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Composite materials with 
enhanced dimensionless Young’s 
modulus and desired Poisson’s 
ratio
H. X. Zhu1, T. X. Fan2 & D. Zhang2

We have designed a new type of composite materials which not only has a Young’s modulus much 
larger than the Voigt limit, but also is always nearly isotropic. Moreover, its Poisson’s ratio can be 
designed at a desired value, e.g. positive, or negative, or zero. We have also demonstrated that 
structural hierarchy can help to enhance the stiffness of this type of composite materials. The results 
obtained in this paper provide a very useful insight into the development of new functional materials 
and structures.

Our life quality and living conditions largely rely on composite materials. In fact, the bones in our body 
are a nano-structured hierarchical composite material with the basic building blocks being nano-sized 
single crystal mineral plates embedded in soft protein matrix1,2. Many different types of advanced artifi-
cial composite materials are used more and more frequently in our daily lives, examples include kitchen 
tools, sport facilities, vehicle and airplane structures.

The Voigt limit has long been regarded as an unexceedable upper limit for the stiffness of isotropic 
composite materials, as can be seen from thousands of text books, e.g. reference3. For a two phase com-
posite made of two different isotropic materials A and B whose Young’s moduli are EA and EB, and 
Poisson ratios are vA and vB, respectively, the Voigt limit for the Young’s modulus of the composite is 
given as

( ) = + ( )E E f E f 1C upper A A B B

Where fA and fB are the volume fractions of the two materials, and thus fA +  fB =  1. The lower limit (i.e. 
the Reuss limit) for the Young’s modulus of the two-phase composite is given as
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It is relatively easier to make the Young’s modulus of an anisotropic composite equal to or larger 
than the Voigt limit than an isotropic composite. For example, for a laminate composite made of two 
isotropic materials, the in-plane Young’s modulus is obviously the same as the Voigt limit if the Poisson’s 
ratios of the two component materials are the same, and larger than the Voigt limit if the Poisson’s ratios 
are different. The larger the difference of the two Poisson’s ratios, the larger the stiffness of the laminate 
composite. In general, laminate composites may have 3 orthogonal planes of symmetry, thus they may 
have up to 9 independent elastic constants. If a laminate composite is in-plane isotropic, the number of 
the independent elastic constants will reduce to 5 from 9.
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Lim4 has investigated the out-of-plane modulus of semi-auxetic laminates, and found that out-of-plane 
stiffness can be made larger than the Voigt limit by using a combination of positive and negative Poisson’s 
ratios. Liu et al.5 have analyzed the elastic properties of in-plane isotropic semi-auxetic laminates and 
obtained all the 5 independent elastic constants. They found that both the in-plane and out-of-plane mod-
uli can be made larger than the Voigt limit using a combination of positive and negative Poisson’s ratios. 
Lim and Rajendra Acharya6 and Grima et al.7 have also studied the elastic properties of semi-auxetic 
laminates.

As semi-auxetic laminate composites are in general orthotropic, they may have 5 or a larger number 
of independent elastic constants. The objective of this paper is to design a new type of composite mate-
rials which not only has a Young’s modulus much larger than the Voigt limit, but more importantly, is 
always nearly isotropic. The Poisson’s ratio can be designed at a desired value, e.g. positive, or negative, 
or zero, and structural hierarchy can further enhance the Young’s modulus.

Geometric and Mechanics Model
The emphasis of this paper is on the design of single-level two-phase composite materials. The designed 
single-level composite materials are assumed to be composed of a large number of identical cubic peri-
odic cells, as shown in Fig.  1(a) which is one representative volume element (RVE) of the composite. 
In the RVE, material A is a hollow cubic box which has square walls of uniform thickness t/2 and an 
external edge length L; material B is a solid cube which is inside the hollow cubic box of material A 
and has an edge length L – t. The interfaces of materials A and B are assumed to be perfectly bonded. 
Advanced manufacturing technology, e.g. 3D printing or prototyping8, makes it possible to produce such 
designed composite material.

In the two-phase composite, the volume fraction of material A is

= − ( − ) / ( )f L t L1 3A
3 3

and the volume fraction of material B is thus = ( − ) /f L t LB
3 3.

The designed composite material has a cubic symmetry and thus has only up to 3 independent elastic 
constants9,10, namely Exx, Gxy and vxy. Obviously, Eyy =  Ezz =  Exx, Gxz =  Gyz =  Gxy and vyz =  vxz =  vxy, and the 
Zener’s anisotropy factor is always very close to 1 (i.e. nearly isotropic). To obtain the effective Young’s 
modulus Exx and the Poisson’s ratio vxy for the composite material, the cubic periodic RVE shown in 
Fig.  1(a) is stretched to a strain εx in the x direction by an effective uniaxial tensile force/stress. The 
periodic boundary conditions and the symmetry of the applied load require that all the six outside planes 
of the cubic periodic unit RVE in Fig. 1(a) remain plane after deformation.

To simplify the analysis, the RVE is divided into 8 parallelepipeds, as can be seen in Fig.  1(b). In 
order to carry out analytical solution, we consider only the normal stresses within each of the 8 paral-
lelepipeds in the RVE and the periodic conditions (i.e. compatibility conditions) on the outside surfaces 
of the RVE, and ignore the shear stresses inside the parallelepipeds and the compatibility conditions on 
the interfaces between the parallelepipeds inside the RVE. Thus, the cubic periodic representative volume 
element (RVE) shown in Fig. 1(b) can be used as a simplified mechanics model of the two-phase com-
posite, where the 3 normal stresses in each of the 8 parallelepipeds are assumed to have constant values. 
When the RVE is stretched in the x direction, the normal stresses and strains on the top plane of the 
RVE shown in Fig. 1(b) are exactly the same as those on the right plane. According to the symmetry, we 
have 7 different unknown normal stresses, namely, σ x1, σ x2 and σ x3 on the front surface of the RVE; and 

Figure 1. A cubic periodic representative volume element (RVE) of the two-phase composite material. 
(a) A cubic periodic unit RVE (b) Cubic periodic mechanics model.
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σ y1, σ y2, σ y3 and σ y4 on the right surface of the RVE, as shown in Fig. 1(b). From the Hooke’s law and 
the periodic boundary conditions of the RVE, we have following stress-strain relations
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In addition, the zero total force in the normal direction of the top or right plane of the RVE in Fig. 1(b) 
requires

σ σ σ σ( − ) + ( − ) + ( − ) + = ( )L t L t t L t t t 0 11y y y y
2

4 1 3
2

2

For a given value of the tensile strain εx, we have in total only 8 unknowns to be determined: σ x1, σ x2, 
σ x3, σ y1, σ y2, σ y3, σ y4, and εy. They can be solved from the 8 simultaneous linear Equations (4–11). Thus, 
the effective Young’s modulus and Poisson’s ratio of the composite material can be obtained as
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Results
It is well known that the range of the Poisson’s ratio of isotropic materials is from − 1.0 to 0.5, i.e. 
− . < < .v1 0 0 5 (refs  11–16).  For example, solid polymer or rubber materials, or low density random 
irregular open cell foams12 have a Poisson’s ratio close to 0.5; most metal materials have a Poisson’s ratio 
between 0.1 and 0.4; cork has a Poisson’s ratio close to 0 (ref. 17); open cell foams with re-entrant cells 
(i.e. auxetic foams) have a negative Poisson’s ratio13,14; hierarchical laminates18 or auxetic materials19 can 
be designed to be isotropic and to have a Poisson’s ratio close to − 1.0 (refs 13–16,19).

For single-level two-phase composite materials with the cubic periodic RVE structure shown in Fig. 1 
and with EA =  2.0EB and = = .v v 0 3A B , the relationship between the effective Young’s modulus Exx and 
the volume fraction fA can be obtained by solving Equations (3)–(12) and plotted in Fig.  2. The Voigt 
bound, the Reuss bound, and the Hashin—Shtrikman20 upper and lower bounds are also presented for 
comparison. It is noted that the Young’s moduli in Fig.  2 are normalized by EB. As can be seen from 
Fig.  2, the effective Young’s modulus of the composite material predicted from our mechanics model 
shown in Fig.  1(b) is larger than the Hashin—Shtrikman upper limit when the volume fraction fA is 
smaller than 82%. As the possible effect of the Poisson’s ratios of materials A and B is completely absent 
in Fig.  2, the enhancement of the effective Young’s modulus (i.e. larger than the Hashin—Shtrikman 
upper limit) can be attributed to the geometrical structure. We have also tested cases of = = .v v 0 0A B  
and other values, and found that as long as =v vA B, the results of the effective Young’s modulus of the 
composite materials obtained from Equations (3–12) remain unchanged.
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We now explore how to make the Young’s modulus of a single-level composite material larger than 
the Voigt limit. For a single-level two-phase composite material with the cubic periodic RVE structure 
shown in Fig. 1, the effects of different combinations of the Young’s moduli and Poisson’s ratios of mate-
rials A and B on the relationship between the effective Young’s modulus of the composite and the volume 
fraction fA are illustrated in Fig. 3(a–f), where the Young’s modulus of the composite is normalized by 
the Voigt limit ( ) = +E E f E fC upper A A B B

. As the Voigt limit normalized by itself is constantly 1.0, a value 
above 1.0 in Fig. 3(a–f) indicates that the Young’s modulus of the composite material is larger than the 
Voigt limit.

We can see from Fig. 3(a–f) that, when EA =  EB (i.e. when the possible effects of the difference between 
EA and EB are absent), the difference between vA and vB can make the normalised Young’s modulus of 
the composite material larger than 1.0 (i.e. exceeding the Voigt limit). Moreover, the larger the difference 
between vA and vB, the larger the Young’s modulus of the two-phase composite material. Comparing 
Fig. 3(b,c) to (e,f), it can be found that if vA is negative and vB is positive, the composite material has a 
larger Young’s modulus than the case when vA is positive and vB is negative. In the case when vA =  − 0.8 
and vB =  0.45, the Young’s modulus of the composite material is about 150% larger than the Voigt limit.

Figure 4(a–f) show that by properly choosing the Young’s moduli and the Poisson’s ratios of materials 
A and B, the Poisson’s ratio of a two-phase composite material can be designed to have a desired value, 
e.g. positive, or negative, or zero. These results are very useful for the design of more interesting and 
useful functional materials or structures for applications in many different areas. For example, materials 
with a zero Poisson’s ratio are perfect for sealing applications17.

Discussion
To validate the analytical results for the effective Young’s moduli and Poisson’s ratios of the two-phase 
composite materials obtained from Equations (4–11), we used the commercial finite element software 
ABAQUS to perform a number of simulations (i.e. to do numerical experiments) for the cubic periodic 
RVE structural model shown in Fig.  1(a). The RVE is partitioned into 8000 C3D8 elements. Periodic 
boundary conditions are used in all the finite element simulations and the obtained simulation results 
can be assumed to be the exact results. Table 1 presents the analytical results and the finite element sim-
ulation results for the two-phase composite materials with different combinations among the values of 
EA, EB, vA, vB and fA, where the effective Young’s moduli of the composites are normalized by the Voigt 
limit (EC)upper.

Table 1 shows that the analytical results for the Young’s modulus of the single-level composite mate-
rials obtained from Equations (4–11) are always smaller than the simulation results, suggesting that the 
analytical results always tend to underestimate the Young’s modulus of the composite materials. This 
is consistent with the mechanics principle because any additional restraint always makes a material or 
structure stiffer. In the analysis of Equations (4–11), only normal stresses in the RVE and periodic con-
ditions on the outside boundaries of the RVE are considered, while all the possible shear stresses and all 
the compatibility conditions inside the RVE are ignored. This could result in possible gaps or overlaps 
between the 8 deformed parallelepipeds inside the RVE. To remove the gaps and overlaps (i.e. to make 
the interfaces between the 8 deformed parallelepipeds inside the RVE perfectly bonded), additional work 

Figure 2. Young’s modulus of the two-phase composite with the cubic periodic RVE structure shown 
in Fig. 1 and with EA = 2.0EB and vA = vB vs. the volume fraction of material A, compared with the 
Voigt limit, the Reuss Limit, and the Hashin-Shtrikman upper and lower limits. The Young’s moduli are 
normalized by EB in Fig. 2.
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Figure 3. Effects of the value of EA/EB on the relationship between the normalized Young’s modulus of 
the composites and the volume fraction of material A: (a) vA =  0.05 and vB =  0.495; (b) vA =  0.45  
and vB =  − 0.5; (c) vA =  0.45 and vB =  − 0.8; (d) vA =  0.495 and vB =  0.05; (e) vA =  − 0.5 and vB =  0.45;  
(f) vA =  − 0.8 and vB =  0.45.

Figure 4. Effects of the value of EA/EB on the relationship between the Poisson’s ratio of the composite 
and the volume fraction of material A: (a) vA =  0.05, vB =  0.495; (b) vA =  0.45, vB =  − 0.5; (c) vA =  0.45, 
vB =  − 0.8; (d) vA =  0.495, vB =  0.05; (e) vA =  − 0.5 and vB =  0.45; (f) vA =  − 0.8 and vB =  0.45.
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has to be done, and this consequently increases the stored strain energy in the RVE and hence makes 
the composite stiffer. In contrast, all the actual normal and shear stresses and all the compatibility con-
ditions inside and outside the RVE have already been considered in the finite element simulations using 
the ABAQUS software. As the finite element simulations have considered much more restraints between 
the interfaces of the 8 parallelepipeds than the simplified mechanics model shown in Fig. 1(b), the exact 
results for the effective Young’s modulus obtained from the finite element simulations are consequently 
always larger than the analytical results obtained from Equations (4–11).

Table 1 shows that when vB ≥  − 0.8, the difference between the effective Young’s modulus of the com-
posite materials obtained from Equations (4–11) and that obtained from the ABAQUS finite element 
simulation is constantly less than 8%, indicating that the analytical results shown in Figs  3 and 4 are 
quite accurate and hence reliable. When vB approaches − 1.0, although the error of the analytical results 
becomes larger, the predicted trend of the effects remains correct.

Now we demonstrate how structure hierarchy could further enhance the elastic properties of a 
two-phase composite material. The two-phase hierarchical composite material is assumed to be made 
of isotropic materials A and B with Young’s moduli EA and EB, Poisson ratios vA and vB, and volume 
fraction fB. At each hierarchical level n, the composite material is assumed to be composed of a large 
number of identical RVEs, as shown in Fig. 5, and each of the cubic fillers/inclusions (i.e. equivalent to 

Composite material

Analytical results Simulation results

Exx/(EC)upper vxy Exx/(EC)upper vxy

EA =  2EB    fA =  0.271 
vA =  0.05  vB =  0.495 1.0794 0.4453 1.0858 0.4550

EA =  2EB   fA =  0.271 
vA =  0.45  vB =  − 0.8 1.8128 − 0.3981 1.8930 − 0.3792

EA =  2EB    fA =  0.271 
vA =  0.495  vB =  − 0.99 2.9665 − 0.8896 3.5342 − 0.9175

EA =  2EB   fA =  0.488 
vA =  0.05  vB =  0.495 1.0986 0.3828 1.1156 0.3920

EA =  2EB   fA =  0.488 
vA =  0.45  vB =  − 0.8 1.8216 − 0.0680 1.9637 − 0.0237

EA =  2EB   fA =  0.488 
vA =  0.495  vB =  − 0.9 2.5586 − 0.2554 2.9617 − 0.1282

EA =  2EB   fA =  0.488 
vA =  0.495  vB =  − 0.95 3.0174 − 0.4095 3.9841 − 0.2998

EA =  2EB   fA =  0.488 
vA =  0.495  vB =  − 0.99 3.6526 − 0.4976 5.5141 − 0.5817

Table 1.  Comparison between the analytical results and finite element simulation results.

Figure 5. Bottom-up structure of hierarchical composites. 
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Figure 6. Dimensionless Young’s modulus of hierarchical composites as a function of the total number 
of the hierarchical levels: (a) vA =  0.45, vB =  − 0.8; (b) vA =  − 0.8 and vB =  0.45.

Figure 7. Poisson’s ratio of hierarchical composites as a function of the total number of the hierarchical 
levels: (a) vA =  0.45, vB =  − 0.8; (b) vA =  − 0.8 and vB =  0.45.

material ‘B’ in Fig. 1) in the RVEs is also made of a large number of identical lower level (i.e. level n −  1) 
cubic periodic RVEs. For simplicity, the hierarchical composite material is assumed to be self-similar in 
structure, and the volume fraction of the cubic fillers/inclusions (i.e. material ‘B’ ) in the RVEs is assumed 
to remain fixed at all hierarchical levels21,

( ) = ( ) , = , , ... , ( )
/f n f n N1 2 14B B

N1

Where, n is the specific hierarchical level and N is the total number of the hierarchical levels.
For a given material volume fraction fB and a given number of the total hierarchical levels N, the 

volume fraction of the cubic fillers/inclusions in the RVEs at each hierarchical level, fB(n), can be obtained 
from Equation (14), and the Young’s modulus E(n) and Poisson’s ratio v(n) at each hierarchical level can 
be obtained from Equations (4–13). Figures 6 and 7 show the analytical results of the Young’s modulus 
EN and Poisson ratio vN for a few hierarchical and self-similar composite materials as functions of the 
number of the total hierarchical levels N, where the Young’s modulus is normalized by the Voigt limit 
( ) = +E E f E fC upper A A B B

. In Figs  6 and 7, the results of the case N =  1 are those of the single-level 
composites, which can also be seen from Figs  3(c,f) and 4(c,f). The results in Fig.  6(a,b) indicate that 
increasing the number of hierarchical levels tends to enhance the stiffness of composite materials. The 
results obtained in this paper provide very useful insight into the development of new functional mate-
rials and structures.
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