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Abstract 

This thesis describes the use of organoborate rearrangement reactions to generate 

quaternary carbon centres, with the ultimate goal of exploring new procedures for the 

asymmetric synthesis of chiral quaternary carbon centres. 

 

Chapter One: this chapter contains a historical review of the use of organoboranes in 

organic synthesis, focusing mainly on the use of boronic esters in asymmetric organic 

synthesis. 

 

Chapter Two: this chapter focuses on attempts at developing a catalytic method for 

the generation of quaternary stereocentres using migration reactions of boronic esters 

with n-butyllithium in the presence of chiral catalysts. This study showed that the 

reaction is stoichiometric in the absence of the Lewis acid. However, there were strong 

indications of catalytic turn over in some experiments. 

 

Chapters Three and Four: these chapters focus on attempts at designing a chiral 

version of the DCME reaction using sulfur compounds. Chapter Three focuses on 

attempts at evaluating a heterocyclic system, specifically a dithiane, as a stereocontrol 

agent in its reaction with trialkylboranes. The study showed that using 2-methoxy-1,3-

dithiane-oxide achieved formation of the double and triple migration product but in 

poor yield. Chapter Four contains a detailed investigation into the synthesis and 

evaluation of non-cyclic sulfur compounds such as sulfoxides, sulfoximines, sulfilimines 

and sulfones for generation of chiral tertiary alcohols. The study of the reaction of 

dichloromethyl phenyl sulfoxide with trialkylboranes showed a new type of aldol-like 

reaction. This reaction was utilised to synthesise a series of new compounds. Also, the 

study of the reaction of dichloromethyl-p-tolyl sulfone with trialkylboranes showed a 

new type of reaction by replacing the hydrogen with the alkyl group from the 

trialkylborane. Finally, the study of the reaction of N-methyl-S-(dichloromethyl)-S-

phenylsulfoximine with trialkylboranes showed production of the desired triple 

migration product in moderate to very good yield. 



  Preface 

iii 
 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to 

Imam Al-Mahdi 

 

 

 

 

 

 

 

  



  Preface 

iv 
 

Table of Contents 

Acknowledgements i 

Abstract ii 

Dedication iii 

Table of Contents iv 

1 1 

Chapter One: Introduction  

1.1 Introduction 2 

1.2 Boranes as Reducing Agents 2 

1.3 Alkylboranes 4 

1.4 Boronic Esters 5 

1.5 1,2-Metallate Rearrangement of Boron ‘Ate’ Complexes 5 

1.6 Asymmetric synthesis via Organoboranes 7 

1.7 Matteson’s Methodology (Substrate-Control) 9 

1.7.1 Utilisation of Matteson’s Methodology 12 

1.8 Aggarwal Methodology (Reagent-Control) 18 

1.8.1 Selected Applications of Aggarwal’s Methodology 21 

1.9 Blakemore Methodology (Reagent-Control) 25 

1.10 Catalytic Conjugate Addition 27 

1.10.1 Shibasaki Methodology 27 

2 ....................................................................................................................................1 

Chapter Two: Studies on a Catalytic Borylation Reaction 

2.1 Aim and Introduction 30 

2.2 Summary of the Work by the Jadhav Group 31 

2.3 Results and Discussion 35 

2.3.1 Synthesis of (4R,4'R)-2,2'-(Propane-2,2-diyl)bis(4-phenyl-4,5-

dihydrooxazole) 35 



  Preface 

v 
 

2.3.2 Synthesis of Dichloromethyl Boronic Acid Pincacol Ester 36 

2.3.3 Scavenging Lithium Chloride 37 

2.3.4 Evaluating the Influence of Amount of Lewis Acid 39 

2.3.5 Evaluating the Influence of the Amount of Chiral Ligand 40 

2.3.6 The Reproducibility of the Reaction and the Possibility of Catalytic 

Turnover  41 

2.3.7 The Effect of Temperature 42 

2.3.8 The Effect of the Solvent 44 

2.3.9 Determination of Stereoselectivity 44 

2.4 Computational Study 45 

2.5 Conclusion 47 

2.6 Experimental 48 

2.6.1 Synthesis of Dichloromethane Pinacol Boronate (87) 48 

2.6.2 Synthesis of (S)-Pinanediol (1-Chloropentyl)boronate (89) 49 

2.6.3 Synthesis of D-Phenylglycinol (92) 50 

2.6.4 Synthesis of N1,N3-bis((R)-2-Hydroxy-1-phenylethyl)-2,2-

dimethylmalonamide (93) 51 

2.6.5 General Procedures of Homologation Reactions 54 

2.6.6 Addition of 12-Crown-4 (96) 55 

2.6.7 Testing 2,2-bis((4S)-(–)-4-Isopropyloxazoline-2-yl)propane (97) 56 

2.7 Theoretical Methods and Details 56 

2.7.1 Selected Computational Data 57 

3 ..................................................................................................................................... i 

Chapter Three: Stoichiometric Studies on Dithiane Derivatives as DCME-like 

Reagents 

3.1 Aims and Introduction 62 



  Preface 

vi 
 

3.2 Results and Discussion 63 

3.2.1 Synthesis of 2-Methyl-N-(thiazolidin-3-ylmethylene)propan-2-amine (99) 

  63 

3.2.2 Synthesis of Dithiane Mono- or Di- Sulfoxide and Reactions with 

Trialkylboranes 64 

3.2.3 Reaction of trans-1,3-Dithiane-1,3-dioxide (104) with Trioctylborane 68 

3.2.4 Reaction of 2-Chloro-1,3-dithiane-1,3-dioxide (105) with Trioctylborane 

  69 

3.2.5 Synthesis of 2-Chloro-1,3-dithiane-1-oxide (108) and Reaction with 

Electrophiles 70 

3.2.6 Synthesis and Reactions of 2-Methoxy-1,3-dithiane-1-oxide (109) 71 

3.2.7 Possible Explanation of Formation of 119 76 

3.2.8 Synthesis and Reaction of 2-Thiophenyl-1,3-dithiane-1-oxide (110) 81 

3.2.9 Conclusion 81 

3.3 Experimental 82 

3.3.1 Preparation of 2-Methyl-N-(thiazolidin-3-ylmethylene)propan-2-amine 

(99)  82 

3.3.2 Preparation of 1,3-Dithiane-1-oxide (107) 83 

3.3.3 Preparation of trans-1,3-Dithiane-1,3-dioxide (104) 83 

3.3.4 Preparation of 2-Chloro-1,3-dithiane-1,3-dioxide (105) 84 

3.3.5 Synthesis of 2-Chloro-1,3-dithiane-1-oxide (108) 85 

3.3.6 Synthesis of 2-Thiophenyl-1,3-dithiane-1-oxide (110) 86 

3.3.7 Synthesis of 2-Methoxy-1,3-dithiane-1-oxide (109) 87 

3.3.8 Reaction of trans-1,3-Dithiane-1,3-dioxide (104) with Trioctylborane 88 

3.3.9 Reaction of 2-Chloro-1,3-dithiane-1,3-dioxide with Trioctylborane 89 

3.3.10 Reaction of 2-Chloro-1,3-dithiane-1,3-dioxide with tri-n-Octylborane 

Using HgCl2  90 



  Preface 

vii 
 

3.3.11 Reaction of 2-Methoxy-1,3-dithiane-1-oxide with Electrophiles 90 

3.3.12 Reaction of 2-Methoxy-1,3-dithiane-1-oxide with Trioctylborane 91 

3.3.13 Reaction of 2-Thiophenyl-1,3-dithiane-1-oxide with Trioctylborane 92 

3.3.14 Preparation of LDA, LiTMP and LiHDMS 92 

3.3.15 Preparation of LDA-LICKOR Superbase 93 

3.3.16 (3-(Butylsulfinyl)propyl)(methoxymethyl)sulfane (125) 93 

3.3.17 (3-(sec-Butylsulfinyl)propyl)(methoxymethyl)sulfane (119) 94 

3.3.18 Pummerer Rearrangement in the of Reaction of 2-Methoxy-1,3-dithiane-

1-oxide with Trioctylborane 95 

3.3.19 Gas Chromatograph (GC) Instrument Detail and Conditions 96 

4 ..................................................................................................................................53 

Chapter Four: Stoichiometric Studies on Dichloromethyl Sulfur Compounds as 

DCME-like Reagents 

4.1 Aims and Introduction 98 

4.2 Results and Discussion 100 

4.2.1 Reaction of Dichloromethyl Phenyl Sulfoxide (135) with Trialkylboranes

 100 

4.2.2 Attempts at Understanding the Mechanism and Generalisation of the 

Reaction  101 

4.2.3 Trapping the Intermediate 140 with Electrophiles 107 

4.2.4 Attempt at Reaction of the Anion 136 with n-Butylboronic Acid Pinacol 

Ester (152)  123 

4.2.5 Reaction of Trialkylborane with Dichloromethyl p-Tolyl Sulfone (153) 125 

4.2.6 Reactions with Sulfoximines 127 

4.3 Conclusion 138 

4.4 Experimental 141 

4.4.1 Preparation of Dichloromethyl Phenyl Sulfoxide (135) 141 



  Preface 

viii 
 

4.4.2 Reactions of Dichloromethyl Phenyl Sulfoxide with Trioctylborane 141 

4.4.3 General Procedure for Synthesis of 1-Chloroalkyl Phenyl Sulfoxides (141) 

  142 

4.4.4 Chloro(phenyl)methyl Phenyl Sulfoxide (141e) and 

Chloro(cyclopentyl)methyl Phenyl Sulfoxide (141f) 147 

4.4.5 Deuteriation of the Sulfoxide Enolate 147 

4.4.6 Reaction with n-Octyl-9-BBN 148 

4.4.7 Synthesis of Diphenyliodonium Triflate (150) 148 

4.4.8 Reaction with Diphenyliodonium Triflate 149 

4.4.9 Synthesis of Pinacol n-Butylboronic Ester (152)  149 

4.4.10 Reaction of Compound 135 with Boronic Ester 150 

4.4.11 Trapping the Sulfoxide Enolate with 3- or 4-R-Substituted Benzaldehydes 

  150 

4.4.12 Synthesis of 2,2-dichloro-1-phenyl-2-(phenylsulfinyl)-1-ethanol (146a) 169 

4.4.13 Synthesis of Dichloromethyl-p-Tolyl Sulfone (153) 170 

4.4.14 Reactions of Dichloromethyl-p-Tolyl Sulfone with Trialkylboranes 171 

4.4.15 Synthesis of S-Methyl-S-phenylsulfoximine(157) 173 

4.4.16 Synthesis of N,S-Dimethyl-S-phenylsulfoximine (158) 174 

4.4.17 Synthesis of N-Methyl-S-(dichloromethyl)-S-phenylsulfoximine (156) 174 

4.4.18 Reaction of N-methyl-S-(dichloromethyl)-S-phenylsulfoximine with 

trialkylboranes 176 

4.4.19 General Procedure of the Reaction of 156 with Organoboranes 180 

4.4.20 Preparation of S-methyl-S-phenyl-N-sulfonylsulfilimine (165) 184 

4.4.21 Preparation of S-(Chloromethyl)-S-phenyl-N-sulfonylsulfilimine (167) 185 

4.4.22 Formation of Tetrahydrofuran-2-yl-tolylsulfonamide (166) 185 

4.5 Theoretical Methods and Details 186 

4.5.1 Selected Computational Data 186 



  Preface 

ix 
 

5 ..................................................................................................................................53 

Chapter Five: Future Work 

5.1 Future Work 193 

6 ..................................................................................................................................53 

Chapter Six: References  

6.1 References 196 

 



  Preface 

x 
 

Abbreviations 

APCI  Atmospheric pressure chemical ionisation  

app  Apparent  

aq  Aqueous  

Ar  Unspecified aryl substituent  

9-BBN  9-Borabicyclo[3.3.1]nonane  

Bn  Benzyl  

b.p.  Boiling point  

BHC t-Butyl hypochlorite 

br  Broad  

Bu  Butyl  

Cat. Catalytic 

CI Chemical ionisation 

Cp  Cyclopentyl  

Cy  Cyclohexyl  

d  Doublet  

DCM  Dichloromethane  

DCME  Dichloromethyl methyl ether  

dd  Doubled doublet  

ddd  Doubled doubled doublet  

decomp  Decomposition  

DEPT  Distortionless Enhancement by Polarisation Transfer  

DMF  N,N–Dimethylformamide  

DMSO  Dimethyl sulfoxide  

dt  Doubled triplet  

e.e.  Enantiomeric excess  

EI+  Electron impact  

equiv.  Equivalent(s)  

ES  Electrospray  

Et  Ethyl  

EWG  Electron withdrawing group  



  Preface 

xi 
 

g  Gram(s)  

GC  Gas chromatography  

h  Hour(s)  

HPLC  High performance/pressure liquid chromatography  

HRMS  High resolution mass spectrometry  

Hz  Hertz  

i-Pr  Isopropyl  

lpc Isopinocampheyl 

IR  Infrared  

J  Coupling constant (in Hz)  

L  Litre  

LDA  Lithium diisopropylamide  

LiDBB  Lithium-4,4-di-tert-butylbiphenyl radical anion  

LiHMDS  Lithium bis(trimethylsilyl)amide 

lit.  Literature  

LiTMP  Lithium 2,2,6,6-tetramethylpiperidide  

LR  Low resolution  

m  Multiplet  

m-CPBA 3-Chloroperoxybenzoic acid 

Me  Methyl  

mg  Milligram(s)  

min  Minute(s)  

mL  Millilitre(s)  

mm  Millimeter(s)  

mmol  Millimole(s)  

m.p.  Melting point  

MS  Mass spectrometry  

NaHMDS Sodium bis(trimethylsilyl)amide 

n-BuLi  Normal butyllithium  

NCS N-Chlorosuccinimide 

NMO 4-Methylmorpholine N-oxide 



  Preface 

xii 
 

NMR  Nuclear magnetic resonance  

OTf Trifluoromethanesulfonate 

PDC Pyridinium dichromate 

pent  Pentet  

Ph  Phenyl  

ppm  Parts per million  

q  Quartet  

quat C  Quaternary carbon  

R  Undefined group  

r.t.  Room temperature  

sec  Secondary  

sept  Septet  

sex  Sextet  

t  Triplet  

TBAF  Tetra-n-butylammonium fluoride  

tert  Tertiary  

TFA  Trifluoroacetic acid  

TFAA  Trifluoroacetic anhydride  

TFEF  Trifluoroethyl formate  

Thexyl  2,3-Dimethyl-2-butyl  

THF  Tetrahydrofuran  

TLC  Thin layer chromatography  

TMP  2,2,6,6-Tetramethylpiperidine  

TPAP Tetrapropylammonium perruthenate 

UV  Ultraviolet  

 



 

 

 

 

 

 

 

 

 

 

 

1  

 

Chapter One 

Introduction  

 



Chapter One  Introduction 

2 
 

1.1 Introduction 

Asymmetric synthesis is fast becoming a major aspect of modern organic chemistry. 

The importance of enantiomerically-pure or enriched compounds in synthetic organic 

chemistry, natural product chemistry, medicinal chemistry, agricultural chemistry, 

pharmaceutical and agricultural industries has been one driving force in the 

investigation of improved control over the stereochemical output of organic 

reactions.1 Boranes and boronic esters are among the most widely used reagents in 

organic synthesis and have been extensively used for asymmetric synthesis. The 

progress in asymmetric organic synthesis using organoboranes was made mainly by 

Matteson2 and Aggarwal3 who utilised boronic esters and trialkylboranes to establish 

asymmetric methods to produce chiral secondary and tertiary alcohols. In spite of this 

progress, the methods are still far from being general for the synthesis of quaternary 

stereogenic centres. The work described in this thesis is an attempt to develop and 

optimise general procedures, both catalytically and stoichiometrically, via boronic 

esters and alkylboranes. The following is a literature review on the use of organoboron 

compounds in asymmetric organic synthesis. 

 

1.2 Boranes as Reducing Agents  

The simplest hydrogen compounds of boron, such as B2H6, B4H10, B5H11 and B10H14 

were first isolated and characterised by Alfred Stock over the period between 1910 – 

1930.4 However, boranes were not examined much as reagents in organic chemistry 

until 1939.5 Brown and his colleagues observed that aldehydes and ketones could 

react with diborane at 0 °C to produce alkoxyboranes and the corresponding alcohols 

after hydrolysis (Scheme 1.1).  
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Scheme 1.1: Reduction of Aldehydes by Diborane 

 

During and after World War II, Brown was able to prepare several hydride reducing 

agents. These include the very gentle sodium borohydride, and the more powerful 

lithium aluminium hydride.6 This variety gives the organic chemist the ability to reduce 

most functional groups selectively in the presence of other groups. A good example for 

the selective reduction is the synthesis of (R)-mevalonolactone (1) and 

(S)-mevalonolactone (2).7  

 

 

 

Scheme 1.2: Selective Reductions by two Different Borane Reagents 

 

Reduction of a carboxylic acid group can be achieved selectively first by converting the 

acid into an anhydride derivative and using borane to obtain, after cyclisation, 

compound 2. This is because the borane is more effective for reduction of the 

anhydride than for the ester group. In contrast, the reduction of the ester group in the 
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presence of the carboxylic acid group can be achieved by using lithium borohydride to 

produce, after cyclisation, compound 1 (Scheme 1.2). 

 

1.3 Alkylboranes  

Frankland synthesised the first trialkylborane in 1859 by the reaction of diethylzinc 

with triethoxyborane. In 1956, the first hydroboration of olefins was recorded in an 

attempt to enhance the reducing power of sodium borohydride in diglyme by adding 

anhydrous aluminium chloride to the solution.8,9 It was observed that this addition led 

to the hydroboration of olefins present in the substrate. Changing the Lewis acid to 

boron trifluoride etherate led to more effective hydroboration of olefins in THF. 

Preparation of complexes of boranes with THF or methyl sulfides, now commercially 

available in a wide range of different concentrations, made the hydroboration of 

olefins cleaner, with no production of inorganic salts or other undesirable side 

products.10 

Several interesting features have been observed over the course of the investigation of 

the hydroboration reaction: first, the addition proceeds to put boron at the least 

hindered end of a double bond; second, the reaction involves concerted cis-addition of 

the H-B bond and the addition proceeds from the less-hindered face of the double 

bond; third, there is no rearrangement of the carbon skeleton. These features mean 

that the outcome of hydroboration is highly predictable. For example, the 

hydroboration of -pinene leads to only one possible hydroborated isomer, 3 (Scheme 

1.3).11 

 

 

 

Scheme 1.3: Addition of Borane to an -Pinene 
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1.4 Boronic Esters
12–14 

Like alkylboranes, boronic esters are broadly useful synthetic intermediates for 

accomplishing carbon-carbon and carbon-heteroatom bond formations 

stereoselectively.2 The boronic esters are easier to handle than boronic acids as they 

are less polar. They are easily prepared by replacement of the hydroxyl groups of 

boronic acids by alkoxy, aryloxy or alkylenedioxy groups (Scheme 1.4). Because the 

reaction is in equilibrium, ester formation should be driven by removing the water 

produced either using azeotropic distillation or, alternatively, a dehydrating agent such 

as magnesium sulfate or molecular sieves.12 

 

  

 

 

Scheme 1.4: Synthesis of Boronic Esters 

 

Also, synthesis of boronic esters can be achieved by transesterification of smaller 

dialkyl boronic esters with removal of the more volatile alcohol by-product by 

distillation driving the exchange process. Air-sensitive alkylboronic acids can be 

converted into their corresponding cyclic esters by an alternative method which 

involves treatment of a diol with lithium trialkylborohydrides.13 

 

1.5 1,2-Metallate Rearrangement of Boron ‘Ate’ Complexes 

Trialkylboranes and boronic esters are classified as strong electrophiles because boron 

in such compounds suffers from electron deficiency in the sense of the Lewis octet 
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theory. The boron atom in these compounds is sp
2 hybridised and the vacant 

2p-orbital lies at right angles to the three boron-substituent bonds.15 Addition of 

nucleophiles, such as carbanions, to a boron compound forms an unstable 

tetracoordinate ‘ate’ complex which undergoes a 1,2-metallate rearrangement if one 

of the substituent groups has a leaving group on the attached carbon atom. 

1,2-Migration of one of the groups on boron with concomitant expulsion of the leaving 

group gives the migrated product. The migration occurs when the alkyl migrating 

group aligns anti-periplanar to the leaving group. This transformation usually takes 

place with retention of configuration of the alkyl migrating group (Scheme 

1.5).2,6,10,11,16  

 

B

R3

R2

R1

Y
X

MYX
B

R1R2

R3

B
R1R2

Y
X

MR3
M+

B Y

R3

R1
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'Ate' Complex

1,2-migration

-MX
or

 

 

Scheme 1.5: 1,2-Metallate Rearrangement of Boron ‘Ate’ Complex 

 

Depending on the reaction conditions and the nature of “YX”, which might have one, 

two or three leaving groups, the reaction can be utilised to achieve one, two or three 

1,2-migrations respectively. Subsequent oxidation produces aldehydes, ketones or 

tertiary alcohols as the products. Scheme 1.6 shows some selected examples of such 

transformations.11  
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Scheme 1.6: Selected Examples of 1,2-Migration Reactions 

 

1.6 Asymmetric synthesis via Organoboranes 

The two enantiomers of a chiral compound are differently recognised in biological 

systems. For many pharmaceuticals, it has been shown that often only one enantiomer 

has desirable biological activity, such as natural amino acids, which are all 

L-enantiomers, and the other is either totally inactive or toxic. In order to have a highly 

biologically active compound, it is highly desirable to synthesise the target compound 

in an enantiomerically pure form, with 100% enantiomeric excess (% e.e.).17 

Preparation of chiral compounds with well-defined three-dimensional stereochemistry 

is called asymmetric synthesis.18–21 Asymmetric syntheses can be classified into two 
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categories, enantioselective syntheses and diastereoselective syntheses. 

Enantioselective syntheses can be defined as when a chiral compound is synthesised 

from its achiral precursor using an enantioselective reagent or catalyst, while 

diastereoselective synthesis is the formation of a new stereogenic centre influenced by 

a stereogenic centre already present in the molecule. A vast number of new and 

increasingly efficient asymmetric synthesis methods have been developed during the 

last decade.17 Organoboranes and boronic esters are extensively studied as useful 

synthetic intermediates since they can be converted into almost every class of 

functionality present in organic molecules with complete stereospecificity. In 1961, 

Brown was the first to report a non-enzymatic asymmetric synthesis when 

hydroboration-oxidation of alkenes using (–)-diisopinocampheylborane (Ipc2BH) 

achieved a very high level of enantioselection in formation of the corresponding 

alcohols (4) (Scheme 1.7).22,23  

 

O

lpc2BH

O
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O

H

B(OEt)2

O

H
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O

 

 

Scheme 1.7: The First Non-Enzymatic Asymmetric Synthesis 

 

However, this method is not appropriate for the synthesis of tertiary alcohols, because 

hydroboration of a double bond delivers the boron moiety to the less-hindered 

carbon. Almost twenty years later, Matteson discovered a complementary route to 

chiral boronic esters (vide infra).24–26 Also, the past decade has seen the rapid 

development of homologation and alklylation of organoboranes and boronic esters by 

1,2-metallate rearrangement. What follows is a description of these discoveries in 

detail.  
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1.7 Matteson’s Methodology (Substrate-Control) 

Matteson opened up a wide new field in organoboron chemistry, when he utilised the 

1,2-metallate rearrangement of boronic esters to achieve good levels of 

diastereoselectivity (10:1 to 20:1).24–26 This diastereoselection could be achieved by 

three steps; firstly, synthesis of a chiral boronic ester 8 or 9, which can be obtained by 

esterification of alkyl boronic acids 6 or (-dichloromethyl)boronic acid 7 with a 

chiral diol, represented by the two R*OH groups; secondly, homologations either by 

insertion of a CHCl group from LiCHCl2 into the chiral alkylboronic esters 8 (path A on 

Scheme 1.8) or by addition of organometallic reagents to chiral 

(,-dichloroalkyl)boronic esters 9 (path B on Scheme 1.8) followed by 1,2-migration 

rearrangement of the resulting borate complex 10; and third, alkylation by reactions of 

the chiral (-alkyl)boronic ester 11 with Grignard reagents, which ultimately produce 

secondary boronic esters 13 via 12 (Scheme 1.8). 

 

 

 

Scheme 1.8: Matteson’s Homologation-Alkylation via Boronic Esters 
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Several observations were made during Matteson’s study of such reactions.27 Use of 

pinanediol boronic esters meant that the two paths, A and B, did not give the same 

stereochemical outcome. Path A was more stereoselective than path B. This is 

presumably because different diastereomeric mixtures of the borate 10 are formed in 

each case. This issue was tackled by using C2-symmetric boronic esters, which led to 

the same diastereomeric 1,2-migration rearrangement for both paths A and B with 

high diastereoselection. The rearrangement takes place when the reaction is warmed 

to room temperature. The replacement of chloride by an alkyl group, in the third step 

of alkylation with Grignard reagents, occurs with inversion of the stereochemistry at 

the carbon atom, and with retention of stereochemistry of the migrating alkyl group 

(R2). This homologation-alkylation process can be repeated to prepare several 

contiguous stereogenic centres. The opposite stereoisomers can be achieved, simply, 

by changing the order of introduction of the alkyl groups.  

More importantly, Matteson discovered that the presence of zinc chloride as a catalyst 

in the homologation step led to very high diastereoselectivity (≈100:1) in the borate 

complex rearrangement when warmed to room temperature.26 The explanation of 

these results was that the zinc chloride coordinates with the less-hindered oxygen and 

also with the departing chloride 16 (Scheme 1.9). Meanwhile, it is thought that a zinc 

chloride moiety interacts with the electrophilic C-H, which gives more stabilisation of 

the proposed transition state. Consequently, zinc chloride both orientates the R1 group 

and promotes it to migrate and the coordinated chloride to leave. Midland has 

demonstrated this favoured transition state by his computational study at the 

RHF/3-21G level, which showed that the favoured transition state 16 is 52.7 kJ/mol 

lower in energy than 17.
28
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Scheme 1.9: Effect of Zinc Chloride Addition on the 1,2-Migration 

 

Alkylation of 18 by Grignard reagent R2MgX leads to the ‘ate’ complex 19 (Scheme 

1.10). Similar to zinc chloride, MgX+ coordinates to the less hindered oxygen and to the 

remaining chloride and leads to transition state 20, which rearranges to produce 21. 
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Scheme 10: Effect of Grignard Reagent on the 1,2-Migration 

 

Enantiopure boronic esters could be utilised in this method to install, sequentially, a 

series of stereocentres. The following is a brief report on application of Matteson’s 

methodology for the synthesis of natural products. 
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1.7.1 Utilisation of Matteson’s Methodology 

Matteson has employed his methodology to synthesise several natural products. In the 

beginning, insect pheromones were chosen as simple targets because they had already 

been synthesised and fully characterised.  

 

1.7.1.1 Synthesis of Elm Bark Beetle Scolytus Multistriatus and Southeast Asian 

Ponerine Ant Leptogenys Diminuta Pheromones (25 and 33) 

An useful example of the application of Matteson’s methodology is the synthesis of 

elm bark beetle Scolytus multistriatus (25) and Southeast Asian Ponerine ant 

Leptogenys diminuta (33) pheromones.29–31 High stereoselection was achieved for the 

two diastereomers of 25 and 33. The (3S,5S)-4-methyl-3-heptanol 25 was synthesised 

by homologation of boronic ester (4R,5R)-4,5-diisopropyl-2-propyl-1,3,2-dioxaborolane 

22 with (dichloromethyl)lithium followed by treatment with zinc chloride and then 

methylation of the resulting boronic ester with methylmagnesium bromide to produce 

boronic ester 23. Homologation of 23 and ethylation with ethylmagnesium bromide 

produced 24. Peroxidic oxidation of the boronic ester 24 gave 25 with very high 

diastereoselectivity (≈700:1) (Scheme 1.11).31 
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Scheme 1.11: Synthesis of Elm Bark Beetle Pheromone 25 
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In an attempt to synthesise the Southeast Asian Ponerine ant Leptogenys diminuta 

pheromone 33, repeating the synthesis and changing the diol stereochemistry before 

the second homologation/alkylation and oxidising the result, in principle, should give 

the target product 33.29 Contrary to expectations, methylation of 26 failed to produce 

28 but produced butyraldehyde and (S)-DIPED methylboronate 30 instead, as main 

products. The separation and characterisation of a very air-sensitive compound 29 led 

Matteson to suggest that the strong steric interactions of intermediate borate 27 

compel oxygen, which is anti to Cl, to migrate to form 29 (Scheme 1.12).  
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Scheme 1.12: Possible Effect of Oxygen Migration on the 1,2-Metallate Rearrangement 

 

Alternatively, the (3R,5S)-4-methyl-3-heptanol 33 was prepared simply by altering the 

order of addition of the component reagents.30 Compound 33 was synthesised by 

homologation of 30 with (dichloromethyl)lithium followed by addition of 

propylmagnesium bromide to produce 31, which has the opposite configuration of the 

chiral auxiliary and same S-configuration as 23. Further homologation with 

(dichloromethyl)lithium and ethylation with ethylmagnesium bromide followed by 
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oxidation gave 33 (500:1, 33:25) (Scheme 1.13). Similarly, the two other 

stereoisomers, (3S,4R) and (3R,4R), were synthesised.  
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Scheme 1.13: Synthesis of Southeast Asian Ponerine Ant Pheromone 33 

 

1.7.1.2 Japanese Beetle Pheromone Popillia japonica (38) 

Matteson has also demonstrated homologation/alkylation methodology in the 

synthesis of Japanese beetle pheromone 38 (Scheme 1.14),32 which was previously 

synthesied with high enantiomeric purity and fully characterised by Midland.33 Boronic 

ester 34 was ester exchanged to give chiral ester and then homologated with 

(dichloromethyl)lithium in the presence of zinc chloride to produce 

(-chloroalkyl)boronic ester 35 as a single diastereoisomer. Compound 35 was 

alkynylated with lithiated alkyne 36 to produce the desired boronic ester 37 which was 

readily converted into the target product 38. 
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Scheme 1.14: Synthesis of Japanese Beetle Pheromone 38 

 

Matteson’s synthesis methodology has become an economically competitive route and 

it has been recently used in commerical production of 38.2 

 

1.7.1.3 (2S,3R,1’R)-Stegobinone (39) and 1’-Epistegobinone (40)
34

 

 

 

 

Synthesis of stegobinone (39), the pheromone of the Anobiid beetle Stegobium 

paniceum, in high stereochemical purity, is a challenge because the presence of ~3% of 

the epimer 40 effectively neutralises its attractive effect. The synthesis of the target 
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compound 39 required the preparation of two key synthetic components, first the 

aldehyde 44 and second the ketone 46. The synthesis began with chain extension of 

boronic ester 41 with (dichloromethyl)lithium followed by nucleophilic displacement of 

chloride with sodium benzyl oxide to make boronic ester 42. A second chain extention 

of 42 with (dichloromethyl)lithium and methylation with methylmagnesium bromide 

followed by a further homologation with (dichloromethyl)lithium gave the precursor 

43 for both intermediates, aldehyde 44 and ketone 46. The 9-BBN enol ether 47 

readily undergoes an aldol condensation with 44 to make 48, which contains the total 

carbon skeleton of stegobinone (Scheme 1.15). 
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Scheme 1.15: Synthesis of (2S,3R,1’R)-Stegobinone 

 



Chapter One  Introduction 

17 
 

1.7.1.4 Tertiary Alcohols and Quaternary Stereocentres 

Although this methodology is successful in the synthesis of secondary alcohols, limited 

success has been achieved for the synthesis of tertiary alcohols and quaternary carbon 

stereocentres. 

 

Tertiary Alcohols:
35

 Unexpected results were observed in investigation of 

stereocontrolled assembly of pinanediol (α-chloro-sec-alkyl)boronic esters to 

synthesise tertiary alcohols. In an attempt to synthesise 2-phenyl-2-butanol 54 from 

two different boronic esters 49 and 50 (Scheme 1.16), the two starting materials were 

homologated with (1,1-dichloroethyl)lithium followed by introduction of the 

complementary ethyl or phenyl group and peroxidic oxidation. Unexpectedly, 

compounds 49 and 50 led to different stereochemistry of 51 and 52, respectively. The 

two compounds 49 and 50 gave the same stereochemistry of 53 and 54. The 

enantiomeric excesses of 54 obtained from 49 and 50 were 70% and 88% respectively.  

 

 

 

Scheme 1.16: Synthesis of the Tertiary Alcohol 
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A number of boronic esters were examined, in an attempt to produce tertiary alcohols, 

but just a few gave useful stereoselectivity. 

Quaternary Stereocentres:
36

 There are few applications of the Matteson method to 

synthesise quaternary carbon stereocentres. For instance, cyclobutane 57, containing 

a quaternary stereocentre, was synthesised in high stereochemical purity by the 

cyclisation of (1-chloro-4-cyanobutyl)boronic esters 55 to cyclobutane derivatives 

(Scheme 1.17). Compound 55 was converted into 56 by addition of LDA at –78 °C and 

then addition of magnesium bromide. Reaction of 56 with isopropenylmagnesium 

bromide followed by iodine yielded 57. 

 

 

 

Scheme 1.17: Synthesis of a Cyclobutane Containing a Quaternary Stereocentre 

 

1.8 Aggarwal Methodology (Reagent-Control) 

An altenative route to tertiary alcohols involves the Aggarwal methodology. Aggarwal 

has utlised his chiral sulfur ylides to synthesise a chiral secondary alcohols in high yeild 

and high e.e. The method involves homologation of chiral aryl sulfur ylides with trialkyl 

boranes followed by peroxidic oxidation to produce the corresponding alcohols 59 

(Scheme 1.18).37–40 
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Scheme 1.18: Reactions of Chiral Sulfur Ylides with Boranes 

 

Unfortunately, homologation of these ylides with boronic esters was not successful 

and gave only low enantioselectivity with borinic esters.41 Aggarwal turned to the 

Hoppe carbamates to overcome these limitations. Hoppe discovered that lithiated 

carbamates derived from primary alcohols could be deprotonated and subsequently 

trapped with various electrophiles in the presence of sparteine with excellent levels of 

stereoselectivity. Aggarwal successfully homologated Hoppe-type42,43 lithiated primary 

carbamates with boranes and boronic esters in the presence of (–)-sparteine or 

O’Brien’s (+)-sparteine surrogate in good yields and high enantioselectivity (Scheme 

1.19).44 Also, excellent enantioselectivies were achieved when lithiated chiral 

secondary benzylic carbamates were homologated with boranes and boronic esters 

(Scheme 1.19).3 
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Scheme 1.19: Synthesis of the Chiral Secondary and Tertiary Alcohols via 

Enantioenriched Lithiated Carbamates 

 

 

Interestingly, it was observed that the lithiated secondary carbamates complex with 

boronic esters with retention of stereochemistry, while borylation with boranes takes 

place with inversion of stereochemistry.3,45 It has been proposed that in the case of 

boronic esters, the complexation of oxygen with the lithium of the lithiated carbamate 

61 makes the reaction take place on the same face as the lithium. In the case of 

boranes, such complexation is absent and there is a significant electron density due to 

the partially flattened nature of the mesomerically stabilised carbanion 62, thus, the 

reaction occurs on the face opposite to the lithium face (Scheme 1.20).  
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Scheme 1.20: Retention versus Inversion in the Reactions of Lithiated Carbamates with 

Boronic Esters and Trialkylboranes Respectively 

 

1.8.1 Selected Applications of Aggarwal’s Methodology 

Aggarwal has elegantly demonstrated the potential of this methodology in the 

synthesis of numerous natural and unnatural products. This was illustrated in the 

concise synthesis of insect pheromone (+)-faranal 68 (Scheme 1.21).46 Compound 63 

was prepared in four steps from propyne. Reaction of lithiated 63 with 

chloromethylpinacol boronic ester then led to the formation of compound 64. 

Reaction of 64 with 60 twice gave 65. Compound 65 was then homologated using 

vinyllithium in the presence of iodine to give 66 containing the carbon skeleton of the 

target product. Hydroboration/oxidation followed by oxidation with PDC led to 68. 
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Scheme 1.21: Synthesis of (+)-Faranal, a) t-BuLi/Et2O, hexane; ClCH2Bpin; b) 60/Et2O,   

–78 °C; c) MgBr2, 40 °C; d) vinyllithium/THF, –78 °C; e) I2/MeONa, MeOH/r.t.; f) 

9-BBN/THF g) H2O2/NaOH; h) PDC/DCM 

 

Aggarwal further applied the homologation methodology to the asymmetric total 

synthesis of several natural products such as solandelactone E (69)47 and giganin 

(70).48  
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More recently, Aggarwal has developed his methodology for the synthesis of highly 

challenging aryl-quaternary-tertiary motifs in acyclic systems with full stereocontrol 

(Scheme 1.22).49 

 

 

 

Scheme 1.22: Homologation of Tertiary Boronic Ester 

 

This result was exploited in a concise total synthesis of (–)-filiformin 75 (Scheme 1.23). 

Five steps from bromomethylpinacol boronic ester led to 72 in high enantioselectivity 

(98% e.e.). Compound 72 was homologated with lithiated carbamate 71 to produce 

boronic ester 73, also in high enantioselectivity (96% e.e.). Compound 73 was cyclised 

to 74 by lithiation/iodination followed by another cyclisation and bromination to give 

the target product 75. 
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Scheme 1.23: Concise Total Synthesis of (–)-Filiformin 

 

Also, more recently,50 Aggarwal successfully developed and applied his methodology in 

the highly stereoselective synthesis of several isomers bearing ten contiguous 

methyl-substituted carbon atoms. This process relied on -lithioethyl 

tri-isopropylbenzoate instead of Hoppe’s carbamates, because the former has a 

superior leaving-ability relative to Hoppe’s carbamates. This process involves insertion 

of -lithioethyl tri-isopropylbenzoate (TIBO) into the carbon-boron bond followed by 

1,2-rearrangment; each homologation step produces a new boronic ester, which is 

ready for another chain extension (Scheme 1.24). 
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Scheme 1.24: Iterative Approach to Assembly-Line Synthesis 

 

1.9 Blakemore Methodology (Reagent-Control) 

Cleavage of asymmetric sulfoxides provides access to asymmetric metal alkyl reagents, 

which offers a useful methodology.51 Blakemore’s group has prepared asymmetric 

(α-chloroalkyl)lithium reagents 77 in situ from chiral α-chloroalkyl sulfoxides 76 and 

inserted them into pinacol boronic esters 78 (Scheme 1.25).52 -Chloroalkyl sulfoxides 

76 undergo sulfoxide-lithium exchange to give chloroalkyllithium reagents 77 which 

then homologate boronic esters via ate-complex 79 formation followed by 

1,2-metallate rearrangement to produce chiral boronic esters 80. 
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Scheme 25: Homologation of Boronic Esters with Lithiated Alkyl Chloride 

 

The successful execution of this method was demonstrated in synthesis of the four 

stereoisomers of 83 (Scheme 1.26). The boronic ester 81 was homologated twice with 

either the same or different stereoisomers of 82 followed by peroxidic oxidation; the 

stereoselectivities were moderate to good.52  

 

 

 

Scheme 1.26: Application of Blakemore’s Method 
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1.10 Catalytic Conjugate Addition  

1.10.1 Shibasaki Methodology 

Shibasaki,53 based on seminal work of Hosomi54 and Miyaura55,56 who described 

independently the -borylation of Michael acceptors, has developed a catalytic 

conjugate addition process by using a copper(I)-chiral secondary diamine complex to 

catalyse a conjugate borylation of ,-disubstituted Michael acceptors in the synthesis 

of tertiary boronic esters in high yield and enantioselectivity (Scheme 1.27).  
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Scheme 1.27: Synthesis of Tertiary Boronic Esters by Shibasaki’s Method 

 

Meanwhile, Yun used a different chiral complex, namely the phosphine-copper 

complex derived from 85, in the presence of methanol as an additive, to produce 

tertiary boronic esters in excellent enantioselectivities and high yields (Scheme 1.28).57 
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Scheme 1.28: Synthesis of Tertiary Boronic Esters by Yun’s Method 

 

More recently,58 Ma and Song have used a N-heterocyclic carbene copper(I) complex 

synthesised in situ from triazolium salt 86 and Cu2O, as a catalyst in the asymmetric 

synthesis of secondary boronic esters from acyclic enones (Scheme 1.29).  

 

 

 

Scheme 1.29: The Asymmetric Synthesis of the Secondary Boronic Esters Using Ma’s 
Catalyst 
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2.1 Aim and Introduction 

As was mentioned in the introduction chapter, Matteson and Aggarwal have 

established powerful substrate-controlled and reagent-controlled methods, 

respectively, for the asymmetric homologation of boronic esters. However, neither of 

these two methods has the ability to be a general method for the generation of 

quaternary stereocentres. The limitation of Aggarwal’s method is the requirement of 

chiral secondary carbamates, so that the method itself is not catalytic (although the 

carbamates can be produced using catalytic asymmetric processes). The limitation of 

Matteson’s method is the need for stoichiometric auxiliaries.  

Meanwhile, great attention has been paid to C2-symmetric chiral bis(oxazoline)-metal 

complexes previously.59–69 This was due to the excellent highly stereoselective 

reactions which have been achieved by using complexes of such chiral ligands. These 

reactions include Diels-Alder, Aldol, Mannich, Sakurai-Hosomi, ring opening of 

epoxides and many other processes.70–72 Figure 2.1 shows some of the most common 

bis(oxazoline) ligands used in stereoselective metal catalysis.73  

 

 

 

Figure 2.1 : Bis(oxazoline) ligands used in in stereoselective metal catalysis 

 

There are a number of factors which make the oxazoline play such a role: first, the 

moderate chemical hardness of the two nitrogen atoms and their in-plane lone pairs 

make them able to coordinate with a variety of metal centres, e.g. transition and 

lanthanide metals; second, the relation between the coordinating atom and the 

position of the chiral centre transfers the chiral information effectively; third, they are 
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easily prepared in a large variety of structures from relatively inexpensive amino 

alcohols.73 

To our knowledge, there is only one study which has attempted to investigate a 

general catalyst-controlled process using bis(oxazoline)-metal complexes in the borate 

rearrangement reaction.74  

Jadhav and Man reported the first ever examination of bis(oxazoline)-lanthanide 

complexes in 1997.73,74 However, there have been no reports of improvements to this 

method since then. This chapter describes the results of attempts to improve this 

procedure by understanding the reaction as well as the role of Lewis acid and chiral 

ligand on the stereoselectivity. 

Also, it was proposed, as an eventual goal, to develop this catalytic method for the 

generation of quaternary stereocentres using migration reactions of alkyl/aryl groups 

from boron to carbon (Scheme 2.1). 

 

 

 

Scheme 2.1: Proposed Route for Synthesis of Quaternary Stereocentres 

 

2.2 Summary of the Work by the Jadhav Group 

Jadhav reported the reaction of dichloromethylboronic ester 87 with n-BuLi, promoted 

by a chiral ligand and a Lewis acid, to give chloropentylboronic ester 88 with high 

levels of stereocontrol (Scheme 2.2). Because it is not possible to determine the 

stereoselectivity for the enantiomers of compound 88 directly by 1H NMR 

spectroscopy, the stereoselectivity of this reaction was determined by conversion of 

88 into the pinanediolboronic ester 89. Jadhav observed that there was no scrambling 

of stereochemistry when the pinanediol ester was exchanged in the transesterification 

step.  
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Scheme 2.2: Reaction of n-BuLi with Dichloromethylboronic Ester 87 

 

In summary, this study reported the following results and fundamental limitations. 

1) Initially, the 1,2-migration reaction of the borate complex was examined with 

chiral Lewis acid derived from valinol and diethylzinc (1 equiv. each). The 

reaction in THF gave 20% e.e., while using hexane improved the 

stereoselectivity to 40% e.e.  

2) The amount of the chiral ligand influenced the selectivity: by using excess of 

valinol and diethyl zinc (4 equiv. for each), the stereoselectivity was further 

improved to 70% e.e. (Scheme 2.3). 
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Scheme 2.3 : The Use of ZnEt2 and Valinol as Chiral Catalyst 
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3) Using chiral bis(oxazoline) ligands and Lewis acids showed that the presence of 

a phenyl group on the 4-position of the oxazoline was essential and the 

optimum pair of chiral ligand and Lewis acid was chosen (Figure 2.1 red colour). 

4) Lanthanide complexes Yb(OTf)3 and Lu(OTf)3 achieved higher stereoselectivity 

(71% e.e. and 60% e.e. respectively) than transition metal complexes Zn(OTf)2 

and Cu(OTf)2 (both 45% e.e.). 

5) Excess of the chiral ligand ((R,R)-bis(oxazoline) 90, 5 equivalents) and Yb(OTf)3  

were needed to reach to 88% e.e.  

 

N N

OO

PhPh

N N

OO

PhPh

N N

OO

PhPh

N N

OO

t-But-Bu

N N

OO
PhPh

Zn(OTf)2 0.8 : 0.8 : 1 44% e.e. (S)

Zn(OTf)2 1 : 1 : 1 45% e.e. (R)
Cu(OTf)2 1 : 1 : 1 45% e.e. (R)
Zn(OTf)2 1: 1 : 1 45% e.e. (S)
Lu(OTf)3 1 : 1 : 1 60% e.e. (R)
Yb (OTf)3 1 : 1 : 0.9 71% e.e. (R)
Yb (OTf)3 5 : 0.3 : 1 88% e.e. (R)

Cu(OTf)2 1 : 1 : 1 35% e.e. (S)

Cu(OTf)2 1 : 1 : 1 0% e.e. (S)Cu(OTf)2 1 : 1 : 1 0% e.e. (S)

90

 

 

Figure 2.1: The Ratio of Ligand : Lewis Acid : Substrate Used in Jadhav’s Study 

 

We needed to understand why a large excess of chiral ligand (5 equivalents) was 

required if we were to be successful in developing a truly catalytic process. Also, the 
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generality of the reaction had not been established, having only been applied to one 

substrate. In particular, the reaction had not been applied to the formation of 

quaternary stereogenic centres. 

Jadhav speculated that the large amount of ligand was required because the lithium 

introduced during the reaction competed with ytterbium for the chiral ligand (Scheme 

2.4). In the original report, Jadhav stated that:  

“We were unsuccessful in designing experiments that will allow scavenging of the 

by-product LiCl without interfering with the chiral catalysis process.” 

However, the unsuccessful experiments were not described.  

 

 

 

Scheme 2.4: Competition between the Lewis Acid and LiCl to Complex with the Ligand 

 

The requirement for a large excess of the expensive chiral ligand has prevented the 

procedure from being applicable as a general procedure. To tackle this issue, it was 

decided that the best method to adopt for this investigation was to scavenge the 

lithium chloride by use of suitable reagents. 
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2.3 Results and Discussion 

2.3.1 Synthesis of (4R,4'R)-2,2'-(Propane-2,2-diyl)bis(4-phenyl-4,5-dihydrooxazole) 

The bis(oxazoline) 90 was prepared in a series of steps. Firstly, D-phenylglycinol 92 was 

prepared by adopting the procedure used by Abiko and Masamune75 by treating a 

mixture of D-phenylglycine in THF with borane which was generated in situ from 

sodium borohydride and a solution of sulfuric acid in diethyl ether. Secondly, 

bis(amide) 93 was prepared according to the procedure used by Körner and 

Hiersemann76 by treating 92 with dimethylmalonyl dichloride (91), which was itself 

prepared according a literature method76 from the reaction of 2,2-dimethylmalonic 

acid with oxalyl chloride in the presence of dimethylformamide in catalytic amount 

(Scheme 2.5).  
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Scheme 2.5: Synthesis of the bis(amide) 93 

 

Thirdly, for the last step of the cyclisation of compound 93 into the bis(oxazoline) 90, 

two methods were used. Initially, the procedure of Dagorne et al.
77 was used by 

treating the bis(amide) 93 with methanesulfonyl chloride in the presence of 

triethylamine. The reaction proceeded successfully but with unspectacular yields 
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(20%). An alternative route for cyclisation of 93 into 90 was therefore required. After 

searching further in the literature for cyclisation of compound 93, a very attractive 

method of synthesis developed by A. Sakakura, et al was found. The method involves 

dehydrative cyclisation of the bis(amide) 93 with 20 mol% of (NH4)2MoO4.78 This 

method was used for the cyclisation to achieve a very good yield (83%) of 90 (Scheme 

2.6). 

 

 

Scheme 2.6: Cyclisation of bis(amide) 93 into bis(oxazoline) 90 

 

2.3.2 Synthesis of Dichloromethyl Boronic Acid Pincacol Ester 

The title compound was prepared according to the literature79 in two steps (Scheme 

2.7). 

 

 

 

Scheme 2.7: Synthesis of dichloromethylboronic acid pinacol ester (87) 

 

Firstly, dichloromethaneboronic acid 95 was prepared according to the procedure used 

by Rathke et al. by addition of trimethyl borate to lithiated dichloromethane at -116 °C 
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and quenching the resulting mixture with diluted hydrochloric acid. Secondly, 

esterification of dichloromethaneboronic acid 95 was carried out by heating the 

compound and pinacol in ether and in the presence of magnesium sulfate at reflux for 

5 h.80 

  

2.3.3 Scavenging Lithium Chloride  

Without knowing what Jadhav actually attempted, we considered methods by which 

the lithium cations could be scavenged from the reaction. 12-Crown-4 (96) has a 

strong affinity, with good selectivity, for the lithium cation.  

 

 

 

Therefore, a series of experiments was conducted with various amounts of 

12-crown-4. To a cold (–78 °C) solution of 1.0 equivalent of the substrate 90 in hexane, 

n-BuLi was added dropwise, followed after 5 minutes by a cold (–78 °C) solution of 

12-crown-4 (96) in dichloromethane. The solution was stirred for 5 minutes and cold  

(–78 °C) dichloromethane was added followed by Yb(OTf)3 and bis(oxazoline). The 

mixture was warmed up over a period of 1 hour at room temperature and then 

saturated ammonium chloride was added followed by diethyl ether and (S)-pinanediol. 

After 15 minutes, the organic layer was separated and dried over magnesium sulfate. 

The solvents were removed and the crude product was purified by flash 

chromatography. The results are depicted in Figure 2.2. In these experiments, 0.5 

equivalents of ligand and 0.21 equivalents of Yb(OTf)3 were used. With 0.6 equivalents 

of 12-crown-4, a dramatic increase in stereoselectivity was observed from 21% e.e. to 

50% e.e. with these lower loadings of ligand and Lewis acid. Addition of more 

12-crown-4 then lowered the stereoselectivity (Figure 2.2). In a comparable 
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experiment in the absence of 12-crown-4, Jadhav observed 55% e.e., but we were 

never able to reproduce this level of selectivity under these conditions. However, this 

is an unfair comparison because Jadhav used peak heights in 1H NMR spectra to 

measure the e.e., while integration of the peaks was used in this study (see section 

2.3.9). So, it is not expected that the results would be comparable. 

 

 

Figure 2.2: The Relationship Between Equivalents of 12-Crown-4 Added and % e.e. 

 

This trend is difficult to understand if the 12-crown-4 is complexing only to lithium. 

However, complexes of crown ethers with f-block elements, including ytterbium, are 

well known.81 We considered the possibility that the improvement in e.e. after 

12-crown-4 addition was actually due to the coordination of Yb with the 12-crown-4. 

This would mean that the stereoselective reaction involving the chiral ligand might 

actually involve lithium! Complexation of bis(oxazolines) to lithium has been previously 

used in asymmetric transformations, so that catalysis via the lithium complex is 

entirely plausible.82 Next, we turned our attention to optimisation of the amount of 

Lewis acid used. 
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2.3.4 Evaluating the Influence of Amount of Lewis Acid 

The next series of experiments involved variation of the amount of added Lewis acid 

(Yb(OTf)3). Adding the chiral ligand and the Lewis acid to the reaction as solids might 

not allow complete dissolution, which could mean that the ytterbium complex was not 

fully formed. Therefore, in order to obtain reproducible results, and in a change from 

the procedure reported by Jadhav, the chiral ligand and Lewis acid were premixed in 

dichloromethane ex-situ overnight and this solution was transferred to the reaction 

mixture by cannula 5 minutes after addition of n-BuLi. Surprisingly, as shown in Figure 

2.3, the level of enantioselectivity increased as the amount of ytterbium triflate was 

decreased. 

 

 

 

Figure 2.3: The Relationship between Equivalents of Lewis Acid Added and % e.e. 

 

From the data in Figure 2.3, it is apparent that the enantioselectivity was the lowest 

(18% e.e.) when 0.5 equivalents of chiral ligand was premixed with 0.1 equivalents of 

Lewis acid, while it was the highest (45% e.e.) when no Lewis acid was added. From 

this, it was clear that the ytterbium triflate was reducing the level of stereoselectivity, 

presumably by complexing to the bis(oxazoline). Qian and Wang suggested that 

bis(oxazolines) form complexes with Yb(OTf)3 with a stoichiometry of 1:2 Yb(OTf)3 : 
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bis(oxazoline).70 Thus, an excess of the chiral ligand was needed because the Lewis 

acid consumes two equivalents of the amount of the chiral ligand. This result is 

consistent with the experiments involving addition of crown ether, which showed 

increasing stereoselectivity, if it is assumed that the crown ether complexes with the 

Yb(OTf)3 and consequently this allows the chiral ligand to complex with lithium in the 

transition state. 

There are a number of factors which may affect the activity of the bis(oxazoline)-metal 

complexes; radii, charge density of the metal and the stability of the complexes.73  

From Jadhav’s work, the stereoselectivity obtained from the complexes of transition 

metals with bis(oxazolines) such as Zn(OTf)2 or Cu(OTf)2 was significantly less than that 

from Yb(OTf)3: 45% e.e. and 71% e.e. respectively. It seems likely that the complexes of 

transition metals with bis(oxazolines) are more stable than those of lanthanides. 

Consequently, the transition metals are stronger competitors with lithium to complex 

with bis(oxazolines). This might explain why the stereoselectivity was reduced from 

71% to 45% when transition metals complexes were used. 

 

2.3.5 Evaluating the Influence of the Amount of Chiral Ligand  

To investigate the relationship between the chiral ligand in the absence of Lewis acid 

and the % e.e., various amounts of chiral ligand were used. The ex-situ procedure was 

carried out in the absence of Lewis acid and the crown ether. A cold (–78 °C) solution 

of chiral ligand in dichloromethane was transferred to the reaction mixture by cannula 

5 minutes after addition of n-BuLi and the reaction mixture was stirred for 1 hour at –

78 °C. The results are shown in Figure 2.4. From Figure 2.4, it is clear that the reaction 

is stoichiometric in ligand. The enantioselectivity rises to approximately 60% e.e. as up 

to one equivalent of ligand is added, but then does not increase further. Despite many 

attempts to vary the reaction conditions, we have not managed to achieve catalytic 

turnover with this reaction. 
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Figure 2.4: The Relationship between Equivalents of Bis(oxazoline) and % e.e. 

 

In order to examine the effect of the crown ether in the absence of the Lewis acid, the 

reaction was repeated twice by using 0.5 equivalents of chiral ligand and 0.6 and 1 

equivalents of the crown ether, respectively. No change was observed in the level of 

the stereoselectivity. The result shows that in the absence of Lewis acid there is no 

effect of crown ether on the stereoselectivity, while in the presence of the Lewis acid, 

ytterbium might prefer to complex with the crown ether and consequently not reduce 

the stereoselectivity. This also means that the crown ether is not able to sequester 

lithium cations from this system. 

 

2.3.6 The Reproducibility of the Reaction and the Possibility of Catalytic Turnover 

Ytterbium triflate from a fresh bottle had shown good solubility in a dichloromethane 

solution of the chiral ligand. Also, the results had shown that increasing the amount of 

ytterbium triflate decreased the stereoselectivity. Using the new bottle and 0.5 

equivalents of chiral ligand had given 29% e.e. (Figure 2.3). In an attempt to reproduce 

the same results after one year, 3 mol% of ytterbium triflate from the same bottle was 

premixed with 0.5 equivalents of chiral ligand and used in the ex-situ procedure at -46 

°C. Interestingly, the observed stereoselectivity in this experiment was 70% e.e., which 

is higher than could be achieved in a stoichiometric reaction using 0.5 equivalents of 
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ligand. This means that some catalytic turnover has been achieved. It is difficult to 

explain this result because it was found from this study that the presence of ytterbium 

triflate decreases the level of the stereoselectivity. This result suggests that an as yet 

unidentified compound could be generated in the old bottle which complexes with 

bis(oxazoline) to give superior stereocontrol. It is possible that the ytterbium triflate 

had become contaminated, for example with water. Therefore, to examine this 

hypothesis, it was decided to assess the reaction using fresh ytterbium triflate as the 

hydrate. To this end, 5 mol% of ytterbium triflate hydrate from a fresh bottle was 

premixed with 0.5 equivalents of the chiral ligand and used in the ex-situ procedure at 

–78 °C. Interestingly, the observed stereoselectivity in this experiment was 59% e.e., 

which is close to that was observed with the use of old ytterbium triflate (70% e.e.), 

and higher than when a similar amount of new anhydrous ytterbium triflate was used 

(28% e.e.). This therefore supports the hypothesis that adventitious water is resulting 

in an increase in e.e. and some catalytic turnover. However, it was not possible to 

improve the selectivity further. 

 

2.3.7 The Effect of Temperature 

In order to investigate the effect of temperature on stereoselectivity in the absence of 

the Lewis acid, the reactions were repeated at several different temperatures. The 

solution of the boronic ester 87 in hexane was cooled to the corresponding 

temperature (see Table 2.1) and n-BuLi was added. The mixture was stirred for 5 

minutes before the addition of a cold (at the corresponding temperature) solution of 

chiral ligand (0.5 equivalents) by cannula dropwise. The cooling bath was removed and 

the mixture was warmed up to room temperature over a period of 1 h. The 

stereoselectivity was measured as before after the usual work up and the results are 

given in Table 2.1. 
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Table 2.1: Effect of Temperature on Stereoselectivity Using 0.5 Equivalents of the 

Chiral Ligand and in the Absence of Lewis Acid 

Entry Temp./ °C % e.e. 

1 –78 40 

2 –46 52 

3 –29 50 

4 –15 49 

5 0 48 

 

It is apparent from this table that there was almost no significant change in the 

stereoselectivity when the reaction temperature changed. These results suggest that 

migration of the butyl group does not occur to a significant extent below 0 °C. Since all 

of the mixtures would be warming at a similar rate from this point, there would be no 

significant difference in the results. Therefore, it was thought that running the reaction 

at low temperature and then warming it up to room temperature at a slow rate might 

help to increase the chance of high stereoselectivity. To establish whether the slow 

warming up would give better stereoselectivity, two experiments side by side were 

carried out at –78 °C, one involving the procedure when the cooling bath is removed 

after the addition of the chiral ligand and the other with slow warming up, over a 

period of 5.5 h (the temperature was controlled manually by slow addition of dry ice to 

an acetone cooling bath). The reaction using slow addition was marginally more 

selective (43% to 47% e.e.). However, the observed difference in these two 

experiments was not significant. Another pair of experiments to investigate the effect 

of fast warming up (the reaction flask was transferred immediately after addition of 

chiral ligand solution to an oil bath (33 °C)) was set up as well. Again, there was no 

difference in stereoselectivity between normal warming and fast warming. 
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2.3.8 The Effect of the Solvent 

Jadhav found that using polar solvents such as THF decreased the stereoselectivity 

significantly compared with non-polar solvent (hexane). They attributed this decrease 

to the fact that the THF decreases the acidity of the Lewis acid of the chiral catalyst. It 

is clear from our investigation that the presence of the Lewis acid decreases the 

stereoselectivity. Thus, the influence of the solvent on the stereoselectivity in the 

absence of the Lewis acid was needed. An experiment was designed for this purpose. 

The ex-situ reaction procedure was repeated in THF in the absence of the Lewis acid at 

–78 °C using 0.5 equivalents of the chiral ligand. The stereoselectivity dropped 

significantly from 44% e.e. (in dichloromethane and hexane) to 18% e.e. This might be 

attributed to the complexation of the lithium species with the THF instead of the chiral 

ligand.  

 

2.3.9 Determination of Stereoselectivity 

Determination of the stereoselectivity in these reactions is far from trivial. For each 

isomer, the endo C7 proton of compound 89 gives a doublet in the 1H NMR spectrum in 

the region of 1.1 ppm.31 Unfortunately, these peaks for the two diastereoisomers 

overlap, although integration of the individual peaks is possible. However, there is 

clearly a significant margin for error in our measurements, although the trends are 

clearly valid. We cannot compare our levels of stereoselectivity directly with those 

reported by Jadhav, since he determined the e.e. of 89 by measuring the peak height 

of the endo C7 proton for each diastereoisomer and the NMR spectra from that study 

were not published. In the present work, % e.e. measurement of compound 89 was 

accomplished by line shape analysis and integration of the 1H NMR peaks of the endo 

C7 proton for each diastereoisomer. The calculations were carried out using the iNMR 

program (Figure 2.4 shows a typical output from the program).83 The doublet peaks 

with the higher chemical shift (1.17 ppm, J = 11 Hz) are for the (1S) diasteroisomer 

while the low chemical shift’s doublet peaks (1.16 ppm, J = 11 Hz) are for the (1R) 

diasteroisomer.31 
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Figure 2.5: Line Fitting of 1H NMR Spectra Using iNMR 

 

2.4 Computational Study 

In order to confirm that the lithium complex with the chiral ligand could undergo 

migration, and to verify the stereoselectivity of the migration product that is expected 

to predominate, a computational study was also carried out by Dr Mark Elliott.84 In 

order to simplify the calculations, the migrating butyl group was replaced with methyl. 

After extensive conformational analysis, two transition states were located at the 

RB3LYP/6-31G(d) level of theory. Formation of the (R)-enantiomer of compound 88 

was reported by Jadhav. The upper transition state in Figure 2.6 was calculated to be 

favoured by 26 kJ mol-1. It does indeed favour the observed (R)-enantiomer, which is 

encouraging. The calculations showed that one of the aromatic rings, the right 

aromatic ring on the Figure 2.6, was twisted by 25.4° away from the dichloromethyl 

R R 

S S 
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group in (S)-enantiomer transition state (lower transition state in Figure 2.6) compared 

to that of the (R)-enantiomer transition state. The calculations also showed that the 

distance between the dichloromethyl group and the ortho carbon atom of the 

aromatic ring was shorter (the distance between the hydrogen and the ortho carbon 

atom was 2.84 Å) for the (R)-enantiomer transition state than for the (S)-enantiomer 

transition state (the distance between the non-displaced chlorine and ortho carbon 

atom was 3.65 Å). 

 

 

 

 

Figure 2.6: Calculated RB3LYP/6-31G(d) Transition States favouring R (top) and S 

(bottom) Stereochemistry. 
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In an attempt to verify the importance of the benzene ring in the structure of the chiral 

ligand experimentally, the in situ reaction procedure was repeated using 0.5 

equivalents of 2,2-bis((4S)-(–)-4-isopropyloxazoline)propane (97) and 0.1 equivalents 

of Lewis acid at –78 °C. The reaction gave a racemic mixture of the product. This 

finding is in agreement with Jadhav’s findings, which showed the same results when 

the benzene ring was replaced with aliphatic groups. This reflects the importance of 

the presence and the position of the benzene ring in the bis(oxazoline) structure. 

 

 

 

2.5 Conclusion 

According to this study, it was suggested that most probably the lithium cation 

coordinates with the chiral ligand to orientate the stereoselectivity. On the other hand, 

ytterbium competes with lithium in this action. Consequently, the stereoselectivity 

decreases in the presence of ytterbium triflate. It was initially thought to be possible 

that the reaction was stoichiometric in the chiral ligand since use of 0.5 equivalent of 

chiral ligand never resulted in more than 50% e.e. in the absence of ytterbium triflate. 

However, when aged ytterbium triflate (3% mol) was used with 0.5 equivalents of 

ligand; high stereoselectivity (70% e.e.) was achieved, which is higher than is possible 

for a perfectly stereoselective stoichiometric process using only 0.5 equivalents of the 

chiral ligand, which suggested the possibility of some catalytic turnover.  
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2.6 Experimental  

2.6.1 Synthesis of Dichloromethane Pinacol Boronate (87)
79,80

   

 

B

O

O

Cl

Cl

 

 

A septum-sealed 250 mL one-neck round-bottomed flask (RBF), was charged with a 

solution of dichloromethane (1.41 mL, 22 mmol) in THF (40 mL) and immersed in a 

liquid nitrogen–ethanol bath (–116 °C). n-BuLi (1.6 M in hexane, 12.5 mL, 20 mmol) 

was added dropwise over 8 min. The solution was stirred for 30 min. 

Trimethoxyborane (2.5 mL, 22 mmol) was added in one portion and the solution was 

stirred for a further 30 min. Hydrochloric acid (5.0 M, 4.0 mL, 20 mmol) was added to 

the reaction and the solution was allowed to warm to r.t. The organic layer was 

separated and dried over magnesium sulfate. The solvent was evaporated under 

reduced pressure over 1 h to give the crude dichloromethaneboronic acid as a viscous 

white-light yellow coloured oil. 

The crude product was placed in 100 mL two-neck RBF and magnesium sulfate (7.5 g) 

and pinacol (2.718 g, 23.1 mmol) were added. Diethyl ether (60 mL) was added and 

the mixture was heated at reflux for 5 h under nitrogen. The organic layer was 

transferred to another septum-sealed 100 mL RBF and concentrated by flushing with 

N2 for 2 hrs. The liquid was transferred to a distillation system and distilled (b.p. 55 – 

60 °C, 1 Torr) to give the title compound (1.5 g, 32% yield from trimethyl borate) as a 

colourless oil. 

1H NMR (400 MHz; CDCl3)  5.28 (1H, s) and 1.27 (12H, s). 

13C NMR (101 MHz; CDCl3)  85.8 and 24.4. 
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2.6.2 Synthesis of (S)-Pinanediol (1-Chloropentyl)boronate (89)
74

  

 

B

O

O

Cl

89

H

 

 

To a septum-capped two-neck 50 mL RBF were added pinacol 

dichloromethaneboronate (211 mg, 1.0 mmol) and dry hexane (1.5 mL). The flask was 

immersed in a dry ice/acetone bath. n-BuLi (0.75 mL, 1.6 M in hexane, 1.2 mmol) was 

added. The mixture was stirred for 1 hour at –78 °C. Dry and cold (–78 °C) 

dichloromethane (20 mL) was added by cannula. The mixture was warmed up to room 

temperature over a period of 1 h. Saturated ammonium chloride solution (20 mL) was 

added, followed by diethyl ether (25 mL) and (S)-pinanediol (171 mg, 1.0 mmol). The 

reaction mixture was stirred for 15 min. The organic layer was separated and dried 

over magnesium sulfate. The solvents were evaporated by rotary evaporator to 

produce the crude product. This was purified by flash column chromatography on silica 

using dichloromethane to yield a mixture of two diastereomers of the title compound 

(227 mg, 80%) as a colourless oil. 1H NMR (400 MHz; CDCl3) the individual proton 

signals of the two isomers generally overlapped and only the signals for the endo 

proton attached to carbon 7 could be differentiated. δ 4.36 (2H, dd, J = 8.8, 1.8 Hz), 

3.50 – 3.39 (2H, m), 2.40 – 2.30 (2H, m), 2.29 – 2.19 (2H, m), 2.08 (2H, t, J = 5.5 Hz), 

1.96 – 1.77 (8H, m), 1.53 – 1.27 (20H, m), 1.17 (1H of one isomer, d, J = 11.0 Hz), 1.16 

(1H of the another isomer, d, J = 11.0 Hz), 0.90 (6H, t, J = 7.2 Hz), 0.84 (6H, s). 

13C NMR (125 MHz; CDCl3) δ 86.7, 78.59, 78.58, 51.3, 39.5, 38.32, 38.31, 35.42, 35.40, 

34.0, 29.6, 28.6, 27.1, 26.45, 26.44, 24.1, 22.3 and 14.0. 
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2.6.3 Synthesis of D-Phenylglycinol (92)
75 

 

OH

NH2

92
 

 

A two-neck 500 mL RBF fitted with a mechanical stirrer and a dropping funnel was 

charged with NaBH4 (20 g, 0.52 mol) and THF (200 mL). To this stirred suspension, 

D-phenylglycine (30.23 g, 0.20 mol) was added. The flask was cooled to 0 °C, and a 

solution of (fresh) conc. sulfuric acid (13.2 mL, 0.25 mol) in ether (total volume of 

40mL) was added dropwise over 40 min while the reaction mixture was maintained at 

below 20 °C. The mixture was stirred overnight at room temperature. Methanol (20 

mL) was added carefully to remove excess BH3. The mixture was concentrated to ca. 

100 mL and sodium hydroxide (5.0 M, 200 mL) was added. The organic solvents were 

removed under reduced pressure at just below 100 °C. The mixture was heated at 

reflux for 3 h. The mixture was cooled and filtered through a thin pad of Celite® which 

was washed with water. The filtrate was diluted with additional water to ca. 200 mL 

and then extracted with dichloromethane (4 x 100 mL), followed by evaporation of the 

solvent to give a solid crude product. The crude product was recrystallised from ethyl 

acetate/hexane (1:3) to yield the title compound (16 g, 58%) as a colourless solid. 

m.p. 73 – 76 °C (lit.75 74 – 76 °C). 

1H NMR (400 MHz; CDCl3) δ 7.41 – 6.98 (5H, m), 3.97 (1H, dd, J = 8.3, 4.3 Hz), 3.66 (1H, 

dd, J = 10.8, 4.3 Hz), 3.48 (1H, dd, J = 10.8, 8.3 Hz) and 2.24 (3H, br). 

13C NMR (101 MHz; CDCl3) δ 142.8, 128.8, 127.6, 126.6, 68.1 and 57.4. 
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2.6.4 Synthesis of N
1
,N

3
-bis((R)-2-Hydroxy-1-phenylethyl)-2,2-dimethylmalonamide 

(93)
76

   

 

NH HN

O
HO OH

O

Ph Ph
 

 

2.6.4.1 Method A : from diethyl dimethylmalonate and (D)-phenylglycinol 

To a 50 mL Schlenk flask, diethyl dimethylmalonate (0.95 mL, 5.0 mmol) and 

D-phenylglycinol (1.372 g, 10.0 mmol) were added. NaH (200 mg, 60% dispersion in 

mineral oil, 5.0 mmol) was then added to the flask, which was put under vacuum, 

sealed and heated at 130 – 140 °C (sand bath). After 3 h, the mixture was cooled and 

the ethanol generated was removed under vacuum. Water (50 mL) was added and the 

mixture was extracted with dichloromethane (3 × 25 mL). The combined organic layers 

were dried over MgSO4 and the solvent was removed under vacuum. The yellow 

viscous crude product was recrystallised from EtOAc/hexane to leave the title 

compound (0.591 g, 32%) as a beige solid. 

m.p. 128 – 129 °C (lit.85 127 – 128 °C). 

1H NMR (400 MHz; CDCl3) δ 7.40 – 7.24 (10H, m), 7.21 (2H, d, J = 7.8 Hz), 5.15 (2H, app. 

td, J = 7.6, 3.9 Hz), 3.93 (2H, dd, J = 11.6, 3.9 Hz), 3.78 (2H, dd, J = 11.6, 7.4 Hz), 2.23 

(2H, br) and 1.53 (s, 6H). 

13C NMR (126 MHz; CDCl3) δ 174.2, 138.9, 128.8, 127.8, 126.6, 65.8, 55.9, 50.2 and 

23.8. 
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2.6.4.2 Method B: from 2,2-dimethylmalonic acid and D-phenylglycinol
 

2.6.4.2.1 Synthesis of 2,2-dimethylmalonyl dichloride (91)
76

 

 

Cl Cl

O O

 

 

A one-neck 100 mL RBF connected to dropping funnel was charged with 

2,2-dimethylmalonic acid (7.5 g, 56.8 mmol, 1.0 equiv.) and DMF (0.57 mL, 7.4 mmol, 

0.13 equiv.) in dichloromethane (60 mL). Oxalyl chloride (14.6 mL, 170 mmol, 3.0 

equiv.) was added dropwise over 1 h. The reaction mixture was warmed to room 

temperature, stirred for 18 h and concentrated under reduced pressure. The product 

was separated from the DMF (which was gathered in the bottom of the flask as a 

viscous yellow liquid) to afford the dimethylmalonyl dichloride (8.2 g, 86%) as a 

colourless liquid. The product was used in the next step without further purification. 

1H NMR (400 MHz; CDCl3)  1.67 (6H, s). 

13C NMR (101 MHz; CDCl3) δ 172.1, 69.2 and 23.2. 

 

2.6.4.2.2 Synthesis of N
1
,N

3
-bis((R)-2-hydroxy-1-phenylethyl)-2,2-

dimethylmalonamide 93
76 

A solution of D-phenylglycinol (4.630 g, 33.75 mmol, 2.25 equiv.) in dichloromethane 

(15.0 mL) was immersed in an ice-water bath. Triethylamine (10.5 mL, 75 mmol, 5.0 

equiv.) was added, followed by a solution of 2,2-dimethylmalonyl dichloride (2 mL, 

15.0 mmol, 1.0 equiv.) in dichloromethane (15.0 mL) over a period of 1 h. The reaction 

mixture was warmed to room temperature, stirred for 35 min and then diluted with 

dichloromethane (120 mL). The solution was washed with aqueous hydrochloric acid 

(1.0 M, 18 mL). The organic layer was separated and left in a fume hood for 30 min. to 

precipitate. The mixture was filtered to give the title compound (4.0 g, 72%) as a 

colourless solid. 

m.p. 128 – 129 °C. 
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2.6.4.3 (−)-2,2′-Isopropylidene bis[(4S)-4-phenyl-2-oxazoline] (90) 

 

N N

OO

PhPh

90
 

  

2.6.4.3.1 Method A
77

: 

To an ice-cold solution of the bis(amide) 93 (4.3 g, 11.6 mmol) and triethylamine (5.9 g, 

58 mmol) in dichloromethane (75 mL), methanesulfonyl chloride (3.3 g, 29 mmol) was 

added. The cooling bath was removed and the mixture was stirred for 1 h. The brown 

solution was washed with a solution of ammonium chloride (20 mL). The organic layer 

was dried over magnesium sulfate and concentrated in vacuo to give an orange solid, 

which was used in the next step without purification. The bis-mesylated compound 

was treated with sodium hydroxide (2.0 g, 50 mmol) in a MeOH/H2O mixture (1:1, 80 

mL). The solution was heated at reflux for 2 h, then concentrated to remove methanol 

and extracted with dichloromethane (3 x 50 mL). The organic layer was dried over 

magnesium sulfate and concentrated in vacuo. The product was purified by column 

chromatography on silica gel (diethyl ether/hexane, 3:1) to afford the title compound 

(0.8 g, 20%) as a yellow oil. 

[a]20
D + 169° (c= 1, EtOH) (lit.86 –171.3°, c= 1, EtOH, for S enantiomer) 

1H NMR (400 MHz; CDCl3) δ 7.35 – 6.96 (10H, m), 5.15 (2H, dd, J = 10.1, 7.6 Hz), 4.60 

(2H, dd, J = 10.1, 8.4 Hz), 4.09 (2H, app. t, J = 8.0 Hz) and 1.61 (6H, s). 

13C NMR (101 MHz; CDCl3) δ 170.4, 142.4, 128.7, 127.6, 126.7, 75.6, 69.5, 38.9 and 
24.5. 
 

2.6.4.4 Method B
78

: 

A 100 mL RBF equipped with a Dean-Stark apparatus was charged with a solution of 93 

(0.7403 g, 2.0 mmol, 1 eq.) and ammonium molybdate (0.078 g, 0.4 mmol, 0.2 eq.) in 

toluene (40 mL). The reaction mixture was heated at azeotropic reflux with the 
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Dean-Stark apparatus to remove water. The colourless solution became darker as the 

product increased. The mixture was cooled after 3 h and then the solvent was 

evaporated to leave the crude product. The purification by flash column 

chromatography on silica using ether / hexane (3:1) afforded the title compound 

(0.5571 g, 83%) as a light yellow oil. 

 

2.6.5 General Procedures of Homologation Reactions 

2.6.5.1 In-situ  

A 50 mL two-neck flask was charged with pinacol dichloromethaneboronate (211 mg, 1 

mmol) and hexane (1.5 mL). A solid-addition tube was charged with Yb(OTf)3 (132 mg, 

0.21 mmol) and the apparatus flushed with nitrogen. The mixture was cooled in a dry 

ice-acetone bath. n-BuLi (0.75 mL, 1.6 M in hexane, 1.2 mmol) was added dropwise 

and the mixture was stirred for 5 min at –78 °C. Cold (–78 °C) dichloromethane (20 mL) 

was added by cannula followed by Yb(OTf)3 and a solution of bis(oxazoline) 90 (167 

mg, 0.5 mmol in dichloromethane (0.5 mL)). The mixture was warmed to room 

temperature over a period of 1 h. Saturated ammonium chloride solution (20 mL) was 

added followed by diethyl ether (25 mL) and (S)-pinanediol (171 mg, 1.0 mmol). The 

solution was stirred for 15 min and the aqueous layer was saturated with sodium 

chloride and extracted with chloroform (3 × 20 mL). The organic layers were combined 

and dried over magnesium sulfate. Removal of the solvents yielded 89 (220 mg, 78%). 

 

2.6.5.2 Ex-situ  

A septum-sealed 50 mL flask was charged with pinacol dichloromethaneboronate (87) 

(211 mg, 1.0 mmol) and dry hexane (1.5 mL). The solution was cooled to –78 °C. n-BuLi 

(0.75 mL. 1.6 M in hexane, 1.2 mmol) was added dropwise and the mixture was stirred 

for 5 min. Meanwhile, Lewis acid Yb(OTf)3 (132 mg, 0.21 mmol) and bis(oxazoline) 90 

(167 mg, 0.5 mmol) were premixed in dry dichloromethane (20 mL) for 12 h and 

cooled to –78 °C before being added to the reaction mixture 5 min after addition of 

n-BuLi. The mixture was warmed to room temperature over a period of 1 h. Saturated 

ammonium chloride solution (20 mL) was added, followed by diethyl ether (25 mL) and 
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(S)-pinanediol (171 mg, 1.0 mmol). The solution was stirred for 15 min and the 

aqueous layer was saturated with sodium chloride and extracted with chloroform (3 × 

20 mL). The organic layers were combined and dried over magnesium sulfate. Removal 

of the solvents yielded 89 (210 mg, 74%). 

The % e.e. of the product was determined by line shape analysis and integration of the 

1H NMR peaks of the endo C7 proton for each diastereoisomer (the method was 

detailed in section 2.3.9 and Figure 2.5).  

 

2.6.5.3 Ex-situ: In Absence of the Lewis Acid 

A septum-sealed 50 mL flask was charged with pinacol dichloromethaneboronate (87) 

(211 mg, 1.0 mmol) and dry hexane (1.5 mL). The solution was cooled to –78 °C. n-BuLi 

(0.75 mL, 1.6 M in hexane, 1.2 mmol) was added dropwise and the mixture was stirred 

for 5 min. Meanwhile, bis(oxazoline) 90 (167 mg, 0.5 mmol) was dissolved in dry 

dichloromethane (20 mL) and cooled to –78 °C before being added to the reaction 

mixture 5 min after addition of n-BuLi. The mixture was warmed to room temperature 

over a period of 1 h. Saturated ammonium chloride solution (20 mL) was added, 

followed by diethyl ether (25 mL) and (S)-pinanediol (171 mg, 1.0 mmol). The solution 

was stirred for 15 min and the aqueous layer was saturated with sodium chloride and 

extracted with chloroform (3 × 20 mL). The organic layers were combined and dried 

over magnesium sulfate. Removal of the solvents yielded 89 (235 mg, 83%). 

 

2.6.6 Addition of 12-Crown-4 (96) 

A 50 mL two-neck flask was charged with pinacol dichloromethaneboronate (211 mg, 1 

mmol) and hexane (1.5 mL). A solid-addition tube was charged with Yb(OTf)3 (132 mg, 

0.21 mmol) and bis(oxazoline) 90 (167 mg, 0.5 mmol), and the apparatus flushed with 

nitrogen. The flask was immersed in a dry ice-acetone bath. n-BuLi (0.75 mL, 1.6 M in 

hexane, 1.2 mmol) was added dropwise and the mixture was stirred for 5 min. A cold 

solution of 12-crown-4 (176 mg, 1.0 mmol) in dichloromethane (1 mL) was added and 

the mixture was stirred for a further 5 min. Cold (–78 °C) dichloromethane (20 mL) was 

added by cannula, followed by addition of the mixture of Yb(OTf)3 and bis(oxazoline) 
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90 from the solid addition tube. The mixture was warmed up to room temperature 

over a period of 1 h. Saturated ammonium chloride solution (20 mL) was added, 

followed by diethyl ether (25 mL) and (S)-pinanediol (171 mg, 1.0 mmol). The solution 

was stirred for 15 min and the aqueous layer was saturated with sodium chloride and 

extracted with chloroform (3 × 20 mL). The organic layers were combined and dried 

over magnesium sulfate. Removing the solvents yielded 89 (230 mg, 81%). 

 

2.6.7 Testing 2,2-bis((4S)-(–)-4-Isopropyloxazoline-2-yl)propane (97) 

The same two general procedures (in- and ex-situ) have been applied separately in 

order to test 2,2-bis((4S)-(–)-4-isopropyloxazoline-2-yl)propane (97) in the reaction 

instead of 90. Quantities: 97 (133 mg, 0.5 mmol), Yb(OTf)3 (62 mg, 0.1 mmol), n-BuLi 

(0.75 mL, 1.6 M in hexane, 1.2 mmol) and (S)-pinanediol (171 mg, 1.0 mmol). The 

purification of the crude product afforded compound 89 (228 mg, 80%, in-situ 

procedure and 222 mg, 78% for ex-situ procedure). The product 89 was racemic in 

both cases. 

 

2.7 Theoretical Methods and Details 

The geometries of all transition states were fully optimised using DFT at the 

B3LYP/6-31G(d) level of theory using Spartan software.87 All thermal and free energy 

contributions were calculated at 298.15 K. 
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2.7.1 Selected Computational Data 

2.7.1.1 Transition State (R) 

 

 

N        0.924880     -1.749345      0.638376 

C        0.419206     -2.917645      0.746080 

O        1.014748     -3.785864      1.601101 

C        2.109282     -1.680961      1.516012 

H        1.942640     -0.881755      2.246138 

C        2.117710     -3.074592      2.216525 

H        3.031402     -3.646086      2.036858 

H        1.922792     -3.022366      3.291474 

C       -0.716242     -3.535778     -0.046435 

C       -0.059783     -4.374456     -1.180763 

H        0.635085     -5.098007     -0.745328 

H        0.485236     -3.726420     -1.873734 

H       -0.828315     -4.912509     -1.739866 

C       -1.567520     -4.460716      0.862937 

H       -0.947434     -5.262684      1.268559 

H       -2.378296     -4.898736      0.275730 

H       -2.001071     -3.900839      1.697986 

C       -1.647350     -2.505726     -0.660113 

N       -1.762346     -1.261331     -0.394070 

O       -2.482946     -3.041632     -1.582445 

C       -2.850619     -0.721267     -1.247701 

H       -2.401826      0.049594     -1.880868 

C       -3.269044     -1.944323     -2.114931 

H       -4.324326     -2.210401     -2.019880 

H       -3.004407     -1.826342     -3.168665 

C       -3.994287     -0.117705     -0.452912 

C       -6.191646      0.983374      0.911040 

C       -4.603999      1.056793     -0.911278 

C       -4.498468     -0.734118      0.700453 

C       -5.587190     -0.186156      1.379513 

C       -5.697217      1.603998     -0.237061 

H       -4.215183      1.548277     -1.800161 

H       -4.027368     -1.639914      1.074482 

H       -5.963214     -0.671705      2.276785 

H       -6.157230      2.516895     -0.606770 

H       -7.039800      1.409312      1.440780 

C        3.394870     -1.371046      0.764034 

C        5.824844     -0.841419     -0.540856 

C        4.522660     -0.966915      1.491945 

C        3.495053     -1.504004     -0.625447 

C        4.704683     -1.237233     -1.273392 
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C        5.731201     -0.707536      0.846750 

H        4.451677     -0.843932      2.571306 

H        2.620759     -1.785934     -1.203677 

H        4.765141     -1.334083     -2.354144 

H        6.595186     -0.390446      1.425001 

H        6.762868     -0.631035     -1.047453 

B        1.456064      2.466625     -0.052785 

O        0.812778      3.730242      0.103631 

O        0.705219      1.483320      0.751494 

C       -0.140178      2.254416      1.652189 

C       -0.423843      3.543723      0.797614 

C        2.005122      1.949883     -1.413786 

C       -0.711295      4.803538      1.618698 

H       -0.849277      5.652130      0.940584 

H        0.118356      5.043245      2.288283 

H       -1.626307      4.694921      2.213901 

C       -1.539112      3.336884     -0.242100 

H       -2.528349      3.245624      0.220297 

H       -1.349203      2.449368     -0.853727 

H       -1.550601      4.201695     -0.913481 

C        0.658375      2.550341      2.932493 

H        1.036557      1.607038      3.342691 

H        0.028977      3.021723      3.695158 

H        1.509744      3.207534      2.739044 

C       -1.375021      1.431055      2.011957 

H       -1.084033      0.537473      2.576922 

H       -1.929873      1.108508      1.129279 

H       -2.055448      2.014281      2.643065 

C        3.172552      2.665325      0.370236 

Li       0.036664     -0.110781     -0.242972 

H        3.994396      2.142289     -0.124052 

Cl       0.259099      0.323133     -2.507988 

H        3.341255      3.742213      0.305617 

H        3.157352      2.328904      1.412228 

Cl       2.427822      3.049525     -2.681151 

H        2.561573      1.025985     -1.502759 

 

Imaginary frequency 277 cm-1 (intensity 327). 
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2.7.1.2 Transition State (S) 

 

N        1.108452     -1.395611      0.479124 

C        0.608765     -2.545068      0.732260 

O        1.015715     -3.180525      1.856905 

C        2.086891     -1.083795      1.546827 

H        1.804515     -0.127767      1.994791 

C        1.890947     -2.256173      2.553894 

H        2.814713     -2.785187      2.796462 

H        1.385821     -1.952788      3.476024 

C       -0.338990     -3.332781     -0.155994 

C        0.475284     -3.853902     -1.373529 

H        1.293554     -4.491267     -1.021958 

H        0.892838     -3.022396     -1.947600 

H       -0.173231     -4.443561     -2.026160 

C       -0.957889     -4.527442      0.610021 

H       -0.172241     -5.211425      0.938702 

H       -1.644485     -5.064013     -0.048047 

H       -1.507595     -4.192125      1.494895 

C       -1.467426     -2.453193     -0.665394 

N       -1.698781     -1.222414     -0.407254 

O       -2.320925     -3.107841     -1.486523 

C       -2.952488     -0.853780     -1.112334 

H       -2.723565     -0.008953     -1.765996 

C       -3.262945     -2.113029     -1.970347 

H       -4.270292     -2.509286     -1.829817 

H       -3.061205     -1.954303     -3.032569 

C       -4.068480     -0.471756     -0.156553 

C       -6.218709      0.205640      1.521999 

C       -4.905395      0.606650     -0.468470 

C       -4.321535     -1.205716      1.009739 

C       -5.387422     -0.869443      1.844029 

C       -5.975251      0.943263      0.362716 

H       -4.712924      1.188540     -1.366904 

H       -3.674951     -2.038730      1.272654 

H       -5.567719     -1.445964      2.747880 

H       -6.613964      1.784262      0.105895 

H       -7.048204      0.468390      2.172978 

C        3.511801     -0.966296      1.032730 

C        6.184825     -0.785715      0.191020 

C        4.357099      0.018678      1.554421 

C        4.020784     -1.862718      0.085405 

C        5.347407     -1.771840     -0.335355 

C        5.686771      0.109633      1.138269 

H        3.970324      0.724379      2.286635 

H        3.369767     -2.619776     -0.342000 

H        5.725999     -2.467412     -1.079849 
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H        6.328966      0.884300      1.548436 

H        7.216961     -0.712234     -0.140781 

B        1.117752      2.698142     -0.688856 

O        0.220172      3.805187     -0.704500 

O        0.706056      1.793614      0.375570 

C       -0.137526      2.567541      1.274415 

C       -0.791376      3.620315      0.294766 

C        1.664671      2.098065     -1.997007 

C       -1.084831      4.979350      0.940629 

H       -1.506679      5.652734      0.187517 

H       -0.177873      5.444864      1.334302 

H       -1.813732      4.885286      1.755135 

C       -2.062276      3.103959     -0.397099 

H       -2.890829      2.966484      0.306442 

H       -1.871982      2.166313     -0.925326 

H       -2.367488      3.838925     -1.149271 

C        0.767485      3.209951      2.337777 

H        1.324552      2.421781      2.856630 

H        0.181932      3.757353      3.083368 

H        1.490116      3.898526      1.893809 

C       -1.128204      1.628225      1.960699 

H       -0.594123      0.924460      2.610693 

H       -1.715703      1.049969      1.245729 

H       -1.821382      2.196843      2.591428 

C        2.806735      3.382687     -0.605810 

Li       0.057274      0.079340     -0.580397 

H        3.419816      3.600414     -1.482752 

Cl      -0.345597      0.621511     -2.836115 

H        2.559802      4.334730     -0.129483 

H        1.664803      2.690912     -2.906987 

Cl       2.841430      0.816126     -2.089010 

H        3.367753      2.714000      0.050652 

 

Imaginary frequency 420 cm-1 (intensity 404). 
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3.1 Aims and Introduction 

Brown and co-workers found that tri-n-butylborane reacts with representative 

trisubstituted methanes (chloroform, dichlorofluoromethane, chlorodifluoromethane 

and 1,1-dichloromethyl methyl ether (DCME)) under the influence of lithium 

triethylcarboxide. They discovered that a wide variety of trialkylboranes containing a 

tertiary alkyl group (tert-butyl or thexyl) readily react with DCME and triethylcarboxide 

at 25 °C with transfer of all three alkyl groups from boron to carbon in one process 

(step 1 of Scheme 3.1). However, there are no stereoselective examples of the DCME 

reaction.88,89 Our goal in this chapter was to design a heterocyclic system as an 

alternative reagent which influences the three alkyl groups to migrate from boron to 

carbon in turn and stereoselectively at the first step (Scheme 3.1). 
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Scheme 3.1: The Strategy for Synthesis of Chiral Quaternary Carbon Centres 

 

An alternative reagent to DCME, which has three different leaving groups attached to 

the central carbon atom, could allow the stereochemistry of the product to be 

controlled. Essentially, such a system would have to have three main important 

properties: first, it would need a proton located on the carbon atom that could be 

removed to generate the corresponding anion; second, groups with different leaving 

aptitudes in order that the three alkyl groups on boron migrate to the carbon atom in 
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sequence and as a result are able to influence the stereochemistry of the carbon next 

to boron; third, it would need to be chiral, and accessible as a single enantiomer. 

Ideally, the reagent would also have the rigidity imposed by incorporation of the 

groups into a heterocyclic system such as 98. In order to begin a study of such ideas, 

compounds containing just two different leaving groups were first investigated. 

 

Y

X

Z

H

98
 

 

3.2 Results and Discussion  

3.2.1 Synthesis of 2-Methyl-N-(thiazolidin-3-ylmethylene)propan-2-amine (99) 

In the beginning, our attention was turned to the formamidine 99. The compound 99 

can provide not only two groups with different leaving aptitudes but also an additional 

element of stereocontrol by coordination of the lithium atom of its lithiated derivative 

with the imine nitrogen atom (100). Furthermore, more importantly, chiral 

formamidines have become accessible and they have been used widely in asymmetric 

organic synthesis.90  

 

N

S

N
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The compound 99 has been synthesised before91 but no details of the procedure were 

given. Nevertheless, the compound 99 was synthesised by heating a mixture of 
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thiazolidine, N,N-dimethyl-N'-tert-butylformamidine and a few crystals of ammonium 

sulfate as a catalyst in toluene at reflux for 12 days. The conversion according to the 1H 

NMR spectrum of the crude product was around 40% (Scheme 3.2). Unfortunately, the 

compound could not be purified by column chromatography since it decomposed on 

the silica gel.  
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Scheme 3.2: Synthesis of 2-Methyl-N-(thiazolidin-3-ylmethylene)propan-2-amine (99) 

 

3.2.2 Synthesis of Dithiane Mono- or Di- Sulfoxide and Reactions with 

Trialkylboranes 

Compounds containing sulfur leaving groups could provide the potential to carry 

stereoselective features. Indeed, several studies have used substituted sulfur 

compounds to achieve 1,2- boron to carbon migrations (Scheme 3.3).92–95 
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Scheme 3.3: Reactions of 2-Substituted 1,3-Disulfide Compounds with Trialkylboranes 

 

These studies showed that metallation of such compounds and then addition to 

trialkylboranes, followed by addition of HgCl2, induced two alkyl groups to migrate 

from boron to carbon. Ultimately, tertiary alcohols were produced since a third alkyl 

group is already present in the reagent. The aptitude of the sulfide groups to leave in 

all the above cases is equal. This means that there is no chance of enantiocontrol in 

the reaction as the two sulfide leaving groups compete to leave without any reagent 

stereocontrol. In order to introduce stereoselectivity into such a system, one of the 

leaving groups (X*) must incorporate a chiral unit. A chiral group X* might control the 

stereochemistry of the borate complex at the addition of anion to trialkylborate step 

(Scheme 3.4). It must then control stereochemistry of the carbon centre by directing 

the migration of the alkyl groups. Assuming that they migrate in order from R1 to R3 as 

a result of their migratory aptitudes, and the leaving groups have different leaving 

abilities, the stereochemistry could be controlled.  
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Scheme 3.4: Proposal Pathway for an Asymmetric Version of the DCME Reaction 

 

The stereoselectivity of reactions of metallated 2-substituted-1,3-dithiane-1,3-dioxide 

(104-106) or 1-oxide (107) with electrophiles such as ketones, alkyl halides and 

aldehydes has been studied widely.96–102 
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These studies showed that the sulfoxide groups play a large role in determining the 

level of stereoselectivity (Scheme 3.5). Very high stereoselectivity (≈100:0) has been 

achieved for the reaction of metallated 2-halogeno-1,3-dithiane 1,3-dioxide (105 and 

106) with benzaldehydes in moderate to good yield.102
 The reactions of metallated 

2-substituted-1,3-dithiane-1-oxide (107) with electrophiles such as D2O and 

benzophenone also gave high stereoselectivity and very good yields.101 Organic 

chemists have recognised that these compounds are excellent strategic elements for 

synthesis of natural and unnatural products.  
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Scheme 3.5: The Stereoselective Reactions of 1,3-Dithiane Mono (107) and Di-oxides 

(105) 

 

This drew our attention to the possibility of using such systems as stereocontrol 

auxiliary elements in reactions with trialkylboranes. To design appropriate thio 

compounds for such a purpose, three important objectives should be achieved: 1) 

stereoselective oxidation of one or both of the two sulfur atoms, which will help to 

orientate the migrating group stereoselectively; 2) insertion of a third leaving group at 

the carbon atom between the two sulfur atoms, and one with a different migratory 

aptitude to the sulfide or sulfoxide; and 3) generation of an anion sufficiently stable to 

survive long enough to react with trialkylboranes. It seemed likely that 2-substituted-

1,3-dithiane-1-oxide (108 – 110) or trans or cis-2-sustituted-1,3-dithiane-1,3-dioxide 

(105 – 106) might meet these conditions. An important feature for these compounds 

would be the stereochemical configurations of the sulfoxide groups. Therefore, a 

detailed study of the reactions of these and other related systems with trialkylboranes 

has been undertaken.  

The next section describes in greater detail the synthesis of such compounds and the 

examination of the sulfoxide and sulfide moieties as leaving groups in their reactions 

with trialkylboranes.  
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3.2.3 Reaction of trans-1,3-Dithiane-1,3-dioxide (104) with Trioctylborane 

The title compound was prepared by adapting the procedure used by Aggarwal et al. 

(1991).
103 The reaction of the trans-2-lithio-1,3-dithiane-1,3-dioxide with various 

carbonyl compounds was studied previously.104 The authors observed that the 

compound 104 could not be dissolved in THF but it was dissolved in pyridine instead. 

So, to lithiate trans-1,3-dithiane-1,3-dioxide, it was dissolved in pyridine, the solution 

was diluted with THF and then n-BuLi was added dropwise to generate 2-lithio-1,3-

dithiane-1,3-dioxide 112 (colourless), via the transiently-formed lithium amide 111. 

After the addition of one equivalent of the n-BuLi, an excess of the n-BuLi results in 

persistence of adduct of n-BuLi with pyridine 111 (yellow) (Scheme 3.6). This acts as an 

indicator of the completion of the addition of one equivalent; also it could be used to 

measure the concentration of the n-BuLi.104 The solution of lithiated 104 was prepared 

according to this procedure and cooled to –78 °C. Among various trialkylboranes, tri-n-

octylborane was chosen because its one, two and three migration products are all 

relatively easy to monitor. The tri-n-octylborane was prepared in a separate flask 

according to the literature procedure.105,106 The resulting solution was transferred to 

the cold (–78 °C) solution of trans-2-lithio-1,3-dithiane-1,3-dioxide by cannula. 

Oxidising the expected adduct gave no sign of any migration product. Only 1-octanol 

was obtained even when HgCl2 was used as an electrophile in an attempt to induce 

rearrangement. 

 



Chapter Three: Stoichiometric Studies on Dithiane Derivatives as DCME-like Reagents 

 

69 
 

S
S

O

O

N N N
H

S S
Bu

Li

Bu O O

Li

(Yellow) (Colourless)

n-BuLi

R3B, HgCl2, - 78 °C

S S
O O

B
RR

R
Li

111 112

R = octyl

?

?

113

104

 

 

Scheme 3.6: Reaction of trans-1,3-Dithiane-1,3-dioxide (104) with Trioctylborane 

 

This result may be explained either by no boron-carbon adduct (113) having been 

formed as a result of steric hindrance due to the two sulfoxide groups (Scheme 3.6) or 

by the sulfoxide groups not being good leaving groups. To check whether the adduct 

was being formed, inserting a good leaving group at position 2 was planned. 

Therefore, 2-chloro-1,3-dithiane-1,3-dioxide (105) was the next target. 

 

3.2.4 Reaction of 2-Chloro-1,3-dithiane-1,3-dioxide (105) with Trioctylborane 

The compounds 105 and 106 have been synthesised and their reactions with carbonyl 

compounds have been studied extensively by Aggarwal and co-workers.102 In our work, 

2-chloro-1,3-dithiane-1,3-dioxide was metallated by following the same procedure, 

using NaHMDS as a base at 0 °C, and then the addition of the trialkylborane was 

carried out at –78 °C. Oxidation of the solution with a basic solution of hydrogen 

peroxide yielded nonanoic acid (114) in moderate yield (50%) (Scheme 3.7). Also, the 

GC-MS spectrum showed that there was a trace of dioctyl ketone (two migrations) but 

it was not promising.  
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Scheme 3.7: Reaction of 2-Chloro-1,3-dithiane-1,3-dioxide (105) with Trioctylborane 

 

Attempts to induce the second or third migration by adding an electrophile (HgCl2) and 

heating at reflux failed. An implication of this is the possibility that only chlorine was 

replaced by an octyl group and the sulfoxide groups were not good enough leaving 

groups. However, even the yield of the one-migration product (carboxylic acid) was 

not promising. From these experiments, two important points can be concluded: first, 

the presence of two bulky sulfoxide groups possibly inhibits formation of the boron-

carbon adduct, so that the yield of the one-migration product was low; second, the 

sulfoxide is not a good leaving group because no ketone or tertiary alcohol were 

produced even when activation by HgCl2 or heating was used.  

It seemed likely that a second migration might be achieved if one of the sulfoxide 

groups could be replaced with sulfide in order to make it more ready to leave. In order 

to do that, the 2-X-substituted-1,3-dithiane-1-oxide (108 – 110) was thought to be a 

good choice for this purpose.  

 

3.2.5 Synthesis of 2-Chloro-1,3-dithiane-1-oxide (108) and Reaction with 

Electrophiles 

2-Chloro-1,3-dithiane-1-oxide 108 was synthesised from compound 107 using the 

same method that was detailed for the compound 105 using N-chlorosuccinimide as a 

chlorinating agent (Scheme 3.8). The mixture of two diastereomers was isolated in a 

moderate yield (60%) (58:42 ratio) by column chromatography. 
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Scheme 3.8: Synthesis of 2-Chloro-1,3-dithiane-1-oxide (108) 

 

Before proceeding to examine the compound in 1,2- boron to carbon migration 

rearrangement, it was decided to conduct a small study of metallation of 108. Many 

attempts were carried out to investigate the metallation of 108 and its reactions with 

electrophiles. The reactions were carried out according to the following procedure: a 

solution of base was added to a solution of compound 108 at –78 °C, followed by 

addition of the electrophile (MeI, benzaldehyde or 3,4-dimethoxybenzaldehyde). 

Different bases (n-BuLi, NaHMDS and LDA) and temperatures (0 °C, –78 °C and -100 °C) 

were investigated in this reaction. Attempts to generate the methylated product, in 

this way, with iodomethane were not successful. Also, the reaction with benzaldehyde 

or 3,4-dimethoxybenzaldehyde did not result in identification of any halohydrin 

products. A possible explanation for these results may be the lack of stability of the 

metallated derivative of the compound 108. Thus, to stabilise the anion, manipulation 

of the structure could be useful. Replacement of the chloride group by an alkoxy group 

could make the anion more stable. This can be done by substitution of the chloride of 

108 with sodium methoxide. 

The next part describes the synthesis and evaluation of the reaction of 2-methoxy-1,3-

dithiane-1-oxide (109). 

 

3.2.6 Synthesis and Reactions of 2-Methoxy-1,3-dithiane-1-oxide (109) 

It was decided that the best method to adopt for this synthesis was to add sodium 

methoxide to a solution of compound 108 in THF at –78 °C. Indeed, the reaction 

(Scheme 3.9) gave diastereomers of 2-methoxy-1,3-dithiane-oxide (109) in a moderate 

yield (70%, 81:19 ratio after purification; the enrichment could be a result of 

purification) . 
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Scheme 3.9: Synthesis of 2-Methoxy-1,3-dithiane-1-oxide (109) 

 

It was found that the generation of 2-lithio-2-methoxy-1,3-dithiane-1-oxide was easier 

and the anion was more stable than in the case of 108. Addition of n-BuLi to a solution 

of the compound in THF at –78 °C, followed by addition of acetophenone, gave the 

crude product. The low resolution positive ion (ES+) mass spectrum of the compound 

showed pseudo-molecular ion peaks (M+Na+CH3CN)+ at m/z = 350 (60%) and (M+Na)+ at 

309 (47%), consistent with the formulae C15H21NNaO3S2 and C13H18NaO3S2, 

respectively. These assignments were further supported by accurate mass data from 

the high resolution mass spectrum. Therefore it seemed likely that the desired product 

115 (Scheme 3.10) had been formed. However, it was difficult to identify the product 

in the 1H NMR spectrum of the crude product, due to the presence of impurities. 

 

 

 

Scheme 3.10: Reactions of 2-Methoxy-1,3-dithiane-1-oxide (109) with Acetophenone 

 

It was hard to purify the product by column chromatography, since it decomposed on 

the silica gel. Other electrophiles: methyl iodide, benzyl bromide and benzophenone, 

were used to trap the anion but none of their products were separated as a result of 

similar problems. Nevertheless, the possible formation of compound 115 was 

encouraging to study the reaction of compound 109 in more detail. It was therefore 
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worth checking whether the reaction of 2-lithio-2-methoxy-1,3-dithiane-oxide with 

other electrophiles such as trialkylboranes might take place and lead to boron-to-

carbon 1,2-migration reactions. 

For the same aforementioned reasons, tri-n-octylborane was chosen for the reaction 

and n-BuLi was used as a base. Tri-n-octylborane was prepared as above. The reaction 

of tri-n-octylborane and 109/n-BuLi, followed by oxidation gave the desired dioctyl 

ketone (116) and 1-octanol (117). The isolated yield of the dioctyl ketone (116) was 

11% and 1-octanol (117) (72% of all octyl groups of tri-n-octylborane). An alternative 

procedure was applied to improve the yield by mixing compound 109 and 

tri-n-octylborane before addition of n-BuLi. The yield of dioctyl ketone (116) did not 

improve (13%). The product was purified by flash column chromatography on silica gel 

and characterised by 1H NMR and 13C NMR spectroscopy. Response factors with 

respect to a hydrocarbon internal standard (tetradecane) were measured for both 

products. Thereafter, the yields were determined by GC analysis.  

The reaction was repeated and the yield, as measured by GC analysis, was 16%, which 

required considerable optimisation. Before optimsing the reaction to get high yield, it 

was worth trying to induce the third alkyl group to migrate. From the reaction of 

compounds 104 and 105 with trialkylborane, it was concluded that the sulfoxide was 

not a good leaving group. Also, the evidence from this reaction suggested that sulfides 

were better leaving groups. So, the third migration might be achievable if the 

remaining sulfoxide group was converted into a sulfide group. There is a powerful 

method in the literature that can be used for this purpose. The Pummerer 

rearrangement is a well known method for conversion of a sulfoxide into a sulfide.107 

The method uses acetic anhydride or TFAA. The same procedure was followed as in 

the previous experiment, but after warming the reaction solution to room 

temperature over a period 1 h, TFAA (1.3 equiv.) was added at 0 °C and the mixture 

was stirred for three hours. The solution was warmed to room temperature and 

oxidised. The reaction was successful and the product of this reaction was a mixture of 

dioctyl ketone (116) (4%), trioctylmethanol (118) (6%) and 1-octanol (117) (69% of all 

octyl groups of tri-n-octylborane). A plausible mechanism for this rearrangement is 

depicted in Scheme 3.11. 
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Scheme 3.11: Induction of the Third Migration via Pummerer Rearrangement 

 

Once the third migration was achieved, attempts at the optimisation of the two 

migration reactions were carried out. The low yield of the dioctyl ketone by using 

n-BuLi might be because the dithiane had not been converted to 2-lithio-2-methoxy-

1,3-dithiane-oxide completely. So, in order to optimise the yield of double migrations, 

it was decided to repeat the reaction using stronger bases such as sec- or tert-BuLi 

which might increase the yield. The yields of dioctyl ketone are summarised in Table 

3.1. 
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Table 3.1: Reaction of 2-Methoxy-1,3-dithiane-oxide (109) with tri-n-Octylborane 

Using Three Different Alkyllithium Bases (1.1 equiv.) 

 Base  Dioctylketone GC yield (%) 

n-BuLi 16 

sec-BuLi 28 

tert-BuLi 12 

 

Interestingly, sec-BuLi improved the yield significantly to 28%. However, it is surprising 

that with the strongest base (tert-BuLi) the yield dropped even further (12%) relative 

to the n-BuLi (16%). The increase of the yield in the sec-BuLi case compared with 

n-BuLi and tert-BuLi could be due to a number of factors – e.g. the sec-BuLi is stronger 

than n-BuLi meanwhile less bulky than tert-BuLi.  

After identifying the best alkyllithium base, many experiments were performed, in 

attempts to improve the yield using sec-BuLi. Manipulation of the stoichiometry of the 

sec-BuLi by using 1.0, 1.1, 1.2 and 1.8 equivalents gave the results summarised in Table 

3.2/.  

 

Table 3.2: Reaction of (109) with tri-n-Octylborane Using Various Equivalents of 

sec-BuLi 

Equivalents of the sec-BuLi GC Yield of dioctylketone (%) 

1.0 20 

1.1 28 

1.2 31 

1.4 5 

1.8 0 
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It is apparent from this table that the highest yield (31%) was achieved when 1.2 

equivalents was used. Decreasing the base to 1.0 equivalents reduced the yield to 

20%. Increasing the base to more than 1.2 equivalents decreased the yield as well. 

Furthermore, it went down to 0% when 1.8 equivalents were used.  

Cooling the reaction mixture further to –100 °C did not improve the yield, again giving 

31%. To answer the question why the yield was low, it was needed to see whether 

2-lithio-2-methoxy-1,3-dithiane-oxide was generated in full conversion. Thus, 

2-lithio-2-methoxy-1,3-dithiane-oxide needed to be generated, then quenched by 

protonation to check whether only the dithiane would be recovered. An experiment 

was designed for this purpose.  

A solution of dithiane 109 in THF was cooled to –78 °C and 1.2 equivalents of sec-BuLi 

were added. When the reaction was quenched with a saturated solution of ammonium 

chloride, an unknown compound was formed (as seen in the 1H NMR spectrum of the 

crude product). The product was separated and the structure was confirmed by full 

characterisation. Surprisingly, the main product, observed, in significant yield (40%) 

was 1:1 ratio of a mixture of two diastereoisomers of (3-(sec-

butylsulfinyl)propyl)(methoxymethyl))sulfane (119), the result of addition of 

sec-butyllithium to the sulfoxide group.  

 

S
O

S

OMe
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3.2.7 Possible Explanation of Formation of 119 

It is well known that sulfoxide/magnesium exchange can be used to generate chiral 

Grignard reagents. Hoffmann and his co-workers used this method to synthesise the 

epoxide 120 in high stereoselectivity (93 % e.e.) (Scheme 3.12).51  
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Scheme 3.12: Synthesis of Epoxide Stereoselectively via Chiral Grignard 

Reagents-Sulfoxide/Magnesium Exchange 

 

Recently, Barsamian and Blakemore applied the sulfoxide-ligand exchange to generate 

-metallated S,O-acetal 122 from dithioorthoformate 121 (Scheme 3.13).108 
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Scheme 3.13: Application of Sulfoxide-Ligand Exchange 
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Similarly, in the dithiane case, 109 could undergo this reaction with alkyllithium 

reagents through lithium anion 124 to produce (3-(sec-butylsulfinyl)propyl) 

(methoxymethyl)sulfane 119 (Scheme 3.14).  
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Scheme 3.14: Reaction of the Alkyllithium with 109 

 

This provides an explanation for the dramatic dropping of dioctylketone yield to 0% 

when 1.8 equivalent of sec-BuLi was used. Increasing the amount of base favours 

addition to the sulfoxide rather than deprotonation of the dithiane.  

To check whether the other alkyllithium reagents behave similarly to sec-BuLi, the 

experiment was repeated by using n-BuLi and tert-BuLi respectively. The former gave 

similar result to the sec-BuLi ((3-(butylsulfinyl)propyl) (methoxymethyl)sulfane (125), 

49%) while the tert-BuLi gave only 109 as main product. tert-BuLi is sterically hindered 

and it might not be able to form the intermediate 126 by this mechanism. 
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Unfortunately, although the tert-BuLi does not undergo the sulfoxide-ligand exchange, 

it did not give a good yield of dioctylketone either (12%). It is possible that the 
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deprotonation of 109 by this base did not go to complete conversion for the same 

reason. 

The aforementioned issue caused us to turn the attention to looking for an alternative 

base. It could be solved by using lithium amide bases such as LDA, LiTMP or LiHDMS 

instead of alkyllithium reagents. Before using these bases, it was necessary to check 

whether they undergo sulfoxide-ligand exchange.  

LDA was chosen for this purpose. LDA was prepared by adding n-BuLi to a solution of 

diisopropylamine in THF at –78 °C and warming it to 0 °C and then added to the 

solution of 109. After quenching the reaction with ammonium chloride, the 1H NMR 

spectrum of the crude product showed that only the starting materials were 

recovered. This means that such bases do not undergo sulfoxide-ligand exchange, so 

that they might be suitable in the reaction.  

Three experiments of reaction of 109 and tri-n-octylborane were repeated by using 

LDA, LiTMP and LiHDMS, respectively, using 1.1 equivalents of each at –78 °C. The GC 

yields are listed in Table 3.3. 

 

Table 3.3: Reaction of 109 with tri-n-Octylborane Using Three Bases, LDA, LiTMP and 

LiHDMS (1.1 equiv.) 

Base GC Yield of dioctylketone (%) 

LDA 20 

LiTMP 12 

LiHDMS 18 

 

It is apparent from this table that no increase in the yield was detected, compared to 

sec-BuLi. It is somewhat surprising that no improvement was noted in all cases and the 

yield has not been increased higher than that obtained when n-BuLi was used. In an 

attempt to make an improvement in the yield, the reaction of 109 with 

tri-n-octylborane was repeated under different conditions and the GC yields are 
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summarised in Table 3.4. The reaction was carried out with two different quantities of 

LDA (1.1 and 5 equiv.) and at two different temperatures (–78 °C and 0 °C). 1.1 

Equivalents of LDA at –78 °C gave only 20% of the dioctylketone. Increasing the LDA to 

5 equivalents did not improve the yield but actually decreased it even further down to 

5%. The role of temperature was key to improve the yield slightly higher. Running the 

reaction at a higher temperature (0 °C) improved it to 30%. 

 

Table 3.4: Reaction of 109 with tri-n-Octylborane Using LDA 

Equivalent of LDA GC Yield of dioctylketone (%) Description 

5 3 Using 5 equiv. of LDA 

1.1 20 At –78 °C 

1.1 30 At 0 °C 

 

Contrary to expectations, the yield did not improve higher than that obtained when 

n-BuLi was used, although the LDA does not undergo sulfoxide-ligand exchange. It is 

possible that lithium amide bases are not strong enough to deprotonate compound 

109 completely. It was thought that using a strong base such as LICKOR might give 

better deprotonation.  

LDA-LICKOR base was prepared according to a literature procedure.109 After preparing 

the base, the compound 109 was added to the base, followed by tri-n-octylborane. No 

increase in yield was detected; only 8% GC yield of dioctyl ketone was observed in this 

reaction.  

Replacing the oxygen by sulfur might give a better stability of the lithiated species and 

might help to improve the yield. The next section describes the synthesis and 

evaluation of reaction of 2-thiophenyl-1,3-dithiane-1-oxide (110) with trialkylboranes.  
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3.2.8 Synthesis and Reaction of 2-Thiophenyl-1,3-dithiane-1-oxide (110) 

Compound 110 was synthesised using the same method that was detailed for 109. 

Sodium thiophenoxide solution was prepared first by dissolving 1.0 equivalents of 

sodium metal in thiophenol, and this was added to 2-chloro-1,3-dithiane-1-oxide. Two 

diastereoisomers were obtained (65:35) and one diastereoisomer was isolated from 

the crude reaction mixture by flash column chromatography (30%). In order to assess 

the reaction of lithiated 110 with trialkylborane, a reaction of lithiated 110 with 

tri-n-octylborane at –78 °C was conducted and the yields of the alcohol and ketone 

were monitored by GC. The GC yield showed that 1-octanol was the main product and 

only 4% of dioctyl ketone was formed. These results were not very encouraging, so the 

study on these compounds was discontinued at this point. 

 

3.2.9 Conclusion  

The work in this chapter was undertaken to design and evaluate a heterocyclic system 

as a stereocontrol agent in its reaction with trialkylboranes. This study has shown that 

2-chloro-1,3-dithiane-1,3-dioxide achieved only one migration in moderate yield. It 

was also shown that 2-methoxy-1,3-dithiane-1-oxide has achieved two migrations in 

poor yield and three migrations under the influence of TFAA. It is unfortunate that the 

yield could not be improved higher than 31%. More broadly, research is also needed to 

evaluate non-cyclic sulfur compounds such as sulfoxides, sulfoximines, sulfilimines and 

sulfones. The next chapter describes synthesis and assessment of these compounds. 
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3.3 Experimental  

3.3.1 Preparation of 2-Methyl-N-(thiazolidin-3-ylmethylene)propan-2-amine
110

 (99)  

 

N

S

N

99
 

 

Thiazolidine (0.16 mL, 2.0 mmol), N,N-dimethyl-N'-tert-butyl formamidine (0.32 mL, 

2.0 mmol) and ammonium sulfate (ca. 50 mg) were mixed in a 50 mL round bottomed 

flask. The flask was connected to a septum-capped condenser. The equipment was 

flushed with N2 for 10 min and toluene (15 mL) was added. The reaction mixture was 

heated to reflux under nitrogen for 12 days. The solvent was evaporated to yield a 

colourless oil which was shown to contain a 2:3 mixture of thiazolidine and 2-methyl-

N-(thiazolidin-3-ylmethylene)propan-2-amine according to 1H NMR spectroscopy. The 

product mixture was subjected to Kugelrohr distillation at 60 – 65 °C and 1 Torr to give 

small quantity of the title compound (23 mg, 7%). 

max. (neat) 3036, 2975, 2919, 2872, 1660, 1387 and 1203 cm-1. 

1H NMR (400 MHz; CDCl3)  7.35 (1H, s, CH=N-), 4.41 (2H, s, -NCH2S-), 3.62 (2H, t, J = 

6.3 Hz, CH2N), 2.87 (2H, t, J = 6.3 Hz, CH2S) and 1.13 (9H, s, 3 × CH3). 

13C NMR (125 MHz; CDCl3)  148.5 (CH), 53.7 (quat C), 50.8 (CH2), 50.2 (CH2), 31.0 (CH3) 

and 30.5 (CH2). 
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3.3.2 Preparation of 1,3-Dithiane-1-oxide
111

 (107) 

 

S

S

O

107
 

 

A solution of 1,3-dithiane (0.60 g, 5.0 mmol) in methanol (40 mL) was placed in a 250 

mL flask. The flask was immersed in an ice-bath and an aqueous solution (35 mL) of 

sodium metaperiodate (1.07 g, 5 mmol) was added at such a rate (over approximately 

30 min) to keep the temperature below 20 °C. The solution was stirred at the same 

temperature for an additional 30 min. The precipitate was removed by filtration and 

washed thoroughly with dichloromethane and the resulting solution taken to near 

dryness on the rotary evaporator. Extraction of the solids with dichloromethane, 

drying the extract over magnesium sulfate and removal of the solvents gave the title 

compound (0.582 g, 85%) as a colourless solid. 

m.p. 85 – 86 °C (lit.111
 86 – 87 °C) 

1H NMR (400 MHz; CDCl3)  3.99 (1H, d, J = 12.7 Hz), 3.63 (1H, d, J = 12.7 Hz), 3.39 - 

3.24 (1H, m), 2.71 – 2.43 (4H, m) and 2.32 – 2.10 (1H, m). 

13C NMR (125 MHz; CDCl3)  52.9, 50.4, 28.3 and 27.1. 

 

3.3.3 Preparation of trans-1,3-Dithiane-1,3-dioxide
103

 (104) 

 

S
S

O

O
104

 

 

To a suspension of 1,3-dithiane (1.20 g, 10 mmol, 1 equiv.) in MeOH/H2O (35:3.5 mL), 

sodium periodate (5.35 g, 25 mmol, 2.5 equiv.) was added in one portion. The mixture 
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was stirred for 96 h at room temperature. Dimethyl sulfide (0.75 mL, 10 mmol, 1 

equiv.) was added and the solution stirred for an additional 30 min. Removing the 

solvents under vacuum left a white solid product which was extracted with acetone-

ethanol (5:1) and then passed through a short pad of silica gel using additional 

acetone-ethanol (5:1) as eluent. After evaporation of the solvent, the cis and trans 

mixture was purified by flash column chromatography on silica gel with acetone as 

eluent to give the trans isomer of the title compound (0.94 g, 62%) as a colourless 

solid, m.p. 171 – 172 °C (lit.103 170 – 171 °C). 

1H NMR (500 MHz; d6-DMSO)  4.34 (2H, s), 3.27 – 3.15 (2H, m), 3.02 – 2.91 (2H, m) 

and 2.66 – 2.15 (2H, m). 

13C NMR (125 MHz; d6-DMSO)  61.8, 47.6 and 14.9. 

 

3.3.4 Preparation of 2-Chloro-1,3-dithiane-1,3-dioxide
102

 (105) 

 

S

S

Cl

O

O

105
 

 

Trans-1,3-Dithiane-1,3-dioxide (152 mg, 1.0 mmol) was placed in a 25 mL round 

bottomed flask. The flask was fitted with a septum and flushed with nitrogen. Dry 

dichloromethane (10 mL) was added and the substrate was dissolved with stirring. 

N-Chlorosuccinimide (147 mg, 1.1 mmol) was added and the mixture was stirred at 

room temperature for 23 h. The solvent was evaporated and the product purified by 

flash column chromatography (silica, 1:9 EtOH/EtOAc) to afford the title compound 

(158 mg, 85%) as a colourless solid, m.p. 139 – 141 °C (lit.102 141 - 142 °C) 

1H NMR (500 MHz; CDCl3) 5.93 (1H, s), 3.46 – 3.08 (3H, m), 2.97 (1H, m), 2.85 – 2.60 

(1H, m) and 2.48 – 2.16 (1H, m). 

13C NMR (125 MHz; CDCl3)  75.3, 45.4, 41.4 and 14.5.  



Chapter Three: Stoichiometric Studies on Dithiane Derivatives as DCME-like Reagents 

 

85 
 

3.3.5 Synthesis of 2-Chloro-1,3-dithiane-1-oxide (108) 

 

S

S

O

Cl

108
 

 

1,3-Dithiane-1-oxide (136 mg, 1.0 mmol) was place in a 25 mL round bottom flask. The 

flask was equipped with a septum and flushed with nitrogen. Dry dichloromethane (10 

mL) was added and the substrate was dissolved with stirring. N-Chlorosuccinimide 

(147 mg, 1.1 mmol) was added and the mixture was left to stir at room temperature 

for 23 h. The solvent was evaporated and the product purified by flash column 

chromatography on silica using 0-10% EtOAc/Et2O as eluent to give a mixture (58:42 

ratio) of diastereomers of the title compound (0.103 g, 60%) as a light yellow solid, 

m.p. 48-70 °C. 

max. (NaCl film) 2995, 2940, 2844 and 1423 cm-1. 

1H NMR (400 MHz; CDCl3) the individual proton signals of the two isomers overlapped 

considerably and only the signals for the CHCl protons attached to carbon 2 in the two 

isomers could be reliably differentiated – other assignments are made to give an 

indication of relative integration of peaks;  5.90 (1H of major isomer, s), 5.49 (1H of 

minor isomer, s), 3.33 – 3.04 (2H of major isomer and 1H of minor isomer, m), 3.04 – 

2.89 (1H of major isomer and 1H of minor isomer, m), 2.87 – 2.74 (1H of minor isomer, 

m), 2.68 – 2.55 (1H of major isomer, m), 2.46 – 2.17 (2H of major isomer and 2H of 

minor isomer, m) and 1.83 – 1.64 (1H of minor isomer, m). 

13C NMR (100 MHz; CDCl3) (major isomer):  74.0 (CH), 45.9 (CH2), 28.9 (CH2) and 23.1 

(CH2); (minor isomer): 70.2 (CH), 41.0 (CH2), 29.7 (CH2) and 23.3 (CH2). 

 MS (EI) m/z (%) 172 (M+, 37Cl, 12%), 170 (M+, 35Cl, 36), 135 (16), 106 (100), 90 (95), 64 

(30). HRMS: Found: M+, 169.9630. C4H7ClOS2 requires M, 169.9627. 
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3.3.6 Synthesis of 2-Thiophenyl-1,3-dithiane-1-oxide (110)
112

 

 

S

S

O

S

110
 

 

Sodium metal (89 mg, 3.9 mmol) was placed in a 25 mL flask and the flask was sealed 

and flushed with nitrogen for 10 min. Thiophenol was added at room temperature and 

the solution was stirred until all sodium pieces dissolved in the thiophenol. This 

solution was added to a solution of 2-chloro-1,3-dithiane-1-oxide (108) (0.667 g, 3.9 

mmol) in THF (10 mL). The mixture was stirred for 12 h before being saturated with a 

solution of sodium chloride. The organic layer was separated and the aqueous layer 

was extracted with chloroform (3 × 20 mL). The organic layers were combined and 

dried over magnesium sulfate. The solvents were removed to give a mixture of two 

diastereoisomers of the title compound (65:35). One of the two diastereoisomers was 

separated by flash column chromatography on silica (10% ethyl acetate/diethyl ether), 

(290 mg, 30%) as a yellow oil.  

1H NMR (400 MHz; CDCl3)  7.75 – 7.60 (2H, m), 7.36 – 7.29 (3H, m), 5.09 (1H, s), 

3.20-2.88 (3H, m) and 2.49 – 2.16 (3H, m). 

13C NMR (125 MHz; CDCl3)  133.9 (CH), 132.8 (quat C), 129.5 (CH), 128.8 (CH), 69.2 

(CH), 47.3 (CH2), 28.7 (CH2) and 24.2 (CH2). 
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3.3.7 Synthesis of 2-Methoxy-1,3-dithiane-1-oxide (109) 

 

S

S

O

OMe

109
 

 

Sodium metal (14 mg, 0.6 mmol) was placed in a 25 mL flask and the flask was sealed 

and flushed with nitrogen for 10 min. The flask was immersed in an ice-bath and 

MeOH (10 mL, excess) was added. After evolution of hydrogen stopped, the solution of 

sodium methoxide was transferred dropwise by syringe to a cooled (0 °C) and dry 

solution of 2-chloro-1,3-dithiane-1-oxide (108) (103 mg, 0.6 mmol) in THF (4 mL). The 

mixture was warmed up to room temperature and stirred for 1 h. The solvents were 

evaporated and the resulting solid was dissolved in CHCl3 (3 × 10 mL) and washed with 

brine. The organic layer was dried over magnesium sulfate. The solvent was 

evaporated and the crude product was purified by flash column chromatography on 

silica gel and 10% EtOAc/diethyl ether to yield two diastereomers (81:19 ratio) of the 

title compound (70 mg, 70%) as a light yellow oil. 

max. (neat) 2935, 2907, 2831, 1424, 1084 and 1029 cm-1. 

1H NMR (400 MHz; CDCl3),  5.32 (1H of major isomer, s), 5.01 (1H of minor isomer, s) 

3.75 (3H of major isomer, s), 3.64 (3H of minor isomer, s), 3.36 (1H of major isomer, td, 

J = 12.8, 2.8 Hz), 3.12 (1H of minor isomer, t, J = 6.6 Hz), 3.01-2.95 (1H of each isomer, 

m), 2.87 – 2.80 (1H of each isomer, m), 2.69 – 2.54 (1H of minor isomer, m) and 2.42 – 

2.20 (3H of major isomer and 2H of minor isomer, m). 

13C NMR (100 MHz; CDCl3) (major isomer):  90.1 (CH), 59.5 (CH3), 45.2 (CH2), 29.2 

(CH2) and 22.2 (CH2); (minor isomer):  93.2 (CH), 58.7 (CH3), 42.2 (CH2), 31.0 (CH2) and 

23.2 (CH2). 

MS (EI) m/z (%) 166 (M+, 68%), 135 (5), 106 (100), 90 (98) and 64 (95); HRMS: Found: 

M+, 166.0125. C5H10O2S2 requires M, 166. 0122. 
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3.3.8 Reaction of trans-1,3-Dithiane-1,3-dioxide (104) with Trioctylborane 

Solution 1. To a septum-capped 50 mL flask, borane (0.30 mL, 10.0 M in dimethyl 

sulfide, 3.0 mmol, 1 equiv.) was added, followed by THF (10 mL). The flask was 

immersed in an ice-bath and 1-octene (1.46 mL, 9.3 mmol, 3.1 equiv.) was added 

dropwise. The cooling bath was removed and the solution was stirred at room 

temperature for 1 h. The solution was cooled to –78 °C to be used in the next step.  

Solution 2. Trans-1,3-dithiane-1,3-dioxide (104) (0.457 g, 3.0 mmol) was placed in a 50 

mL flask and the flask was sealed with a septum and flushed with N2 for 10 min. 

Pyridine (15 mL) was added and the solution was dissolved by heating and then diluted 

with THF (10 mL). The solution was cooled to 0 °C and n-BuLi (1.9 mL, 1.6 M in hexane, 

3.0 mmol, 3 equiv.) was added dropwise until permanent appearance of a yellow 

colour. The solution was cooled to –78 °C.  

Solution 1 was transferred by cannula into solution 2 and stirred for 15 min at the 

same temperature before being allowed to warm to room temperature over a period 

of 1 h. The solution was oxidised by adding sodium hydroxide (3.0 M, 10 mL) followed 

by hydrogen peroxide (30% aqueous, 6 mL). The solution was stirred overnight. The 

aqueous layer was saturated with sodium chloride and extracted with chloroform (2 x 

20 mL). The organic layers were combined and washed with saturated aqueous copper 

sulfate solution (2 x 20 mL). The organic layer was dried over magnesium sulfate and 

the solvents were evaporated. Only 1-octanol was seen in the 1H NMR spectrum which 

means either there was no adduct formed between dithiane dioxide and trialkylborane 

or no migration had taken place. 
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3.3.9 Reaction of 2-Chloro-1,3-dithiane-1,3-dioxide with Trioctylborane 

 

OH

O
114

 

 

To a septum-capped 25 mL flask, borane (0.08 mL, 10.0 M in dimethyl sulfide, 0.8 

mmol, 1 equiv.) was added followed by THF (5 mL). The flask was immersed in an ice-

bath and 1-octene (0.40 mL, 2.5 mmol, 3.1 equiv.) was added dropwise. The cooling 

bath was removed and the solution was stirred at room temperature for 1 h. The 

solution was cooled to –78 °C to be used in the next step.  

NaHMDS (1.0 M in THF, 0.96 mL, 1.2 equiv.) was added to a cooled suspension (0 °C) of 

2-chloro-1,3-dithiane-1,3-dioxide (150 mg, 0.8 mmol, 1 equiv.) in THF (6 mL). The 

mixture was then cooled to –78 °C and the solution of tri-n-octylborane was 

transferred by cannula to it in one portion. The mixture was stirred at the same 

temperature for 3 h. The mixture was warmed up to room temperature over a period 

1 h. The solution was oxidised by adding sodium hydroxide (3.0 M, 10 mL), followed by 

hydrogen peroxide (30% aqueous, 6 mL) and the solution was stirred overnight. The 

organic layer was separated and the solvents were removed to give 1-octanol (230 mg, 

72%) and there was no sign of any ketone. 

The aqueous layer was acidified by concentrated hydrochloric acid and extracted with 

dichloromethane (3 x 20 mL). Evaporation of the solvent gave nonanoic acid (114) (64 

mg, 50%) as a colourless oil. 

1H NMR (500 MHz; CDCl3)  11.09 (1H, br.), 2.34 (2H, t, J = 7.5 Hz), 1.68 – 1.58 (2H, m), 

1.40 – 1.17 (10H, m) and 0.87 (3H, t, J = 7.0 Hz). 

13C NMR (125 MHz; CDCl3)  180.6 (quat C), 34.3 (CH2), 31.9 (CH2), 29.3 (CH2), 29.2 

(CH2), 29.2 (CH2), 24.8 (CH2), 22.8 (CH2) and 14.2 (CH3). 
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3.3.10 Reaction of 2-Chloro-1,3-dithiane-1,3-dioxide with tri-n-Octylborane Using 

HgCl2 

A two necked 50 mL flask equipped with a septum and a magnetic stirrer bar was 

charged with 2-chloro-1,3-dithiane-1,3-dioxide (150 mg, 0.8 mmol) and THF (6 mL), 

and fitted with a bent tube with mercuric chloride (0.869 g, 3.2 mmol). The suspension 

was cooled to 0 °C and NaHMDS (1.0 M soln. in THF, 0.96 mL, 1.2 equiv.) was added. 

The mixture was then cooled to –78 °C and a solution of tri-n-octylborane (0.8 mmol in 

THF (5 ml)), prepared as in the preceding procedure) was transferred by cannula to it 

in one portion. The mixture was stirred at the same temperature for 3 h. The mixture 

was warmed up to room temperature over a period of 1 h. The mixture was cooled 

again to –78 °C and mercuric chloride was added by turning the bent tube. The mixture 

was warmed up over a period of 1 h. The mixture was worked up according to the 

previous procedure to give only 1-octanol (302 mg, 97%). 

 

3.3.11 Reaction of 2-Methoxy-1,3-dithiane-1-oxide with Electrophiles 

To a cooled solution (–78 °C) of 2-methoxy-1,3-dithiane-1-oxide (75 mg, 0.45 mmol, 1 

equiv.) in THF (5 mL), n-BuLi (0.31 mL, 1.6 M in hexane, 0.50 mmol, 1.1 equiv.) was 

added dropwise. The solution was stirred for 5 min, followed by addition of 

acetophenone (52 L, 0.45 mmol, 1 equiv.). The solution was stirred for 1 h at –78 °C. 

The reaction was then quenched by addition of saturated ammonium chloride solution 

(5 mL). The organic layer was separated and the aqueous layer was extracted with 

chloroform (3 × 10 mL). The organic layers were combined and dried over magnesium 

sulfate. Removal of the solvents left the crude product as a colourless oil. Column 

chromatography failed to isolate the product, which may have decomposed on the 

silica. 

MS (ES+) m/z (%) 350 ((M+Na+CH3CN)+, 60%), 309 ((M+Na)+, 47%), 263 (28); HRMS: 

Found (M+Na)+, 309.0606. C13H18NaO3S2 requires 309.0595. 

The same procedure was used with other electrophiles (iodomethane, benzyl bromide 

and benzophenone). 
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3.3.12 Reaction of 2-Methoxy-1,3-dithiane-1-oxide with Trioctylborane 

 

O

116
 

 

3.3.12.1 Method A 

To a septum-capped 50 mL flask, borane (48 L, 10.0 M in dimethyl sulfide, 0.48 mmol, 

1 equiv.) was added, followed by THF (5 mL). The flask was immersed in an ice-bath 

and 1-octene (0.23 mL, 1.44 mmol, 3 equiv.) was added dropwise. The cooling bath 

was removed and the solution was stirred at room temperature over a period of 1 h. 

The 2-lithio-2-methoxy-1,3-dithiane-1-oxide was prepared separately by adding n-BuLi 

(0.33 mL, , 1.6 M in hexane, 0.53 mmol, 1.1 equiv.) to a solution of compound 109 (80 

mg, 0.48 mmol) in THF (5 mL) at –78 °C. The solution then was stirred for 5 min. The 

solution of tri-n-octylborane was added to the anion solution and the mixture was 

stirred for 1 h. The solution was warmed to room temperature and oxidised by 

addition of aqueous sodium hydroxide solution (3.0 M, 10 mL), following by hydrogen 

peroxide (30% aqueous, 6 mL). Purification by flash column chromatography on silica 

gel (4% EtOAc/hexane) gave dioctyl ketone (14 mg, 11%) as a colourless solid. 

m.p. 48 – 49 C (lit.113 48.5 – 49 °C) 

1H NMR (400 MHz; CDCl3)  2.38 (4H, t, J = 7.5 Hz), 1.60 – 1.44 (4H, m), 1.34 – 1.16 

(20H, m) and 0.87 (6H, t, J = 6.9 Hz). 

 13C NMR (125 MHz; CDCl3)  211.7 (quat C), 43.0 (CH2), 32.0 (CH2), 29.5 (CH2), 29.5 

(CH2), 29.3 (CH2), 24.1 (CH2), 22.8 (CH2) and 14.2 (CH3). 

 

3.3.12.2 Method B 

To a septum-capped 50 mL flask, borane (48 L, 10.0 M in dimethyl sulfide, 0.48 mmol, 

1 equiv.) was added, followed by THF (5 mL). The flask was immersed in an ice-bath 

and 1-octene (0.23 mL, 1.44 mmol, 3 equiv.) was added dropwise. The cooling bath 
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was removed and the solution was stirred at room temperature over a period of 1 h. A 

solution of 2-methoxy-1,3-dithiane-1-oxide (80 mg, 0.48 mmol, 1 equiv.) in THF (5 mL) 

was added and the mixture was cooled to –78 °C. n-BuLi (0.33 mL, 0.53 mmol, 1.1 

equiv.) was added dropwise and the solution was stirred for 1 h at the same 

temperature before being warmed to room temperature over a period of 1 h. The 

solution was oxidised by adding aqueous sodium hydroxide solution (3.0 M, 10 mL), 

followed by hydrogen peroxide (30% aqueous, 6 mL) and the solution was stirred 

overnight. The mixture was saturated with sodium chloride and extracted with 

chloroform (3 x 20 mL), and the organic layers were combined and dried over 

magnesium sulfate. The solvents were removed to leave a colourless solid of the crude 

mixture, which was purified as in the previous procedure to give dioctyl ketone (16 mg, 

13%). 

For GC yield measurements, after saturation with sodium chloride an accurate weight 

of tetradecane was added to the total mixture. The yield was then monitored by GC. 

 

3.3.13 Reaction of 2-Thiophenyl-1,3-dithiane-1-oxide with Trioctylborane 

Tri-n-octylborane (0.59 mmol in THF (5 mL)) was prepared according to the above 

procedure (Method A, section 3.3.12.1). A solution of 2-thiophenyl-1,3-dithiane-1-

oxide (145 mg, 0.59 mmol) in THF (5 mL) was added. The mixture was cooled to –78 °C 

and n-BuLi (0.44 mL, 1.6 M in hexane, 0.70 mmol, 1.2 equiv.) was added dropwise. The 

solution was stirred for 1 h at the same temperature and 1 h at room temperature. 

The solution was oxidised by adding aqueous sodium hydroxide solution (3.0 M, 10 

mL), followed by hydrogen peroxide (30% aqueous, 6 mL) and the solution was stirred 

overnight. The mixture was saturated with sodium chloride and an accurate weight of 

tetradecane was added. The yield was then monitored by GC to indicate 4% of the 

dioctyl ketone. 

 

3.3.14 Preparation of LDA, LiTMP and LiHDMS 

Diisopropylamine (74 L, 0.53 mmol) was dissolved in dichloromethane (1 mL) and the 

solution was cooled to –78 °C. n-BuLi (0.36 mL, 1.6 M in hexane) was added dropwise. 
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The solution then was warmed up to 0 °C for 20 min and used in the reaction. LiTMP 

and LiHDMS were prepared similarly by using the same procedure with the 

appropriate substrates. The bases were then used in Method B (section 3.3.12.2). 

 

3.3.15 Preparation of LDA-LICKOR Superbase
109

 

n-BuLi (0.3 mL, 0.48 mmol) was placed in a septum-capped 10 mL flask and the hexane 

was stripped off from the solution by flushing it with N2. Precooled THF (–78 °C) (5 mL), 

diisopropylamine (67 L, 0.48 mmol) and potassium tert-butoxide (54 mg, 0.48 mmol) 

were added and the solution was stirred for 15 min at –78 °C.  

 

3.3.16 (3-(Butylsulfinyl)propyl)(methoxymethyl)sulfane (125) 

 

S
O

S

OMe

125
 

 

2-Methoxy-1,3-dithiane-1-oxide (109) (79 mg, 0.48 mmol) was dissolved in dry THF 

under nitrogen and cooled to –78 °C. n-BuLi (0.33 mL, 1.6 M in hexane, 0.52 mmol, 1.1 

equiv.) was added dropwise and the solution stirred for 15 min. A saturated solution of 

ammonium chloride (5 mL) was added and then the solution was warmed to room 

temperature. The mixture was extracted with CHCl3 (3 x 10 mL) and the extracts were 

combined and dried over magnesium sulfate. Evaporating the solvent afforded a 

mixture of two diastereoisomers of the title compound (45 mg, 42%) as a colourless oil.  

max. (neat) 2927, 1550, 1055, 1026 and 727 cm-1. 

1H NMR (400 MHz; CDCl3)  4.62 (2H, s), 3.33 (3H, s), 2.56 – 2.84 (6H, m), 2.10 (2H, p, J 

= 7.1 Hz), 1.73 (2H, p, J = 7.8 Hz), 1.43 – 1.54 (2H, m) and 0.95 (3H, t, J = 7.3 Hz). 
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13C NMR (100 MHz; CDCl3)  75.6 (CH2), 55.9 (CH3), 52.4 (CH2), 51.0 (CH2), 30.2 (CH2), 

24.7 (CH2), 23.1 (CH2), 22.2 (CH2) and 13.8 (CH3). 

EI-MS m/z (%) 224 (M+, 3%), 179 (M+-OMe, 48), 163 (58), 148 (63), 107 (85); HRMS: 

Found: M+, 224.0899.C9H20O2S2 requires M, 224.0905. 

 

3.3.17 (3-(sec-Butylsulfinyl)propyl)(methoxymethyl)sulfane (119) 

 

S
O

S

OMe

119
 

 

2-Methoxy-1,3-dithiane-1-oxide (109) (79 mg, 0.48 mmol) was dissolved in dry THF 

under nitrogen and cooled to –78 °C. sec-BuLi (0.37 mL, 1.4 M, 0.52 mmol, 1.1 equiv.) 

was added dropwise and the solution mixture was stirred for 15 min. A saturated 

aqueous solution of ammonium chloride (5 mL) was added and then the solution was 

warmed to room temperature. The mixture as extracted with CHCl3 (3 x 10 mL) and 

the combined extracts were dried over magnesium sulfate. Evaporating the solvent 

afforded a mixture of two diastereomers of the title compound (55 mg, 51%, 1:1 ratio) 

as a colourless oil.  

max. (neat) 2964, 2926, 2875, 2802, 1423, 1055, 1029, 894 and 749. 

1H NMR (500 MHz; CDCl3)  4.57 (2H of each isomer, s), 3.29 (3H of each isomer, s), 

2.90 – 2.38 (5H of each isomers, m), 2.15 – 1.96 (2H of each isomer, m), 1.91 – 1.74 

(1H of each isomer, m), 1.56 – 1.40 (1H of each isomer, m), 1.22 (3H of minor isomer, 

d, J = 6.9 Hz), 1.14 (3H of major isomer, d, J = 6.9 Hz), 1.03 – 0.96 (3H of each isomers, 

m). 

13C NMR (125 MHz; CDCl3)  75.61 (CH2), 75.59 (CH2), 66.0 (CH2), 57.3 (CH), 56.6 (CH), 

55.9 (CH3, only one peak was seen for OMe), 47.6 (CH2), 46.9 (CH2), 30.2 (CH2), 23.9 
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(CH2), 23.6 (CH2), 23.2 (CH2), 22.7 (CH2), 12.0 (CH3), 11.5 (CH3), 11.0 (CH3) and 10.9 

(CH3).  

EI-MS m/z (%) 224 (M+, 3%), 179 (M+-OMe, 10), 163 (20), 148 (46), 107 (72); HRMS: 

Found: M+, 224.0899. C9H20O2S2 requires M, 224.0905. 

 

3.3.18 Pummerer Rearrangement in the of Reaction of 2-Methoxy-1,3-dithiane-1-

oxide with Trioctylborane 

 

S

S O

OMe

ii) n-BuLi, THF, -78 - 25 °C, 1h

iii) TFAA, DCM, 0 oC, 3h

iv) H2O2, NaOH, 0 oC, overnight
R C R

O
R OH

R

R

i) R3B

R = octyl  

 

Tri-n-octylborane (0.96 mmol, 1 equiv.) in THF (5 mL) was prepared according to the 

above procedure. The solution was mixed with a solution of 2-methoxy-1,3-dithiane-1-

oxide (160 mg, 0.96 mmol, 1 equiv.) in THF (5 mL) and cooled to –78 °C. n-BuLi (0.72 

mL, 1.47 M, 1.07 mmol, 1.1 equiv.) was added dropwise and the solution was stirred 

for 1 h at the same temperature before being warmed up to room temperature. The 

solution was cooled to 0 °C and a solution of TFAA (0.19 mL, 1.36 mmol, 1.4 equiv.) in 

dichloromethane was added. The mixture was stirred for 3 h and then warmed up to 

room temperature. The solution was oxidised by adding sodium hydroxide (3.0 M, 10 

mL), followed by hydrogen peroxide (30% aqueous, 6 mL) and the solution was stirred 

overnight. The organic layer was saturated with sodium chloride and extracted with 

chloroform (3 x 20 mL), the organic layers were combined and dried over magnesium 

sulfate. The solvents were removed to leave a colourless solid of the crude mixture. 

The crude product was purified by flash column chromatography on silica gel (4% 

EtOAc/hexane) to give trioctylmethanol (22 mg, 6%) as a colourless oil, dioctyl ketone 

(10 mg, 4%) as a colourless solid and (258 mg, 69% of all octyl groups of 

tri-n-octylborane) 1-octanol as a colourless liquid.  
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3.3.19 Gas Chromatograph (GC) Instrument Details and Conditions 

GC measurements were carried out using a Shimadzu GC-2014 gas chromatograph 

fitted fitted with a ZB-5 column (30 m, 0.32 mm inner diameter, 1.0 μm film thickness). 

The carrier gas was He at 69.3 kPa, and a split injection mode was used. The oven 

temperature was increased from 70 to 260 °C at 6 °C min−1 and then held for 4 min. 

Authentic samples of products were used to calculate response factors relative to 

tetradecane, a known weight of which was added to reaction mixtures to allow 

quantification of product yields. 
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Chapter Four 
Stoichiometric Studies on Dichloromethyl Sulfur 

Compounds as DCME-like Reagents  
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4.1 Aims and Introduction  

In Chapter Three, as part of an attempt to generate a chiral tertiary alkylboron 

compound, the investigation focused on aspect of incorporation of three different 

potential leaving groups incorporated into a dithiane ring. However, due to the 

difficulties encountered in the reactions of dithiane derivatives with trialkylboranes 

and the poor yields of the migrated products obtained, attention was switched to 

investigation of an acyclic DCME-like reaction. 

As already discussed in Chapter One and Chapter Three, the DCME reaction allows all 

three alkyl groups to migrate from boron to a single carbon atom to generate a tertiary 

alkylboron compound. Having three different alkyl groups in the trialkylborane, in 

principle, would generate a chiral tertiary alkylboron compound. However, without a 

chiral group on the starting material (,-dichloromethyl methyl ether, DCME), the 

reaction would not be stereoselective. Replacement of the methoxy group in DCME by 

a chiral group and reaction of its anion 127 with organoborane compound 128, which 

should have three significantly different alkyl groups, would give two different 

diastereoisomeric complexes 129 and 130. Fundamentally, the two diastereoisomers 

would have different stabilities and, consequently, rearrange differently, in terms of 

which diastereotopic chlorine would depart first and/or which alkyl groups were 

located suitably to displace a particular leaving group. The first migration step would 

produce an excess of one enantiomer of the final tertiary alkylborane 131 or 132, 

which could then either be oxidised to produce a tertiary alcohol or homologated 

further and then oxidised to produce an alcohol bearing a quaternary carbon centre. 

The e.e. could then be monitored by HPLC analysis using a chiral column.  
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Scheme 4.1: Proposed Use of a Chiral DCME-Like Reagent 

 

A previous study, by the Smith group,114 into such asymmetric DCME-like reactions 

used compound 133 as a DCME analogue and trialkylboranes as substrates. The chiral 

menthyloxy group was intended to control the order and stereochemistry of the 

migration of the alkyl groups. However, when the anion of compound 133 was 

subjected to a standard DCME-like reaction with trialkylborane 134, it did not produce 

the corresponding tertiary alcohol. When less hindered trioctylborane and 

tricyclopentylborane were used, very low yields of the corresponding tertiary alcohols 

(5% and 4%, respectively) were obtained. 
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Organosulfur compounds are among the most intensively used chiral auxiliaries in 

asymmetric organic synthesis.115 The purpose of the work reported in this chapter was 

to assess the reaction of organoboranes with anions derived from dichloromethyl 
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organosulfur compounds, particularly a dichloromethyl sulfoxide, a dichloromethyl 

sulfone, a dichloromethyl sulfoximine and a dichloromethyl sulfilimine. Here we report 

successful reactions, behaviours of each anion type as well as some novel reaction 

mechanisms.  

 

4.2 Results and Discussion  

4.2.1 Reaction of Dichloromethyl Phenyl Sulfoxide (135) with Trialkylboranes 

Dichloromethyl phenyl sulfoxide (135) has become a reagent of choice for many 

organic transformations.116–118 Also, the pure enantiomers of the compound became 

accessible when Satoh reported the resolution of the compound using menthone.118 

The synthesis of the sulfoxide 135 was carried out according to the procedure of Satoh 

(Scheme 4.2)119 and used in the borylation reaction. 
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Scheme 4.2: Synthesis of Compound 135 

 

Fresh LDA was first prepared by treating a solution of diisopropylamine (1.3 equiv.) in 

dry THF with n-BuLi (1.2 equiv.). The anion 136 was prepared by addition of a solution 

of 135 to the solution of LDA at –78 °C. Meanwhile, a solution of trioctylborane was 

prepared by hydroboration of 1-octene with borane dimethyl sulfide complex in THF. 

The solution was then added to the cold solution of anion 136 and stirred at –78 °C. 

The peroxidic oxidation of the organoborane product and purification of the products 

by column chromatography afforded the products from two migrations (dioctyl 

ketone, 116, Scheme 4.3) and three migrations (trioctylmethanol, 118), but in very low 

yields, 3% and 1% (6% and 3% GC yield), respectively. The remaining products were an 
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unknown compound as well as octanol resulting from the oxidation of residual 

octylboron moieties. All migration products (ketone and alcohols) contained small 

amount of 2-octyl isomers because of the formation of about 6% of 2-octyl groups 

during the hydroboration reaction step.11 

The 1H NMR spectrum of the unknown compound showed two doublet of doublet 

peaks at 4.53 and 5.40 ppm. It was suggested that these might belong to two different 

diastereoisomers in 84:16 ratio. Also, there were five protons in the aromatic region as 

well as a complete number of protons for one octyl group. The unknown compound 

was fully characterised using IR, 1H NMR, 13C NMR spectroscopy and mass 

spectrometry. It was concluded that the compound was a diastereoisomeric mixture of 

1-chlorononyl phenyl sulfoxides (137, Scheme 4.3), isolated in moderate isolated yield 

(61%). 
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Scheme 4.3: Initial Reaction of the Anion Derived from 135 with Trioctylborane 

 

4.2.2 Attempts at Understanding the Mechanism and Generalisation of the 

Reaction  

It seemed that the product 137 was formed via hydrolysis instead of oxidation. In 

order to confirm this, the reaction was repeated using the same procedure but it was 

quenched with aqueous ammonium chloride at –78 °C instead of by peroxidic 

oxidation. The same result was obtained and the same compound isolated in 
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moderate yield (57%). This meant, evidently, that the compound was formed from one 

alkyl group migration followed by hydrolysis of the organoboron intermediate instead 

of undergoing second and third migrations. 

To the best of our knowledge, there are no known reactions in the literature similar to 

that forming compound 137 from a substituted sulfoxide and organoboron 

compounds. There are known reactions of dimethylsulfoxonium ylides with 

trialkylboranes, but in those reactions, dimethyl sulfoxide behaves as a leaving group 

(Scheme 4.4).120  
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Scheme 4.4: Reaction of Dimethylsulfoxonium Ylides with Trialkylboranes 

 

Reaction of -chloroalkyl aryl sulfoxides with alkyllithium reagents in the presence of 

alkylboronic esters leads to lithium-sulfoxide exchange to form -chloroalkyl aryl 

lithium species, which then react with boronic esters with homologation.52,121–125 

These reactions were discussed in more detail in Chapter One (section 1.9). The 

formation of homologated carbonyl compounds by reactions of trialkylboranes with 

diazocarbonyl compounds (Scheme 4.5a)126 or with anions derived from 

-bromocarbonyl and related compounds are known reactions (Scheme 4.5b).127,128 

Those reactions occur via isolable boron enolate intermediates.129 Also, the reaction of 

-bromosulfonyl compounds with trialkylboranes under influence of base leads to a 

similar reaction (Scheme 4.5c).130 
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Scheme 4.5: Homologation Using Carbonyl and Sulfonyl Compounds 

 

Hence, it could reasonably be hypothesised that the reaction under investigation was 

similar and the mechanism could be as shown in Scheme 4.6. Therefore, the 

boron-containing product of the reaction with a generalised trialkylborane would be 

140, formed by rearrangement of the initially formed intermediate 139. 
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Scheme 4.6: Proposed Mechanism for the Formation of 137/141 
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Similar -chlorosulfoxide compounds to 137/141 were synthesised previously by 

alkylation of anions derived from chloromethyl aryl sulfoxides with alkyl halides 

(Scheme 4.7).131 The importance of such compounds in asymmetric organic synthesis 

stimulated us to study this reaction in more detail. 

 

A number of questions remain unanswered so far. 

 

1) According to this understanding of the mechanism, can this reaction be 

generalised in the sense of introducing a wider range of organic groups than is 

possible by nucleophilic substitution reactions of organic halides? 

2) How do the diastereomeric ratios formed in this reaction compare with those 

synthesised by simple alkylation of the anions derived from chloromethyl 

sulfoxides (Scheme 4.7)? 

3) Could the intermediate of type 140 be utilised to react with a wider range of 

electrophiles? 

 

Several experiments have been designed to help to answer these questions. In order 

to answer question 1 and for the purpose of synthesis of a range of compounds of type 

141, reactions of 136 with a range of organoboranes, including triethylborane, 

tributylborane, triphenylborane, tricyclopentylborane, the trialkylborane mixture 

formed by hydroboration of styrene with borane-dimethyl sulfide, and 9-octyl-9-

borabicyclo[3.3.1]nonane (9-Oct-9-BBN, 142) were carried out. The ratios of the 

diastereoisomers were determined from the 1H NMR spectra of the crude products 

prior to purification for all compounds except for compound 137 derived from 142. In 

this case, the ratio was determined after column chromatography because the CHCl 

protons in the 1H NMR spectrum were difficult to integrate due to the presence of 

impurities. The results are summarised in Table 4.1. 
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Table 4.1: Preparation of 1-chloroalkyl sulfoxides (137/141) according to Scheme 4.2 

Product R Yield (%)
b 

Diastereoisomer ratio
a 

141a Et 92 78:22 

141b n-Bu 88 84:16 

137
c
 n-Octc 61 84:16 

137
d
 n-Octd 40 82:18e 

141c
e
 PhCH2CH2

f 40 81:19 

141d Cyclopentyl 0 - 

141e Ph 0 - 

a Determined from the 1H NMR spectrum of the crude product prior to purification. b Isolated 

yield for the mixture of diastereoisomers. c Only around 82% of the R3B molecules would be 

(1-Oct)3B because the hydroboration gives ca. 6% of 2-octyl groups. d 9-Oct-9-BBN (142) was 

used in this case. e The ratio was measured after column chromatography. f Only around 

40-50% of the R3B molecules would be (PhCH2CH2)3B because the hydroboration gives ca. 20% 

of 1-phenylethyl groups. 

 

It can be seen from the data in Table 4.1 that the pure tri-prim-alkylboranes, i.e. 

triethylborane and tributylborane, resulted in formation of the expected products in 

good yield (92% and 88% respectively), while the yields from the impure cases (formed 

by hydroboration of 1-octene and styrene) were much lower. This is possibly because 

of the lower proportions of tri-prim-alkylboranes present in the mixtures. Compound 
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9-Oct-9-BBN (142) gave 40% of the corresponding product. On the other hand, 

tricyclopentylborane and triphenylborane gave no comparable products. It can 

therefore be assumed from these results that only relatively unhindered 

trialkylboranes take part in this reaction, probably because the initial complexation of 

the anion with more hindered organoboranes is disrupted. 

To answer the second question, the diastereomeric ratios were determined by 

measuring the relative integrations of the downfield CHCl signals for the two isomers 

of 141a, major and minor, at ≈ 4.35 ppm and ≈ 4.45 ppm respectively. These were then 

compared with those reported for 1-chloroethyl phenyl sulfoxide (PhS(O)CHClCH3, 

141f, R = Me) prepared by methylation of 143 (Scheme 4.7).131 
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Scheme 4.7: Synthesis of compound 141 by alkylation of 143
131

 

 

This alkylation has been reported twice. In work by More and Wemple, the authors 

reported the synthesis of a series of diastereomeric compounds 141 including R = 

CH2CH3 (141a), CH3 (141f), CH2Ph (141g) and cyclohexyl (141h). Nevertheless, the 

diastereomeric ratio was reported only for compound 141f (R = Me), determined using 

1H NMR data. The chemical shifts for 141f were at 4.70 ppm (major isomer, 60%) and 

4.50 ppm (minor isomer, 40%) ppm. The authors did not determine the 

stereochemistry of these diastereoisomers. 
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In another study by Mutterer et al.,132 the same compound 141f was synthesised by 

the same method. In this case, the peak at 4.70 ppm corresponded to the minor 

isomer, although the ratio was not stated. 

In the present study, the higher chemical shift (4.45 ppm for compound 141a, R = Et) 

was for the minor isomer (22%) while the lower chemical shift (4.35 ppm) was for the 

major isomer (78%). The same trend was observed for all of the other compounds (see 

Table 1). It is clear from these results that the selectivity of the new reaction is better 

than those of the simple alkylation reactions. However, given the conflicting data in 

the literature, and the fact that the stereochemistry of the major isomer formed was 

not determined in those studies, it is impossible to compare the stereochemical 

outcome properly. 

In order to try to answer the third question, trapping of the intermediate 140 formed 

from the reaction of triethylborane with 136 with a range of electrophiles, including 

D2O, substituted benzaldehydes and Ph2I+TfO-, was attempted. What follows is a 

description of these reactions in detail.  

 

4.2.3 Trapping the Intermediate 140 with Electrophiles  

4.2.3.1 Reaction of D2O with the Intermediate 140 (R = Et) 

Initially, the intermediate 140 was prepared as in the previous procedure by addition 

of triethylborane to the anion 136 and stirring the resulting mixture for 1 h at –78 °C, 

then the intermediate was quenched with D2O. Work-up and separation of the 

products by column chromatography gave compound (144, Scheme 4.8) as a mixture 

of two diastereoisomers in excellent yield (93%, the ratio was not measured due to 

overlapping peaks). After this successful reaction our attention was turned to the 

reaction of 140 with benzaldehydes.  
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Scheme 4.8: Trapping the Intermediate 140 with D2O 

 

4.2.3.2 Reaction of Benzaldehyde with the Intermediate 140 (R = Et) 

In order to generalise the reaction for a wider range of electrophiles, it was decided to 

initially examine the reaction of intermediate 140 with benzaldehyde as shown in 

Scheme 4.9. 

 

 

 

Scheme 4.9: Reactions of the Anion Derived from 135 with Triethylborane and 

Benzaldehyde 

 

The same procedure used for the synthesis of compound 144 (Scheme 4.8) was used 

but the reaction was quenched with 1 equivalent of benzaldehyde followed by 

addition of a solution of ammonium chloride. The purification of the crude product 

gave a complex mixture of what appeared to be several diastereoisomers of aldol-like 

products 145a in moderate overall yield (58%). The rest of the material was 141a, 
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resulting from the hydrolysis of compound 140, suggesting that compound 140 did not 

react fully with benzaldehyde, along with an unknown impurity. Attempts to increase 

the yield of compound 145a by stirring the mixture with benzaldehyde for a longer 

period at –78 °C and/or at room temperature did not help. 

In principle, it is possible to get four diastereoisomers from the reaction of 140 with 

benzaldehyde (Scheme 4.10).  

 

 

 

Scheme 4.10: The Four Possible Diastereoisomers of 145a 

 

Unfortunately, the 1H NMR data were extremely complex. The determination of the 

ratios of the isomers in the crude product by integration of the 1H NMR spectrum was 

difficult because the peaks of the isomers overlapped with each other and with the 

peaks of other impurities. Thus, to determine the structure and stereochemistry for all 

compounds formed, it was necessary first to separate the products by column 

chromatography.  

The crude product 145a was purified by flash column chromatography using silica gel 

and 3% ethyl acetate/chloroform. The first product eluted was the product of 

hydrolysis of the pseudo-enolate, 141a (18%), followed by the first diastereoisomer of 

the aldol product 145a (23%), which was a solid. This compound was recrystallised 
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from chloroform/petroleum ether and its structure and relative stereochemistry were 

confirmed by X-ray crystallography as RRR/SSS, (Figure 4.1, RRR-enantiomer shown). 

The X-ray structure determinations were carried out by Dr. Benson Kariuki. This 

diastereoisomer was therefore shown to be 145a(i). 
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Figure 4.1. X-ray Structure of 145a(i) 

 

The 1H NMR spectrum of this compound showed a singlet at 5.66 ppm due to the 

CHOH proton, a singlet at 4.96 ppm due to the hydroxyl group proton, a doublet of 

quartets (J = 15.3, 7.2 Hz) at 3.00 ppm due to one proton of the CH2 group, a doublet 

of quartets (J = 15.3, 7.4 Hz) at 2.01 ppm due to the other proton of the CH2 group and 

an apparent triplet (J = 7.3 Hz) at 1.3 ppm due to the methyl group protons. It also 

showed the presence of the ten aromatic protons. The 13C NMR spectrum showed the 

expected number of resonances. The low resolution negative ion (ES–) mass spectrum 

of the compound showed three pseudo-molecular ion peaks (M + Cl)– at m/z = 347 

(13%), 345 (67%) and 343 (100%), consistent with the formulae C16H17
37Cl2O2S, 

C16H17
37Cl35ClO2S and C16H17

35Cl2O2S, respectively. These assignments were further 

supported by accurate mass data from the high resolution mass spectrum. 
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The second diastereoisomer to elute (approx. 2.5%) was present as a 1:1 mixture 

alongside an unknown impurity. It was speculated that this impurity might be a single 

diastereoisomer of 2,2-dichloro-1-phenyl-2-(phenylsulfinyl)-1-ethanol (146) resulting 

from direct reaction of anion 136 with benzaldehyde. Compound 146 was prepared 

previously by Satoh116 as a diastereoisomeric mixture and the chemical shifts of CHOH 

for the two diastereoisomers were reported at 5.44 and 5.46 ppm, which are very 

close to that for the unknown impurity (5.50 ppm). Thus, to confirm such speculation, 

it was decided to prepare compound 146 and add it to the NMR tube of this fraction. 

Compound 146 was prepared according to the procedure used by Satoh116 by adding 

benzaldehyde to a solution of the anion 136 (Scheme 4.11) at –78 °C and stirring the 

resulting mixture for 30 minutes. Work-up gave a crude mixture of two 

diastereoisomers in good yield (80%; 60:40 ratio, measured from the quantities of the 

two diastereoisomers after separation by column chromatography since the peaks for 

the CHOH protons overlapped in the 1H NMR spectrum of the crude product). 

 

 

 

Scheme 4.11: Preparation of 146 According to Satoh’s Procedure 

 

The two diastereoisomers were separated by flash column chromatography and their 

structures were identified by various spectroscopic and spectrometric techniques (IR, 

1H, 13C NMR, MS and HRMS). Once pure samples of the two diastereoisomers of 

compound 146 were obtained, a solution of the less polar diastereoisomer in CDCl3 

was added to the NMR tube containing the second chromatography fraction of 145a 

and the resulting mixture was checked again by 1H NMR spectroscopy. Indeed, 
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comparison of the 1H NMR spectra before and after the addition showed that the 1H 

NMR peaks of the added diastereoisomer of compound 146 superimposed on those 

for the unknown impurity. This verified the hypothesis that the impurity was indeed 

one diastereoisomer of 146. 

The structure of the diastereoisomer of 145a present in the second chromatography 

fraction was investigated by IR, NMR, MS and HRMS spectroscopic/spectrometric data 

after discounting the signals due to 146. For example, the 1H NMR spectrum showed a 

doublet (J = 8.7 Hz) at 5.20 ppm due to the CHOH proton, a doublet (J = 8.7 Hz) at 4.92 

ppm due to the OH proton, a doublet of quartets (J = 14.7, 7.2 Hz) at 2.39 ppm due to 

one proton of the CH2 group, a doublet of quartets (J = 14.7, 7.1 Hz) at 1.28 ppm due 

to the other proton of the CH2 group, and an apparent triplet (J = 7.2 Hz) at 1.07 ppm 

due to the methyl group protons. It also showed the presence of the ten aromatic 

protons overlapped with those for compound 146. However, it was difficult to 

crystallise the diastereoisomer of 145a because of the contamination with compound 

146; therefore, no X-ray crystal structure could be determined and without that 

information it was difficult at this stage to assign the stereochemistry of the 

diastereoisomer. 

The last chromatography fraction contained an inseparable but otherwise fairly pure 

mixture of the third and fourth diastereoisomers of 145a (total yield 32%, 55:45 ratio). 

The structures of the diastereoisomers in the mixture were investigated by various 

spectroscopic and spectrometric techniques including IR, 1H, 13C NMR, MS and HRMS. 

For the major diastereoisomer, the 1H NMR spectrum showed a doublet (J = 4.0 Hz) at 

5.33 ppm due to the CHOH proton, a doublet (J = 4.0 Hz) at 3.21 ppm due to the OH 

proton, a doublet of quartets (J = 15.0, 7.4 Hz) at 1.88 ppm due to one proton of the 

CH2 group, a doublet of quartets (J = 15.0, 7.3 Hz) at 1.50 ppm due to the other proton 

of the CH2 group, an apparent triplet (J = 7.4 Hz) at 0.95 ppm due to methyl group 

protons and ten protons in the aromatic region (overlapped with those for the minor 

diastereoisomer), while the minor diastereoisomer showed a doublet (J = 3.3 Hz) at 

5.17 ppm due to the CHOH proton, a doublet (J = 3.3 Hz) at 3.63 ppm due to the OH 

proton, a multiplet at 2.22 – 2.12 ppm due to the CH2 protons, an apparent triplet (J = 
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7.5 Hz) at 0.85 ppm due to the methyl group protons and ten protons in the aromatic 

region (overlapped with those for major diastereoisomer). 

In order to separate the last two diastereoisomers and confirm the stereochemistry for 

both, it was decided to convert the diastereoisomeric mixture into the 4-nitrobenzoate 

esters by reaction with 4-nitrobenzoyl chloride. Indeed, treatment of a solution of the 

mixture in THF with 4-nitrobenzoyl chloride in the presence of triethylamine gave the 

corresponding 4-nitrobenzoate derivatives 147 (80%) (Scheme 4.12). 

 

 

 

Scheme 4.12: Synthesis of 4-Nitrobenzoate Derivatives of 145a 

 

The two diastereoisomers of 4-nitrobenzoate derivatives (147) were separated by flash 

column chromatography (1% EtOAc/CHCl3) and subjected to full analysis using various 

spectroscopic and spectrometric techniques, including IR, 1H, 13C NMR, MS and HRMS. 

The individual isomers (designated 147a and 147b) were recrystallised from 

chloroform/petroleum ether and then characterised and confirmed by X-ray 

crystallography (Figure 4.2). 
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Figure 4.2: X-Ray Structure and Stereochemistry of the Two Diastereoisomers of 147 

 

The 4-nitrobenzoate derivative 147a was reduced to give the corresponding 

diastereoisomer of 145a (i.e. 145a(iv), Scheme 4.13). Comparison of the 1H NMR 

spectrum of this compound with that of the crude reaction mixture showed that this 

was the minor isomer in the original chromatography fraction. The combination of the 

X-ray crystal structure of 147b and the 1H NMR spectrum of the final chromatography 

fraction also allowed assignment of the major diastereoisomer in the fraction as 

145a(iii). 
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Scheme 4.13: Reduction of Compound 147a into 145a(iv) 

 

Therefore, it was concluded that the major diastereoisomer of 145a in the final 

chromatography fraction was RSS/SRR (145a(iii)) and the minor diastereoisomer was 

RRS/SSR (145a(iv)). The remaining, as yet uncharacterised, diastereoisomer, i.e. the 

second diastereoisomer to be eluted during column chromatography of the original 

crude mixture, by a process of elimination, must be 145a(ii). 

Before attempting to rationalise these results mechanistically, it was felt that more 

examples of the reaction might provide further insight into the reaction. Consequently, 

reactions with several other substituted benzaldehydes were undertaken. 

 

4.2.3.3 Reaction of Substituted Benzaldehydes with the Intermediate 140 (R = Et) 

Reactions of intermediate 140 were carried out with four substituted benzaldehydes; 

3-methoxybenzaldehyde, 4-methoxybenzaldehyde, 4-bromobenzaldehyde and 

4-fluorobenzaldehyde were tested using the same procedure that was used for 

benzaldehyde itself. It was pleasing to see that all of the chosen benzaldehydes 

reacted to give the desired aldol-like products, albeit as mixtures of diastereoisomers, 

in combined yields of 45-58% (isolated, following column chromatography). 

The stereochemistries of the four diastereoisomers of 145b - 145f were assigned by 

comparison of the chemical shifts and coupling constants for the OH protons to the 

CHOH protons, which were distinct from each other, in the 1H NMR spectra of the 

separated products. Similar chemical shifts and coupling constants were observed in 
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the 1H NMR spectra of all of the compounds 145b – 145e and indeed they were also 

similar to those in the spectra of the diastereoisomers of 145a. The stereochemistries 

of the diastereoisomers of compounds 145b – 145e could therefore be assigned by 

analogy with 145a. 

For compounds 145b and 145c, three diastereoisomers were isolated after column 

chromatography. Diastereoisomer (ii) was not seen in either case. In terms of 

compounds 145d and 145e, all four diastereoisomers were isolated in the same way as 

those for compound 145a, i.e. (i) was isolated first as a solid followed by (ii), which was 

contaminated with an analogue of compound 146, and then a mixture of (iii) and (iv). 

For all four isomers of compound 145e, the assignment of the CHOH protons was 

confirmed by 1H NMR deuterium-exchange experiments. Figure 4.3 shows an example 

of the spectra of the mixture of diastereoisomers 145e(iii) and 145e(iv) before and 

after addition of D2O (Figure 4.3). 

 

 

 

Figure 4.3: 1H NMR spectra of the mixture of 145e(iii) and 145e(iv): (a) before; and (b) 

after addition of D2O 

(b) 

(a) 
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 The specific diastereoisomer yields and the total product yields for all cases are 

summarised in Table 4.2.  

 

Table 4.2. Diastereoisomers Yields of Compounds of Type 145 

S

O

145

OH

Cl
R

 

Compound R Yield of specific diastereoisomer (%)
a
 Total product 

yield (%)
b
 

(i)(RRR) (ii)(RSR) (iii)(RSS) (iv)(RRS) 

145a H 23 2.5 18 14 57.5 

145b 3-OMe 18 - 17 17 52 

145c 4-OMe 18 - 10 17 45 

145d 4-Br 10 4 20 14 48 

145e 4-F 22 8 10 10 50 

a Amount of pure material isolated after chromatography or calculated by proportion of each 

component in a fraction after chromatography. b By addition of yields of individual 

diastereoisomers; yields of crude product prior to chromatography were greater. 

 

The results in Table 4.2 showed the formation of at least three diastereoisomers in all 

cases and all four diastereoisomers in some. These results suggest that the 

stereocontrol is much less than those for the related aldol reactions of boron 

enolates.133–135 
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Formation of three diastereoisomers of the aldol-like product in some cases, i.e. 145b 

and 145c (Table 4.2), and all four in others, in different proportions, raises questions 

about the selectivity. Discussion of such matters is given in the following section. 

 

4.2.3.4 Considerations Relating to the Selectivity of Reactions of 140 with Aldehydes 

It can be seen from the data in Table 4.2 that the most notable feature was the low 

relative yield of the RSR diastereoisomer in all cases while the other three 

diastereomisomers were formed in similar amounts. 

In principle, four diastereomers are possible and in several examples all four were 

formed. If the transition states were to be a tight cyclohexane-like structure 148/149 

(Scheme 4.14), similar to that involved in reactions of boron enolates with aldehydes, 

then one might have expected the Ph and Ar groups to be pseudo-equatorial in the 

favoured conformer (148), leading to a RS or SR relationship for the configurations of 

the S atom and the carbon atom bearing the hydroxyl group, with the configuration of 

the double bond in 140 determining the configuration of the chlorine-bearing carbon 

atom in 145. On the other hand, the disfavoured conformer would be 149, where the 

Ph group is pseudo-equatorial and Ar group is pseudo-axial, leading to a RR or SS 

relationship for the configurations of the S atom and the carbon atom bearing the 

hydroxyl group. However, computational study was needed to provide more insight 

into those processes. 
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Scheme 4.14: Proposed four Diastereoisomers outcome according to Favoured 148 

and Disfavoured 149 Cyclohexane-like Transition States 

 

4.2.3.5 Computational Study 

In order to confirm the hypothesis depicted in Scheme 4.14 and to verify the outcome 

stereochemistry of such hypothesis, a computational study was also carried out by Dr 

Mark Elliott.84 After extensive conformational analysis based on cyclohexane-like 

structure 148/149, four transition states were located at the RHF/3-21G(d) level of 

theory and the relative energies are summarised in Table 4.3 and the corresponding 

structures are depicted in Figure 4.4. 
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Figure 4.4: Calculated RHF/3-21G(d) TS1 TS2, TS3 and TS4 Transition States 

 

It can be seen from the Figure 4.4 that the shape of the 6-membered ring of all 

transition states is not a chair like in the Zimmerman-Traxler model for the aldol 

transition state, but it is rather more twisted, which means that substituents that are 

trans in the 1 and 3 positions do not need to have one equatorial and one axial. In 

effect, both can be equatorial. 

 

http://faculty.chemistry.harvard.edu/files/myers/files/10-stereoselective_directed_aldol_reaction.pdf
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Table 4.3: Relative Energies of TS1, TS2, TS3 and TS4 Transition States 

Transition State Diastereoisomer G° (a.u.) E (KJ/mol) 

TS1 (i) (RRR) -1794.30314 0 (lowest) 

TS2 (iv) (RRS) -1794.30308 0.16 

TS3 (iii) (RSS) -1794.29903 10.8 

TS4 (ii) (RSR) -1794.28524 47.0 

 

It can be seen from the Table 4.3 that the relative energies agree with the 

experimental results. The lowest transition state in energy (E = 0 KJ/mol) was TS1 

which was (i) (RRR) (entry 1), while the highest in energy (E = 47 KJ/mol) was (ii) (RSR) 

(entry 4). TS4 has the aldehyde phenyl more or less axial (Figure 4.4). In contrast, TS1, 

TS2 and TS3 have this group close to equatorial, which explains the difference in 

energy calculated. From this, it can be concluded that the two diastereoisomers that 

share the R stereochemistry at sulfur and the third (“aldehyde”) carbon atom are 

produced from the same transition state as in Scheme 4.14, i.e. (i) and (ii) are 

produced from 149 while (iii) and (iv) are produced from 148. The relatively big 

difference in energy between (i) and (ii) (47 KJ/mol) allows (i) to predominate over (ii). 

Meanwhile, the small difference in energy between (iii) and (iv) (10.6 KJ/mol) does not 

allow either of the two isomers to predominate over the other. 

Having successfully produced compounds of type 141 and 145 from intermediate 140, 

attention was next turned to the attempted reaction of 140 with a wider range of 

electrophiles. 

 

4.2.3.6 Attempts at Reaction of Other Types of Electrophiles with Intermediate 140 

(R = Et) 

In order to utilise the procedure to include the reaction with some other electrophiles, 

it was decided to choose various electrophiles including Ph2I+TfO-, acetic anhydride 

and acetyl chloride. 
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Initially, Ph2I+TfO- 150 was chosen to introduce an aryl group to the intermediate 140. 

The synthesis of diphenyliodonium triflate 150 was carried out according to the 

procedure of Bielawski and Olofsson136 by treatment of a solution of m-CPBA and 

iodobenzene in benzene and dichlormethane with triflic acid. Heating the resulting 

mixture to 40 °C, stirring for 1 h, work-up and purification of the crude product gave 

pure 150. Compound 150 was then subjected to the procedure described in the 

synthesis of 145. Disappointingly, the reaction with 150 did not give the desired 

product 151 (Scheme 4.15). 

 

LDA, BEt3

I

S
O

Cl
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O
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Scheme 4.15: Reaction of 135 with Triethylborane and Ph2I+TfO- (150) 

 

In an attempt to use the reaction to functionalise the product by introducing aliphatic 

carbonyl compounds such as anhydride and acid halide, acetic anhydride and acetyl 

chloride were tested using the reaction procedure described in the synthesis of 145. A 

solution of 135 in THF was treated with LDA at –78 °C followed by addition of 

triethylborane. After 1 hour, the mixture was quenched with the electrophile (acetic 

anhydride or acetyl chloride) followed by addition of a solution of ammonium chloride 

(Scheme 4.16). Both attempts failed to give the corresponding products. 
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Scheme 4.16: Attempts at Reaction of 135 with Acetic Anhydride and Acetyl Chloride 

 

Due to the results of the reaction of anion 136 with trialkylboranes, the attention was 

turned to its reaction with boronic esters to determine whether it is possible to 

produce the corresponding homologated boronic esters or the alcohols from their 

oxidation.  

 

4.2.4 Attempt at Reaction of the Anion 136 with n-Butylboronic Acid Pinacol Ester 

(152) 

The drawback of the reaction of trialkylboranes with anion 136 is that it wastes two 

equivalents of the alkyl group (Scheme 4.3), since the boron enolate is hydrolysed to 

the corresponding borinic acid. To address this issue, it is important to test whether 

boronic esters react with anion 136 in a manner similar to the reactions with 

trialkylboranes. Therefore, it was decided to repeat the same procedure but using a 

boronic ester instead of a trialkylborane. n-Butylboronic acid pinacol ester 152 was 

prepared according to the literature procedure137 by stirring a solution of pinacol and 

n-butylboronic acid in anhydrous pentane overnight. After work-up, the product was 

used in the next step without any further purification. Anion 136 was prepared by 

treatment of a solution of compound 135 in THF with LDA at –78 °C. The boronic ester 

152 was added and the mixture was stirred for 1 hour followed by addition of a 

solution of ammonium chloride. The 1H NMR spectrum of the crude mixture following 

work-up showed only starting materials and no expected migrated product 141b 

(Scheme 4.17). This result may be explained by the fact that boronic esters have lower 

electrophilicity than trialkylboranes.  
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Scheme 4.17: Attempted Reaction of 135 with n-Butylboronic acid 

 

Although the reactions of trialkylboranes with anion 136 had provided some 

interesting results in the sense of having new reaction types, these reactions did not 

achieve the aim of producing a tertiary alkylboron compound in high yield. Clearly, the 

results of these reactions were limited to generation of the product of one migration 

followed by hydrolysis or by aldol-like reactions with aldehydes. It was thought that 

the sulfinyl group is not a good leaving group and that the intermediate after the first 

migration undergoes a rearrangement with the borane moiety. Replacement of the 

sulfoxide group with a better chiral sulfur leaving group would presumably drive the 

reaction to the triple migration product. For that reason, it was decided to investigate 

the reaction of trialkylboranes with an anion derived from compound 153, which has, 

instead of a sulfinyl group, a sulfonyl group, which has been shown to act as a good 

leaving group in recent studies.138,139 
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4.2.5 Reaction of Trialkylborane with Dichloromethyl p-Tolyl Sulfone (153) 

Compound 153 is not an ideal compound in the sense of that it does not possess the 

possibility of asymmetric introduction offered by 135. Also, there was a previous case 

of a monobromo-substituted sulfone reacting with a trialkylborane that resulted in 

replacement of bromine by an alkyl group from the trialkylborane (Scheme 4.5c)130 in 

exactly the same manner as seen with 135. Nevertheless, compound 153 was thought 

to be sufficiently different to be worthy of study. 

Dichloromethyl p-tolyl sulfone 153 was prepared in 40% yield according to the 

procedure used by Middelbos et. al.140 from sodium p-toluenesulfinate, potassium 

hydroxide and chloroform. The reaction of the anion derived from compound 153 with 

,-enones was studied previously by Ni et al.
141 by using lithium 

bis(trimethylsilyl)amide (LiHMDS) as a base; therefore the LiHMDS was used in this 

study (Scheme 4.18). Initially, compound 153 was mixed with triethylborane in THF as 

solvent. The mixture was then cooled to –78 °C and LiHMDS was added dropwise. The 

mixture was stirred for 30 minutes at –78 °C and 90 minutes at room temperature and 

it was then quenched with aqueous ammonium chloride solution. 

 

Me

S

O O

Cl

Cl

153

+BEt3 ?

i) LiHMDS

i) NH4Cl

 

 

Scheme 4.18: Reaction of Anion Derived from 153 with Triethylborane 

 

The crude mixture was separated by flash column chromatography. The 1H NMR 

spectrum of the major compound isolated showed ethyl group protons, methyl group 

protons and aromatic protons without the presence of a CHCl proton (which would be 

required for a compound analogous to 141). Also, the 13C NMR spectrum did not show 
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a CHCl carbon, but instead showed a quaternary carbon atom peak at 101.8 ppm. It 

was difficult to prove whether the compound contained a sulfoxide or sulfonyl group 

by NMR spectroscopy. Therefore, more analyses were carried out by X-ray 

crystallography and mass spectrometry. From the data of these two techniques, it was 

concluded that the compound was 154, the yield of which was 46%. Single crystal 

X-ray diffraction showed the molecule’s structure to be as depicted in Figure 4.5. Also, 

the chemical ionisation mass spectrum of 154 showed an intense pseudo-molecular 

ion peak at m/z = 284 and the high resolution mass of this peak confirmed its formula 

as C10H12
35Cl2O2S (M+NH4)+. The formation of compound 154 formally involves 

displacement of hydride by the ethyl group of the triethylborane.  

 

 

 

Figure 4.5: X-Ray Structure of 1,1-Dichloro-1-(p-tosyl)propane (154) 

 

The reaction was also repeated using tri-n-butylborane as the trialkylborane to check 

whether the reaction is applicable for other trialkylboranes. Work-up and separation 

of the product by column chromatography gave a similar result to that observed in the 
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formation of compound 154. 1,1-Dichloro-1-tosylpentane (155) was produced in 44% 

yield. 
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The replacement of the hydride by the alkyl group of trialkylboranes means that the 

process is an oxidation; some other components of the reaction should have been 

reduced. The yield of the product in each case was less than 50%, which is consistent 

with half of the original 153 having been reduced. At present, it is unclear what 

process might be taking place or even whether the reaction is radical or ionic in nature, 

but it would be interesting to investigate this reaction further in the future. Although, 

the reaction has provided an interesting new type of reaction, the replacement of the 

hydride by alkyl group has not provided the goal of generating any of the desired 

migration products. Therefore, attention was next turned to reaction of an anion 

derived from a sulfoximine with a trialkylborane. 

 

4.2.6 Reactions with Sulfoximines  

Although sulfoximines are isoelectronic with sulfones, the replacement of the oxygen 

atom by a nitrogen atom causes asymmetry at the tetrahedral sulfur atom in cases 

where the two other groups are not identical.142 Generally, sulfoximines are stable 

compounds which provide a rich and versatile chemistry. Their use in organic synthesis 

and their applications in medicinal chemistry have been the subject of a number of 

reviews.142–144 In this section, the reactions of the anion derived from N-methyl-S-

(dichloromethyl)-S-phenylsulfoximine 156 are reported. 
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4.2.6.1 Attempt at Improving the Yield of N-Methyl-S-(dichloromethyl)-S-

phenylsulfoximine (156) 

 

S

O N

Cl

Cl

156

 

 

To the best of our knowledge, only one report has been published for the preparation 

of compound 156, which was produced as a by-product in very poor yield (7%) in an 

attempted synthesis of the monochloro sulfoximine (159) by chlorination of 158 by 

t-butyl hypochlorite (Scheme 4.18).145 It was hoped that it would be possible to 

optimise the reaction to improve the yield, or find an alternative method to chlorinate 

158.  

Initially, the sulfoximine 157 was prepared on a relatively large scale (6 grams) 

according to a literature method146,147 from methyl phenyl sulfoxide, sodium azide and 

sulfuric acid. Compound 157 was then methylated using formaldehyde and formic acid 

to form 158. Compound 158 was then, firstly, subjected to the same chlorination 

reaction conditions used by Johnson but with two equivalents of the chlorinating agent 

being used (Scheme 4.19). A solution of 158 in dichloromethane was treated with two 

equivalents of t-butyl hypochlorite in the presence of potassium carbonate and in the 

absence of light. The mixture was stirred for 1 h at room temperature, to form 159 and 

156 as a mixture of products. However, separation by column chromatography gave 

the two products in 72% (159) and 7% (156), respectively, a ratio similar to that 

reported by Johnson. In an attempt to improve the yield of 156, the reaction was 

repeated but the reaction mixture was stirred overnight, which led to an increase in 

the yield slightly to 16% according to the 1H NMR spectra of crude products. Heating 

the reaction mixture to reflux for 2 hours after addition of t-butyl hypochlorite led to 

improvement of the yield further to 25%, which was the best yield achieved. Heating 
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the reaction mixture longer caused decomposition of the products instead. Use of a 

different chlorinating agent, N-chlorosuccinimide, failed to form any of the expected 

chlorinated products.  

 

 

 

Scheme 4.19: Preparation of N-Methyl-S-(dichloromethyl)-S-phenylsulfoximine (156) 

 

It was thought that if the formation of sulfoximine 156 started from sulfoxide which 

already contained chlorine atoms (135), this might be superior. However, the reaction 

of sulfoxide 135 with sodium azide and sulfuric acid gave none of the desired product 

(Scheme 4.20). 

 

 

 

Scheme 4.20: Proposed route to 156 from 135 
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Nevertheless, the compound 156 was prepared, albeit in modest yield, using the 

procedure shown in Scheme 4.19 where the reaction mixture was heated to reflux for 

2 hours after addition of t-butyl hypochlorite. It was therefore available for 

investigation of its reactions with organoboranes. 

 

4.2.6.2 Exploring and Optimising the Reaction of Sulfoximine 156 with 

Trioctylborane 

In the initial experiment, equimolar amounts of trioctylborane and 156 were dissolved 

in THF and cooled to –78 °C. LDA was added dropwise to the mixture, which was then 

allowed to warm to room temperature. The solution was stirred for 1 h at –78 °C and 1 

h at room temperature before peroxidic oxidation. Interestingly, work-up and GC 

analysis of the crude reaction mixture showed the formation of 1-octanol (117) (37% 

of all octyl groups introduced to the system), the product of two alkyl group migrations 

(dioctyl ketone, 116, 13%) and the product of three alkyl group migrations 

(trioctylmethanol, 118, 39%) (all figures inclusive of 2-octyl isomers). 

Having successfully produced the product of three alkyl group migrations, attention 

was turned to optimisation of the production of the triple migration product. A few 

attempts at improving the yield of the trioctylmethanol were made and the results are 

summarised in Table 4.4. As can be seen from the table, using 1.5 equivalents of 156 

did not increase the amount of trioctylmethanol (entry 2) but increased the amount of 

dioctyl ketone significantly (from 13% to 29%). Replacement of the THF as solvent by 

dichloromethane and using 1.5 equivalents of 156 improved the yield of 

trioctylmethanol significantly to 54% (entry 3). Combining these conditions and stirring 

the solution mixture for 1 h at –78 °C and overnight at room temperature successfully 

increased the yield to 81% of the tertiary alcohol along with 11% of dioctyl ketone and 

12% of 1-octanol (entry 4).  
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Table 4.4: Attempts at Optimisation of Reaction Conditions for the 

Homologation/Oxidation Reaction of 156 with Trioctylborane 

Entry 

Yields of products (%)
a
 Description of 

Procedure Oct3COH
 

Oct2C=O OctOH
b
 

1 39 13 37 

Using 1.0 equiv of 

156, THF as solvent, 

stirring 1 h at –78 °C 

and 1h at r.t. 

2 40 29 18 
1.5 equiv. of 156 but 

otherwise as above 

3 54 13 23 

Using DCM but 

otherwise as in 

entry 1 

4 81 11 12 

DCM, 1.5 equiv. of 

156 and overnight 

stirring at r.t. 

a Products yields determined by GC; b Proportion as percentage of all octyl groups in 

trioctylborane 

 

Having successfully optimised the conditions of the reaction to achieve a high yield of 

the product of the three alkyl group migrations, these conditions were then adopted 

as standard and the reaction was carried out with a range of trialkylboranes (Scheme 

4.21).  

 

4.2.6.3 Reaction of Sulfoximine 156 with a Range of Trialkylboranes 

Triethylborane, tributylborane and triphenylborane were purchased, while 

trioctylborane, tricyclopentylborane and tricyclohexylborane were prepared in situ by 



Chapter Four:  Stoichiometric Studies on Dichloromethyl Sulfur Compounds …  

132 
 

hydroboration of the corresponding alkenes. Mixed trialkylboranes were prepared 

according to a literature procedure148 involving addition of one or two alkyllithium 

reagents to a chloroborane derivative, which was not optimised and may have given 

poor yields of mixtures of organoboranes, but the method served to provide mixed 

organoboranes for testing the outcome of the reactions.  
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Scheme 4.21: Reactions of Compound 156 with Organoboranes 

 

The results of the reaction of 156 with the organoboranes are summarised in Table 

4.5. 

It can be seen from Table 4.5 that apart from the more hindered trialkylboranes, all of 

the reactions gave significant yields of the desired tertiary alcohol. The reaction of 

triethylborane gave a modest yield, probably due to loss of product through 

evaporation and/or dissolution in water. With respect to the reaction of 

butylmethylphenylborane, the low yield (30%) of the triple migration product reflects 

the poor synthesis of the mixed trialkylborane, which contained a substantial amount 

of dibutylphenylborane. 5-Phenylnonanol (30%) was also isolated from this reaction, 

so that the total amount of triple migration products was 60%. With respect to 

butyldicyclohexylborane, the product tributylmethanol (20%) was observed, which is 

presumably due to the presence of tributylborane in the butyldicyclohexylborane. 

However, the more hindered trialkylboranes did not give any of the desired alkyl group 

migration products.  
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Table 4.5: Products formed in Reactions According to Scheme 4.21 

Alkyl groups of R
1
R

2
R

3
B Yields of products (%)

a
 

R
1 R

2 R
3 161 162 163 

Et Et Et - - (47)b 

Bu Bu Bu - 13 (81) 

Oct Oct Oct 12c 11c 75c (81) 

 Bud  Bud 
c-Hexd - - 73 

 Bud  Bud 
c-Pentd - - 68 

 Bue  Bue Phe - - 51 

 Mef  Buf Phf - - 30g 

c-Pent c-Pent c-Pent - - - 

Ph Ph Ph - - - 

Bu c-Hex c-Hex - - 20h 

Oct Oct Thex - - - 

Oct 9-BBN 9-BBN - - - 

a Yields of isolated materials by chromatography (GC figures are in parentheses). b A 

significant proportion of the product mixture may have been lost by evaporation during 

work-up. c All compounds contained 2-octyl isomers as a result of the preparation of 

trioctylborane by hydroboration of 1-octene. d The trialkylborane was prepared in situ 

from BCl3, the corresponding cycloalkene and Et3SiH, followed by 2 equiv. of n-BuLi. e The 

trialkylborane was prepared in situ from PhBCl2 and 2 equiv. of n-BuLi. f The trialkylborane 

was prepared in situ from PhBCl2 then sequential addition of 1 equiv. of n-BuLi and 

1-equiv. of MeLi; the product was a mixture of PhBBuMe and PhBBu2. g PhC(OH)Bu2 (30%) 

was also isolated. h The product observed was tributylmethanol, indicating that the 

organoborane was a mixture. 
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Nevertheless, the fact that the mixed organoboranes successfully produced the 

corresponding tertiary alcohols suggests that the reaction involves three 

intramolecular organic group transfers, and this opens up a potential process involving 

asymmetric induction if an appropriate enantiomerically-pure sulfoximine 156 is used 

in this reaction.  

 

4.2.6.4 Attempted Reaction of the Anion Derived from 156 with Boronic Esters 

Due to the success of the reaction of anion derived from sulfoximine 156 with 

trialkylboranes, it was felt to be worth investigating the reaction of the anion derived 

from 156 with boronic esters. Therefore, n-butylboronic acid pinacol ester (152) was 

chosen as a suitable boronic ester. A mixture of compound 156 and the boronic ester 

152 was dissolved in DCM and the solution was cooled to –78 °C. LDA was added and 

the resulting mixture was stirred overnight (Scheme 4.22). A few millilitres of the 

reaction mixture was taken by syringe and injected into an NMR tube with a septum, 

and the solvent was removed under a stream of N2. By looking at the 1H NMR 

spectrum of the crude products, the experiment showed that only starting materials 

were observed and none of the desired homologated boronic ester (164) had formed, 

highlighting the lack of reactivity of boronic esters with such anions. 

 

i) LDA

ii) n-BuBpin (152)

156

S

O N

Cl

Cl

S

O N

Cl Bpin

164

 

 

Scheme 4.22: Attempted Reaction of 156 with Boronic Ester 152 

 

In view of the success in reacting trialkylboranes with the anion derived from 

compound 156, it was thought to be interesting to attempt similar reactions with 
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S-dichloromethyl-S-phenyl-N-toluenesulfonylsulfilimine (166). The first stage was to 

prepare the compound 166. 

 

4.2.6.5 Attempted Chlorination of S-Methyl-S-phenyl-N-sulfonylsulfilimines (165) 

Sulfilimines are isoelectronic with sulfoxides and they create asymmetry at the 

tetrahedral sulfur atom when the oxygen atom is replaced by nitrogen and the two 

carbon groups are not the same (Figure 4.6). Their stability and biological activity have 

abetted a recent growing interest in these compounds.149–151  
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Figure 4.6: Structures of Sulfilimines and Sulfoxides 

 

It was thought that using the anion derived from S-dichloromethyl-S-phenyl-

N-toluenesulfonylsulfilimine (166) in DCME-like reactions presumably would not form 

an enolate intermediate, as the sulfilimine group is more hindered than a sulfoxide 

group. As a result, the reaction of compound 166 with a trialkylborane would probably 

not undergo a tautomeric rearrangement similar to that of sulfoxides after the first 

migration (Scheme 4.6). This, ultimately, might lead to induction of the second alkyl 

group migration.  
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Therefore, synthesis of 166 was attempted. S-Methyl-S-phenyl-

N-toluenesulfonylsulfilimine 165 was first prepared by treatment of a solution of 

thioanisole in acetonitrile with chloramine-T according to a known procedure to give 

compound 165 in very good yield (85%) (Scheme 4.23).150 
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Scheme 4.23: Preparation of S-Methyl-S-phenyl-N-toluenesulfonylsulfilimine (165) 

 

A solution of compound 165 in THF was treated with N-chlorosuccinimide (NCS) at 0 

°C. The 1H NMR spectrum of the crude product after work-up showed starting material 

and an unknown compound. The unknown compound was isolated in low yield (25%) 

by column chromatography and the 1H NMR spectrum showed doublet peaks at 7.72 

ppm (J = 8.0 Hz) with integration of two protons and 7.20 ppm (J = 8.0 Hz) with 

integration of two protons and a singlet at 2.34 ppm with integration of three protons, 

which seem to be due to the p-tosyl group. Also, it showed a doublet at 5.88 ppm (J = 

9.0 Hz) for one proton, a multiplet in the range 5.31 – 5.19 ppm due to one proton, a 

multiplet at 3.69 – 3.49 ppm due to two protons, a multiplet in the range 2.14-1.97 

ppm due to one proton and a multiplet at 1.94 – 1.56 ppm due to three protons, which 

seemed to be due to a 2-substituted tetrahydrofuryl group. Combining these data with 

13C NMR data, it was concluded that the compound was 167 resulting from the 
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reaction of compound 165 with the solvent (Scheme 4.24). Indeed, these data were 

identical to those shown in the literature for compound 167.152 

 

NCS/THF

0 °C

165

S

167
N

Ts

Me

S
N
H

O O

S

N
Ts

166

Cl

Cl

O

25%

 

 

Scheme 4.24: Reaction of 165 with THF 

 

To avoid this issue it was decided to replace the THF with DCM and the reaction was 

repeated. The 1H NMR spectrum of the crude products showed that no reaction had 

occurred; only starting materials were observed. Also, a solution of compound 165 in 

DCM was treated with t-butyl hypochlorite at 0 °C (Scheme 4.25). No reaction 

occurred and only starting materials were observed in the crude reaction mixture.  

 

t-BuOCl (2.0 equiv.)

165

S

N
Ts

S

N
Ts

166

Cl

ClDCM, 0 °C

 

 

Scheme 4.25: Attempted Chlorination of 165 with t-BuOCl 
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It was thought that the existing chlorine atom in sulfilimine 168 might help to activate 

the methylene group to further chlorination. Compound 168 can be synthesised from 

chloromethyl phenyl sulfide, which is commercially available. The compound was 

synthesised using the same method that was detailed for 165 (Scheme 4.26). 

However, the sulfilimine 168 was subjected to the same two chlorination procedures 

that were used in attempts to chlorinate compound 165 in DCM without observing the 

desired product in either case according to the 1H NMR spectra of the crude products. 

Only starting materials were observed. 

 

S

N
Ts

S

168

Cl

Cl

Chloramine-T

CH3CN

166

 

 

Scheme 4.26: Attempts at Chlorination of 168 

 

4.3 Conclusion  

In this chapter, the aim was to assess the reaction of three different kinds of anionic 

reagents derived from Cl2CHX (X = phenylsulfinyl (SOPh), p-tosyl and 

phenylsulfoximinyl (PhSO(NMe)) groups) with trialkylboranes. The three anions were 

generated and reacted in situ with the trialkylboranes and each of the three reagent 

types showed a different behaviour. Dichloro(phenylsulfinyl)methyl anion (X = SOPh) 

showed a new kind of reaction involving replacement of one of the chlorine atoms by 

an alkyl group in a rearrangement reaction, followed presumably by formation and 

hydrolysis of a boron enolate-like intermediate. The reaction was exploited to produce 

a series of new compounds by trapping the intermediate with aldehydes to give β-

hydroxyalkyl sulfoxides. 
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E= H+ or benzaldeydes

Cl R

 

 

Scheme 4.27: Reactions of the Anion Derived from 135 with Triethylborane and 

Electrophiles 

 

In contrast to the sulfoxide, the reaction of the anion derived from dichloromethyl 

p-tolyl sulfone with a trialkylborane gave the product of the overall replacement of 

hydride by an alkyl group from the trialkylborane, which is also a new type of reaction.  

 

Me

S

O O

Cl

Cl

153

+BR3

i) LiHMDS

i) NH4Cl
Me

S

O O

R

Cl Cl

R= Et or n-Bu
 

 

Scheme 4.28: Reaction of Anion Derived from 153 with Triethylborane 

 

Finally, S-dichloromethyl-N-methyl-S-phenyl-sulfoximine anion (X = PhSO(NMe)) 

reacted successfully to give the desired tertiary alcohol product of displacement of all 

three alkyl groups by alkyl groups of a trialkylborane after oxidation. These results 
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open the way potentially to an asymmetric process influenced by enantiomerically-

pure sulfoximines. 
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Cl
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iii) H2O2, NaOH, 0 °C R1 C

O

R2
R1

R2

R3

OH

ii) LDA, DCM, _78 °C

162 163156

ROH +

161

+

 

 

Scheme 4.29: Reactions of Compound 156 with Organoboranes 
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4.4 Experimental  

4.4.1 Preparation of Dichloromethyl Phenyl Sulfoxide (135)
119

 

 

S

O

Cl

Cl

135
 

 

 

To a solution of methyl phenyl sulfoxide (1.00 g, 7.13 mmol) in THF (15 mL) at 0 °C, was 

added N-chlorosuccinimide (1.95 g, 14.62 mmol, 2.05 equiv.). The solution was stirred 

at 0 °C overnight and filtered. The solvent was removed in vacuo. The product was 

purified by flash column chromatography (4:1 petroleum ether/diethyl ether) to afford 

the title compound (1.084 g, 73%) as a colourless oil, Rf = 0.26 (4:1 petroleum 

ether/diethyl ether). 

1H NMR (400 MHz; CDCl3) 7.86 – 7.74 (2H, m), 7.68 – 7.51 (3H, m) and 6.17 (1H, s). 

13C NMR (101 MHz; CDCl3) δ 138.1, 133.2, 129.1, 126.7 and 83.1. 

 

4.4.2 Reactions of Dichloromethyl Phenyl Sulfoxide with Trioctylborane 

To a septum-capped 25 mL flask, was added borane (100 L, 10.0 M in dimethyl 

sulfide, 1.0 mmol, 1 equiv.), followed by THF (5 mL). The flask was immersed in an 

ice-bath and 1-octene (0.47 mL, 3.0 mmol, 3 equiv.) was added dropwise. The cooling 

bath was removed and the solution was left to stir at room temperature for 1 h. The 

solution was mixed with a solution of dichloromethyl phenyl sulfoxide (135) (209 mg, 

1.0 mmol, 1 equiv.) in THF (5 mL) and cooled to –78 °C. LDA (1.1 mmol in 2.0 mL of 

THF, 1.1 equiv.) was added dropwise and the solution was stirred for 1 h at the same 

temperature. The cooling bath was removed, and the reaction stirred for a further 1 h. 

The solution was cooled to 0 °C and oxidised by adding sodium hydroxide (3.0 M, 5 mL) 

followed by aqueous hydrogen peroxide (30% aqueous, 3 mL). After the initial reaction 

subsided, the mixture was gently warmed and stirred overnight. The aqueous layer 

was saturated with sodium chloride and tetradecane (221.9 mg) was added. A sample 
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from the organic layer was taken and injected into the GC machine. The results were: 

1-ocatanol (117) (55%), dioctyl ketone (116) (6%) and trioctylmethanol (118) (3%). 

The organic layer was separated, and the aqueous layer was extracted with 

dichloromethane (3 x 10 mL). The organic layers were combined, dried over 

magnesium sulfate and filtered. The volatile solvents were evaporated under reduced 

pressure to leave the corresponding alcohol. The crude product was purified by 

column chromatography on silica gel (5% EtOAc/petroleum ether) to yield 1-octanol 

(117) (188 mg, 48%), dioctyl ketone (116) (8 mg, 3%) and trioctylmethanol (118) (5 mg, 

1%).  

 

4.4.3 General Procedure for Synthesis of 1-Chloroalkyl Phenyl Sulfoxides (141) 

 

S

O

Cl

Cl

LDA
BR3

NH4Cl

S

O

Cl

R

135 141

(137 if R = Octyl)
 

R = a) Et, b) n-Bu, c) 2-Phenylethenyl, e) Phenyl 

 

To a cooled (–78 °C) solution of diisopropylamine (91 L, 0.65 mmol, 1.3 equiv.) in dry 

THF (5 mL), n-BuLi (0.38 mL, 1.6 M in hexane, 0.60 mmol, 1.2 equiv.) was added 

dropwise. The solution was warmed to 0 °C over a period of 20 min. The solution was 

cooled again to –78 °C. To this solution was added dichloromethyl phenyl sulfoxide 

(105 mg, 0.50 mmol, 1.0 equiv.) and the mixture was stirred for 10 minutes. 

Trialkylborane (0.50 mmol, 1.0 equiv.) was added and the mixture was stirred for 1 h, 

then the reaction was quenched by addition of saturated ammonium chloride solution 

(5 mL) before being warmed to room temperature. The organic layer was separated, 

the aqueous layer was extracted with dichloromethane (3 x 10 mL) and the organic 

layers were combined and dried over magnesium sulfate. The solvents were 

evaporated under reduced pressure. The crude product was purified by flash column 
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chromatography on silica gel (the eluent is indicated in each case) to afford the 

corresponding sulfoxide. 

 

4.4.3.1 1-Chloropropyl Phenyl Sulfoxide (141a) 

 

S

O

Cl

141a
 

 

According to the general procedure, followed by flash column chromatography (4:1 

petroleum ether/diethyl ether), the reaction of triethylborane with dichloromethyl 

phenyl sulfoxide gave the title compound (92 mg, 92%) as a colourless oil as a 78:22 

mixture of diastereoisomers. 

max.(neat) 3061, 2974, 2937, 2877, 1444, 1084 and 1049 cm-1. 

1H NMR (400 MHz; CDCl3) 7.78 – 7.69 (2H of major isomer, m, aromatic CH), 7.68 – 

7.62 (2H of minor isomer, m, aromatic CH), 7.58 – 7.46 (3H of both isomers, m, 

aromatic CH), 4.46 (1H of minor isomer, dd, J = 9.7, 4.1 Hz, CHCl), 4.36 (1H of major 

isomer dd, J = 9.0, 3.1 Hz, CHCl), 2.29 – 2.17 (1H of minor isomer, m, one of CH2), 2.23 

(1H of major isomer, dqd, J = 14.6, 7.3, 3.1 Hz, one of CH2), 1.96 (1H of major isomer, 

ddq, J = 14.6, 9.0, 7.2 Hz, one of CH2), 1.67 – 1.51 (1H of minor isomer, m, one of CH2) 

and 1.20 – 1.09 (3H of both isomers, m, CH3). 

13C NMR (101 MHz; CDCl3) (major isomer): 141.2 (quat C), 132.2 (CH), 129.1 (CH), 

126.0 (CH), 78.6 (CH), 24.9 (CH2) and 10.0 (CH3); (minor isomer):  139.3 (quat C), 

132.0 (CH), 128.9 (CH), 125.6 (CH), 78.2 (CH), 24.8 (CH2) and 11.0 (CH3). 

MS (APCl+) m/z 205 (MH+, 37Cl, 10%), 203 (MH+, 35Cl, 30), 244 (30), 150 (100) and 109 

(62); HRMS: Found MH+, 203.0292. C9H12
35ClOS requires M, 203.0297. 
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4.4.3.2 1-Chloropentyl Phenyl Sulfoxide (141b) 

 

S

O

Cl

141b
 

 

According to the general procedure, followed by flash column chromatography (30% 

diethyl ether/petroleum ether), the reaction of tributylborane with dichloromethyl 

phenyl sulfoxide gave the title compound (101 mg, 88%) as a colourless oil as a 84:16 

mixture of diastereoisomers. 

max. (neat) 3057, 2957, 2931, 2862, 1444, 1084 and 1049 cm-1. 

1H NMR (400 MHz; CDCl3)  7.82 – 7.49 (5H of both isomers, m, aromatic CH), 4.53 (1H 

of minor isomer, dd, J = 9.5, 4.1 Hz, CHCl), 4.40 (1H of major isomer, dd, J = 9.8, 3.0 Hz, 

CHCl), 2.31 – 2.21 (1H of minor isomer, m, one of CH2), 2.26 (1H of major isomer, dddd, 

J = 14.3, 8.6, 5.6, 3.0 Hz, one of CH2), 1.94 (1H of major isomer, app. dtd, J = 14.3, 9.9, 

4.6 Hz, one of CH2), 1.78 – 1.22 (4H of major isomer and 5H of minor isomer, m) and 

0.90 (3H of both isomers, app. t, J = 7.2 Hz, CH3). 

13C NMR (101 MHz; CDCl3) (major isomer): 141.3 (quat C), 132.2 (CH), 129.1 (CH), 

126.0 (CH), 77.4 (CH), 31.1 (CH2), 27.7 (CH2), 22.2 (CH2) and 13.9 (CH3). Selected 

chemical shifts for the minor isomer: 131.9 (CH), 128.9 (CH), 125.65 (CH), 76.6 (CH), 

30.8 (CH2), 28.3 (CH2) and 22.0 (CH2). 

MS (APCl+) m/z 233 (MH+, 37Cl, 10%), 231 (MH+, 35Cl, 33%), 272 (40), 150 (100); HRMS: 

Found MH+, 231.0619. C11H16
35ClOS requires M, 231.0610. 
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4.4.3.3 1-Chlorononyl Phenyl Sulfoxide (137) 

 

S

O

Cl

137
 

 

According to the general procedure, followed by flash column chromatography (4:1 

petroleum ether/diethyl ether), the reaction of trioctylborane with dichloromethyl 

phenyl sulfoxide gave the title compound (88 mg, 61%) as a colourless oil as a 84:16 

mixture of diastereoisomers. 

max. (neat) 3063, 2955, 2924, 2854, 1464, 1444 and 1051 cm-1. 

1H NMR (400 MHz; CDCl3) 7.80 – 7.70 (2H of major isomer, m, aromatic CH), 7.69 – 

7.63 (2H of minor isomer, m, aromatic CH), 7.60 – 7.49 (3H of both isomers, m, 

aromatic CH), 4.53 (1H of minor isomer, dd, J = 9.5, 4.0 Hz, CHCl), 4.40 (1H of major 

isomer, dd, J = 9.8, 3.0 Hz, CHCl), 2.32 – 2.15 (1H of minor isomer, m, one of CH2), 2.24 

(1H of major isomer, dddd, J = 14.3, 9.4, 5.8, 3.0, one of CH2), 1.93 (1H of major 

isomer, app. dtd, J = 14.3, 9.8, 4.5, one of CH2), 1.83 – 1.05 (12H of major isomer and 

13H of minor isomer, m, (CH2)6) and 0.87 (3H of both isomers, app. t, J = 6.9 Hz, CH3). 

13C NMR (101 MHz; CDCl3) (major isomer): 141.3 (quat C), 132.2 (CH), 129.1 (CH2), 

126.0 (CH2), 77.4 (CH), 31.9 (CH2), 31.3 (CH2), 29.4 (CH2), 29.3 (CH2), 29.0 (CH2), 25.6 

(CH2), 22.8 (CH2) and 14.2 (CH3). Selected chemical shifts for the minor isomer: 131.9 

(CH), 129.0 (CH), 125.8 (CH), 76.7 CH), 31.2 (CH2), 29.2 (CH2), 28.9 (CH2) and 26.3 (CH2).  

EI-MS m/z (%) 286 (M+, 35Cl, l5%), 234 (20), 125 (100), 78 (100); HRMS: Found: M+, 

286.1159. C15H23
35ClOS requires M, 286.1158. 
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4.4.3.4 1-Chloro-3-phenylpropyl Phenyl Sulfoxide (141c) 

 

141c

S

O

Cl

 

 

According to the general procedure, followed by flash column chromatography (4:1 

petroleum ether/diethyl ether), the reaction of tris(2-phenylethyl)borane with 

dichloromethyl phenyl sulfoxide gave the title compound  (56 mg, 40%) as a colourless 

oil as a 81:19 mixture of diastereoisomers.

max. (neat) 3061, 3026, 2955, 2930, 2856, 1444, 1085 and 1049 cm-1. 

1H NMR (400 MHz; CDCl3) 7.67 – 7.58 (2H of the major isomer, m, aromatic CH), 7.59 

– 7.54 (2H of minor isomer, m, aromatic CH), 7.53 – 7.38 (3H of both isomers, m, 

aromatic CH), 7.27 – 7.04 (5H of both isomers, m, aromatic CH), 4.40 (1H of minor 

isomer, dd, J = 10.3, 3.7 Hz, CHCl), 4.30 (1H of major isomer, dd, J = 10.2, 2.8 Hz, CHCl), 

3.03 – 2.84 (1H of minor isomer, m, one of CH2), 2.95 (1H of major isomer, ddd, J = 

13.9, 9.0, 4.7 Hz, one of CH2), 2.79 – 2.66 (1H of minor isomer, m, one of CH2), 2.57 – 

2.67 (1H of minor isomer, m , one of CH2), 2.71 (1H of major isomer, app. dt, J = 13.9, 

8.2 Hz, one of CH2), 2.47 (1H of major isomer, dddd, J = 14.3, 9.0, 7.8, 2.8 Hz, one of 

CH2), 2.15 (1H of major isomer, dddd, J = 14.3, 10.2, 8.8, 4.7 Hz, one of CH2) and 1.91 – 

1.77 (1H of minor isomer, m, one of CH2). 

13C NMR (126 MHz; CDCl3) (major isomer): 140.9 (quat C), 139.4 (quat C), 132.2 (CH), 

129.1 (CH), 128.7 (CH), 128.55 (CH), 126.53 (CH), 125.8 (CH), 76.3 (CH), 32.7 (CH2) and 

31.4 (CH2). Selected chemical shifts for the minor isomer: 139.3 (quat C), 131.9 (CH), 

128.9 (CH), 128.8 (CH), 128.57 (CH), 126.62 (CH), 125.7 (CH), 75.2 (CH), 32.4 (CH2) and 

31.9 (CH2). 

MS (EI) m/z 278 (M+, 35Cl, 5%), 91 (90); HRMS: Found M+, 278.0533. C15H15
35ClOS 

requires M, 278.0532. 
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4.4.4 Chloro(phenyl)methyl Phenyl Sulfoxide (141e) and Chloro(cyclopentyl)methyl 

Phenyl Sulfoxide (141f) 

 

141e

S

O

Cl

S

O

Cl

141f
 

 

The general procedure using dichlorophenylborane or triphenylborane in attempts to 

prepare 141e failed. Also, the reaction with tricyclopentylborane in an attempt to 

prepare 141f failed. 

 

4.4.5 Deuteriation of the Sulfoxide Enolate 
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Cl
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i) LDA
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iii) D2O

S
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144
 

 

The above general procedure was followed, but the reaction was quenched with D2O 

(5 mL) and the usual work up was followed to yield two diastereomers of the title 

compound (93 mg, 93%, the ratio was not measured due to overlapping peaks) as a 

colourless oil. 

1H NMR (400 MHz; CDCl3) 7.79 – 7.70 (2H of major isomer, m, aromatic CH), 7.69 – 

7.62 (2H of minor isomer, m, aromatic CH), 7.59 – 7.47 (3H of both isomers, m, 

aromatic CH), 2.29 (1H of minor isomer, dq, J = 14.6, 7.3 Hz, 1H), 2.28 (1H of major 

isomer, dq, J = 14.7, 7.3 Hz, 1H)), 2.01 (1H of major isomer, app. dq, J = 14.6, 7.2 Hz, 

one of CH2), 1.67 – 1.45 (1H of minor isomer, m, one of CH2), 1.15 (3H of major isomer, 

t, J = 7.3 Hz) and 1.12 (3H of minor isomer, t, J = 7.3 Hz, CH3). 

13C NMR (101 MHz; CDCl3) (major isomer): 141.1 (quat C), 132.2 (CH), 129.1 (CH), 

126.0 (CH), 78.3 (CD), 24.7 (CH2) and 10.0 (CH3); (minor isomer) selected chemical 

shifts: 139.2 (quat C), 131.9 (CH), 129.0 (CH), 125.7 (CH), 24.0 and 11.0 (CH3). 
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4.4.6 Reaction with n-Octyl-9-BBN  

 

B
CH2(CH2)6CH3

LDA/THF -78 oC

Cl

Cl

40%

S

O

Cl

141c

S

O

 

 

The same general procedure was used for this reaction. The n-octyl-9-BBN was 

prepared first and added to the sulfoxide anion. Working up and purifying the crude 

product afforded 141c (57 mg, 40%, 82:18 mixture of diastereoisomers).  

n-Octyl-9-BBN : 9-BBN dimer (61 mg, 0.25 mmol) was placed in a 5 mL round bottom 

flask and flushed with nitrogen for 10 minutes. THF (2 mL) was added and the solution 

was cooled to 0°C. 1-Octene (79 mL, 0.5 mmol) was added dropwise and the solution 

was allowed to warm to r.t. for 2 h. 

 

4.4.7 Synthesis of Diphenyliodonium Triflate (150) 
136

 

 

I
m-CPBA, TfOH
DCM, benzene

RT 40o

I

150

TfO

 

 

m-CPBA (0.2465 g, 1.1 mmol) and iodobenzene (0.11 mL, 1.0 mmol) were dissolved in 

a mixture of benzene (98 mL) and dichloromethane (10 mL). Triflic acid (0.17 mL, 2.0 

mmol) was added dropwise. The solution was warmed to 40 °C and stirred for 1 h. The 

solution was concentrated in vacuo while still cold. Diethyl ether (8 mL) was added and 

the mixture was stirred for 10 minutes then cooled in a freezer for 30 minutes. The 

colourless oil that precipitated was filtered, washed with cold ether (20 mL) and dried 

under vacuum to give the title compound (0.375 g, 87%) as a pale yellow solid. 

m.p. 177 – 178 °C (lit.153 176 – 177 °C). 
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1H NMR (400 MHz; DMSO) δ 8.29 – 8.11 (4H, m), 7.67 – 7.57 (2H, m) and 7.55 – 7.41 

(4H, m). 

13C NMR (101 MHz; DMSO) δ 135.2, 132.0, 131.8 and 116.5. 

 

4.4.8 Reaction with Diphenyliodonium Triflate 

The procedure used in the reaction of trialkylborane with 135 was followed. Only 

starting materials were seen. 

 

S LDA, BEt3

I

SCl

Cl

151

O O

TfO
Et Cl

150
 

 

4.4.9 Synthesis of Pinacol n-Butylboronic Ester (152) 
114 

 

 

 

n-Butylboronic acid (1.50 g, 14.7 mmol) and pinacol (1.83 g, 15.5 mmol) were placed in 

a 50 mL round bottom flask, which was flushed with N2 for 10 minutes. Anhydrous 

pentane (20 mL) was added and the solution stirred overnight. The solution was dried 

over magnesium sulfate and the solvents were evaporated to afford the title 

compound (1.2 g, 44%). The product was used for the next step without any further 

purification. 

1H NMR (400 MHz; CDCl3) 1.48 – 1.26 (4H, m), 1.23 (12H, s), 0.87 (3H, t, J = 7.2 Hz) 

and 0.70 (2H, t, J = 7.7 Hz). 

13C NMR (101 MHz; CDCl3) 82.6, 25.9, 25.2, 24.5, 24.3 and 13.6. 
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4.4.10 Reaction of Compound 135 with Boronic Ester  

 

S

O

Cl

Cl

i) LDA
S

iii) NH4Cl

O

Cl

141b

ii) 152

 

 

To a cooled (–78 °C) solution of diisopropylamine (91 L, 0.65 mmol, 1.3 equiv.) in dry 

THF (5 mL), n-BuLi (0.38 mL, 1.6 M in hexane, 0.60 mmol, 1.2 equiv.) was added 

dropwise. The solution was warmed to 0 °C over a period of 20 min. The solution was 

cooled again to –78 °C. To this solution, dichloromethyl phenyl sulfoxide (135) (105 

mg, 0.50 mmol, 1.0 equiv.) was added and the mixture was stirred for 10 minutes. 

Boronic acid 152 (106 mL, 0.5 mmol, 1.0 equiv.) was added and the mixture was stirred 

for 1 h, then the reaction was quenched by addition of saturated ammonium chloride 

solution (5mL) before being warmed to room temperature. The organic layer was 

separated, the aqueous layer was extracted with dichloromethane (3 x 10 mL) and the 

organic layers were combined and dried over magnesium sulfate. The solvents were 

evaporated under reduced pressure. 1H NMR spectrum showed that only starting 

materials were observed. 

 

4.4.11 Trapping the Sulfoxide Enolate with 3- or 4-R-Substituted Benzaldehydes 

 

 

 

R = a) H, b) m-OMe, c) p-OMe, d) p-Br, e) p-F,  
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4.4.11.1 General Procedure  

To a cooled (–78 °C) solution of diisopropylamine (183 L, 1.3 mmol, 1.3 equiv.) in dry 

THF (5 mL), n-BuLi (0.75 mL, 1.6 M in hexane, 1.2 mmol, 1.2 equiv.) was added 

dropwise. The solution was warmed to 0 °C over a period of 20 minutes. The solution 

was cooled to –78 °C. To this solution, a solution of compound 135 (209 mg, 1.0 mmol, 

1.0 equiv.) in THF (3 mL) was added and the mixture was stirred for 10 minutes. 

Triethylborane (1.0 mL, 1.0 M in THF, 1.0 mmol, 1.0 equiv.) was added and stirring was 

continued for 1 h. The substituted benzaldehyde (1.0 mmol) was added and the 

mixture was stirred for a further 1 h. The mixture was allowed to warm to 0 °C over a 

period of 20 minutes and quenched by addition of sat. aqueous ammonium chloride 

solution (10 mL). The organic layer was separated and the aqueous layer was extracted 

with dichloromethane (3 × 15 mL); the organic layers were combined and dried over 

magnesium sulfate. The solvents were evaporated under reduced pressure and the 

crude material obtained was subjected to silica-gel column chromatography (eluted 

with a suitable ratio of ethyl acetate/chloroform) to afford the four pure 

diastereoisomers of the product (except for methoxy substituted products, where only 

three diastereoisomers were formed). 

 

4.4.11.1.1 Compound 145a 

 

145a

S

O OH

Cl Et

 

 

The general procedure was followed. The reaction of triethylborane and benzaldehyde 

(102 L, 1.0 mmol) with 135, followed by flash column chromatography (3% ethyl 

acetate/chloroform) gave three fractions; fraction 1 contained the 145a(i) 

diastereoisomer (72 mg, 23%) as a colourless solid; fraction 2 contained a mixture of 

two compounds 145a(ii) and 146a (16 mg, 5% of the mixture, 1:1 ratio) as a colourless 
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oil; fraction 3 contained two diastereoisomers 145a(iii) and 145a(iv) (100 mg, 32%, 

55:45 ratio) as a colourless oil.  

 

Fraction 1 

145a(i)

Ph
S (R)

(R) Ph

O OH

EtCl
(R)

 

Colourless Solid (72 mg, 23%) 

m.p. = 181-182 °C. 

max. (neat) 3201, 3065, 2968, 2937, 2879, 1442 and 1031 cm-1. 

1H NMR (400 MHz; CDCl3) 8.04 – 7.87 (2H, m, aromatic CH), 7.75 – 7.54 (3H, m, 

aromatic CH), 7.27 (5H, app. s), 5.66 (1H, s), 4.96 (1H, s), 3.00 (1H, dq, J = 15.3, 7.2 Hz), 

2.01 (1H, dq, J = 15.3, 7.4 Hz) and 1.30 (3H, app. t, J = 7.3 Hz). 

13C NMR (101 MHz, CDCl3) δ 137.3 (quat C), 136.3 (quat C), 132.8 9 (CH), 129.0 (CH), 

128.7 (CH), 128.5 (CH), 128.1 (CH), 127.7 (CH), 83.7 (quat C), 78.6 (CH), 23.3 (CH2) and 

8.0 (CH3). 

MS (ES–) m/z (%), 347 (((M+Cl)–, 37Cl2, 13%), 345 ((M+Cl)–, 37Cl35Cl, 67%), 343 ((M+Cl)–, 

35Cl2, 100%), 313 (74), 255 (65), 223 (82); HRMS: Found (M+Cl)–, 343.0317. 

C16H17
35Cl2O2S requires M, 343.0326. 

 

Selected crystallographic data: C16H17ClO2S, FW = 308.80, T = 296(2) K,  = 1.54184 Å, 

Triclinic, P-1, a = 11.2998(3) Å, b = 11.4679(3) Å, c = 12.4272(3) Å, = 96.840(2)°, = 

92.254(2)°,  = 104.801(2)°, V = 1541.78(7) Å3, Z = 4, calc. = 1.330 Mg/m3, crystal size = 

0.322 x 0.272 x 0.190 mm3,  = 3.442 mm-1, reflections collected = 25725, Independent 

reflections = 6107, Rint = 0.0223, parameters = 365, R1 = 0.0332, wR2 = 0.0847 for 

I>2(I) and R1 = 0.0396, wR2 = 0.0888 for all data. 
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Fraction 2: Mixture of diastereomer 145a(ii) and compound 146a 

 

Colourless oil (16 mg, 5%, 1:1 mixture of 145a(ii) and 146a). 

max. (neat) 3348, 3061, 3005, 2931, 2883, 1610, 1444 and 1047 cm-1. 

1H NMR (400 MHz; CDCl3) 7.92 - 7.34 (5H of each compound, m, aromatic CH), 5.50 

(1H of by-product, d, J = 2.7 Hz, CHOH), 5.20 (1H of aldol product, d, J = 8.7 Hz, CHOH), 

4.92 (1H of aldol product, d, J = 8.7 Hz, OH), 4.15 (1H of by-product, d, J = 2.8 Hz, OH), 

2.39 (1H of aldol product, dq, J = 14.7, 7.2 Hz, one of CH2), 1.28 (1H of aldol product, 

dq, J = 14.7, 7.1 Hz, one of CH2) and 1.07 (3H of aldol product, app. t, J = 7.2 Hz). 

13C NMR (126 MHz, CDCl3) δ 137.6 (quat C), 136.8 (quat C), 135.7 (quat C) , 134.4 (quat 

C), 133.4 (CH), 132.4 (CH), 129.6 (CH), 129.1 (CH), 129.03 (CH), 128.98 (CH), 128.8 (CH), 

128.7 (CH), 128.18 (CH), 128.17 (CH), 128.1 (CH), 127.3 (CH), 102.3 (quat C), 80.7 (quat 

C), 80.2 (CH), 77.9 (CH), 25.6 (CH2), 8.1 (CH3). 

MS (APCl+) m/z (%) 374 ((M+Na+CH3CN)+, 37Cl, 40%), 372 ((M+Na+CH3CN)+, 35Cl, 100%), 

333 ((M+Na)+, 37Cl, 11%), 331 ((M+Na)+, 35Cl, 53%), 228 (13) HRMS: Found (M+Na)+, 

331.0519. C16H17
35ClNaO2S requires M, 331.0535.  
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Fraction 3: Mixture of two diastereoisomers 145a(iii) and (iv) 

145a(iii)

Ph
S (S)

(S) Ph

O OH

ClEt
(R) Ph

S (R)
(S) Ph

O OH

EtCl
(R)

145a(iv)
 

Colourless oil (100 mg, 32%, 55:45 mixture of diastereoisomers). 

max. (neat) 3338, 3065, 2939, 2879, 1442 and 1020 cm-1. 

1H NMR (400 MHz; CDCl3) δ 7.91 – 7.78 (2H of each isomer, m, aromatic CH), 7.67 – 

7.24 (8H of each isomer, m, aromatic CH), 5.33 (1H of major isomer, d, J = 4.0 Hz, 

CHOH), 5.17 (1H of minor isomer, d, J = 3.3 Hz, CHOH), 3.63 (1H of minor isomer, d, J = 

3.3 Hz, OH), 3.21 (1H of major isomer, d, J = 4.0 Hz), 2.22 – 2.12 (2H of minor isomer, 

m, CH2), 1.88 (1H of major isomer, dq, J = 15.0, 7.4 Hz, one of CH2), 1.50 (1H of major 

isomer, dq, J = 15.0, 7.3 Hz, one of CH2), 0.95 (3H of major isomer, app. t, J = 7.4 Hz, 

CH3) and 0.85 (3H of minor isomer, app. t, J = 7.5 Hz, CH3). 

13C NMR (101 MHz; CDCl3) δ 138.8 (quat C), 138.5 (quat C), 138.0 (quat C), 137.8 (quat 

C), 132.5 (CH), 132.3 (CH), 129.0 (CH), 128.9 (CH), 128.8 (CH), 128.7 (CH), 128.7 (CH), 

128.4 (CH), 128.3 (CH), 128.0 (CH), 127.4 (CH), 127.2 (CH), 93.5 (quat C), 89.5 (quat C), 

78.1 (CH), 75.2 (CH), 27.7 (CH2), 24.7 (CH2), 10.1 (CH3) and 9.3 (CH3). 

MS (ES+) m/z (%) 374 ((M+Na+CH3CN)+, 37Cl, 13%), 372 ((M+Na+CH3CN)+, 35Cl, 42%), 

333 ((M+Na)+, 37Cl, 37%), 331 ((M+Na)+, 35Cl, 100%), 254 (20); HRMS: Found (M+Na)+, 

331.0550. C16H17
35ClNaO2S requires M, 331.0536.  
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4.4.11.1.1.1 Synthesis of 4-Nitrobenzoate derivatives of Compound 145a(iii) and 

145a(iv) 

 

 

 

The mixture of two diastereoisomers 145a(iii) and 145a(iv) (94 mg, 0.3 mmol) was 

dissolved in THF (10 mL). Triethylamine (93 L, 0.66 mmol, 2.2 equiv.) was added, 

followed by DMAP (10 mg, catalytic amount) and p-nitrobenzoyl chloride (112 mg, 2 

equiv.). The solution was warmed up to room temperature and stirred for 24 h. The 

reaction was then quenched by saturated sodium bicarbonate. The organic layer was 

separated and the aqueous layer was extracted with chloroform (2 × 10 mL) and dried 

over magnesium sulfate. The solvents were removed to yield a mixture of two 

diastereomers of the 147 (110 mg, 80%). The two diastereomers were separated by 

flash column chromatography on silica gel (1% EtOAc/CHCl3). 

Compound 147a: Rf = 0.21 (1% EtOAc/CHCl3), 60 mg (43%), colourless solid, m.p. 133 – 

134 °C. 

max. (neat) 1728, 1523, 1074 and 1047 cm-1. 

1H NMR (400 MHz; CDCl3) 8.32 (2H, d, J = 9.0 Hz, aromatic CH), 8.22 (2H, d, J = 9.0 Hz, 

aromatic CH), 7.72 – 7.60 (4H, m, aromatic CH), 7.47 – 7.30 (6H, m, aromatic CH), 6.48 

(1H, s, CHO), 2.25 – 2.02 (2H, m, CH2) and 1.06 (3H, app. t, J = 7.5 Hz, CH3). 

13C NMR (101 MHz; CDCl3) 162.3 (quat C), 150.6 (quat C), 137.8 (quat C), 134.4 (quat 

C), 133.9 (quat C), 132.0 (CH), 130.7 (CH), 129.3 (CH), 128.8 (CH), 128.5 (CH), 128.0 

(CH), 127.2 (CH), 123.6 (CH), 88.3 (quat C), 77.2 (CH), 27.2 (CH2) and 9.4 (CH3). 

MS (APCl+) m/z (%) 523 ((M+Na+CH3CN)+, 37Cl, 25%), 521 ((M+Na+CH3CN)+, 35Cl, 100%), 

482 ((M+Na)+, 35Cl, 17%), 480 ((M+Na)+, 35Cl, 58%); HRMS: Found (M+Na)+, 480.0657. 

C23H20
35ClNaO5S requires M, 480.0648. 



Chapter Four:  Stoichiometric Studies on Dichloromethyl Sulfur Compounds …  

156 
 

 

Selected crystallographic data: C23H20ClNO5S, FW = 457.91, T = 150(2) K,  = 1.54184, 

Triclinic, P-1, a = 7.3284(2) Å, b = 12.4907(3) Å, c = 12.9031(4) Å, = 110.993(2)°, = 

102.930(2)°,  = 95.432(2)°, V = 1054.73(5) Å3, Z = 2, calc. = 1.442 Mg/m3, crystal size = 

0.261 x 0.235 x 0.155 mm3,  = 2.841 mm-1, reflections collected = 16433, Independent 

reflections = 4150, Rint = 0.0187, parameters = 281, R1 = 0.0303, wR2 = 0.0819 for 

I>2(I) and R1 =0.0311, wR2 = 0.0824 for all data. 

 

 

 

Compound 147b: Rf = 0.19 (1% EtOAc/CHCl3), 40 mg (29%) colourless solid 

m.p. 127 – 129 °C. 

max. (neat) 3053, 2978, 2922, 2854, 1732, 1608, 1442 and 1049 cm-1. 

1H NMR (400 MHz; CDCl3) 8.09 (2H, d, J = 9.0 Hz, aromatic CH), 7.84 – 7.75 (2H, m, 

aromatic CH), 7.68 (2H, d, J = 9.0 Hz, aromatic CH), 7.54 - 7.40 (2H, m, aromatic CH), 

7.38 – 7.29 (3H, m, aromatic CH), 7.23 – 7.09 (2H, m, aromatic CH), 6.98 – 6.80 (1H, m, 

aromatic CH), 6.44 (1H, s, CHO), 2.19 (1H, dq, J = 15.2, 7.0 Hz, one of CH2), 1.42 (1H, 

dq, J =15.2, 7.3 Hz, one of CH2) and 1.23 (3H, app. t, J = 7.2 Hz, CH3). 

13C NMR (101 MHz; CDCl3) 161.6 (quat C), 150.2 (quat C), 138.4 (quat C), 135.0 (quat 

C), 134.2 (quat C), 130.9 (CH), 130.3 (CH), 129.1 (CH), 128.4 (CH), 128.3 (CH), 128.1 

(CH), 126.3 (CH), 122.7 (CH), 88.5 (quat C), 71.8 (CH), 29.6.6 and 8.0 (CH3). 
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MS (APCl+) m/z 523 ((M+Na+CH3CN)+, 37Cl, 10%), 521 ((M+Na+CH3CN)+, 35Cl, 26%), 482 

((M+Na)+, 35Cl, 27%), 480 ((M+Na)+, 35Cl, 100%); HRMS: Found (M+Na)+, 480.0627. 

C23H20
35ClNaO5S requires M, 480.0648.  

 

Selected crystallographic data: C23H20ClNO5S, FW = 457.91, T = 293(2) K,  = 1.54184, 

Triclinic, P-1, a = 6.4998(2) Å, b = 7.7680(3) Å, c = 22.2674(8) Å, = 91.378(3)°, = 

93.748(3)°,  = 108.174(3)°, V = 1064.75(7) Å3, Z = 2, calc. = 1.428 Mg/m3, crystal size = 

0.457 x 0.135 x 0.065 mm3,  = 2.815 mm-1, reflections collected = 16565, Independent 

reflections = 4198, Rint = 0.0475, parameters =282, R1 = 0.0728, wR2 = 0.2281 for 

I>2(I) and R1 =0.0810, wR2 = 0.2311 for all data. 
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4.4.11.1.1.2 Reduction of the Benzoate Derivative 147a  

 

 

 

The benzoate derivative 147a (27 mg, 0.05 mmol) was dissolved in CHCl3 (1 mL) and 

added to a solution of sodium borohydride (10 mg) in a mixture of ethanol and CHCl3 

(5 mL) dropwise with swirling. The solution was swirled for 15 minutes further. Ice-cold 

water (5 mL) was added and the solution was neutralised by addition of HCl (2.0 M). 

The solution was extracted with chloroform (3 × 5 mL) and the chloroform extract was 

dried over magnesium sulfate. After removal of the solvents, the crude product was 

purified by flash column chromatography to yield 145a(iv) (10 mg, 67%) as a colourless 

oil. While this compound was not analytically pure, it was sufficiently pure to allow the 

peaks for compound 145a(iv) in the original mixture of 145a(iii) and 145a(iv) to be 

identified. 

4.4.11.1.2  Compounds 145b 

 

145b

S

O OH

Cl Et

OMe

 

 

The procedure described in section 4.4.11.1 was followed, involving the reaction of 

triethylborane and m-methoxybenzaldehyde (121 L, 1.0 mmol) with 135 following by 

flash column chromatography (3% ethyl acetate/chloroform) gave three fractions; 

fraction 1 contained diastereoisomer 145b(i) (60 mg, 18%) as a colourless solid; 
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fraction 2 contained diastereoisomer 145(iv) (56 mg, 17%) as a colourless oil; fraction 

3 contained diastereoisomer 145(iii) (56 mg, 17%) as a colourless oil. 

 

Fraction 1:  

145b(i)

Ph
S (R)

(R)

O OH

EtCl

OMe

(R)

 

Colourless solid (60 mg, 18%). 

m.p. 177 – 178 °C. 

max. (neat) 3242, 2978, 2872 and 1041 cm-1. 

1H NMR (400 MHz; CDCl3) 8.00 – 7.91 (2H,m, aromatic CH), 7.68 – 7.65 (3H,m, 

aromatic CH), 7.18 (1H, t, J = 8.1 Hz, aromatic CH), 6.95 – 6.75 (3H, m, aromatic CH), 

5.67 (1H, s, , CHOH), 4.93 (1H, s, exch., CHOH), 3.77 (s, 3H, OCH3), 2.98 (dq, J = 15.5, 7.2 

Hz, 1H, one of CH2), 2.03 (dq, J = 15.5, 7.4 Hz, 1H, one of CH2) and 1.30 (3H, app. t, J = 

7.3 Hz, CH3). 

13C NMR (101 MHz; CDCl3) 159.1 (quat C), 138.8 (quat C), 136.3 (quat C), 132.8 (CH), 

129.0 (CH), 128.6 (CH), 128.1 (CH), 121.2 (CH), 114.6 (CH), 113.7 (CH), 83.6 (quat C), 

78.5 (CH), 55.4 (CH3), 23.4 (CH2) and 8.0 (CH3). 

MS (APCl+) m/z (%) 341 (MH+, 37Cl, 35), 339 (MH+ with 35Cl, 100), 186 (20), 136 (17); 

HRMS: Found 339.0819. C17H20
35ClO3S requires M, 339.0822. 

 

Fraction 2:  

145b(iv)

Ph
S (R)

(S)

O OH

EtCl

OMe

(R)

 

Colourless oil (56 mg, 17%). 

max. (neat) 3296, 3061, 2997, 2957, 2835, 1600, 1442 and 1020 cm-1. 1H NMR (400 

MHz; CDCl3) 7.87 – 7.71 (2H, m, aromatic CH), 7.57 – 7.38 (3H, m, aromatic, CH), 7.20 
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(1H, d, J = 7.6 Hz, aromatic CH), 7.11 - 7.01 (2H, m, aromatic CH), 6.86 – 6.79 (1H, m, 

aromatic CH), 5.07 (1H, s, CHOH), 3.74 (3H, s, OCH3), 3.45 (1H, s, OH), 2.16 – 2.06 (2H, 

m, CH2) and 0.79 (3H, app. t, J = 7.5 Hz, CH3). 

13C NMR (101 MHz; CDCl3) δ 159.3 (quat C), 139.3 (quat C), 138.5 (quat C), 132.3 (CH), 

129.0 (CH), 128.7 (CH), 127.5 (CH), 121.0 (CH), 114.4 (CH), 114.3 (CH), 89.5 (quat C), 

77.9 (CH), 55.4 (CH3), 24.9 (CH2) and 10.1 (CH3). 

MS (APCl+) m/z (%) 363 ((M+Na)+, 37Cl, 13%), 361 ((M+Na)+, 35Cl, 36%), 341 (MH+, 37Cl, 

20%), 339 (MH+, 35Cl, 56%), 195 (25), 154 (60); HRMS: Found: 361.0636. 

C17H19
35ClNaO3S requires M, 361.0641.  

 

Fraction 3 :  

145b(iii)

Ph
S (S)

(S)

O OH

ClEt

OMe

(R)

  

Colourless oil (56 mg, 17%). 

max. (neat) 3356, 3061, 2937, 2883, 2837, 1599, 1442 and 1037 cm-1. 

1H NMR (400 MHz; CDCl3) 7.91 – 7.75 (2H, m, aromatic CH), 7.65 – 7.48 (3H, m, 

aromatic CH), 7.25 (1H, t, J = 7.9 Hz, aromatic CH), ), 7.09 – 7.00 (2H, m, aromatic CH), 

6.92 – 6.84 (1H, m, aromatic CH), 5.31 (1H, d, J = 3.8 Hz, CHOH), 3.80 (3H, s, OCH3), 

3.14 (1H, d, J = 4.0 Hz, OH), 1.91 (1H, dq, J = 15.0, 7.4 Hz, one of CH2), 1.51 (1H, dq, J = 

15.0, 7.4 Hz, one of CH2) and 0.98 (3H, app. t,  J = 7.4 Hz, CH3). 

13C NMR (101 MHz; CDCl3) 159.5 (quat C), 139.4 (quat C), 138.7 (quat C), 132.4 (CH), 

129.3 (CH), 128.8 (CH), 127.1 (CH), 120.6 (CH), 114.6 (CH), 113.6 (CH), 93.3 (quat C), 

74.7 (CH), 55.3 (CH3), 27.8 (CH2) and 9.2 (CH3). 

MS (ES+) m/z (%) 404 ((M+Na+CH3CN)+, 37Cl, 35%), 402 ((M+Na+CH3CN)+, 35Cl, 100%), 

363 ((M+Na)+, 37Cl, 33%), 361 ((M+Na)+ , 35Cl, 75%), 341 (MH+, 37Cl, 12%), 339 (MH+, 

35Cl, 32%), 258 (15), 177 (15); HRMS: Found MH+, 339.0822. C17H20
35ClO3S requires M, 

339.0822. 
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4.4.11.1.3 Compound 145c 

 

145c

S

O OH

Cl Et
OMe

 

 

The general procedure was followed. The reaction of triethylborane and p-

methoxybenzaldehyde (121 L, 1.0 mmol) with 135, followed by flash column 

chromatography (3% ethyl acetate/chloroform) gave three fractions; fraction 1 

contained diastereoisomer 145c(i) (60 mg, 18%) as a colourless solid; fraction 2 

contained diastereoisomer 145c(iv) (42 mg, 12%) as a colourless oil; fraction 3 

contained a mixture of two diastereoisomers of 145c(iv) and 145c(iii) (52 mg, 15%, 2:1 

ratio) as a colourless oil. 

 

Fraction 1:  

145c(i)

Ph
S (R)

(R)

O OH

EtCl
(R)

OMe

  

Colourless Solid (60 mg, 18%). 

m.p. = 136 – 138 °C. 

max. (neat) 3327, 3060, 2972, 2935, 2835, 1610, 1442 and 1030 cm-1. 

1H NMR (400 MHz; CDCl3) 7.95 (2H, dd, J = 8.0, 1.5 Hz, aromatic CH), 7.72 – 7.56 (3H, 

m, aromatic CH), 7.20 (2H, d, J = 8.8, Hz, aromatic CH), 6.80 (2H, d, J = 8.8, aromatic 

CH), 5.61 (1H, s, CHOH), 4.91 (1H, s, OH), 3.77 (3H, s, OCH3), 2.97 (1H, dq, J = 15.4, 7.2 

Hz, one of CH2), 2.00 (1H, dq, J = 15.4, 7.4 Hz, one of CH2) and 1.29 (3H, app. t, J = 7.3 

Hz, CH3). 

13C NMR (101 MHz; CDCl3) δ 159.7 (quat C), 136.3 (quat C), 132.7 (CH), 129.9 (CH), 

129.4 (quat C), 129.0 (CH), 128.0 (CH), 113.1 (CH), 84.0 (quat C), 78.3 (CH), 55.3 (CH3), 

23.2 (CH2) and 8.0 (CH3). 



Chapter Four:  Stoichiometric Studies on Dichloromethyl Sulfur Compounds …  

162 
 

MS (ES+) m/z (%) 404 ((M+Na+CH3CN)+, 37Cl, 30%), 402 ((M+Na+CH3CN)+, 35Cl, 100%), 

363 ((M+Na)+, 37Cl, 16%), 361 ((M+Na)+, 35Cl, 50%), 254 (70), 185 (35); HRMS: Found 

(M+Na)+, 361.0641. C17H19
35ClNaO3S, requires M, 361.0641.  

 

Fraction 2:  

145c(iv)

Ph
S (R)

(S)

O OH

EtCl
(R)

OMe

 

Colourless oil (42 mg, 12%). 

max. (neat) 3311, 3063, 2997, 2931, 2837, 1608, 1442 and 1030 cm-1. 

1H NMR (400 MHz; CDCl3) 7.89 – 7.84 (2H, m, aromatic, CH), 7.57 – 7.46 (5H, m, 

aromatic CH), 6.90 (2H, d, J =8.8 Hz, aromatic CH), 5.17 (s, 1H, CHOH), 3.82 (3H, s, 

OCH3), 3.40 (1H, s, OH), 2.27 – 2.09 (2H, m, CH2) and 0.84 (3H, app. t, J = 7.5 Hz, CH3). 

13C NMR (101 MHz; CDCl3) δ 160.0 (quat C), 138.5 (quat C), 132.2 (CH), 129.9 (CH), 

129.8 (quat C), 128.7 (CH), 127.4 (CH), 113.4 (CH), 89.7 (quat C), 77.7 (CH), 55.4 (CH3), 

24.7 (CH2) and 10.1 (CH3). 

MS (APCl+) m/z (%) 339 (MH+, 35Cl, 3%), 156 (100), 120 (63); HRMS: Found MH+, 

339.0826. C17H20
35ClO3S requires M, 339.0822. 

 

Fraction 3: Mixture of diastereomers 145c(iii) and 146c(iv) 

145c(iii)

Ph
S (S)

(S)

O OH

ClEt
(R)

OMe

  

Colourless oil. (52 mg, 15%, isomers (iii) and (iv) in a 2:1 ratio). 

max. (neat) 3267, 3063, 2970, 2841, 1606, 1440 and 1030 cm-1. 

1H NMR (400 MHz; CDCl3) 8.03 – 7.70 (2H of both isomers, m, aromatic CH), 7.69 – 

7.32 (5H of both isomers, m, aromatic CH), 6.90 (2H of both isomers, m, aromatic CH), 

5.28 (1H of major isomer, s, CHOH), 5.13 (1H of minor isomer, s, CHOH), 3.81 (3H of 

minor isomer, s, OCH3), 3.80 (3H of major isomer, s, OCH3), 3.52 (1H of minor isomer, 
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s, OH), 3.23 (1H of major isomer, s, OH), 2.16 (2H of minor isomer, app. q, J = 7.5 Hz, 

CH2), 1.86 (1H of major isomer, dq, J = 15.0, 7.4 Hz, one of CH2), 1.51 (1H of major 

isomer, dq, J = 15.0, 7.3 Hz, one of CH2), 0.95 (3H of major isomer, app. t, J = 7.4 Hz, 

CH3) and 0.86 (3H of minor isomer, app. t, J = 7.5 Hz, CH3). 

13C NMR (101 MHz, CDCl3) major isomer: δ 159.9 (quat C), 138.8 (quat C), 132.4 (CH), 

130.2 (quat C), 129.5 (CH), 128.9 (CH), 127.2 (CH), 113.8 (CH), 93.8 (quat C), 74.9 (CH), 

55.4 (CH3), 27.6 (CH2) and 9.3 (CH3). Minor isomer: δ 160.1 (quat C), 138.5 (quat C), 

132.2 (CH), 130.2 (quat C), 129.9 (CH), 128.7 (CH), 127.4 (CH), 113.4 (CH), 89.9 (quat 

C), 77.6 (CH), 55.4 (CH3), 24.8 (CH2) and 10.1 (CH3). Peaks for the OMe and one of the 

aromatic quaternary  carbon atoms were not resolved for both isomers. 

MS (APCl+) m/z (%) 363 ((M+Na)+, 37Cl, 35%), 361 ((M+Na)+, 35Cl, 100%), 194 (100), 125 

(100), 77 (100); HRMS: Found (M+Na)+, 361.0641. C17H19
35ClNaO3S requires M, 

361.0641. 

 

4.4.11.1.4  Compound 145d 

 

145d

S

O OH

Cl Et
Br

 

 

The general procedure was followed. The reaction of triethylborane and 

p-bromobenzaldehyde (185 mg, 1.0 mmol) with 135, followed by flash column 

chromatography (1% ethyl acetate/chloroform) gave three fractions; fraction 1 

contained diastereoisomer 145d(i) (40 mg, 10%) as a colourless solid; fraction 2 

contained a mixture of two compounds 145d(ii) and 146d (30 mg, 8% of the mixture, 

1:1 ratio) as a colourless oil; fraction 3 contained two diastereoisomers 145d(iii) and 

145d(iv) (130 mg, 34%, 60:40 ratio) as a colourless oil. 
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Fraction 1: 

145d(i)

Ph
S (R)

(R)

O OH

EtCl
(R)

Br

 

Colourless Solid (40 mg, 10%). 

m.p. = 156 – 158 °C. 

max. (neat) 3225, 3062, 2982, 2924, 2858, 1610, 1442 and 1030 cm-1. 

1H NMR (400 MHz; CDCl3) 7.95 (2H, dd, J = 8.0, 1.4 Hz, aromatic CH), 7.73 – 7.60 (3H, 

m, aromatic CH), 7.40 (2H, d, J = 8.5 Hz, aromatic CH), 7.16 (2H, d, J = 8.5 Hz, aromatic 

CH), 5.75 (1H, s, CHOH), 4.93 (1H, s, OH), 2.98 (1H, dq, J = 15.4, 7.2 Hz, one of CH2), 

1.92 (1H, dq, J = 15.4, 7.4 Hz, one of CH2) and 1.29 (3H, app. t, J = 7.3 Hz, CH3). 

13C NMR (101 MHz; CDCl3) δ 136.3 (quat C), 136.1 (quat C), 132.9 (CH), 130.9 (CH), 

130.4 (CH), 129.1 (CH), 128.0 (CH), 122.7 (quat C), 83.1 (quat C), 78.1 (CH), 23.2 (CH2) 

and 7.9 (CH3). 

MS (ES–) m/z (%) 425 ((M+Cl)–, 81Br35Cl37Cl and 79Br37Cl37Cl combined, 49%), 423 

((M+Cl)–, 81Br35Cl2 and 79Br37Cl35Cl combined, 100%), 421 ((M+Cl)–, 79Br35Cl2, 66%), 197 

(27); HRMS: Found (M+Cl)–, 420.9439. C16H16
79Br35Cl2O2S requires M, 420.9431.  

 

Fraction 2: Mixture of diastereomer 145d(ii) and compound 146d 

 

Colourless oil (30 mg, 8%). 

max. (neat) 3344, 3065, 2974, 2939, 2881, 1591, 1444, 1074 and 1010 cm-1.  

1H NMR (400 MHz; CDCl3) 8.03 – 7.38 (9H of each compound, m, aromatic CH), 5.49 

(1H of by-product, d, J = 2.5 Hz, CHOH), 5.15 (1H of aldol product, d, J = 8.8 Hz, CHOH), 

5.03 (1H of aldol product, d, J = 8.8 Hz, OH), 4.32 (1H of by-product, d, J = 2.5 Hz, OH), 

2.39 (1H of aldol product, dq, J = 14.6, 7.2 Hz, one of CH2), 1.35 – 1.12 (1H of aldol 

product, m, one of CH2) and 1.08 (3H of aldol product, app. t, J = 7.2 Hz, CH3). 
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13C NMR (126 MHz, CDCl3) chemical shifts for both compounds: δ 137.34 (quat C), 

137.29 (quat C), 136.65 (quat C), 134.72 (quat C), 133.56 (CH), 132.57 (CH), 131.36 

(CH), 131.23 (CH), 130.80 (CH), 130.70 (CH), 129.06 (CH), 128.76 (CH), 128.16 (CH), 

127.23 (CH), 122.95 (quat C), 121.61 (quat C), 93.88 (quat), 85.91 (quat C), 79.78 (CH), 

77.64 (CH), 25.50 (CH2), 8.04 (CH3). 

MS (ES) m/z (%) 425 ((M+Cl)–, 81Br35Cl37Cl and 79Br37Cl37Cl combined, 49%), 423 

((M+Cl)–, 81Br35Cl2 and 79Br37Cl35Cl combined, 100%), 421 ((M+Cl), 79Br35Cl2, 68%), 200 

(16), 198 (30); HRMS: Found (M+Cl)–, 420.9430.  C16H16
79Br35Cl2O2S requires M, 

420.9431.  

 

Fraction 3: Mixture of diastereomers 145d(iii) and 146d(iv) 

145d(iii)

Ph
S (S)

(S)

O OH

ClEt
(R)

Br

Ph
S (R)

(S)

O OH

EtCl
(R)

Br

145d(iv)
 

Colourless oil (130 mg, 34%, 60:40 ratio). 

max. (neat) 3306, 3065, 2941, 2883, 1591, 1442 and 1030 cm-1.  

1H NMR (400 MHz; CDCl3) 7.85 – 7.73 (2H of each isomer, m, aromatic CH), 7.63 – 

7.43 (5H of each isomer, m, aromatic CH), 7.40 (2H of minor isomer, d, J = 8.5 Hz), 7.33 

(2H of major isomer, d, J = 8.4 Hz), 5.28 (1H of major isomer, d, J = 3.6 Hz, CHOH), 5.08 

(1H of minor isomer, d, J = 3.3 Hz, CHOH), 4.09 (1H of minor isomer, d, J = 3.3 Hz, OH), 

3.47 (1H of major isomer, d, J = 3.6 Hz, OH), 2.16 – 2.06 (2H of minor isomer, m, CH2), 

1.81 (1H of major isomer, dq, J = 15.1, 7.4 Hz, one of CH2), 1.48 (1H of major isomer, 

dq, J = 15.1, 7.3 Hz, one of CH2), 0.96 (3H of major isomer, app. t, J = 7.4 Hz, CH3), 0.82 

(3H of minor isomer, app. t, J = 7.5 Hz, CH3). 

13C NMR (101 MHz; CDCl3) chemical shifts for both isomers: 138.4 (quat C), 138.1 

(quat C), 137.0 (quat C), 137.0 (quat C), 132.6 (CH), 132.3 (CH), 131.5 (CH), 131.1 (CH), 

130.4 (CH), 130.0 (CH), 129.0 (CH), 128.8 (CH), 127.4 (CH), 127.2 (CH), 123.1 (quat C), 

122.9 (quat C), 93.0 (quat C), 89.4 (quat C), 77.4 (CH), 74.7 (CH), 27.8 (CH2), 24.8 (CH2), 

10.0 (CH3) and 9.3 (CH3). 
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MS (ES–) m/z (%) 425 ((M+Cl)–, 81Br35Cl37Cl and 79Br37Cl2 combined, 13%), 423 ((M+Cl)–, 

81Br35Cl2 and 79Br37Cl35Cl combined, 46%), 421 ((M+Cl)–, 79Br 35Cl2, 26%), 299 (100), 255 

(62); HRMS: Found (M+Cl)–, 420.9423. C16H16
79Br35Cl2O2S requires M, 420.9431. 

 

4.4.11.1.5 Compound 145e 

 

145e

S

O OH

Cl Et
F

 

 

The general procedure was followed. The reaction of triethylborane and 

p-fluorobenzaldehyde (108 L, 1.0 mmol) with 135, followed by flash column 

chromatography (5% ethyl acetate/chloroform) gave three fractions; fraction 1 

contained diastereoisomer 145e(i) (70 mg, 22%) as a colourless solid; fraction 2 

contained a mixture of two compounds 145e(ii) and 146e (56 mg, 17%, 1:1 ratio) as a 

colourless oil; fraction 3 contained two diastereoisomers 145e(iii) and 145e(iv) (64 mg, 

20%, 1:1 ratio) as a colourless oil (185 mg, 48%). 

 

Fraction 1 

145e(i)

Ph
S (R)

(R)

O OH

EtCl
(R)

F

 

Colourless Solid (70 mg, 22%). 

m.p. = 102 – 104 °C. 

max. (neat) 3321, 3065, 2972, 2924, 2852, 1602, 1442 and 1053 cm-1. 

1H NMR (400 MHz; CDCl3) 7.95 (2H,dd, J = 8.1, 1.5 Hz,), 7.74 – 7.58 (3H, m, aromatic 

CH), 7.29 -7.22 (2H, m, aromatic CH), 7.03 – 6.89 (2H, m, aromatic CH), 5.73 (1H, s, 

CHOH), 4.94 (1H, s, OH), 2.99 (1H, dq, J = 15.5, 7.2 Hz, one of CH2), 1.95 (1H, dq, J = 

15.5, 7.3 Hz, one of CH2) and 1.30 (3H, app. t, J = 7.3 Hz, CH3). 
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13C NMR (101 MHz; CDCl3) 162.8 (quat C, d, J = 247.1 Hz), 136.1 (quat C), 133.0 (CH, 

d, J = 3.2 Hz), 132.9 (CH), 130.4 (CH, d, J = 8.2 Hz), 129.1 (CH), 128.0 (CH), 114.7 (CH, d, 

J = 21.5 Hz), 83.4 (quat C), 78.1 (CH), 22.9 (CH2) and 7.6 (CH3). 

MS (APCl+) m/z (%) 392 ((M+Na+CH3CN)+, 37Cl, 33%), 390 (M+Na+CH3CN)+, 35Cl, 100%), 

329 (MH+, 37Cl, 8%), 327 (MH+, 35Cl, 23%), 165 (78), 150 (93); HRMS: Found MH+, 

327.0632. C16H17
35ClFO2S requires M, 327.0622.  

 

Fraction 2: Mixture of 145e(ii) and compound 146e. 

 

Colourless oil (56 mg, 17%). 

max. (neat) 3346, 3061, 3005, 2941, 1604, 1444 and 1047 cm-1. 

1H NMR (400 MHz; CDCl3) 7.84 (2H of one of two compounds, m, aromatic CH), 7.78 

– 7.69 (2H of one two compounds, m, aromatic CH), 7.70 – 7.50 (5H of each 

compound, m, aromatic CH), 7.16 – 7.03 (2H of each compound, m, aromatic CH), 5.51 

(1H of by-product, d, J = 2.5 Hz, CHOH), 5.18 (1H of aldol product, d, J = 8.6 Hz, CHOH), 

5.00 (1H of aldol product, d, J = 8.6 Hz, OH), 4.30 (1H of by-product, d, J = 2.5 Hz, OH), 

2.36 (1H of aldol product, dq, J = 14.6, 7.2 Hz, one of CH2), 1.26 (1H of aldol product, 

dq, J = 14.6, 7.1 Hz, one of CH2) and 1.07 (3H of aldol product, app. t, J = 7.2 Hz, CH3). 

13C NMR (101 MHz; CDCl3) chemical shifts for both compounds: 163.5 (d, J = 248.4 

Hz, quat C), 162.4 (d, J = 252.9 Hz, quat C), 137.2 (quat C), 136.8 (quat C), 133.5 (CH), 

133.3 (d, J = 3.1 Hz, quat C), 132.5 (CH), 131.5 (d, J = 3.1 Hz, quat C), 131.0 (d, J = 8.4 

Hz, CH), 130.71 (d, J = 8.2 Hz, CH), 129.0 (CH), 128.7 (CH), 128.1 (CH), 127.2 (CH), 115.2 

(d, J = 21.7 Hz, CH), 115.0 (d, J = 21.5 Hz, CH), 101.7 (quat C), 86.0 (quat C), 79.6 (CH), 

77.4 (CH), 25.5 (CH2) and 8.1 (CH3). 

MS (APCl+) m/z (%) 392 (M+Na+CH3CN)+, 37Cl, 33%), 390 ((M+Na+CH3CN)+, 35Cl, 100%), 

329 (MH+, 37Cl, 8%), 327 (MH+, 35Cl, 37%), 349 (35), 390 (100), 261 (25); HRMS: Found 

MH+, 327.0638. C16H17
35ClFO2S requires M, 327.0622.   
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Fraction 3: Mixture of two diastereoisomers 145e(iii) and 145e(iv) 

145e(iii)

Ph
S (S)

(S)

O OH

ClEt
(R)

F

Ph
S (R)

(S)

O OH

EtCl
(R)

F

145e(iv)
 

Colourless oil (64 mg, 20%, 1:1 ratio). 

max. (neat) 3323, 3065, 2984, 2941, 2885, 1602, 1442 and 1030 cm-1.  

1H NMR (400 MHz; CDCl3) 7.89 – 7.77 (2H of both isomers, m, aromatic CH), 7.63 – 

7.41 (5H of both isomers, m, aromatic CH), 7.08 – 7.00 (2H of both isomers, m, 

aromatic CH), 5.36 (1H of minor isomer, d, J = 3.5 Hz, CHOH), 5.21 (1H of major isomer, 

d, J = 3.2 Hz, CHOH), 3.80 (1H of major isomer, d, J = 3.3 Hz, OH), 3.37 (1H of minor 

isomer, d, J = 3.6 Hz, OH), 2.21 – 2.05 (2H of major isomer, m,  CH2), 1.83 (1H of minor 

isomer, dq, J = 15.1, 7.4 Hz, one of CH2), 1.50 (1H of minor isomer, dq, J = 15.1, 7.3 Hz, 

one of CH2), 0.96 (3H of minor isomer, app. t, J = 7.4 Hz, CH3) and 0.80 (3H of major 

isomer, app. t, J = 7.5 Hz, CH3). 

13C NMR (101 MHz, CDCl3) δ 163.1 (quat C, d, J = 247.8 Hz), 163.0 (quat C, d, J = 247.7 

Hz), 138.5 (quat C), 138.2 (quat C), 133.9 (quat C, d, J = 3.3 Hz), 133.6 (quat C, d, J = 3.2 

Hz), 132.6 (CH), 132.4 (CH), 130.5 (CH, d, J = 8.2 Hz), 130.1 (CH, d, J = 8.2 Hz), 129.0 

(CH), 128.8 (CH), 127.4 (CH), 127.2 (CH), 115.4 (CH, d, J = 21.5 Hz), 114.9 (CH, d, J = 

21.4 Hz), 93.2 (quat C, 89.2 (quat C, 77.4 (CH, 74.7 (CH), 27.9 (CH2), 24.36 (CH2), 10.0 

(CH3) and 9.3 (CH3). 

MS (APCl+) m/z (%) 392 ((M+Na+CH3CN)+, 37Cl, 33%), 390 ((M+Na+CH3CN)+, 35Cl, 100%), 

351 ((M+Na)+, 37Cl, 20%), 349 ((M+Na)+, 35Cl, 55%); HRMS: Found (M+Na)+, 349.0435. 

C16H17
35ClFO2S requires M, 349.0441. 
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4.4.12 Synthesis of 2,2-dichloro-1-phenyl-2-(phenylsulfinyl)-1-ethanol (146a) 

 

 

 

LDA (0.6 mmol) was prepared freshly in THF (5 mL) and cooled in a dry-ice bath. A 

solution of dichloromethyl phenyl sulfoxide (135) (105 mg, 0.5 mmol) in THF (1 mL) 

was added. After the solution was stirred for 10 minutes, benzaldehyde (51 L, 0.5 

mmol) was added and the solution stirred for 30 minutes further. The solution was 

extracted into 1:1 ether-toluene (3 × 20 mL) and the extract was dried over 

magnesium sulfate. The solvents were removed to afford the diastereoisomers of the 

title compound (126 mg, 80%) as a colourless solid. The diastereoisomers were 

separated by flash column chromatography (4% EtOAc/CHCl3).  

The first diastereoisomer: Rf = 0.25 (4% EtOAc/CHCl3), colourless solid (75 mg, 48%). 

m.p. 186 – 188 °C. 

max. (neat) 3342, 3061, 3011, 1444, 1080 and 1051 cm-1. 

1H NMR (400 MHz; CDCl3) 7.89 – 7.81 (2H, m, aromatic CH), 7.69 – 7.52 (5H, m, 

aromatic CH), 7.42 (3H, dd, J = 6.4, 3.7 Hz, aromatic CH), 5.49 (1H, d, J = 2.4 Hz, CHOH) 

and 4.12 (1H, dd, J = 16.5, 4.9 Hz, OH). 

13C NMR (101 MHz; CDCl3) 137.5, 135.7, 133.4, 129.6, 129.2, 128.7, 128.2, 128.2, 

102.1 and 80.2. 

MS (APCl+) m/z (%) 382 ((M+Na+CH3CN)+, 37Cl2, 1%), 380 ((M+Na+CH3CN)+, 35Cl37Cl, 

9%), 378 ((M+Na+CH3CN)+, 35Cl2, 12%), 319 (MH+, 37Cl37Cl, 3%), 315 (MH+, 35Cl2, 29%), 

317 (MH+, 37Cl35Cl, 20%), 315 (MH+, 35Cl2, 29%), 198 (100), 157 (23); HRMS: Found MH+, 

315.0004. requires M, C14H12
35Cl2O2S: 315.0013.  

The second diastereoisomer: Rf = 0.22 (4% EtOAc/CHCl3), colourless solid (66 mg, 

32%). 

m.p 193 – 194 °C. 

max. (neat) 3244, 1442 and 1043 cm-1. 
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1H NMR (400 MHz; CDCl3) 7.95 – 7.83 (2H, m, aromatic CH), 7.69 – 7.49 (5H, m, 

aromatic CH), 7.45 - 7.33 (3H, m, aromatic CH), 5.48 (1H, d, J = 5.3 Hz, CHOH) and 4.08 

(1H, d, J = 5.4 Hz, OH). 

13C NMR (101 MHz; CDCl3) 137.5, 136.1, 133.1, 129.3, 129.2, 128.6, 128.4, 128.1, 

102.4 and 77.5. 

MS (APCl+) m/z (%) 382 ((M+Na+CH3CN)+, 37Cl2, 5%), 380 ((M+Na+CH3CN)+, 35Cl37Cl, 

20%), 378 ((M+Na+CH3CN)+, 35Cl2, 31%), 319 (MH+, 37Cl2, 4%), 317 (MH+, 35Cl37Cl, 17%), 

315 (MH+, 35Cl2, 24%), 198 (100), 157 (29); HRMS: Found MH+, 315.0016. C14H12
35Cl2O2S 

requires M, 315.0013. 

 

4.4.13 Synthesis of Dichloromethyl-p-Tolyl Sulfone (153)
140  

 

S

O O

Cl

Cl

153
 

 

p-Toluenesulfinic acid sodium salt dihydrate (8.5 g, 40 mmol) was placed in a 100 mL 

flask, followed by chloroform (12 mL, 150 mmol), potassium hydroxide (2.8 g, 50 

mmol) and water (40 mL). The mixture was stirred and heated to reflux for 12h. The 

mixture was then extracted into dichloromethane (3 × 20 mL) and dried over 

magnesium sulfate. The solvents were removed to give the title compound (3.81 g, 

40%) as a colourless solid. 

m.p. 89 – 90 °C (lit.140 89.5 – 90 °C). 

1H NMR (400 MHz; CDCl3) 7.84 (2H, d, J = 8.0 Hz), 7.36 (2H, d, J = 8.0 Hz), 6.17 (1H, s) 

and 2.43 (3H, s). 

13C NMR (101 MHz; CDCl3) 147.5, 131.6, 130.4, 129.3, 80.3 and 22.3. 

 



Chapter Four:  Stoichiometric Studies on Dichloromethyl Sulfur Compounds …  

171 
 

4.4.14 Reactions of Dichloromethyl-p-Tolyl Sulfone with Trialkylboranes 

4.4.14.1 General Procedure  

 

BR3 +

i) LDA, -78 °C
THF

Me

S

O O

Cl

Cl
Me

S

O O
R

153 R= Et (154)
= n-Bu (155)

Cl Cl
ii) NH4Cl

 

 

Dichloromethyl-p-tolyl sulfone (153) (120 mg, 0.5 mmol) was dissolved in THF (5 mL) 

and the trialkylborane (0.5 mmol) was added. The mixture was cooled to –78 °C and 

lithium bis(trimethylsilyl)amide (LiHMDS) (0.6 mL, 1.0 M, 0.6 mmol) was added 

dropwise. The solution was stirred for 30 minutes at –78 °C and 90 minutes at room 

temperature. The solution was then quenched with saturated ammonium chloride (5 

mL). The organic layer was separated and the aqueous layer was extracted with 

chloroform (3 × 10 mL). The solution was dried over magnesium sulfate. After the 

removal of volatile solvents under vacuum, the crude product was further purified by 

silica column chromatography (5% diethyl ether/petroleum ether) to give the product 

with yields and data as below. 

 

4.4.14.2 1,1-Dichloro-1-(p-tosyl) propane 154 

 

Me

S

O O
Et

Cl Cl

154
 

 

Colourless solid (62 mg, 46%). Rf = 0.28 (5% diethyl ether/petroleum ether). m.p. = 52 

– 54 °C. 

max. (NaCl film) 3069, 2986, 2943, 2883, 1595, 1455, 1334, 1156 and 1076 cm-1. 
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1H NMR (400 MHz; CDCl3) 7.96 (2H, d, J = 8.0 Hz, aromatic CH), 7.40 (2H, d, J = 8.0 Hz, 

aromatic CH), 2.54 (2H, q, J = 7.2 Hz, CH2), 2.49 (3H, s, CH3) and 1.32 (3H, t, J = 7.2 Hz, 

CH3). 

13C NMR (126 MHz; CDCl3) 146.5 (quat C), 135.7 (quat C), 132.3 (CH), 129.5 (CH), 

101.8 (quat C), 33.4 (CH2), 21.8 (CH3) and 8.7 (CH3). 

MS (APCl+) m/z (%) 288 ((M+NH4)+, 37Cl2, 15%), 286 ((M+NH4)+, 37Cl35Cl, 68%), 284 

((M+NH4)+, 35Cl2, 100%), 250 (8), 214 (13), 119 (100); HRMS: Found (M+NH4)+, 

284.0272. C10H12
35Cl2O2S requires M, 284.0273. 

 

Selected crystallographic data: C10H12Cl2O2S, FW = 267.1, T = 296(2) K,  = 1.54184, 

Monoclinic, P21/n, a = 10.8436(3) Å , b = 17.6380(3) Å, c = 13.1040(3) Å, = 90°, = 

102.560(2)°,  = 90°, V = 2446.29(10) Å3, Z = 8, calc. = 1.451 Mg/m3, crystal size = 0.885 

x 0.146 x 0.056 mm3,  = 6.202 mm-1, reflections collected = 20117, Independent 

reflections = 4902, Rint = 0.0289, parameters = 275, R1 = 0.0339, wR2 = 0.0920 for 

I>2(I) and R1 =0.0418, wR2 = 0.0994 for all data. 
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4.4.14.3 1,1-Dichloro-1-tosyl pentane 155 

 

Me

S

O O
n-Bu

Cl Cl

155  

 

Colourless solid (65 mg, 44%). Rf = 0.3 (5% diethyl ether/petroleum ether). m.p. = 65 – 

67 °C. 

max. (neat) 3068, 2960, 2937, 2874, 1595, 1336, 1155 and 1084 cm-1. 

1H NMR (400 MHz; CDCl3) 7.96 (2H, d, J = 8.0 Hz, aromatic CH), 7.40 (2H, d, J = 8.0 Hz, 

aromatic CH), 2.57 – 2.41 (5H, m, CH3 and CH2), 1.88 – 1.67 (2H, m, CH2), 1.50 – 1.39 

(2H, m, CH2) and 0.97 (3H, t, J = 7.4 Hz, CH3). 

13C NMR (101 MHz; CDCl3) 146.5 (quat C), 132.4 (CH), 129.5 (CH), 128.9 (quat C), 

100.9 (quat C), 39.1 (CH2), 26.4 (CH2), 22.1 (CH2), 21.9 (CH3) and 13.9 (CH3). 

MS (APCl+) m/z (%) 316 ((M+NH4)+, 37Cl2, 15%), 314 ((M+NH4)+, 37Cl35Cl, 64%), 312 

((M+NH4)+, 35Cl2, 100%), 280 (70), 119 (100); HRMS: Found (M+NH4)+, 312.0583. 

C10H12
35Cl2O2S requires M, 312.0586. 

 

4.4.15 Synthesis of S-Methyl-S-phenylsulfoximine(157)
146

 
 

 

S

O NH

157
 

 

Methyl phenyl sulfoxide (0.7 g, 5 mmol) was dissolved in chloroform (10 mL). Sodium 

azide (0.360 mg, 5.5 mmol) was added and the flask was immersed in an ice-bath. 

Sulfuric acid (1.25 mL) was added dropwise. The mixture was then warmed to 45 °C 

and left to stir overnight. Ice-water (10 mL) was added and the organic layer was 

separated. The aqueous layer was extracted with chloroform (10 mL). The aqueous 
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layer was made slightly alkaline (pH ≈ 8.0) with 20% NaOH and extracted into 

chloroform (3 × 20 mL). After drying and removal of the solvent, a pale yellow oil of 

the title compound (0.571 g, 74%) was obtained as a pure compound. 

1H NMR (400 MHz; CDCl3) 7.93 (2H, m), 7.61 – 7.42 (3H, m), 3.02 (3H, s) and 2.39 (1H, 

s). 

13C NMR (101 MHz; CDCl3) 143.6, 133.2, 129.4, 127.8 and 46.3. 

 

4.4.16 Synthesis of N,S-Dimethyl-S-phenylsulfoximine (158)
154  

 

S

O N

158
 

 

A mixture of S-methyl-S-phenylsulfoximine (0.531 g, 3.42 mmol) and formaldehyde (8 

mL, 37% in water) in 90% formic acid (30 mL) was heated at 100 °C for 48 h. Sulfuric 

acid (21 mL, 2.0 M) was added and the resulting solution was extracted with 

chloroform (3 × 20 mL). The organic layer was dried over magnesium sulfate and the 

solvent was removed to leave the title compound (0.462 g, 80%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) 7.83 (2H, d, J = 7.0 Hz), 7.75 – 7.44 (3H, m), 3.06 (3H, s) 

and 2.58 (3H, s). 

13C NMR (101 MHz; CDCl3) 138.7, 133.1, 129.7, 128.9, 45.1 and 29.7. 

 

4.4.17 Synthesis of N-Methyl-S-(dichloromethyl)-S-phenylsulfoximine (156)
145 

 

S

O N

Cl

Cl

156
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4.4.17.1 Preparation of t-Butyl Hypochlorite (BHC)
155

. 

Household bleach solution (500 mL) was placed in a 1L round bottom flask in a dark 

fume cupboard and the flask was wrapped with aluminium foil. A solution of t-butyl 

alcohol (37 mL, 0.39 mole) in glacial acetic acid (24.5 mL) was added all at once. The 

solution was stirred for 4 – 5 minutes. The aqueous layer was separated and the 

organic layer was washed with 10% sodium carbonate (50 mL) and water (50 mL). The 

organic layer was dried over calcium chloride and then evaporated to yield the title 

compound (20 g, 47%) as a yellow liquid. 

4.4.17.2 The Chlorination of N,S-dimethyl-S-phenylsulfoximine (157) 

A solution of N,S-dimethyl-S-phenylsulfoximine (157) (169 mg, 1.0 mmol) in 

dichloromethane (10 mL) was placed in 25 mL flask, followed by potassium carbonate 

(207 mg, 1.5 mmol). The flask was wrapped in aluminium foil and immersed in an ice-

bath. BHC (0.23 mL, 2 mmol) was added dropwise by syringe. The cooling bath was 

removed and the mixture was stirred for 1 h, after which it was filtered. The solvents 

were removed by rotary evaporator to give the crude product. After column 

chromatography on silica gel (20% diethyl ether/petroleum ether), two products were 

separated (mono and dichloromethyl products).  

N-Methyl-S-(chloromethyl)-S-phenylsulfoximine: colourless oil (145 mg, 72%), Rf: 0.2 

(5:1, petroleum ether/diethyl ether). 

1H NMR (400 MHz; CDCl3) 8.02 – 7.73 (2H, m), 7.64 – 7.57 (1H, m), 7.55 – 7.47 (2H, 

m), 4.61 (1H, d, J = 12.3 Hz), 4.49 (1H, d, J = 12.3 Hz) and 2.79 (3H, s). 

13C NMR (101 MHz; CDCl3) 135.2, 134.1, 130.2, 129.6, 57.9 and 29.7. 

N-Methyl-S-(dichloromethyl)-S-phenylsulfoximine: colourless solid (19 mg, 7%), Rf: 

0.3 (5:1, petroleum ether/diethyl ether). m.p. = 33 – 35 °C. 

1H NMR (400 MHz; CDCl3) 8.10 – 8.00 (2H, m), 7.74 – 7.57 (1H, m), 7.58 (2H, t, J = 7.7 

Hz), 6.28 (1H, s) and 3.02 (3H, s). 

13C NMR (101 MHz; CDCl3) 134.2, 135.6, 130.5, 128.9, 80.6 and 29.7. 

MS (ES+) m/z (%) 242 (MH+, 37Cl2, 7%), 240 (MH+, 37Cl35Cl, 32%), 238 (MH+, 35Cl2, 38%); 

HRMS: Found MH+, 237.9851. C8H10Cl2NOS requires M, 237.9860. 
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4.4.18 Reaction of N-methyl-S-(dichloromethyl)-S-phenylsulfoximine with 

trialkylboranes 

4.4.18.1 Preparation of Trialkylborane 

4.4.18.2 Trioctylborane
105,106

 

 

B

 

 

To a septum-capped 50 mL flask, borane (50 L, 10.0 M in dimethyl sulfide, 0.5 mmol, 

1 equiv.) was added, followed by THF (2 mL). The flask was immersed in an ice-bath 

and 1-octene (0.24 mL, 1.5 mmol, 3 equiv.) was added dropwise. The cooling bath was 

removed and the solution was left to stir at room temperature for 1 h. 

 

4.4.18.3 Tricyclopentylborane
105,106

 

 

B

 

 

To septum-capped 50 mL flask, borane (50 L, 10.0 M in dimethyl sulfide, 0.5 mmol, 1 

equiv.) was added, followed by THF (2 mL). The flask was immersed in an ice-bath and 

cyclopentene (132 L, 1.5 mmol, 3 equiv.) was added dropwise. The cooling bath was 

removed and the solution was left to stir at room temperature for 1 h. 
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4.4.18.4 Dibutylcyclohexylborane
148

 

 

B

 

 

A solution of trichloroborane (0.5 mL, 1.0 M, 0.5 mmol) and cyclohexene (51 L, 0.5 

mmol) in hexane (2 mL) was cooled to –78 °C, and triethylsilane (80 L, 0.5 mmol) was 

added dropwise. The solution was stirred for 15 min. The cooling bath was removed 

and the solution was stirred for 30 min. The mixture was cooled to –78 °C again and 

n-BuLi (0.63 mL, 1.6 M in hexane, 1.0 mmol) was added dropwise. The solution was 

warmed to r.t. over a period of 1 h. 

 

4.4.18.5 Butyldicyclohexylborane
148

 

 

B

 

 

A solution of trichloroborane (0.5 mL, 1.0 M, 0.5 mmol) and cyclohexene and (51 L, 

0.5 mmol) in hexane (2 mL) was cooled to –78 °C, and triethylsilane (80 L, 0.5 mmol) 

was added dropwise. The solution was stirred for 15 min. The cooling bath was 

removed and the solution was stirred for 30 min. A mixture of cyclohexene (51 L, 0.5 

mmol) and triethylsilane (80 L, 0.5 mmol) in dichloromethane (1 mL) was added and 

the mixture was stirred for 30 min. The solution was cooled again to –78 °C and n-BuLi 

(0.31 mL, 1.6 M in hexane, 0.5 mmol) was added. The solution was allowed to warm to 

r.t. over a period of 1 h. 
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4.4.18.6 Dibutylcyclopentylborane
148

 

 

B

 

 

A solution of trichloroborane (0.5 mL, 1.0 M, 0.5 mmol) and cyclopentene (44 L, 0.5 

mmol) in hexane (2 mL) was cooled to –78 °C and triethylsilane (80 L, 0.5 mmol) was 

added dropwise. The solution was stirred for 15 min. The cooling bath was removed 

and the solution was stirred for 30 min. The mixture was cooled to –78 °C again and 

n-BuLi (0.63 mL, 1.6 M in hexane, 1.0 mmol) was added dropwise. The solution was 

allowed to warm to r.t. over a period of 1 h. 

 

4.4.18.7 Butylmethylphenylborane 

 

B

 

 

A solution of dichloro(phenyl)borane (65 L, 0.5 mmol) in dichloromethane (5 mL) was 

cooled to –78 °C and n-BuLi (0.31 mL, 1.6 M in hexane, 0.5 mmol) was added dropwise 

followed by MeLi (0.31 mL, 1.6 M in hexane, 0.5 mmol). The solution was allowed to 

warm to r.t. over a period of 1 h. The product was concluded to be a mixture of 

dibutylphenylborane and butylmethylphenylborane based on the result of the reaction 

with N-Methyl-S-(dichloromethyl)-S-phenylsulfoximine (156). 
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4.4.18.8 Dibutylphenylborane 

 

B

 

 

A solution of dichloro(phenyl)borane (65 L, 0.5 mmol) in dichloromethane (2 mL) was 

cooled to –78 °C and n-BuLi (0.63 mL, 1.6 M in hexane, 1 mmol) was added dropwise. 

The solution was allowed to warm to r.t. over a period of 1 h. 

 

4.4.18.9 Thexyldioctylborane
3
 

 

B

 

 

The title compound was prepared by the dropwise addition of 2,3-dimethyl-2-butene 

(59 L, 0.5 mmol) to borane dimethyl sulfide (50 L, 10.0 M, 0.5 mmol) at 0 °C, and 

then the reaction mixture was left to stir for 2 h. Dry THF (5 mL) was added, followed 

by the dropwise addition of 1-octene (157 L, 1.0 mmol). The solution was stirred for 2 

h at 0 °C. 
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4.4.19 General Procedure of the Reaction of 156 with Organoboranes 

 

S

O N
Cl

Cl

i) R1R2R3B

iii) H2O2, NaOH, 0 oC R1 C

O

R2
R1

R2

R3

OH

ii) LDA, DCM, -78 oC

162 163156

ROH +

161

+

 

 

Fresh LDA was prepared by adding n-BuLi (0.38 mL, 1.6 M in hexane, 0.60 mmol, 1.2 

equiv.) dropwise to a cooled (–78 °C) solution of diisopropylamine (91 L, 0.65 mmol, 

1.3 equiv.) in dry THF (2 mL). The solution then was allowed to warm to 0 °C over a 

period of 20 min. This solution was added to a solution of N-methyl-S-

(dichloromethyl)-S-phenylsulfoximine (119 mg, 0.5 mmol) and a trialkylborane (0.5 

mmol) in THF (5 mL) dropwise at –78 °C. The solution was stirred for 1 h at –78 °C and 

1h at room temperature. The solution was oxidised by adding sodium hydroxide (3.0 

M, 3 mL) followed by hydrogen peroxide (30% aqueous, 3 mL) and the solution was 

left to stir overnight. The organic layer was separated, and the aqueous layer was 

saturated with sodium chloride and extracted with dichloromethane (3 x 10 mL). The 

organic layers were combined, dried over magnesium sulfate and filtered. The volatile 

solvents were evaporated under reduced pressure to leave the corresponding alcohol. 

The crude product was purified by column chromatography on silica gel (5% 

EtOAc/petroleum ether) and the isolated yields were measured. 

With respect to GC yield, before working up the reaction solution, the solution was 

saturated with sodium chloride and tetradecane, as an internal standard, was added 

and the GC yield of the product was measured.  

The reaction was optimised by modification of the procedure using 1.5 equiv. of 

sulfoximine, changing the solvent to dichloromethane and stirring the reaction 

solution overnight before oxidation. The yield of trioctylmethanol went up to 81%, see 

entry 4 in Table 4.4. 
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4.4.19.1 3-Ethylpentan-3-ol 

 

HO

 

 

Colourless oil (47% GC yield); 1H NMR (400 MHz; CDCl3) 1.38 (6H, q, J = 7.5 Hz), 1.24 

(1H, s) and 0.78 (9H, t, J = 7.5 Hz). 

13C NMR (101 MHz; CDCl3) 74.8, 30.5 and 7.8. 

 

4.4.19.2 5-Butylnonan-5-ol 

 

HO

 

 

Colourless oil (81% GC yield), 1H NMR (400 MHz; CDCl3) 1.48 – 1.18 (18H, m), 1.07 

(1H, s) and 0.84 (9H, t, J = 6.6 Hz). 13C NMR (101 MHz; CDCl3) 74.7, 39.3, 25.9, 23.6 

and 14.4. 

 

4.4.19.3 9-Octylheptadecan-9-ol 

 

HO

 

 

Colourless oil (81% GC yield and 75% isolated yield). 
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1H NMR (400 MHz; CDCl3)  1.50 – 1.03 (43H, m), and 0.88 (9H, t, J = 6.9 Hz). 

13C NMR (126 MHz; CDCl3)  74.5, 39.3, 31.9, 30.3, 29.6, 29.3, 23.5, 22.7 and 14.1. 

 

4.4.19.4 5-Cyclohexyl-5-nonanol 

 

OH
 

 

Colourless oil (83 mg, 73%). 

max. (neat) 3477, 2955, 2928, 2854 and 1450 cm-1. 

1H NMR (400 MHz; CDCl3) 1.84 – 1.66 (5H, m), 1.54 – 0.97 (19H, m) and 0.91 (6H, t, J 

= 7.0 Hz). 

13C NMR (101 MHz; CDCl3) 75.5 (quat C), 44.8 (CH), 35.9 (CH2), 26.7 (CH2), 26.5 (CH2), 

26.4 (CH2), 25.2 (CH2), 23.3 (CH2) and 14.0 (CH3). 

MS (EI-MS) m/z (%): molecular ion not seen; 208 (M+ – H2O, 17%), 151 (38), 109 (72), 

69 (94); HRMS: Found (M+ – H2O), 208.2196. C15H28 requires M, 208.2191.  

 

4.4.19.5 5-Phenyl-5-nonanol
156

 

 

OH
 

 

Colourless oil (56 mg, 51%). 

max. (neat) 3419, 2957, 2931, 2860, 1458 and 1078 cm-1. 

1H NMR (400 MHz; CDCl3) 7.43 – 7.29 (4H, m), 7.26 – 7.18 (1H, tt, J = 7.0, 1.5 Hz), 

1.91 – 1.66 (5H, m), 1.37 – 1.15 (6H, m), 1.10 – 0.95 (2H, m) and 0.84 (6H, t, J = 7.0 Hz). 
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13C NMR (101 MHz; CDCl3)  146.6 (quat C), 128.1 (CH), 126.3 (CH), 125.4 (CH), 77.1 

(quat C), 42.9 (CH2), 25.7 (CH2), 23.2 (CH2) and 14.2 (CH3). 

MS (EI-MS) m/z (%): molecular ion not seen; 203 (M+
 – OH, 35%), 160 (33), 138 (55), 

115 (64); HRMS: Found (M+
 – OH), 203.1800. C15H23 requires M, 203.1800. 

 

4.4.19.6 2-Phenyl-2-hexan-2-ol
157

  

 

OH

 

 

Colourless oil (27 mg, 30%). 

1H NMR (400 MHz; CDCl3) 7.39 – 7.31 (2H, m), 7.29 – 7.20 (2H, m), 7.18 – 7.11 (1H, 

m), 1.79 (1H, s), 1.77 – 1.64 (2H, m), 1.46 (3H, s), 1.24 – 1.09 (3H, m), 1.08 – 0.95 (1H, 

m) and 0.76 (3H, t, J = 7.1 Hz). 

13C NMR (101 MHz; CDCl3) 148.2 (quat C), 128.2 (CH), 126.5 (CH), 124.9 (CH), 74.8 

(quat C), 44.2 (CH2), 30.2 (CH3), 26.2 (CH2), 23.1 (CH2) and 14.1 (CH3). 

 

4.4.19.7 5-Cyclopentylnonan-5-ol 

 

HO

 

 

Colourless oil (72 mg, 68%) 

max. (neat) 3485, 2953, 2931, 2864 and 1456 cm-1. 

1H NMR (400 MHz; CDCl3) 2.08 – 1.82 (1H, m), 1.68 – 1.17 (22H, m), 1.02 (1H, br. 

exch.) and 0.91 (6H, t, J = 7.1 Hz). 
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13C NMR (101 MHz; CDCl3) δ 75.3 (quat C), 47.6 (CH), 37.5 (CH2), 26.2 (CH2), 26.0 (CH2), 

25.8 (CH2), 23.6 (CH2) and 14.3 (CH3). 

MS (EI-MS) m/z (%): molecular ion not seen; 194 (M+ – H2O, 28%), 137 (35), 95 (76); 

HRMS: Found (M+ – H2O), 194.2035. C15H28 requires M, 194.2035. 

 

4.4.20 Preparation of S-methyl-S-phenyl-N-sulfonylsulfilimine (165)
150

 

 

S
N

165

Ts

 

 

To a solution of thioanisole (0.59 mL, 5.0 mmol) in acetonitrile (25 mL), chloramine-T 

hydrate (1.69 g, 6.0 mmol) was added. The resulting solution was stirred for 2 h at 

room temperature. Dichloromethane (40 mL) was added and the solid was removed 

by filtration. The solvent was removed under reduced pressure to give the crude 

product as a solid. The product was then recrystallised from methanol:water (9:1) to 

give the title compound (1.246 g, 85%) as a colourless solid. 

m.p. 131 – 132 °C (lit.158 131.5 – 132 °C) 

1H NMR (400 MHz; CDCl3) δ 7.77 – 7.63 (4H, m), 7.57 – 7.42 (3H, m), 7.15 (2H, d, J = 8.0 

Hz), 2.83 (3H, s) and 2.33 (3H, s). 

13C NMR (100 MHz; CDCl3) δ 141.8, 141.3, 136.1, 132.5, 130.1, 129.3, 126.3, 125.9, 

39.2 and 21.5. 
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4.4.21 Preparation of S-(Chloromethyl)-S-phenyl-N-sulfonylsulfilimine (167)
150

 

 

S
N

S
O

O

167

Cl

 

 

The procedure described in the preceding paragraph was followed, involving the 

reaction of chloramine-T hydrate with chloromethyl phenyl sulfide (0.67 mL, 5.0 mmol) 

followed by flash column chromatography (3% ethyl acetate/chloroform) to produce 

the title compound (1.36 g, 83%) as a colourless solid. 

m.p. 117 – 118 °C. 

1H NMR (400 MHz; CDCl3) δ 7.86 – 7.71 (4H, m), 7.68 – 7.50 (3H, m), 7.20 (2H, d, J = 8.5 

Hz), 4.67 (1H, d, J = 10.2 Hz), 4.47 (1H, d, J = 10.2 Hz) and 2.36 (3H, s). 

13C NMR (100 MHz; CDCl3) δ 142.2, 140.8, 133.7, 131.3, 130.1, 129.4, 127.5, 126.4, 

59.0 and 21.5. 

 

4.4.22 Formation of Tetrahydrofuran-2-yl-tolylsulfonamide (166)
152

 

 

166

S
N
H

O O

O

 

 

To a cooled solution (0 °C) of S-methyl-S-phenyl-N-toluenesulfonylsulfilimine (165) 

(293 mg, 1.0 mmol) in THF (15 mL), was added N-chlorosuccinimide (274 mg, 2.05 

mmol, 2.05 equiv.). The mixture was stirred at 0 °C overnight and then filtered. The 

solvent was removed in vacuo and the crude product was purified by flash column 
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chromatography (5% ethyl acetate/chloroform) to give the title compound (57 mg, 

25%) as a colourless solid. 

m.p. 121 – 123 °C. (lit.159 121 – 122). 

1H NMR (400 MHz; CDCl3) δ 7.72 (2H, d, J = 8.0 Hz), 7.20 (2H, d, J = 8.0 Hz), 5.88 (1H, d, 

J = 9.0 Hz), 5.31 – 5.19 (1H, m), 3.69 – 3.49 (2H, m), 2.34 (3H, s), 2.18 – 1.96 (1H, m), 

1.91 – 1.59 (3H, m). 

13C NMR (100 MHz; CDCl3) δ 143.3, 138.6, 129.6, 127.1, 85.0, 67.2, 32.6, 24.0 and 21.6. 

 

4.5 Theoretical Methods and Details 

The geometries of all transition states were fully optimised at the RHF/3-21G(d) level 

of theory using Spartan software.87 

 

4.5.1 Selected Computational Data 

4.5.1.1 Transition State 1 (TS1) Leading to Compound 145a(i) 

 

 

H        3.222311     -1.269648      0.793023 

C        3.546614     -0.284932      0.540882 

C        4.359756      2.282061     -0.111632 

C        2.627043      0.748373      0.495350 

C        4.876734     -0.027947      0.258521 

C        5.285118      1.252574     -0.065942 

C        3.029958      2.032589      0.170507 

H        5.588114     -0.828786      0.294869 

H        6.316159      1.448491     -0.283463 

H        2.314383      2.825886      0.119081 

H        4.669241      3.274501     -0.371194 

S        0.937774      0.457981      0.991025 

O        0.923771     -1.120724      0.879271 

C       -0.125243      1.238545     -0.027997 

B        0.208015     -2.185346      0.034901 

C        0.737614     -2.221342     -1.487780 

H        1.784844     -2.520290     -1.468451 

H        0.735028     -1.237293     -1.950188 

C        0.178075     -3.544867      0.877484 
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H       -0.312340     -3.358923      1.831533 

H       -0.427469     -4.289887      0.362347 

C       -0.031119     -3.208217     -2.404434 

H        0.051662     -4.223367     -2.033643 

H        0.358797     -3.190131     -3.417322 

H       -1.088628     -2.963347     -2.453211 

C        1.582384     -4.137624      1.149565 

H        2.187757     -3.429644      1.705635 

H        2.096947     -4.369482      0.221961 

H        1.521006     -5.052257      1.731283 

C       -1.809548     -0.688198     -0.569166 

O       -1.318264     -1.646236      0.080256 

Cl       0.297212      1.516308     -1.751047 

C       -0.982961      2.350747      0.570040 

H       -1.293821      2.041131      1.562607 

H       -1.886026      2.435056     -0.019884 

C       -0.315796      3.740724      0.653709 

H       -1.028903      4.484367      0.995179 

H        0.049968      4.044787     -0.319814 

H        0.514243      3.726756      1.351832 

C       -3.099961     -0.142032     -0.182762 

C       -5.555655      0.861513      0.571778 

C       -3.740711      0.790088     -0.988418 

C       -3.692274     -0.576888      0.997699 

C       -4.918289     -0.072824      1.375562 

C       -4.971690      1.291673     -0.609066 

H       -3.277078      1.120392     -1.898087 

H       -3.179419     -1.303049      1.593536 

H       -5.377392     -0.402312      2.285563 

H       -5.472048      2.011160     -1.224728 

H       -6.509045      1.253312      0.866606 

H       -1.379705     -0.374050     -1.497801 

 

Imaginary frequency 151 cm-1 (intensity 138) 

 

4.5.1.2 Transition State 2 (TS2) Leading to Compound 145a(iv) 

 

 

H        3.413270     -0.964258      0.862766 

C        3.568060     -0.036047      0.356694 

C        3.936079      2.367774     -0.969844 

C        2.543379      0.894148      0.297907 

C        4.776437      0.240006     -0.255463 

C        4.960876      1.439668     -0.920765 

C        2.725106      2.098569     -0.357651 

H        5.566948     -0.482137     -0.216009 

H        5.896090      1.648353     -1.400831 

H        1.927014      2.807950     -0.411651 

H        4.071465      3.294377     -1.490433 

S        1.032900      0.589658      1.195419 

O        0.995470     -0.998464      1.184528 
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C       -0.284304      1.266046      0.448000 

B        0.505920     -2.082279      0.199313 

C        1.258199     -2.111390     -1.216034 

H        2.296123     -2.410906     -1.079213 

H        1.286112     -1.120499     -1.661112 

C        0.365370     -3.437486      1.051593 

H       -0.243594     -3.256731      1.939081 

H       -0.157294     -4.195482      0.470613 

C        0.592504     -3.081966     -2.224344 

H        0.623679     -4.104087     -1.861885 

H        1.095880     -3.054417     -3.185735 

H       -0.445576     -2.811142     -2.379406 

C        1.732810     -4.002913      1.509655 

H        2.261127     -3.268728      2.108642 

H        2.352313     -4.254875      0.655033 

H        1.612304     -4.900588      2.108111 

C       -1.722437     -0.882188      0.622062 

H       -1.477594     -0.789403      1.661212 

O       -1.000733     -1.572023     -0.138068 

C       -3.008906     -0.381223      0.180159 

C       -5.466182      0.539993     -0.666678 

C       -3.881949      0.198453      1.092408 

C       -3.367675     -0.501281     -1.156752 

C       -4.596202     -0.037416     -1.578714 

C       -5.113272      0.657218      0.668909 

H       -3.599153      0.286445      2.123784 

H       -2.674930     -0.946759     -1.838536 

H       -4.875635     -0.120673     -2.609180 

H       -5.791932      1.101808      1.368002 

H       -6.420575      0.899620     -0.996607 

Cl      -0.384292      1.342663     -1.326704 

C       -1.038114      2.372975      1.172226 

H       -1.039302      2.149156      2.235645 

H       -2.069245      2.343924      0.839971 

C       -0.485525      3.799185      0.961089 

H       -1.120952      4.532046      1.448146 

H       -0.445393      4.033807     -0.095647 

H        0.512385      3.885920      1.377508 

 

Imaginary frequency 170 cm-1 (intensity 153) 

 

4.5.1.3 Transition State 3 (TS3) Leading to Compound 145a(iii) 

 

H        3.227832     -1.279588      0.244294 

C        3.536405     -0.281035      0.031487 

C        4.340226      2.327120     -0.458191 

C        2.684742      0.772490      0.299876 

C        4.787167     -0.026931     -0.508130 

C        5.187922      1.271927     -0.757073 
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C        3.090734      2.079307      0.075199 

H        5.443864     -0.844952     -0.726586 

H        6.156547      1.464894     -1.173052 

H        2.434643      2.892562      0.314004 

H        4.651659      3.336659     -0.636929 

S        1.111014      0.536520      1.117703 

O        0.988443     -1.048730      1.048283 

C       -0.115114      1.286476      0.304610 

B        0.362315     -2.129789      0.149484 

C        1.039786     -2.306674     -1.298333 

H        2.025195     -2.757098     -1.189504 

H        1.205969     -1.346800     -1.782614 

C        0.165923     -3.430622      1.073491 

H       -0.434742     -3.175562      1.948160 

H       -0.385127     -4.201740      0.538025 

C        0.202825     -3.197239     -2.251935 

H        0.081164     -4.195186     -1.845191 

H        0.679875     -3.289843     -3.222574 

H       -0.783072     -2.772836     -2.399346 

C        1.511337     -4.017326      1.569173 

H        2.064970     -3.265715      2.120512 

H        2.121906     -4.347572      0.734676 

H        1.356561     -4.870174      2.222504 

C       -1.775697     -0.772188      0.592509 

H       -1.464236     -0.600394      1.602691 

O       -1.118003     -1.533947     -0.155848 

C       -3.059401     -0.246168      0.180648 

C       -5.522582      0.713738     -0.600571 

C       -3.800605      0.542511      1.051032 

C       -3.552640     -0.553745     -1.084243 

C       -4.783700     -0.073658     -1.473199 

C       -5.034882      1.022321      0.658178 

H       -3.407644      0.787990      2.016903 

H       -2.963537     -1.166024     -1.734619 

H       -5.170127     -0.307134     -2.444267 

H       -5.609076      1.634166      1.323180 

H       -6.480211      1.087254     -0.904543 

C       -0.315698      1.409580     -1.189340 

H        0.175017      0.569578     -1.665670 

H       -1.374901      1.313205     -1.403701 

C        0.186141      2.723650     -1.829285 

H        1.264389      2.789590     -1.784757 

H       -0.239387      3.578583     -1.318063 

H       -0.114452      2.767385     -2.871548 

Cl      -0.920690      2.556682      1.291320 

 

Imaginary frequency 168 cm-1 (intensity 114)  
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4.5.1.4 Transition State 4 (TS4) Leading to Compound 145a(ii) 

 

H        2.475561     -1.584998      1.060699 

C        2.990161     -0.650814      1.061479 

C        4.301305      1.792083      1.116468 

C        2.288375      0.520894      0.856285 

C        4.359209     -0.598498      1.271766 

C        5.015140      0.617448      1.296262 

C        2.937964      1.745549      0.900816 

H        4.905453     -1.508376      1.420360 

H        6.073521      0.654012      1.461713 

H        2.381268      2.651672      0.765897 

H        4.803071      2.738372      1.146635 

S        0.503761      0.559481      0.708918 

O        0.214829     -1.013734      0.608138 

C        0.035002      1.406093     -0.624799 

B       -0.011931     -2.035388     -0.504563 

C        1.237902     -2.276738     -1.492751 

H        1.942475     -2.948391     -1.002141 

H        1.794694     -1.365357     -1.688899 

C       -0.671921     -3.363724      0.121748 

H       -1.688099     -3.193454      0.469248 

H       -0.747763     -4.130046     -0.647422 

C        0.835340     -2.903683     -2.851471 

H        0.330978     -3.853242     -2.709370 

H        1.706265     -3.081291     -3.474478 

H        0.162674     -2.244449     -3.385557 

C        0.159825     -3.927323      1.303972 

H        0.230360     -3.194113      2.099538 

H        1.167754     -4.176829      0.985970 

H       -0.288909     -4.828609      1.709318 

C       -1.929807     -0.292619     -1.286492 

O       -1.133659     -1.249135     -1.418352 

C        0.656233      1.432188     -2.004832 

H        1.160321      0.491780     -2.174530 

H       -0.136934      1.493754     -2.745713 

C        1.640948      2.593112     -2.271644 

H        2.531273      2.487185     -1.667836 

H        1.174797      3.543931     -2.045472 

H        1.936399      2.598155     -3.316261 

Cl      -0.951140      2.853965     -0.232712 

C       -2.851300     -0.002027     -0.198184 

C       -4.750426      0.616336      1.719956 

C       -3.849272      0.930234     -0.468641 

C       -2.801646     -0.611536      1.053497 

C       -3.749054     -0.300717      2.005169 

C       -4.801140      1.234678      0.483476 

H       -3.876520      1.417714     -1.423193 

H       -2.008505     -1.285485      1.283275 

H       -3.705434     -0.764674      2.969419 

H       -5.566963      1.951730      0.268036 
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H       -5.483835      0.853558      2.465165 

H       -2.071451      0.322616     -2.158937 

 

Imaginary frequency 214 cm-1 (intensity 150) 
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5.1 Future Work 

 

Studies on a Catalytic Borylation Reaction: The study of the reaction of boronic ester 

87 with n-BuLi showed that the lithium cation coordinates with the chiral ligand to 

influence the stereoselectivity. Also, high stereoselectivity (70% e.e.) was achieved 

using a catalytic amount of ytterbium triflate from an old bottle and only 0.5 

equivalents of chiral ligand, i.e. there was a evidence of some catalytic turnover. To 

prevent the possible competition between Li and Yb, further research should be 

undertaken using Yb and other lanthanides in the absence of Li. This can be done by 

using an unsymmetrical boronic ester 170, which would undergo cyclisation upon 

deprotection with tetrabutylammonium floride (TBAF) to give the borate 171. This 

would allow us to add lanthanide salts and ultimately study the catalytic process 

promoted by only one metal. Furthermore, using Ln(n-Bu)3 as a source of the n-Bu 

group would provide the borate 171 with a migrating alkyl group directly from 

lanthanide rather than from Li. 

 

Cl B
O

OTMS

Cl

n-Bu

TBAF

OB

O

Cl

Cl
Ln(n-Bu)3 OB

O

170 171

87

n-Bu
Cl

Cl

OB

O

n-Bu
Cl

Cl

171  

 

Scheme 5.1: Proposed Future Work 

 

Stoichimetric Studies on Sulfur Compounds in a DCME-Like Reaction: The study of the 

reaction of trialkylboranes with Cl2CHX (X = phenylsulfinyl (SOPh), p-tosyl and 

phenylsulfoximinyl (PhSO(NMe)) showed some interesting reactions. The reaction of 
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dichloromethyl p-tosyl sulfone with trialkylboranes showed an interesting outcome by 

replacing the hydride with an alkyl group from trialkylborane in moderate yields. It 

would be interesting to explore the mechanism of this reaction, since it presumably 

does not involve alkyl group migration.  

In terms of the reaction of S-dichloromethyl-N-methyl-S-phenyl-sulfoximine (156) with 

trialkylboranes, the reaction worked well with a range of trialkylboranes. However, it 

was not possible to determine whether there was any stereoselectivity in this reaction. 

If a boron compound containing only one alkyl group was used successfully, it could be 

possible to determine the stereoselectivity directly. Although alkylboronic esters were 

not successful in this respect, other compounds, for example RBCl2, could potentially 

be used. Alternatively, enantiomerically-pure sulfoximines could be investigated, but 

this would require an organoborane with three alkyl groups having different migratory 

aptitudes. 
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