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Abstract 1 

The most common form of male infertility is a low sperm count, known as 2 

oligozoospermia. Studies suggest that oligozoospermia is associated with epigenetic 3 

alterations. Epigenetic alterations in sperm, which may arise due to the exposure of 4 

gametes to environmental factors or preexist in the sperm of infertile individuals, may 5 

contribute to the increased incidence of normally rare imprinting disorders in babies 6 

conceived after assisted reproductive technology using the sperm of infertile men. 7 

Genomic imprinting is an important developmental process whereby the allelic activity 8 

of certain genes is regulated by DNA methylation established during gametogenesis. 9 

The aberrant expression of several imprinted genes has been linked to various diseases, 10 

malignant tumors, lifestyle and mental disorders in humans. Understanding how 11 

infertility and environmental factors such as reproductive toxicants, certain foods, and 12 

drug exposures during gametogenesis contribute to the origins of these disorders via 13 

defects in sperm is of paramount importance. In this review, we discuss the association 14 

of epigenetic alterations with abnormal spermatogenesis and the evidence that 15 

epigenetic processes, including those required for genomic imprinting, may be sensitive 16 

to environmental exposures during gametogenesis, fertilization and early embryonic 17 

development. In addition, we review imprinting diseases and their relationships with 18 

environmental factors. While the plasticity of epigenetic marks may make these more 19 

susceptible to modification by the environment, this also suggests that aberrant 20 

epigenetic marks may be reversible. A greater understanding of this process and the 21 

function of epidrugs may lead to the development of new treatment methods for many 22 



 3 

adult diseases in the future.  1 

2 



 4 

Introduction 1 

Approximately half of human infertility can be explained by abnormal 2 

spermatogenesis. Disturbingly, the incidence of abnormal spermatogenesis has 3 

increased in developed countries, including Japan (Japan Society of Obstetrics and 4 

Gynecology Registry). Oligozoospermia is the most common disorder of male 5 

infertility characterized by abnormally low concentrations of spermatozoa in the semen. 6 

Although different genetic causes are known, they account only for a fraction of the 7 

cases of aberrant spermatogenesis (Dohle et al. 2002; Fernandes et al. 2002; Gianotten 8 

et al. 2003). Epigenetic factors, including DNA methylation, histone modifications and 9 

chromatin remodeling, have been studied extensively during gametogenesis and germ 10 

cell maturation and it is clear that germ cells undergo extensive epigenetic 11 

reprogramming in a sex-specific manner (Dada et al. 2012; van Montfoort et al. 2012; 12 

Boissonnas et al. 2013). Consequently, aberrant epigenetic alterations may underlie 13 

some cases of oligozoospermia.  14 

Indirect evidence for a role for aberrant epigenetic processes in 15 

oligozoospermia comes from studies on human assisted reproductive technology (ART), 16 

in which the eggs and/or sperm are manipulated in the laboratory to help infertile 17 

persons of reproductive age conceive. Recent reports identified an increased incidence 18 

of normally rare imprinting disorders, especially Beckwith-Wiedemann syndrome 19 

(BWS; OMIM 130650), Angelman syndrome (AS; OMIM 105830) and Silver-Russell 20 

syndrome (SRS; OMIM 180860), in babies conceived after ART (DeBaun et al. 2003; 21 

Gosden et al. 2003; Maher 2005). Several reports have suggested that imprint 22 
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methylation errors occur during the process of ART, both in in vitro fertilization (IVF) 1 

and intracytoplasmic sperm injection (ICSI) (Cox et al. 2002; DeBaun et al. 2003; 2 

Gicquel et al. 2003; Maher et al. 2003; Moll et al. 2003; Orstavik et al. 2003; Ludwig et 3 

al. 2005; Rossignol et al. 2006; Bowdin et al. 2007; Kagami et al. 2007) which may be 4 

due to in vitro embryo transfer procedures performed at the time of epigenetic fluidity 5 

(Lucifero et al. 2004; Niemitz and Feinberg 2004; Thompson and Williams 2005; 6 

Horsthemke and Buiting 2006). However, our work and that of others suggests that 7 

epigenetic risks linked to ART techniques can also originate in the use of sperm with 8 

preexisting epigenetic errors (Kobayashi et al. 2007; Kobayashi et al. 2009). This 9 

review provides an overview of the current state of knowledge of human sperm 10 

epigenetics and what is known regarding the effects of environmental and nutritional 11 

factors on the sperm epigenome. 12 

 13 

Genomic imprinting  14 

Genomic imprinting is an epigenetic phenomenon that describes 15 

parent-of-origin patterns of monoallelic gene expression reported in mammals and some 16 

plant species (Barlow and Bartolomei 2014). The term genomic imprinting was first 17 

used to describe the failure of mono-parental embryos to develop appropriately in utero 18 

despite their diploid DNA content (Barton et al. 1984; McGrath and Solter 1984; Surani 19 

et al. 1984). We now know that there are over one hundred genes in mammals that are 20 

regulated by genomic imprinting and many of these have critically important roles in 21 

early development and also later life process, both metabolic and behavioural (Surani 22 
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1998; Tilghman 1999; Cleaton et al. 2014).  1 

Differences in the parental genomes are first established in the germline when 2 

the two parental genomes are physically separate. Discrete DNA regions are marked by 3 

DNA methylation in one or other germline. After fertilisation these marks are 4 

maintained despite the extensive epigenetic reprogramming that takes place early in 5 

development (Morgan et al. 2005), to generate regions of the genome that have DNA 6 

methylation present on one parental allele and absent on the other allele. These regions 7 

are termed gametic differentially methylated regions (gDMR; Figure 1). These gDMRs 8 

act as the catalyst for a further series of epigenetic changes including both the 9 

modification of histones and somatic DNA methylation events, which generate 10 

extensive domains of imprinted chromatin some of which span several megabases. 11 

Within these domains certain genes are silenced on one parental allele and active on the 12 

other parental allele with most imprinted domains containing both paternally- and 13 

maternally-expressed genes. While these gDMRs are maintained for the lifetime of the 14 

individual, the monoallelic expression status of imprinted genes can vary with tissue 15 

type and developmental stage suggesting that functional imprinting is important at 16 

different times for different genes. In the mouse female germline, gDMRs acquire DNA 17 

methylation after birth during the transition from primordial to antral follicles in the 18 

postnatal growth phase (post-pachytene) (Obata and Kono 2002; Lucifero et al. 2004; 19 

Hiura et al. 2006). In the human female germline,  maternal methylation of gDMRs 20 

has already been initiated to some extent in adult non-growing oocytes but not in 21 

neonatal oocytes (Sato et al. 2007). In mouse male germline, methylation at three sites 22 
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(H19, Rasgrf1 and Gtl2) is present prenatally before meiosis and completed by the 1 

pachytene phase of postnatal spermatogenesis (Davis et al. 1999; Davis et al. 2000; 2 

Ueda et al. 2000; Li et al. 2004) with complete loss of methylation of maternal DMRs. 3 

While gDMRa are established in the germline, some imprinted domains also contain 4 

somatic DMRs (sDMR) which are not inherited via the germline but which appear 5 

during embryogenesis either before or after monoallelic expression is established and 6 

which are also important for maintaining monoallelic gene expression (John and 7 

Lefebvre 2011). In addition to the establishment and maintenance of allele-specific 8 

epigenetic marks, imprints must be erased in the developing germline and reset for the 9 

next generation (Figure 2). Establishment, maintenance and erasure of imprints all 10 

involve dynamic changes in epigenetic marks that take place at different stages of 11 

development in males and females. In summary, genomic imprinting is a dynamic 12 

epigenetic process both in the germline and during early development. Epigenetic errors 13 

at any stage in the process of establishment, maintenance or erasure of imprints can 14 

have a catastrophic consequence for the next generation, as evidenced by the genomic 15 

imprinting disorders. 16 

 17 

Genomic Imprinting disorders 18 

The importance of correct genomic imprinting in humans is best illustrated by 19 

a number of rare but striking childhood developmental disorders associated with 20 

imprinted loci. Prader-Willi syndrome (PWS; OMIM 176270) and Angelman syndrome 21 

(AS; OMIM 105830) are two clinically distinct imprinting disorders linked to the same 22 
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imprinted region on chromosome 15q11-q1 (Buiting 2010). PWS is characterized by 1 

endocrine and neural abnormalities and malformation and is mainly associated with 2 

maternal uniparental disomy of 15q11-q1 (70%) and methylation defects (2-5%). In 3 

contrast, AS, which is characterized by global developmental delay, convulsions, 4 

scoliosis, excessive laughter, and movement, balance and sleep disorders, is associated 5 

with loss of function of the maternally expressed UBE3A gene either through deletions 6 

(70%), paternal uniparental disomy (0-20%) or aberrant methylation (2-5%) of the 7 

maternal allele.  Beckwith-Wiedemann syndrome (BWS; OMIM 130650) and 8 

Silver-Russell syndrome (SRS; OMIM 180860) are similarly clinically distinct 9 

syndromes associated with a single chromosomal region at 11p15.5 (Jacob et al. 2013). 10 

BWS is a fetal overgrowth disorder characterized by exomphalos, macroglossia, 11 

gigantism and an increased risk of developing embryonal tumors in childhood. BWS is 12 

associated with a number of genetic and epigenetic alterations. The most frequent 13 

alteration observed in BWS is hypomethylation of a gDMR located over the promoter 14 

of a long, non-coding RNA called LIT1 or Kcnqtot1, which is found in >60% of 15 

sporadic BWS patients. Animal studies suggest that this gDMR regulates expression of 16 

the maternally-expressed CDKN1C gene known to play a key role in limiting fetal 17 

growth (Andrews et al. 2007; Tunster et al. 2011). SRS is a similarly clinically 18 

heterogeneous condition characterized by severe intrauterine growth retardation, poor 19 

postnatal growth, craniofacial features such as a triangular-shaped face and a broad 20 

forehead, body asymmetry, and a variety of minor malformations. The most frequent 21 

alteration in SRS is hypomethylation of the gDMR spanning the promoter of a 22 
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non-coding RNA called H19 apparent in 40% of cases (Bliek et al. 2006). This gDMR 1 

regulates the imprinted expression of the fetal growth factor gene IGF2 (Insulin like 2 

growth factor 2) (DeChiara et al. 1991; Leighton et al. 1995). However, rare SRS 3 

patients have been reported with maternal microduplications spanning CDKN1C 4 

(Bonaldi et al. 2011). Furthermore, additional loci on various chromosomes have been 5 

implicated as having a role in this syndrome (Davis et al. 2000; Ueda et al. 2000; 6 

Gicquel et al. 2003; Maher et al. 2003; Sato et al. 2007). These disorders highlight the 7 

necessity of appropriately regulated gene dosage at imprinted loci mediated by 8 

epigenetic processes, which might consequently be subject to external influences acting 9 

on the epigenome. 10 

 11 

ART and congenital imprinting disorders  12 

A number of publications have suggested an association between ART and 13 

genomic imprinting disorders (Table 1) (Chiba et al. 2013; Hiura et al. 2014). The first 14 

report linking ART to AS in 2002 highlighted loss of DNA methylation on chromosome 15 

15 (Cox et al. 2002). In 2004 an increased frequency of BWS after ART was reported, 16 

again linked to changes in DNA methylation (DeBaun et al. 2003). In 2007 SRS was 17 

linked to ART and hypermethylation at an imprinted loci (Kagami et al. 2007). ART 18 

does not, however, appear to be a risk factor in PWS (Gold et al. 2014). 19 

There are several proposed mechanisms which may underlie the increased 20 

frequency of imprinting disorders in ART including the exposure of gametes and early 21 

embryos to culture conditions, the superovulation of oocytes and the presence of 22 
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preexisting imprinting mutations in sperm. Some studies have shown that exposure of 1 

mouse embryos to different culture conditions can alter the expression and imprinting of 2 

various genes, which could result in abnormal development (DeBaun et al. 2003; 3 

Gicquel et al. 2003; Maher et al. 2003; Lucifero et al. 2004). We, and others, have 4 

demonstrated that superovulation (artificial induction of ovulation with high doses of 5 

gonadotrophins) affects imprint methylation (Chang et al. 2005; Ligon 2005; Sato et al. 6 

2007). Embryo freezing may also be an issue as this has been found to have deleterious 7 

effects on DNA, embryonic gene expression, telomeres and plasma and nuclear 8 

membranes (Emiliani et al. 2000; Honda et al. 2001). Furthermore, the timing of 9 

embryo transfer may be an issue. Case reports of monochorionic dizygotic twins and 10 

conjoined twins with BWS resulting from transfer at the blastocyst stage (Shimizu et al. 11 

2004; Miura and Niikawa 2005) reported demethylation of LIT1 (KCNQ1OT1), 12 

suggesting that this demethylation occurs at a critical stage of preimplantation 13 

development. In addition to epigenetic errors induced by the process of ART, there is 14 

evidence that sperm from men with fertility issues carry preexisting epigenetic errors.  15 

 16 

Sperm from infertile men and epigenetic errors 17 

 Studies have shown that disturbed spermatogenesis is associated with 18 

incorrect DNA methylation at gDMRs (Table 2). In spermatozoa from oligozoospermic 19 

men, the occurrence of hypermethylation of several maternally imprinted DMRs or 20 

hypomethylation of paternally imprinted DMRs is increased (Marques et al. 2004; 21 

Kobayashi et al. 2007; Marques et al. 2008; Hammoud et al. 2010; Sato et al. 2011). 22 
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Boissonnas et al. also reported the association between methylation and sperm 1 

concentration in teratozoospermic (TZ) and oligoasthenoteratozoospermic (OAT) 2 

patients (Boissonnas et al. 2010). In the TZ group, 11 of 19 patients displayed loss of 3 

methylation of the IGF2 DMR or of both the IGF2 DMR and the H19 DMR. In the 4 

OAT group, 16 of 22 patients displayed a severe loss of methylation of the H19 DMR, 5 

and this closely correlated with sperm concentration. Marques et al. suggested an 6 

association between aberrant epigenetic sperm modifications and oligozoospermia 7 

(Marques et al. 2004). Normozoospermic individuals (0.13%), Moderate (17%) and 8 

Severe (30%) oligozoospermic patients all showed abnormal methylation of H19. We 9 

examined the DNA methylation status of seven imprinted genes in spermatic DNA 10 

obtained from infertile men and also found abnormal maternal and paternal DNA 11 

methylation at several imprinted loci (Figure 3). Samples (10/96 cases) with both 12 

maternal and paternal defects were primarily from men with severe oligospermia. 13 

Importantly, the outcome of ART (fertility rates and implantation rates) with sperm 14 

shown to have an abnormal DNA methylation pattern is generally poor (Kobayashi et 15 

al. 2007).  16 

As spermatogenesis progresses, the genome undergoes major changes that not 17 

only influence genetic and epigenetic information but also alter the nuclear structure. It 18 

is consequently important to understand how the specific nucleoprotamine/histone 19 

structure of the sperm nucleus conveys epigenetic information and how this might 20 

control early embryonic growth. In most cell types, DNA is wrapped around histone but 21 

in sperm, protamines, which are small arginine-rich nuclear proteins, replace histones 22 
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late in the haploid phase of spermatogenesis and these proteins are essential for 1 

spermatic function (Cho et al. 2001)(Figure 2). Both the phosphorylation of protamines 2 

and the ratio of the two human protamines, protamine (P1) and protamine 2 (P2), are 3 

important for optimal sperm function. The P1/ P2 ratio in fertile men ranges from 0.8 to 4 

1.2 (Carrell and Liu 2001). Perturbation of this ratio, either higher or lower than normal, 5 

has been reported to be associated with poor semen quality, increased DNA damage 6 

and/or decreased fertility (Chevaillier et al. 1987; Balhorn et al. 1988; Belokopytova et 7 

al. 1993; Carrell et al. 1999; Razavi et al. 2003; Aoki et al. 2005). An increasing number 8 

of reports now support the hypothesis that sperm DNA is not homogeneously packed 9 

with these protamines and that histones are still present at some sites (Rousseaux et al. 10 

2005). While some investigators have suggested that this is due to inefficient protamine 11 

replacement, the persistence of histones at certain sites may play a functional role in 12 

supporting the epigenetic code in the sperm (Weber et al. 2007). Protamine replacement 13 

occurs in the spermatid stage of spermatogenesis after the completion of meiosis 14 

(Baarends et al. 1999). The elongating spermatid also undergoes other maturational 15 

events that affect motility and fertilization ability during the period of protamine 16 

replacement. The association between abnormal protamine replacement and generally 17 

diminished semen quality may be a defect in the unique gene regulation system of 18 

temporal uncoupling of transcription and translation during spermatogenesis (Carrell et 19 

al. 2007).  20 

Alteration of the P1 to P2 ratio generally denotes abnormal spermatogenesis 21 

and is a possible direct cause of abnormal methylation of maternal and paternal gDMRs 22 
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(Hammoud et al. 2010). Azoospermia caused by anejaculation and secondary 1 

inflammatory obstruction is related to an increase of methylation level in maternal 2 

DMRs (Marques et al. 2010). Male infertility may also be related to the improper 3 

erasure of DNA methylation during spermatogenesis at many non-imprinted genes in 4 

addition to abnormal methylation levels at gDMRs (Houshdaran et al. 2007). There are 5 

some significant implications for sperm with abnormal protamine replacement, and for 6 

the use of such sperm for ICSI. Further research should be done to classify the role of 7 

retained histones throughout the spermatic genome in mature sperm from men with 8 

normozoospermia as well as in patients with known chromatin abnormalities. 9 

 10 

 11 

Teratological environmental factors (endocrine disruptors) and epigenetic 12 

modifications 13 

Abnormal sperm development may originate from exposure of the male 14 

germline to environmental factors. Persistent organic pollutants (POPs), which were 15 

used intensively worldwide for several decades until the 1980s, have been implicated in 16 

reproductive disorders. Because of the stability and bioaccumulation of these 17 

compounds in the environment, human populations are simultaneously exposed to a 18 

variety of those contaminants through the consumption of food. Several POPs have 19 

been shown to have toxic effects on reproductive and endocrine functions in humans 20 

(Govarts et al. 2012) and a number of human epidemiological studies have 21 

demonstrated the adverse effects of POPs exposure on markers of reproduction, 22 
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including semen quality (sperm concentration, motility, and morphology) (Guo et al. 1 

2000; Richthoff et al. 2003; Toft and Guillette 2005; Meeker et al. 2010), spermatic 2 

DNA integrity (Bonde et al. 2008; McAuliffe et al. 2012), and circulating reproductive 3 

hormone levels (Richthoff et al. 2003), though some studies found only marginal effects 4 

(Toft et al. 2006; Haugen et al. 2011). In general, however, these reports suggest that 5 

POPs have adverse effects on reproductive health outcomes. 6 

Endocrine disruptors are another potential environmental factor driving 7 

abnormal sperm development. Male gonadal development occurs around midgestation 8 

in humans initiated by the differentiation of precursor Sertoli cells in response to the 9 

testis-determining factor SRY. The fetal testis contains steroid receptors and is a target 10 

for endocrine hormones. The androgen receptor and estrogen receptor-b are present in 11 

both Sertoli cells and germ cells. Although the testis does not produce steroids at this 12 

stage of development, estrogens and androgens can affect testis cellular functions. 13 

Treatment with endocrine disruptors at a critical time of gonadal sex determination 14 

promotes an adult testis phenotype with decreased spermatogenic capacity in rat and, as 15 

a result, male infertility. External factors could induce an epigenetic transgenerational 16 

phenotype through apparent reprogramming of the male germ line (Anway et al. 2005). 17 

However, it is still unclear whether steroids acting inappropriately during the time of 18 

gonadal sex determination act to reprogram the germ line via epigenetic DNA 19 

methylation to cause this transgenerational transmission of an altered phenotype. 20 

Seminal tract infection, one of the most common causes of infertility in men 21 

(Keck et al. 1998), may also contribute to abnormal sperm development. The presence 22 
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of leukocytes in semen, also known as leukocytospermia, (Korrovits et al. 2008; 1 

Cumming and Carrell 2009), is an indicator of seminal tract infection although this 2 

correlation remains controversial (Bezold et al. 2007). Asthenozoospermia is often 3 

associated with the presence of infection or leukocytes in semen although it is not 4 

known whether infection plays a causative role (Wolff 1995).  The association between 5 

epigenetic changes and such sperm abnormalities as asthenozoospermia and 6 

leukocytospermia is unknown. However, there is a precedent for infection inducing 7 

epigenetic alterations in other cell types. In gastric carcinogenesis, H. pylori infection 8 

induces aberrant promoter methylation in tumor-suppressor genes, including p16
INK4A

, 9 

LOX, and CDH1 (Kaneda et al. 2004; Ushijima et al. 2006). Further work is required to 10 

establish whether epigenetic alterations in sperm are induced by seminal tracts 11 

infections. 12 

Social stress, acting through hormone signalling pathways, is another recent 13 

additions to the group of environmental factors that are known to induce epigenetic 14 

changes. The extent and type of maternal care very early in life in rodents has been 15 

shown to influence epigenetic marks at the glucocorticoid receptor in the neonatal 16 

hippocampus, and this may influence later life stress responses in the offspring (Weaver 17 

et al. 2004; Meaney et al. 2007). Furthermore, in another rodent model, Roth et al. 18 

found that psychosocial stress (comparable to human post-traumatic stress disorder 19 

(PTSD)) led to an increase in Bdnf methylation in the dorsal hippocampus and 20 

downregulation of Bdnf expression in the dorsal and ventral hippocampus, but not in 21 

other PTSD-relevant regions (Roth et al. 2011). The induction of region-specific 22 
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epigenetic changes in response to traumatic stress during adulthood demonstrates that 1 

DNA methylation remains an active process that can be shaped by environmental 2 

factors even in the adult nervous system. Again, the effect of stress on the sperm 3 

epigenome has not been investigated. However, stress is also a cause of male infertility 4 

this may occur through epigenetic alterations in the germline (Bale 2014).  5 

 6 

Nutrition and epigenetic regulation  7 

Epigenetic marks are tightly regulated, both temporally and spatially, during 8 

fetal development and lactation (Lee et al. 2002; Allegrucci et al. 2005; Morgan et al. 9 

2005) but can be influenced at key stages by diet. Agouti viable yellow (Avy) is a 10 

fascinating animal model whereby the environmental influences on the epigenome can 11 

be monitored via a coat colour phenotype (Wolff et al. 1999). A gene alteration, which 12 

involves an intra-cisternal A particle (IAP) retrotransposon insertion upstream of the 13 

agouti gene (A), leads to ectopic expression of the agouti protein and a change of hair 14 

color from agouti to yellow. The extent of this coat colour change is influenced by the 15 

degree of methylation of the IAP element, which can be influenced by methyl donor 16 

supplementation of the maternal diet (Waterland and Jirtle 2003). Dietary 17 

supplementation with a methyl donor during pregnancy increases the proportion of pups 18 

carrying a methylated IAP sequence and thus the number with a yellow coat colour 19 

(Rakyan et al. 2003; Waterland and Jirtle 2004). Maternal and post-weaning high fat 20 

diets can also alter epigenetic regulation of the hedonic reward pathways and metabolic 21 

regulation of the energy balance in mice (Vucetic et al. 2011), and alter methylation of 22 
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the leptin promoter in rats (Milagro et al. 2009). These data provide compelling 1 

evidence that diet alone can alter the epigenome. 2 

Nutrition during early growth and development may influence DNA 3 

methylation because one-carbon metabolism is dependent on dietary methyl donors and 4 

on cofactors such as methionine, choline, folic acid and vitamin B-12 (MacLennan et al. 5 

2004). The limited availability of acetyl-CoA for HAT activity and methyl donors of 6 

SAM (S‐ adenosylmethionine) provided via the folate-methionine pathway may 7 

therefore play a role in the establishment of inappropriate epigenetic patterns. 8 

Conversely, dietary supplementation may provide a route to attenuating inappropriate 9 

epigenetic patterns as the changes in DNA methylation which result from a decrease in 10 

DNMT1 (DNA methyltransferase) activity can be partially prevented by folate 11 

supplementation (Lillycrop et al. 2005; Lillycrop et al. 2007). 12 

The influences of poor nutrition on epigenetic marks is not limited to the fetal 13 

stage. Nutrition during postnatal development can permanently alter the epigenetic 14 

regulation of some imprinted genes. Methyl-donor-deficient diet in postnatal life is 15 

associated with altered epigenetic regulation of IGF2 and growth retardation (Waterland 16 

et al. 2006). In humans, diet has been shown to affect the DNA methylation status of 17 

patients with hyperhomocysteinaemia. This disease is caused by the accumulation of 18 

S-adenosylhomocysteine (an inhibitor of DNA methyltransferases)(Waterland et al. 19 

2006).  20 

Given the consequences of altered nutrient availability in a number of situations, it is 21 

possible that changes may be also occur the male germline in response to diet. One very 22 
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compelling study demonstrated that a low protein diet in male rats results in altered 1 

chromatin packing in sperm and changes in DNA methylation in the offspring (Carone 2 

et al. 2010). These data all suggest that something as seemingly innocuous as a dietary 3 

imbalance can have a detrimental effect on the epigenome at certain critical stages. 4 

In addition to the availability of specific nutrients, alterations in the expression, 5 

localization and/or activity of epigenetic modifiers, such as the DNA methyltransferases, 6 

the histone-modification enzymes and their associated proteins, may play a role in 7 

driving abnormalities in the sperm epigenome. Some modifiers are specifically 8 

expressed in germ cells and the crucial roles of germ-cell-specific genes such as 9 

Dnmt3L and Prdm9 has been highlighted in conventional mouse gene knockout studies 10 

(Bourc'his et al. 2001; Hata et al. 2002; Hayashi et al. 2005). We reported DNA 11 

sequence variations in the gene encoding DNMT3L associated with imprinting errors and 12 

oligospermia (Kobayashi et al. 2009). A recent report suggests that gestational diet can 13 

alter the expression of histone demethylases and Dnm3L, at least in the exposed placenta 14 

(Gabory et al. 2012).  Consequently both poor sperm quality and imprinting errors may 15 

be linked by both genetic and dietary-driven alterations in epigenetic regulators.  16 

 17 

18 



 19 

Conclusions 1 

Mounting evidence from both human studies and animal models suggests that 2 

epigenetic modifications provide a link between the environment and alterations in gene 3 

expression that might lead to disease phenotypes. Importantly, direct evidence from 4 

animal studies supports the role of environmental epigenetics in male infertility and 5 

suggests the possibility that the use of ART to treat male infertility may lead to disease 6 

later in life.  However, ART is a relatively recent technology and the longer term 7 

consequences of ART treatments such as ICSI and embryo freezing before transfer have 8 

not yet been manifested due to the young age of the majority of ART children. 9 

Environmental exposures to nutritional, chemical and physical factors all have the 10 

potential to alter gene expression and, therefore, modify sperm quality in various ways 11 

through changes in the epigenome. A summary of the factors known to influence DNA 12 

methylation is presented in Figure 4. 13 

It is still unknown when imprinting epigenetic errors related to male infertility 14 

arise and what factors may predispose to epigenetic changes. Hormonal stimulation of 15 

oocytes, in vitro culture, cryopreservation, and the timing of embryo transfer have all 16 

been shown to influence the proper establishment and maintenance of genomic imprints. 17 

Some infertile males, particularly those with oligozoospermia, carry preexisting 18 

imprinting errors in their sperm.
 
Therefore the process of ART and infertility itself 19 

might increase the risk of imprinting disorders.  20 

The developmental origins of health and disease (DOHaD) paradigm, first 21 

proposed by Prof. David Barker, postulates that suboptimal growth early life can 22 



 20 

program changes which affect life long health, increasing the risks for various diseases. 1 

There is evidence both from human studies and experimental models that this 2 

programming may be mediated via changes in the epigenome. Epigenetic changes likely 3 

occur during the fetal and infant periods but it is clear that oocytes and sperm are also 4 

vulnerable to environmentally-induced epigenetic alterations, and that the newly 5 

fertilised zygote is at a particular susceptible stage. 6 

 7 

Future perspective 8 

While genomic imprinting disorders are very rare, it is increasingly apparent that the 9 

bulk of common human diseases do not arise solely from genetic or environmental 10 

causes but also have an epigenetic component. Our knowledge that the epigenomes of 11 

gametes and newly fertilized embryos are susceptible stages for 12 

environmentally-induced epigenetic changes has particularly important implications as 13 

changes in lifestyle and modes of reproduction may have long term implications for 14 

human health that are not yet fully appreciated. Recent work identifies advanced 15 

paternal age as a risk factor for autism, depression, epilepsy and prostate cancer in 16 

children (Kondrashov 2012; Sun et al. 2012). While there are a number of possible 17 

explanations for these associations, the accumulation of epigenetic errors in the sperm 18 

may be a contributory factor. As the human population ages and the use of ART 19 

increases worldwide, it will become increasingly important to determine the extent to 20 

which environmentally-induced epigenetic changes contribute to disease. A detailed 21 

characterisation of the normal epigenetic process that take place in the germline and 22 



 21 

during very early development will be important in achieving this goal. Understanding 1 

how and when environmental factors can influence the epigenome to cause disease, 2 

identifying ways in which to modulate aberrant epigenetic marks, and also determining 3 

the best timeframe to reverse aberrant epigenetic marks all have the potential to lead to 4 

improved human health.  5 

6 
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Figure legends 1 

Figure 1. The regulation of imprinted genes by DNA methylation. Genomic 2 

imprinting describes the differential expression of the two parental alleles in mammals 3 

(and some plants). This differential expression is initiated within the germline when 4 

discrete regions of the genome acquire DNA methylation in one germline but not the 5 

other. These differentially methylated regions (DMRs) are present within all well 6 

characterised imprinted loci are key to establishing and, in some cases, maintaining 7 

imprinted gene expression. Paternal: paternal allele; Maternal: maternal allele; ICR: 8 

imprint control region; TF: transcriptional factor. 9 

 10 

Figure 2. Imprints in gametogenesis and ART procedure. (Upper: Oogenesis) 11 

During the transition from primordial to antral follicles in the postnatal growth phase 12 

(post-pachytene) methylation is acquired asynchronously in a gene-specific manner in 13 

mouse oogenesis. In sperm, imprint methylation is initiated prenatally before meiosis 14 

and is completed by the pachytene phase of postnatal spermatogenesis. The imprints of 15 

gametes are maintained stably in the early embryo despite overall epigenetic 16 

reprogramming. (Lower: Spermatogenesis) ART results from the use of sperm with 17 

incomplete reprogramming and from in vitro embryo procedures performed at the time 18 

of epigenetic reprogramming. IVM: in vitro oocyte maturation; GIFT: gamete 19 

intrafallopian transfer; ZIFT: zygote intrafallopian transfer; PGD: preimplantation 20 

genetic diagnosis; IVF: in vitro fertilization; ICSI: intracytoplasmic sperm injection; 21 

ROSI: round spermatid injection; PGC: primordial germ cell; Oog: oogonium; POo: 22 
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primary oocyte; ProSpg: prospermatogonium; Spg: spermatogonium; PSp: primary 1 

spermatocyte; SSp: secondary spermatocyte. 2 

 3 

Figure 3. Aberrant DNA methylation of imprinted loci in sperm from infertile 4 

male. (A) Frequency of imprint methylation errors (B) Abnormal imprinted loci (C) 5 

Abnormal methylation imprinting and sperm concentrations, morphology and motility. 6 

Methylation errors at maternal and paternal imprinted loci specific to oligozoospermic 7 

men. (D) Model comparing oligozoospermia and epigenetic errors (described in detail 8 

by Kobayashi et al. HMG 2007). 9 

 10 

Figure 4. Factors influencing DNA methylation. DNA methylation is influenced by a 11 

number of external factors including nutrition, aging and hormones. Preventive and 12 

promotive factors are shown.  13 

 14 

Table 1. ART and imprint-associated disorders. 15 

BWS: Beckwith-Wiedemann syndrome, AS: Angelman syndrome, SRS: Silver-Russell 16 

syndrome, RB: Retinoblastoma. 17 

 18 

Table 2. DNA methylation errors in the human spermatozoa  19 

OAT: patients presenting with combined oligozoospermia, asthenozoospermia and 20 

teratozoospermia, ANJ: Anejaculation, OAZI: secondary inflammatory obstructive 21 

azoospermia, CBAVD: obstructive azoospermia due to congenital bilateral absence of 22 
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the vas deferens, HP: secretory azoospermia due to hypospermatogenesis. 1 

2 
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Abbreviations 1 

 2 

ANJ: Anejaculation, 3 

ART: assisted reproductive technologies 4 

AS: Angelman syndrome 5 

Avy: Agouti viable yellow 6 

BS: Bisulphite PCR sequence method 7 
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OAZI: secondary inflammatory obstructive azoospermia 1 

Oog: oogonium 2 

PGC: primordial germ cell 3 

PGD: preimplantation genetic diagnosis 4 

POPs: Persistent organic pollutants 5 
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