This objective is to minimize the standard deviation 
of the orders, in other words, it is able to reduce the bullwhip 
effect. It is easy to observe from Fig. 4 that the OUT policy 
with DT forecasting mechanism successfully avoids the 
bullwhip effect in all the 62 time series. This is in accordance 
with [9] that the DT/OUT system is able to avoid the bullwhip 
effect with unconventional parameter values. However, the 
bullwhip avoidance sometimes came at the cost of a large 
amplification in net stock variance.  

Despite the fact that some bullwhip ratios are close to zero, 
the bullwhip performance cannot achieve the same level as the 
model advocated by [15] that a proportional OUT policy can 
reduce order variance (and hence the bullwhip ratio) down to 
zero. 

The second objective is to minimize the standard deviation 
of net stock. It is closely related to the safety stock a company 
must hold in inventory to minimize holding and backlog costs. 

Therefore, a minimized NS  is able to reduce inventory costs 

and will also improve service level for a given safety stock. 

When the objective function is to minimize NS  (Fig. 5), 

the majority of NSAmp ratios were around two, and the NSAmp 
ratios were reduced to less than two in 17 of 62 real-world data 
sets. This verifies our previous finding that it is possible to 

achieve 1 pNSAmp T   (here in the simulations the lead-time 

1pT  ).  

The parameter settings within that area can still eliminate 
the bullwhip effect in 35 of the 62 real-world data sets. For 
those scenarios which cannot avoid bullwhip, the majority of 
the bullwhip ratios were still maintained near one. This might 
suggest that the DT / OUT system can keep good control of 
inventory costs and service levels without inducing significant 

capacity costs. Managers only need to consider minimizing the 
standard deviation of inventory when inventory costs are more 
significant than capacity costs in their supply chains, as this 
will simultaneously generate the best inventory performance 
and relatively good bullwhip behavior.  

 

Fig. 4. The bullwhip and NSAmp when the objective is to minimize 
O  

 

Fig. 5. The bullwhip and NSAmp when the objective is to minimize 
NS  

 

Fig. 6. The bullwhip and NSAmp of 62 real-world data sets when O NS   

is minimized, together with the optimized DT parameters 

The last objective is to minimize O NS   which considers 

the situation that a company might focus on both the capacity 
costs and inventory costs. Then we arbitrarily assume the 
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standard deviation of inventory and the standard deviation of 
orders are equally costly.  

If inventory costs and capacity costs are considered equally 
important, the empirical results show that the DT / OUT 
system successfully eliminated the bullwhip effect in 52 out of 

62 time series when the objective is to  min O NS   (Fig. 

6). In the majority of the cases, the NSAmp ratios were 
maintained between one and three. 

Observing the optimized parameters, we notice that only a 
few optimized   values are close to one. The majority of the 

optimized   and   have less negative values, which is 

consistent with the recommendation in [9]. 

VI. CONCLUSIONS  

Via 62 real-world data sets, this paper has verified the 
findings in [9] that the Damped Trend forecasting is able to 
avoid the bullwhip effect when it is used in the Order-Up-To 
policy. Its bullwhip avoidance behavior exists even with 
different objective functions. We also provided the analytical 
expressions of the desirable parameter region for the bullwhip 
avoidance with different lead-times. 

This paper is more than an extension of [9]. By proving the 
invertibility regions and the stability regions of the DT 
forecasting are identical, we offered the theoretic support to 
exploring the performance of the DT/OUT system over a wider 
range of parameter values than conventional recommendations. 
This is important both theoretically and practically, because if 
the bullwhip can be avoided, unconventional parameter values 
must be selected [9]. 

More importantly, the analytical and simulation studies in 
this paper have shown that the DT/OUT system is also able to 
reduce the net stock amplification, further down to less than 
lead-time plus one. Using the bullwhip avoidance parameters, 
the DT/OUT system is most likely to reduce the net stock 
amplification. Thus, it is worth to consider applying the 
parameter values from the desirable region we proposed. The 
superior inventory control that the DT/OUT system exhibits, 
the ability of avoid inducing significant capacity costs, make 
the DT/OUT system a good choice for organizations 
emphasizing inventory costs and service levels. 

This paper took an alternative route to consider forecasting 
in supply chains. The majority of studies in the academic 
literature that consider forecasting and inventory control tend 
to ignore the effect of using estimated forecasting parameters 
[16]. For instance, traditional forecasting practice would treat 
the demand series 9 in Fig. 3 as a series without trend. Thus, 

0   is more suitable to minimize forecast errors. Then, the 

forecasting and inventory control system will definitely create 
the bullwhip effect in supply chains [9]. In the paper, forecasts 
were optimized on the performance of order and/or inventory 
performance. By doing so, the optimized   value is 0.04 and 

both   and   are negative. Then, it is possible to reduce the 

bullwhip ratio to 0.13, and net stock amplification ratio to 2.05, 

when we are optimizing O NS  . Less bullwhip and less net 

stock amplification concur with business’s interests in 

production planning and inventory control better than forecast 
accuracy does, because focusing on forecasting accuracy in this 
case will never achieve the same level of performance.  

However, forecasting is still important for other diagnostic 
purposes. The paper can be improved by considering the 
forecasting performance when the bullwhip effect is avoided 
and the net stock amplification is reduced. Performance 
measures such as service level can also be included in future 
research.  
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