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1 Introduction 

The formation of a composite coating layer containing diamond on the surface of materials is a method to 

prepare surfaces with higher hardness and wearability. Methods of producing abrasive surfaces, grinding belts 

and other metal-based tools by introducing diamond into a metal surface through a gas stream or plasma are 

known [1-5]. When using a gas-thermal or plasma-chemical methods to produce diamond-containing 

composite coatings, pre-clad powders of synthetic or natural diamond are used [5-7]. Metallisation of 

diamonds grains induces a significant improvement of their performance when in the coating layer, especially 

at elevated processing conditions. Micro-cracks present in diamond grains are filled and the grains are encased 

in a metal shell, such coatings increase the strength of diamond powder, which leads to enhanced productivity 

of the tools [8,9]. 

An alternative method to prepare composite coatings containing diamonds is electroplating. In such 

process the non-metallic phase (diamond), in the form of dispersed particles, is distributed in an electrolyte 

solution, and, when it reaches the surface of the cathode, it undergoes metalisation. In this way, diamonds 

containing copper, nickel and chrome have been produced [10-13]. The disadvantages of the electrochemical 

process for producing composite coatings include the need for intensive mixing of the electrolyte, which 

complicates the design of the plating bath; difficulty in obtaining coatings with high content of non-metallic 

phase and the need for filtration of the electrolyte. 

One of the important properties of diamond is its high biocompatibility compared to the other substances. 

This has led to the use of different kinds of natural and synthetic diamond in medicine [14-16]. For these 

purposes, diamond-like coating (DLC), obtained by high-temperature decomposition of hydrocarbons, have 

found widespread use. These carbon-based materials are not pure diamond, but they have the structure and 

physicochemical properties similar to them [17-18]. Surfaces of prosthetic devices and implants having a 



diamond or diamond-like coatings are chemically inert, non-toxic for cells and do not cause inflammation or 

pathogenic processes [19]. 

In this work, we present an inventive method to introduce diamonds in a composite coating, based on the 

preliminary fixing of the diamonds on the surface of the product and a subsequent overgrowth by metal, 

adapting previous approaches based on the generation of a sorption layer of copper sulphate on the surface of 

metallic or non-metallic products, subsequently this layer is treated with gaseous phosphine resulting in the 

formation of a metal-like copper phosphide layer on the product surface [20,22].  

2 Materials and methods 

2.1 Chemicals and substrates 

To study the process of obtaining diamond-containing composite coatings flat copper samples with a width 

of 2 cm, length of 6 cm and a thickness of 0.5 cm were used; when immersed in the respective solutions the 

working height was of 5 cm.  

Synthetic diamond powder ACM grade 5 (Russia), which is produced by sympathetic detonation were used as 

the non-metallic phase of the composite coating; the composition of the diamond crystals is presented in Table 

1. From Figure 1 it is clear that this powder comprises prismatic particles with an average size of 0.5-1.0 m. 

Table 1 shows the results of spectral analysis of diamond crystals, which exhibit a relatively high purity 

diamond powder. 

2.2 Diamond containing coating formation  

The process of obtaining composite coatings is schematised in Figure 2 and consisted of the following 

consecutive steps:  

• preconditioning of samples; 



• creation of a surface layer of copper sulfate solution; 

• deposition of diamond powder onto the sample surface; 

• consolidation of diamond  particles; 

• application of a layer of a metal. 

For the preconditioning of the samples degreasing and etching operations were performed as in other 

electroplating methods [20]. A surface layer of CuSO4 solution was achieved through dipping the samples for 3-

5 sec in a CuSO4 solution (200 g/l) followed by shaking to remove liquid excess.  

Spraying of diamond powder onto the surface sample was conducted with the device shown in Figure 3.. 

To prevent any premature drying of the surface film of CuSO4 solution, the spraying time did not exceed 20-30 

seconds. The mass of the diamond powder sprayed was 1.6-1.9 mg/cm2.  

In order to fix the particles of diamond powder onto the sample surface was treated by phosphine-

containing gas by the technique described in our previous work [22]. This briefly requires the placing of the 

sample in a hermetically sealed chamber that is filled with phosphine-containing gas produced by acid 

decomposition of zinc phosphide 

Zn3P2 + 6HCl → 3ZnCl2 + 2PH3 ↑            (1) 

During this step, gaseous phosphine (at room temperature) reacts with copper sulphate in the liquid phase 

generating copper phosphide according to the following reaction: 

6 CuSO4 + 3PH3 + 3H2O → 2 Cu3P + 6H2SO4 + H3PO3 (2) 

usually, the process required 7-10 minutes and the remaining unreacted phosphine-containing gas was 

neutralized by blowing through a solution of potassium dichromate.  



The final copper plating was carried out using a solution of CuSO4·5H2O g/l and H2SO4 g/l as electrolyte: the 

current density was 100 A/m2 and temperature of 20 °C. 

 

2.3 Kinetics of conversion of copper phosphate with phosphine and copper 

phosphine film thickness determination 

The reaction rate of transformation of copper sulfate into copper phosphide was determined using the 

apparatus schematically shown in Figure 4. Its working principle is that the reduction of the water level in the 

surge vessel 7, over a certain period of time, is linked to the amount of phosphine consumed; this is also 

dependent on the amount of copper phosphide formed in reaction 2. According to this reaction, the formation 

of 1 g of copper phosphide requires 150 cm3 (in normal conditions) of phosphine.  

The average thickness of the copper-phosphine coating was calculated as: 

δ =     
m

S∙ρ 
  (3) 

where:  

 coating thickness 

m  mass precipitated copper phosphide 

S  sample surface 

  copper phosphide density (7.0 g/cm3) 

2.4 Coated materials hardness characterisation 



Hardness measurements were performed using a coating hardness-2 Temp on samples of 50 mm thick 

lapped to a flat steel plate 500х500х10 mm by grease "litol." The hardness values were calculated as the mean 

of 5 measurements.  

To investigate the composite of the coatings scanning electron microscope ISM-6490-LV (JEOL, Japan) was 

performed. This device allows to obtain electronic images of the surface at the same time as elemental 

composition of both overall and individual spectra. 

 

3 Results and discussion 

The deposited diamond particles were fixed on the surface layer of copper sulfate solution through the 

transformation of copper sulfate into the solid phosphide using phosphine gas. The concentration of CuSO4 g/l 

is optimal since it allows the introduction on the surface of the product of a sufficient amount of copper 

phosphide, moreover, it does not result in the formation of crystals of copper sulphate leading to 

inhomogeneity of the coating [20-22]. Calculations showed that the film thickness of the solution remaining on 

the surface of the sample was 50-70 µm. 

The kinetic of the conversion process, measured through the volume of adsorbed phosphine, is presented 

in Figure 5 and it is evident that the process ended after 2-3 minutes; therefore, allowing to carry out such 

conversion process without shedding diamond particles due to drying of the aqueous solution in the chamber 

during the course of the transformation reaction. Furthermore, these data show that the introduction of the 

diamond particles did not substantially affect the absorption rate of phosphine (Figure 5). Consequently, the 

deposition of diamond particles did not create additional diffusional difficulties for the chemical process. 

Additionally the thickness of the copper phosphide was estimated to be about 4 µm from the amount of 

phosphine used (Equ. 3). 



Example of SEM image of a sample having a surface coated with a layer of diamond particles cemented in 

copper phosphide is shown in Figure 6. It reveals that the diamond particles were relatively uniformly 

distributed over the surface of the sample. However, some particles were not fully immersed in the copper 

solution, for these, only the surface closer to the metal surface was immersed, hence on their surface copper 

phosphide was absent. Some of these partially-hardened particles were weakly bound to the metal substrate, 

so they could be removed by shaking. Typically, the amount of such particles was 5-7% of the total deposited 

diamond particles; these particles could be re-used for spraying.  

For the production of coatings with improved physical and mechanical properties it is necessary to achieve 

absence of gaps, cracks, etc. between the dispersed particles and the metal of the matrix. In our process, the 

dispersed diamond particles were already deposited on the surface of the product and cemented there by a 

layer of copper phosphide. Also, the surface of most of diamond particles was coated with an electrically 

conductive film of phosphide. Therefore, a gap between metallic matrix and the diamond particles should not 

be present. The small number of particles, which were not covered by layer of copper phosphide (as discussed 

above) would also be embedded in metal [13].  

We studied the effect of the galvanically deposited copper film onto the diamond particles at different 

thickness. When the coating was applied at a thickness of 1 m (Figure 7) the surface layers of the diamond 

practically did not change, the presence of coating due to deposition of copper is imperceptible. Consequently, 

the copper deposition started from the layers closer to the surface of the initial (untreated) sample; this 

happens because the specific electrical conductivity of copper phosphide is 20 % IACS (International Annealed 

Copper Standard) [20]. Moreover, the cross-section of these layers is greater than thin layers of copper 

phosphide, which covered with diamond particles. The electrical conductivity of the layers closer to the surface 

of the initial (untreated) sample is higher than the electrical conductivity of the thin copper phosphide covering 

diamond particles. Hence, in accordance with Ohm law the current distribution in the lower layers is 

substantially higher than in the upper layers. 



A noticeable leveling of coating surface occurred when applying of a layer of copper in an amount resulting 

in a coating in thickness of 4 m (Figure 8). In this case, the surface was composed mainly of copper has shown 

by the spectra. The majority of the diamond particles were covered by the copper coating. The presence of 

phosphorus in the spectra indicated that, due to the small thickness of the coating, on some parts the scanning 

spot partially intercepted the signals of the lower layer of copper phosphide. Besides, it is more likely that 

copper phosphide was covering the particles and not the copper phosphide located directly on the surface of 

sample. A further application of copper was impractical because it led to a decrease in content of the diamond 

in the final composite coating. 

We obtained a copper-diamond coating of overall thickness equal to 10 m in which the content of the 

diamond was 27% (w/w) or 47% (v/v); this is significantly higher amount of diamonds in coating compared to 

existing methods where diamond content in the coating does not exceed 1-2% [13]. Another virtue of the 

process presented here is that, unlike gas-thermal and gas-flame techniques, it does not require high 

temperatures (on the order 700-1000 °C) and special expensive equipment.  

The hardness testing of samples showed that the diamond-containing composite coating increased the 

hardness of the sample of 52 units HB (Figure 9). It should be noted that the copper phosphide also positively 

influenced the hardness of the coating, but this effect was not significant, whilst the copper layer did not have 

any effect on the surface roughness. Such results were expected in virtue of the well known hardness of the 

individual components of the composite.  

It should be noted that obtaining a diamond containing coatings with matrix of other metals (such as 

nickel, chromium, iron) does not principally differ from the given technology. For example, the catalytic 

properties of copper phosphide also allow the use of metal electroless nickel plating process to build the 

matrix. 

4 Conclusions 



We proposed a novel method of embedding diamond particles in a composite coating, at first diamond 

particles are fixed on the surface of the metal substrate, and then these particles are coated with a metal 

matrix. 

In the first part of the process on the substrate surface a sorption layer of copper sulfate solution is created 

by dipping the sample in a corresponding solution. Then diamond powder is sprayed onto this surface layer; 

the quantity of retained powder depends only on its wettability. In this case, a flat surface of 1 cm2 sample hold 

1.6-1.9 mg diamond powder. Then, a low temperature gas-phase reaction between the phosphine and copper 

sulfate leads to the formation of metal-like copper phosphide in the spaces between the individual diamond 

particles. In this case the diamond particles are completely or partially submerged in solid phosphide.  . Pre-

consolidation of the diamond particles on the surface allows the electrodeposition of the matrix in 

conventional electroplating baths.Electrodeposition of a metal matrix follows; electroplating proceeds easier 

on the surface layers, where the layer of phosphide provides higher conductivity. In the outer layers, diamond 

particles that do not exhibit the phosphide coating are covered mechanically. The resulting composite coating 

has a thickness of about 10 microns, and it has high hardness. Repeating of the above operations can produce 

coatings with thickness of several tens of microns. 
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Table 1. Element analysis of diamond powder ACM brand 5 

 

Element Content, %( weight) 

C 99.6 

Si 0.25 

Ca 0.20 

Fe 0.04 

 

 



5 Figures caption 

 
Figure 1. SEM of diamond powder ACM brand 5 

 

Figure 2. Scheme of diamond-containing composite coatings formation. 

 

Figure 3. Scheme of the apparatus for applying diamond powder on the sample surface. 1 - vessel with a 

conical bottom, 2 - cover of the vessel, 3 – sample, 4 - diamond powder, 5 - compressor, 6 - venting 

 

Figure 4. Apparatus for determining the length of the conversion process of copper sulfate into the 

phosphide. 1 - reaction vessel; 2 - a cover of the vessel; 3 - sample; 4 - sealed sample chamber; 5 - cork; 6 - 

Vessel with phosphine gas; 7 - surge vessel; 8 - tap; 9 - stem to open tube; 10 - dimensional surge vessel. 

 

Figure 5. Phosphine absorption rate during the flow conversion reaction of copper sulfate into phosphide. 

Circles for coated diamond powder and squares for samples not coated with diamond powder. Open symbols 

for 200 g/l solution of copper sulfate and filled symbols for 100 g/l solution of copper sulfate. 

 

Figure 6. SEM of sample surface after applying of diamond powder and fixing (cementing) by copper 

phosphide. 

 



Figure 7. SEM of sample surface after applying a layer of copper, which provides on a smooth surface 

coating in thickness of 1 m. 

 

Figure 8. SEM of sample surface after applying a layer of copper, which provides on a smooth surface a 

coating in thickness of 4 m. (On the right the results of spectral analysis) 

 

Figure 9. Influence of coating composition on Brinell hardness of samples. 

 copper base uncoated 

        copper phosphide (10 m) 

        copper phosphide (4 m) + copper (6 m) 

        copper phosphide + diamond + copper (total 10 m)
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