
A Parallel Method for Scalable Anonymization of
Transaction Data

Neelam Memon, Grigorios Loukides, Jianhua Shao
School of Computer Science & Informatics

Cardiff University, UK
{MemonNG, G.Loukides, ShaoJ}@cardiff.ac.uk

Abstract—Transaction data, such as market basket or diag-
nostic data, contain sensitive information about individuals. Such
data are often disseminated widely to support analytic studies.
This raises privacy concerns, as the confidentiality of individuals
must be protected. Anonymization is an established methodology
to protect transaction data, which can be applied using different
algorithms. RBAT is an algorithm for anonymzitng transaction
data that has many desirable features. These include flexible
specification of privacy requirements and the ability to preserve
data utility well. However, like most anonymization methods,
RBAT is a sequential algorithm that is not scalable to large
datasets. This limits the applicability of RBAT in practice. To
address this issue, in this paper, we develop a parallel version
of RBAT using MapReduce. We partition the data across a
cluster of computing nodes and implement the key operations of
RBAT in parallel. Our experimental results show that scalable
anonymization of large transaction datasets can be achieved
using MapReduce and our method can scale nearly linear to
the number of processing nodes.

I. INTRODUCTION

A transaction dataset is a collection of records, each con-
sisting of a set of items drawn from some domain. Each
such record is called a transaction and is assumed to be
associated with a single individual. Examples of transactions
are search query logs, diagnosis codes, and shopping cart
items. Transaction data are often analyzed to support, for
example, personalized web search, personalized medicine, or
purchasing trend projection. However, as such data often
contain sensitive information about individuals, releasing them
in their original form may lead to privacy breaches. Thus,
some data sanitization must be exercised before the release of
transaction data.

There are two forms of privacy disclosure that must be con-
sidered when publishing transactions: identity disclosure and
sensitive item disclosure. Identity disclosure happens when an
individual is linked to their de-identified transaction based on
some background knowledge. Sensitive item disclosure occurs
when some sensitive items associated with an individual are
learnt with or without identifying their transactions. Different
methods have been proposed to guard transaction data against
either form of disclosure [1]–[6], but they all require the whole
dataset to be memory-resident and to be anonymized using a
single centralized machine. This is not scalable. For instance,
Walmart handles more than a million customers every hour,
collecting an estimated 2.5 petabytes of data in the process

[7]. The existing methods are unable to handle data of this
scale.

A promising and cost-effective way to achieve scalability is
to perform anonymization in parallel. Recently, MapReduce
[8] has emerged as a scalable and cost-effective platform
for data-intensive applications. In this paper, we consider
how MapReduce may be used to achieve scalable transac-
tion data anonymization. More specifically, we consider the
implementation of RBAT [6] using MapReduce. RBAT as a
transaction data anonymization method has some desirable
features. However, like many other transaction anonymization
methods, RBAT is sequential and is not scalable to large
datasets. To address this, we have designed and experimented
with a parallel version of RBAT where data are partitioned
across a cluster of computing nodes and the key operations
of RBAT are performed in parallel. Our experimental results
show that scalable transaction anonymization can be achieved
using MapReduce and our method can scale nearly linear to
the number of processing nodes.

The rest of the paper is organized as follows. Section II
discusses the related work. A brief description of RBAT and
Map-Reduce is given in Section III. Section IV presents the
parallel version of RBAT. Experimental results are presented
in Section V. Section VI concludes the paper.

II. RELATED WORK

Data anonymization is a popular approach to protect data
of different forms, including relational and transaction data.
There have been different approaches to data anonymization,
and we refer the reader to [9]–[11] for surveys. Differ-
ent privacy models have been proposed to protect transac-
tion datasets, for example, km-anonymity [1], lm-diversity
[12], complete k-anonymity [3], ρ-uncertainty [4], (h, k, p)-
Coherence [5] and PS-rules [6]. These models differ in their
assumptions about how data may be attacked by an adversary,
but all can be enforced through data transformation. In this
paper, we focus on the scalability of data sanitization, rather
than proposing a new privacy model to deal with a specific
privacy threat. More specifically, we focus on the PS-rules
privacy model, which is employed by the RBAT algorithm.

Scalable data anonymization has been considered in prior
work. Iwuchukwu et al. [13] proposed bulk-loading tech-
niques which use an R+-tree index to enhance anonymization
performance. Lefevre et al. [14] and Loukides et al. [15]

proposed sampling based methods to anonymize large datasets.
These approaches are however designed to work on a single
machine, and thus their scalability is limited. In contrast, we
propose a parallel solution to address scalability in transaction
anonymization.

Recently, there has been a considerable interest in design-
ing MapReduce-based solutions for a range of data-intensive
applications, including performing join operations [16]–[19],
clustering [20]–[23], and mining association rules [24]. Pri-
vacy protection when using MapReduce over clouds has also
been studied. Roy et al. [25] proposed Airavat, a system that
ensures mandatory access control and differential privacy [26]
when performing MapReduce operations over sensitive data.
Zhang et al. [27] presented hybrid cloud techniques to support
privacy-aware data-intensive MapReduce computations. Zhang
et al. [28] incorporated encryption with anonymization to
achieve privacy preservation over multiple datasets. Our work
is different from these in that they address the issue of
privacy when using computing clusters, whereas we focus on
the scalability of the anonymization process itself. Closely
related to our work are the recent studies by Zhang et al.
[29], [30]. They designed MapReduce-based bottom-up [29]
and top-down [30] approaches to achieving k-anonymity [31]
for relational data, but their methods cannot trivially be
adopted to leverage the privacy-utility trade-off that transaction
anonymization exercises and demands.

III. RBAT AND MAPREDUCE

In this section we give a brief introduction to RBAT and
MapReduce that are necessary to understand this paper. The
reader is referred to [6] for details of RBAT and to [32] for
details of MapReduce.

A. RBAT Algorithm

RBAT is a heuristic method and anonymizes transaction data
using set-based generalization [33]. It protects data based on
a set of user-specified PS-rules. A PS-rule is an implication of
the form p→ s, where p contains public items (assumed to be
available to attackers) and s sensitive items. We will refer to
p as the antecedent of the rule and to s as the consequent. To
ensure that a set of transactions is protected, RBAT requires
that p is supported by at least k transactions (i.e. there are
at least k transactions containing p) and that the confidence
of p → s is no more than c (i.e. if p is supported by m
transactions and p ∪ s by n transactions, then n/m ≤ c). If
this is not the case, then the data will be generalized. For
example, item a in one transaction and item b in another may
both be replaced by a set (a, b) (called a generalized item) to
increase support for both a and b.

Given a set of transactions D and a set of PS-rules Θ to
be protected, RBAT generalizes D iteratively in a top-down
fashion. Starting with all public items mapped to a single most
generalized item ĩ and D generalized to D̃ according to ĩ,
RBAT iteratively performs the following three key steps:
• Step 1 (Split): Splitting ĩ into two less generalized item-

sets ĩl and ĩr.

• Step 2 (Update): Temporarily generalizing D into D′

according to ĩl and ĩr.
• Step 3 (Check): Checking if the set of PS-rules Θ is

protected in D′.
If Θ is protected, then D′ becomes the new D̃ and the split-
update-check process is repeated, but recursively performed
on ĩl and ĩr. Otherwise the split process stops. This top-down
specialization process effectively creates a binary Split Tree
with root representing the most generalized item and the set
of leaf nodes form the final generalization. It is easy to see that
there are many splits of ĩ possible, therefore there are many
generalizations of D possible. The generalization that incurs
minimum information loss (or least distortion to the data) is
preferred. RBAT achieves this heuristically by minimizing an
objective measure, called Utility Loss (UL), at each iteration:

UL(̃i) =
2|̃i| − 1

2|P | − 1
× w(̃i)× σD̃ (̃i) (1)

UL(D̃) =
∑
∀ĩ∈P̃

UL(̃i) (2)

where P̃ is the set of leaf nodes obtained from the split tree
(i.e. the set of generalized items that will be used to generalize
D into D̃), σD̃ (̃i) is the support for the generalized item ĩ in
D̃, and w(̃i) is the weight representing the importance of the
items in ĩ.

The UL measure captures the information loss in terms
of the size of the generalized item, its significance and its
support in D̃. The more items are generalized together, the
more uncertain we are about its original representation, hence
more utility loss. w(̃i) assigns some penalty based on the
importance of the items in ĩ. The support of the generalized
item (i.e., the number of times the generalized item occurs in
the dataset) also affects the utility of anonymized data. The
more frequently the generalized item occurs in D̃, the more
distortion the generalized item incurs to the dataset.

We now illustrate how RBAT works through an example.
Consider the anonymization of transaction dataset D given
in Table I with k = 3, c = 0.6 and Θ = {be →
gh, f → l}. RBAT starts with the most generalized item
ĩ = (a, b, c, d, e, f), i.e. all the public items in D are mapped
to this single generalized item.

TABLE I
AN EXAMPLE DATASET D

Diagnosis Codes
b, c, e, g, h
a, c, d, i, j
a, f, l
b, e, g, h
d, f, l

RBAT then attempts to find two less generalized items from
ĩ. In this case, the pair 〈a, e〉 is found to incur maximum UL
when generalized together, so a and e are used as seeds to split
ĩ heuristically into two disjoint subsets ĩl and ĩr. Following

a few iterations and based on UL values, RBAT returns ĩl =
(a, b, f) and ĩr = (c, d, e).
D̃ is now updated with ĩ being replaced by ĩl and ĩr,

resulting in a temporal dataset D′ as shown in Table II. This
dataset is then checked to see if Θ is still protected, that is, if
the generalized antecedents of the two rules in Θ (b, e which
are generalized to (a, b, f)(c, d, e) and f which is genearlized
to (a, b, f)) are still supported by at least k = 3 transactions
in D′ and the confidence of the two rules (b, e → g, h and
f → l) are still below c = 0.6.

TABLE II
THE DATASET D̃ AFTER ANONYMIZING D

Diagnosis Codes
(a,b,f), (c,d,e), g, h
(a,b,f), (c,d,e), i, j
(a,b,f), l
(a,b,f), (c,d,e), g, h
(c,d,e), (a,b,f), l

It is easy to check that Θ is protected in Table II, so D′

becomes the new D̃ and ĩl = (a, b, f) and ĩr = (c, d, e) are
put on the queue for further split. In the next iteration, the
same split process is applied to ĩl = (a, b, f), resulting in
(a, f) and (b). This time, we find that support for generalized
b, e is less than k = 3, so the split is discarded. ĩr = (c, d, e)
is then considered in the following iteration and it cannot be
split either due to the protection requirement. So RBAT returns
Table II as the final D̃.

B. MapReduce

MapReduce [8], [32] achieves parallel computation by
configuring a set of shared-nothing mappers and reducers.
A schematic representation of a typical MapReduce round is
shown in Figure 1.

Fig. 1. A schematic representation of a MapReduce round

During the Map stage, the data is partitioned into a number
of disjoint subsets and each subset is assigned to a separate
mapper. Each mapper (in parallel to other mappers) reads the
data, performs the user-specified computation on the subset
assigned to it, and outputs intermediate results as a set of
〈Key, V alue〉 pairs. For example, in a simple word count
problem, a mapper reads its assigned chunk of text and outputs
a 〈word, occurrences〉 pair for each distinct word.

The intermediate output from the mappers goes through
a shuffle phase. The same keys from different mappers are
grouped together and are assigned to the same reducer by
the shuffle phase. Note that a mapper output may not be
local to its assigned reducer. In this case, the shuffle phase
also involves transferring mapper output to a reducer over the
network. The shuffle phase starts as soon as the first mapper
finishes its processing, so it may overlap with the map phase.
Each reducer processes the mapper output group using a user-
specified reduce function. The output produced by the reduce
phase can be the final output or can be input to another mapper
in the next MapReduce round.

It is worth noting that there is an overhead for achieving
parallelization in MapReduce. This mostly consists of the cost
of initializing a MapReduce job, I/O cost of reading input and
writing output by mappers and reducers during the map and
reduce stages, and the cost of shuffling the mapper output
over the network to reducers. It is also worth observing that
as the intermediate output produced by the mappers is shuffled
over the network and then read by the reducers, the less the
intermediate output is produced by the map stage, the lower
the cost of transferring the data over the network and reading
input by the reducers will be.

IV. PARALLEL RBAT

In this section, we describe our MapReduce version of
RBAT. Our method is mainly based on the observation that
the support computation required by Steps 1-2 and the dataset
updating required by Step 3 of RBAT (see Section III) require
the whole dataset to be scanned. Our design partitions the data
across the available computing nodes and perform these op-
erations in parallel. We assume that we have enough memory
to load all of the input data across the computing nodes in
use. In the following, we first describe the data partitioning
approach and the support computation operation in parallel,
followed by the details of our method.

A. Data Partitioning and Representation

Given a set of transactions D to be anonymized and M
mappers available, we partition D among M mappers in a
way that workload on each mapper is approximately equal.
Generally speaking, there are two approaches to partitioning
D: item-based or record-based.

With item-based partitioning, a set of transactions is parti-
tioned vertically based on items. Let I be a set of all public
items, we divide I into M disjoint subsets Ij , 1 ≤ j ≤ M ,
and then hash D into M subsets based on Ij . Each mapper
m is assigned a set of pairs 〈i, v〉, where i is an item in Ij
and v is a vector of identifiers of transactions that contain
i as an item. Item-based partitioning is efficient for support
computation. For example, the support of a generalized item
(a, b) from partition Il containing both a and b will only
require to access two sets indexed by a and b, and then perform
σD(ab) = |a ∪ b|. But in the case where a ∈ Ij and b ∈ Il
with j 6= l, both mappers need to shuffle the relevant vector

over the network. This may dramatically increase the shuffle
cost.

Record-based partitioning, on the other hand, partitions
data horizontally by records. Given D has {t1, . . . , t|D|}
transactions, it assigns about n = |D|

M to each map-
per. That is, {t1, · · · , tn} are assigned to the first mapper,
{t(n+1), · · · , t2n} to the second mapper, and so on. Note that
for efficiency purposes, we assign transactions based on their
arrival order. Using this approach, each mapper will have a
disjoint subset Dj , 1 ≤ j ≤ M , where Dj may contain
any items of I . This approach will only require a count to
be distributed over the network, but the support computation
of a generalized item will require the scanning of the whole
partition.

We adopt record-based partitioning in our method as net-
work cost could potentially be far more significant than per-
forming a in-memory scan of the data partition. So we assign
each partition Dj to a mapper, and each mapper (in parallel
to other mappers) reads its assigned subset for processing. To
make the support computation efficient, we represent each data
partition Dj using the hashing structure employed by item-
based partitioning. That is, we represent Dj as the following
hash table:

i1 : t1,1 · · · t1,β1

i2 : t2,1 · · · t2,β2

.
i|I| : t|I|,1 · · · t|I|,β|I|

where i1, . . . , i|I| ∈ I serve as index, and tij , 1 ≤ i ≤ |I|,
1 ≤ i ≤ βj are identifiers of transactions containing the
index item. This approach ensures low overhead for shuffling
the data over the network and will also make the support
computation efficient.

t1 : i1,1 · · · i1,α1

t2 : i2,1 · · · i2,α2

.
t|D| : i|D|,1 · · · i|D|,α|D|

B. Parallel Support Computation

We observe that support computation is the most frequent
operation in RBAT that requires full data scan. It is performed
to compute the UL of generalized items and to check if PS-
rules are protected. Given an generalized item ĩ, its support in
D, denoted by σD (̃i), is calculated by

σD (̃i) = |{t ∈ D ∧ ĩ ⊆ t}| (3)

We now show how support is computed using MapReduce.
Given D and a set of items λ = {λ1, λ2, . . . , λh} whose
supports are to be counted. We perform the support compu-
tation in a single MapReduce round. D is partitioned into
{D1, . . . , DM} using record-based partitioning. Each mapper
then iterates over λ, computing and emitting local support of

each element λa ∈ λ:

Map(Dj , λ1, . . . , λ|λ|)→
[〈λ1, σDj

(λ1)〉 . . . 〈λ|λ|, σDj
(λ|λ|)〉]

These partial supports are shuffled over the network to the
corresponding reducers. Each reducer (in parallel to other
reducers) accumulates the partial supports corresponding to
λa and computes the global support.

C. Parallel RBAT

A schematic representation of our parallel RBAT is shown
in Figure 2. The first phase shown in Figure 2 corresponds
to the split phase (Step 1) of RBAT (see Section III) and
is done in parallel in two steps. The first step uses a single
MapReduce round with M mappers and a single reducer to
find a pair which when generalized together incurs maximum
UL. Each mapper reads a subset of a pre-computed matrix P
containing ULs of all possible pairs of public items P (Step
2). The pair with maximum UL from each mapper is sent to
a single reducer (Step 3) which finds the pair 〈ix, iy〉 with
maximum UL globally. P itself is computed, only once in the
beginning using a single MapReduce round.

Fig. 2. A schematic representation of Parallel RBAT

The second step is iterative and uses 〈ix, iy〉 to split ĩ into
two less generalized items ĩl and ĩr. Initially, Il and Ir are
assigned the seeds ix and iy . For every item iq ∈ ĩ that is
not a seed, a MapReduce round is used to decide whether it
should be generalized with Il or Ir. The M mappers read Dj

in parallel and compute σDj
(Il ∪ {iq}) and σDj

(Ir ∪ {iq}).
These partial supports from all the mappers are shuffled over
the network to a single reducer. The reducer then computes
the UL of Il ∪ {iq} and Ir ∪ {iq} and adds iq to either Il or
Ir based on which generalization incurs less UL. Finally, Il
and Ir are returned as two less generalized items.

The updating stage (Step 2) of RBAT (see Section III)
is performed in a single Map-only round. Mappers read D̃j

in parallel and replace every occurrence of ĩ by the current
generalizations ĩl and ĩr. Note that we have not shown the
update phase in Figure 2 and will not discuss it further as a) it
is fairly trivial to perform the updating step in single Map-only
round, and b) it does not require access to the whole dataset.
Thus, it has little impact on the performance of parallelization
of RBAT.

The second phase shown in Figure 2 corresponds to the
check phase (Step 3) of RBAT (see Section III). A single
MapReduce round is used to check if all PS-rules are pro-
tected. Each mapper reads a set of leaves from the split tree
constructed so far and a subset of temporarily anonymized
transactions D′j . For each PS-rule p→ s it generalizes p to p̃,
computes the partial support of p̃ and (p̃∪ s), and shuffles the
result over the network to reducers with p → s as key. The
reducers compute the global support σD′(p̃) and σD′(p̃ ∪ s)
for each PS-rule, and return true or false based on if the rule
is protected or not.

V. EXPERIMENTAL EVALUATION

We implemented RBAT and the parallel version of it in C++.
The parallel version was implemented using Apache Hadoop1,
an open-source implementation of the MapReduce framework.
All the experiments were performed over a cloud consisting of
thirteen computing nodes, physically located within the same
building and interconnected by 100Mbps ethernet connection.
One of the machines was allocated to run the master program.
All the worker machines were homogenous in configuration
containing 2GB memory and 2 physical cores. Each machine
was set to use one core only and was assigned to run a single
mapper or reducer instance.

We used BMS-web-view-1 [15], a real-world click-stream
dataset with |D| = 59602 and |I| = 497. The larger data
sizes are acquired by random selection of transactions from
the original dataset. 10% of the items were randomly selected
as sensitive items. We do not report data utility in this paper,
since our parallel version gives exactly the same anonymized
results given by RBAT. Unless otherwise specified, our default
settings for the experiments are given in Table III

First, we varied the datasize from 8 to 128 million trans-
actions and measured the response time of both RBAT and

1http://hadoop.apache.org/

TABLE III
PARAMETER SETTINGS

Parameter Default value
|D| 32M
|Θ| 1,400
k 5
c 0.9

parallel RBAT. As shown in Figure 3, parallel RBAT per-
formed less efficiently than RBAT for smaller data sizes (8M
and 16M). This is due to the overwhelming parallelization
overhead, consisting of I/O, network and setup cost incurred
by each MapReduce round. However, parallel RBAT grew
sublinearly with regard to data sizes and grew much more
slowly than RBAT did. When the data sizes were large, i.e. |D|
is between 64M and 256M, RBAT grew by a factor from 3 to 8,
whereas our parallel RBAT only by a factor of 2 at maximum.
In terms of response time, parallel RBAT performed up to 8
times faster than RBAT as data sizes increased from 64M to
256M.

0

40000

80000

120000

160000
R

un
tim

e(
se

cs
)

8M 64M 128M 256M

|D|

RBAT
Parallel

Fig. 3. Datasize vs. Runtime

We have also studied the scalability of parallel RBAT w.r.t.
the number of computing nodes. Figures 5 and 6 show the
response time and relative speed up, respectively, with varying
number of computing nodes used in anonymization. The
relative speedup is measured as the ratio of runtime obtained
from the minimum cluster size used in our experiments to that
obtained from a cluster size whose speedup is measured. We
found that parallel RBAT scaled well when a small number of
processing nodes were used. High throughput was obtained
when utilising 8 computing nodes. Setting the cluster size
to more than 8 nodes caused parallel RBAT to decrease
its processing efficiency. We attribute this to the overhead
caused by parallel configurations. That is, when 12 nodes were
used, the computation on each node was reduced, making
the overhead resulted from setting up parallel processing a

2000

3000

4000

5000

6000

7000

8000

9000

10000
R

un
tim

e(
se

cs
)

100% 110% 120% 130% 140% 150%

|P|

RBAT
Parallel

Fig. 4. Domainsize vs. Runtime

significant proportion of the overall response time.

2000

4000

6000

8000

10000

12000

R
un

tim
e(

se
cs

)

0 4 8 12

No.of Nodes

Fig. 5. No. of Processors vs. Runtime

Another important performance measure is scaleup [34],
which captures the scalability of a parallel algorithm to handle
larger datasets when more computing nodes are made avail-
able. We measured the scaleup of our parallel RBAT by the
ratio of the time taken by a single processor to the time taken
by m processors on a workload of (m × 8)M transactions.
We found that parallel RBAT had not made most effective
use of resources, specifically when the cluster size was large.
More specifically, we found that the main bottleneck lies in
the split phase. The first step of the split phase is designed
to use only one reducer. Therefore, increasing the number of
available processors would increase the number of mappers
used in anonymization, causing more intermediate output to be
shuffled to the reducer, thereby incurring a high network cost.
Also, splitting a generalized item ĩ requires |̃i|−2 MapReduce

0

2

4

6

8

R
el

at
iv

e
Sp

ee
du

p

0 4 8 12

No.of Nodes

Fig. 6. No. of Processors vs. Relative Speedup

rounds. However, since data cannot be kept in memory of each
mapper between any two rounds, parallel RBAT needs to re-
load the data partitions into mappers’ memory at each round.
For large datasets, the overhead of repetitive data loading
increases, offsetting the gains from parallel computation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Sc
al

eu
p

2 4 6 8 10 12 14 16

No.of Processors

Fig. 7. No. of Processors vs. Scaleup

VI. CONCLUSIONS

In this paper, we studied how MapReduce may be used
to improve the scalability of RBAT, a sequential method that
has some desirable features for transaction anonymizaion.
By partitioning the data, our parallel RBAT overcomes the
limitation of requiring the whole dataset to fit into memory
of a single machine, while providing significant speedup in
anonymizing large datasets. Our empirical study using real-
world transactions has shown that parallel RBAT can scale

sublinearly to large datasets of hundreds of millions of trans-
actions. Our study has also shown that the overhead caused by
configuring MapReduce rounds, and the cost of data loading
and shuffling data over the network must be addressed, as it
can easily offset the gains from parallel processing.

REFERENCES

[1] M. Terrovitis, N. Mamoulis, and P. Kalnis, “Privacy-preserving
anonymization of set-valued data,” Proc. VLDB Endow., vol. 1, no. 1,
pp. 115–125, Aug. 2008.

[2] M. Terrovitis, N. Mamoulis, J. Liagouris, and S. Skiadopoulos, “Privacy
preservation by disassociation,” Proc. VLDB Endow., vol. 5, no. 10, pp.
944–955, Jun. 2012.

[3] Y. He and J. F. Naughton, “Anonymization of set-valued data via top-
down, local generalization,” Proc. VLDB Endow., vol. 2, no. 1, pp. 934–
945, Aug. 2009.

[4] J. Cao, P. Karras, C. Raı̈ssi, and K.-L. Tan, “ρ-uncertainty: inference-
proof transaction anonymization,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 1033–1044, 2010.

[5] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu, “Anonymizing transaction
databases for publication,” in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’08, 2008, pp. 767–775.

[6] G. Loukides, A. Gkoulalas-Divanis, and J. Shao, “Anonymizing trans-
action data to eliminate sensitive inferences,” in Proceedings of the 21st
International Conference on Database and Expert Systems Applications:
Part I, ser. DEXA’10, 2010, pp. 400–415.

[7] The Economist, “A special report on managing information: Data, data
everywhere,” The Economist, February.

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[9] A. Gkoulalas-Divanis, G. Loukides, and J. Sun, “Publishing data from
electronic health records while preserving privacy: A survey of algo-
rithms,” Journal of Biomedical Informatics, vol. 50, pp. 4–19, 2014.

[10] C. Aggarwal and P. Yu, Privacy-Preserving Data Mining: Models
and Algorithms, ser. Advances in Database Systems. Springer US,
2008. [Online]. Available: https://books.google.co.uk/books?id=ndR8-
wYsZKUC

[11] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM Comput.
Surv., vol. 42, no. 4, pp. 14:1–14:53, Jun. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1749603.1749605

[12] M. Terrovitis, N. Mamoulis, and P. Kalnis, “Local and global recoding
methods for anonymizing set-valued data,” The VLDB Journal, vol. 20,
no. 1, pp. 83–106, Feb. 2011.

[13] T. Iwuchukwu and J. F. Naughton, “K-anonymization as spatial index-
ing: Toward scalable and incremental anonymization,” in Proceedings
of the 33rd International Conference on Very Large Data Bases, ser.
VLDB ’07, 2007, pp. 746–757.

[14] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Workload-
aware anonymization techniques for large-scale datasets,” ACM Trans.
Database Syst., vol. 33, no. 3, pp. 17:1–17:47, Sep. 2008.

[15] G. Loukides, A. Gkoulalas-Divanis, and J. Shao, “Efficient and flexible
anonymization of transaction data,” Knowledge and information systems,
vol. 36, no. 1, pp. 153–210, 2013.

[16] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large data
in mapreduce,” in Proceedings of the 15th International Conference on
Extending Database Technology, ser. EDBT ’12, 2012, pp. 38–49.

[17] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using mapreduce,” Proc. VLDB Endow., vol. 5,
no. 10, pp. 1016–1027, Jun. 2012.

[18] F. Afrati, A. Sarma, D. Menestrina, A. Parameswaran, and J. Ullman,
“Fuzzy joins using mapreduce,” in Data Engineering (ICDE), 2012
IEEE 28th International Conference on, April 2012, pp. 498–509.

[19] J. Huang, R. Zhang, R. Buyya, and J. Chen, “Melody-join: Efficient earth
mover’s distance similarity joins using mapreduce,” in Data Engineering
(ICDE), 2014 IEEE 30th International Conference on, March 2014, pp.
808–819.

[20] A. Ene, S. Im, and B. Moseley, “Fast clustering using mapreduce,” in
Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’11, 2011, pp. 681–
689.

[21] S. Papadimitriou and J. Sun, “Disco: Distributed co-clustering with map-
reduce: A case study towards petabyte-scale end-to-end mining,” in Data
Mining, 2008. ICDM ’08. Eighth IEEE International Conference on, Dec
2008, pp. 512–521.

[22] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in Cloud Computing. Springer, 2009, pp. 674–679.

[23] R. L. Ferreira Cordeiro, C. Traina, Junior, A. J. Machado Traina,
J. López, U. Kang, and C. Faloutsos, “Clustering very large multi-
dimensional datasets with mapreduce,” in Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’11, 2011, pp. 690–698.

[24] M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal, “Parma: A
parallel randomized algorithm for approximate association rules mining
in mapreduce,” in Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, ser. CIKM ’12, 2012, pp.
85–94.

[25] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat:
Security and privacy for mapreduce,” in Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’10, 2010, pp. 20–20.

[26] C. Dwork, “Differential privacy,” in Encyclopedia of Cryptography and
Security. Springer, 2011, pp. 338–340.

[27] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan, “Sedic: privacy-
aware data intensive computing on hybrid clouds,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 515–526.

[28] X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen, “A privacy
leakage upper bound constraint-based approach for cost-effective privacy
preserving of intermediate data sets in cloud,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 24, no. 6, pp. 1192–1202, June
2013.

[29] X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou, and J. Chen, “Combining
top-down and bottom-up: Scalable sub-tree anonymization over big data
using mapreduce on cloud,” in Trust, Security and Privacy in Computing
and Communications (TrustCom), 2013 12th IEEE International Con-
ference on, July 2013, pp. 501–508.

[30] X. Zhang, L. Yang, C. Liu, and J. Chen, “A scalable two-phase top-
down specialization approach for data anonymization using mapreduce
on cloud,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 25, no. 2, pp. 363–373, Feb 2014.

[31] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[32] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel data
processing with mapreduce: A survey,” SIGMOD Rec., vol. 40, no. 4,
pp. 11–20, Jan. 2012.

[33] G. Loukides, A. Gkoulalas-Divanis, and B. Malin, “COAT: Constraint-
based anonymization of transactions,” Knowledge and Information Sys-
tems, vol. 28.

[34] D. Taniar, C. H. Leung, W. Rahayu, and S. Goel, High performance
parallel database processing and grid databases. John Wiley & Sons,
2008, vol. 67.

