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ABSTRACT

The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals
for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections
expected over the next few years. The rate of binary coalescences and the distribution of component masses is
highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained
parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the
evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These
include effects such as supernova kick velocities, parameters governing the energetics of common envelope
evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow
us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations
from a series of population synthesis models including the effects of known selection biases, measurement errors
and cosmology. We compare the predictions arising from different models and show that we will be able to
distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and
Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.
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1. INTRODUCTION

The Advanced LIGO (aLIGO; Aasi et al. 2015) and
Advanced Virgo (AdV; Acernese et al. 2015) second
generation, kilometer-scale ground based laser interferometers
are currently being commissioned and should begin observing
runs in 2015 (Aasi et al. 2013b) with the sensitivity increasing
gradually over a number of years before reaching their design
sensitivity near the end of the decade. These gravitational-wave
(GW) observatories will be an order of magnitude more
sensitive than the first generation observatories and are
expected to yield the first GW detections (Abadie et al. 2010)
and herald the beginning of GW astronomy. In GW astronomy
we are interested in the emission of gravitational radiation from
astrophysical sources. One of the primary sources of GWs for
aLIGO is the coalescence of compact binaries–binary neutron
star (BNS), neutron star-black hole (NSBH) and binary black
hole (BBH) systems.

The orbits of these systems decay due to radiation reaction
(Peters & Mathews 1963; Peters 1964), causing the two objects
to spiral in toward one another. During the final orbits and
merger, these sources emit a large amount of gravitational
radiation, and this will be observable by aLIGO and AdV. The
gravitational waveform emitted by the binary can be modeled
with great accuracy using the post-Newtonian formalism
(Blanchet 2014). Closer to merger, full numerical simulations
are required to track the binary evolution and calculate the
waveform (see Hannam 2009; Hinder 2010; Sperhake et al.
2013 for overviews). By combining the insights of post-
Newtonian theory and numerical modeling, a large range of
analytic/semi-analytic approximate waveform models have
been developed over the past few years (see, e.g., Buonanno
et al. 2009 and Ohme 2012 for an overview). These models
now provide accurate waveforms over a large fraction of the

parameter space of non-precessing BBHs. In particular, they
provide accurate waveforms for signals with a range of mass
ratios and also cover the space of aligned spins. There is
ongoing work (Hannam et al. 2014; Pan et al. 2014) to extend
these to the full parameter space that incorporates spin-induced
precession of the binary orbit.
The availability of accurate waveform models makes a

matched filter search of these signals feasible (Aasi et al.
2013c; Babak et al. 2013) and allows us to to extract the
physical parameters of the binary system from the observed
GW signal (Aasi et al. 2013a; Veitch et al. 2014). The observed
sky location and orientation of the binary system will be used
to aid searches for electromagnetic counterparts of GW systems
(Abadie et al. 2012a; Aasi et al. 2014; Clark et al. 2014; Singer
et al. 2014). Meanwhile, measurement of the masses and spins
of the binary components will shed light upon the formation
and evolution of the binary by comparing the observations with
predictions from stellar evolution models. We expect the
majority of systems to be observed with relatively low signal-
to-noise ratio (S/N) and consequently the parameters will not
be measured with great accuracy (Hannam et al. 2013; Ohme
et al. 2013). For an individual binary, the chirp mass of the
system—a combination of the two masses that determines the
rate at which the binary evolves—can be measured with good
accuracy (Cutler & Flanagan 1994; Hannam et al. 2013), while
the mass ratio and spins are unlikely to be well constrained.
In addition, there is significant uncertainty in the astro-

physical mass and spin distributions of black hole binaries.
Thus, it seems unlikely that the measurement of parameters
from individual systems will significantly impact our under-
standing of black hole binary formation. Instead, it will require
the measurement of parameters from a population of signals to
significantly constrain compact binary formation and evolution
models. In this paper, we consider how this might be done and
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what we expect to learn with the observations from the early
aLIGO and AdV runs.

Compact binaries can be formed as a result of the evolution
of isolated massive binaries (where the components have initial
masses M8 ) or can be formed dynamically (i.e., in dense
globular and nuclear star clusters) from binary-single star
interactions between compact remnants and primordial binaries
(Mandel & O’Shaughnessy 2010). While the key stages of the
binary evolution are well understood, there are significant
uncertainties in the details of the process. Population synthesis
codes attempt to model these uncertainties using empirical
prescriptions. These models contain numerous parameters
which are not well constrained relating to astrophysics such
as stellar winds, supernova kicks imparted on black holes at
birth and common envelope binding energy among others.
Varying these parameters will have a significant impact on both
the predicted rate of compact binary mergers, as well as the
distribution of expected masses and spins of the compact
remnants that comprise the binary (Dominik et al. 2012).

In this paper, we introduce a straightforward model selection
method to distinguish between various formation and evolution
scenarios. We focus on the two parameters that will be best
measured: the overall rate of binary mergers and the chirp
masses of the observed binaries.

Furthermore, we restrict attention to BBHs as, based upon
the recent population synthesis models, these are predicted to
be the most numerous (Voss & Tauris 2003; Dominik et al.
2012). We caution, however, that detection rates are highly
uncertain and previous papers have argued that there will be
essentially no BBHs (Belczynski et al. 2007; Mennekens &
Vanbeveren 2014). This trivially means that any detections of
merging BBHs will allow models predicting a dearth of such
systems to be ruled out, shedding light on the astrophysical
assumptions made therein. Beyond that, we show how, in
addition to the merger rates, the broad range of BBH chirp
masses predicted by population synthesis models encodes
information about the BBH formation mechanisms.

There have been many studies performed over the last
decade that have made use of either one or both of these pieces
of information to distinguish between competing astrophysical
models. Bulik & Belczyński (2003) used a Kolmogorov–
Smirnov test to compare simulated GW chirp mass measure-
ments to a series of predicted observed distributions from
population synthesis models. They find they can distinguish
many models with ∼100 observations, a finding we confirm in
the present study. Kelley et al. (2010) use a Bayesian approach
introduced in Mandel (2010) to show how one can use
GW observations along with dark matter simulations to
distinguish between different natal kick-velocity models, and
again find they require 100( ) observations to distinguish
between models.

Belczynski et al. (2012) discuss using upper limits on binary
merger rates to distinguish between population synthesis
models. Recently, Mandel et al. (2015) have shown how one
can use population synthesis models along with
GW observations of binary mergers to measure the relative
rate of BNS, NSBH and BBHmergers with 10( ) observa-
tions. In addition, Messenger & Veitch (2013) show how one
should use all of the information available to avoid selection
biases when attempting to make inferences about distributions
of rates and parameters of merging binaries.

More sophisticated techniques have also been discussed in
the literature. O’Shaughnessy (2013) introduces a framework to
incorporate measurements of both the merger rate and
parameter distributions of GW observations, and compares
these to a set of population models which sparsely sample the
relevant parameter space. A similar technique is used in
Mandel & O’Shaughnessy (2010; see also Mandel et al. 2010).
Here, we introduce a fast, simple method to make inferences

about astrophysical models using information from
GW observations. The method is general, and could be applied
to any set of binary evolution models. We illustrate its utility by
evaluating the ability to distinguish between a suite of
population synthesis models (Dominik et al. 2012). For
concreteness, we restrict attention to the expected results from
the early observing runs of the advanced GW detector era (Aasi
et al. 2013b).
Population synthesis models typically predict the galactic

rate of binary mergers and the parameter distributions. From
this, we model the observed distribution by accounting for
observational bias: GW detectors are able to observe signals
from higher mass systems to a greater distance. Additionally,
we incorporate cosmological effects that lead to a red-shifting
of both the observed masses and the observed merger rate.
Finally, we model measurement errors and uncertainties
inherent in the extraction of the signal from a noisy data
stream. For each population synthesis model, we generate an
expected observed rate and associated mass distribution.
Based on simulated observational results, we can use model

selection to differentiate between the various models. To give a
sense of what we can expect, we simulate results from the early
aLIGO and AdV observational runs. To do this, we choose one
of models from a suite of population synthesis models to play
the role of the universe, and draw GW observations of BBHs
from it, accounting for known observational biases and
anticipated measurement errors. We then compare these
observations to the full suite of population synthesis models
and, starting with a uniform prior on the models, we compute
the posterior probability for each model.
While the results that we present are limited to these specific

scenarios, the method we introduce is general and could easily
be applied to the predictions from any population synthesis
model and the results (predicted or observed) from any detector
network. We also caution the reader that the models of
Dominik et al. (2012) represent the most optimistic predictions
of BBHmerger rates, with all models predicting a detection
within the first two aLIGO and AdV science runs. Lower
merger rates would lead to observations of BBHmergers only
in later runs at, or close to the design sensitivity of the
detectors. For an overview of rate predictions for aLIGO and
AdV see Abadie et al. (2010).
This paper is structured in the following way. In Section 2

we give a brief review of compact binary formation, and
introduce the models we use in Section 2.2. In Section 3 we
describe our algorithm for accounting for known selection
biases, converting an intrinsic chirp mass distribution to a
predicted observed distribution. Section 4 shows how to use
information from the two well measured parameters—the chirp
mass and the merger rate—to distinguish between population
synthesis models. In Sections 5 and 6 we show what we may be
able to learn about binary evolution using GW observations of
binary black holes from the first two aLIGO and AdV science
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runs. Finally in Section 7 we conclude and suggest areas which
require further investigation.

2. COMPACT BINARY FORMATION AND EVOLUTION

In this section, we provide a brief review of isolated binary
evolution, highlighting the poorly understood stages of the
evolution, which lead to the uncertainties in the predicted
merger rates and mass distributions of the binaries. For more
information see a review such as Postnov & Yungelson (2014).

2.1. General Overview

For a single star, its evolution is solely determined by the
zero-age main sequence (ZAMS) mass and composition.
However, the majority of massive stars exist in binaries or
multiple systems, with 70% of massive O-type stars
exchanging mass with a companion during their lifetime
(Duquennoy & Mayor 1991; Sana et al. 2013). In this case, the
evolution is no longer straightforward, and can lead to a
plethora of exotic systems. Here we give one possible
evolutionary pathway for a massive binary; many alternative
pathways also exist (see for example Tables 4 and 5 in Dominik
et al. 2012 for a summary).

Consider a binary in which both stars have ZAMS masses
M8 . The initially more massive star (the primary) in the

binary will evolve off of the main sequence first since it has the
shorter lifetime. As it evolves, its radius expands until it fills its
Roche Lobe as a giant and begins to transfer mass to the
companion (the secondary) star, stripping the primary’s
hydrogen outer layers and leaving a He/Wolf–Rayet star.
Already the evolution of the binary is different to that of single
stars since the companion can change its mass considerably,
leading in some cases to a reversal of the mass ratio. If the core
is massive enough, the primary will then collapse in a
supernova, and leave behind a compact remnant—either a
neutron star or a black hole depending on the pre-supernova
core mass.

In stellar evolution models, the distinction between collapse
to a neutron star or a black hole is made via mass alone, with
the maximum allowed mass of a neutron star being one of the
free parameters. In reality, the maximum neutron star mass is
set by the unknown neutron star equation-of-state. The
maximum observed neutron stars have masses around 2Me
(Demorest et al. 2010; Antoniadis et al. 2013). Causality and
General relativity require the maximum neutron star mass to be

3.2 Me (Rhoades & Ruffini 1974).
The mechanism of the supernova itself is intensely studied

but still not fully understood. If the supernova is asymmetric
(due to asymmetric mass loss or neutrino emission) the
resulting neutron star can be given a natal kick velocity due
to the conservation of momentum, which is of the order
250 km s 1- for galactic neutron stars (Hobbs et al. 2005). It is
unclear whether black holes also receive a kick of this
magnitude or whether mass falling back onto the black hole
reduces the size of this kick significantly (see, e.g., Repetto
et al. 2012; Janka 2013).

If the system survives the first kick, then the secondary will
begin to evolve. The compact remnant accretes matter from the
stellar wind of its companion, becoming a luminous X-ray
source. At this stage, the binary may be observable electro-
magnetically as a high-mass X-ray binary. Although the theory
of stellar winds is fairly robust (Castor et al. 1975), the strength

of stellar winds in these systems remains uncertain (Lépine &
Moffat 2008).
As the secondary continues to evolve, it will continue to

expand and fill its Roche Lobe. If the mass transfer through
Roche Lobe Overflow is unstable, a common envelope phase
(Paczynski 1976; Ivanova et al. 2013) can be initiated. This is
where both the compact remnant and the core of the secondary
orbit within the secondary’s hydrogen outer layers. The
common envelope is the least well understood phase in the
evolution of binaries. The common envelope is usually
parametrized in one of two fashions; the α prescription
(Webbink 1984) focusing on conservation of energy, or the γ
prescription (Nelemans et al. 2000) focusing on conservation of
angular momentum. The core and compact object spiral in
toward one another on a dynamical timescale due to drag, and
orbital energy is used to eject the envelope. This stage is
responsible for dramatically reducing the orbital separation in
the binary.
If the binary survives the common envelope, the core of the

secondary can then go supernova, potentially imparting a
second kick on the system (although it is generally less likely to
unbind the system since the orbital velocities are now much
higher). Finally, a compact binary remains containing neutrons
stars and/or black holes. It is these systems which then inspiral
toward one another and merge due to radiation reaction, and
will be observed in GWs by aLIGO and AdV.

2.2. Detailed Binary Evolution Models

Population synthesis codes are Monte-Carlo simulations that
evolve large ensembles of primordial binaries via semi-
analytical prescriptions, taking as input parameters correspond-
ing to the poorly understood astrophysical stages outlined
above. Binary population synthesis models can be used to try to
understand the effects of these uncertainties on binary
evolution, and on the resultant population of compact binaries.
One way to exploit the information contained in
GW observations of coalescing BBHs is therefore to compare
the measured properties of a population to population synthesis
model predictions.
For this study we use a set of publicly available4 population

synthesis models presented in Dominik et al. (2012), produced
using the StarTrack population synthesis code (Belczynski
et al. 2008). Predicted chirp mass distributions and merger rates
of BNS, NSBH and BBH systems are provided for a range of
input physics.
The relative rates of BNS, NSBH and BBHmergers are

uncertain. Although BBH systems are more massive (and
consequently detectable to a greater distance), much more
massive stars are needed in order to form them, and the initial-
mass-function (IMF) falls off rapidly at high masses, meaning
these stars are rarer. It is also worth noting that no BBH has
ever been observed, although systems which may be
progenitors for them such as Cyg X-3 (Belczynski
et al. 2013), IC 10 X-1 (Bulik et al. 2011) and NGC 300
X-1 (Crowther et al. 2010) have been studied and provide some
limits on BBHmerger rates. The population synthesis model
we are utilizing predicts that BBH detection rates will dominate
over those for BNS and NSBH. Based on this, and to keep the
analysis simple, we restrict our attention to BBH systems. It

4 http://www.syntheticuniverse.org
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would be relatively straightforward to extend the framework
we introduce to include all GW observations of binary mergers.

We use the set of 12 population synthesis models for which
predicted rates and mass distributions are available. These
models are summarized in Table 1. The standard model
assumes a maximum neutron star mass of M2.5 , uses the
rapid supernova engine detailed in Fryer et al. (2012),
physically motivated common envelope binding energy (Xu
& Li 2010), and kick velocities for supernova remnants drawn
from a Maxwell distribution with a characteristic velocity of

265 km s 1s = - . There are then eleven variations, in each of
which one of the above parameters is varied: the first four
variations consider changes in the energetics of the common
envelope phase, the next two vary the maximum mass of
neutron stars, three more change the kick imparted on the
components during collapse to a neutron star or black hole and
the final two consider a delayed supernova engine and a change
in the strength of stellar winds. The models are described in
detail in Section 2 of Dominik et al. (2012).

We expect that in general, the true universe will not match
one of a small set of models, but will lie in between these
models (or potentially outside of them if additional unmodeled
physics is required to accurately describe binary evolution).
Assumptions that are not varied in these models, but which
may have a large impact on the resultant BBH distribution
include distributions of the parameters of primordial binaries
(IMF, orbital elements de Mink & Belczynski 2015), tides,
stellar rotation (de Mink et al. 2013) and magnetic fields. Here
we neglect these additional considerations and investigate how
one can differentiate between a small suite of population
synthesis models using GW observations of BBHs. A full
treatment of these additional properties has the potential to
significantly impact stellar evolution models and may well lead
to degeneracies whereby significantly different astrophysical
models predict comparable populations of binaries.

Since calculating population synthesis models can be
computationally expensive, the models are discretely sampled
over a large range of parameter space (in some cases orders of

magnitude) in an attempt to bracket the truth. Furthermore,
each of the models used in this study varies only one parameter
from its standard value at a time. It is quite likely that the true
values of many of these parameters will differ from those
presented in Dominik et al. (2012), resulting in a population
that does not match any of the ones included here. Varying
combinations of parameters will also need to be studied, as this
may lead to issues with degeneracies in which combinations of
parameters can be determined from GW observations. To be
able to reliably extract the details of stellar evolution from
GW observations, one would require to have models calculated
on a dense enough grid that one can perform interpolation
between them (O’Shaughnessy et al. 2008, 2013).

2.2.1. Metallicity

Each model is calculated at solar (Z Z0.02= = ) and sub-
solar (Z Z0.002 0.1= = ) metallicities. In addition, there are
two submodels that differ in the way binaries entering into a
common envelope when one of the stars is on the Hertzsprung
gap are handled (see Section 2.2.2).
We choose to use a 50–50 mixture of the solar and sub-solar

models as used in Belczynski et al. (2010), motivated by results
from the Sloan Digital Sky Survey (SDSS; Panter et al. 2008)
showing that star formation is approximately bimodal with half
of the stars forming with Z Z~  and the other half forming
with Z Z0.1~ . For the future, it would be desirable to include
a more thorough treatment of the metallicity distribution,
including its evolution with cosmic star formation history as
done in Dominik et al. (2013, 2014b).
Although metallicity in the local universe may be bimodal,

one still expects a smooth distribution of metallicities to exist.
Using only a discrete mixture of solar and sub-solar metallicity
predictions may give rise to non-physical peaks or sharp
features in the chirp mass distributions which may artificially
aid in distinguishing between them (Dominik et al. 2014b).
However, in practise we find that these peaks are sufficiently
smoothed out by measurement errors (see Section 3.4).
Studies have shown that the majority of BBHs observable by

aLIGO were formed within 1 Gyr~ of the Big Bang (Dominik
et al. 2013, 2014b), when the metallicity of the universe was
distinctly lower. This is due to a number of reasons (see for
example Belczynski et al. 2010). It is easier for supernova
progenitor stars to remain massive at lower metallicities due to
weaker stellar winds compared to at solar metallicity. Also,
many potential BBH progenitor systems merge prematurely at
higher metallicities during the CE phase since the secondary is
likely to be on the Hertzsprung Gap, whereas at lower
metallicities the secondary does not expand enough to initiate
a CE event until it is a core-helium burning star (see Hurley
et al. 2000 for the effect of metallicity on stellar radius). These
BBHs are formed with long delay times such that they are only
merging now. One therefore needs to include the time
evolution of metallicity to accurately model the expected
population of BBHs mergers (Dominik et al. 2013).

2.2.2. Fate of Hertzsprung Gap Donors

The Hertzsprung gap is a short lived (Kelvin–Helmholtz
timescale) stage of stellar evolution where a star evolves at
approximately constant luminosity across the Hertzsprung–
Russell diagram after core hydrogen burning has been depleted
but before hydrogen shell burning commences.

Table 1
Summary of Population Synthesis Models

Model Physical Difference

Standard Maximum neutron star mass = 2.5Me, rapid supernova
engine (Fryer et al. 2012), physically motivated envelope
binding energy (Xu & Li 2010), standard kicks

265 km s 1s = -

Variation 1 Very high, fixed envelope binding energya

Variation 2 High, fixed envelope binding energya

Variation 3 Low, fixed envelope binding energya

Variation 4 Very low, fixed envelope binding energya

Variation 5 Maximum neutron star mass = 3.0Me

Variation 6 Maximum neutron mass = 2.0Me

Variation 7 Reduced kicks 123.5 km s 1s = -

Variation 8 High black hole kicks, fb = 0
Variation 9 No black hole kicks, fb = 1
Variation 10 Delayed supernova engine (Fryer et al. 2012)
Variation 11 Reduced stellar winds by factor of 2

Notes. Models presented in Dominik et al. (2012), with parameter variations
indicated in the second column which broadly relate to the uncertainties in
binary evolution discussed in the text. All other parameters retain their standard
model value.
a See Section 2.3 in Dominik et al. (2012) for details.
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While on the main sequence, stars are core burning
hydrogen, and do not possess a core-envelope separation as
the helium core is still being formed. Therefore, if a main
sequence star enters into a common envelope, orbital energy is
dissipated into the whole star, rather than just the envelope,
making ejecting the envelope extremely difficult. It is therefore
expected that any star entering into a common envelope phase
while on the main sequence will result in the two stars merging
prematurely in an event which is not interesting from a
GW astronomy point of view.

For stars that are on the Hertzsprung gap, the situation is not
so clear. The helium core begins contracting while the envelope
of the star expands. It is unclear if there is sufficient core-
envelope separation on the Hertzsprung gap for a star entering a
common envelope phase to have its envelope ejected, or
whether it would suffer a similar fate to a main sequence star.

The fate of Hertzsprung Gap donors is another of the
uncertainties that is investigated by Dominik et al. (2012). In
the optimistic submodel (referred to as submodel A in Dominik
et al. 2012), the authors ignore the issue and calculate the
common envelope energetics as normal (Webbink 1984). In the
pessimistic submodel (referred to as submodel B), any binary
in which the donor is on the Hertzspung gap when the binary
enters into a common envelope phase is assumed to merge.
This tends to reduce the number of merging binaries (and thus
the rates) compared to the optimistic model. It is unlikely that
either of these models is accurate, as the fate of a Hertzsprung
gap donor will depend on the internal structure of the star as it
enters the common envelope phase. Nonetheless, submodels A
and B provide upper and lower bounds, respectively, on the
number of Hertzsprung gap donors forming BBH.

In this paper, we compare results for the twelve models listed
above for both the optimistic (submodel A) and pessimistic
(submodel B) Hertzsprung gap evolution.

3. PREDICTED OBSERVED DISTRIBUTIONS

For each of the models described above, we are given an
expected rate of binary mergers per (MWEG), as well as a
distribution of binary parameters (notably the component
masses). The population of BBHs observed by the advanced
GW detectors will differ from this underlying intrinsic
distribution due to the following observational effects.

(a) The GW signal from binaries at large distances will be
redshifted due to the expansion of the universe which
consequently leads to a shifted measurement of the
binary’s total mass.

(b) The GW amplitude scales with the binary’s total mass,
thus binaries with heavier components will be observable
to greater distances, provided their signal still lies in the
sensitive frequency region of the detector, which leads to
an increased number of observed high-mass systems.

(c) Due to the presence of noise in the detector the best-
measured parameters will differ from the binary’s
intrinsic parameters which effectively blurrs the observed
distribution.

We take all three effects into account and calculate the
distribution of parameter we expect to observe. Our approach is
consistent with previous methods in the literature (e.g.,
Dominik et al. 2014a), apart from how we account for
measurement errors across the parameter space. For complete-
ness, in the remainder of the section, we briefly recap how

these effects are accounted for and the observed distribution
obtained.

3.1. Detectability

We model the GW signals by the dominant harmonic only,
which is sufficient for the majority of black hole systems we are
considering (Capano et al. 2014; Bustillo et al. 2015). The
signal observed in a GW detector can then be expressed as
(Fairhurst & Brady 2008)

h t
D

h t h t
1

cos sin , 1
eff

0 2( ) ( )( ) ( )⎡⎣ ⎤⎦= F + Fp

where Deff is called the effective distance, Φ is the coalescence
phase as observed in the detector and h0, 2p are the two phases
of the waveform which are offset by 2p relative to each other
[equivalently, their Fourier transforms obey h f ih f0 2

˜ ( ) ˜ ( )= p ].
The effective distance is defined as

D
D

F F1 cos 4 cos
. 2L

eff
2 2 2 2 2( )

( )
i i

=
+ ++ ´

DL is the luminosity distance to the binary, F ,+ ´ are the detector
response functions and ι is the binary inclination angle. The
maximal (and circularly polarized) GW signal is obtained when
the signal is directly overhead the detector F 1=+ ; F 0=´ and
with 0,i p= corresponding to a face on signal.
The effective distance is inversely proportional to the S/N,

ρ, which is defined as (Cutler & Flanagan 1994; Poisson &
Will 1995):

h f

S f
df4 , 3

f n

2

2

low

( )
( )

˜
( )òr =

¥

where h f˜( ) is the frequency-domain gravitational waveform
and the detector noise power spectral density is denoted by
S fn ( ). We choose a lower cutoff frequency of f 20 Hzlow = ,
suitable for the early advanced detectors. The S/N at which a
signal can be detected will depend upon the details of the
detector network, including the sensitivities of the detectors as
well as the character of the data—non-stationarities in the data
make it more difficult to distinguish candidate signals from the
background noise. However, for studies such as this, it is
convenient to choose an approximate threshold. Experience has
shown that a network S/N of 12 is approximately where we
might expect to make a detection (Abadie et al. 2012b; Aasi
et al. 2013b). This corresponds to an S/N of around 8 in each
of the LIGO detectors in the early science runs.5 For the studies
presented in this paper, we use this simple, single detector
threshold to decide whether a signal would be observed by the
detector network.
Given a model for the waveform, h(t), we can calculate the

maximum effective distance to which the signal could be
detected. This is known as the horizon distance, DH, and
corresponds to the maximal distance at which the signal could
be observed if it is optimally oriented and overhead. To
calculate the horizon distance we use the phenomenological

5 For the early science runs, we expect the LIGO detectors to be about twice
as sensitive as Virgo so, on average, one might expect a threshold event to have
S/N of 8 in each of the LIGO detectors and 4 in Virgo.
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waveform model introduced by Santamaría et al. (2010) that
includes the inspiral, merger and ringdown sections of the
waveform calibrated using numerical relativity. The model
provides the waveform h f˜( ) in the frequency domain as a
function of the binary’s total mass M, its symmetric mass ratio
η and an effective total spin parameter, χ.

The mass parameters of the binaries are characterized in
terms of the best measured parameter combination, the so
called chirp mass, which is a combination of the component
masses m1 and m2,

m m

m m
M , 41 2

3 5

1 2
1 5

3 5( )
( )

( ) h=
+

=

where M m m1 2= + is the total mass, and η is the symmetric
mass ratio,

m m

m m
0.25. 51 2

1 2
2( )

( )h =
+

For an equal mass binary m m m1 2= = , the chirp mass
m0.87 » . In the remainder of the paper, we will focus on

the predicted and observed chirp mass distributions, and not
consider mass ratio or spin.

Our aim is to predict the observed chirp mass distribution
given the intrinsic model prediction, and compare these with
observations.

Throughout most of this paper, we assume the early
aLIGO (circa 2015) noise spectrum (Losurdo & Shoemaker
2010; Aasi et al. 2013b) representing the expected sensitivity of
aLIGO during its first observing runs. A plot of the horizon
distance as a function of the chirp mass and the symmetric
mass ratio is given in Figure 1. It encodes the farthest distance
to which a BBHwith the given parameters can be seen. The
horizon distance will also be a function of the black hole spins.
Since Dominik et al. (2012) do not provide individual spin
information in their catalogs, we set the spin parameter to zero
for simplicity when simulating signals in our synthetic
universe. Our ignorance of the spins may lead to systematic
biases, as high spins can noticeably affect the horizon distance
(Ajith et al. 2011) and could change the rate of observed
signals by a factor of two or three (Dominik et al. 2014a). One

could incorporate this lack of knowledge by assuming a spin
distribution for black holes and margnializing the result over
the spins. We defer this to a later study when more informed
spin priors (observationally motivated or from population
synthesis) can be incorporated.
Not every binary within the horizon will be detected, as Deff

is location and orientation dependent. Under the assumption of
a uniform distribution over the sky and a uniform source
orientation, however, we can numerically calculate the fraction
P ( )x of systems with

D

D
F F1 cos 4 cos , 6L

eff

2 2 2 2 2( ) ( )i i x= + + >+ ´

with 0, 1[ ]x Î . Note that P ( )x , which we can interpret as a
cumulative distribution function, is independent of the binary’s
masses, and we will use it to determine what fraction of signals
at a given luminosity distance is detectable, i.e., has an S/N
larger than the detection threshold.

3.2. Cosmological Effects

We simulate an expanding universe with sources distributed
uniformly and isotropically in comoving volume, which on
scales of hundreds of Mpc is a valid assumption. Since the
frequencies of any signal become increasingly redshifted with
growing distance between source and detector, the total chirp
mass measured at the detector is shifted by

z1 , 7( ) ( )* = +

where z denotes the redshift. Assuming zero curvature and
standard cosmological parameters (Bennett et al. 2014)

H0.286, 1 , 69.6, 8M M 0 ( )W = W = - W =L

we calculate the comoving distance as a function of the redshift
(Hogg 1999),

D z
c

H

dz

z1
. 9C

z

M0 0 3
( )

( )
( )ò=

¢

W + ¢ + WL

Here, c denotes the speed of light.
The catalogs by Dominik et al. (2012) provide large sets of

binaries characterized by their intrinsic chirp mass  and
symmetric mass ratio η. When we distribute them uniformly in
comoving volume, the observed chirp masses * are
redshifted according to (7). This implies that the maximal
distance to which they can be detected changes as it is the
observed parameters, not the intrinsic parameters, that
determines the appropriate horizon distance. Since

D D z1 , 10L C ( ) ( )= +

the maximal observable comoving distance satisfies

D z z D, , 1 , , 11C
max

H( ) ( ) ( ) ( )* h h+ =

which we solve numerically for z. Note that the leading-order
inspiral horizon distance behaves as DH

5 6( ) ( )* * ~ ,
hence

D
z

D
1

. 12C
max

5 6

1 6 H( )
( )

( ) ( )


~
+

<

While the derivation of (12) is only valid for low-mass systems,
we find that DC

max is generally less than the static, Euclidean
universe equivalent DH.

Figure 1. Horizon distance in Gpc for nonspinning BBHs as a function of chirp
mass and symmetric mass ratio assuming a single detector with the early
aLIGO noise spectrum.
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3.3. Detection Rate and Distance Distribution

We now assume binaries of a fixed model, distributed
isotropically and uniformly in comoving volume, that merge at
a constant comoving merger rate density  (in
MWEG Myr1 1- - ) as given in the data sets by Dominik et al.
(2012). To convert these numbers into a detection rate for
aLIGO, we proceed as follows.

First, the comoving merger rate  per MWEG has to be
multiplied by an average galaxy density which we take as

0.0116 MpcG
3r » - following Kopparapu et al. (2008). Next,

we must calculate the effective volume in which each binary is
observable, by integrating the number of observable binaries as
a function of DC. As the distance increases, the area of the
corresponding sphere increases as DC

2 but the fraction of
binaries that are oriented such that their signal is sufficiently
loud for detection (that is, D Deff H< ) becomes smaller.
Finally, due to the redshifted time,

t t z1 13L C ( ) ( )= +

the observed merger rate for binaries at redshift z 0> is less
than the comoving merger rate. Thus, the effective volume for a
binary with chirp mass is

V
D

z
P

D

D
dD4

1 ,
, 14

D
C L

Ceff
0

2

H

C
max

( )( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟*


òp h

=
+

where DC
max is defined by (11). The function P, introduced in

Equation (6), gives the fraction of suitably oriented binaries
(i.e., those giving an S/N greater than 8) and z1 1( )+ -

accounts for the difference between apparent and comoving
merger rate density. We note that the integrand in (14) can be
interpreted (up to a normalization) as the observed distance
distribution for binaries with fixed intrinsic parameters.

The average detection rate for each model is given by

N V , 15G eff˙ ( ) r= ´ ´

where Veff denotes the average effective volume, with the
average taken over all binaries in a given model. We take 
and Gr from Dominik et al. (2012) and Kopparapu et al. (2008),
respectively.

Figure 2 shows this distribution for an equal-mass
BBH with m m M101 2= = . For comparison, we include

the equivalent curve for a static, Euclidean universe, where
D DL Cº and (14) simplifies to the case z = 0. As expected,
both curves agree for low redshift, but as we have noted
above, there are fewer binaries seen at large comoving
distances if the expansion of the universe is taken into
account. This effect becomes increasingly important for
larger distances, i.e., for high-mass binaries and more
sensitive detector configurations.
The effective volume in which binaries with fixed para-

meters are detectable changes considerably across the para-
meter space. This leads to an observational bias in favor of
systems with large volume reach. We incorporate this effect by
re-weighting the chirp mass distribution of binaries according
to their individual effective volumes. In practice, Dominik et al.
(2012) provide the data for each of their models in form of a
discrete set of binary parameters. For each of those binaries, we
calculate the integer part of V Veff eff

min and add that many copies
of the binary to our new set of observable parameters. Here,
Veff

min denotes the smallest effective volume across all binaries in
the set, and only one copy of the binary with this smallest
effective volume is kept.6

Finally, for each binary in our new set, we draw a comoving
distance from the distribution underlying Veff . From this
distance, we then infer the redshift and change from  to
the observable redshifted chirp mass * according to (7). Our
discrete representation of observable binaries then consists of
multiple copies of the same intrinsic systems, each however
with a unique redshifted chirp mass.
Note that an equivalent, but computationally more

expensive, procedure would be to randomly draw binaries
from the intrinsic distribution, then draw comoving distances
and orientations for each binary within the total sensitive
volume for the respective model and only keep those binaries
with a detectable GW signal. Our method instead avoids
disregarding any randomly drawn sources by drawing from
the appropriate (distance/orientation) distribution of detect-
able signals.

3.4. Estimating and Including Measurement Errors

Including the observational bias discussed in Section 3.3 in
the chirp mass distribution still does not yield the distribution
that one would expect to observe, because there will be a
measurement error associated with each of the observations.
Previous publications have mainly discussed a full Bayesian
framework to combine multiple observations including their
measurement uncertainties (Mandel 2010; Mandel &
O’Shaughnessy 2010; O’Shaughnessy 2013). We instead
assume a statistical fluctuation of the measured parameter
around its true value as detailed below.
The accuracy of the parameters recovered during

GW searches is limited by two factors. First, since we match
to templates of the signals, the accuracy of recovered
parameters will be limited by the accuracy of the waveform
models that used in the search. Second, the accuracy will be
affected by statistical fluctuations of the noise in the
measurement process. While we leave the former for dedicated
studies such as Buonanno et al. (2009) and Nitz et al. (2013),

Figure 2. Probability distribution in comoving distance for detectable BBHs
with m m M101 2= = . The solid (blue online) curve takes cosmological
effects into account (see text) while the dashed line assumes a static, Euclidean
universe (i.e., local universe approximation).

6 We could keep more copies of the binary with the smallest effective volume
and multiply the number of every other binary in the set accordingly, but tests
showed that this has no effect on our results.
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we can estimate the uncertainty due to the latter using the well-
known Fisher matrix estimate.

Fisher matrix analyses rely on a linear approximation of
signal variations and are valid for large S/Ns. Neither of the
two assumptions is typically valid in realistic scenarios, and
recent papers have discussed some implications of violating
these assumptions (Vallisneri 2008; Rodriguez et al. 2013;
Mandel et al. 2014). Here, however, in order to demonstrate the
basic efficacy of our method to distinguish BBH populations
with GW observations, we take Fisher-matrix predictions as a
proxy for the width of posterior distributions of parameters
obtained via a fully Bayesian analysis of the kind that will be
performed on actual GW events (Veitch et al. 2014). In
performing a population study of the kind we perform here, one
should include not only a point estimate for parameters such as
the chirp mass, but the full posterior from these parameter
estimation routines. These posteriors can then be combined in
the correct way, as described in Mandel (2010). The method we
use here is essentially the point estimate approximation to the
full analysis.

We employ the same inspiral-merger-ringdown model
(Santamaría et al. 2010) for our Fisher-matrix calculations as
we used to simulate GW signals. We only consider variations
of the intrinsic parameters: masses, time, phase and a model-
specific single effective spin. We assume that these are also the
parameters that are recovered, at least initially by the
GW search algorithm (see, e.g., the recently proposed search
algorithm for nonprecessing, spinninng binaries by Dal Canton
et al. 2014). This assumption is likely to make our error
estimates too large since actual GW events will be followed up
by complex parameter estimation routines (see, e.g., Veitch
et al. 2014) exploring the full parameter space of precessing
binaries (O’Shaughnessy et al. 2014; Vitale et al. 2014;
Chatziioannou et al. 2015). However, since we only need an
approximate error estimate that can be obtained in a fast and
reliable way across the BBH parameter space, we choose to use
the Fisher-matrix method here for nonprecessing binaries, and
we neglect small correlations with extrinsic parameters such as
sky location, orientation or distance.

The characteristic standard deviations in the measurement
process are estimated by (Poisson & Will 1995)

, 16i
ii

1( ) ( )qD = G-

h h
, , 17ij i j

( )⎜ ⎟⎛
⎝

⎞
⎠q q

G =
¶
¶

¶
¶

where ijG is the Fisher information matrix and h h i( )q= is
the waveform model. The inner product used in (17) is given
by

g h
g f h f

S f
df4 Re 18

f nlow

( ) ( )
( )( ∣ )

˜ ˜
( )

*

ò=
¥

which is consistent with the S/N definition in (3). The form
of the waveform model we use allows us to calculate the
partial derivatives used in the definition of ijG analytically, and
we ensure numerical errors in the matrix inversion remain
small.7

The only parameter we use to distinguish BBH populations
in this study is the observable, redshifted chirp mass, * . The
data sets of expected observable chirp masses that we prepared
following the algorithm introduced in Section 3.3 shall now be
skewed further by adding measurement errors to each binary in
the data set. We do so by assuming a Gaussian distribution
centered around the chirp mass value of each binary with a
standard deviation given by the Fisher matrix estimate (16). We
evaluate the Fisher matrix at the appropriate observed chirp
mass and mass ratio of the binary, setting the value of the black
hole spins to zero (although we allow the spins to vary when
calculating the Fisher matrix). This has a negligible effect on
our results as the measurement accuracy for the chirp mass is
only weakly dependent on the spins (Ohme et al. 2013). We
randomly draw a sample from this distribution to re-define the
measured chirp mass. Similarly, when we later simulate the
universe with a particular model, each observation is drawn
from the distribution that incorporates observational biases, but
the actually measured chirp mass is additionally offset
following the Gaussian distribution that simulates measurement
errors.
The Fisher-matrix estimates scale inversely with the S/N, so

we only calculate them once across the parameter space and
scale them for each binary in the data set according to its S/N,
which in turn is inferred from the distance and a randomly
chosen orientation. Figure 3 shows the chirp mass uncertainty
at a constant S/N of 10 across the parameter space for the early
configuration of aLIGO.
Figure 4 illustrates the transition from the intrinsic

BBH population, predicted by Dominik et al. (2012) for each
of their models, to the expected observed chirp mass
distribution. The main effect of the observational bias detailed
in Section 3.3 is that the distribution becomes skewed toward
high-mass binaries, and its support extends to larger chirp
masses due to the redshift of distant sources. The addition of
measurement errors hardly affects the distribution at low chirp
masses, simply because the errors are small compared to the
typical variation of the distribution in this regime. For heavy
systems, on the other hand, noise fluctuations introduce a non-

Figure 3. Expected relative measurement errors in the chirp mass for an early
configuration of aLIGO, S/N 10, calculated using the PhenomC waveform
model (Santamaría et al. 2010).

7 In fact, we find that no element of 1GG- and 1G G- deviates from the
respective element of the identity matrix by more than 10−7, in most cases the
deviation is much less than this.
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vanishing chance of measuring chirp mass values greater than
the largest (redshifted) chirp mass in each model. Hence, the
main effect of introducing measurement errors is that the
expected observed distributions show a characteristic tail at
high chirp masses.

4. COMBINING MEASURED RATES
AND CHIRP MASSES

Given a set of BBH observations, for each model variation
Vi, we wish to calculate the posterior probability for that being
the correct model. The information we gather about the correct

Figure 4. Chirp-mass distributions for each model in Dominik et al. (2012) using either their optimistic (top panel) or pessimistic (bottom panel) submodel and a
50–50 split of solar and sub-solar metallicities. The solid (blue online) line shows the intrinsic distribution as given by Dominik et al. (2012). The dotted (green) line
shows the same distribution when accounting for the observational biases introduced in Section 3.3 as predicted for the early configuration of aLIGO. Finally, the
dashed (red) line with largest chirp-mass support shows the expected observed distribution that additionally folds in the errors in measuring the chirp masses through
GW observations.
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model is twofold. First, we obtain a set of observed chirp
masses { } , and second, we measure the rate of
BBH detections by observing n binaries in a given observation
period. In reality each observation will include measurements
of additional physical parameters of the system, such as the
component spins. (See Gerosa et al. 2013, 2014 for information
on how measurements of spin misalignments can help to
constrain astrophysical formation scenarios.) Including addi-
tional information from these other dimensions should help in
distinguishing astrophysical formation scenarios.

We simulate the observed population by choosing one of the
model variations, adjusted to account for selection effects as
described above, to describe the universe. We then draw n
individual chirp mass measurements from this model, which
form the data M}{ . The number of observations we assume is
itself drawn from a Poisson distribution with a mean value that
is dictated by the observation time and the merger rate of the
model variation we have selected to simulate the universe.

With these measurements, { } and n, the posterior
probability that model Vi is the correct model reads

P V n
P n V P V

P n
,

,

,
, 19i

i i( ) ( ) ( ){ } { }
({ } )

( )



=

where we have used Bayes’ Theorem. P Vi( ) is the prior
probability on model Vi, P n V, i({ } ∣ ) is the likelihood of
making these chirp mass measurements and measuring this
detection rate given model variation Vi, and P n,({ } ) is a
normalization factor called the evidence.

Assuming that the number of observations n is independent
from the chirp mass values we observe, we can rewrite this as

P V n
P n V P n V P V

P n
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,
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We normalize by assuming that the discrete model variations
we consider cover all possible states of the universe, which is
an idealization that we shall discuss in more detail later.
However, this assumption allows us to define the normalization
factor by requiring the sum of the probabilities for each model
to be unity, which leads to

P V n
P n V P n V P V

P n V P n V P V
,
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We assume a uniform prior on the models,

P V
1

, 22i( ) ( )


=

where  is the number of models we are considering. The
prior then cancels out and we are left with
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The likelihood of making n observations in a set time, given
a model predicting mean number of observations, im , is given
by the Poisson distribution:

P n V P n
e

n
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The likelihood terms of the form P n V, i({ }∣ ) are
calculated by binning the chirp mass distributions for each
model into a histogram. We then calculate the likelihood of the

observed samples being drawn from their bins using the
multinomial distribution

P n V n
p

x
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where n is the number of samples in the observations, b is the
number of bins, pik is the probability in model i of drawing a
sample from bin k and xk is the number of observations that fall
into bin k, with

x n pand 1. 26
k

k
k

ik ( )å å= =

We calculate pik for each model and bin as the fraction of the
total number of samples in the model which fall into that bin.
The bin size we employ is motived by Scott’s rule (Scott 1979),

N

3.5
, 27

m
3

( )s
D =

where Δ denotes the bin width, σ is the standard deviation of
the model, and Nm is the total number of samples in model. To
be able to consistently compare our simulated data with all
models, we apply (27) to all models and then use the median
bin width for the actual analysis. However, we find that
changing this bin width by a factor of a few does not impact
our results noticeably.

5. OBSERVING SCENARIOS

The method we have developed transforms predicted binary
distributions and merger rates into observable distributions and
detection rates which in turn can be confronted with a set of
observations in order to assign posterior probabilities to each
model. As such, the method is generally applicable to any set of
theoretical predictions and detector configuration.
In the following, however, we present results for specific

choices of binary population models, detector sensitivity and
observing time. As detailed Section 2.2 and summarized in
Table 1, we consider 12 binary population models by Dominik
et al. (2012), each with both the “pessimistic” (submodel B)
and “optimistic” (submodel A) assumption about the common
envelope evolution. This leads to 24 distinct predictions of the
BBH chirp mass distribution (see Figure 4), where each comes
with a distinct average merger rate density that we take from
the arithmetic mean of the solar and subsolar metallicity
predictions by Dominik et al. (2012, Tables 2 and 3 therein).
The local merger rate densities for each model are given in
Table 2. Interestingly, due to the mass-dependent observational
bias, models with higher merger rate density do not necessarily
exhibit a higher detection rate, see for instance models 9 and 10
in Table 2.
Recent calculations by Dominik et al. (2013) that include the

cosmological evolution of merger rates give lower rate
densities than the ones we infer from earlier work of the same
authors. Consequently, the detection rates we find are up to a
factor of 2 larger than those recently predicted by Dominik
et al. (2014b; this is based on a direct comparison of our
method with their otherwise equivalent approach using the
same detector configuration). However, this neither affects the
general proof of principle carried out here, nor do the
conclusions we shall draw in the following section change
qualitatively by varying the detection rate at this level.
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We also have to specify in the sensitivity (i.e., noise spectral
density) of our assumed GW detector and the observing time.
Closely following Aasi et al. (2013b), we consider the first two
aLIGO science runs dubbed O1 and O2, respectively. The first
science run for aLIGO (O1) is planned to begin in autumn
2015. The duration of O1 will be approximately 3 months for
the two aLIGO detectors. We assume each detector has a duty
cycle of 0.8 so that the total period of coincident observation
during O1 will be about 0.16 years. The noise power spectral
density we use is the “early aLIGO” configuration (Shoe-
maker 2010).

We further consider a second science run, O2. During O2,
the detectors are planned to observe for approximately 6
months with a comparable duty cycle to O1. It is expected that,
after further improvements of the instruments following O1, the
aLIGO detectors during O2 will be approximately a factor of 2
more sensitive than the nominal early aLIGO noise curve we
use for O1. While the evolution of the noise power spectral
density is in general a function of the frequency, we find that, in
practice, the difference between the predicted noise curves in
Aasi et al. (2013b) results in improved horizon distances and
error estimates that are well approximated by simply scaling
the results we obtain for the early aLIGO configuration. Hence,
we simulate O2 by multiplying the O1 horizon distance by 2.
The Fisher-matrix errors change only due increased S/N at
fixed distance. This increase in sensitivity leads to a factor of 8
increase in volume meaning that, in total, O2 surveys 16 times
the time-volume of O1. We show in the following section that
this is when we will begin to distinguish between astrophysical
models.

6. RESULTS: DISTINGUISHING
BBH FORMATION MODELS

6.1. First aLIGOObserving Run (O1)

We simulate the observed BBH systems, assuming the
universe matches one of the models from Dominik et al.

(2012), and calculate the posterior probability for each model.
We repeat the experiment 10,000 times before turning to the
next model to simulate the universe. Figure 5 gives the median
posterior probability for each model.
In cases where one or few models have a high probability,

these would be distinguishable from the other models.
However, all models with a high probability would be
consistent with the observations. We reiterate that here we
restrict attention to the models in Dominik et al. (2012). Of
course these do not cover the full space of binary merger
predictions. If we were to include a broader range of models, it
is likely that the conclusions we are able to draw would be
weaker as various models would lead to comparable rates and
mass distributions. Nonetheless, some of the conclusions we
reach, such as excluding a number of models if there are no
observations in O1, are robust.
We first observe that, for the most part, we would be able to

distinguish between submodels A and B that correspond to
different common envelope scenarios (see Section 2.2.2). This
is unsurprising as the predicted rates for the majority of models
are significantly higher for submodel A (cf. Table 2). Models
which predict low detection rates for model A remain
degenerate with those in model B. The mass distribution from
such a small sample does not provide enough additional
information to break these degeneracies in the rates. For
example, model 1 A uses a very high, fixed envelope binding
energy, meaning that most binaries entering a common
envelope event fail to throw off the common envelope and
merge, causing them to never form BBH systems (for a more
detailed discussion of this, see Dominik et al. 2012). On the
other hand, submodel B does not allow a binary to survive a
common envelope event if the donor is on the Hertzsprung
Gap, and so again, many binaries merge and never form BBHs.
This generically lowers the merger rates and thus detection

Table 2
Predicted Merger and Detection Rates

a á ñb mc (O1) mc (O2)
Vi B A B A B A B A

0 7.8 40.8 26.0 24.9 4.0 25.2 64 402
1 4.6 6.8 27.3 26.2 2.3 3.9 37 63
2 8.3 36.0 26.6 24.9 4.2 25.9 67 413
3 4.0 47.6 25.0 24.4 1.9 28.7 30 458
4 0.1 3.1 25.0 24.7 0.1 1.9 1 30
5 7.8 40.9 26.0 24.9 4.0 25.3 64 404
6 7.9 41.3 25.6 24.2 3.9 25.1 63 401
7 8.6 47.1 25.3 23.8 4.0 26.3 65 420
8 0.4 2.1 21.3 10.0 0.0 0.6 1 9
9 11.8 54.6 23.2 20.7 3.4 20.2 54 324
10 5.8 31.3 26.8 26.2 4.3 26.0 68 415
11 10.4 54.5 29.8 28.6 8.5 46.5 136 742

Notes. The binary populations models, Vi, predicted by Dominik et al. (2012)
are summarized in Table 1 and the submodels B and A refer to pessimistic and
optimistic assumptions about the common envelope evolution of Hertzsprung
gap donors (Section 2.2.2).
a Local merger rate density in MWEG Myr .1 1- -

b Average predicted observed chirp mass in Me (see Section 3).
c Mean number of detections predicted by each model for the early
aLIGO observing runs O1 and O2 (see text for details).

Figure 5. Median posterior probability for each model in the set of Dominik
et al. (2012) models after an O1 like observing period of 0.16 years, calculated
from 10,000 repeats. The model which observations were drawn from is shown
on the axis labeled universe. The models which these observations were then
compared to is labeled Model, so that the probabilities in each row sum to one.
Models 0–11 are described in Table 1. The two submodels, A and B, are
described in Section 2.2.2.
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rates for submodel B models, leading to the degeneracy visible
in the upper right quadrant of Figure 5.

Another interesting example involves models 4 and 8 that, in
the pessimistic submodel B, are consistent with no observations
at all during O1. Hence, they cannot be distinguished from each
other, or indeed model 8 A, although they are favored over all
other models if indeed no detection are made.

Within the two submodels, it is difficult to identify the
correct model. Indeed, there are numerous variations which
would be indistinguishable from the standard model. The only
model which can be clearly identified is model 11, a model
which reduces the strength of stellar winds by a factor of 2 over
the standard model. We now discuss why we are able to
distinguish this model from the others in such a short
observational period.

6.2. Stellar Winds

In massive O-type stars, stellar winds of high temperature
charged gas are driven by radiation pressure. In Wolf–Rayet
stars mass loss rates can be as high as M10 yr4 1- -

 (Nugis &
Lamers 2002). This can cause stars to lose a large amount of
mass prior to the supernova. Theoretical uncertainties in
modeling these mass loss rates therefore translate into
uncertainties in the pre-supernova masses for massive stars.
Dominik et al. (2012) examine the effects of reducing the
strength of stellar winds by a factor of 2 on the distribution of
BBHs in their Variation 11. First, reducing stellar winds results
in stars having a higher mass prior to supernova than they
would otherwise have. This in turn leads to more mass falling
back onto the compact object during formation, which reduces
the magnitude of natal kicks given to black holes. This results
in more systems surviving the supernova (rather than being
disrupted) and increases the merger rates. More massive pre-
supernova stars also form more massive remnants, resulting in
the most massive BBH having a chirp mass of M64~  with
reduced stellar winds compared to M37~  using the standard
prescription. Finally, reducing the strength of stellar winds
allows stars with a lower zero age main sequence mass to form
black holes due to more mass being retained. This can boost the
BBHmerger rate compared to the standard model.

All of these effects combined mean that Variation 11
predicts BBHs with characteristically higher chirp masses, as
well as predicting a much higher merger rate than all other
models (even for the pessimistic submodel B in O1, Variation
11 predicts 10( ) observations). We therefore expect that we
would be able to correctly distinguish a universe following
Variation 11 from all other models with relatively few
observations. In Figure 6 we show the median posterior
probability for each model as a function of the observation
time, based on 10,000 redraws of the observations. We find that
when drawing observations from a universe following Varia-
tion 11 we overwhelmingly favor it within the duration of O1,
with 10( ) observations.

6.3. Second aLIGO Observing Run (O2)

We now turn our attention to the second observing run, O2,
and investigate which models can be distinguished using the
much larger time-volume surveyed by O2. In Figure 7 we again
show a matrix plot showing the (median) posterior probability
for each model after a period corresponding to the O2 run.

Figure 7 has a more diagonal form than Figure 5, meaning
that in many cases the correct model is favored and others are
disfavored within the O2 period. In particular, the optimistic
and pessimistic submodels A and B become almost entirely
distinct from each other. This is because most of the Dominik
et al. (2012) models predict 100( ) ( 10( ) ) observations
during the O2 period for the optimistic (pessimistic) submodels
respectively (as shown in Table 2). Furthermore, the majority

Figure 6. Median posterior probability for each of the models in the set as a
function of observation time for a period of time corresponding to the
aLIGO O1 run (0.16 years). GW observations are drawn from a universe
following Variation 11, submodel B which reduces the strength of stellar winds
by a factor of 2 compared to the standard model. The blue (solid) line shows
the median posterior probability for Variation 11 taken from 10,000 repeats,
and the shaded error bar shows the 68% confidence interval. Variations 0, 2, 5,
6, 7 and 10 are plotted in green (dotted–dashed), while variations 1, 3 and 9 are
plotted in black (dotted). Variations 4 and 8 predicting ∼0 observations in O1
are plotted in red (dashed).

Figure 7. Median posterior probability for each model in the set of Dominik
et al. (2012) models after an O2 like observing period of 0.32 years with a
detector more sensitive than the early aLIGO noise curve by a factor of 2. The
median is calculated based on 10,000 redraws of the observations. The model
which observations were drawn from is shown on the axis labeled universe.
The model which these observations were then compared to is labeled Model.
Models 0–11 are described in Table 1. The two submodels, A and B, are
described in Section 2.2.2.
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of variations in submodel A can be unambiguously identified;
the exception being that the standard model which remains
degenerate with models 5–7, as we discuss in detail in
Section 6.3.1. For the pessimistic submodel B, the standard
model remains indistinguishable from a number of other
variations. However, there are a few models which can be
clearly distinguished, including models 4 and 8 (that predict
significantly lower rates), and 9–11. All of these models predict
tens of observations and consequently, we are able to use
information from both the chirp mass distribution and the
detection rate to help distinguish models. Model 10 involves
the variation of the supernova engine, which we elaborate on in
Section 6.3.2.

6.3.1. Black Hole Kicks and Maximum Neutron Star Mass

Not all models are distinguishable, even with the 100( )
observations predicted by the optimistic submodel A for O2.
For example, in Figure 7 we see that the standard model is
degenerate with Variations 5–7. We now explain why this is so.

As already mentioned, it is unclear what the correct
distribution of natal kicks given to black holes upon formation
is. In order to investigate the possibilities, Dominik et al.
(2012) vary two parameters relating to the kicks imparted onto
newly formed black holes; the characteristic velocity σ and the
fraction of mass fb which falls back onto the newly born
black hole.

In their standard model, black holes receive a kick vk whose
magnitude vmax is drawn from a Maxwellian distribution with

265 km s 1s = - , and reduced by the fraction of mass falling
back onto the black hole fb as

v v f1 , 28k bmax )( ( )= -

where fb is calculated using the prescription given in Fryer
et al. (2012).

In order to test the effects of smaller natal kicks, in Variation 7
Dominik et al. (2012) reduce the magnitude of kicks given to
neutron stars and black holes at birth by a factor of 2. They use
a Maxwellian distribution with 132.5 km s 1s = - . For BBHs,
this has very little effect on the chirp mass distribution, and so
one cannot expect to be able to distinguish this model from one
using full kicks.

The same holds true when the maximum neutron-star mass is
increased (decreased) from its fiducial value in the standard
model of M2.5 . This has very little impact on the BBH chirp
mass distribution and so there is effectively a degeneracy
between these models. This could be resolved by also including
BNS observations in the comparison. We do not do this here as
we concentrate on the BBH predictions, due to the prediction
by Dominik et al. (2012) that these will dominate the early
aLIGO detections.

6.3.2. Supernova Engine

In their standard model, Dominik et al. (2012) employ the
Fryer et al. (2012) prescription to calculate the fraction of mass
falling back onto the black hole during formation, and thus the
black hole masses. In particular, they use the rapid supernova
engine. When employed in a compact binary population code
such as StarTrack, the rapid supernova engine reproduces
the observed mass gap (Ozel et al. 2010; Farr et al. 2011) in
compact objects between the highest mass neutron stars and the
lowest mass black holes (for a discussion of using

GW observations to infer the presence or absence of a mass
gap, see Hannam et al. 2013; Littenberg et al. 2015; Mandel
et al. 2015).
In model 10 Dominik et al. (2012) vary this prescription to

use the delayed supernova engine from Fryer et al. (2012),
which produces a continuous distribution of black hole masses
(and thus BBH chirp masses). We therefore expect that the
difference between these two models might be visible in the
chirp mass distributions. We see however from Table 2 that
these two models predict similar merger rates for BBH, and so
we do not expect to be able to distinguish them based on the
detection rate. Nonetheless, we see from Figure 7 that this
model can be distinguished from the others by the end of O2
and even, to a lesser degree, at the end of O1 (Figure 5).
To illustrate the importance of both the mass distribution and

predicted rates, in Figure 8 we show the results that would be
obtained using only one of these to separate the models. By
comparing these results with Figure 7, it becomes clear that
both the mass and rate measurements contribute significantly to
our ability to distinguish between models. As expected, the
delayed supernova engine (model 10) is distinguished from
observed masses, but the rates are quite degenerate with other
models. In contrast, models 4 and 8, are distinguished primarily
by rate measurements, and not masses. As we have mentioned
previously, the unknown spin distribution of black holes in
binary systems can change the rate by a factor of two or three.
Similarly, both the mass and rate distributions are subject to
uncertainties due to additional physical effects which are not
yet incorporated. Consequently, one might choose to incorpo-
rate an uncertainty in the rates or mass distributions. The results
in Figure 8 illustrate the extreme scenario where one assumes
knowledge of only the rate or mass distribution. Adding an
uncertainty to the mass or rate distributions will lead to a result
between those shown in Figures 7 and 8.

7. SUMMARY AND FUTURE WORK

In this paper we have outlined a method for comparing
GW observations of BBHmergers to binary population synth-
esis predictions using a Bayesian model comparison frame-
work. Starting from chirp mass distribution predicted by
Dominik et al. (2012), we produce predicted observed chirp
mass distributions accounting for known observational effects.
We incorporate the following.

(a) The redshifting of observed binary masses due to the
cosmological distances out to which they will be
observed.

(b) The observational bias of GW detectors to detect more
massive systems, since they can be seen to greater
distances and thus in much larger volumes.

(c) Fisher matrix estimates of measurement uncertainties in
the recovery of the chirp mass of BBH.

We show that given the merger rates predicted by the models
of Dominik et al. (2012), we will begin to be able to distinguish
between population synthesis models in the first two
aLIGO science runs. Ruling out models in turn can help to
constrain the value of unknown parameters, which relate to
poorly understood astrophysics relating to binary evolution.
Of course, the set of models considered here by no means

encompasses the full set of stellar evolution models available in
the literature. We restricted attention to this subset of models as
the data was publicly available in an easy to use form. It would
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be straightforward to include additional models into this
analysis. Ideally, we would make use of a dense set of models,
where numerous astrophysical parameters are jointly varied.
This would allow us to interpolate between models, and extract
best-fit parameters (O’Shaughnessy et al. 2008; O’Shaughnessy
2013). Furthermore, we have restricted attention to the two best-
measured quantities: the rate and chirp mass distribution of
binaries, and only used point estimates of the masses. The
inclusion of full parameter distributions can only enhance our
ability to distinguish between models.

The method we have introduced allows us to distinguish
between a given set of stellar evolution models. It will identify
the model, or models, that best agree with the observed rate and
mass distribution. It will not, however, indicate whether the
best model is actually a good fit to the observations—only that
it is better than the others. This could be remedied by
introducing a simple, generic model. For example, the intrinsic
mass distributions shown in Figure 4 are reasonably well
desribed by a decaying power law with an upper and lower
mass cutoff. One could then imagine extending the set of
models to include this phenomenological mass distribution
parametrized by three variables with an additional variable rate.
To calculate the posterior for this distribution, we would then
have to marginalize over four parameters. Thus, even if the
generic model was a reasonable fit to the data, it would be
penalized by the large initial parameter space. It is likely that
the generic model would be preferred after a small number of
observations. With a large number of observations, the rate and
mass distributions would be reasonably well measured. Any
specific model which matched the observations well would
then be preferred to the generic model due to its broader
support on the parameter space. It would be reasonably
straightforward to extend our method to include a generic
model, and this is something we plan to incorporate in the
future.

In this study we concentrated on the information that could
be gained from GWobservations of BBHmergers. aLIGO
and AdV are also expected to observe the inspiral, merger and
ringdown of compact binaries including neutron stars (BNS and

NSBH systems). One should include all GWobservations of
compact binaries in order to extract the maximum amount of
information from the observations. In fact, as discussed above,
we are unable to distinguish models which vary the maximum
allowed neutron star mass since we ignore these events here. In
this study we ignored these events since the predicted detection
rates for BBHmergers dominated those of other compact binary
mergers. The BBHmass distribution also spans a large range of
masses, with structure encoding information about binary
evolution. Ignoring other families of compact binaries also
allowed us to avoid ambiguities in discerning the family of the
source (BNS, NSBH or BBH) due to degeneracies which exist in
measuring the mass ratio for these systems (Hannam et al. 2013),
although this can be dealt with in the future (Farr et al. 2013).
All these considerations have to be carefully taken into

account in future studies. However, our results indicate that the
upcoming generation of advanced GW detectors will soon start
putting non-trivial bounds on current and future binary
evolution models, and analyses like the one presented here
will provide an important basis to link theoretical models with
GW observations.
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