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Abstract

Studying the stability of Singular Spectrum Analysis (SSA) and Multi-
variate Singular Spectrum Analysis (MSSA) forecasts under random per-
turbations of the input time series, we make the empirical observation that
the reconstruction kernel of SSA as a convolution �lter and the forecast
recurrence vector are remarkably stable both under generated Gaussian
and natural non-Gaussian noise. Assuming that these elements of the
forecast procedure are noise-independent, we derive concise formulae for
the variance under perturbations of SSA and MSSA forecasts. We sug-
gest a criterion of supportiveness based on the behaviour of these proxy
variances under scaling of the support series. Finally, we remark on a
problem of lacking scaling invariance of MSSA.

1 Introduction

In the present study, we analyse the stability of the SSA and MSSA forecasts,
i.e. the properties of the forecast as a random variable when the original time
series is perturbed by added noise, with and without the inclusion of a second
time series in the analysis. This question was motivated by the analogy between
the recurrence system (4) for a recurrent MSSA forecast of a pair of time series
and the stationary vector autoregressive process

Xt =
∑m
j=1 ajXt−j +

∑m
j=1 bjYt−j + εt

Yt =
∑m
j=1 cjXt−j +

∑m
j=1 djYt−j + ξt

(1)

used by C. J. Granger to implement his concept of causality, as expressed in the
words: "We say that Yt is causing Xt if we are better able to predict Xt using
all available information than if the information apart from Yt had been used"
[6, p.428], i.e. Y is causing X if it improves the quality of the forecast of series
X.

∗vronskayam@cardi�.ac.uk, vronskaya.maria@gmail.com
†schmidtkm@cardi�.ac.uk
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Note that there are essential di�erences between the models: (1) is a stochas-
tic process modeling the noise only, and indeed the de�nition of Granger's
causality coherence requires noise to be present in both time series, whereas (4)
is a deterministic process (although the coe�cients are derived from random
variables in practice) modeling the signal, with noise added afterwards, so that
in this case noise does not propagate and no speci�c noise model is assumed.

Nevertheless, the analogy between (4) and (1) could provide a basis for the
study of a causal or support relationship between time series (without the as-
sumptions of stationarity, zero mean or autoregressive structure) by comparing
the quality of the MSSA forecast of time series x using the support series y
with that of the SSA forecast of x alone, taking an improved forecast as an
indicator of supportiveness. What exactly counts as an improvement is open to
interpretation: it can refer both to accuracy of the forecast, i.e. how close the
predicted value is to the real value, and to the stability of the forecast, i.e. the
variance of the forecast as a random variable. In practice, actual future values
are subject to random �uctuation and hence introduce further variance into a
measurement of accuracy. Therefore, we focus on working with the stability
of the forecast value in the present study. This is e�ectively done in practical
use of Granger causality tests, which are closely related to the F-test and es-
sentially compare goodness of �t for regression with and without the support
series [7, 14]. There have been earlier attempts to estimate causality by di�erent
means than autoregressive modeling, including SSA [12, 2]. For example, in [2]
the forecast improvement is estimated from the point of view of accuracy, i.e.
predicted values in a forecast interval are compared to actual future values. In
contrast, we study the stability of time series forecasts under random perturba-
tions., considering the following question: Does inclusion of the support series
in MSSA make the forecast more stable under perturbations?

Put simply, the SSA procedure can be visualised as a black box (see diagram
below) which takes the initial series x and its perturbation (σε) as an input and
outputs the forecast. For the bivariate MSSA, an extra time series y (support
series) is used as input. The resultant outcome is the forecast point, calculated
with the appropriate SSA/MSSA linear recurrence. This will be a random
variable; in the diagram below, ξ has mean 0 and variance 1.

x+ σε −→ SSA −→ x̂SSA + σ̂SSAξ

x+ σε
y

}
−→ MSSA −→ x̂MSSA + σ̂MSSAξ

We are interested in the relation of input and outcome variances with the main
focus on the ratio between outcome variances of SSA σ̂SSA and MSSA σ̂MSSA.
We do not perturb the support series, as this would only add variance to the
MSSA output in a way which has no comparable analogue in SSA.

After noting, in Section 2, that the �rst-order perturbation theory of the
spectral decomposition, which is a core element of SSA, does not give a su�-
ciently transparent link between the variances of input perturbation and fore-
cast, we make the discovery, in Section 3, that the central part of the time
series, excluding the �rst and the last SSA window, is remarkably stable under
perturbations, allowing the use of the unperturbed SSA projector as a proxy for
the actual perturbed one. To a lesser extent, this �attening e�ect carries over
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to MSSA. Note that for this observation to be useful, the time series needs to
be longer than twice the chosen window length for SSA, to leave a su�ciently
indicative central part of the series. This discovery motivates a simplifying as-
sumption which we can use to derive very convenient and practical formulae
(47), (54) for the SSA and MSSA forecast variances in Section 4. When com-
paring the performance of these formulae against empirical forecast variances
calculated in random trials for pairs of time series with and without expected
supportiveness, in Section 5, we �nd that they appear to re�ect the qualita-
tive relationship between the SSA and MSSA variances very well and are also
robust against distorting e�ects caused by random eigenvalue crossings in the
pseudorandom empirical trials.

Accepting these formulae as indicative proxies for the actual forecast vari-
ances, and with Granger's guiding idea in mind, we suggest the following practi-
cal computational method for establishing or rejecting supportiveness of a time
series yn for a time series xn. Calculate the two fundamental objects, the MSSA
convolution kernel (44) and the MSSA forecast vectors R11, R12 (5) from MSSA
of xn and ρyn, with a scaling parameter ρ > 0, and hence compute the convo-
lution norm (54). If this norm tends to 0 for large ρ, the series yn is supportive
for xn, if the norm approaches a positive level for large ρ, then yn is not sup-
portive for xn. Note that the application of this criterion does not require any
calculation of (pseudo)random perturbations, but uses only MSSA data for the
unperturbed time series.

The above method makes crucial use of the fact that the MSSA forecast is
not homogeneous in the scaling factor ρ. However, in some other applications
of MSSA, this may be rather problematic. We brie�y touch upon this scaling
problem and suggest a partial remedy in Section 6.

2 First-order perturbation theory of SSA

We start with a look at the information on the forecast provided by �rst-order
perturbation theory [13], which essentially corresponds to linearisation of the
singular-value (spectral) decomposition underlying SSA and MSSA and of the
recurrent forecast formula. As a result, we shall see that this linearisation in
itself is not su�cient to give a su�ciently simple overview of the connection
between the forecast variance and the variance of the input perturbation; but it
shows the di�erent steps of error variance propagation in the SSA process and
pinpoints the crucial elements of this process for our subsequent considerations.
We remark that, beyond the simple �rst-order perturbation analysis below,
the full perturbation series has been studied extensively in [11]; however, that
study is mainly concerned with the limit of in�nitely long time series, whereas
we consider �xed-length time series and small perturbation variance.

We shall use the following notation for SSA and bivariate MSSA analysis
and recurrent forecast.

Consider a time series (x1, ..., xN ). Choosing a window length 1 < L < N ,
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we set up a trajectory matrix

X =


x1 x2 . . . xN−L+1

x2 . . . xN−L+2

... . . .
...

xL . . . xN


and consider the spectral decomposition of the lag-covariance matrix XXT =∑L
j=1 λjηjη

T
j , where ηj are orthonormal eigenvectors of XXT ∈ RL×L with

corresponding eigenvalues λj , enumerated in non-increasing order, i.e. λj ≥
λj+1. Choosing r < L, we use the orthogonal spectral projector of rank r,

P =
∑r
i=1 ηjη

T
j , to extract a lower rank matrix X̃ = PX. Hankelization, i.e.

diagonal averaging of X̃ and of X − X̃ = (1 − P)X, gives a decomposition of
the initial time series xi = x̃i + εi into reconstructed time series x̃i, which can
be interpreted as a signal, and residuals εi which are treated as noise. For the
discussion of the optimal choice of window length L and number of components
r see [4]. Based on this representation, it is possible to forecast the initial time
series by extending the Hankelized output matrix X̃H in such a way that the next
added column (x̃N−L+2, ..., x̃N , x̂N+1)

T has minimal distance to the projection
subspace PRL, giving the linear L-term recurrence

x̂n+1 = (x̃n−L+2, ..., x̃n)R, (n ≥ N) (2)

with the recurrence vector

R =

∑r
k=1 ηk,Lη

∇
k

1−
∑r
k=1 η

2
k,L

∈ RL−1, ηk =

(
η∇k
ηk,L

)
∈ RL. (3)

The forecast can be further extended using the same recurrence formula.
The above procedure can be extended to the simultaneous analysis of two

time series by stacked bivariate MSSA. Given a second time series y = (y1, ..., yN ),
we stack trajectory matrices, both with the same window length L, in the fol-

lowing manner

(
X
Y

)
and use the spectral decomposition of

(
X
Y

)(
X
Y

)T
=

(
XXT XYT
YXT YYT

)
=

2L∑
j=1

λMj η
M
j η

M
j

T
;

the spectral projector will be PM =
∑r
j=1 η

M
j η

M
j
T
. Separate Hankelization of

X̃ and Ỹ, de�ned by

(
X̃
Ỹ

)
= PM

(
X
Y

)
, gives MSSA reconstructions x̃ and ỹ.

For the forecasting, following the same principle as before, we get a bivariate
L-term linear recurrence

x̂N+1 = (x̃N−L+2, ..., x̃N )R11 + (ỹN−L+2, ..., ỹN )R12

ŷN+1 = (x̃N−L+2, ..., x̃N )R21 + (ỹN−L+2, ..., ỹN )R22
(4)
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with the recurrence vectors (j ∈ {1, 2})

R1j =
1

detA

(
(1−

r∑
k=1

η2k,2L)

r∑
k=1

η
(j)
k ηk,L +

r∑
k=1

ηk,2Lηk,L

r∑
k=1

η
(j)
k ηk,2L

)
, (5)

R2j =
1

detA

(
(1−

r∑
k=1

η2k,L)

r∑
k=1

η
(j)
k ηk,2L +

r∑
k=1

ηk,Lηk,2L

r∑
k=1

η
(j)
k ηk,L

)
, (6)

where

A =

(
1−

∑r
k=1 η

2
k,L −

∑r
k=1 ηk,2Lηk,L

−
∑r
k=1 ηk,Lηk,2L 1−

∑r
k=1 η

2
k,2L

)
and ηk =


η
(1)
k

ηk,L

η
(2)
k

ηk,2L

 ∈ R2L.

Note that in addition to the above recurrent forecasting method, which will
be the basis of our considerations in this paper, there are other SSA- and
MSSA-based forecasting methods, see [15, 3]; our MSSA forecasting method
corresponds to MSSA-K in [15] and recurrent row MSSA forecasting in [3].

First-order perturbation theory of the SSA process and forecast gives the
following result.

Proposition 2.1. Let X be the trajectory matrix of an unperturbed time series
x and L the chosen SSA window length. Assume that the eigenvalues λ1, ..., λL
of XXᵀ are all simple.

Let R be the SSA recurrence vector (3) obtained from the unperturbed time
series xn. Then the SSA recurrence vector R(σ) obtained from the randomly
perturbed time series xn + σεn, where ε ∼ N(0, 1) is i.i.d., with the same SSA
parameters L and r is, to �rst order,

R(σ) = R+ σ
(
cR+ R̃

)
+O(σ2) (σ → 0), (7)

where

c =
2
∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r
k=1 η

2
k,L

(8)

and

R̃ =

∑r
k=1

∑L
i=r+1 αi,k(ηi,Lη

∇
k + ηk,Lη

∇
i )

1−
∑r
k=1 η

2
k,L

. (9)

Proof. Let N be the trajectory matrix of the perturbation time series ε, and

Z = XNT +NXT . (10)

The perturbed matrix

(X+ σN)(X+ σN)T = (XXT + σZ) +O(σ2)

has orthonormal eigenvectors

γσ,k = ηk + σν1,k + σ2ν2,k + . . . (11)
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and eigenvalues

λσ,k = λk + σµ1,k + σ2µ2,k + . . . , (12)

k ∈ {1, ..., L}, which are analytical in σ [10, Chapter 2,�1 ]. Substitution of
these power series into the eigenvalue equation gives, in order σ,

XXT ν1,k + Zηk = λkν1,k + µ1,kηk, (13)

and hence µ1,k = ηTk Zηk. Hence, writing ν1,k in terms of basis eigenvectors ηi,

ν1,k =

L∑
i=1

αi,kηi,

gives, for j 6= k,

αj,k =
ηTj (µ1,k − Z)ηk

λj − λk
= −

ηTj Zηk

λj − λk
.

For j = k, note that

1 = γTσ,kγσ,k = ηTk ηk + σ(ηTk ν1,k + νT1,kηk) +O(σ2)

= 1 + 2σαk,k +O(σ2),

so αk,k = 0. Furthermore, the fact that Z is symmetric implies the antisymme-
try αj,k = −αk,j . Now the recurrence vector for the SSA forecast is

R(σ) =

∑r
k=1 γk,σ,Lγ

5
k,σ

1−
∑r
k=1 γ

2
k,σ,L

=

∑r
k=1

(
ηk,Lη

5
k + σ

∑L
i=1,i6=k αi,k(ηi,Lη

5
k + ηk,Lη

5
i )
)
+O(σ2)

1−
∑r
k=1(η

2
k,L + 2σ

∑r
i=1,i6=k αi,kηi,Lηk,L) +O(σ2)

. (14)

Due to antisymmetry, we have

αi,k(ηi,Lη
5
k + ηk,Lη

5
i ) + αk,i(ηk,Lη

5
i + ηi,Lη

5
k ) = 0 (15)

in the numerator of (14), and similarly in the denominator of (14),

αi,kηi,Lηk,L + αk,iηk,Lηi,L = αi,kηi,Lηk,L − αi,kηk,Lηi,L = 0. (16)

Therefore

R(σ) =

∑r
k=1 ηk,Lη

5
k + σ(

∑r
k=1

∑L
i=r+1 αi,k(ηi,Lη

5
k + ηk,Lη

5
i )) +O(σ2)

1−
∑r
k=1 η

2
k,L − 2σ

∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L +O(σ2)

.

(17)

Equations (7),(8),(9) now follow by observing that(
1−

2σ
∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r
k=1 η

2
k,L

+O(σ2)

)−1

= 1 +
2σ
∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r
k=1 η

2
k,L

+O(σ2).
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Note that, to �rst order, the noise from the perturbation enters the recurrence
vector R(σ) only through the coe�cients αj,k.

The perturbation of the forecast is determined not only by the perturbation
of the forecast recurrence vector (7), but also by the perturbation of the recon-
structed time series on which gives the initial values for the forecast recurrence.
The signal of the unperturbed time series is reconstructed, by diagonal aver-
aging, from the sum of the �rst r elementary matrices Xk(0) = ηkη

T
k X of the

decomposition of the trajectory matrix X

X =

r∑
k=1

Xk(0). (18)

Correspondingly, for the �rst order reconstruction for the perturbed time series,
the elementary matrices are calculated from the perturbed eigenvectors γσ,i,

Xk(σ) = γσ,kγ
T
σ,k(X+ σN)

= (ηk + σ
L∑

i=1,i6=k

αi,kηi +O(σ2))(ηk + σ
L∑

i=1,i6=k

αi,kηi +O(σ2))T (X+ σN)

= Xk(0) + σ

 L∑
i=1,i6=k

αi,k(ηiη
T
k + ηkη

T
i )X+ ηkη

T
k N

+O(σ2).

Again, to �rst order the added noise enters through the coe�cients αj,k only.
Then

X(σ) =

r∑
i=1

Xi(σ)

gives rise, after diagonal averaging, to the reconstructed time series x̃n(σ). To
calculate the forecast, we substitute the vector (14) into the linear recurrence
formula and use the reconstruction series

x̃n(σ) = x̃n(0) + σε̃n +O(σ2),

where σε̃n arises from perturbation terms in elementary matrices Xk(σ). The
forecast for the (N +1)st point is calculated from the linear recurrence formula
(2) as

x̃N+1(σ) =
L−1∑
k=1

(
ak + σ(cak + bk) +O(σ2))(x̃N−k+1(0) + σε̃N−k+1 +O(σ2)

)
=

L−1∑
k=1

akx̃N−k+1(0) + σ

L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

)
+O(σ2)

=x̃N+1(0) + σ

L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

)
+O(σ2).

where we have written R = (aL−1, ..., a1)
T and R̃ = (bL−1, ..., b1)

T for the
unperturbed vector R (cf. (3)) and the vector R̃ (cf. (9)) respectively, and
x̃N+1(0) is the unperturbed forecast.
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Clearly,

var(x̃N+1(σ))

σ2
= var

(
L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

))
.

Note that coe�cients bk (k ∈ {1, ..., L − 1}) and c are random variables due
to the noise, which complicates the understanding of the output variance and
makes the above formula rather inconclusive. Therefore we need to analyse the
process of noise propagation in more detail in the following.

3 The �attening e�ect

In order to reach a better understanding of how the forecast variance depends
on the variance of the input noise ε, we study the e�ect of the perturbation at
three stages separately. These stages are: projector construction, time series
reconstruction and forecast. Firstly, we deal with the noise propagation at the
stage of constructing the projector, obtained from perturbed eigenvector com-
ponents. Second stage is reconstruction, where the noise comes through the
Hankel matrix and perturbed projector. And �nally, the forecast, where the
noise comes in through the perturbed recurrence vectors and through recon-
struction. On each stage we assess the e�ect size of noise and see if any of these
e�ects are dominant, so that others could be neglected in comparison.

Univariate case

The perturbation of the time series a�ects the reconstruction of the time series
xn directly and linearly through the Hankel matrix σN, and indirectly and non-
linearly by way of the perturbed eigenvectors γσ in the spectral projection of
the Hankel matrix X+ σN.
The reconstruction resulting from elementary matrices

ηiη
T
i X, i ∈ {1, ..., r}, (19)

is the signal reconstruction x̃(1) with no perturbation either in the time series
or in the eigenvectors ηi, i.e. the result of SSA of the unperturbed time series.

The reconstruction x̃(2) resulting from the elementary matrices

γσ,iγ
T
σ,i(X+ σN), i ∈ {1, ..., r}, (20)

is the reconstruction with the double perturbation e�ect in eigenvectors and
projected Hankel matrix, i.e. this is the result of SSA of the perturbed time
series. Both x̃(1) and x̃(2) are standard SSA reconstructions of time series xn
and xn + σεn, respectively.

The following two constructions are hybrids we use to study the in�uence
of the perturbation. The reconstruction series x̃(3) is based on the e�ect of the
direct Hankel matrix perturbation only, but using the unperturbed eigenvectors,

ηiη
T
i (X+ σN), i ∈ {1, ..., r}, (21)

8



Figure 1: Reconstructions di�erences for the model (23) with perturbation
σεn ∼ N(0, 0.25): x̃(1) − x̃(3), x̃(2) − x̃(4) (top); x̃(2) − x̃(4), x̃(2) − x̃(3) (bot-
tom).

and the reconstructed series x̃(4) uses elementary matrices resulting from per-
turbed eigenvectors, but applied to the unperturbed time series

γσ,iγ
T
σ,iX. (22)

For a �rst experiment, we use the generated time series

xn = sin(
3π

2
n) + sin(

π

2
n) n ∈ {1, ..., 200}, (23)

perturbing it with Gaussian i.i.d. noise σεn ∼ N(0, 0.25), and performing SSA
with L = 50 and r = 4.

Figure 1 illustrates that

x̃(2)n − x̃(3)n ≈ 0 for n ∈ {L+ 1, ..., N − L}, (24)

i.e. the di�erence is negligibly small through the whole reconstruction, apart
from the �rst and last length L interval. Therefore, we see that the di�erence
of the sum of elementary matrices

∑r
i=1 γiγ

T
i (X + σN) −

∑r
i=1 ηiη

T
i (X + σN)

is approximately zero after Hankelization. That suggests that the di�erence in
the eigenvectors is small and may be neglected in comparison with the e�ect of
the perturbation coming through the Hankel matrix X+ σN directly.

Similar behaviour is observed for the di�erence

x̃(4)n − x̃(1)n ≈ 0 for n ∈ {L+ 1, ..., N − L}, (25)

which is approximately zero through all series, apart from the �rst and last L
interval.

The observation indicates that the change in perturbed eigenvectors γσ is
not crucial in the main (central) part of time series. One could think that this
holds because the time series in this example had a simple structure and was
perturbed with generated Gaussian white noise. However, we also �nd this
�attening e�ect with real data.

9



Figure 2: Australian dry wine sales, L = 24, r = 5: (x(2) − x(1)) (above),
(x(4)−x(1)) (below). Noise is Gaussian N(0,4000) (top two graphs) or permuted
residuals (bottom two graphs).

The real data presented here is monthly sales of dry Australian wine for the
period 1980 - 1994 [9]. The analysis of the dry wine time series is done as in
[4, Chapter II], where the same time series was used. The length of the series
is N = 187 and the natural period is equal to one year, i.e. 12 months (12
data points). It is therefore natural to choose a multiple of 12 for the window
length. According to the book [4, p. 138], the optimal window length to obtain
the structure of the time series is L = 24 and the number of eigentriples which
correspond to the trend and main periodics is r = 5.

Here we consider the unperturbed signal time series to be based on the
�rst 5 eigentriples, and the added noise term is either generated Gaussian noise
or randomly permuted residuals from the SSA reconstruction (so statistically
independent, but not Gaussian).

Figure 3 illustrates the di�erences of reconstructions for both experiments,
where the di�erence between x(1) and x(4) is approximately zero in both cases
in the central part of the reconstruction and is oscillating in the �rst and last
window length interval.

We also investigated the e�ect of the perturbed eigenvectors on the recur-
rence vector used for forecasting. In the example shown in Figure 3, the unper-
turbed signal time series is based on the �rst 7 eigentriples (L = 60) of the red
wine sales time series ([9]), and the added noise term is either generated Gaus-
sian noise or randomly permuted residuals from the SSA. We generated random
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Figure 3: Australian red wine sales, L = 60, r = 7: Recurrence vector with
generated noise ε ∼ N(0, 100) (left) vs. permuted residuals (right); 250 random
instances in each graph.

(Gaussian or permuted residuals) noise 250 times to study the stability of the
recurrence vector under perturbations. In the case of Gaussian white noise (left
in Figure 3), the recurrence vector is remarkably stable and can be considered
as practically independent on noise; the permuted natural noise (right Figure
3) gives greater variation of the recurrence vector, but the positions and heights
of the characteristic spikes are very stable.

Bivariate case

In the bivariate case the main time series xn is perturbed with σεn, and yn is
a support series. Performing bivariate MSSA with parameters L, r, we study

two signal reconstructions of the main series xn: the reconstruction x̃
(1),MSSA
n

from diagonal averaging of grouped elementary matrices of

ηMSSA
(
ηMSSA

)T (X
Y

)
and x̃

(2),MSSA
n from the perturbed series

γMSSA(σ)
(
γMSSA

(
σ))T

(
X+ σN

Y

)
,

along with two hybrid cases, x̃
(3),MSSA
n from ηMSSA

(
ηMSSA

)T (X+ σN
Y

)
and

x̃
(4),MSSA
n from γMSSA(σ)

(
γMSSA

(
σ))T

(
X
Y

)
. Considering a simple example

with time series
xn = yn = sin (πnω) , (26)

where n ∈ {1, ..., 200}, ω = 0.48 and i.i.d. perturbation 0.5εn ∼ N(0, 0.25),

we calculated MSSA reconstructions and hybrid cases x̃
(1),MSSA
n , x̃

(2),MSSA
n ,

x̃
(3),MSSA
n , x̃

(4),MSSA
n with L = 10, r = 2. Figure 4 illustrates that the di�erence

x̃(4),MSSA
n − x̃(1),MSSA

n

11



Figure 4: Reconstructions di�erences x̃
(4),MSSA
n − x̃(1),MSSA

n (top) of perturbed

time series (26), in comparison to x̃
(2),MSSA
n − x̃(1),MSSA

n , L = 10, r = 2

is not negligibly small as for the generated example for univariate case (see Fig-

ure 1), but is considerably smaller than x̃
(3),MSSA
n − x̃(1),MSSA

n and x̃
(2),MSSA
n −

x̃
(1),MSSA
n .

4 A simpli�ed model of forecast variance

We now proceed to derive formulae for the variance of SSA and MSSA forecasts
of the randomly perturbed time series, calculated from the SSA and MSSA data
of the unperturbed time series. They will give a simple and transparent model for
the forecast variance. However, they will rely on the following two assumptions.
Firstly, we make the simplifying assumption that the �attening e�ect observed
in the preceding section occurs exactly, so that the SVD eigenvectors and the
forecast recurrence vectors of the unperturbed time series can be used as proxies
for those of the perturbed time series in the central part of the time series, i.e.
omitting the �rst and last L entries, where L is the window length. Note that
this requires L to be substantially smaller than the total length N of the time
series, so the choice L = N/2, which is not uncommonly used in SSA, will be
unsuitable. However, if the time series comprises several period intervals, then
the period length or a multiple of it will be a natural choice for L, allowing to
leave a su�cient central part of the series. Secondly, because of the restriction
to the central part of the series and for reasons which will become apparent in
the following, the formulae will apply not to a forecast at the end of the series,
i.e. a future forecast, but to the forecast at the end of the central part of the
series. This will not normally be a forecast of interest in itself; however, we here
use the forecast as a tool to assess the supportiveness of a second time series,
and for this speci�c purpose a forecast from an interior part of the time series
will be suitable.

The formulae (47), (54) for the SSA and MSSA forecast variance will be
based on the following reformulation of SSA reconstruction as a (mid-point)
linear �lter; for this aspect of SSA, see also [1, 8] and [5], Section 3.9.

12



Proposition 4.1. Let f = (f1, ..., fN ) be a time series and f̃ = (f̃1, ..., f̃N ) its
SSA signal reconstruction for a suitable choice of parameters L and r. Then

f̃n = (q ? f)n =

L−1∑
m=−L+1

qmfn+m, n ∈ {L+ 1, ..., N − L}, (27)

where the reconstruction kernel q : {−L + 1, ..., L − 1} → R has the symmetry
property

q−m = qm, m ∈ {−L+ 1, ..., L− 1}. (28)

The convolution formula (27) gives the exact same result as the standard SSA
reconstruction, except in the �rst and last L terms. In fact, the convolution
concept is more natural to doubly-in�nite time series f = (fj)j∈Z. Our approach
to the proof is to derive the convolution formula for the doubly-in�nite case; the
fact that the series f is �nite (and extended to be doubly-in�nite by padding
zeros) is invisible from the central part due to the �nite support of q. However,
for points in the �rst and last window length, the convolution will in general be
di�erent from the result of standard SSA, as it gives the SSA of the time series
extended by 0.

Proof. Consider a doubly in�nite time series f = (fj)j∈Z and the right shift
operator S : RZ → RZ, (Sf)t = ft+1(t ∈ Z); then the trajectory matrix of
in�nite time series f with window length L is

X =


f
Sf
...

SL−1f

 ∈ RL×Z, (29)

and the lag-covariance matrix takes the form

XXT =


ffT f(Sf)T . . . f(S(L−1)f)T

(Sf)fT Sf(Sf)T . . . Sf(S(L−1)f)T

...
(S(L−1)f)fT S(L−1)f(Sf)T . . . S(L−1)f(S(L−1)f)T

 ∈ RL×L,

(30)

assuming that the inner products are �nite. In fact, the matrix XXT is a Toeplitz
matrix, as

(Sjf)(Skf)T = (S(j−k)f)fT (j, k ∈ Z). (31)

The SSA projector P calculated from the �rst r orthonormal eigenvectors η1, ..., ηr
of XXT has matrix entries

pk,j =

r∑
i=1

ηi,kηi,j (k, j ∈ {1, ..., L}), (32)

where ηi,j is the j
th entry of ηi. Note that

pk,j =

r∑
i=1

ηi,kηi,j =

r∑
i=1

ηi,jηi,k = pj,k. (33)

13



Therefore, applying the SSA projector to the Hankel matrix, we get

PX =



L−1∑
j=0

p0,jS
jf

L−1∑
j=0

p1,jS
jf

...
L−1∑
j=0

pL−1,jS
jf


, (34)

The Hankelization of this matrix of L rows and in�nitely many columns takes
the simple form of a linear operator.

H : RL×Z → RZ, H

 y0
...

yL−1

 =
1

L

L−1∑
k=0

S−kyk. (35)

Hence, the reconstructed signal is

f̃ = HPX =
1

L

L−1∑
k=0

PX =
1

L

L−1∑
k=0

L−1∑
j=0

pk,jS
j−kf =

L∑
m=−L

qmS
mf, (36)

i.e.

f̃n =

L−1∑
m=−L+1

qmfn+m (n ∈ Z),

where

qm =



1

L

L−1∑
i=0

pi,i, if m = 0,

1

L

L−1∑
i=m

pi−m,i, if m ∈ (1, ..., L− 1),

1

L

L−1∑
i=−m

pi,m+i, if m ∈ (−L+ 1, ...,−1).

As the calculation of convolution coe�cients qm is based on summing pro-
jector elements (32), which have the symmetry (33), the qm are symmetric as
well,

qm = q−m (m ∈ {−L+ 1, ..., L− 1, L}). (37)

Setting qm = 0 if |m| > L, the expression (36) can be rewritten as a convolution

f̃n =
∑
m∈Z

qn−mfm = (q ? f)n.

14



Proposition 4.2. Let f = (f1, ..., fN ), g = (g1, ..., gN ) be time series and

f̃ = (f̃1, ..., f̃N ), g̃ = (g̃1, ..., g̃N ) their MSSA signal reconstructions, respectively,
for a suitable choice of window length L and r eigentriples. Then there exists a
convolution representation for the central part of the reconstructed time series(

f̃
g̃

)
=

(
q1 ? f + q2 ? g
q3 ? f + q4 ? g

)
, (38)

where the reconstruction kernels qi : {−L+ 1, ..., L− 1} → R for i ∈ {1, 2, 3, 4}
depend on the MSSA parameters L, r.

Proof. Extend the given time series by 0 to doubly-in�nite time series (fn)n∈Z,
(gn)n∈Z ∈ RZ.

The Hankel matrix for the bivariate MSSA is a block matrix consisting of
the Hankel matrix X of fn stacked on top of the Hankel matrix Y of gn,

(
X
Y

)
=



f
Sf
...

SL−1f
g
Sg
...

SL−1g


∈ R2L×Z. (39)

The MSSA projector P is obtained from the �rst r eigenvectors η1, ..., ηn of
the 2L× 2L lag-covariance matrix(

X
Y

)(
X
Y

)T
=

((
(Si−1f)(Sj−1f)

)L
i,j=1

(
(Si−1f)(Sj−1g)

)L
i,j=1(

(Si−1g)(Sj−1f)
)L
i,j=1

(
(Si−1g)(Sj−1g)

)L
i,j=1

)
. (40)

The projector P consists of 4 blocks

P =

(
p1 p2

p3 p4

)
,

where

p1k,j =

r∑
i=1

ηi,kηi,j (k, j ∈ {0, ..., L− 1}),

p2k,j =

r∑
i=1

ηi,kηi,j (k ∈ {0, ..., L− 1}, j ∈ {L, ..., 2L− 1}),

p3k,j =

r∑
i=1

ηi,kηi,j (k ∈ {L, ..., 2L− 1}, j ∈ {0, ..., L− 1}),

p4k,j =

r∑
i=1

ηi,kηi,j (k, j ∈ {L, ..., 2L− 1}).

(41)

Similarly to the univariate case, we now can write down the expression for
the signal reconstruction of fn and gn, using the Hankelization operator H of
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(35)

(
f̃
g̃

)
=


H

(
L−1∑
k=0

L−1∑
k=0

p1k,jS
j−kf +

L−1∑
k=0

L−1∑
k=0

p2k,jS
j−kg

)

H

(
L−1∑
k=0

L−1∑
k=0

p3k,jS
j−kf +

L−1∑
k=0

L−1∑
k=0

p4k,jS
j−kg

)
 (42)

=


L∑

m=−L
q1mS

mf +

L∑
m=−L

q2mS
mg

L∑
m=−L

q3mS
mf +

L∑
m=−L

q4mS
mg

 , (43)

where

qjm =



1

L

L−1∑
i=0

pji,i, if m = 0,

1

L

L−1∑
i=m

pji−m,i, if m ∈ (1, ..., L− 1),

1

L

L−1∑
i=−m

pji,m+i, if m ∈ (−L+ 1, ...,−1),

(44)

and qjm = 0 otherwise. Thus

(
f̃n
g̃n

)
=


∑
m∈Z

q1n−mfm +
∑
m∈Z

q2n−mgm∑
m∈Z

q3n−mfm +
∑
m∈Z

q4n−mgm

 =

(
(q1 ? f)n + (q2 ? g)n

(q3 ? f)n + (q4 ? g)n

)
(n ∈ Z)

(45)

or brie�y (
f̃
g̃

)
=

(
q1 ? f + q2 ? g
q3 ? f + q4 ? g

)
. (46)

The expression (46) gives the reconstructions f̃n, g̃n of the main series fn and
support series gn for n ∈ {L+ 1, ..., N − L}. This expression is identical to the
MSSA reconstructions, provided that the parameters of both procedures are the
same.

It is worth mentioning that convolution vectors q1 and q4 have the re�ection
symmetry (37), which q has in the univariate case, but q2, q3 do not. Instead,
they are related via q2m = q3−m(m ∈ Z).

After these preparations, we are ready to study the forecast for xN−L+1

based on the SSA reconstruction for {x̃L+1, ..., x̃N−L} from the convolution for-
mula. The expression (27) is conveniently linear and concise; however, both
convolution kernel qi(σ) and the recurrence vector R(σ) will, strictly speaking,
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depend on noise of the initial time series, which complicates the process of es-
timating the variance of the noise in the reconstruction and in the forecast.
Therefore we make the simplifying assumption that these can be replaced with
the convolution kernel and recurrence vector of the unperturbed series, as indi-
cated by our observations in Section 4. Then we obtain the following result in
the univariate (SSA) case.

Proposition 4.3. Let R, q be the recurrence vector and convolution kernel,
respectively, of SSA performed on a time series (xn)n∈{1,...,N} with parameters
L, r.

Moreover, assume that (εn)n∈{1,...,N} is a random time series such that the
εn are independent and have variance 1. Let x̂N−L+1(σ) be the SSA fore-
cast of the time series (xn + σεn)n∈{1,...,N} calculated from the reconstructed
(x̃N−2L+2(σ), ..., x̃N−L(σ)).

Then, assuming the recurrence vector R(σ) and convolution kernel q(σ) are
equal to the unperturbed R, q,

var(x̃N−L+1(σ)) = σ2‖R ? q‖22. (47)

Here ‖y‖2 =
√∑

j |yj |2 is the `2-norm.

Proof. Using the convolution expression (27) for the SSA reconstruction of the
perturbed time series xn + σεn, we �nd

x̃n(σ) =
∑
m∈Z

qn−m(σ)(xm + σεm)

=
∑
m∈Z

qn−m(σ)xm + σ
∑
m∈Z

qn−m(σ)εm. (48)

Applying the LRF (2) to the reconstruction (48), the expression for the fore-
cast x̂N−L+1(σ) may be written, using R(σ) = (aL−1(σ), ..., a1(σ))

T for the
perturbed recurrence vector, as

x̂N−L+1(σ) =

L−1∑
i=1

ai(σ)

(∑
m∈Z

qN+1−i−m(σ)xm + σ
∑
m∈Z

qN+1−i−m(σ)εm

)
(49)

=

L−1∑
i=1

ai(σ)
∑
m∈Z

qN+1−i−m(σ)xm + σ

L−1∑
i=1

ai(σ)
∑
m∈Z

qN+1−i−m(σ)εm.

(50)

Under the simplifying assumptions, (50) turns into

x̂N−L+1(σ) =

L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mxm + σ

L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mεm (51)

= x̂N−L+1(0) + σ

L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mεm (52)

= x̂N−L+1(0) + σ
∑
m∈Z

( L−1∑
i=1

aiqN−L+1−i−m
)
εm. (53)
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As εm are i.i.d. with variance 1, we hence conclude that

var(x̂N−L+1) = σ2
∑
m∈Z

∣∣∣∣∣
L−1∑
i=1

aiqN−L+1−i−m

∣∣∣∣∣
2

= σ2
∑
k∈Z

∣∣∣∣∣
L−1∑
i=1

aiqk−i

∣∣∣∣∣
2

= σ2
∑
k∈Z
|(R ? q)i|2 = σ2‖R ? q‖22.

Similarly, we have the following result in the bivariate (MSSA) case, includ-
ing the additional support series yn.

Proposition 4.4. Let R11, R12 and qi, i ∈ {1, 2, 3, 4} be the recurrence vectors
and convolution kernels, respectively, of MSSA performed on (xn)n∈{1,...,N},
(yn)n∈{1,...,N} with parameters L, r.

Assume that (εn)n∈{1,...,N} is a random time series such that the εn are inde-
pendent and have variance 1. Let x̂N−L+1(σ) be the MSSA forecast of the time
series (xn + σεn)n∈{1,...,N} calculated from the reconstructed (x̃N−2L+2(σ), ...,
x̃N−L(σ)) and (ỹN−2L+2(σ), ..., ỹN−L(σ)).

Then, assuming the recurrence vectors R11(σ), R12(σ) and convolution ker-
nels (qi(σ), i ∈ {1, 2, 3, 4} are equal to the unperturbed R11, R12 and qi, i ∈
{1, 2, 3, 4},

var(x̂N−L+1(σ)) = σ2‖R11 ? q
1 +R12 ? q

3‖22. (54)

Proof. Recalling the MSSA LRF for the forecast (4) and its recurrence vectors
R11, R12 (5), we derive the forecast x̂N−L+1(σ) from the following formula

x̂N−L+1(σ) =

L−1∑
i=1

a1,ix̃N−L+1−i(σ) +

L−1∑
i=1

a2,iỹN−L+1−i(σ), (55)

where R11 = (aL−1,i, ..., a1,1)
T and R12 = (a2,L−1, ..., a1,1)

T .
Note that we are operating under the simplifying assumptions that recur-

rence vectors R11 and R12 are obtained from the unperturbed time series xn,
i.e. �xed.

Substituting reconstructions (45) into (55) we get, using xm(σ) = xm+σεm,

x̂N−L+1(σ) =

L−1∑
i=1

a1,i(
∑
m∈Z

q1N−L+1−i−mxm(σ) +
∑
m∈Z

q2N−L+1−i−mym)

+

L−1∑
i=1

b1,i(
∑
m∈Z

q3N−L+1−i−mxm(σ) +
∑
m∈Z

q4N−L+1−i−mym)

= x̂N−L+1(0) + σ
∑
m∈Z

L−1∑
i=1

(a1,iq
1
N−L+1−i−m + b1,iq

3
N−L+1−i−m)εm.

Similarly to the univariate case, we can now calculate the variance of the fore-

18



cast,

var(x̂N−L+1(σ)) = σ2
∑
m∈Z

∣∣∣∣∣
L−1∑
i=1

(a1,iq
1
N−L+1−i−m + b1,iq

3
N−L+1−i−m)

∣∣∣∣∣
2

= σ2
∑
k∈Z

∣∣∣∣∣
L−1∑
i=1

(a1,iq
1
k−i + b1,iq

3
k−i)

∣∣∣∣∣
2

= σ2
∑
k∈Z

∣∣R11 ? q
1 +R12 ? q

3
∣∣

= σ2‖R11 ? q
1 +R12 ? q

3‖22.

5 Towards a measure of supportiveness

In this section, we aim to explore the possibility of using the forecast variance
as a tool to establish a relationship between two time series in the sense that the
second (support) series stabilises the forecast of the primary series. This will
roughly correspond to Granger's concept of causality. In particular, we address
the question of what role the convolution formula (54) based on the simplifying
assumption of constant reconstruction kernel and forecast vectors can play as
a predictor for the empirical variance one would observe in random trials of
perturbed time series.

The comparison of variances bears some similarity to the statistical F-test;
however, our question does not directly �t into the scheme of that test, as here
the sample size (the number of random trials) is arbitrary and will not strongly
a�ect the variance. Hence the signi�cance of the test cannot be reasonably cal-
culated, and a single number will not be very indicative. Therefore we consider
the change in the variance as the relative weight of the support series in bi-
variate MSSA is increased. More precisely, we consider the pair of time series
(xn)n∈{1,...,N} (main series) and (ρyn)n∈{1,...,N} (support series) with varying
support series multiplier ρ and study the dependence of the variance on ρ.

Given this pair of time series, we compare the value for the predicted fore-
cast variance calculated from the convolution formula (54) for the original se-
ries (xn)n∈{1,...,N}, (ρyn)n∈{1,...,N}, with the empirical variance from 1000 ran-
dom trials of the MSSA forecast for the time series (xn + εn)n∈{1,...,N} and
(ρyn)n∈{1,...,N}, where εn ∼ N(0, σ2) is independent pseudo-random generated
noise in each trial. In order to assess the impact of our simplifying assumptions
in more detail, we also consider the empirical variance of the MSSA forecast
where the forecast vector R11(σ) is, in each trial, replaced with the �xed unper-
turbed forecast vector R11 (values A), and where both forecast vectors R11(σ)
and R12(σ) are replaced with the �xed unperturbed forecast vectors R11, R12

(values B). Note, however, that in these cases the convolution kernel will not
be kept �xed, but will vary with the random perturbations.

We analysed two examples, with time series taken from the Australian wine
datasets [9]. The main series in both examples is based on the red wine sales
time series, the support series in the �rst example is based on the sparkling wine
sales time series, in the second example it is made up of unrelated generated
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Figure 5: Red wine vs sparkling wine and generated series, 1980-1994.

data. The length of all time series is N = 187. The red wine and sparkling wine
time series clearly exhibit some structural similarities as well as characteristic
di�erences, see Figure 5 (left).

We constructed time series (xn)n∈{1,...,187}, (yn)n∈{1,...,187} by precondition-
ing the raw red and sparkling wine time series, respectively, performing SSA
with L = 60 and r = 7 separately on both series; these are the optimal SSA
parameters for these standard series (see [4] pp. 138�139). The variance for the
perturbative Gaussian white noise added to (xn)n∈{1,...,187} in the trials was
set to σ2 = 100. For the further analyses, we kept the (M)SSA parameters at
L = 60, r = 7. For a fair comparison with the convolution formula, we fore-
cast the value starting the last window in the time series, i.e. x̂128, from the
reconstructed x̃68, . . . , x̃127 and ỹ68, . . . , ỹ127.

To put the absolute variances calculated for the MSSA forecasts into per-
spective, we computed the perturbative variance of the SSA forecast of the red
wine series (xn)n∈{1,...,187} alone. The empirical variance from 1000 trials is
var(x̂SSA128 ) = 7.9991. When the perturbed recurrence vector R(σ) is replaced
with the unperturbed constant R in each trial, the empirical variance is 7.2037.
The convolution formula (47) gives the value 6.7355, showing that a large part
(although not all) the observed variance can be explained even making the sim-
plifying assumptions.

The results for the �rst example (red wine sales with sparkling wine sales as
support) are shown in Table 1. The empirical variance of forecast values x̂128
appears largely stable, apart from the conspicuously large value for ρ = 0.18,
which we shall discuss below. The variance of forecasts with �xed R11 (values
A) behaves in a generally similar manner. On the other hand, the variance
of forecasts with both R11 and R12 �xed (values B) shows are marked and
sustained decrease with increasing ρ. This is fully paralleled by the prediction
from the convolution formula (54).

Thus it appears that the instability under perturbation of R12(σ) has a
pronounced e�ect on the result variance, while R11 and the reconstruction con-
volution kernel can be assumed to be unperturbed without qualitative di�erence
in the results.

It is striking in Table 1 that all values obtained from simulated noise trials
show very unstable behaviour near ρ = 0.18 (values in bold). This instability is
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Table 1: MSSA Red Wine Forecast Measures
ρ var(x̂128) var(A) var(B) σ2|Rs11 ∗ q1 +Rs12 ∗ q3|
0.1 7.4768 6.6278 6.5749 5.6975
0.17 8.1574 114.5941 7.1851 4.5769
0.18 3898.9 3146.2 997.9766 2.6169
0.19 7.3854 194.1092 3.6954 2.5575
0.2 6.7346 30.4935 3.2459 2.4359
0.22 5.9248 9.5182 3.1407 2.1989
0.3 4.7625 5.1692 1.9477 1.5222
0.4 4.6748 4.5712 1.2182 1.0386
0.5 4.7254 4.371 0.7938 0.7341
0.6 4.8085 4.3115 0.537 0.5253
0.7 4.8949 4.3248 0.3738 0.3792
0.8 4.978 4.3794 0.2663 0.2764
0.9 5.0574 4.4572 0.1934 0.2039
1 5.1319 4.5463 0.1429 0.1523
1.1 5.1994 4.6383 0.1073 0.1152

caused by an uncertainty in the relative position, within the pair of the 7th and
8th, of the eigenvalues corresponding to the continuous branches of eigenvectors.
For ρ near 0.18, the 7th and 8th eigenvalues happen to lie very closely together.
As the MSSA cut-o� was �xed between the 7th and 8th eigenvalue, a small
change due to the perturbation can lead to a swap of relative position of these
eigenvalues and hence to a large change in the elementary MSSA matrix formed
from a completely di�erent nearly orthogonal eigenvector. The instability is
thus easily explained as a meaningless artefact of the support series scaling and
can therefore be disregarded. Note that the values from the convolution formula
do not have this problem, as they are calculated from unperturbed series.

For the second example, we used the same main series as before, but the
unrelated generated support series

yn = 500 + 1000 sin 2π
277

566
n (n ∈ {1, . . . , 187}).

Figure 5 (right) shows both time series.
The resulting variances are shown in Table 2. The empirical variance of the

forecast x̂128 is very stable and shows no essential increase or decrease. The
variances for �xed R11 (values A) even have an increasing trend. Here also the
empirical variances for �xed R11 and R12 (values B) are very stable, showing
only very faint decrease, especially for ρ > 0.5, even if the multiplier ρ is pushed
to extremely high values. This also holds for the values calculated from the
convolution formula, which here are excellent proxies for the values B.

In summary, we see that the convolution formula (54) gives very good pre-
dictions of the values and, more importantly, qualitative behaviour for varying
ρ, of the empirical variances where the recurrence vectors are �xed. However,
these predictions do not in general re�ect the empirical variance of the forecast
of the perturbed time series very well.

On the one hand, this can be taken as an indication that our simpli�ed
model based on the assumption that the recurrence vectors do not essentially
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Table 2: MSSA Red Wine Forecast Measures with support series

ρ var(x̂128) var(A) var(B) σ2|Rs11 ∗ q1 +Rs12 ∗ q3|
0.1 8.6397 8.4545 7.8798 7.8661
0.2 8.1232 7.952 7.5153 7.1994
0.3 7.7428 8.8551 7.1967 6.7942
0.4 7.5411 11.6653 6.9916 6.6424
0.5 7.4265 15.1699 6.8687 6.5881
0.6 7.3044 18.2412 6.793 6.5639
0.7 9.9216 22.2217 6.7272 6.5341
0.8 8.2548 22.6167 6.7453 6.5747
0.9 8.3286 24.0218 6.7349 6.5809
1 8.3883 25.0824 6.7274 6.5853
1.1 8.4366 25.8982 6.7218 6.5888
10 8.7161 30.0821 6.6967 6.6064
100 8.7201 30.1362 6.6964 6.6067

vary with the perturbation is oversimpli�ed and unrealistic, and it is certainly
not a suitable tool for a precise estimate of the actual forecast variance.

On the other hand, bearing in mind that we are using the forecast variance
just as an experimental tool for assessing to what extent the support series helps
improve the forecast of the main series, giving an indicator of supportiveness, our
results suggest that the convolution formula (54), when considered for varying
support series multiplier ρ, could well be used as such a tool. As it is calculated
from the original unperturbed time series only, it is very quick and inexpensive
to compute and does not su�er the cut-o� instability observed in the empirical
results. In short, we suggest the criterion for supportiveness that the convolution
norm (54) becomes small for large support series multiplier ρ, compared to its
value for small ρ (or the SSA convolution norm (47)), whereas supportiveness
is rejected if it settles at a positive level for large ρ.

To explore this concept further, we consider the sparkling wine time series,
using a simple cosine with 1 year period,

yn = 3500 + 500 cos
2π

12
n (n ∈ {1, . . . , 187}),

as a support series (L = 60, r = 7). The convolution norms (54), shown in
Table 3 (a), settle at a positive level after a brief initial decrease, indicating lack
of supportiveness.

For comparison, we then take the sparkling wine time series itself, without
added noise, as a support series for the same main series and use the same
MSSA parameters as above. In this case, the convolution norms tend to zero,
see Table 3 (b). When this support series is shifted cyclically by 17 months, to
become

(y18, . . . , y187, y1, . . . , y17),

the same level of supportiveness appears, see Table 3 (c).
We observed the same e�ect in the case of a simple sine example, with main

series

xn = sin
2π

40
n+ εn (n ∈ {1, . . . , 200}),
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Table 3: Convolution norms (54) for Australian sparkling wine sales, support
(a) cosine, (b) self, (c) shifted self

ρ (a) (b) (c)
0.1 55678.41 54919.27 53727.07
0.2 54741.06 51796.55 47554.96
0.3 53438.47 47153.5 39250.44
0.4 52003.64 41634.33 30705.39
0.5 50593.95 35854.82 23246.07
0.6 49282.33 30289.33 17424.38
0.7 48086.06 25234.52 13204.97
0.8 46997.06 20829.55 10268.55
0.9 46000.84 17100.56 8243.08
1 45084.41 14005.79 6818.03
10 35443.87 5.49 6.59
100 35522.25 0.00056 0.00069

εn ∼ N(0, 1) i.i.d., and support series

yn = sin 2π(
n

40
+ α) (n ∈ {1, . . . , 200})

with o�sets α ∈ {0.05, 0.1, 0.15, 0.25}, taking L = 50, r = 2. In all cases,
the convolution norms (54) became small with growing ρ, at a rate roughly
independent of α.

This indicates that the suggested criterion for supportiveness tests for struc-
tural compatibility between the two time series rather than a simple point-by-
point conformity.

6 The scaling problem and linearised MSSA

Consider two time series, one (x) giving prices (in units of $), the other (y)
quantities of a commodity (in units of metric tonnes). Then, in the MSSA
recurrence formula (4), the recurrence vectors R11, R22 will be dimension-free,
but the entries of R12 will be in units of $/t and those of R21 in units of t/$.

Now consider the same data, but expressing the quantities of the commodity
in units of kilogrammes, i.e. as a time series ỹ = 1000y. Then, in order to get
the same forecast as before, the recurrence vectors must be adjusted by the
same conversion factor, i.e. R̃12 = R12/1000 and R̃21 = 1000R21. However,
this is not what MSSA of the new pair of time series x, ỹ will give; instead the
result will be completely di�erent forecast vectors, due to the non-linearity of
the spectral analysis of the combined (stacked) Hankel matrices. Thus MSSA
has the intrinsic problem of lacking scaling invariance in the separate input time
series. The practical expedient of only using normalised time series (e.g. mean
0, variance 1) in MSSA hides rather than solves this problem. In situations
where the e�ect of di�erent scalings of a support time series is to be explicitly
studied, such as in Section 5 above, normalisation will not be applicable in any
case.

A partial solution of the scaling problem is achieved by the following pro-
posed linearisation of MSSA around SSA, which will also give a quick MSSA-
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type forecast on the basis of the SSA of the main (�rst) time series alone.

Consider the stacked Hankel matrix

(
X
αY

)
with small α, then

(
X
αY

)(
X
αY

)T
=

(
XXT 0
0 0

)
+ α

(
0 XYT

YXT
)
+O(α2).

Denoting, as before, the (SSA) eigenvectors and eigenvalues of XX T by ηk, λk,

respectively, the (MSSA) eigenvectors of

(
X
αY

)(
X
αY

)T
have the form

(
ηk

α
λk

YXT ηk

)
+O(α2),

and further the MSSA recurrence vectors are

R11(α) =
1

(1−
∑
k η

2
k,L)

∑
k

ηk,Lη
∇
k ,

R12(α) =
1

(1−
∑
k η

2
k,L)

α
∑
k

ηk,Lγ
∇
k ,

R21(α) =
1

(1−
∑
k η

2
k,L)

α
∑
k

(
γk,L(1−

∑
l

η2l,L) + ηk,L
∑
l

ηl,Lγl,L
)
η∇k ,

R22(α) =
1

(1−
∑
k η

2
k,L)

α2
∑
k

(
γk,L(1−

∑
l

η2l,L) + ηk,L
∑
l

ηl,Lγl,L
)
γ∇k ,

where γk = 1
λYX

T ηk. Note that R11 is the α-independent SSA recurrence vector
R for the series x. Moreover, R12 and R21 are linear in α, whereas R22 is of
higher order and hence negligible in the linearisation.

The resulting forecast will be properly homogeneous with respect to scaling
of the support series y and is calculated from the SSA of x only. However, it is
asymmetric between the two series as it remains non-linear (in particular, not
scaling covariant) in x and does not give a usable forecast for the support series
y. Also, this linearised MSSA cannot directly replace full (non-linear) MSSA in
the supportiveness analysis proposed in Section 5.

Nevertheless, linearised MSSA may be a suitable approximation in many
situations where MSSA is now used, and its general relationship with the sup-
portiveness question remains to be explored.
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