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Abstract—Logistic volatility is considered to be an important
contributor to supply chain inefficiency. In this paper we in-
vestigate the amplification of order and inventory fluctuations
in a state-space model with stochastic lead time, ARMA(p,q)
demand and a proportional order-up-to policy. We derive the
exact distribution functions for order and inventory. For i.i.d.
Gaussian demand, we prove that the proportional outperforms
the classical order-up-to policy in reducing inventory and order
variances simultaneously. Numerical experiments are carried out
to show the complex interaction between demand correlation and
stochastic lead-time.

I. INTRODUCTION

We investigate the ability of the proportional order-up-to
policy to reduce variance amplification under stochastic lead
time. Variation in inventory systems is commonly generated
by uncertainties in demand, supply, transportation, and
manufacturing, and can be amplified by poorly designed
inventory control mechanisms [1] [2]. Variance amplification
in inventory systems, which can be understood as quadratic
costs representing diseconomies of scale [3], pose a large
threat to companies at the operational level. High order
variance (a.k.a. the bullwhip effect) brings more uncertainty
to the upstream supplier, and induces costs associated with
production adjustment and capacity utilization. High inventory
variance requires more safety stock to accommodate increased
stock-out risk, reducing supply chain efficiency.

Uncertainty in logistics, i.e., stochastic shipping delays, is
a major component of supply chain risks. In recent years,
production and distribution systems have become increasingly
global, exposing supply chains to more volatility than ever
before. Global transportation modes, such as air, truck, rail
and ocean freight, have long and variable lead times, due
to external factors such as seasonality effects, security and
customs delays and slow steaming. Uncertain lead-times
sometimes trigger another effect called order crossover, when
replenishments are received in a different sequence than they
were ordered. Whilst these two concepts do not necessarily
imply each other, a highly variable lead time often results in
order crossover [4] [5].

Fig. 1. Empirical evidence of global door-to-door shipping lead time from
USA to China

Both stochastic lead time and order crossover are common
in practice. Figure 1 contains data from a company who
manufacturers products in the USA and ships them in
China for assembly. The histogram shows statistics of the
transportation time used for 827 containers by truck and ship
between 2004 and 2011. We see the possible lead time ranges
from 3 to 11 weeks. The mode of lead time is 5 weeks which
has only a probability of 0.5. In the upright sub-figure, the
sequence of dispatches is compared to the sequence of the
receipt. It shows the change of the position of an order in
the dispatch and receiving sequences, from which we see a
significant number of order crossovers.

Ref. [6] classified the research on stochastic lead times into
three schools: The Hadley-Whitin School, which assumes
that the probability of order crossover is so small that it
can be totally ignored [7]. The Zipkin-Song School, which
assumes that goods are transported sequentially so that order
crossover cannot happen [4] [8]. And the Zalkind School,
which takes order crossover into account and discovers that
inventory cost as well as safety stock can be reduced by
considering this effect [9] [10] [11]. Our model is of the
Zalkind type since it allows order crossover. This kind of
model is firstly introduced by [12] and later [13], in which



they gave the correct expression for the distribution of the
number of outstanding orders. Ref. [9] determined the optimal
target inventory level to minimize total cost. Ref. [14] showed
the importance of considering order crossover when setting
safety stock. Ref. [10] pointed out that order crossover has
a significant impact on inventory control and should not
be ignored. The aims of these studies are either to derive
(approximate) relevant distributions or to decide safety stock
level parameters. Others have investigated the bullwhip effect
with stochastic lead time, adopting the assumptions of i.i.d.
demand and the order-up-to policy [15] [16].

The proportional order-up-to policy proved to be effective
at smoothing the bullwhip effect, at a cost of amplified
inventory variation [17] [18] [19] [20]. However, most studies
on the bullwhip effect require at least a predictable, if not a
constant, lead time; while existing research on stochastic lead
time problems do not explicitly tackle the bullwhip problem.
To fill these gaps, we answer two sequential problems: (i)
How are orders and inventory distributed under stochastic
lead-time and correlated demand? (ii) Can the proportional
ordering policy help to reduce these variances?

Our research is descriptive rather than prescriptive
in the sense that we seek to understand two known
replenishment policiesthe order-up-to and proportional
order-up-to policyrather than to seek optimal policies for a
given objective function. That said, the order-up-to policy is
known to be inventory cost optimal for constant lead-time
or stochastic lead-time without crossover. We will show the
proportional policy outperforms the order-up-to policy under
a stochastic lead-time with order crossovers for quadratic
objectives. Its optimality is beyond the scope of this paper.
We note that the linear proportional policy: allows us to
completely characterize the solution; is implementable in the
real world [21]; and is easy to incorporate into enterprise
resource planning systems.

The contribution of this research lies in the following
aspects. Firstly, we derive the density functions of orders and
inventory under the proportional order-up-to policy, stochastic
lead time and general ARMA(p,q) demand using state space
techniques. Secondly, we give a necessary condition for
the optimality, based on which we find that the classical
order-up-to policy is never optimal at minimizing inventory
variance when order crossover is present. The most significant
discovery is that the trade-off between order and inventory
variability [17] may be broken by the proportional policy in
an order crossover environment.

The paper is organized as follows. In Section 2 we introduce
basic notation and models of the demand and ordering policies;
Section 3 contains the main results, which include an exact
approach to obtain the distribution of order and inventory,
and conditions for the optimality of the order-up-to policy;
in Section 4 we observe the impact of demand correlation,

forecasting method and lead time uncertainty via numerical
experiments. Concluding remarks are given in Section 5. Due
to space limitation we omit the proofs of all the mathematical
derivations, which will be available upon request.

II. MODELING THE DEMAND AND ORDERING POLICY

We focus on a periodic review system where the system
states are defined in the real field <. Lead time is a discrete
i.i.d. process with an arbitrary distribution. Denote Σxy(τ) as
the mutual correlation function between the random variables
x and y. Specifically, Σxx(τ) is the auto correlation function of
x. When τ = 0, Σxx(0) equals the variance of x. Sometimes
we write this as Σxx if no other confusion would occur. E(x)
or d is the expectation of x, and xT is the transpose of x. The
notation of system variables is: d for demand; o for order; i for
inventory (on-hand); w for work-in-process (WIP, inventory-
on-order, total outstanding orders); ss for safety stock; L is
the lead-time; L+ and L− are maximum and minimum lead-
times. pl represents the probability that the lead-time of an
order is l, that is, an order made at time t completes at time
t+ l. Other notation will be introduced when necessary.

A. The demand process

An ARMA(p,q) demand can be formulated as a constant d
plus a zero mean ARMA(p,q) process, dt = zt + d, where

zt = φ1zt−1 + · · ·+ φpzt−p − θ1εt−1 − · · · − θqεt−q

Here {εt} is a Gaussian white noise process. Let m =
max(p, q + 1) and θj = 0 for j = q + 1, . . . ,m; φj = 0
for j = p+1, . . . ,m. Introduce another m-dimensional vector
y such that

yj,t = φjzt−1+· · ·+φmzt+j−m−1−θjεt−1−· · ·−θmεt+j−m−1

yj,t is the jth element of yt, j = 1, 2, . . . ,m. With this
definition we can transform the ARMA demand model into a
canonical state space form

yt = Ayt−1 +Bεt, zt = Cyt (1)

Here A is an m×m left companion matrix with Aj1 = φj
and Aj,j+1 = 1. B = (1 − θ1 · · · − θm−1)T and C =
(1 0 · · · 0).

The auto correlation of y, the stochastic component of
demand, satisfies

Σyy = AΣyyA
T +BBT (2)

The solution of (2) can be obtained by the Kronecker
product:

vec(Σyy) = (I −A⊗A)T vec(BBT ) (3)

in which ⊗ denotes the Kronecker (tensor) product of matri-
ces and vec(·) is the matrix column-wise stacking operation. I
is the identity matrix with appropriate dimension. Both the



lead time distribution and demand correlation are assumed
to be known in advance. In practice this can be realized by
statistically analyzing historical data.

B. The proportional order-up-to policy
We study the proportional order-up-to policy, which can

be formed by adding a proportional controller into the
inventory position feedback loop of the order-up-to policy.
This policy has been studied by [22] [23] [24] [17]. We start
from the classic order-up-to policy under constant lead-time
before introducing the proportional order-up-to policy under
stochastic lead-time. We assume negative orders are allowed,
which is known as the costless return assumption and is
commonly seen in the literature [1].

The order-up-to policy can be written as

ot = St − IPt
where St is the time-varying order-up-to level equal to the

sum of the lead-time demand forecast and safety stock, St =
D̂t+ss. ss is a constant related to the variance of the forecast
error over the lead time and review period and the desired
inventory service level. Under constant lead-time L, D̂t =∑L
k=1 d̂t,k, where d̂t,k is the k-period ahead demand forecast

made at time t. The order-up-to policy can be rewritten as

ot = d̂t,L + (ss+ ŵt − it − wt)

where ŵt =
∑L−1
k=1 d̂t,k and wt =

∑L−1
k=1 d̂ot−k

. Since
E(i) = ss and E(w) = E(ŵ) = (L−1)d, ss and ŵt serve as
the target inventory level and the (time-varying) target WIP
level respectively.

The proportional order-up-to policy is formed by adding a
proportional controller 1 − λ to the second term (feedback
term), λ ∈ (−1, 1):

ot = d̂t,L + (1− λ)(ss+ ŵt − it − wt) (4)

In other words, the order quantity equals the L-step-ahead
demand forecast plus a fraction of the discrepancy between
target and actual inventory positions. Since the lead-time
is a discrete i.i.d. random variable with known distribution,
the demand forecast and target WIP level are calculated as
averages over all possible lead-time values:

d̂t,L =

L+∑
k=L−

pkd̂t,k, ŵt =

L+∑
l=L−

pl

l−1∑
k=1

d̂t,k (5)

Rearranging (4) yields

ot = ft + (1− λ)(ss− it − wt) (6)

where ft is the forecast term

ft =

L+∑
k=L−

pkd̂t,k + (1− λ)

L+∑
l=L−

pl

l−1∑
k=1

d̂t,k (7)

C. The MMSE forecasting policy

We assume the firm adopts a minimum mean squared error
(MMSE) forecast which minimizes the squared forecast error
for a given ARMA process, as its name suggests. The MMSE
k-step ahead forecast for y can be calculated in state space
form as

ŷt,k = Akyt (8)

where Ak is the matrix A raised to its kth power. The k-
step ahead forecast of z and d are then simply d̂t,k = ẑt,k
and ẑt,k = Cŷt,k. From (8) we see that the MMSE forecast
is linear, which enables us to rewrite ft as a linear function
of yt, i.e., ft = yt + (L− λL− λ)d. The second term is the
expectation of (7) as E(y) = 0. F is the forecasting vector
which equals

F =

L+∑
k=L−

pkCA
k + (1− λ)

L+∑
l=L−

pl

l−1∑
k=1

CAk

The variance of forecast takes the quadratic form:

Σff = FΣyyF
T

D. The balance equations

The balance equations for inventory and WIP are

it = it−1 + ot−l − dt, wt = wt−1 + ot−1 − ot−l (9)

We also have

E(o) = d,E(IP ) = ss+ (L− 1)d (10)

REMARK 1. The Principle of Separation [25] asserts that
the optimal stochastic control problem can be separated to
an optimal forecasting problem and a deterministic optimal
control problem based on the forecast. This assists in
understanding the structure of (6).

REMARK 2. The proportional order-up-to policy given by
(6) and (7) together generalizes the classical order-up-to policy
by adding a proportional feedback controller 1−λ and taking
into account the stochastic lead time. When λ = 0, the
proportional order-up-to policy degenerates into the classical
order-up-to policy. However for the purpose of clarification
we unanimously refer to the proportional order-up-to policy
as settings where λ 6= 0 in the remaining text.

III. DISTRIBUTIONS OF ORDERS AND INVENTORY

A. Revisiting the constant lead-time case

For illustration purposes, we will first introduce some well-
established results showing the trade-off between order and
inventory variance under constant lead-time. The demand
is assumed to be i.i.d. but the trade-off also exists under
correlated demand.

Lemma 3.1:



(Trade-off between order and inventory variance)
Assuming i.i.d. demand, constant lead-time L and propor-

tional order-up-to policy 6, the order and inventory variances
are

Σoo =
1− λ
1 + λ

Σdd

Σii =

(
λ2

1− λ2
+ L

)
Σdd

The following observations can be made from Lemma 3.1.
(i) The optimal λ for minimizing Σoo and Σii are 1 and 0
respectively. In other words, the order-up-to policy minimizes
Σii; proportional order-up-to policy is able to reduce Σoo at
a cost of increased Σii. (ii) Σoo is independent of lead-time
while Σii is not. (iii) Both Σoo and Σii are independent with
average demand.

B. Covariance functions of the orders

The following proposition gives the auto- and mutual-
covariance function between y and o which is required to
calculate the distribution of inventory.

Proposition 3.2:
(Covariance of orders)
For demand process given by (1), the ordering policy by

(6) and the inventory evolution by (9), we have:

Covariance between the demand and orders:

Σyo = (I − λA)−1(I −A)ΣyyF
T+

(1− λ)(I − λA)−1ΣyyC
T

(11)

Autocorrelation function between demand and orders:

Σyo(τ) = AτΣyo(0) (12)

Variance of the orders:

Σoo =
2

1 + λ
F (I − λA)−1(I −A)ΣyyF

T+

2λ

1 + λ
F (A− I)(I − λA)−1ΣyyC

T+

2

1 + λ
C(I − λA)−1(I −A)ΣyyF

T+

1− λ
1 + λ

C(I + λA)(I − λA)−1ΣyyC
T

(13)

Autocorrelation function of orders:

Σoo(τ) = [FA+ (1− λ)CA− F ] Σyo(τ − 1) + λΣoo(τ − 1)
(14)

When demand is normally distributed, the orders are also
normally distributed with the density function ψo:

ψo = ϕ
(
d,Σoo

)
ϕ
(
µ, σ2

)
is the probability density function (PDF) of a

normal distribution with mean µ and variance σ2. The average

of ordering quantity is not affected by the stochastic lead-
time. However the stochastic lead-time affects the variance of
orders through the forecasting vector F . 3.2 not only gives
the variance of orders, but also the auto/mutual covariance
functions between y and o which is essential in calculating
the inventory variance. In the rest of the paper the terms and
order variance and bullwhip will be used interchangeably.

C. Distribution of inventory under stochastic lead-time

To calculate the inventory distribution we must first
explain how it is affected by the stochastic lead time in
terms of the outstanding order status. Under a fixed lead
time scenario, whether ot−τ is outstanding at time t is
deterministic. However, if lead time is stochastic then this
status becomes probabilistic. Specifically the outstanding
status of ot−1, ot−2, . . . , ot−L++1 determines the distribution
of wt and it. It is convenient to introduce a binary row
vector ξ with L+ − 1 elements to express whether orders
ot−1, ot−2, . . . , ot−L++1 are outstanding or fulfilled time t.
The kth element of ξ, ξ(k) = 1 means the order placed at time
t− k is outstanding at t and ξ(k) = 0 means the order placed
at t−k is completed at t. k = 1, 2, . . . , L+−1. We name ξ the
vector of outstanding status or completion status. It is worth
noting that for any t, orders made before (and including)
t−L+ are fulfilled, i.e., ξ(k) = 0 for k > t−L+; orders made
after (and excluding) t − L− are outstanding, i.e., ξ(k) = 1
for k > t−L−. So L+− 1 dimensions suffice to describe the
current outstanding order status, in which L+ − L− elements
are stochastic and L− − 1 elements are deterministic and
equal to one. Since each element in ξ is Boolean, it has
2L

+−L−
possible realizations, which we denote as ξj . Here

the subscript j indexes all possible realizations of vector ξ,
which should not be confused with ξ(k), the kth element of ξ.

The basic idea here is that in the long term, the WIP (and
inventory) process can be seen as a composition of 2L

+−L−

sub-processes, which are conditional on the outstanding
status. In every period of each one of the sub-processes,
the outstanding status of orders is identical and can be
represented by ξ. In other words, all the elements in each
sub-process are stationary and normally distributed. After
identifying the characteristics of the sub-processes which are
mutually independent (because lead-time is independently
distributed), we can derive the distribution function of the full
process. For each sub-process, the variance of WIP, inventory
and the covariance between order and WIP are dependent on
ξ and will be denoted as Σww(τ ; ξ), Σii(τ ; ξ) and Σow(τ ; ξ)
from now on.

EXAMPLE. Consider the lead time distribution:
pk = 1/3, k = 1, 2, 3. The second line in Table I is a
realization of the stochastic lead time for each order over
10 periods. As L+ = 3 we start investigation from period
3. Since the lead time for o1 and o2 are both 3, at period
3 they are both outstanding. At period 4, o1 has arrived
and so does o3, which has a lead time of 1. The only



TABLE I
EXAMPLE OF STOCHASTIC LEAD TIME AND OUTSTANDING ORDERS

Period 1 2 3 4 5 6 7 8 9 10

Order lead-time 3 3 1 3 2 1 1 3 1 2

Outstanding orders - -
ot−2

ot−1
ot−2 ot−1

ot−2

ot−1
None None ot−1 ot−2

Outstanding status - - (1,1) (1,0) (0,1) (1,1) (0,0) (0,0) (0,1) (1,0)

outstanding order would be o2. At period 5, o2 has arrived
and o4 is outstanding. This constitutes the third line of Table I.

The WIP with the same outstanding orders are identically
distributed, e.g., periods 3 and 6, periods 4 and 10, period 5
and 9, periods 7 and 8. Thus there are several sub-processes
(4 in this example as 23−1 = 4) in the WIP process. Each
of the sub-processes is characterized by an outstanding status
vector ((1,1), (1,0), (0,1) and (0,0)), shown in the last line of
Table I. Since the distribution of inventory is the convolution
of ft, ot and wt, and both ft, ot are independent of the lead
time realization, the inventory process can also likewise be
decomposed into several sub-processes.

We use p(ξ) to denote the probability of ξ, which is also the
proportion of the sub-process characterized by ξ in the entire
process. Ref. [9] offered a simple approach to calculate p(ξ):

p(ξ) =

L+−1∏
k=1

{
[1− ξ(k)] ΨL(k) + ξ(k)ΨL(k)

}
(15)

ΨL(·) is the cumulative distribution function (CDF) and
ΨL(·) = 1 − ΨL(·) is the complementary CDF of the lead
time.

Work-in-process at time t equals to the sum of all outstand-
ing orders at time t, i.e.,

wt(ξ) =

L+−1∑
k=1

ξ(k)ot−k

The above equation shows that WIP is a random sum of
random variables under ARMA demand and the proportional
order-up-to policy, except that these random variables (the
orders) are inter-correlated. Thus, for expectations of WIP
and inventory sub-processes with respect to order completion
status and safety stock, we have

E(w; ξ) =

L+−1∑
k=1

ξ(k)d = ξ1d

E(i; ξ, ss) = ss+ (L− ξ1− 1)d

1 is an unit column vector. ξ1 is the number of outstanding
orders under ξ. Note for different ξ, the number of outstanding
orders can be the same. We show from the above analysis

that the WIP and inventory distributions are summations of
appropriately weighted normal distributions:

E(w; ξ) =

L+−1∑
k=1

ξ(k)d = ξ1d

E(i; ξ, ss) = ss+ (L− ξ1− 1)d

We are now ready to calculate the inventory variance.
Proposition 3.3:
(Variance of inventory)
The variance of inventory is given by

Σii =
Σff + Σoo − 2FΣyo

(1− λ)2

+

L+−1∑
k=1

βk

[
Σoo + 2

Σoo(k)− Σyo(k)

1− λ

]

+

L+−2∑
k=1

γkΣoo(k) + d
2
ΣNN

(16)

where
βk = ΨL(k)

γk = 2

L+−k−1∑
j=1

ΨL(j)ΨL(j + k)

ΣNN =
∑
j>k

p(ξj)p(ξk)(ξj1− ξk1)2

The first term of (16) equals the inventory variance when
L = 1. The last term equals the inventory variance when
the demand is constant, i.e., d ≡ d. It can be seen that
larger mean demands increase the inventory variance under
stochastic lead times. This is contrary to the deterministic
lead time case that the demand level does not affect the
inventory variance. Moreover, since the inventory distribution
ψi is a summation of several normal distributions, it does not
have to be, and almost never is, normally distributed. It is a
multi-modal distribution as long as the lead time is random
and d is non-zero.

The above approach to calculate inventory variance needs
the lead time to be bounded, which is practically plausible.
If the lead time follows an unbounded theoretical distribution,



e.g., Poisson or compound Poisson, it could pose extra difficul-
ties in computation. As pointed out by [10] this would require
calculating an infinite sum of random variables. However, for
any desired accuracy, our approach can always be extended to
generate a satisfactory approximation.

D. Optimization of the feedback controller

In this section we give a necessary condition for the order-
up-to policy (λ = 0) to be optimal at reducing Σii. The
condition is based on the optimality condition of the first
derivative, . For ARMA demand and stochastic lead time, we
have the following proposition:

Proposition 3.4:
(Order-up-to sub-optimality) Under i.i.d. demand, MMSE

forecast and order crossover, the order-up-to policy is not
optimal in reducing Σii.

Proposition 3.4 contradicts Lemma 3.1 when order
crossover is present. In all the inventory sub-processes charac-
terized by the vector ξ, those which represent order crossover
(when there is at least a 1 on the left side of a 0) all can be
minimized by a λ > 0. Those without crossover are minimized
by λ = 0. Therefore the full inventory process, which is
constituted by all the sub-processes, is minimized by a λ > 0.

IV. NUMERICAL EXPERIMENTS

In this section we conduct numerical experiments to demon-
strate our analytical results above, and to show the mixed
impact of stochastic lead-time, order crossover and demand
correlation. In the experiments the expected demand is 5 units
per period. In Table II and Table III we compare inven-
tory variance and bullwhip under the order-up-to policy and
optimized proportional order-up-to policy. Demand follows
an i.i.d. process in Table II, and an AR(2) process with
φ1 = 0.6 and φ1 = −0.9 in Table III. We consider 10 different
lead-time distributions (see Figure 2). There are both non-
crossover (i, ii) and crossover (iii-x) scenarios. In the crossover
scenarios we further investigate several distributions where
lead-time variability gradually increases. We start with low
variability distributions (iii, vii), to higher variability (iv, viii),
uniform (v, ix) and then two-point distributions (vi, x). Once
we have obtained the expressions for inventory variance, the
optimal feedback parameter 1−λ∗ can be solved numerically.
We observe the values of optimal controllers in minimizing
inventory variance. Then we compare the inventory variance
and the bullwhip, in order-up-to and optimized proportional
order-up-to scenarios.

First of all, we can observe that the stochastic lead-time
affects the optimal controller selection only when there is
order crossover. When crossover is not present (cases i and ii),
the optimal controller to minimize inventory variance is unity
and the proportional order-up-to policy does not reduce either
the inventory variance or the bullwhip effect. However, for the
order crossover scenarios (iii-x), an optimized proportional
order-up-to policy is able to mitigate the bullwhip effect
significantly while mildly reducing the inventory variance.
This implies that the trade-off between the bullwhip effect

Fig. 2. Lead-time distribution scenarios in the numerical experiment

and inventory variability can be broken by the proportional
policy in order crossover scenarios. The reduction in bullwhip
is more considerable when lead-time volatility is high, e.g.,
when it follows a two-point distribution (cases vi and x).
When the lead-time is less variable, the optimal controller
gets closer to unity, and the benefit of proportional policy
becomes smaller.

For illustration purposes, we have plotted the inventory
variance and bullwhip w.r.t. λ for case vi (see Figure 3,
where the scales are adjusted) under i.i.d. demand. The
existence of minimal Σii and the monotonicity of Σoo can
be clearly seen. The inventory variance reaches minimum
while λ = 0.13 whereas the bullwhip decreases with λ.
So setting λ to 0.13 reduces both inventory variance and
bullwhip (compared to λ = 0). As λ increases, the bullwhip
will continue to decrease; however this comes with increased
inventory variance (e.g. when λ > 0.26).

The benefit of proportional policy on order and inventory
variance is obviously asymmetric. This can be explained as
follows. The inventory distribution is multimodal with modes
separated by d. While 1 − λ∗ reduces the variance of each
mode, it has no effect on the mode separation. Therefore
when we determine the variance of the whole inventory
distribution, it is dominated by d. The order distribution
is unaffected by d and is a unimodal normal distribution;
because of this the influence of 1 − λ∗ on order variance is
more substantial.

When the demand follows an autoregressive process,
similar observations can be made (Table III), the most
obvious difference being that the demand auto-correlation
has a distortion effect on the relationship between lead-time
volatility and the benefit of the proportional policy. Sometimes



TABLE II
OPTIMAL FEEDBACK CONTROLLER AND SYSTEM VARIABILITY WITH DIFFERENT LEAD TIME DISTRIBUTIONS AND I.I.D. DEMAND

Lead-time distribution OUT (1 − λ = 1) POUT % Σii

Reduction
% Σoo

Reduction
No. Description Σii Σoo 1 − λ∗ Σii Σoo

i L− = L+ = 1 p1 = 1 1 1 1 1 1 0.00 0.00

ii L− = 1, L+ = 2 p1 = 0.5, p2 = 0.5 7.75 1 1 7.75 1 0.00 0.00

iii

L− = 1, L+ = 3

p1 = 0.1, p2 = 0.8, p3 = 0.1 6.50 1 0.99 6.50 0.98 0.00 2.00

iv p1 = 0.2, p2 = 0.5, p3 = 0.3 11.35 1 0.95 11.35 0.91 0.00 9.00

v pl = 1/3, l = 1, 2, 3 13.11 1 0.92 13.10 0.85 0.08 15.00

vi p1 = 0.5, p3 = 0.5 14.50 1 0.87 14.47 0.76 0.21 24.00

vii

L− = 1, L+ = 4

p1 = 0.05, p2 = 0.45,
p3 = 0.45, p4 = 0.05

11.12 1 0.96 11.12 0.92 0.00 8.00

viii p1 = 0.2, p2 = 0.3,
p3 = 0.3, p4 = 0.2

16.75 1 0.88 16.73 0.78 0.12 22.00

ix pl = 1/4, l = 1, 2, 3, 4 18.13 1 0.86 18.09 0.75 0.22 25.00

x p1 = 0.5, p4 = 0.5 21.25 1 0.79 21.14 0.65 0.52 35.00

TABLE III
OPTIMAL FEEDBACK CONTROLLER AND SYSTEM VARIABILITY WITH DIFFERENT LEAD TIME DISTRIBUTIONS AND AR(2) DEMAND

Lead-time distribution OUT (1 − λ = 1) POUT % Σii

Reduction
% Σoo

Reduction
No. Description Σii Σoo 1 − λ∗ Σii Σoo

i L− = L+ = 1 p1 = 1 1 7.05 1 1 7.05 0.00 0.00

ii L− = 1, L+ = 2 p1 = 0.5, p2 = 0.5 9.65 7.42 1 9.65 7.42 0.00 0.00

iii

L− = 1, L+ = 3

p1 = 0.1, p2 = 0.8, p3 = 0.1 8.73 4.19 0.99 8.73 4.13 0.00 1.43

iv p1 = 0.2, p2 = 0.5, p3 = 0.3 14.43 2.64 0.94 14.42 2.43 0.07 7.95

v pl = 1/3, l = 1, 2, 3 16.50 2.16 0.91 16.48 1.87 0.12 13.43

vi p1 = 0.5, p3 = 0.5 18.37 1.24 0.85 18.32 0.92 0.27 25.81

vii

L− = 1, L+ = 4

p1 = 0.05, p2 = 0.45,
p3 = 0.45, p4 = 0.05

14.15 2.26 0.95 14.15 2.15 0.00 4.87

viii p1 = 0.2, p2 = 0.3,
p3 = 0.3, p4 = 0.2

20.51 1.05 0.86 20.48 0.83 0.15 20.95

ix pl = 1/4, l = 1, 2, 3, 4 21.98 0.83 0.85 21.94 0.60 0.18 27.71

x p1 = 0.5, p4 = 0.5 24.45 1.13 0.79 24.42 0.94 0.12 16.81

(e.g. in cases vii and viii) the proportional policy is more
effective of reducing bullwhip and inventory under a less
volatile lead-time distribution. Another effect of demand
correlation is that the lead-time distribution now affects the
bullwhip effect via the need for forecasting lead-time demand.
As a consequence, it is possible that high lead-time variability
can actually reduce bullwhip.

To further investigate the mixed effect of correlated
demand and stochastic lead-time, we have calculated the
inventory variance and bullwhip when demand is a first order

autoregressive process AR(1) (See Figure 4). The correlation
is either positive (φ = 0.6) or negative (φ = −0.9).
The lead-time follows a two-point or uniform lead-time
distribution where L− is set to be 1 and L+ varies from
2 to 10. Sub-figures (a) and (c) show the performance of
the order-up-to policy when = 0, and (b) and (d) show the
optimized proportional order-up-to policy when λ = λ∗.
From (a) and (b), we see that the inventory variance is
strongly influenced by the lead-time variance (which is
dominated by L+) for both the two-point and the uniform
lead-time distributions. Positive demand correlation leads to



Fig. 3. Inventory variance and bullwhip in Case vi

Fig. 4. Inventory and order variances when demand is an AR(1) process

higher inventory variance, and negative correlation creates
an odd-even effect between lead-time and inventory variance
(which is somewhat masked by the trend).

(c) and (d) show the corresponding bullwhip values
under the order-up-to and proportional order-up-to policies,
using the same λ values in (a) and (b). The impact of the
stochastic lead-time on order variance is not as decisive as
on inventory variance, due to the fact that the lead-time
distribution only affects the forecast of lead-time demand
in the order calculation (6). Comparing the two-point and
uniform lead-time distributions when demand is positively
correlated, we see that low lead-time variance actually causes
high order variance. Additionally, positive correlation still
increases the order variance, and the fluctuation induced by
negative correlation is more obvious. Most importantly, notice
again that a large reduction of order variance can be achieved
by optimizing the inventory variance, and that such reduction

increases with the lead-time variability and the correlation
coefficient.

Figure 5 illustrates how λ∗ changes with L+ when the lead-
time follows a uniform distribution under different demand
correlation. Again we see that the order-up-to policy is optimal
when L+ = 1 and L+ = 2. When L+ > 2, generally λ∗

increases with lead-time variability, which is especially true
when demand is i.i.d. or positively correlated. This explains
why the reduction of bullwhip is more significant for high
lead-time variability and positive demand correlation. Under
negatively correlated demand, the optimal λ shows a periodic
oscillating pattern along with an increasing trend. Under the
more complicated AR(2) demand, the oscillation is less pro-
nounced and has a low frequency but still can be seen, whereas
the increasing trend persists. Moreover we can notice that
under some correlated demand, (for example when φ = 0.9
and L+ = 3). When λ∗ < 0 the tradeoff between bullwhip and
inventory variance is restored, i.e., reducing inventory variance
will increase bullwhip. However extensive calculations suggest
that this effect rarely happens.

Fig. 5. The relationship between λ∗ and L+ when lead-time follows a
uniform distribution

Lastly, we have calculated the optimal proportional policy
under a real-life lead-time distribution shown in Figure 1,
with demand following a range of ARMA processes. Table
IV shows the result. Once again we see the ability of the
proportional policy to reduce order and inventory variances
simultaneously. However due to the relatively low lead-time
variability and demand correlation, such benefit is sometimes
less significant.

V. CONCLUSION AND DISCUSSION

Based on our personal experience of observing a stochastic
lead time in practice, we studied its effect on system variances
with correlated demand. Given a known (or perceived) lead
time distribution and demand correlation information, we
presented a state-space approach to calculate the inventory
variance and proved that the proportional policy outperforms



TABLE IV
OPTIMAL FEEDBACK CONTROLLER AND SYSTEM VARIABILITY WITH A REAL-LIFE LEAD TIME DISTRIBUTION

Demand type
OUT (1 − λ = 1) POUT % Σii

Reduction
% Σoo

Reduction
Σii Σoo 1 − λ∗ Σii Σoo

i.i.d. 14.28 1 0.92 14.27 0.84 0.07 15.87

AR(1), φ = 0.6 20.59 4.96 0.91 20.55 4.24 0.19 14.52

AR(1), φ = −0.9 13.21 0.28 0.96 13.21 0.27 0.00 3.57

AR(2), φ1 = 0.6, φ1 = −0.9 16.94 1.49 0.95 16.94 1.48 0.01 0.29

ARMA(1,1), φ = 0.6, θ = −0.9 37.63 16.60 0.91 37.48 14.26 0.40 14.10

the classical order-up-to policy in reducing both order and
inventory variations.

The impact of order crossover has been revealed. Ref. [9]
and [10] previously showed that when the probability of order
crossover is zero, the distribution of the shortfall and that
of the lead time demand is identical. We went on to show
that the optimality of order-up-to policy is also contingent on
order crossover rather than on the randomness of lead time.
We have shown that when order crossover is present, the
classical order-up-to policy is no longer optimal at minimizing
inventory variance. When order crossover is not present (e.g.,
when lead time follows a two-point distribution with adjacent
values), the classical order-up-to policy is optimal at reducing
inventory fluctuation. However it is worth pointing out that
in most cases stochastic lead time does infer order crossover.

This finding directly leads to the conclusion that the
proportional policy is able to achieve reduce inventory related
costs and smooth orders simultaneously, which have long been
considered as conflicting objectives [23] [17]. The extent of
order smoothing depends on the value of optimal proportional
controller, which is further related to the lead-time distribution
and demand correlation. Numerical investigation shows that
the benefit of the proportional policy is more obvious when
the lead-time is more variable, e.g., when it follows a uniform
distribution or a nonadjacent two-point distribution, and
when demand is positively correlated. When the variability
of lead-time is low, the order smoothing effect will be
limited. When there is a strong negative correlation between
successive demands and L+ is small, the trade-off between
order and inventory variance may reappear. But the benefit of
the proportional policy remains in the majority of cases we
have investigated.

In Table V we summarize the properties of the inventory
system under conditions of constant lead-time, stochastic
lead-time without crossover and stochastic lead-time with
crossover. It can be concluded that the stochasticity of
lead-time affects the inventory distribution, and hence the
relationship between average demand and inventory variance.

Under stochastic lead-time, the density function of inventory
becomes multi-modal, and the demand level becomes a
significant contributor to inventory variation. On the other
hand, order crossover determines whether the classical order-
up-to policy is the proper choice for minimizing inventory
variance and inventory related costs. With order crossover, the
proportional order-up-to policy reduces inventory variance.
Given that the order variance decreases with λ, this also
reduces the order variance.

Managerially this result has interesting consequences.
One of the concerns of practitioners have when adopting a
proportional policy in their replenishment decisions is its
potential aggravating effect to the inventory related cost,
as Lemma 3.1 dictates. However, our finding suggests that,
under order crossover scenarios (which are quite common in
practice), this concern may not be necessary since inventory
variance can be reduced by proportional control (albeit
marginally), and this subsequently allows one to reduce order
variance considerably. Even if the proportional controller
is not set optimally due to statistical and computational
imperfections, the benefit of reducing bullwhip will arguably
outweigh the relatively small loss of increased inventory
cost. The intuition is that the bullwhip is always sensitive
to the proportional controller, but inventory variance will
be less sensitive, especially when the mean demand is large
and lead-time is highly variable. Therefore we conclude that
the proportional policy is increasing desirable with volatile
delays and positively correlated demand.

This research can be further developed in the following
directions. An exogenous lead time distribution is assumed
throughout this paper for simplicity. However in practice
businesses may be able to adjust transportation mode (and
hence the lead-time) based on system states. For example in
times of low stock or high demand, air freight could be used to
expedite replenishments. Thus it will be intriguing to incor-
porate dependence of transportation delay on system states.
From the theoretical perspective, a thorough understanding of
this problem calls for more knowledge on the mathematical
properties of the objectives, e.g. monotonicity and convexity of



TABLE V
SUMMARIZATION OF THE PROPERTIES OF DIFFERENT LEAD-TIME CONDITIONS

Constant lead-time Stochastic lead-time
without crossover

Stochastic lead-time
with crossover

Shape of inventory pdf The function is bell-shaped The function is multi-modal

Relationship of d and Σii
Inventory variance is independent
of average demand levels Inventory variance is dependent upon average demand levels

Optimal Policy for Σii Order-up-to policy minimizes inventory variance Proportional policy minimizes
inventory variance

Relationship of Σoo and Σii Minimizing inventory variance increases bullwhip Minimizing inventory variance
decreases bullwhip

the order and inventory variances w.r.t. λ for ARMA demand
and stochastic lead-times.
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