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Summary 

The reactive stroma in prostate cancer is predominantly composed of myofibroblasts, 

which are thought to be required for tumour progression. Bone-marrow derived 

mesenchymal stem cells (BM-MSCs) are known to migrate into the tumour and are one 

of the many potential precursors of myofibroblasts. The factors secreted by cancer cells 

which may drive myofibroblastic differentiation of MSC, however are poorly 

understood. The aim of this thesis was to explore for the first time, the impact of TGF-

β1 expressing exosomes (nano-sized vesicles) secreted by prostate cancer cells in 

directing the differentiation of BM-MSCs and subsequently the functions of exosome 

differentiated BM-MSCs. 

 

Exosomes isolated from prostate cancer cells skewed BM-MSCs away from 

differentiating into adipocytes, and instead towards alpha-smooth muscle actin (α-SMA) 

positive myofibroblasts. BM-MSCs treated with exosomes exhibited enhanced secretion 

of VEGF-A, HGF and had an altered transcript profile with heightened matrix 

metalloproteinases (MMP-1, -3 and -13).  

 

Impairing the secretion of exosomes by Rab27a knockdown or depleting exosomes from 

prostate cancer cells culture media by high speed ultracentrifugation, attenuated 

myofibroblastic differentiation of BM-MSCs, demonstrating exosomes as the key driving 

factor for this. Furthermore, differentiation of BM-MSCs into myofibroblasts was 

dependent on exosomally tethered TGF-β1, however BM-MSCs treated with soluble 

TGF-β1 at the same dose, failed to obtain the same myofibroblastic phenotype. 

 

The exosome-differentiated MSCs enhanced endothelial and cancer cell proliferation 

and migration, supported endothelial vessel formation and promoted tumour cell 

invasion into peri-tumoural matrix in vitro.  

 

In conclusion, this study reports prostate cancer exosomes expressing TGF-β1, to 

dominantly modulate the fate of BM-MSCs, generating cells with tumour promoting 

myofibroblastic traits. 
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1.1 Prostate cancer 

1.1.1 Aetiology and risk factors 

Prostate cancer (PCa) is now the most common cancer in men in the UK, where more 

than 41,700 men are diagnosed each year (NICE 2009). The risk factors for developing 

PCa are not well understood but age and family history have been reported as risk 

factors. A study carried out over 8 countries including the UK showed that men over 

75yrs had higher incidence than men under 50yrs (Hsing et al. 2000). Family history is 

also a risk factor for PCa, in which, hereditary PCa is estimated to account for 5-10% of 

all cases of PCa. Both meta-analysis studies and cohort-based studies have discovered 

that patients who have 2 or more relatives with PCa have a 2-3 fold higher risk of 

developing PCa in comparison to men with no family history (Zeegers et al. 2003; Carter 

et al. 1992; Cannon et al. 1982; Kiciński et al. 2011). Although the reason for this 

difference in risk is unknown, possible hypotheses have included X-linked or recessive 

inheritance. 

 

Furthermore, there is a world-wide disparity between ethnicity and the incidence of 

PCa. The risk of developing PCa was found to be highest among African-Americans, who 

were 2 or 3 times more likely to develop PCa than Caucasians. In contrast, the lowest 

risk was found amongst native Japanese and Chinese (Moul et al. 1995; Stanford et al. 

1999). Therefore race may also be a risk factor for PCa development. However this may 

be biased due to the availability and differences of screening and diagnosis methods 

among different countries (Altekruse et al. 2010; Bunker et al. 2002; Ross et al. 1998). 

Nevertheless, the variation of PCa development between the different races may be real 

and the differences may arise due to both inherited genes and environmental factors. 

Such environmental factors include diet, where Southeast Asian men typically consume 

soy products which contain PCa protective agent called phytoestrogen and this may 

contribute to the low risk of PCa among the Southeast Asian population (Barnes et al. 

2001: Goetzl et al. 2007). Thus along with major risk factors such as age and family 

history, the world-wide disparity in the incidence rates of PCa, suggests that 

environmental factors such as dietary agents may also affect the risk of PCa 

development. 
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1.1.2 Diagnosis and Treatment 

Prostate cancer has similar symptoms to other problems of the prostate, such as 

prostatitis and benign prostate hyperplasia (BPH) which is a non-cancerous enlargement 

of the prostate. Therefore, discrimination between these conditions are challenging 

(Xue et al. 2015), and accurate diagnosis is essential, as different treatments are 

required. 

 

Diagnosis 

The methods used for PCa detection is testing for abnormally high levels of prostate 

specific antigen (PSA) in serum as well as rectal examination and prostatic 

ultrasonography. PSA is a glycoprotein, specifically secreted by prostate epithelial cells 

and all men have PSA in their blood, which increases with age (Catalona et al. 1991; 

Oesterling et al. 1993). Men under 60yrs of age have PSA level of 3ng/ml which increases 

to 4ng/ml by age of 60 and a further increase to 5ng/ml for men in their 70’s and over 

(Punglia et al. 2003). A result higher than these values but less than 10ng/ml are usually 

due to benign prostatic hyperplasia (BPH). PSA levels of more than 10ng/ml can also be 

caused by BPH but are more likely to be caused by PCa (Punglia et al. 2003). The PSA 

test is still a commonly used approach for detecting PCa but is very insensitive as a study 

revealed around 15% of men with normal PSA level, actually have PCa, whereas 60% of 

men with abnormally high PSA levels do not have PCa after further investigations 

(Thompson et al. 2004). The PSA test, thus cannot solely diagnose PCa, as it only 

indicates a problem with the prostate, which may be due to BPH, prostatitis or infections 

of the prostate (McConnell et al. 1994; Selley et al.1997; Azab et al. 2012).  

 

The digital rectal examination (DRE) involves the back surface of the prostate being felt 

for an oversized prostate or any hard lumpy area which may suggest PCa. DRE has high 

specificity, as false negative test results are rare (Hoogendam et al. 1999) and so a 

combinational use of PSA test and DRE increases the overall rate of PCa detection, 

compared to either test alone  (Carroll et al. 2001; Catalona et al. 1994; Bretton et al. 

1994). The DRE is however, not very sensitive, as examination can miss early stages of 

the disease. Hence the diagnosis of PCa is further examined by taking a biopsy using the 

trans-rectal ultra sound (TRUS) needle biopsy. This procedure involves insertion of an 
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ultrasound probe containing needle through the rectum and the probe helps guide the 

needle to the prostate for tissue sample collection. The sample can then be histologically 

examined. Biopsy is the most accurate way of finding out whether PCa is present in the 

prostate gland and for classifying the stage of the cancer, if present. Samples from two 

areas are graded from 1-5, and the number of grades are added to give a Gleason score 

between 2- 10.  A higher score indicates the cancerous tissues is more aggressive and 

has a worse prognosis than those with lesser scores (Cimitan et al. 2015; Szot et al. 2014; 

Heidenreich et al. 2008). Since the location of cancer is not known, TRUS examinations 

have a low sensitivity, because the needle may sample a non-cancerous area, missing 

the cancerous lesion, resulting in a lot of “false negatives” (Catalona et al. 1994). 

Therefore, “false negatives” should not rule out cancer completely as the samples 

collected may have been from a non-cancerous region. Even though TRUS is more 

reliable than a PSA test, TRUS is not recommended as the primary screening test for PCa 

because of its low sensitivity. Prostatic biopsy is only considered when the PSA levels are 

high or DRE indicates possible PCa. Overall, the combination of PSA test, rectal 

examination, with ultrasonography is the better method for diagnosis of PCa than either 

one test alone. 

 

Current Treatments 

The treatment of PCa aims to prevent death and disability whilst minimising 

intervention-related complications. Treatment for PCa depends on the combination of 

the PSA level, age and Gleason score and every treatment is considered individually for 

men with PCa. Furthermore, cancers that are small and retained in the prostate gland 

(known as localised prostate cancer) may require different treatments to that of cancers 

that have metastasised to secondary sites (known as advanced prostate cancer) 

(Kupelian et al. 2004). The main treatments include surgery, radiotherapy and hormone 

therapy. 

 

Men with good health with localised PCa can have it removed by surgery known as 

radical prostatectomy (Murphy et al. 1994; Onik et al. 1993). Surgery is restricted to men 

with good health as there are some risk such as blood loss and infection (Gao et al. 2013) 

which may be detrimental to men with poor health. Another major problem which can 
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arise post-surgery is impotency and so radical prostatectomy may not be the best 

approach for treatment of PCa. Low level of PSA can be measured to ensure treatment 

has been successful. If PSA starts to rise again, the patient may require other treatments 

such a radiotherapy and hormone therapy. 

 

Radiotherapy is a better option for men who are not fit or well enough for surgery. 

Radiation can be used to treat localised PCa, but may also be suitable for advanced PCa. 

Patients can undergo external radiation therapy, which involves exposure of high-

energy X-rays directed to the prostate gland from outside the body (Zelefsky et al. 2002). 

This attenuates tumour growth by damaging the cancer cells. Alternatively, patients can 

be treated using a 3D conformal radiotherapy (3D-CRT). With this procedure, the 

radiation beam matches the shape of the prostate. This helps prevent damage to the 

surrounding tissues, thus reducing the side effects (Zelefsky et al. 1998). A newer and 

better approach is the intensity modulated radiotherapy (IMRT), where the beam of 

radiation matches the size, shape and position of the prostate. Intensity of the radiation 

beam can also be controlled so that the region of the prostate where cancer cells are 

accumulated will get a higher dose in comparison to the outer regions where cancer 

cells are lower. Additionally, the risk of side effects, such as bowel, urinary and erection 

problems are usually lower with IMRT than 3D-CRT (Zelefsky et al. 2002).  Another 

option is the internal radiation therapy, also known as brachytherapy (Langley and Liang 

2004), which involves implantation of radioactive seeds into the tumour in the prostate 

gland or at secondary sites. The radiation from the seeds kills the tumour cells 

(Peinemann et al. 2011; Langley and Liang 2004), however the side effects are similar to 

others, such as urinary, bowel and erectile complication (Chen et al. 2006). Lastly, 

palliative radiotherapy is suitable for advanced PCa, as a large area of the body is treated 

with radiation in one go and can also provide some relief from bone pain for example. 

 

Testosterone is an androgen hormone with multiple functions, one of which is the 

requirement for the development and function of the male reproductive system. In 

aggressive cancer, testosterone accelerates tumour growth (Xiao et al. 2003). Therefore 

orchiectomy was a popular surgical option to remove the testicles where testosterone 

is mainly released from. Orchiectomy reduces testosterone level by 90-95%, whilst the 
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rest was produced by the adrenal glands. Alternatively, androgen derived therapy using 

anti-androgen agents can be used instead to keep testosterone levels low (Shore et al. 

2013). Androgen-deprivation therapy (ADT) along with the surgery was shown to obtain 

maximal androgen blockage resulting in a greater survival, in comparison to patients 

who underwent surgery but had no hormone therapy, over 5 years of assessment in 

randomised trials (Schmitt et al. 2000). Additionally the requirement of any further 

treatment declined at 5yrs, thus combinational treatment with hormone therapy and 

surgery are beneficial (Schmitt et al. 2000). However ADT can increase adverse effects 

such as stroke (Azoulay et al. 2011) and reduction in cognitive function (Nelson et al. 

2008; Jamadar et al. 2012) and so must be taken with consideration. ADT is very 

effective in tumour regression, however such treatment results in the recurrence of 

highly aggressive and metastatic PCa that is androgen independent, making it more 

difficult to treat (Menon and Walsh 1979; Isaacs and Coffey 1981). 

 

PCa patients may undergo chemotherapy which utilises drugs like mitoxantrone, 

cabazitaxel and docetaxel, to reduce the tumour size and halt tumour progression (Bahl 

et al. 2013; Collins et al. 2006; Serpa Neto et al. 2011).  However it is not the primary 

line of treatment for patients at early stage. It is offered to patients with advanced or 

metastatic PCa patients who are not responding to hormone therapy (Doyle-Lindrud et 

al. 2012; Colloca et al. 2010). This is because there are serious side effects, such as 

bleeding, bowel problems and infection, and so it is recommended that the patient is 

healthy and fit for consideration of chemotherapy (Tipton et al. 2007; Husson et al. 

2011). Despite the advances in diagnosis and treatment, the majority of patients with 

metastatic disease are incurable.  Therefore, it remains important to understand the 

cellular biology and molecular mechanisms involved in tumour growth and metastasis, 

which may allow us to identify new targets to prevent disease progression. 
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1.2 Cancer Associated Stroma 

The prostate is composed of two compartments, an epithelial compartment which 

includes the secretory exocrine glands and the surrounding connective tissue stroma. 

Interactions between the stroma and epithelium are required for the normal 

development and function of the prostate (Sun et al. 2009). However the interaction has 

also been reported to play a crucial role in the development and progression of tumours 

and tumour metastasis (Orimo et al. 2005; Giannoni et al. 2010). Most therapeutics, 

however are targeted towards the cancer cells, but the stroma is also an important 

player in tumour progression and so targeting the stroma may be an effective 

therapeutic approach for treating cancer.  

  

1.2.1 The reactive stroma 

The stroma of the prostate is heterogeneous and consists of endothelial cells, 

fibroblasts, immune cells, nerve cells, smooth muscle cells and mesenchymal stem cells. 

The smooth muscle cells are the major stromal cell type in the normal prostate 

(Grossfeld et al. 1998). However, in prostate carcinoma, the neoplastic cells are 

surrounded by an altered stromal tissue, called the “desmoplastic reactive” tissue, but 

are also referred to as the reactive stroma. This reactive stroma is altered in comparison 

to the normal stroma, in which the interstitial smooth muscle cells are displaced by α-

smooth muscle actin and vimentin positive myofibroblasts (Tuxhorn et al. 2002) as 

shown in figure 1.1. Prostatic intraepithelial neoplasia (PIN) is considered as a precursor 

of PCa, because the frequency and incidence of PIN was found to be greater in men with 

PCa than without (Sakr et al. 1994; Sakr et al. 1999). However, similar observations by 

pre-neoplastic myofibroblasts are also seen in PIN. Therefore stromal changes are not 

secondary to tumour development, rather it can occur hand in hand with epithelial 

changes in PCa.  
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Figure 1.1: Smooth muscle cells are replaced by myofibroblasts.   
Healthy and cancerous prostatic specimen obtained from radical prostectomy were dual-
labelled with α-SMA (green) and vimentin (red) and analysed by immunofluorescence. The 
healthy stroma contains co-localisation (yellow) of α-SMA and vimentin only at the blood vessel 
walls. Increased co-localisation of α-SMA and vimentin, indicative of myofibroblasts was 
observed in the stroma of cancerous prostate. DAPI used to stain nuclei (blue). (A). 
Immunostaining of vimentin was observed in stromal cells adjacent to PIN (brown) (top). Dual-
labelling of fluorescence antibodies against α-SMA (green) and vimentin (red) were used to 
identify myofibroblasts (co-localisation; yellow) (bottom) adjacent to the PIN (B) X 400 
Source: Tuxhorn et al. 2002 

α-SMA Vimentin 

α-SMA 
α-SMA & 
Vimentin 

Reactive stroma in PIN 
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1.2.2. Tumour associated myofibroblasts 

There are multiple potential cellular precursors of myofibroblasts, such as pericytes, 

smooth muscle cells (Rajkumar et al. 2005), fibroblasts (Hinz 2007; Desmouliére et al. 

1993), epithelial cells, endothelial cells, circulating fibrocytes (Abe et al. 2001; Direkze 

et al. 2003), adipose tissue derived cells and mesenchymal stem cells (McAnulty et al. 

2007; Őstman and Augsten 2009; Micallef et al. 2012). The myofibroblastic 

differentiation of fibroblasts has been studied the most, especially in the realm of 

granulation during wound healing, as illustrated in figure 1.2. Firstly, the fibroblasts 

evolves into proto-myofibroblasts which are characterised by the formation of β and ƴ 

cytoplasmic actins (Hinz et al. 2001; Kapanci et al. 1992). The stimuli to trigger this 

process is not very well understood, but mechanical tension has been shown to generate 

proto-myofibroblasts from the fibroblasts (Tomasek et al. 2002). Secondly, the proto-

myofibroblasts are stimulated to develop into differentiated myofibroblasts in response 

to transforming growth factor-β1 (TGF-β1) and extracellular matrix (ECM) components 

like ED-A fibronectin and mechanical stress (Tomasek et al. 2002). The differentiated 

myofibroblasts are characterised by the neoexpression of α-smooth muscle actin (Darby 

et al. 1990; Ronnov-Jessen et al. 1996) and the incorporation of α-SMA into stress fibres 

provides contractile features of myofibroblastic cells (Hinz et al. 2001).  

 

Functionally, the differentiated myofibroblasts can generate a greater contractile force 

than the proto-myofibroblasts for matrix remodelling. This is reflected by higher 

organisation of α-SMA stress fibres to the extracellular fibronectin fibrils via focal 

adhesion complexes (figure 1.2) (Dugina et al. 2001; Singer et al. 1984). Due to this 

connection the myofibroblasts possesses a mechanotransduction system where the 

force generated by the actin stress fibres can be transmitted to the surrounding ECM 

(Burridge and Chrzanowska-Wodnicka 1996). Once the original structure of the ECM is 

reconstituted at the wound site, the myofibroblasts may undergo apoptosis (Hata et al. 

2013) or may revert back into fibroblasts (Darby et al. 2014), but the latter has not been 

clearly demonstrated. Nevertheless, myofibroblasts are more likely to undergo 

apoptosis and be cleared by macrophages. 
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Figure 1.2: Myofibroblast differentiation from resting fibroblasts at wound sites 
Under mechanical stress, fibroblasts can differentiated into proto-myofibroblasts, which form 
cytoplasmic actin-containing stress fibres that terminate in focal adhesion complexes. Proto-
myofibroblasts also express and organise cellular fibronectin, including ED-A fibronectin and 
these proto-myofibroblasts. Transforming growth factor-β1 (TGF-β1) can increase the 
expression of ED-A fibronectin and both factors, along with mechanical stress, can stimulate the 
proto-myofibroblasts to modulate into differentiated myofibroblasts. The differentiated 
myofibroblasts are characterised by the de-novo expression of α-smooth muscle actin in more 
extensively developed stress fibres. Once tissue-healing is complete, myofibroblasts may 
undergo apoptosis or revert back into a myofibroblasts but the mechanism behind this is 
unknown. 
Source: Gabbiani et al. 2003 
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1.2.3 Tumour associated myofibroblasts promote cancer progression 

Alterations of the stroma during tumorigenesis has led researchers to assess the role of 

stromal-epithelial interactions with regard to tumour progression.  In one experiment, 

myofibroblasts taken from invasive breast cancer patients, promoted the growth of 

breast carcinoma cells in vivo, to a much greater extent than that of normal mammary 

fibroblasts taken from the same patients (Orimo et al. 2005). In another experiment, 

myofibroblasts, taken from human prostate tumours, or fibroblasts taken from benign 

prostate hyperplasia (BPH) were administered with immortalised non-tumourigenic 

prostate epithelial cells in mice and tumour growth was assessed (figure 1.3). Tissue 

recombinants of myofibroblasts with the epithelial cells strikingly enhanced growth by 

500 times in comparison to fibroblasts with the epithelial cells (Olumi et al. 1999). 

Therefore stromal activation, resulting in enhanced myofibroblasts is recognised as a 

rate limiting step in tumour progression. Furthermore, there is a clear correlation 

between the extent of stromal changes and the clinical prognosis of various cancers. 

One example is a study conducted amongst 60 breast cancer patients with known 

prognosis. Immunohistochemical (IHC) analysis of biopsies revealed, patients with 

metastatic breast cancer to be significantly abundant in α-SMA expressing 

myofibroblasts in comparison to patients with non-invasive breast cancer (Yamashita et 

al. 2012). In another study, the stroma from prostate cancer patients after radical 

prostatectomy for clinically localised PCa was analysed by IHC, revealing a significant 

correlation between the myofibroblast phenotype and the length of disease-free period. 

Therefore, in PCa patients who have identical Gleason score, the intensity of stroma 

changes i.e. the increase in myofibroblast phenotype could identify patients with a 

higher risk of PCa relapse (Tomas et al. 2010). Similarly, the use of myofibroblasts as an  

independent prognostic factor has been shown in various other cancers including 

oesophageal adenocarcinoma, oral squamous carcinoma, colorectal cancer and 

pancreatic cancer (Underwood et al. 2015; Marsh et al. 2011; Surowiak et al. 2007; 

Tsujino et al. 2007; De Monte et al. 2011) emphasising the importance of the stroma in 

directing and influencing disease outcomes. 

 

Myofibroblasts exert tumour promoting functions by enhancing proliferation of the 

cancer cells, most likely in a hepatocyte growth factor (HGF)-dependent manner as 
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shown in hepatocellular carcinoma (Jia et al 2013), prostate carcinoma (Olumi et al 

1999) and breast carcinoma (Surowiak et al 2006). Myofibroblasts have also been shown 

to support tumour progression by enhancing angiogenesis, tumour migration and 

invasion.  

 

Angiogenesis 

Angiogenesis is the formation of new capillaries from pre-existing blood vessels and is 

essential for the growth and progression of the tumour (Reinhart-King 2008). Capillaries 

are a monolayer of endothelial cells, creating a semi-permeable barrier between the 

blood and the surrounding tissue, for the exchange of nutrients and waste products to 

and from the tumour cells (Reinhart-King 2008; Eliceiri and Cheresh 2001). Tumourigenic 

tissues exhibit abnormally high blood vessel densities in comparison to non-

tumourigenic tissues (Olumi et al. 1999; Kamoun et al. 2010; Yang et al. 2005). 

Additionally, the blood vessels were reported to increase during early tumour formation 

(Kamoun et al. 2010), indicating their importance in tumour growth. 

 

For angiogenesis to occur, endothelial cells migrate from pre-existing blood vessels, 

proliferate and reorganise with vascular smooth muscle cells and pericytes to form a 

new capillary network (Davis and Senger 2005; Lamalice et al. 2007). The process of 

angiogenesis is regulated by a balance between anti- and pro- angiogenic agents. 

Examples of pro-angiogenic factors are vascular endothelial growth factor-A (VEGF-A), 

fibroblast growth factor (FGF), hepatocyte growth factor (HGF) and platelet derived 

growth factor (PDGF) (Lamalice et al. 2007; Bouïs et al. 2006). Tumour promoting 

myofibroblasts have been reported to secrete pro-angiogenic factors such as VEGF-A 

and HGF which may aid angiogenesis at tumour sites (Webber et al. 2014; Orimo et al. 

2001).  

 

Myofibroblasts may have the capacity to induce endothelial recruitment into the 

tumour site and hence support angiogenesis for tumour progression. This assumption 

was based on studies where myofibroblasts from breast cancer stroma were able to 

mobilise endothelial cells in vitro in a Boyden transwell chamber (Orimo et al. 2005). In 

contrast non-cancerous stromal cells such as fibroblasts failed to recruit the endothelial 
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cells. The mobilisation of endothelial cells were reported to be dependent on the 

chemokine, stromal derived growth factor-1 (SDF-1) secreted by myofibroblasts, as 

shown using SDF-1 blocking experiments (Orimo et al. 2005). Furthermore, 

administration of anti-SDF-1 neutralising antibody into nude mice with breast cancer 

cells admixed with myofibroblasts greatly reduced tumour growth in vivo (Orimo et al. 

2005) and this may be due to the lack of recruitment of endothelial cells into the tumour 

site required for angiogenesis. In addition, co-culturing of diseased stromal cells from 

the prostate with endothelial cells promoted vessel-like structure formation in vitro 

(Webber et al. 2014). The diseased stromal cells were identified to be α-SMA positive, 

indicating a myofibroblast phenotype. Therefore myofibroblasts promote tumour 

progression at least in part by enhancing formation of vessels. 

 

Tumour invasion and metastasis 

The ability of cancer cells to move and invade, allows the escape of cells from the 

primary tumour site to a distant site to form a secondary tumour. Myofibroblasts are 

abundantly present at the invasive front of primary tumours, such as in colon cancer in 

vivo (De Wever et al. 2004) and are thus speculated to play a role in supporting tumour 

invasion. In vitro studies demonstrate myofibroblasts promote tumour cell invasion. For 

example, conditioned medium (CM) from myofibroblasts obtained from colon cancer 

and squamous carcinoma were found to promote invasion of the colon and squamous 

cancer cells, respectively in a collagen gel matrix (De Wever et al. 2004; Cat et al. 2006). 

In contrast, CM from standard culture media or from non-cancerous fibroblasts from 

healthy stroma of the same patients failed to support tumour cell invasion. 

Furthermore, lowering the amount of myofibroblasts, reduced the invasive capacity of 

tumour cells (Cat et al. 2006), thus the invasion of cancer cells can be directed by 

myofibroblasts. 

 

Myofibroblasts have increased secretion of hepatocyte growth factor (HGF) in 

comparison to their precursors, such as the fibroblasts. Blocking experiments revealed 

tumour cell invasion to be partially dependent on HGF (De Wever et al. 2004).  There 

are additional factors such as matrix metalloproteinases (MMPs) which may also be 

involved in promoting tumour cell invasion. MMPs are enzymes which are used by cells 
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to break down structural proteins within the ECM such as collagen, laminin, elastin and 

fibronectin (Sternlicht and Werb 2001). Conditioned medium (CM) of myofibroblasts 

derived from breast cancer contained higher levels of MMP-1 than that of normal 

fibroblasts (Boire et al. 2005). Similarly, myofibroblasts from prostate cancer were found 

to have elevated MMP-2 expression (Giannoni et al. 2010). Blocking experiments 

revealed MMP-1 is required for the motility of breast cancer cells and MMP-2 for the 

motility of prostate cancer cells in a Boyden transwell chamber (Boire et al. 2005; 

Giannoni et al. 2010). Therefore myofibroblasts provide components to support the 

motility and invasive capacity of the cancer cells, which are required for tumour 

metastasis. Giannoni and group (2010) have observed prostate cancer cells to 

metastasise to the lung when admixed with myofibroblasts in a xenograft model. This 

spontaneous metastasis was not observed, however, when prostate cancer cells were 

injected in mice alone or with fibroblasts from healthy stroma. Even though 

myofibroblasts are essential elements involved in promoting metastasis, the paracrine 

factors involved are, however poorly understood. 

 

Various studies, have shown that in comparison to normal fibroblasts, tumour 

associated myofibroblasts secrete high levels of soluble factors such as insulin-like 

growth factor-1 (IGF-1), epidermal growth factor (EGF), vascular endothelial growth 

factor- A (VEGF-A), HGF and interleukin-6 (IL-6), as shown using ELISA, 

immunohistochemistry and qPCR analysis (Webber et al. 2014; Orimo et al. 2001; Cat et 

al. 2006). These factors may participate in tumour progression by stimulating tumour 

cell proliferation, angiogenesis, tumour cell invasion and metastasis, making 

myofibroblasts essential for tumours to progress. Hence understanding the mechanisms 

involved in the generation of myofibroblasts is of great importance if we are to ever 

devise therapeutic approaches to target this rate-limiting step in disease progression. 
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Tumour associated myofibroblasts support tumour growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.3: Tumour associated myofibroblasts enhance tumour growth. 
Image shows the gross appearance of tissue recombinants harvested after 85 days of growth 
in nude mice. Myofibroblasts (taken from prostate cancer) administered with prostate 
epithelial cells weighed 1250mg (Left hand side). Normal fibroblasts (taken from BPH) 
administered with prostate epithelial cells weighed 10mg (Right hand side). Scale bar; 1cm 
Source: Olumi et al. 1999 
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1.3 Transforming Growth Factor-β 

1.3.1 TGF-β1 within the reactive stroma 

The Transforming Growth Factor-β1 (TGF-β1) is a member of the TGF-β superfamily of 

cytokines. There are three isoforms of TGF-β (-1, -2 and -3) and the TGF-β1 isoform has 

been the most widely studied in the context of myofibroblastic differentiation. The 

mRNA and protein for TGF-β1 is overexpressed in many types of human cancers, 

including colon cancer (Coffey et al. 1986) and breast cancer tissues (Barette-Lee et al. 

1990) in comparison to the normal colon and breast tissues, respectively. 

Overexpression of TGF-β1 is also observed in human prostate cancer tissues, in 

comparison to the normal prostate tissue or BPH (Eastham et al. 1995; Gerdes et al. 

1998). Additionally, rat prostate cancer cells genetically manipulated to overexpress 

TGF-β1 enhanced tumour size by 50% and produced a more extensive metastatic 

disease in vivo, in comparison to the un-manipulated tumour cells (Steiner and Barrack 

1992). Therefore TGF-β1 is believed to be an essential factor for tumour progression. 

 

Similar to fibrosis at wound sites, TGF-β1 from cancer cells has been reported to drive 

the differentiation of stromal fibroblasts into myofibroblasts as characterised by the de-

novo expression of α-SMA expression. Such examples are seen in squamous cell 

carcinoma (Lewis et al. 2004) and prostate cancer (Tuxhorn et al. 2001). Moreover, 

blocking TGF-β1 signalling via the TGF-β1 neutralising antibody or inhibiting the TGF-β1 

receptor (Alk-5), resulted in attenuation of fibroblasts differentiating into α-SMA 

positive myofibroblasts (Tuxhorn et al. 2001; Webber et al. 2010).  Therefore TGF-β1 is 

important for directing the differentiation of fibroblasts into myofibroblasts. 

 

1.3.2 TGF-β1 signalling pathway 

TGF-β1, a polypeptide homodimer is secreted by cells as a large latent complex, 

consisting of dimeric propeptides called latency associated protein (LAP), which are 

bound to the latent TGF-β binding protein (LTBP) (Gerdes et al. 1998). LTBP contain 

multiple epidermal-growth-factor-like repeats as well as unique domains containing 

eight cysteine residues (8-cys domains). Immunoblotting of the protein complexes 

indicated that the third 8-Cys repeat of LTBP binds covalently to the LAP region of the 

TGF-β1 (Saharinen et al. 1996). Additionally, disulphide linkages are formed between 
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the cysteine residues of LAP and cysteine residues in the LTBP (Saharinen et al. 1996). 

Due to this interaction, the TGF-β is incapable of interacting with the TGF-β receptors as 

shown by multi-light scattering mass measurements (Shi et al. 2011). 

 

Cleavage of the bond between the LAP and LTBP is required for activation of TGF-β 

(Annes et al. 2003) and this can be accomplished by proteases, integrins, 

thrombospondin, heat and pH (Wipff and Hinz 2008; Lyons et al. 1988), most of which 

are found to be up-regulated in response to injury. Once activated, TGF-β1 triggers a 

downstream signalling pathway as illustrated in figure 1.4. Activated TGF-β1 binds to the 

serine/threonine kinase domain of the TGF-β receptor II (TGF-βR II), which in turn 

phosphorylates the TGF-β receptor I (TGF-βR I) as it forms a receptor complex with it 

(Roberts 1999). Additionally, TGF-β1 may also be presented to the TGF-β receptor II by 

the accessory protein, betaglycan (also known as TGF-β receptor III) or endoglin (De 

Crescenzo et al. 2003; Midgley et al. 2013; Guerrero-Esteo et al. 2002). The activation of 

TGFβRI phosphorylates members of the Smad family, in particular the receptor-

activated Smad protein (R-SMAD) such as SMAD-2 and SMAD-3. The phosphorylated 

SMAD-2 or SMAD-3 forms a heterodimeric complex with Co-Smad (SMAD-4) which then 

translocates into the nucleus and interacts with Smad-binding elements (SBE) in the DNA 

to regulate transcription of target genes and thus the synthesis of proteins such as α-

SMA. Therefore the active form of TGF-β1 has the capacity to differentiate stromal cells 

into α-SMA positive myofibroblasts. Various studies use the TGF-βR I (Alk-5), inhibitor 

called SB43152 to block the receptor and hence the corresponding downstream 

signalling, to investigate the TGFβ-SMAD dependent pathway involved in the 

differentiation of cells into α-SMA positive myofibroblasts (Webber et al. 2010; Gu et al. 

2012). 

 

The accessory proteins which deliver TGF-β1, can also modify the cellular response to 

TGF-β1, for example overexpression of endoglin in fibroblasts, suppressed Smad-3 

dependent activity (Leask et al. 2002). Another experiment showed the suppression of 

Smad 3 via genetic manipulation repressed the generation of α-SMA expressing 

myofibroblast in response to TGF-β1 (Gu et al. 2007). In a similar experiment, 

suppression of Smad 2 activity (phsophorylation) caused by inhibition of TGF-βR I (Nyati 
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et al. 2011) attenuated myofibroblastic differentiation of fibroblasts (Webber et al. 

2010). Thus myofibroblast differentiation is dependent on Smad 2 and 3 activity.  

 

Recently, fibroblast-to-myofibroblast differentiation in response to TGF-β1 was shown 

to be dependent on the polysaccharide hyaluronan (HA) (Webber et al. 2009) via the 

epidermal growth factor receptor (EGFR) and CD44 (Midgley et al. 2013). The EGFR and 

CD44, however, also triggers downstream mitogen-activated protein kinase (MAPK) and 

calcium-calmodulin kinase II activation (Ito et al. 2004; Midgley et al. 2013). In addition, 

knock down of these receptors, abrogates HA and attenuates the downstream MAPK 

signalling and myofibroblastic differentiation (Midgley et al. 2013). Thus other pathways 

independent of the Smad signalling, such as MAPK are also involved in the 

myofibroblastic differentiation process (Hashimoto et al. 2001; Hough et al. 2012). 
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Figure 1.4: The TGF-β driven pathway involved in myofibroblastic differentiation. 
Latent TGF-β is activated by the dissociation of LAP from LTBP in response to certain 
activators. Active TGF-β may bind to TGFBR II directly or with the aid of TGFβ-III (betaglycan). 
TGFβRII in turn phosphorylates TGFβRI, by forming heterodimerisation of the receptors. 
TGFβRI can phosphorylate receptor-associated Smads (R-Smads), such as Smad-2 and Smad-
3. The phosphorylated Smad-2,-3 forms a complex with Smad-4, a co-Smad, which 
translocates into the nucleaus and binds to Smad Binding Element (SBE) which can influence 
the transcription of target genes and thus the synthesis of target proteins. SB43152 can bind 
to the Alk-5 TGFβRI and inhibit the downstream TGF-β pathway. 
Source: Adapted from Saharinen et al. 1996; De Crescenzo et al. 2003; Shi et al. 2011 
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1.4 Exosome Biology  

Exosomes are a distinct population of membranous nanovesicles of endocytic origin, 

ranging in a size from 30-150nm in diameter. They used to be regarded as “cellular 

debris” but are now seen as important communicating tools. They were first described 

to be released by rat reticulocytes maturing into red blood cells (Harding et al. 1984, 

1983; Johnston et al. 1987; Pan et al. 1985). Secretion of exosomes were later, noted in 

other cells such as B-cells (Raposo et al. 1996), dendritic cells (Zitvogel et al. 1998), 

platelets (Heijnen et al. 1999), T cells (Peters et al. 1991; Denzer et al. 2000) and tumour 

cells (Wolfers et al. 2001). Over the past few years, exosomes have been demonstrated 

to play roles fundamental to cancer and other diseases and thus study of exosomes has 

become of great interest. 

  

1.4.1 Characteristics of exosomes 

Studying the biology of exosomes is technically challenging due to many reasons such as 

their small size, variation in molecular composition and confusion in their terminology, 

resulting in exosomes being referred to as microvesicles and vice versa. Nevertheless, 

exosomes possess characteristic biophysical and biochemical properties, for example 

they have a diameter of 30-150nm, as shown by immuno-electron microscopy and 

Nanoparticle Tracking Analysis (NTA) (Escola et al. 1998; Sokolova et al. 2011; Sharma 

et al. 2010) and have a buoyant density in sucrose of 1.1-1.2g/mL (Raposo et al. 1996). 

 

The protein content of exosomes has been extensively examined from various tumour 

cells such as breast cancer (Koga et al. 2005), colorectal cancer (Choi et al. 2007), 

mammary adenocarcinoma (Wolfers et al. 2001), mesothelioma (Hegmans et al. 2004) 

and brain tumour (Graner et al. 2009). Furthermore, the exosomes studied have been 

isolated from cancer cell supernatants as well as diseased biological fluids, including 

blood-plasma (Caby et al. 2005), urine (Gonzales et al. 2009; Nilsson et al. 2009) and 

pleural effusions (Andre et al. 2002). The exosome composition has been assessed using 

methods such as western blotting, flow cytometry and immuno-electron microscopy but 

mass spectrometry (MS) is the most widely used tool to study the protein content of 

exosomes. In comparison to the early mass spectrometry (MS) used for peptide mapping 

(Théry et al. 1999 and 2001), newer MS-based proteomic tools generate peptide 
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sequence information by time of flight (TOF/TOF) which are better due to their higher 

sensitivity, resolution and mass accuracy and hence assigning a protein identification 

can be done with much greater confidence. Thus the advances in MS has significantly 

improved the depth of exosomal proteome coverage (Simpson et al. 2008). From the 

vast published and unpublished studies the proteins, lipids and RNAs found in exosomes 

have been catalogued in the ExoCarta, an online database (http://www.exocarta.org). 

Additionally, the purification method and characterisation properties are noted on the 

ExoCarta so that the researchers can assess the quality of the exosome preparations to 

that of their corresponding data shown (Mathivanan et al. 2012).  

 

From the ExoCarta database, exosomes in general have been revealed to contain 

membrane and cytosol components associated with their endosomal origin and 

exosome biogenesis. Some of which are illustrated in figure 1.5, such as the Rab 

proteins, annexins (Mears et al. 2004), tetraspanins (CD9, CD81 and CD63) (Théry et al. 

2002; Escola et al. 1998), ALIX, TSG101 and heat shock proteins (HSC70 and HSP90) 

(Théry et al. 2002). Most exosomes also contain MHC Class I molecules (Blanchard et al. 

2002; Wolfers et al. 2001) and lysosomal markers LAMP1 and LAMP2 (Denzer et al. 

2000). Some cancer cell-derived exosomes express certain cytokines and growth factors, 

such as TNFα in melanoma derived exosomes (Soderberg et al. 2007) and TGF-β in brain, 

mesothelioma and prostate cancer exosomes (Graner et al. 2009; Clayton et al. 2007; 

Webber et al. 2010). Apart from proteins, constituents of lipidic membrane like 

cholesterol and ceramide are also enriched in exosomes (Trajkovic et al. 2008; Subra et 

al. 2007; Wubbolts et al. 2003). Studies have also shown exosomes to contain both 

mRNA and miRNA (Valadi et al. 2007; Taylor and Gercel-Taylor 2008; Skog et al. 2008). 

The most common proteins found amongst exosomes are ALIX, TSG101 and 

tetraspanins (CD9, CD63 and CD81) and are routinely used as positive markers for 

exosome identification using antibody based techniques such as ELISA and western blot. 

 

Exosomes also possess some distinct sets of proteins associated with their cell of origin. 

For example, antigen presenting cells such as dendritic cells and B-lymphocytes are 

enriched in MHC Class I and II, tetraspanins (CD9, CD63 and CD81) and co-stimulatory 

molecules CD80 and CD86, indicating exosomes from antigen presenting cells contain 

http://www.exocarta.org/
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the cellular machinery required to induce a potent T-cell response (Raposo et al. 1996; 

Zitvogel et al. 1998; Théry et al. 1999, 2001; Clayton et al. 2001; Heijnen et al. 1999). In 

numerous cancer cell studies, the tumour-associated proteins and miRNA content in the 

cells were similarly expressed in their corresponding exosomes, thus exosomes may 

provide a cell-type signature for diagnostic purposes (Mathivanan et al. 2010; Skog et 

al. 2008; Rabinowits et al. 2009; Taylor and Gercel-Taylor 2008; Andre et al. 2002; Huber 

et al. 2005). All these studies, demonstrate the complexity of exosomal vesicles and 

hence their potential diverse roles as mechanistic component involved in cell-to-cell 

communication. 
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Molecular composition of exosomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Schematic representation of the some of the components found on an exosome. 
Exosomes are membrane-bounded vesicles containing various transmembrane proteins 
including integrins, tetraspanins (CD9, CD81, CD63), MHC molecules, heat shock proteins, 
growth factors and cytokines. Exosomes also encapsulate MVB-associated proteins (ALIX and 
TSG101), enzymes, Rab proteins, cytoskeletal components as well as mRNA and miRNA. 
Source: Adapted from Raposo et al 1996; Zitvogel et al 1998; Thery et al 1999; Clayton et al 2001; 
Wolfers et al. 2001; Graner et al. 2009; Clayton et al. 2007; Subra et al. 2007; Wubbolts et al. 
2003; Valadi et al. 2007 Webber et al. 2010 
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1.4.2 Exosome biogenesis and the endogenous control of their secretion 

The biogenesis and secretion of exosomes involves various molecules and is 

schematically summarised in figure 1.6. Early studies using pulse chase and immuno-

electron microscopy revealed exosomes to be contained within endosomal 

compartments, known as multivesicular bodies (MVBs) (also referred to as 

multivesicular endosomes) which then fuse to the plasma membrane to release pre-

formed vesicles as exosomes. The generation of exosomes, corresponding to the 

intraluminal vesicles (ILVs) in the MVBs involves the cargo clustering at the endosomal 

limiting membrane, the formation of inward budding of the vesicle and its release into 

the MVB. Many studies carried out in yeast revealed the endosomal sorting complex 

required for transport (ESCRT) family to be involved in the formation of MVBs. The 

ESCRTs proteins are grouped into 4 complexes (ESCRT-0, -I, -II and -III) plus accessory 

proteins and are recruited to the endosome in an ordered manner. The ESCRT-0 is 

responsible for the cargo recognition and clustering in an ubiquitin-dependent manner 

(Katzmann et al. 2003). ESCRT-0 also recruits ESCRT-I components (such as TSG101), 

which in turn recruits members of the ESCRT-II. Both the ESCRT-I and ESCRT-II induce 

the inward budding of vesicles (Katzmann et al. 2001). ESCRT-III is then recruited along 

with the accessory proteins which drive vesicular scission, as well as the disassembly and 

recycling of the ESCRT complexes (Babst et al. 2002; Katzmann et al. 2001; Jouvenet et 

al. 2011).  

 

Likewise, in eukaryotic cells such as MHC class II expressing HeLa cells, RNA interference 

(RNAi) was used to target different components of the ESCRT machinery, revealing 

exosome biogenesis and secretion to be dependent on various components of the 

ESCRT. For example, silencing of HRS and STAM (ESCRT-0 members) reduced exosome 

secretion as noted by reduction of MHC class II, CD63 and particle concentration, 

measured by fluorescence-activated cell sorting (FACS), western blotting and 

Nanoparticle Tracking Analysis (NTA) (Colombo et al. 2013). Similarly, silencing of 

TSG101 (ESCRT-I member) reduced exosome secretion and modified protein content of 

exosomes as evidenced by increased number of exosomes being negative for CD63 and 

MHC class II, suggesting TSG101 is required for targeting these cargos into exosomes in 
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HeLa cells. Thus interfering with the components of the ESCRT machinery lowers 

exosome secretion and modifies their protein composition. 

 

The ESCRT-III accessory protein, ALIX has been reported to promote the inward budding 

of vesicles in MVBs by its interaction with heparan sulphate proteoglycan (HSPG) 

syndecan-1 and the cytoplasmic adaptor syntenin (Baietti et al. 2012). Depletion of ALIX 

using siRNA, did not affect exosome secretion but increased the amount of MHC class II 

expressed on the cells and subsequently on their exosomes. Silencing of ALIX, also 

lowered the level of CD63 and HSP70, indicating that ALIX may also control the protein 

composition of the exosomes (Colombo et al. 2013). Once inward budding of vesicles is 

complete, the ESCRT complexes require energy to dissociate from the endosomal 

membrane and this energy is provided by the ESCRT-III accessory protein ATPase Vps4 

(Babst et al. 2011).  

 

Inhibiting ESCRT components does not completely block the formation MVBs (Stuffers 

et al. 2009) thus other molecules independent of the ESCRT machinery maybe involved 

such as lipids and tetraspanins. Sphingolipids such as ceramide, are synthesised by an 

enzyme called neutral sphingomyelinase (nSMase) which converts sphingomyelin to 

ceramide. Ceramide is proposed to facilitate membrane invagination of exosomes into 

MVBs and exosome secretion, as the inhibition of nSMase attenuated the biogenesis 

and the release of exosomes from glial cells (Trojkovic et al. 2008). Other studies have 

also reported the release of miRNA containing vesicles (presumed to be exosomes) to 

be dependent on ceramide (Iguchi et al. 2010; Kosaka et al. 2010). Specific lipids such as 

cholesterol are also enriched in exosomes from human dendritic cells (Laulagnier et al. 

2004) and oligodendroglia cells (Strauss et al. 2010). Drug-induced inhibition of 

cholesterol reduced the secretion of exosomes, thus cholesterol may be involved in 

exosome release. Tetraspanins expressed on exosomes may also play a role in the 

biogenesis and secretion of exosomes. Silencing CD63 using siRNA impaired vesicle 

formation by melanocytes, as noted by reduction of ILV numbers within the MVBs in 

comparison to the control melanocytes (Van Niel et al. 2011). CD81 is also enriched in 

internal vesicles of MVBs (Escola et al. 1998) and the depletion of CD81 using RNAi did 

not affect the size nor the amount of exosomes released from lymphoblasts, as 
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determined by electron microscopy and the Nanoparticle Tracking Analysis (Perez-

Hernandez 2013). However, proteomics analysis of exosomes from CD81 deficient cells, 

revealed an altered protein profile with reduced CD19 and CD20 in comparison to 

exosomes from the wild type cells. Therefore, CD81 plays a role in regulating the protein 

composition of exosomes (Perez-Hernandez 2013), emphasising exosome biogenesis 

and secretion are regulated by both ESCRT-dependent and independent components. 

 

Mechanisms that drive trafficking of MVBs to the plasma membrane involves the Rab 

family of small GTPase proteins. In a leukaemia cell line (K562), time-lapse confocal 

microscopy revealed GFP-labelled Rab11 to dock MVBs containing transferrin receptor 

and HSC70 expressing exosomes to the plasma membrane in a Ca2+-dependent manner 

(Savina et al. 2005). Furthermore, screening for GTPase in proteolipid protein (PLP)-rich 

exosomes from oligodendroglia cells revealed Rab35 to be the most abundant GTPase 

and the knock down of Rab35 impaired the secretion of exosomes-containing PLP and 

ALIX, resulting in the accumulation of PLP within the endosomes (Hsu et al. 2010; 

Frühbeis et al. 2013). Furthermore, Rab27a and Rab27b were observed to regulate 

exosome secretion in HeLa cells, in particular Rab27a, where knock down of Rab27a 

resulted in accumulation of endosomes within the cells (Ostrowski et al. 2010). The 

involvement of Rab27a in exosome secretion was later confirmed in other cancer cell 

lines such as melanoma (Peinado et al. 2012), breast cancer (Zheng et al. 2013) and 

prostate cancer (Webber et al. 2014). In these studies, depletion of Rab27a resulted in 

a reduction of exosomes within the conditioned media as determined by NTA, 

immunoblotting and protein quantification. 

 

The fusion of the MVBs with the plasma membrane to release vesicles may require 

soluble NSF Attachment Protein Receptor (SNARE) complexes, as shown in various 

models of lysosome secretion (Rao et al. 2004; Proux-Gillardeaux 2004). 

Immunofluorescence revealed, the vesicle-SNARE (v-SNARE) protein, VAMP-7 localised 

on the lysosomes, to interact with the target-SNARE (t-SNARES) such as syntaxin-4 and 

SNAP-23 on the plasma membrane, inducing fusion of the vesicle to the cell membrane 

(Rao et al. 2004). Additionally, the inhibition of VAMP-7 or SNAP-23, reduced the 

secretion of lysosomes, thus lysosome secretion is dependent on SNARE complexes 



Introduction 

 

27 
 

(Proux-Gillardeaux 2004). Whether the same interaction occurs with MVBs containing 

exosomes has not been thoroughly explored. Nevertheless, a study using a leukaemia 

cell line noted depletion of VAMP-7 to cause accumulation of enlarged MVBs containing 

acetylcholinesterase-exosomes close to the cell membrane, suggesting the fusion of 

MVB with the plasma membrane was abrogated (Fader et al. 2009). Thus the SNARE 

proteins are important for the release of exosomes. 

 

An alternate view of exosome release in certain cell types such as T cells is the direct 

budding of nanovesicles, referred to as exosome-like vesicles from the plasma 

membrane (Booth et al. 2006). The co-localisation of exosomal and endosomal 

molecules such as CD81, CD63, TSG101 and ATPase Vps4 at certain locations of the 

plasma membrane of Jurkat T cells were capable of outward vesicular budding. This 

indicates that certain regions of the plasma membrane contain elements which can 

permit exosome biogenesis and the outward budding of vesicles. Taken together, the 

biogenesis and secretion of exosomes is complex and the mechanism involved may 

differ among different cell types. 
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Figure 1.6: Schematic representation of the origin and secretion of exosomes. 
Exosomes are endosomal in origin (1), as they are generated in multivesicular bodies (MVBs) (2). 
The formation of MVBs has been shown to require ESCRT proteins, lipids (ceramide) and 
tetraspanins, but the role of these molecules in exosome biogenesis are unclear. The MVBs can 
either fuse with the lysosomes for degradation (3) or fuse with the plasma membrane to secrete 
exosomes into the extracellular milieu (4). Several Rab proteins (Rab11, Rab27 and Rab25) are 
known to be involved in trafficking MVB to the plasma membrane. The final step of exosome 
secretion, i.e the fusion of MVBs with the plasma membrane most probably requires the SNARE 
proteins, but is still unclear. Large vesicles such as microvesicles bud directly from the plasma 
membrane (5). Some studies report nanovesicles referred to as exosome-like vesicles to also 
possess the capacity to bud directly from the plasma membrane (6). 
Source: Adapted from Kowal et al. 2014 and Booth et al. 2006 
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1.4.3 Exogenous regulators of exosome secretion 

The secretion of exosomes is found to be up-regulated in cancer. For example, women 

with ovarian cancer have a greater level of circulating tumour-derived exosomes, in 

comparison to those with benign or age-matched healthy volunteers. Additionally, 

exosome concentration was found to increase with a more aggressive stage of ovarian 

cancer (Taylor and Gercel Taylor 2008). Similarly, circulating tumour exosomes were 

significantly increased in patients with adenocarcinoma in comparison to those without 

adenocarcinoma (control) (Rabinowits et al. 2009). There are many factors involved in 

the regulation of exosome secretion. Environmental factors such as stress can enhance 

exosome secretion via activation of p53 (Yu et al. 2006). Furthermore, a hypoxic tumour 

phenotype in breast cancer cell lines enhanced the release of exosomes (King et al. 

2012). This hypoxic response may be driven by hypoxia-induced factor (HIF-1α) as 

manipulating the cancer cells with HIFα siRNA attenuated the enhanced release of 

exosomes, when the cells were cultured under hypoxic conditions in vitro. 

 

Various agents can also regulate exosome secretion. The Ca2+ ionophore, A23187 

increased exosome secretion by B lymphoblast cells in a dose-dependent manner 

(Clayton et al. 2001). Other studies also reported exosome release to be induced in a 

Ca2+-dependent manner (Blott et al. 2002; Savina et al. 2003). Another ionophore, 

monensin (an Na2+/H+ exchanger) was also found to increase exosome secretion by the 

cells, possibly in a Ca2+-dependent manner as noted by accumulation of Ca2+ in 

endosomes of leukaemia cells (Savina et al. 2003). Likewise, lymphoblastoid T cells 

treated with monensin or A23187 increased exosome release in a dose-dependent 

manner, as noted by enhanced particle concentration measured by NTA and correlated 

with increased exosome associated proteins ALIX, TSG101, MHC class I (Soo et al. 2012; 

Powis et al. 2011). However, the Ca2+ ionophore, A23187 is known to induce vesicle 

release from the plasma membrane (Heijnen et al. 1999) and these vesicles may also 

express proteins similar to those found on exosomes and so analysis should be taken 

with caution. Nevertheless, some of these studies, analysed exosomal vesicles after 

isolation using a linear sucrose gradient (which will be discussed in more detail later), to 

obtain highly pure exosomal preparations (free from other non-exosomal components) 
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for analysis. This suggests that the response to calcium flux is genuinely exosomal and 

not due to a membrane-blebbing phenomenon. 

 

A recent study reported heparanase, an endoglycosidase to increase exosome secretion 

in myeloma cancer cells. To demonstrate this, the cancer cells were manipulated to 

express high or low levels of heparanase. Cells with abundant heparanase had a 6-fold 

higher amount of total exosomes secreted in the culture media, in comparison to the 

cancer cells with low levels of heparanase, as confirmed by western blotting against 

exosome-associated proteins, NTA and electron microscopy (Thompson et al. 2013). 

Heparanase cleaves heparan sulphate proteoglycan (HSPG) and so exosome secretion 

may be dependent on a specific structural feature of HSPG once exposed after cleavage. 

Furthermore, exosome biogenesis is dependent on the assembly of a complex consisting 

of syndecan-1, cytoplasmic domain syntenin and ALIX as mentioned earlier (Baietti et al. 

2012). The addition of heparanase to glioma cells was found to increase syndecan-1 

within endosomes (Gingis-Velitski et al. 2004). Thus, heparanase may regulate the 

localisation of syndecan-1 and hence promote exosome biogenesis. Lastly, exosomes 

released by cells have been reported to possess a negative feedback loop on exosome 

release by the cell and thus regulating the amount of exosome being secreted. The 

negative feedback regulation was also found to be tissue specific as the addition of 

exosomes from one cell type had no effect on the exosome secretion by another cell 

type (Riches et al. 2014). Collectively, these studies suggest various factors are involved 

in the regulation of exosome secretion by the cell. 

 

1.4.4 Methods for exosome isolation  

Exosomes have been isolated from cell culture medium or biological fluids in several 

ways based on the characteristic properties of exosomes. The most widely used method 

is differential centrifugation involving incremental increase in centrifugal forces, as 

shown in figure 1.7A, to remove cellular debris and large particles. After this 

centrifugation step, some researchers include filtration, using a 0.22μm membrane 

filters (Admyre et al. 2003). This helps remove any fragments and vesicles larger than 

200nm. Very few researchers also use 0.1μm membrane filters (Ji et al. 2008) to 

eliminate large vesicles. However, this is not ideal for viscous fluids, as the filters can 



Introduction 

 

31 
 

become easily blocked, resulting in the loss of exosomes. The final step of 

ultracentrifugation at around 100,000 x g for 1h or longer is used to pellet the exosomal 

vesicles which can then be further washed with PBS at ~100,000 x g to obtain an 

exosomal pellet, relatively free of non-exosomal components (Raposo et al. 1996; Escola 

et al. 1998; Zitvogel et al. 1998). However, an absolute separation of exosomes and non-

exosomal components is impossible by this method alone. 

 

For further purification the exosomal pellet can be centrifuged through flotation on a 

continuous sucrose gradient (0.25M to 2M sucrose) or iodixanol gradient (Opti-PrepTM) 

at 100,000 x g for around 15h or longer (figure 1.7B). This method separates molecules 

based on their density, where the exosomes equilibrate at around 1.1-1.2g/mL (Raposo 

et al. 1996; Tauro et al. 2012; Kalra et al. 2013). This approach results in a homogenous 

size population of vesicles, and eliminates contaminants such as protein aggregates and 

other non-exosomal components. However, the density-gradient is a complex and time-

consuming process. Furthermore, this procedure was found to result in a variable 

recovery of exosomes from the starting amount as measured by the levels of MHC Class 

II expression on biological fluids containing MHC Class II positive exosomes before and 

after isolation using a continuous sucrose gradient (Lamparski et al. 2002). To overcome 

this perceived problem, Lamparski and group (2002) developed a rapid method with 

high exosome recovery, which is based on ultracentrifugation of culture media or 

biological fluids containing exosomes using a 30% sucrose/deuterium oxide (D2O) 

cushion at 100,000 x g for 1h or longer, as shown in figure 1.7C. The cushion has a density 

of 1.210g/cm3, where the exosomes float in. The cushion containing exosomes is 

collected and washed at the same high speed with PBS to obtain a purer exosome 

preparation. Therefore, ultracentrifugation using the sucrose cushion is a suitable 

method of rapid exosome purification and has been used as part of an isolation protocol 

to complete phase 1 clinical trials for melanoma and lung cancer studies (Lamparski et 

al. 2002; Morse et al. 2002). 

 

Even though the density gradient approach obtains exosomes of good purity, it fails to 

isolate exosomes from contaminants such as high density lipoprotein (HDL) which have 

overlapping densities to that of exosomes (Thery et al. 2001). Thus isolation of exosomes 
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from bodily fluids such as the plasma is a challenge due to the highly abundant presence 

of HDL. To overcome this, Size Exclusion Chromatography (SEC) can be used, which 

isolates exosomes based on their size (Böing et al. 2014) and claims to separate 

exosomes from HDL. SEC such as the sepharose CL-2B resin, contains heterogeneous 

sepharose beads with numerous pores of varying sizes, resulting in sequential elution of 

vesicles size fractions which can be collected. This approach, however, is very time-

consuming to complete each run, including the set-up of the column, elution time and 

column washing. This limits the use of SEC for high-throughput exosome isolation and 

makes processing multiple samples difficult. 

 

A more simple and rapid approach for isolating exosomes is the use of immuno-affinity 

capture of exosomes by magnetic beads (Clayton et al. 2001). This involves low speed 

centrifugation at 200 x g and 2000 x g to remove cells and cellular debris. Thereafter, 

culture media or biological fluids containing exosomes are incubated for 24h with Dyna 

beads coated with antibodies directed against proteins exposed on exosomes 

membrane (Clayton et al. 2001; Rabesandratana et al. 1998; Wubbolts et al. 2003). 

Therefore it is a method of isolating exosomes without the need for ultracentrifugation. 

Using this method, antibodies against tumour specific proteins, has been used to isolate 

HER-2 expressing breast cancer exosomes (Koga et al. 2005) and A33-expressing colon 

cancer cell derived exosomes (Ritter et al. 1997; Mathivanan et al. 2010). Since biological 

fluids such as the plasma highly abundant in proteins and lipoproteins, the use of 

affinity-capture magnetic beads for exosomes isolation, lowers the chances of co-

isolation of plasma protein components, which can otherwise co-sediment with 

exosomes at high centrifugation forces using the ultracentrifugation method (Kalra et 

al. 2013). Additionally, the affinity-capture method allows isolation of exosomes from 

culture media containing exosomes from fetal bovine serum (FBS) which can also co-

sediment with exosomes prepared using ultracentrifugation. However, as well as 

benefits of this affinity-capture procedure, there are some disadvantages, such as the 

choice of exosome marker is a key issue. For example, MHC class I can be used to isolate 

MHC class I positive exosomes, however MHC Class I is also shed from plasma 

membrane as a soluble molecule, hence decreasing the efficiency of exosomes being 

captured (Théry et al. 2006). Even though capturing exosomes based on their expression 
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of a chosen protein is advantageous in many ways, it is noted that this approach may 

only isolate a subpopulation exosomes which are positive for the protein selected for 

exosome isolation (Théry et al. 2006). Thus the outcome from this may not represent 

the exosome population as a whole. Taken together, this method is ideal for routine use 

as an analytical tool to assess the phenotype of exosomes. However, this method limits 

the study of the biology of exosomes due to possible loss of function during the release 

of exosomes from the beads. Also many groups claim the method to be poorly efficient 

in the context of biological fluids and is inappropriate for isolation of large amount of 

exosomes as the beads may be fully saturated with exosomes 

 

The most recent methods developed for exosome isolation are commercialised kits of 

polymer-based precipitation, such as the Exo-QuickTM (Systems Biosciences), Total 

Exosome Isolation Kit (LifeTechnologies) and ExoSpin (Cell Guidance Systems). The 

biological sample containing exosomes are added along with the ExoQuickTM solution or 

other commercial reagents and spun at low speed centrifugation (10,000-20,000 x g), 

resulting in an exosome pellet. This method is quick and requires no ultracentrifugation 

or syringes such as those required for density gradient or column chromatography. 

Whilst these kits are less user intensive, the components claimed to be exosomes using 

reagents such as the Exo-QuickTM, however have been poorly characterised and have 

been previously reported to also precipitate non-exosomal contaminants (Oosthuyzen 

et al. 2013). Thus, it may not be an ideal method for studying exosome composition and 

function as these specimens will contain significant contaminants, and potentially alter 

the vesicles structure. 

 

Depending on factors such as source of exosomes, yield of exosome recovery and time 

required for exosome isolation, dictates the methods of choice to use. Ultimately, it is 

the sucrose cushion which is the gold standard for exosome isolation as it can isolate 

large quantities of exosomes over small period of time in comparison to other methods. 

It should also be noted that depending on the exosome isolation procedure, exosome 

preparations may have contaminants to various extent with other extracellular vesicles 

or RNA protein complexes, dramatically affecting the outcome of downstream analysis. 

Therefore, assessing the purity of exosome preparations are of critical importance to 
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demonstrate for example the outcome from experiments are due to properties of 

exosomes and not the contaminants. One way to assess purity is to measure the particle 

to protein ratio (P:P ratio) of the exosomal sample using the nanosight and a 

colourimetric assay for particle and protein concentration measurement, respectively 

(Webber and Clayton 2013). Introduction of contaminants results in a low P:P ratio, 

confirming that a higher P:P ratio, indicates a purer exosome preparation. Using this 

approach, exosomes isolated via the sucrose cushion method exhibited a much higher 

purity of exosomes preparation, in comparison to the traditional simple pellet and wash 

ultracentrifugation method. Therefore, the sucrose cushion method is robust and 

provides isolation of very pure exosomes and this is the approach employed in this 

thesis. 
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Figure 1.7: Diagram illustrates the steps involved for isolating exosomes using simple pellet and wash ultracentrifugation and the continuous sucrose gradient 
method. Flow chart shows the steps (1-5) involved for obtaining a relatively pure exosome pellet (A) which can be further purified by floatation on a continuous 
sucrose gradient at a density range of 1.1-1.2g/mL (B). 
Source: Raposo et al. 1996; Théry et al. 2006 
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Figure 1.7 continued: Diagram illustrates the steps involved for isolating exosomes using the 
30% sucrose/D2O cushion method. Step 1-3 is the same as the simple pellet and wash method 
(A) to remove cellular debris and large particles from the exosome containing sample. The 
exosome containing media is ultracentrifuged with a sucrose cushion to collect exosomes and 
the cushion is washed thereafter to obtain a highly pure exosome pellet (C). 
Source: Lamparski et al. 2002 
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1.4.5 Function of exosomes in cancer 

Exosomes are known to exhibit similar function to that of their parent cell, for example, 

exosomes from antigen presenting cells such as B cells, are enriched in MHC Class II and 

have been demonstrated to be functional in antigen presentation, leading to the 

stimulation of T cell proliferation in vitro (Raposo et al. 1996). In cancer, exosomes can 

play an important role in cell-to-cell communication and appear to effect target cells by 

stimulating them directly by surface expressed ligands or by transferring molecules 

between cells. 

 

Exosomes and immune response 

Cancer derived exosomes are known to present tumour-specific antigens on their 

surface such as HER-2 in breast cancer exosomes and Mart-1 in melanoma derived 

exosomes and so cancer derived exosomes can exert an anti-tumorigenic effect via 

aiding cross-presentation. Melanoma derived exosomes have been reported to deliver 

Mart-1 to antigen presenting dendritic cells for cross-presentation to cytotoxic T 

lymphocytes (CD8+ T cells) via MHC Class I molecules (Andre et al. 2002). The activated 

T cells triggers an anti-tumour response and hence the suppression of tumour growth in 

vivo (Wolfers et al. 2001). In addition, some studies have demonstrated exosomes from 

human pancreas and colon cancer to express heat shock protein 70 (Hsc-70) which 

stimulates the cytotoxic activity of NK cells, resulting in NK-mediated apoptosis of the 

tumour cells (Gastpar et al. 2005; Lv et al. 2012). Taken together, tumour-derived 

exosomes can inhibit tumour progression by promoting both adaptive and innate 

immune responses. 

 

From numerous studies, however, tumour exosomes have been reported to exert 

immunosuppressive functions. The immune escape of tumour cells is one of the critical 

factors in preventing cancer destruction by the immune system. One such way that the 

tumour derived exosomes achieve this is by their induction of apoptosis of CD8+ T cells 

(cytotoxic T-cells). Exosomes from melanoma and prostate cancer cells express Fas-

Ligand (CD95L) which induced apoptosis of Fas positive CD8+ T cells in a dose-dependent 

manner (Andreola et al. 2002; Abusamra et al. 2005). Furthermore, blocking FasL 

abrogated this apoptotic effect by the tumour exosomes (Abusamra et al. 2005). Similar 
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apoptotic property of exosomal vesicles was reported in colorectal cancer cells (Huber 

et al. 2005) and ovarian cancer patients. Another way tumour derived exosomes act on 

the immune system in favour of the tumour cells is by blocking the proliferation and IL-

2 mediated activation of natural killer (NK) cells (Liu et al. 2006). Other studies have 

shown cancer derived exosomes to inhibit myeloid differentiation into dendritic cells 

(DCs) and instead differentiate myeloid cells into immunosuppressive cells (Valenti et al. 

2006; Yu et al. 2007; Xiang et al. 2009). The mechanisms behind this however, are not 

well understood, but exosome driven inhibition of monocyte differentiation into DCs in 

vitro correlated with an increased level of IL-6 and phosphorylated Stat3 in the 

monocyte cells (Yu et al. 2006). Furthermore, in an IL-6 knock out murine model, tumour 

exosomes were less effective at inhibiting monocyte differentiation towards DCs and 

addition of recombinant IL-6 to with tumour exosomes in the IL-6 knockout mice 

restored the tumour exosome mediated inhibition of DC differentiation. Thus exosomes 

may induce enhanced secretion of IL-6 by monocytes, which is partially involved in 

inhibition of DC generation from monocytes (Yu et al. 2006). In addition, the impairment 

of monocyte to DC differentiation has been reported to be mediated by TGF-β and 

prostaglandin-E2 (PGE2) expressed on exosomes (Valenti et al. 2006; Xiang et al. 2009). 

Neutralisation of TGF-β and PGE2 expressed on breast cancer exosomes reverses 

tumour exosome mediated inhibition of DC differentiation and subsequently promotes  

tumour growth in vivo (Xiang et al. 2009). Therefore cancer-derived exosomes direct 

escape from immune surveillance.  

 

From the range of different studies, tumour derived exosomes have therefore been 

revealed to have contradicting roles in cancer; exosomes may exert an anti-tumour 

response as well as triggering an immunosuppressive function. The conflict of the role 

exosomes play in tumour progression may be due to the fact exosomes from various 

cancers possess different phenotypes and hence differences in function are observed.  

 

Drug-resistance 

Cancer exosomes may support drug resistance and in this way help the tumour to 

progress. Ovarian cancer cells which were resistant to the chemotherapy drug cisplatin 

(CDDP) were noted to release significantly more exosomes than cancer cells sensitive to 
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chemotherapy. Thus cancer cells were speculated to release large amounts of exosomes 

in order to export the drug CDDP out of the cell (Safaei et al. 2005). Furthermore, the 

breast cancer cell line MCF-7 was manipulated to become insensitive to the 

chemotherapy agents (adriamycin or docetaxel). These drug-resistance cancer cells 

were found to spread their resistance traits, using exosomes to residual cancer cells 

which were not drug-resistant (Levchenko et al. 2005; Li et al. 2013). Pre-treatment of 

exosomes with RNase failed to make the recipient cancer cells resistant to the drugs, 

therefore the resistance traits may be exosomal RNA dependent (Chen et al. 2014). It 

should be noted however, exosomal RNA content are entrapped within the exosomal 

vesicle (Valadi et al. 2007) and so are protected from degradation by RNase. Hence, in 

these observations, the RNA components being characterised for their role in drug 

resistance are of extracellular RNA and not associated with exosomes (Grange et al. 

2011). Taken together cancer cells can use exosomes to become insensitive to drugs and 

may also use exosomes to transfer their resistance traits to other cells to make them 

resistant too. 

  

Angiogenesis 

Angiogenesis is essential for tumour growth and some studies demonstrate tumour 

derived exosomes to support angiogenesis. Exosomes express tetraspanins which have 

multiple function such as B and T cell activation, adhesion and motility of cells (Levy and 

Shoham 2005; Tarrant et al. 2003; Wright et al. 2004), but the tetraspanin CO-029 

(Tspan8) has also been implicated to play a role in angiogenesis. Tspan8 was found to 

be over-expressed in some tumour cells such as pancreatic cancer cells which correlated 

with significantly increased amount of angiogenesis in mice. Tspan8 positive exosomes 

promoted angiogenesis by favouring endothelial cell branching in vitro (Gesierich et al. 

2006). A study showed fluorescently labelled Tspan8 containing exosomes from rat 

adenocarcinoma cells to be internalised by endothelial cells, resulting in up-regulation 

of several angiogenesis related genes and proteins in endothelial cells such as urokinase 

plasminogen activator (uPA), vascular endothelial growth factor receptor (VEGFR), von 

Willebrand factor (vWF) and other factors. These changes correlated with enhanced 

endothelial proliferation, migration and endothelial branching (Nazarenko et al. 2010). 

Furthermore, exosomal vesicles from glioblastoma were observed to deliver mRNA to 
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endothelial cells which are subsequently translated to protein and promoted tubule 

formation of the endothelial cells (Skog et al. 2008).  Similarly, exosomes from colorectal 

cancer and leukaemia were found to promote endothelial proliferation and tubule 

formation in vitro (Hong et al. 2009). The transfer of miRNA-92a from exosomes to 

endothelial cells in particular, significantly decreased the expression of the adhesion 

molecule integrin α5, resulting in enhancement of endothelial cell migration and tubule 

formation (Umezu et al. 2013). Therefore tumour exosomes can act as a means to 

delivering proteins and genetic information to endothelial cells to promote angiogenesis 

and consequently tumour growth. 

 

1.4.6 Role of cancer secreted exosomes expressing TGF-β1 in reactive stroma generation 

Tumour associated myofibroblasts are known to support the progression of tumours 

(Kalluri and Zeisberg 2006; Kucharzewska et al. 2013; Tuxhorn et al. 2002). Recently TGF-

β positive exosomes secreted from cancer cells such as mesothelioma, and some PCa 

cell lines (DU145 and PC3) have been shown to differentiate normal fibroblasts (lung 

origin) into myofibroblasts, as characterised by de-novo onset of α-SMA expression 

organised into stress fibres, similar to that of an equal dose of exogenous TGF-β1 

(Webber et al. 2010). In contrast exosomes secreted from some cancer cell lines such as 

CaCo2 (a colorectal cancer), MCF-1 (breast cancer) or LnCap (prostate cancer) with low 

or undetectable levels of TGF-β1 failed to differentiate fibroblasts into α-SMA expressing 

myofibroblasts (Webber et al. 2010). Thus exosome-associated TGF-β1 was speculated 

to be involved in the myofibroblastic differentiation. Blocking TGF-β1 signalling revealed 

the differentiation of fibroblast-to-myofibroblasts to be dependent on exosome-

associated TGF-β1 by triggering signalling through the SMAD-dependent pathway 

(Webber et al. 2010) 

 

Further phenotypic analysis revealed major differences in myofibroblasts generated by 

soluble TGF-β1 (sTGF-β1) or TGF-β1 positive exosome induced fibroblasts. Such 

differences are elevation of proteins associated with angiogenesis including HGF, VEGF-

A FGF-2 and uPA in exosomal induced generation of myofibroblasts and these effects 

were inhibited by blocking TGF-β signalling. Additionally, exosome-generated 

myofibroblasts promoted endothelial migration and vessel-like structure formation in a 
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TGF-β1 dependent manner. Soluble TGF-β1 generated myofibroblasts on the other 

hand, failed to produce this pro-angiogenic function. Apart from lung derived 

fibroblasts, exosomes also differentiated non-cancerous stromal cells from the prostate 

to become pro-angiogenic akin to the diseased stroma cells in vitro. Furthermore, 

exosome generated myofibroblasts enhanced tumour growth in vivo in comparison to 

the sTGF-β1 generated myofibroblasts or tumour cells rendered deficient in the 

secretion of exosomes via Rab27aKD (Webber et al. 2014). Thus TGF-β1 associated 

exosomes from cancer cells educate the stromal fibroblasts to become tumour-

promoting, but whether exosomes can influence other precursor cells of myofibroblasts, 

such as mesenchymal stem cells has not been thoroughly explored. 
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1.5 Mesenchymal Stem Cells 

Apart from fibroblasts, another precursor of myofibroblasts are bone-marrow derived 

mesenchymal stem cells (Mishra et al. 2008), which have been reported to home to 

tumour sites and once there, the MSCs may support tumour progression (Shinagawa et 

al. 2010). Thus studying the fate of MSCs differentiation at the tumour sites may help 

understand MSCs contribution to the tumour stroma. 

 

1.5.1 Origin 

The human bone marrow (BM) is a spongy, complex tissue at the centre of bones. Their 

main job is to produce blood cells and is composed of two distinct but independent 

compartments; the hematopoietic and the stromal compartment. The stromal 

compartment consists of a heterogeneous population of cells, such as fibroblasts, 

mesenchymal stem cells (MSCs), macrophages, endothelial cells, adipocytes, 

osteoblasts and osteoclasts which provides the structural and physiological support for 

hematopoietic cells (Krebsbach et al. 1999).  

 

Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal 

and trilineage differentiation into adipocytes, chondrocytes and osteoblasts. They were 

first isolated from the bone marrow (BM) of guinea pigs in 1976 by Friedenstein and 

colleagues on the basis of their properties of adherence to plastic, spindle-shaped 

morphology and formation of fibroblasts colonies (Friedenstein et al. 1976). MSCs can 

also be isolated from various tissues such as the umbilical cord blood (Bieback et al. 

2004), synovium (Orbay et al. 2012) and adipose tissue (Fraser et al. 2006). Isolation and 

expansion of BM-MSCs involves the aspiration of BM from the iliac crest and thereafter 

MSCs are isolated by Ficoll-density gradient centrifugation. The cells are seeded on 

plastic plates and MSCs which show plastic adherence expand whilst other cells are 

washed off (Pittenger et al. 1999). Only 0.001 to 0.01% of the cells isolated from the BM 

using the density gradient were in fact MSCs (Pittenger et al. 1999). In contrast, MSCs 

isolated from adipose tissue using liposuction and the gradient method, obtained 500 

times more MSCs in comparison to the BM (Fraser et al. 2006; Kitagawa et al. 2006). 

Thus there are far more MSCs in the adipose tissue but it is the BM-derived MSCs that 
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are the most frequently investigated cell type and are often designated as the gold 

standard MSC source for studying MSC biology. 

 

1.5.2 Classifications of MSCs: lack of stringent MSC definition 

Researchers use different approaches to characterise MSCs, making it difficult to 

compare and contrast study outcomes. To solve this problem, the International Society 

of Cellular Therapy (ISCT) has set a minimal criterion for defining MSCs. Firstly, the MSCs 

must be plastic adherent when maintained in standard culture conditions. Secondly, the 

MSCs must express a varied repertoire of cell surface markers, such as CD44, CD73, 

CD90, CD105 and must be negative for hematopoietic markers CD14 and CD45. Thirdly 

and most importantly, MSCs must differentiate into osteoblasts, adipocytes and 

chondrocytes in vitro when cultured with the appropriate stimuli (Dominici et al. 2006). 

Unfortunately, the current definition suggested by the ISCT is incapable in distinguishing 

MSCs to other stromal cells such as fibroblasts, as they also express similar molecular 

repertoire (Alt et al. 2011; Gang et al. 2007). Fibroblasts do not differentiate into 

osteoblasts, adipocytes and chondroblasts under the same conditions. However, 

fibroblasts are known to have a degree of plasticity and can for example be driven to 

differentiate towards possessing adipocytic features (Feldon et al. 2006; Kuriyan et al. 

2013). Therefore one of the obstacles to MSC research is the lack of unique markers for 

MSC identification. This makes it a challenge to identify MSCs as a contributor within the 

reactive stroma at tumour sites.  

 

Recently, the glycoprotein, stage specific embryonic antigen 4 (SSEA-4) and ganlioside-

2 (GD-2) which are usually found to be expressed in embryonic stem cells have also been 

discovered to be expressed in the BM-derived and adipose-derived MSCs, respectively 

(Gang et al. 2007; Martinez et al. 2007). Additionally, GD-2 expression was absent in 

foreskin fibroblasts. Even though, the function of these antigens are not very well 

understood, SSEA-4 and GD-2 may be associated with a multipotent function and hence 

may be able to distinguish MSCs from other stromal cell types. Furthermore, MSCs 

isolated from different sources share considerable degree of overlap in their surface 

expression profile, but they are known to have variations in the pattern and level of 

expressions at different times of culture. For example, adipose-derived MSCs initially 
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express CD34 but this marker is lost after culturing over time (Djouad et al. 2005). Other 

than variation in expression level of cell surface markers, there are currently no unique 

markers for absolute discrimination of MSCs according to their tissue of origin and from 

other stromal cell types.  

 

1.5.3 Multipotent differentiation capacity 

MSCs can self-renew and have the capacity to differentiate into a variety of tissue types 

of mesodermal lineages such as osteoblasts (Ogura et al. 2004), adipocytes (Qian et al. 

2010) and chondrocytes (Song et al. 2007) when cultured under appropriate conditions. 

The osteogenic differentiation of MSC is divided in three stages. The first is MSC 

proliferation for around 4 days, followed by early cell differentiation which can take up 

to 14 days. The early osteogenic differentiation is characterised by the transcription and 

protein expression of alkaline phosphatase (Aubin et al. 2001) and the expression of 

collagen type I (Quarles et al. 1992). The final stage from days 14-28 results in a full 

osteogenic differentiation as observed by a high expression of osteopontin and 

osteocalcin and the deposition of calcium and phosphate (Huang et al. 2007; Hoemann 

et al. 2009). Similarly the adipogenic differentiation, characterised by the formation of 

lipid droplets and the chondrogenic differentiation identified by cartilage-specific 

extracellular matrix (such as aggrecan and collagen type II), take around 21 days to 

complete (Pittenger et al. 1999; Barry et al. 2001). Therefore the differentiation of MSCs 

into another cell type is a slow process. 

 

The differentiation of MSCs in vitro are totally dependent on culture conditions. Growth 

factors, such as the TGF-β family are essential for chondrogenic differentiation, and TGF-

β along with dexamethasone, an anti-inflammatory steroid molecule are required for 

the osteogenic differentiation (Mackay et al. 1998; Jaiswal et al. 1997; Barry et al. 2001). 

Whereas MSCs differentiate into adipocytes when cultured with dexamethasone, 

isobutyl methyl xanthine, insulin and indomethacin (Pittenger et al. 1999). Thus there 

are some overlaps in culture conditions for the tri-lineage differentiation pathway of 

MSCs. 
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1.5.4 MSCs as a therapeutic tool 

The biological properties of MSCs provides beneficial use as therapeutic tools for 

various medical conditions. 

 

Multi-lineage differentiation capacity 

The multipotent capacity of MSCs has led to their use in regenerative medicine such as 

tissue engineering, where MSCs have been used in bone and cartilage repair, in 

osteogenesis imperfecta (OI) and osteoarthritis, respectively (Horwitz et al. 1999; Gupta 

et al. 2012). Due to their regenerative and their multi-lineage differentiation capacity, 

MSCs are also an attractive candidate for cardiovascular repair. Preclinical trials have 

shown MSCs to engraft and improve cardiac repair after administration (Zhang et al. 

2006; Jiang et al. 2006; Nagaya et al. 2005). Furthermore, a randomized pilot study has 

shown patients with acute myocardial infarction (MI) who received BM-MSCs to have 

an improved cardiac function in comparison to those who received standard saline as 

controls (Chen et al. 2004). Following this study, MSCs have been used to treat both 

acute and chronic MI, with significant improvements in cardiac function (Yang et al. 

2010). 

 

Immunosuppressive property 

MSCs are immunosuppressive, but the mechanisms behind this are still being 

investigated. Many studies report MSC-mediated immunosuppression via inhibition of 

immune cells such as T cells (Di Nicola et al. 2002; Bartholomew et al. 2002; Glennie et 

al. 2005; Augello et al. 2005 and Le Blanc et al. 2003) where increasing the dose of MSCs 

resulted in a greater decline in T-cell proliferation (Bartholomew et al. 2002). 

Furthermore, production of molecules by the MSCs, such as indoleamine 2,3-

dioxygenare (IDO) and nitric oxide were up-regulated following cross-talk with T-cells, 

resulting in the inhibition of T cell proliferation (Meisel et al. 2004; Maby-El Hajjami et 

al. 2009; Sato et al. 2007). Additionally, MSCs secretion of prostaglandin E2 (PGE2) 

suppressed the differentiation of monocytes to dendritic cells, another immune cell type 

which are responsible for antigen presentation to T-cells (Aggarwar and Pittenger 2005; 

Németh et al. 2009; Spaggiari et al. 2009). Therefore various secreted factors by the 

MSCs provide an anti-immune response. 
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Based on the immunosuppressive property of MSCs, they have been proposed as a 

treatment for autoimmune diseases such as graft-versus-host disease (GVHD). GVDH is 

a severe inflammatory condition that results from immune-mediated attack of recipient 

tissues by donor T cells following an allogeneic transplantation for the treatment of 

malignant and non-malignant disorders (Vianello and Dazzi 2008). The clinical efficacy 

of MSCs in acute GVDH was first observed in a 9-year old boy with acute GVHD (Le Blanc 

et al. 2004). The patient, who was unresponsive to other therapies, showed a complete 

response after receiving donor MSCs. Following this pilot study, MSC treatment has 

been studied extensively in steroid-refractory/acute GVDH (Le Blanc et al. 2004; Fang et 

al. 2006; Le Blanc et al. 2008; Wu et al. 2011). 

 

Delivery vehicles 

Gene therapy involves the introduction of functional genes into the body and human 

BM-MSCs has been an attractive cellular vehicle for gene delivery applications because 

of their capacity for multi-lineage differentiation and ex vivo cell expansion. This makes 

it possible to greatly broaden the spectrum of diseases for which MSCs could provide 

therapeutic benefit. Gene therapy has been used to engineer MSCs, by the use of 

lentiviral vectors to enable MSCs to augment their own natural production of a specific 

desired protein or to produce proteins outside of their native repertoire (Morizono et 

al. 2003).  

 

Using such approaches, MSCs can be used for cancer gene therapy due to their inherent 

migratory abilities toward tumours (Wang et al. 2009). MSCs have been genetically 

modified to overexpress various anticancer genes, such as interleukins (ILs), interferons 

(IFNs) and prodrugs which are anti-tumorigenic (Gao et al. 2010; Seo et al. 2011; Studeny 

et al. 2002; Ren et al. 2008; Miletic et al. 2007; Cavarretta et al. 2010). Even though 

preclinical models using gene-modified MSCs for the treatment of cancer have been well 

studied, clinical trials utilising engineered MSCs for cancer therapy have not yet been 

reported. Prior to clinical use the safety of MSC administration needs to be thoroughly 

explored, even though MSC administration has not yet shown any major adverse events. 
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Collectively, the multi-lineage differentiation capacity and immunosuppressive property 

of MSCs provides various beneficial functions in tissue engineering and regenerative 

medicine. 

 

1.5.5. Migratory property: MSCs can migrate at tumour sites 

One of the most remarkable but least understood finding is the ability of MSC to migrate 

from the bone marrow (BM) or peripheral blood into damaged tissues. Systemic 

administration of MSCs in mice and in patients demonstrated that MSCs migrate to sites 

of injury or disease where they enhance wound healing (Fu et al. 2009; Wu et al. 2007) 

or support tissue regeneration, for example in patients with myocardial infarction 

(Kawada et al. 2004). Multiple studies have used fluorescent dyes to show that BM-MSCs 

home to and contribute to the tumour stroma such as the colon, breast and prostate 

cancer (Shinagawa et al. 2010; Quante et al. 2011; Jung et al. 2013). However, for MSCs 

to reach their target tissues, they must be able to cross the endothelial barrier twice: 

once to enter and then again to leave the vascular system.  

 

Transmigration 

One of the first attempts to show transendothelial migration of MSC was by Schmidt et al 

(2006) who utilised isolated mouse heart perfusions with gold-labelled MSCs. Electron 

microscopy detected abolishment of tight cell-cell contacts in-between the endothelial cells 

upon MSC contact. In a later study using human lung and cardiac endothelial cells, time-

lapse and confocal microscopy demonstrated MSCs expressing the cognate receptor very 

late antigen-4 (VLA-4) specifically binds to the adhesion molecule, vascular cell adhesion 

molecule-1 (VCAM-1) on endothelial cells. This resulted in a split between the endothelial 

cells, allowing MSCs to develop cell contacts and integrate across the endothelial layer (Teo 

et al. 2012; Schmidt et al. 2006; Steingen et al. 2008 and Matsushita et al. 2011).  

 

Factors involved in MSC migration and invasion 

Inflammatory cytokines have been suggested to mobilise MSCs from the bone marrow, as 

the concentration of cytokines increases during injury and other disease processes, which 

coincides with increase in MSCs within the circulation (Hong et al. 2009; Wang et al. 2008). 

Tumour-associated myofibroblasts secrete stromal-derived growth factor-1 (SDF-1) and 

matrix metalloproteinase (MMPs) proteolytic enzymes which may be involved in homing of 
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MSCs (Hong et al. 2009; Klopp et al. 2007; Orimo et al. 2005), but have not been investigated 

thoroughly in vitro or in vivo.  

 

The invasion of MSCs into the surrounding tissues requires MSCs to penetrate the basement 

membrane that separates the endothelium from the tumour stroma. The basement 

membrane is a specialised form of extracellular matrix (ECM) consisting of collagen fibres, 

laminin and proteoglycans. For MSCs to overcome this barrier and recruit into the stroma, 

pronounced secretion of MMP-2 by MSCs, in response to inflammatory cytokines (TGF-β1, 

IL-1β and TNF-α), has been reported to play a key role in the degradation of the ECM in vitro 

(Reis et al. 2007). Furthermore, silencing the enzyme using RNA interference, impaired their 

supportive function in promoting MSC invasion. Therefore, MMP-2 supports the invasion of 

MSCs and other MMPs as well as growth factors which have not been investigated as 

thoroughly, may also be involved. 

 

1.5.6 MSCs at the tumour site 

Anti-tumorigenic 

Some studies have shown MSCs which home to the tumour site, have an anti-

tumorigenic effect. For example, intravenously injected MSCs migrated to kaposi’s 

sarcoma (KS) in vivo and inhibited tumour growth in a dose-dependent manner (Khakoo 

et al. 2006). Examination of the interaction between the MSCs and KS were explored in 

a co-culture system in vitro. MSCs were found to inhibit the activation of the protein 

kinase, Akt, which is a critical mediator of KS tumour cell proliferation and survival 

(Khakoo et al. 2006). Similar anti-tumorigenic effect of MSCs were observed with 

hepatoma model in vivo (Qiao et al. 2008), again possibly through an anti-proliferative 

effect on the tumour cells. Furthermore, MSCs in a mouse melanoma model in vivo 

inhibited tumour growth, most likely via inhibition of angiogenesis. Assessment of the 

interaction of MSCs and endothelial cells in vitro revealed MSC-mediated apoptosis of 

the endothelial cells in a dose-dependent manner and hence destruction of capillary 

formation (Otsu et al. 2009). The MSC-mediated apoptosis, was associated with the 

production of MSC-derived reactive oxygen species (ROS), as the anti-oxidant NAC 

attenuated the increased release of MSC-derived ROS and hence reduced the damage 

to the capillary formation. Together, these results indicate that MSCs potentially possess 

cytotoxic properties and can supress angiogenesis and hence inhibit tumour growth. 
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Pro-tumorigenic 

Whether or not MSCs themselves exhibit an anti-tumorigenic effect is still controversial 

as a lot of studies report MSCs to promote tumorigenesis and metastasis in various 

cancer models such as colon, breast, pancreatic and skin cancer in vivo (Djouad et al. 

2003; Karnoub et al. 2007; Zhu et al. 2006; Direkze et al. 2004; Quante et al. 2011). MSCs 

mixed with weakly metastatic human breast carcinoma cells in a mice, increased the 

metastatic abilities of cancer cells into the lung (Karnoub et al. 2007). Inhibition of the 

chemokine, CCL5 protein expression using short hairpin (sh)RNA revealed the MSC-

induced metastasis was dependent on CCL5 released from MSCs and not from the 

cancer cells (Karnoub et al. 2007). Furthermore, MSCs in vitro exhibited 

immunosuppressive property, as shown by their inhibitory effect on T-cell proliferation 

in a dose-dependent manner. This immunosuppressive effect of MSCs was shown to 

increase tumour growth when MSCs were co-injected with melanoma cells in mice, in 

comparison to the administration of tumour cells alone (Djouad et al. 2003). These 

studies, therefore suggest MSCs to provide factors to support migration and escape 

from the immune system and hence aids tumour progression.  

 

Moreover, studies have reported MSCs to contribute to the tumour stroma as α-SMA 

positive myofibroblasts. One such studies revealed approximately 25% of α-SMA 

positive myofibroblasts in pancreatic tumours to be green fluorescent protein (GFP)-

labelled donor-derived BM-MSCs (Direkze et al. 2004). Similar was also observed in a 

gastric cancer mice model (Quante et al. 2011; Gu et al. 2012), confirming that MSCs do 

contribute to the tumour stroma as myofibroblasts. Furthermore, these myofibroblasts 

were found to still hold the capacity to differentiate into adipocytes and osteoblasts 

once isolated from the gastric cancer stroma in vivo and cultured under the appropriate 

conditions (Quante et al. 2011). This indicates that MSCs still retain their multi-potency 

function after myofibroblastic differentiation.  
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1.5.7 Cancer exosomes may be involved in MSC differentiation into myofibroblast-like 

cells 

Human BM-MSCs cultured with breast cancer conditioned media differentiated into α-

SMA positive myofibroblast-like cells and promoted tumour growth in vivo (Mishra et 

al. 2008). However, the molecular factors secreted by the cancer cells, responsible for 

driving this particular differentiation programme remain incompletely understood. 

Similar to our observation with fibroblasts (Webber et al. 2010), some recent studies 

have pointed a potential role of cancer cell secreted exosomes in driving the 

myofibroblastic differentiation of MSCs. Such experiments reveal, exosomes from 

gastric cancer and breast cancer to differentiate human umbilical cord derived and 

adipose derived MSCs into α-SMA positive myofibroblasts, respectively (Gu et al. 2012; 

Cho et al. 2012). However, these experiments failed to successfully show the mechanism 

involved in this exosome-driven differentiation. Exosome treated MSCs were noted to 

have a small increase in phosphorylated SMAD-2/3 in comparison to the untreated MSCs 

and this effect was reduced with the TGF-β receptor inhibitors, indicating a TGFβ-SMAD 

dependent pathway may be involved, similar to that of exosome-mediated fibroblast-

to-myofibroblast differentiation. However, whether the breast and gastric cancer 

exosomes express TGF-β and whether the expression of α-SMA stress fibres in the 

differentiated MSCs are attenuated by the blockage of TGF-β signalling was not shown. 

Thus the mechanism involved in the exosome-mediated generation of myofibroblasts 

from MSCs remains unknown. Furthermore the current studies lack information 

regarding the time and dose of exosome required to differentiate MSCs into α-SMA 

positive myofibroblasts. An important aspect, which has yet to be investigated, is the 

phenotype and function of myofibroblasts derived from MSCs exposed to exosomes. We 

know that α-SMA does not define the tumour promoting features of myofibroblasts, as 

α-SMA positive myofibroblasts generated from fibroblasts induced by cancer exosomes 

or sTGF-β have distinctive functions, in which the exosome generated fibroblasts are 

tumour-promoting (Webber et al. 2014). Thus a lot is unknown regarding the 

differentiation of MSCs into myofibroblasts and subsequently their role, if any in tumour 

progression. 
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1.5.8 Study Aims 

In this thesis, we address the hypothesis that prostate cancer exosomes expressing TGF-

β1 exert an influence on BM-MSCs, capable of modulating their differentiation towards 

tumour-promoting stromal cells. 

 

In order to investigate this, the major aims of the thesis are to: 

1. Assess the phenotype of BM-MSCs, following their exposure to prostate cancer 

exosomes expressing TGF-β1. 

2. Investigate the effect of exosome-differentiated BM-MSCs in modulating the 

behaviours of endothelial and tumour cells. 
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2.1. Culture of human cells 

2.1.1 Monolayer culture 

Prostate cancer DU145 or PC3 cell lines were purchased from ATCC and the cells were expanded 

into bioreactor flasks (Integra, Nottingham, UK). The cells were cultured in RPMI 1640 (Lonza, 

Wokingham, UK), supplemented with penicillin (100 U/ml) and streptomycin (100 μg/ml) and 

10% foetal bovine serum (FBS). Bovine derived exosomes were removed from FBS by 

ultracentrifugation at 100,000 g for 24h, followed by filtration through 0.2 μm and then 0.1 μm 

vacuum filters, (Millipore, Watford, UK).  For some experiments DU145 rendered deficient in 

Rab27a using a ribozyme or the lentiviral shRNA knockdown method, were used (Webber et al. 

2014). Human bone marrow MSCs were purchased from Promocell and expanded according to 

the supplier’s instructions using Promocell culture media, with their supplement mixture. For 

differentiation experiments the expansion culture medium was replaced by DMEM-low glucose 

(Lonza) with 10% MSC-optimised FBS (also rendered exosome depleted as above). All 

experiments were conducted with early passage MSC (up to passage 5). Adult lung fibroblasts 

(Coriell Institute for Medical Research, USA) were cultured in DMEM/F12 (Lonza) containing 

penicillin/streptomycin and 10% exosome depleted FBS (Life technologies). Human umbilical 

vein endothelial cells (HUVEC) were purchased from Lonza, and maintained using the EBM2-

bullet kit. For functional assays, these additional growth factor supplements were withdrawn for 

the duration of the experiments. 

 

2.1.2 Bioreactor flasks for prostate cancer cell lines 

DU145 or PC3 cells were seeded into bioreactor flasks (Integra, Nottingham, UK), and 

maintained at high density culture for exosome production. These flasks have two 

compartments; a cellular compartment and a nutrient medium compartment (figure 2.1) which 

are separated by a semi-permeable membrane. The membrane provides exchange of nutrients 

from medium to the cells and removal of waste products from the cells, into the outer 

compartment. The exosomes secreted by the cancer cells are retained in the cellular 

compartment (can hold up to volume of 20ml). Since the cells are maintained at higher density 

compared to T75cm2 flasks, exosomes can therefore be purified from small volumes at high 

yields in comparison to T75cm3 culture flasks. The exosome yields from bioreactor flasks can be 

8-10 times greater than traditional T75cm3 culture flasks (Mitchell et al. 2008).  

 

The culture media (CM) from bioreactor flasks containing prostate cancer cells were removed 

and replaced with fresh media on a weekly basis. The CM from prostate cancer cells containing 
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exosomes (from the cellular compartment) were centrifuged at 400 g, 4oC for 10 min, followed 

by and additional spin at 2000 g for 15 min to remove dead cells and cellular debris. The 

supernatant was collected and filtered using a 0.22μm filter (MILLEX GP Filter), to remove any 

remaining debris and larger vesicles. The supernatant was stored at -80oC until required for 

exosome purification. 
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Figure 2.1: Bioreactor flask. 
The cell compartment containing exosomes are separated from the medium compartment by a 
10kDa semi-permeable membrane. The membrane allows a continuous diffusion of nutrients and 
waste products between the two compartments. The silicone membrane at the base of the cell 
compartment ensures an efficient gas transfer. 
Source: Adapted from Integra CELLineTM website 
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2.2 Isolation and characterisation of exosomes 

2.2.1 Continuous sucrose gradient 

To characterise exosomes based on their classical density range of 1.1-1.2 g/ml, the 

continuous sucrose gradient was used. To do this, pre-cleared DU145 and PC3 

conditioned media (CM) stored at -80oC were defrosted at 37oC. The CM were 

centrifuged at 120,000 x g for 40 min (4oC) in a fixed-angle TLA110 rotor using Optima 

max ultracentrifugation (Beckman Coulter) to obtain an exosomal pellet. The pellet was 

resuspended in a small volume of PBS (200μl) and overlaid on top of a continuous 

sucrose gradient (0.2M-2.5M) in a polyallomer centrifuge tube (Beckman Coulter). The 

continuous sucrose gradient was produced using a gradient maker, consisting of two 

chambers (Hoefer S614, GE BioScience). One chamber was filled with 0.2M sucrose 

solution and the second chamber with 2.5M sucrose solution. The exosome-loaded 

gradient was ultracentrifuged (using the Optima-Max ultracentrifuge) at 210,000 x g 

with a swing out rotor (MLS-50) for 18h at 4oC. Additionally, a second gradient was made 

to provide a balance during the spin.  

 

Fractions of 330μl were collected carefully from the top to the bottom of the gradient, 

in which a total of 14-15 fractions were obtained. The refractive index of each fraction 

and from this, the density was calculated as described previously (Raposo et al. 1996), 

using the conversion table provided by Beckman Coulter- the relationship between 

density and refractive index is linear. 

 

2.2.2 Sucrose cushion method 

For all experiments, unless otherwise stated, the exosomes were isolated from their 

conditioned medium (CM) using the sucrose cushion method which is a much shorter 

technique for isolating exosome in comparison to using the continuous sucrose gradient. 

The sucrose cushion method involved defrosting the pre-cleared DU145 or PC3 CM 

which were stored at -80oC. The CM underwent ultracentrifugation at 10,000 g for 1.5h 

4oC as an additional clearing step (Optima LE80K Ultracentrifuge, Beckman Coulter, High 

Wycombe, UK). The CM was underlain with a 4ml cushion of 30% Sucrose/ deuterium 

oxide (D2O) (density of 1.2g/ml), and subjected to ultracentrifugation at 100,000 g (with 

a SW32 rotor, Beckman Coulter) for 2h at 4oC. Around 2ml of centre most part of the 
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sucrose cushion was collected and washed by dilution in excess PBS and spinning at an 

additional 100,000 g using a fixed angle rotor to obtain an exosome pellet (70Ti rotor, 

Beckman Coulter). The exosome pellet was resuspended in 50-150μl PBS and stored at 

-80oC until required for experimental use. Thus in total, exosomes have been frozen and 

thawed twice before their use in experimental studies. 

 

The protein concentration of the exosome sample was evaluated using the microBCA 

protein assay (Thermo Scientific, Loughborough, UK). A standard curve was performed 

by serial dilution of 2000μg/ml BSA to 0μg/ml. Exosome samples were diluted 1:8 with 

PBS and absorbance values were extrapolated from the standard curve to calculate the 

protein concentration. Unless stated otherwise, purified DU145 exosomes and PC3 

exosomes were used in BM-MSC differentiation experiments at a dose of 150μg/ml and 

75 μg/ml respectively which is equivalent to a dose of 1ng/ml sTGF-β1 as described 

previously (Clayton et al. 2007; Webber et al. 2010). 

 

2.2.3 Nanoparticle Tracking Analysis 

The Nanoparticle Tracking Analysis (NTA) visualises and analyses nanometre particles in 

liquids from 10-2000nm. The size of the particles are related to the rate of Brownian 

motion, temperature and the viscosity of the liquid. Each exosome preparation was 

taken and particle counts and size distribution was determined using NTA (NanoSight 

Ltd, Amesbury, UK). The instrument was configured with a 488nm LM14 laser module 

and a high sensitivity digital camera system (OrcaFlash2.8, Hamamatsu C11440, 

NanoSight Ltd, Amesbury, UK). Six replicate videos of 30s were taken at 25oC, with 

samples under controlled flow (with the syringe pump speed set to 80), and batch-

analysed using NTA-software (version 2.3), with the minimal expected particle size set 

to automatic, and camera sensitivity set at 14-16 and detection thresholds set to 1-3, to 

reveal small particles. Samples were diluted in clinical water, free of particles (Fresenius 

Kabi, Runcorn, UK) to a concentration between 2x108 and 9x108 particles/ml within the 

linear range of the instrument. Prior to analysis of exosomal samples, 100nm standard 

latex beads were tested as a control to confirm the NTA measurements are accurate. 
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The estimated purity of exosomal samples was determined using particle to protein ratio 

(P:P) (P/μg) as described previously (Webber and Clayton 2013). The protein and particle 

concentration were measured by the BCA assay and Nanosight, respectively and used 

to calculate the P:P ratio. Webber and Clayton’s study (2013) involved the isolation of 

exosomes using different methods with or without incremental doses of contamination. 

 

This led them to propose an arbitrary threshold, in which ratios greater than 3x1010 P/μg 

are of high purity, ratios of 2 x 109 to 2 x 1010 P/μg represent low purity and ratios below 

1.5 x 109 P/μg are unpure. In this thesis, these arbitrary thresholds were used to 

estimate the purity of exosomal preparations. 

 

2.2.4 Cryo-Transmission Electron Microscopy  

The morphology of exosomes were examined using a cryo-transmission electron 

microscopy (cryo-TEM) in collaboration with Dr. Georgi Lalev (Cardiff University). DU145 

and PC3 exosome pellets purified using the 30% sucrose/D2O cushion method were 

resuspended in PBS (at a dilution of 1:10,000). 1μl of the exosomal sample was applied 

onto a carbon grid (JEOL) and blotted with filter paper to remove excess fluid. The 

specimen grid was then rapidly plunged into liquid ethane that has been pre-cooled to 

liquid nitrogen temperature (-175oC) to prevent the formation of ice crystals. The 

specimen grid was transferred into a cryo holder and inserted into the JEM-2100 LaB 6 

cryo-TEM (JEOL, Peabody, MA, USA) to view nano-sized particles present within the 

sample using the JEOL TEMographyTM software system. This method currently remains 

incompletely optimised at Cardiff University, and this is ongoing and being undertaken 

by the group. 

 

2.2.5 Microplate-immuno-phenotype assay 

Purified exosomes were diluted in PBS and immobilised onto high protein binding ELISA 

strips (Fisher) at a dose of 1μg/well and incubated overnight at 4oC. The exosome wells 

were washed 3 times using PBS, to remove unbound particles. Following 2h blocking (1% 

BSA/PBS w/v), primary monoclonal antibodies (mAbs) were added at 2µg/ml, for 1h at 

RT, including; anti-CD9 (R&D Systems), CD81, CD63 (Serotec), MHC Class-I (eBioscience), 

PSCA (Santa Cruz), GAPDH and isotype (IgG1 and IgG2b) control (eBiosystems). After 
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washing wells with 0.1% BSA/PBS (w/v) the primary mAbs were detected by goat anti-

mouse biotinylated antibody (Perkin Elmer) (diluted in 0.1% BSA/PBS (w/v) in a 1:5000 

dilution) for 1h RT. Signal was assessed by adding Europium-streptavidin conjugate 

(Perkin Elmer), for 40min at RT. The wells were washed 6 times and enhancement 

solution (Perkin Elmer) added for 10min and signal assessed by time-resolved 

fluorimetry on a Wallac Victor-II multi-label plate reader (Perkin Elmer). 

 

2.2.6 Cell lysates and western blotting 

Lysates of exosomes (purified from the sucrose cushion) or whole cells (1x106 cells) were 

prepared by resuspending in RIPA buffer containing 1X protease inhibitor cocktail (Santa 

Cruz). To remove insoluble materials, the samples were centrifuged at 10,000 g for 10 

min (4oC), split into aliquots and stored at -80oC. Protein concentration was determined 

by Bradford protein assay (BioRad, Hertfordshire, UK). 

 

Cell lysates (10μg) and exosomes (10μg) were boiled in SDS sample buffer (Invitrogen), 

either reducing with the addition of 20mM Dithiothreitol (DTT) or under non-reducing 

conditions. Samples as well as molecular weight markers (Precision Plus ProteinTM 

Standards, Invitrogen) were subjected to electrophoresis for 1h on NuPAGE precast 4%-

20% Bis-Tris gradient gels (Invitrogen). The gels were run using 1x NuPAGE MOPS SDS 

running buffer (Invitrogen) and Invitrogen PowerEaseTM 500 power supply. Proteins 

were transferred to a methanol-activated PVDF membrane (GE Healthcare) using 25mM 

Tris, 192mM glycine (both Sigma) and a BioRad Mini Trans-Blot Electrophoretic Transfer 

Cell (BioRad Laboratories Inc, Hemel Hempstead, UK). The tank was kept cool by placing 

on ice with BioIce cooling unit in the tank and the blots were run for 1.5h at a constant 

80V. The membranes were blocked in PBS containing 0.5% (w/v) Tween-20 (Sigma) and 

3% (w/v) non-fat powdered milk. Membranes were probed with antibodies including 

TSG101, ALIX, LAMP-1, Calnexin (Santa Cruz), 5T4 (gift from Oxford Biomedica UK 

Limited), MHC Class I (Clone HC-10; gift from Dr E Wang from Cardiff University) and 

GAPDH (Bio Chain) at 1μg/ml for 1h at RT. After membranes were washed 3x for 5min 

in 0.5% Tween20 in PBS and incubated with goat anti-mouse-HRP conjugate (Santa 

Cruz), bands were detected using X-ray film (GE Healthcare, Buckinghamshire, UK) and 

a chemiluminescence reagent (Super Signal West Pico, Thermo Scientific). 
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2.2.7 TGF-β1 ELISA 

Quantification of TGF-β1 was performed using the DuoSet ELISA Development System 

(R&D Systems). A serial dilution of TGF-β1 standard from 2000pg/ml to 0pg/ml was 

prepared in 0.1% BSA in PBS to generate a seven point standard curve. Different doses 

of prostate cancer exosomes (1μg, 5μg, 10μg and 15μg) were prepared in 0.1% BSA in 

PBS. To activate latent TGF-β1 to the immunoreactive form detectable by the Quantikine 

TGF-β1 immunoassay, the exosome samples (100ul each sample) were acid activated 

using 20μl of 1N HCL, vortexed and incubated for 10min at RT. The acidified samples 

were then neutralised by adding equal volume (20μl) of 1.2N NaOH/0.5M HEPES. 1N 

HCL (100mL) was prepared by adding 8.33mL of 12N HCL to 91.67mL deionised water. 

1.2N NaOH/0.5M HEPES (100mL) was prepared by adding 12mL of 10N NaOH and 11.9g 

of HEPES to 75mL deionised water. The pH was measured after neutralisation to ensure 

pH was within 7.2-7.6. Once neutralised the standards and samples were added to the 

96 microplate strips (100ul/well), covered with adhesive strips and incubated for 2h at 

RT (The samples were run in triplicates). The wells were aspirated and washed three 

times using 1x Delfia buffer (PerkinElmer) and TGF-β detection antibody (biotinylated 

goat anti-human at 300ng/ml) diluted in 0.1% BSA in PBS, was added to the wells, 

covered and incubated for another 2h at RT. 

 

The plate was aspirated and washed again using Delifa buffer x 3 and streptavidin- 

conjugated europium in Delfia assay buffer (PerkinElmer) (1:1000) was added to the 

wells and incubated for 45 min at RT. The microplate was aspirated and washed x6 using 

Delfia wash buffer and enhancement solution (PerkinElmer) added for 5 min and signal 

measured using time resolved fluorimetry on the Wallac Victor 2 (PerkinElmer). The 

absorbance values were extrapolated from the standard curve to calculate the TGF-β1 

concentration of the sample. 
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2.3 BM-MSC Differentiation 

2.3.1 Growth Arrest 

Prior to all experiments, BM-MSCs were growth-arrested in serum-free medium for 24h 

to allow cell cycle synchronisation. To do this, the Promocell culture media with 

supplement mix was removed via aspiration and the cells were washed using serum-

free DMEM-low glucose to remove any residual FBS. Fresh serum-free medium (DMEM-

low glucose) was then added to the cells for 24h. In all experiments, unless otherwise 

stated, the cells were cultured in DMEM (low-glucose) with 1% FBS, as BM-MSCs 

become senescent with long term serum deprivation. 

 

2.3.2 Adipogenic Differentiation 

6 x 104 BM-MSCs or lung fibroblasts were cultured in wells of a 24 well plate and once 

confluent the cells were given adipogenic induction medium (DMEM containing insulin, 

dexamethasone, indomethacin and IBMX) as described (Pittenger et al. 1999). In 

addition soluble recombinant human TGF-β1 (1ng/ml) or DU145 exosomes (150µg/ml) 

was added along with the induction medium to some wells. Fresh adipogenic induction 

medium was given every 2-3 days over a period of 21 days, with the exception of day 7 

and day 15, in which maintenance medium (DMEM with only insulin and FBS) was given. 

After 21 days of differentiation, adipocytes were fixed in 4% (w/v) paraformaldehyde 

(ebioscience) and lipid droplets stained with Oil Red O Solution and counterstained with 

haematoxylin solution (both from Chemicon International, Ternecula, US). 

 

2.3.3 Myofibroblastic Differentiation 

BM-MSCs were cultured in 8 well chamber slides or 24 well plates with Promocell culture 

media with supplement mixture and once 70% confluent, the cells were growth-arrested 

for 24h. The cells were then stimulated with 150μg/ml of DU145 exosomes or 75μg/ml 

of PC3 exosomes or the equivalent of sTGF-β1 (1ng/ml) (added in DMEM 1% exosome-

depleted FBS) for 14 days. In some experiments this was done in the presence of a 

neutralising TGF-β antibody at 10μg/ml (R&D Systems), or an inhibitor of the Alk-5 TGF-

β receptor-1 (SB431542) at 10μM (Sigma, Dorset, UK). In other experiments, BM-MSCs 

were also cultured in conditioned media of normal or exosome-deficient DU145 cells (by 

either ultracentrifugation or Rab27a knock down using the ribozyme silencing method). 
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For kinetics and dose experiments, BM-MSCs were exposed to 150μg/ml over different 

time points (day 0, 3, 6, 9 and 14) or BM-MSCs exposed to variable exosome doses (0-

300μg/ml). The cells were stained for α-SMA and the proportion of positive cells were 

manually counted across 6 microscopic fields and triplicate treatments unless stated 

otherwise. 
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2.4 Characterisation and phenotyping of cells 

2.4.1 Light microscopy and immunohistochemistry 

Light microscopy was used to examine the general morphology of cells in vitro. DU145, 

PC3, fibroblasts, myofibroblasts and BM-MSCs in 75cm3 or 25cm3 culture flasks, at 70-

100% confluence were viewed under phase-contrast using a Zeiss AxoiVert 40 CFL 

microscope (Carl Zeiss Ltd, Welwyn Garden City, UK).  Images were captured using the 

Canon Powershot G6 digital camera and Canon utilities remote capture (v.2.7.5.27). 

 

For indirect immunofluorescence analysis, the monolayer of DU145 and PC3 cells were 

seeded at 20,000 cells/well in the wells of 8 chambered cover glass slides (Fisher) and 

incubated until ~70% confluent. Similarly, stromal cells such as fibroblasts, 

myofibroblasts, as well as untreated, TGF-β1 or exosome treated BM-MSCs were 

cultured in chamber slides. The cells were gently washed 3x in pre-warmed phosphate 

buffered saline (PBS) (Lonza) and fixed in fresh ice-cold acetone: methanol (1:1 v/v) 

(Fisher Scientific) for 5 min and allowed to completely air dry at room temperature. The 

cells were washed with PBS and blocked for 1.5h at room temperature (RT) in 1% Bovine 

serum albumin (BSA) (R&D Systems) in Hanks’ balanced salt solution (HBSS) (Sigma). The 

cells were washed 3 times using 0.1% BSA/HBSS (w/v) and were then stained with 

unconjugated anti-mouse monoclonal antibodies (shown in table 2.1) at 1μg/ml (in 0.1% 

BSA/HBSS w/v) for 1h at RT. The cells were washed 3 times again and goat- anti mouse 

secondary antibody (Alexa-488) at 10μg/ml was applied (Invitrogen) for 40 min at RT, in 

the dark. Following another 3 washes, the cells were counterstained with 4’,6-

diamidino-2-phenylindole (DAPI) (14.3mM) (Invitrogen) diluted 1:50,000 in 0.1% 

BSA/HBSS (w/v) for 10 min, followed by 3 further washes and the cells were  visualised 

by wide-field fluorescence (AxioVert, Zeiss). 

 

2.4.2 Phenotypic assessment by flow cytometry 

Stromal cells were seeded in 6-well plates at 80,000 cells/well. Once confluent, cells 

were harvested using accutase (Promocell) and centrifuged to obtain cell pellets which 

was then resuspended in PBS to form a homogenous suspension. The resuspended cell 

pellets were incubated on ice with directly conjugated antibodies (Table 2.2) at doses of 

5-20μl/test (as recommended by the supplier) for 1h. Matched isotype controls included 
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as negative controls. Resuspended cell pellets which were incubated with unconjugated 

antibodies for 1 hr such as GD-2 (BD Bioscience) were detected using Alexa-488 labelled 

goat-anti-mouse secondary antibody (1:200 from Invitrogen) for 40 min and then 

washed in PBS. Cells were analysed using a FACScanto cytometer (Beckton Dickinson, 

Oxford, UK). 
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Antibodies used for immunohistochemistry 

 

 

 

 

Table 2.1: List of antibodies used to assess phenotype of cells by indirect immunohistochemistry. 
Matched isotype controls were included as negative controls. 

Primary antibody 
against: 

Target protein 
details 

Source Final 
concentration 

CK-7 (IgG1) Epithelial 
cytoskeletal protein 

Santa Cruz 1μg/ml 

CK-8 (IgG1) Epithelial 
cytoskeletal protein 

Santa Cruz 1μg/ml 

CK-19 (IgG1) Epithelial 
cytoskeletal protein 

Santa Cruz 1μg/ml 

α-Tubulin (IgG2a) Cytoskeletal 
component 

Santa Cruz 1μg/ml 

CD9 (IgG2b) Tetraspanin R&D Systems 1μg/ml 

CD81 (IgG1) Tetraspanin R&D Systems 1μg/ml 

CD63 (IgG1) Tetraspanin R&D Systems 1μg/ml 

PSCA (IgG1) Prostate stem cell 
antigen 

Santa Cruz 1μg/ml 

MUC-1 (IgG1) Tumour-associated 
antigen 

Santa Cruz 1μg/ml 

α-SMA (IgG2a) Myofibroblast 
marker 

Santa Cruz 1μg/ml 

EEA-1 (IgG1) Early endosome 
marker 

Santa Cruz 1μg/ml 

LAMP-2 (IgG1) Glycoprotein Santa Cruz 1μg/ml 

MMP-1 (IgG1) Enzyme Santa Cruz 1μg/ml 

MMP-3 (IgG1) Enzyme Santa Cruz 1μg/ml 

MMP-13 (IgG1) Enzyme Santa Cruz 1μg/ml 

SerpinA-1 (IgG1) Serine protease 
Inhibitor 

Santa Cruz 1μg/ml 

CD31 (IgG1) Endothelial cell 
marker 

Santa Cruz 1μg/ml 

IgG1  Isotype control ebioscience 1μg/ml 

IgG2a  Isotype control ebioscience 1μg/ml 

IgG2b  Isotype control ebioscience 1μg/ml 
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Antibodies for phenotypic analysis by flow cytometry 

 

 

 

 

 

  

  

Primary antibody 
against: 

Target protein 
details 

Source Final 
concentration 

SSEA-4 FITC (IgG3) Cell surface 
glycosphingolipids 

R&D Systems 10μl/test 

Unconjugated GD-2 
(IgG2a) 

Disganglioside BD Bioscience 10μg/ml 

CD146 FITC (IgG2a) Cell adhesion 
molecule 

Biolegend 10μg/ml 

CD44 PE (IgG1) Cell surface 
glycoprotein 

BD 20μl/test 

CD90 PE (IgG1) (Thy-1) cell surface 
molecule 

eBioscience 20μl/test 

CD105 APC (IgG1) (Endoglin) Cell 
surface glycoprotein 

eBioscience 5μl/test 

CD73 PE (IgG1) Cell surface molecule BD Pharmingen 20μl/test 

CD14 APC (IgG1) Haematopoietic 
marker 

eBioscience 5μl/test 

CD45 PE-Cy5 (IgG1) Haematopoietic 
marker 

eBioscience 20μl/test 

FITC (IgG2a) Isotype control BD Phosflow 20μl/test 

APC (IgG1) Isotype control eBioscience 20μl/test 

PE (IgG1) Isotype control eBioscience 5μl/test 

PE Cy5 (IgG1) Isotype control BD Pharmingen 5μl/test 

FITC (IgG3) Isotype control eBioscience 10μl/test 

Table 2:2: List of antibodies used to assess phenotype of cells by fluorescence-activated cell 
sorting (FACS). Matched isotype controls were included as negative controls. 
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2.4.3 Enzyme-Linked Immunosorbent Assay (ELISA) 

The quantity of VEGF-A or HGF present in cell conditioned media (CM) of BM-MSCs was 

assayed using the DuoSet ELISA system (R&D Systems). The manufacturer’s instructions 

were followed, in which the VEGF-A or HGF capture antibody at a dose of 1μg/ml (mouse 

anti-human against VEGF-A or HGF) were added to a 96-well microplate (Greiner) at 

100μl per well and incubated overnight at room temperature (RT). Unbound antibody 

was removed by aspiration and the wells were washed 3 times with Delfia wash buffer 

(1X diluted in water) (Perkin Elmer, Cambridge, UK). Thereafter, blocking buffer was 

added to the wells (1% BSA in PBS) for 1 hour, followed by the addition of a serial dilution 

of recombinant human VEGF-A and HGF standards (diluted in 0.1% BSA in PBS) starting 

from 2000pg/ml or 8000pg/ml, respectively to 0pg/ml, to create a seven point standard 

curve.  

 

Secondly, the CM from the BM-MSCs was normalised for cell count and lightly spun 

using the bench centrifuge to remove any large cellular debris. Since the protein 

concentration is unknown, the CM was diluted at a high and low range (1:2 and 1:6) in 

0.1% BSA in PBS and applied to the wells and incubated for 2h at RT.  The wells were 

aspirated and washed and VEGF-A or HGF detection antibody (biotinylated goat anti-

human antibody against VEGF-A or HGF) at 50ng/ml or 200ng/ml, was added 

respectively for 2h at RT. After another aspiration and wash step, the colourimetric HRP-

based detection antibody recommended by the manufacturer was substituted for 

streptavidin-conjugated Europium diluted in Delfia assay buffer in a 1:1000 dilution 

(both from PerkinElmer) and applied to wells for 45 min, at RT. Lastly, the microplate 

was washed 6x using the Delfia wash buffer and enhancement solution (PerkinElmer) 

added for 5 min and signal measured using time resolved fluorimetry on the Wallac 

Victor 2 (PerkinElmer). The absorbance values were extrapolated from the standard 

curve to calculate the VEGF-A or HGF protein concentration of the sample. 

 

2.4.4 PCR Fibrosis Array 

RNA Extraction 

In order to examine potential differences in the phenotype of differentiated BM-MSCs 

following exosome or sTGF-β1 treatment, a PCR fibrosis array was used. To do this, firstly 
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the cellular RNA of the untreated or treated BM-MSCs cultured in 6-well plates was 

extracted at day 3 using 1ml Tri-Reagent per well (Sigma-Aldrich). Thereafter 200μl 

chloroform was added to the samples and was mixed by inverting the sample several 

times in eppendorf tubes. The samples were incubated on ice for 5 min to allow 

separation of the aqueous and phenol phases and centrifuged at 12,000 x g for 20min 

at 40C. The colourless aqueous layer containing RNA was removed and mixed with an 

equal volume of ice-cold isopropanol and incubated at -200C for 24h. The samples were 

again centrifuged at 12,000 x g for 20min at 4oC, to wash away the isopropanol and the 

pellets were washed in ice-cold 75% ethanol (v/v) by inversion and centrifuged again at 

12,000 x g for 20min at 40C. This step was repeated again and thereafter, the RNA pellets 

were air dried at RT and dissolved in 20μl H2O.  

 

Determining the RNA concentration 

The RNA sample was diluted (1:50) in RNAse free H2O (1μl RNA in 49μl H2O) and the 

Nanodrop 2000 Spectrophotometer (Thermo Scientific, Loughborough, UK) was used to 

obtain a ratio of absorbance measured at 260nm and 280nm. A ratio ≥1.7 was 

considered sufficiently pure RNA and used for analysis. The absorbance at 260 was used 

to calculate the RNA concentration as shown below. The extinction coefficient for RNA 

is 40 and the dilution factor of samples were 1:50.  

 

[RNA] (μg/ml)= Absorbance260 x dilution factor x extinction coefficient 

 

Reverse Transcription  

Total RNA (0.5μg) was reverse transcribed using the RT2 First Strand Kit (Qiagen, 

Manchester, UK) to generate complementary DNA (cDNA). Reverse transcription was 

carried out in a final volume of 10ul per reaction containing 0.5μg of RNA, 4μl of 5x 

Buffer BC3, 1μl Control P2, 2μl PE3 Reverse Transcriptase Mix and 3μl RNAse- free H2O. 

10μl genomic DNA elimination mix was added to each RNA sample (each reaction) and 

samples were then reverse transcribed using the StepOne Plus Real-Time PCR System 

thermocycler (Life Technologies). This involved sample incubation at 420C for 15min, 

followed by incubation at 950C for 5 min. 91μl RNase-free H2O was added to the cDNA 

sample and stored at -200C. 
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Quantitative Polymerase Chain Reaction (q-PCR) 

The Polymerase Chain Reaction (PCR) component mix contained cDNA synthesis 

reaction (102μl), RNase-free water (1248μl) and 2x RT2 SYBR Green Mastermix 

containing the HotStart DNA Taq Polymerase (1350μl) which was required for 

amplification. The mixture was prepared in a 5ml tube and vortexed. 25μl of the PCR 

mix was added per well of a RT2 Profiler 96-well plate array covering 84 transcripts of 

known association with fibrosis (table 2.3) (Qiagen). The RT2 Profiler Array was 

performed as biological triplicates for each treatment condition; the untreated, TGF-β1 

treated and exosome treated BM-MSCs (9 arrays in total). The array also contained 5 

housekeeping genes (β-actin, β-2-microglobulin, GAPDH, HPRT1 and RPLP0), a genomic 

DNA control, reverse-transcription controls and positive PCR controls. The PCR array 

plates were sealed with an Optical adhesive film (Qiagen) and centrifuged at 1000 g for 

1 min at room temperature to remove bubbles. Amplification was carried out using the 

StepOne Plus Real-Time PCR System thermocycler (Life Technologies) which involved a 

cycle at 950C for 10min, so that the HotStart DNA Taq polymerase is activated, followed 

by 40 cycles at 950C for 15s and 600C for 1min. 

 

The comparative Ct method was used for relative transcript quantification against the 

average ΔCt derived from the internal controls (β-actin, β-2-microglobulin, GAPDH, 

HPRT1 and RPLP0). Data was analysed using the ABI StepOnePlus software (Version 2.0 

supplied by Applied Biosystems) and the data as presented as volcano plots with a p-

value threshold of <0.05 and a fold-change threshold of ±3. 
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Human Fibrosis PCR Array 

 

Pro-Fibrotic: ACTA2 (α-SMA), AGT, CCL11 (Eotaxin), CCL2 
(MCP-1), CCL3 (MIP-1a), CTGF, GREM1, IL13, 
IL13RA2, IL4, IL5, SNAI1 (Snail) 

Anti-Fibrotic: BMP7, HGF, IFNG, IL10, IL13RA2 

Extracellular Matrix & Cell Adhesion:  

ECM Components; COL1A2, COL3A1 

Remodelling Enzymes; 
 

LOX, MMP1 (Collagenase 1), MMP13, 
MMP14, MMP2 (Gelatinase A), MMP3, 
MMP8, MMP9 (Gelatinase B), PLAT (tPA), 
PLAU (uPA), PLG, SERPINA1 (a1-antitrysin), 
SERPINE1 (PAI-1), SERPINH1, TIMP1, TIMP2, 
TIMP3,TIMP4 

Cellular Adhesion; ITGA1, ITGA2, ITGA3, ITGAV, ITGB1, ITGB3, 
ITGB5, ITGB6, ITGB8 

Inflammatory Cytokines & Chemokines: CCL11 (Eotaxin), CCL2 (MCP-1), CCL3 (MIP-
1a), CCR2, CXCR4, IFNG, IL10, IL13, IL13RA2, 
IL1A, IL1B, IL4, IL5, ILK, TNF 

Growth Factors: AGT, CTGF, EDN1, EGF, HGF, PDGFA, PDGFB, 
VEGFA 

Signal Transduction:  

TGF-β Superfamily; BMP7, CAV1, DCN, ENG (EVI-1), GREM1, 
INHBE, LTBP1, SMAD2, SMAD3, SAMD4, 
SMAD6, SMAD7, TGFB1, TGFB2, TGFB3, 
TGFBR1 (ALK5), TGFBR2, TGIF1, THBS1, 
THBS2 

Transcription Factors; CEBPB, JUN, MYC, NFKB1, SP1, STAT1, STAT6 

Epithelial-to-Mesenchymal Transition: AKT1, BMP7, COL1A2, COL3A1, ILK, ITGAV, 
ITGB1, MMP2 (Gelatinase A), 
MMP3,MMP9,SERPINE1 (PAI-1), SMAD2, 
SNAI1 (Snail), TGFB1, TGFB2, TGFB3, TIMP1 

Others:  BCL2, FASLG (TNFSF6) 

Table 2:3: The Human Fibrosis PCR Array profiles the expression of 84 key genes involved in 
dysregulation tissue remodelling during repair and healing of wounds or at tumour sites. The 
array contains genes encoding ECM remodelling enzymes, TGFβ signalling molecules and 
inflammatory cytokines as well as additional genes important for fibrosis. 
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2.4.5 TaqMan gene PCR 

The selected transcripts (MMP-1, MMP-3, MMP-13, SerpinA-1, AGT) from the PCR 

fibrosis array were verified using TaqMan PCR gene expression assays. In addition, the 

mRNA level of Rab27a in PCa cells was also evaluated using this method. Firstly the RNA 

was extracted and measured the same way as mentioned above, but the RT and 

amplification step were different and explained below. 

 

Reverse Transcription 

Reverse transcription was performed using the random primer method in a final volume 

of 20μl per reaction containing 1μg of RNA of the sample, 2μl of 10x reverse 

transcription buffer, 0.8μl of 25mM deoxynucleotide triphosphate (dNTPs) (mixed 

nucleotides of dATP, dCTP, dGTP and dTTP), 2μl of 10x reverse transciption random 

primers, 1μl of MultiscribeTM reverse transcriptase and 1μl of RNase Inhibitor. A negative 

control was included, which was H2O substituted for the MultiscribeTM reverse 

transcriptase (all from Applied Biosystems). The samples were reverse transcribed using 

the StepOne Plus Real-Time PCR System thermocycler which involved incubation at 250C 

for 10min to allow the primers to anneal to the RNA. The primers were then extended 

using the reverse transcriptase in the presence of dNTPs at 370C for 2hr, generating 

cDNA. The cDNA was then heated at 850C for 5s to deactivate the RT. The cDNA samples 

were stored at -200C. 

 

Quantitative Polymerase Chain Reaction (q-PCR) 

The q-PCR was carried out in a final volume of 20μl per reaction containing 1μl of sample 

cDNA, 10μl x2 of PCR TaqMan Master Mix, 8μl H2O, 1μl primer + probe (primer of MMP-

1, MMP-3, MMP-13, SerpinA-1, AGT, Rab27a and GAPDH) (Qiagen). A negative control 

was prepared using H2O substituted for the cDNA. The PCR amplification was performed 

using the Step One Plus Thermocycler, involving a cycle of 95oC for 1s, and 60oC for 20s 

for 40 cycles. 

 

The comparative CT method was used for relative quantification of gene expression. The 

CT
 (threshold cycle where amplification is in the linear range of the amplification curve) 

for the standard reference gene (GAPDH) was subtracted from the target gene CT to 
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obtain the ΔCT for each sample. The expression of the target gene in experimental 

samples relative to expression in control samples was calculated: 

 

Relative expression =  2 - (ΔCT 1)-ΔCT(2)) 

 

The ΔCT(1) is the mean ΔCT value calculated for the experimental samples, and ΔCT(2) is 

the mean ΔCT value calculated for the control samples (GAPDH). The data was analysed 

using the ABI StepOnePlus software (Version 2.0 supplied by Applied Biosystems). 
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2.5 Rab27a knock down 

Exosomes secretion is regulated by Rab27a GTPase (Ostrowski et al. 2010) and hence 

the knock down of Rab27a in DU145 cells, is expected to negatively influence exosome 

secretion. Our Rab27aKD was achieved through collaboration with Prof Wen Jiang 

(Department of surgery and tumour biology, Cardiff University) who have routinely 

established the ribozyme method for gene silencing and the DU145Control Vector and 

DU145Rab27aKD cells were used for some experiments in this thesis (Oncotarget, 2014). 

However during my study the more stable lentiviral approach was developed by our 

group and cells obtained by this approach were used in the later part of the studies. The 

two different methods for Rab27aKD are described below. 

 

2.5.1 Ribozyme silencing method 

One way to silence genes is by the use of ribozymes. Ribozymes are catalytic RNA 

molecules used to inhibit gene expression by cleaving to the mRNA molecules via 

Watson-Crick base pairing, and so silencing the genes by preventing translation, as 

shown in figure 2.2A (Xiet et al. 1997; Dorsett and Tuschl 2004). Cleavage by ribozyme 

also requires divalent ions, such as magnesium and ribozymes are short enough to be 

chemically synthesised or transcribed from a vector, allowing a continuous production 

of ribozymes within the transfected cells (Dorsett and Tuschl 2004). 

 

Rab27a knock down using the ribozyme silencing method was carried out by a 

collaborator, Prof Wen Jiang (Jiang et al. 2006). This involved designing a hammerhead 

ribozyme transgene targeting human Rab27a using Zukers RNA mfold programme 

(Zuker et al. 2003) and synthesised by Sigma-Aldrich. These were subsequently cloned 

in mammalian pEF6/V5 vector, amplified in E.coli and uptake of vector verified by their 

resistance of ampicillin (100μg/ml). 1 x 106 DU145 cells were transfected with the 

vectors using electroporation and cells which had taken up the vector were selected 

based on their resistant to blasticidin (5μg/ml). DU145Control Vector (carrying the empty 

vector pEF6/V5) and two DU145Rab27aKD attempts were made, named Rab27aKD2 and 

Rab27aKD3. The cells were cultured in RPMI 10% FBS containing blasticidin at a high 

dose of 5μg/ml for 1 week and thereafter the dose of blasticidin was reduced to 

0.5μg/ml. The knockdown of Rab27a was confirmed by qPCR. For functional 
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experiments, blasticidin was not used. Such experiments included the collection of 

conditioned media from the DU145Control Vector or DU145Rab27aKD cells to treat BM-MSCs 

and the use of these mutated cells for the xenograft experiment to assess tumour 

growth. 

 

2.5.2 shRNA lentiviral method 

Gene silencing was also carried out using a short hairpin RNA (shRNA) which is a 

sequence of RNA that makes a tight hairpin turn that can be used to silence target gene 

expression via RNA interference (RNAi). RNAi is a biological process in which RNA 

molecules inhibits gene expression by causing destruction of specific mRNA molecules. 

shRNA was in these studies delivered using lentiviral vectors as shown in figure 2.2B. 

Once the vector has integrated into the host genome, the shRNA are transcribed in the 

nucleus and the resulting shRNA are exported out of the nucleus and processed by Dicer 

(ribonuclease) and loaded into the RNA-induced silencing complex (RISC). This complex 

cleaves the target mRNA and thus represses translation of the mRNA, resulting in target 

gene silencing.  

 

For my studies, the DU145NM Control (transduced with a non-mammalian control shRNA) 

and DU145Rab27aKD cells used, were previously generated by Dr Jason Webber. The 

DU145 cells were plated in a 48-well flat-bottomed plates at 18,000 cells/well, in 

exosome-depleted media. At day 1, the cells were infected with lentiviral particles 

(MOI=10) in the presence of Hexadimethrine bromide (8mg/ml). At day 2, Puromycin 

(1.25mg/ml) was added and media was changed at day 5 and Rab27a knockdown was 

verified using qPCR. The cells were cultured in the presence of Puromycin for a further 

6 passages prior to experimental use, such as the spheroid models to assess cellular 

invasion and growth. 
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Gene Silencing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.2: Rab27a knockdown via the ribozyme silencing and the lentivrival shRNA method. 
Ribozymes can be directly introduced into the cell using the mammalian pEF6/V5 vector. The 
hammerhead ribozyme has two arms which bind to and degrade the mRNA by cleaving via 
hydrolysis of the phosphodiester backbone of the mRNA and thus prevent mRNA translation 
into a protein (A). Lentiviral vectors can be used to stably deliver viral genome into the 
cytoplasm where they are reverse-transcribed (2). The DNA intermediate is imported into the 
nucleus (3) where it is stably integrated into the host genome (4). The silencing construct is then 
constitutively expressed and processed into shRNAs that forms a complex using Dicer and 
cleaves target mRNA, preventing its translation into proteins (5) (B). 
Source: Adapted from Dorsett and Tuschl 2004 and ThermoScientic website 
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2.6 Functional experiments 

2.6.1 Proliferation 

Endothelial cells or prostate cancer (PCa) cells were seeded at 1x104 cells/ml and 

cultured for 24h in growth-factor free conditions prior to stimulations. BM-MSCs were 

pre-treated for 4d with exosomes (150μg/ml) or sTGF-β1 (1ng/ml) and conditioned 

media (CM) was harvested and centrifuged at 400 g to remove cellular debris. BM-MSCs 

CM normalised for cell count was added to endothelial cells or PCa cells at a ratio of 1:1 

(v:v) with EBM2-medium or RPMI media, and incubated for 6 or 3 days respectively. 

Endothelial and PCa cells were harvested using accutase or trypsin, respectively (Lonza) 

and the cellular pellet obtained after centrifugation at 400 g for 7min was resuspended 

in 100μl PBS (original volume) and diluted in Guava ViaCount reagent (at 1:3 and 1:10 

dilutions) for 5 min at RT and cell number and viability was measured using the Guava 

EasyCyte flow cytometer (Millipore). The ViaCount assay distinguishes viable and non-

viable cells based on differential permeabilities of two DNA-binding dyes in the Viacount 

reagent; the nuclear dye which only stains nucleated cells and a viability dye which 

brightly stains dying cells. Debris are excluded from the results based on negative 

staining with the nuclear dye. The cell counts and viability measurements of the original 

sample (corrected for dilution) were performed in triplicates. 

 

2.6.2 Motility 

Prior to the assessment of cell motility, a confluent monolayer of endothelial cells or 

tumour cells in 24 well plates were cultured for 24h in growth-factor free conditions. 

The confluent monolayer was subject to a single vertical scratch using a 200μl pipette 

tip. The wells were gently washed with PBS and BM-MSC CM was added as above, and 

wells were microscopically monitored up to 24hr. The width of the scratch in duplicate 

wells was measured at 4 points for each well, using Image-J (National Institutes of Health, 

Bethesda, MD, USA) and the rate of monolayer recovery plotted as relative to the original 

scratch width (% closure), as described previously (Webber et al. 2014). 
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2.6.3 Tubule formation assay 

Formation of endothelial tubules was performed as described previously (Webber et al. 

2014), with endothelial cells (20,000/well) added in triplicate to monolayers of BM-MSCs 

that had been previously treated with exosomes or sTGF-β1 for 4 days. After a further 6 

days of culture, structures formed by endothelial cells were visualised by 

immunofluorescent labelling of CD31 (SantaCruz). The total area occupied by CD31-

positive structures was quantified using the free-hand selection tool in Image-J to 

calculate the area occupied by stained cells in each well. Data shows the average from 

triplicate wells per treatment, and are representative of three such experiments. 

 

2.6.4 Spheroid generation for invasion and growth assessment 

Spheroids were generated in poly (2-hydroxyethyl methacrylate) (poly-HEMA) (Sigma, 

Dorset, UK) coated 96-well “u”-bottom plates. To do this, 20mg/ml poly-HEMA solution 

was made in pre-warmed 95% ethanol (diluted in H2O) and the mixture was vortexed to 

solubilise the poly-HEMA. 150μl of the solution was added to the wells of a 96-well plate 

and allowed to evaporate in the hood overnight. A second coat was applied and again 

evaporated for 24h. To generate tumour cell and BM-MSC heterotypic spheroids, 

tumour cells (DU145NM or DU145Rab27aKD using the shRNA lentiviral knockdown method) 

were incubated alone or together with BM-MSCs at a ratio of 4 tumour cells: 1 MSC in 

the poly-HEMA plates and was centrifuged at 1000rpm for 10min (15 spheroids were 

generated for each condition). The total cell seeding was of 1x104 cells per well and the 

medium used consisted of 1:1 ratio (v/v) or RPMI and DMEM (low glucose) in 10% FBS. 

After 4 days, the cells had established 3D-spheroidal structures. 

 

Growth assessment 

The spheroids were cultured in a 1:1 ratio of RPMI: DMEM 10% FBS and every other day, 

50% of the culture media was replaced by fresh media. Over a 20d period, spheroid 

volume was measured every 4 days. Image J was used to measure the radius of the 

spheroid as shown below; 

 

 

 

r1 

r2 

r3 

The radius measurement was used to estimate spheroid 

volume using the formula: (4/3)r1r2r3.  
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Invasion assay 

To evaluate potential changes in invasive behaviour of the cells, spheroids were 

transferred to fresh uncoated 96 well plates and MatrigelTM (Corning, Flintshire, UK) was 

added (100μl/well). The matrigel basement membrane matrix consists of laminin, 

collagen type IV, heparan sulphate proteoglycan and entactin. After setting of the 

MatrigelTM at 370C for 30min, medium was added and the wells monitored 

microscopically for 4 days thereafter. To estimate the magnitude of invasion out from 

the spheroid, the free-hand selection tool in Image-J was used to draw the 

circumference of the central sphere. This was subtracted from the circumference of the 

region occupied by invading cells. This gives an approximation of the area of the 

MatrigelTM invaded by cells, as it does not take account of the volume aspect of the 3D 

culture, and is likely therefore to underestimate the true differences across the 

treatments. 

 

2.6.5 Xenotransplantation for tumour growth assessment 

With the aid of Dr Jason Webber and collaboration with Prof Wen Jiang and group (Cardiff 

University), tumour growth was assessed in vivo, in the presence of BM-MSCs with exosome 

proficient or exosome deficient DU154 tumour cells (using ribozyme method of Rab27a 

knockdown). Suspensions (100ml) containing 600,000 DU145 cells and 150,000 BM-MSCs in 

3mg/ml Matrigel were sub-cutaneously injected into both flanks of 4 to 6 week old athymic 

nude mice (CD-1; Charles River Laboratories, Kent, UK). There were a total 5 groups 

(DU145Control Vector only, DU145Rab27aKD only, DU145Control Vector with BM-MSCs, DU145Rab27aKD 

with BM-MSCs and BM-MSCs only). There were 6 mice per group, except the BM-MSC only 

controls (the negative control), where only 3 mice were used. Tumour size was measured 

weekly over 28 days, using an external caliper to measure the height and width of the 

tumour. Tumour volume was calculated; tumour volume (mm3) = 0.523 x width2 x length. 

Animals were treated humanely in accordance with UK Home Office code of practice and 

the United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines 

(Workman et al. 2010). At the experimental end point or severity limits, the mice were 

dispatched humanely under the schedule 1 (Scientific Procedures) Act 1986, involving the 

exposure to carbon dioxide.  
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3.1 Isolation and characterisation of prostate cancer exosomes 

The prostate cancer (PCa) cell lines chosen for this study are DU145 and PC3 because 

they are commonly used for the study of prostate cancer as these are well characterised 

(Alimirah et al. 2006; Clayton et al. 2007; Webber et al. 2010; Tai et al. 2011; Perkel et 

al. 1990). In addition, unlike LnCap (a PCa cell line), DU145 and PC3 cells are known to 

produce TGF-β1 bearing exosomes (Webber et al. 2010) which are under investigation 

in this thesis for their role in BM-MSC differentiation. 

 

A high quality isolation method for exosomes, followed by characterisation and 

identification of these vesicles are crucial, to enable one to distinguish exosomes from 

other non-exosomal vesicles or cellular debris from within the cell secretome. This will 

also demonstrate that the experimental outcome are due to exosomes and not the 

contaminants. I will describe two gold standard methods to isolate exosomes form 

prostate cancer cells, based on their biophysical properties. These are the continuous 

sucrose gradient (Raposo et al. 1996; Caby et al. 2005; Nilsson et al. 2009) and the 30% 

sucrose cushion method (Lamparski et al. 2002), both of which utilise the floatation 

property of exosomes to isolate them. 

 

To characterise the exosomes isolated from PCa cell lines (DU145 and PC3), we assessed 

the biophysical and phenotypic nature of the vesicles. The morphology of PCa exosomes 

was examined using cryo-Transmission Electron Microscopy. Validation of exosomal 

markers was performed on purified exosomes using a microplate-immuno-phenotype 

assay or western blotting for a range of exosomal related proteins including 

tetraspanins, ALIX, TSG101 as well as for proteins not expressed on exosomes, such as 

calnexin, an endoplasmic reticulum marker. The purity of exosomes was assessed based 

on the particle to protein ratio using the Nanosight and a colourimetric (BCA) assay for 

particle and protein concentration measurement, respectively (Webber and Clayton 

2013). PCa derived exosomes have been shown to express TGF-β1 which is involved in 

the differentiation of fibroblasts into myofibroblasts (Webber et al. 2010). To test if 

exosomal TGF-β1 have an effect on MSC differentiation, TGF-β1 expression on 

exosomes from DU145 and PC3 will be quantified here using TGF-β1 ELISA. 
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3.1.1 Characterisation of prostate cancer cell lines 

For my studies, PCa cell lines (DU145 and PC3) were bought new from ATCC, in which 

the DU145 and PC3 cells were derived from the brain and bone metastatic site, 

respectively. The prostatic epithelium consist mainly of luminal and basal cells (Wang et 

al. 2001) and hence the morphology and phenotype of the carcinoma cells were 

evaluated to confirm if they appeared as epithelial cells prior to their expansion in 

bioreactor flasks. In addition the expression of tumour associated proteins and proteins 

commonly enriched in exosomes were examined. 

 

The monolayer of DU145 and PC3 epithelial cells were evaluated by phase contrast 

microscopy (figure 3.1), revealing both cell lines to be plastic adherent and exhibiting 

polygonal shape in appearance. This morphology agreed with other reports of prostate 

epithelial cells (Hayward et al. 2001; Lang et al. 2001). The PCa cell lines also appeared 

to grow without contact inhibition and formed overlapping cell layers after reaching 

confluence. 

 

The phenotype of PCa cell lines was assessed by immunofluorescence staining for a 

variety of epithelial markers. Cytokeratins (CKs) such as CK-7, CK-8 and CK-19 are 

intermediate filaments used to characterise epithelial cells (Wang et al. 2001; Lang et al. 

2001). Other common characteristics of epithelial cells are the presence of 

microtubules, such as α-tubulin (Soucek et al. 2006; Husain and Harrod 2011). Here, 

both the DU145 and PC3 cells were strongly positive for CK-7, CK-8 and α-tubulin (figure 

3.2A). Therefore, the epithelial phenotype of DU145 and PC3 here agreed with the 

published literature (Nagle et al. 1987; Wang et al. 2001). 

 

The expression of tetraspanins (CD9, CD81 and CD63) which are commonly found in 

exosomes (Lamparski et al. 2002; Rapaso et al. 1996; Escola et al. 1998; Heijnen et al. 

1999) were assessed among the PCa cell lines using immunofluorescence. 

Heterogeneous population of DU145 and PC3 cells were positive for CD9. Additionally, 

the majority of the PCa cells were positive for CD81 and CD63 (figure 3.2B). These 

findings were similar to published literature on the expression of tetraspanins in PCa 

cells (Zvereff et al. 2007; Liu 2000). As a negative control, DU145 and PC3 cells were 
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stained for the non-epithelial marker, α-SMA, and as expected both PCa cell lines were 

negative for this cytoskeletal protein (figure 3.2B). This suggests the DU145 and PC3 cells 

are epithelial in nature with no mixed population containing myofibroblast or smooth 

muscle cells, from the stromal compartment of the prostate. 

 

DU145 and PC3 cell lines were also assessed for the presence of tumour-associated 

Mucin-1 (MUC-1) and prostate stem cell antigen (PSCA). The expression of the 

glycoprotein, MUC-1 is usually found on the apical surface of epithelial cells (Brayman 

et al. 2004), but is overexpressed in many carcinomas such as breast and lung cancer 

(Lacunza et al. 2010; Yao et al. 2011). In the context of prostate cancer, MUC-1 was 

expressed in DU145 and to a lesser extent in PC3 cells (Joshi et al. 2009). Here, a 

heterogeneous population of DU145 and PC3 cells were also positive for MUC-1 (figure 

3.2C). Furthermore, the name of PSCA is inaccurate as it is not a stem cell marker nor is 

it expressed exclusively by the prostate cells but is found to be overexpressed in prostate 

carcinoma cells (Reiter et al. 1998; Bargäo Santos and Patel 2014; Taeb et al. 2014). In 

agreement with these reports, DU145 and PC3 cells were strongly positive for PSCA 

(figure 3.2C). In summary, the morphology and phenotype of PCa cell lines are indeed 

epithelial cells in nature consistent with the literature. They also express proteins that 

are found to be overexpressed by many cancer cells, giving us an indication of what we 

might expect to find on PCa exosomes. 
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Morphology of PCa cell lines  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: DU145 and PC3 have a cobblestone morphology. 
Monolayer of live-prostate cancer cells (DU145 and PC3) were imaged using phase-contrast 
microscopy to confirm the cobblestone morphology of the epithelial cells. Scale bar 100μm. 
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Phenotype of prostate cancer cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: DU145 and PC3 cells have an epithelial phenotype. DU145 and PC3 cells were fixed and stained with antibodies against cytokeratin-7,   -19 and -8 and 
α-tubulin followed by goat anti-mouse FITC secondary antibody (green). The cells were additionally stained with DAPI (blue). Scale bar 100μm (A). 
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Phenotype of prostate cancer cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.2 Continued: DU145 and PC3 cells were fixed and stained with antibodies against tetraspanins (CD9, CD81 and CD63) and α-SMA followed by goat anti-mouse 
FITC secondary antibody (green). The cells were additionally stained with DAPI (blue). Scale bar 100μm (B). 
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Phenotype of PCa epithelial cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Continued: DU145 and PC3 cells were fixed and stained with antibodies against MUC-1 and PSCA followed by goat anti-mouse FITC secondary antibody 
(green). The cells were additionally stained with DAPI (blue). IgG isotype controls were also included. Scale bar 100μm (C). 
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3.1.2 Flotation of vesicles on continuous sucrose gradient 

Spinning exosomal samples on a continuous sucrose gradient as mentioned in materials 

and methods, is a commonly used analytical tool to isolate exosomes, based on their 

flotation property (Raposo et al. 1996; Escola et al. 1998). A total of fifteen fractions was 

collected from a continuous sucrose gradient overlaid with DU145-exosome and 

fourteen fractions collected from gradient overlaid with PC3-exosomes. The refractive 

index (RI) of the individual fractions was measured using an automatic refractometer 

and the RI was then used to calculate the density of the fractions using a conversion 

table provided by Beckman Coulter. A serial increase in density with increasing fraction 

number was revealed (figure 3.3A and 3.3D). DU145 exosomes were predicted to be 

present at fractions 7-10 and PC3 exosomes were predicted to be present in fractions 5-

10, as these fractions span the classical density range for exosomes at 1.1-1.2g/ml 

(Raposo et al. 1996).  

 

The Nanoparticle Tracking Analysis (NTA) revealed the number of nanoparticles per 

fractions (figure 3.3B and 3.3E), in which the early DU145 fractions (1-4) and PC3 

fractions (1-3) was extremely low in particle count (<3x1011 counts/ml) and so were no 

longer subjected to any further analysis. With regard to the continuous sucrose gradient 

containing DU145 exosomes, the numbers of particles were found to increase by 28 fold 

from fraction 5 to fraction 9 and thereafter the particle count gradually decreased to 

low levels. Similarly with the continuous sucrose gradient containing PC3 exosomes, the 

particles increased from fraction 4 to fraction 8 by 13-fold and particle counts decreased 

thereafter. Thus, the majority of nanoparticles were concentrated within the density 

range of 1.1-1.2g/ml, agreeing with the literature (Raposo et al. 1996; Escola et al. 1998). 

 

To characterise purified vesicles as exosomes, the fractions were subjected to western 

blotting using antibodies against the multivesicular endosome associated proteins 

(TSG101 and ALIX). Positive staining for the TSG101 in fractions spanning the exosomal 

density range was observed, with no staining at the hypo or hyper dense region of the 

gradient. Maximal staining was found within fractions 8 and fraction 9 from the DU145-

continuous sucrose gradient (figure 3.3C) which contained the most particles. ALIX was 

found to be only expressed within fraction 9 and 10. Similarly with the PC3-continous 
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sucrose gradient, positive staining for TSG101 was found in fractions 5-9 and positive 

ALIX staining at fractions 5-10, with maximal staining at fractions 8 where the highest 

particle counts resided (figure 3.3F). Therefore the commonly used proteins for defining 

a vesicle as exosomes, ALIX and TSG101 are only found to stain fractions at exosomal 

density range of 1.1-1.2g/ml and so exosomes must be present in these fractions. 
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DU145 exosomes isolated using a continuous sucrose gradient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: DU145 exosomes float at density of 1.1-1.2g/ml. 
DU145 exosomal pellet centrifuged at 120,000 x g was overlaid on a sucrose gradient (0.2M-2M) and 
spun at 210,000 x g at 40C overnight. Fractions (1-15) were collected and density of each fraction 
calculated using refractometry and density conversion table. Fractions 7-10 are predicted to contain 
exosomes (A). Fractions (1-15) were analysed by nanoparticle tracking analysis (NTA), showing peak 
nanoparticle concentration at fraction 9 (B). Fractions 5-15 was analysed by western blot for exosomal 
markers (TSG101 and ALIX). Marker lane (ML) included for identifying the molecular weight of the 
antibody (C). 
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PC3 exosomes isolated using a continuous sucrose gradient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 continued: PC3 exosomes float at density of 1.1-1.2g/ml. 
PC3 exosomal pellet was overlaid on a sucrose gradient, in the same manner as with the DU145 
exosomes. Fractions (1-14) were collected and density of each fraction was calculated, in which 
fractions 5-10 are predicted to contain exosomes (D). Fractions (1-14) were analysed by NTA, 
showing peak nanoparticle concentration at fraction 8 (E). Fractions 4-14 were analysed by western 
blot for exosomal markers (TSG101 and ALIX). Marker lane (ML) included for identifying the 
molecular weight of the antibody (F). 
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3.1.3 Exosomes purified by the sucrose cushion method. 

Isolation of exosomes using a continuous sucrose gradient is a good method to 

characterise exosomes but it is a long process (>18h) and results in variable recovery of 

the starting amount of exosomes (Lamparski et al. 2002). Thus it is not ideal as a routine 

use of isolating exosomes for experimental use. Instead the sucrose cushion is a rapid 

method for isolating exosomes of high yield (Lamparski et al. 2002). This method 

involves ultracentrifugation of cell conditioned media (CM) with a 30% sucrose/D2O 

cushion to capture exosomes based on their buoyant density in sucrose of 1.1-1.2g/ml. 

The cushion containing exosomes was collected and underwent a PBS wash at high 

speed, resulting in an exosomal pellet which was then characterised. 

 

Firstly, the morphology of DU145 and PC3 exosome pellets were examined using cryo-

transmission electron microscopy (TEM) in collaboration with Dr. Georgi Lalev (Cardiff 

University). To do this, the exosomal pellets were resuspended in PBS and placed onto 

carbon grids and were then rapidly plunged into liquid ethane at liquid nitrogen 

temperature to prevent formation of ice crystals. The grid containing exosomal sample 

was viewed under cryo-TEM, revealing rounded structure of vesicles with thick outer 

boundary, suggesting the possibility of the lipid bilayer (figure 3.4). The diameter of the 

DU145 and PC3 exosomes agrees with the classical diameter range of exosomes at 30-

100nm found by others (Raposo et al. 1996; Escola et al. 1998; Sokolova et al. 2011; 

Sharma et al. 2010; Welton et al. 2010). 

 

Secondly, the phenotype of DU145 and PC3 exosomes was examined using a microplate-

immuno-phenotype assay, in which the exosomes were coated on plates overnight and 

were assessed for their surface expression of proteins commonly found in exosomes, 

such as the tetraspanins (CD9, CD81 and CD63). Our data demonstrated, exosomes from 

both PCa cell lines express tetraspanins (figure 3.5A), in which the DU145 exosomes 

have a 2-fold greater expression of CD9 and CD81 in comparison to the PC3 exosomes 

(P<0.001). Furthermore, DU145 and PC3 derived exosomes express CD63 but to a lesser 

extent than that of the other tetraspanins. The expression of cytosolic protein, 

glyceraldehyde-3-phosphatedehrogenase (GAPDH) and PSCA was also assessed, 

revealing DU145 and PC3 exosomes to exhibit positive expression of GAPDH and a low 
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expression level (<7 x105 TRF) for PSCA. Therefore the PCa exosomes express proteins 

commonly found to be present in exosomes by other researchers (Lamparski et al. 2002; 

Théry et al. 1999; Escola et al. 1998) as well as proteins that are found in cells they 

originate from. 

 

To ensure that a particular protein is specifically enriched in exosomes, one successful 

approach is to compare proteins from exosomes and from whole cell lysates (CL) 

prepared from the parent cells on the same gel. Cell lysates and exosomes from DU145 

and PC3 were compared by western blotting with a range of antibodies. This allowed us 

to compare the relative expression of known exosome markers, such as MVE markers 

(TSG101 and ALIX), 5T4 a tumour associated marker and MHC Class I, in exosomes 

compared to whole cell lysates (figure 3.5B). These were highly enriched in exosomes 

from both PCa cell lines. LAMP-1 (lysosomal-associated membrane protein-1), a 

glycoprotein expressed within the lysosomal compartment was found to be positively 

expressed in DU145 and PC3 exosomes, at a similar level to that of their parent cell.  In 

contrast, the endoplasmic reticulum protein, calnexin was only stained in cell lysates. 

The expression of the cytosolic marker, GAPDH were found in both exosomes and cell 

lysates, as expected. The phenotype of exosomes analysed here agree with the 

literature (Raposo et al. 1996; Lamparski et al. 2002; Escola et al. 1998). 

 

Using Nanoparticle Tracking Analysis (NTA), the majority of the nanovesicles within the 

PCa vesicular pellet isolated from the sucrose cushion had a diameter of 79nm and 

85nm, from the DU145 and PC3 cells respectively (figure 3.6 and 3.7). This finding agrees 

with the cryo-TEM data presented here and by previous studies, in that exosome have 

a diameter within the range of 30-100nm (Raposo et al. 1996; Sokolova et al. 2011; 

Escola et al. 1998). Furthermore, there are no large particles present (>400nm), 

concluding that there are no microvesicles or other large form of cellular participate 

present.  

 

Estimating the purity of exosomes isolated, aids researchers to carry out routine quality 

control tests. The purity of exosomes can be measured based on the particle to protein 

ratio (P:P) using the nanosight and a colourimetric (BCA) assay for particle 
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(nanovescicles) and protein concentration measurement respectively, as described by 

Webber and Clayton (2013). A recent study has shown that introducing protein 

contaminants into the exosome preparation, resulted in a reduced P:P ratio in 

comparison to the exosome sample with no contamination. The decrease in P:P ratio 

correlated with increased dose of protein contamination. Thus pure exosome 

preparations exhibit higher particle to protein ratio (Webber and Clayton 2013). 

 

Furthermore, their study showed conditioned media (CM) containing exosomes from 

PCa bioreactor flasks had a low P:P ratio (3.7 x 108 P/μg). Whereas pelleting and wash 

purification of exosomes increased the P:P ratio (2 x 1010P/μg). Isolating purer 

exosomes, using the sucrose cushion method further enhanced this P:P ratio (3.4 x 1010 

P/μg). From these outcomes, Webber and Clayton (2013) proposed arbitrary thresholds, 

in which ratios greater than 3 x1010 P/μg are of high purity, ratios of 2 x 109 to 2 x 1010 

P/μg represent low purity and ratios below 1.5 x 109 P/μg are unpure. Using these 

thresholds, in this particular exosome preparation, the DU145 and PC3 exosomes 

isolated using the sucrose cushion had a P:P ratio of 4.00 x 1010 and 2.97 x 1010 P/μg 

respectively, and are therefore of high purity (figure 3.6 and 3.7). The quality control 

threshold has been used routinely on exosomes prepared from the 30% sucrose cushion, 

some of which are shown in table 3.1. The majority of exosomes passed the quality 

threshold and are used for experimental studies. The exosomal vesicles that are unpure 

(<1.5 x 109 P/μg), due to issues during the purification (i.e. not collecting the sucrose 

cushion in a clean manner) are discarded. In summary, exosomes isolated from PCa cells 

using the sucrose cushion method are of good purity and largely free from non-exosomal 

proteins.  
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Morphology of exosomal vesicles from prostate cancer cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.4: DU145 and PC3 exosomes are circular and less than 100nm in diameter. DU145 and PC3 
exosome pellet was resuspended in PBS (1:10000) and applied to a holey carbon grid. The exosomal 
specimen grid was then rapidly plunged into liquid ethane at (-196oC to -210oC) and viewed under 
cryo-transmission electron microscopy (Cryo-TEM), confirming the rounded structure of exosomal 
vesicles with a diameter <100nm. Scale bar; 100nm. 

 DU145 PC3 
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Characterisation of DU145 and PC3 derived exosomes from the sucrose 

cushion method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.5: Exosomes from DU145 and PC3 cells express exosome-associated proteins. 
Exosomes from DU145 and PC3 cells were captured onto high protein binding ELISA plates 
(1μg/well) and analysed for the expression of tetraspanins (CD9, CD81, CD63) as well as 
expression of prostate stem cell antigen (PSCA) and GAPDH. Time resolved fluorescence (TRF) 
of the staining is shown with isotype subtraction (A). One-Way ANOVA with Tukey’s multiple 
comparison test ***=P≤0.001. Cell lysates (10μg) and exosomes (10μg) from DU145 and PC3 
were compared by western blot using a range of antibodies (TSG101, ALIX, 5T4, MHC Class I, 
Calnexin and GAPDH (B). 

A) B) 
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   Estimating the purity of exosomes from DU145 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Exosomes isolated from DU145 cells using the sucrose cushion are of high purity. The particle concentration (P/ml) and diameter of DU145-exosomes isolated 
using the 30% sucrose cushion was measured using Nanoparticle Tracking Analysis (NTA). 6 replicate measurements were carried out and overlaid to show the consistency 
across the repeat measurements (A). BCA assay was used to calculate the protein concentration (μg/ml) of the exosomes. The purity of exosomes were assessed by the 
particle: protein ratio (B). 
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Figure 3.7: Exosomes isolated from PC3 cells using the sucrose cushion are of high purity. The particle concentration (P/ml) and diameter of PC3-exosomes isolated using the 
30% sucrose cushion was measured using Nanoparticle Tracking Analysis (NTA). 6 replicate measurements were carried out and overlaid to show the consistency across the 
repeat measurements (A). BCA assay was used to calculate the protein concentration (μg/ml) of the exosomes. The purity of exosomes were assessed by the particle: protein 
ratio (B). 
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Routine quality control of exosome preparations 

 

Date Exosome 
source 

Protein 
concentration 
(μg/ml) 

Particle 
concentration 
(Particles/ml) 

Ratio 
(P/μg) 

Quality 
Control 

07/03/12 DU145 605 7.27 x 1012 1.20 x 1010 PASS 

30/7/13 PC3 2271 2.33 x 1012 1.03 x 109 FAIL 

20/08/12 DU145 1097 3.95 x 1013 3.6 x 1010 PASS 

08/09/13 DU145 3696 3.25 x 1013 8.79 x 109 PASS 

02/06/13 PC3 513 4.8 x 1012 9.36 x 109 PASS 

03/10/13 PC3 4301 1.64 x 1014 3.8 x 1010 PASS 

11/09/13 DU145 6390 1.86 x 1013 2.91 x 109 PASS 

09/10/13 PC3 4006 3.18 x 1013 9.43 x 109 PASS 

09/10/13 DU145 2372 3.95 X 1011 1.66 X 108 FAIL 

10/10/13 DU145 1905 1.2 x 1014 6.30 x 1010 PASS 

18/10/13 Du145 10273 2.51 x 1014 2.44 x 1010 PASS 

01/11/13 DU145 1927 6.73 x 1013 3.49 x 1010 PASS 

16/11/13 DU145 689 4.23 x 1012 6.14 x 109 PASS 

17/11/13 DU145 4549 1.78 x 1013 3.91 X 109 PASS 

30/01/14 PC3 1393 1.71 x 1013 1.23 x 1010 PASS 

14/03/14 DU145 3518 3.86 x 1013 1.09 x 1010 PASS 

11/02/14 DU145 6875.7 1.05 x 1014 1.53 x 1010 PASS 

17/01/14 DU145 1762 4.25 x 1013 2.41 x 1010 PASS 

30/01/14 PC3 1404 1.71 x 1013 1.22 x 1010 PASS 

14/02/14 DU145 3518 3.86 x 1013 1.09 x 1010 PASS 

26/03/14 DU145 4240 1.48 x 1014 3.49 x 1010 PASS 

23/7/14 DU145 13898 8.24 x 1011 5.93 x 107 FAIL 

30/07/14 PC3 2271 2.33 x 1012 1.09 x 109 FAIL 

13/8/14 DU145 7281 2.20 x 1012 3.02 x 108 FAIL 

30/06/14 PC3 4322 1.53 x 1014 3.54 x 1010 PASS 

Table 3.1: Quality of exosomes prepared from the sucrose cushion. Protein and particle 
concentration of exosomes were measured using Nanoparticle Tracking Analysis and BCA assay, 
respectively, to calculate the particle: protein ratio. Exosomal samples isolated with a particle: 
protein ratio of ≥2 x 109 (P/μg) passes the arbitrary quality threshold (as proposed by Webber 
and Clayton 2013). 
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3.1.4 Quantification of exosomal TGF-β1 expression 

My thesis will be focusing on the biological function of exosomal TGF-β1 on the fate of 

bone marrow mesenchymal stem cell (BM-MSC) differentiation. The focus on TGF-β1 

was brought about from its importance in the induction of fibroblast differentiation into 

myofibroblasts (Tuxhorn et al. 2002). Furthermore, exosomes from mesothelioma and 

PCa cells have been shown to express TGF-β1 (Clayton et al. 2007; Webber et al. 2010). 

Here, different doses of exosomes from DU145 and PC3 cells were evaluated for the 

expression of TGF-β1 using the TGF-β1 ELISA (figure 3.8). The exosomal samples were 

prepared prior to running the assay by acid-activating the latent TGF-β1 to the 

immunoreactive form (using HCL) which can be detected by the TGF-β1 immunoassay. 

A good linear response was observed with increasing dose of exosomes and the TGF-β1 

levels. A consistent expression of the active form of TGF-β1 was observed among the 

exosome samples, in which 7pg of TGF-β1 was expressed per μg of DU145 exosomes 

and 14pg of TGF-β1 expressed per μg of PC3 exosomes. Therefore, TGF-β1 is found to 

be expressed on the exosome surface, with PC3-derived exosomes expressing double 

the amount of TGF-β1 in comparison to the DU145 derived exosomes. Knowing the 

quantity of TGF-β1 expressed on exosomes will allow equivalent dose of both exosomal 

TGF- β1 and soluble TGF-β1 to be used for comparison when assessing their effects on 

fate of MSC differentiation. 
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Figure 3.8: TGF-β1 are expressed more in PC3 exosomes than the DU145 exosomes  
Different doses of DU145 and PC3 exosomes (1μg, 5μg, 10μg and 15μg) in triplicates were 
subjected to acid activation and the expression of active TGF-β1 were measured using TGF-β1 
ELISA (A). From these multiple preparations, the TGF-β1 concentration per μg of exosomes was 
plotted (B). 

 

Figure 4.1: BM-MSCs, fibroblasts and myofibroblasts are spindle-shaped but only the 
myofibroblasts express α-SMA. The spindle-shaped appearance of BM-MSCs, fibroblasts and 
myofibroblasts (generated by treating fibroblasts with 1.5ng/ml sTGF-β1 for 72h) were imaged 
live in vitro using light microscopy under phase contrast. Scale bar 100μm (A). The stromal cells 
were fixed and immunohistochemically stained with monoclonal antibody against α-SMA, 
followed by goat anti-mouse FITC secondary antibody (green). The cell were additionally stained 
with DAPI (blue). IgG2a isotype control were also included. Scale bar 100μm (B).Figure 3.2: TGF-
β1 are expressed more in PC3 exosomes than the DU145 exosomes  
Different doses of DU145 and PC3 exosomes (1μg, 5μg, 10μg and 15μg) were subjected to acid 
activation and the expression of active TGF-β1 were measured using TGF-β1 ELISA. n=3 (A). From 
this, the TGF-β1 concentration per μg of exosomes was plotted (B). 

DU145= 7pg TGF-β1/μg exosomes 
PC3= 14pg TGF-β1/μg exosomes 

A) B) 
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3.2 Discussion  

In this chapter, the PCa cell lines, DU145 and PC3 have been confirmed to be epithelial 

by their cobblestone appearance, and the repertoire of CK expression revealed the 

DU145 and PC3 cells to exhibit classical luminal epithelial features, such as the 

expression of CK-7, CK-8 and CK-19. The PCa cells lacked the expression of α-SMA and 

so there was no stromal cells such as myofibroblasts or smooth muscle cells. In addition 

the DU145 and PC3 are heterogeneously positive for tumour-associated proteins MUC-

1, which are found to be overexpressed in many cancers such as breast, lung and also 

prostate cancer (Lacunza et al. 2010; Yao et al. 2011). DU145 and PC3 also exhibit 

prostate specific marker, PSCA, which is known to be specifically expressed in prostate 

epithelial cells and overexpressed in PCa cells (Reiter et al. 1998; Bargão Santos et al. 

2014; Taeb et al. 2014). Tetraspanins are commonly found in exosomes from various cell 

types (Lamparski et al. 2002; Rapaso et al. 1996; Escola et al. 1998; Heijnen et al. 1999). 

Our data has shown DU145 and PC3 cells to heterogeneously express tetraspanins CD9, 

CD81 and CD63. These findings were akin to other reports of expression of tetraspanins 

found in PCa cells (Zvereff et al. 2007; Liu et al. 2000). Some studies demonstrate 

exosomes to be akin to their parental cells (Bharathiraja et al. 2014) and if so, assessing 

the phenotype of PCa cells here, may indicate the phenotypic nature of their respective 

exosomes. 

 

PCa exosomes can be isolated using the continuous sucrose gradient method, where 

PCa cells have been demonstrated to secrete exosomes which float in fractions which 

span the classical exosomal densities of 1.1-1.2g/ml. These fractions contained the 

greatest number of nanoparticles and the strongest staining for exosome-associated 

proteins such as ALIX and TSG101. Thus the biophysical and biochemical properties of 

PCa exosomes agree with that of exosomes from other cancer cell lines (Raposa et al. 

1996; Escola et al. 1998; Heijnen et al. 1999). 

 

Exosomes purified from DU145 and PC3 cells using the sucrose cushion method revealed 

them to be rounded. However, the structural features of the vesicles, such as the lipid 

bilayer could not be visualised clearly. This is due to the lack of optimisation of factors 

such as sample preparation, sample loading onto the carbon grid, surface charge on 
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carbon support films and thickness of ice, all of which affects the performance and 

resolution of imaging (Cho et al. 2013; Grassucci et al. 2007). We couldn’t yet optimise 

the procedure as the Cryo-TEM is a new instrument at the School of Optometry (Cardiff 

University). PCa exosomes were a monodisperse population, in which the majority of 

the vesicles were less than 100nm in diameter, as shown by the cryo-TEM and the NTA, 

which agrees with most publications (Webber and Clayton 2013; Sheldon et al. 2010). 

The Nanosight performs a size analysis of particles in fluid phase, as opposed to fixed 

and dehydrated samples used in other methods such as traditional (non-cryo) electron 

microscopy and hence may give a truer representation of exosomes in their natural 

state. There were no large particles of more than 400nm, demonstrating an absence of 

non-exosomal components, such as apoptotic cellular material, in the size range of 

500nm in diameter or more. Microplate-immuno-phenotype assay revealed exosomes 

express tetraspanins and low levels of PSCA and so have some resemblance to their 

parental cells. Western blot demonstrated exosomes to be of good quality as they were 

enriched in exosomal markers with respect to whole cell lysates and levels of non 

exosomal calnexin was barely detectable. Furthermore, using the particle to protein 

ratio as proposed by Webber and Clayton (2013) showed the majority of exosomes 

isolated using the sucrose cushion method to be of high purity. More recent methods 

have been established for exosome isolation, such as the use of sepharose 2B column 

(Rabinowits et al. 2009; Sokolova et al. 2011) and exosome immunocapture plates. In 

addition, commercial methods such as the Exo-spin (Cell Guidance), exosome isolation 

kit (Life Technologies) and the ExoQuick method which utilises the total exosome 

isolation reagent, claim to precipitate exosomes from cell culture CM (System 

Biosciences). However, these methods are still yet to be standardized, and do not always 

generate exosomes of typical characteristics and purity, and the methods have not been 

thoroughly tested, especially in the context of P:P ratio. Therefore utilising the sucrose 

cushion method was justified by their results and we kept to this method for the 

remainder of the thesis, as this is a more rapid method than the continuous sucrose 

gradient technique for isolating exosomes. 

 

Lastly, in this chapter TGF-β1 has been demonstrated to be expressed on the surface of 

both DU145 and PC3 exosomes, with PC3 expressing double the amount of TGF-β1 to 
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that of PC3 exosomes. Previous studies report TGF-β1 to be expressed on exosomes by 

various cell types (Clayton et al. 2007; Cai et al. 2012; Xiang et al. 2009) and in agreement 

with the data presented here, similar levels of TGF-β1 expression were reported on 

DU145 and PC3 cells (Webber et al. 2010). Furthermore, TGF-β1 expression on 

exosomes do differ among the different PCa cell lines. For example, PC3 and DU145 were 

both found to express TGF-β1 whereas LnCap, (another PCa cell line) had very low levels 

of TGF-β1 (Webber et al. 2010). Since soluble TGF-β1, as well as exosomal TGF-β1 are 

known to be involved in the myofibroblastic differentiation of stromal cells (Tuxhorn et 

al. 2002; Webber et al. 2010), PCa exosomes expressing TGF-β1 are hypothesised to 

differentiate BM-MSCs into myofibroblast-like cells. By knowing the quantity of TGF-β1 

on exosomes, equivalent dose of exosomes, matched to the sTGF-β dose can be used to 

investigate the effect they have on the fate of BM-MSC differentiation.  
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4.1 Characterisation of MSC, fibroblasts and myofibroblasts 

Bone-marrow derived MSCs (BM-MSCs) are well-known to possess powerful tissue 

reparative and protective mechanisms, such as their capacity to differentiate into 

various mesenchymal tissues and their immunosuppressive property. This makes BM-

MSCs attractive for treatment of different diseases (Fujita et al. 2015; Fortier and Smith 

2008). Despite these advantageous MSC traits, BM-MSCs have been recently 

demonstrated to migrate to tumour stroma sites (Shinagawa et al. 2010; Khakoo et al. 

2006) and conflicting reports exist, demonstrating MSCs to either promote (Djouad et 

al. 2003; Zhu et al. 2006; Karnoub et al. 2007) or suppress tumour growth (Qiao et al. 

2008; Khakoo et al. 2006). BM-MSCs under the influence of cancer cells CM have been 

noted to differentiate into myofibroblast-like cells (Mishra et al. 2008). Recently TGF-β1 

positive exosomes from cancer cells have been shown to differentiate fibroblasts into 

tumour-promoting myofibroblasts (Webber et al. 2014). Thus, in this thesis we will be 

focusing on the fate of BM-MSC differentiation in response to PCa derived TGF-β1 

bearing exosomes. 

 

Before using BM-MSCs in our experimental studies, BM-MSCs have been rigorously 

characterised to confirm they are genuine MSCs and not a mixed population of other 

stromal cell types, such as macrophages, endothelial cells, hematopoietic cells and 

fibroblasts found within the BM. Freidenstein (1976) was the first to isolate and expand 

BM-MSCs and noted them to be plastic adherent with an elongated spindle-shaped 

morphology. Further adaptation from this, the International Society for Cellular Therapy 

(ISCT) set a minimal criteria for defining MSC, which state that in addition to MSCs being 

plastic adherent, they must express surface antigens; CD73, CD105, CD90 and must be 

negative for hematopoietic antigens (CD14 and CD45). The function of these molecules 

on BM-MSCs are not well defined, but CD73 is an ecto-5’-nucleotidase known to support 

MSC migration (Ode et al. 2011), whereas CD105, is a TGF-β receptor III, which plays a 

role in TGF-β signalling during MSC chondrogenic differentiation (Barry et al. 1999). In 

contrast, the exact function of CD90 is less well defined and has been proposed to have 

a role in the stromal adherence of CD34+ cells (Craig et al. 1993). The last criteria set by 

the ISCT, is that MSCs must also be able to differentiate into multi-lineage pathways, 

such as adipocytes, chondrocytes and osteocytes when cultured under appropriate 
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conditions (Dominici et al. 2006). This criteria is followed by scientists carrying out MSC 

research, but unfortunately, one of the obstacles with MSC research remains to be the 

lack of unique markers for MSC identification. The cell surface markers suggested by the 

ISCT is incapable in distinguishing MSCs from stromal cells such as fibroblasts 

(Kundrotas, 2012), and so identifying MSC as a contributor to the activated stroma at 

cancer sites is a challenge.  
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4.1.1 Morphology and phenotypic characterisation of BM-MSCs, fibroblasts and 

myofibroblasts 

The morphology and phenotype of BM-MSCs were compared to other stromal cell types 

that are found within the tumour stroma such as fibroblasts and myofibroblasts. Any 

differences will help define BM-MSCs and may potentially aid in demonstrating their 

relative proportion within the activated stroma. Commercially purchased naïve BM-

MSCs from healthy donors were used.  With regard to fibroblasts, and myofibroblasts, 

normal adult diploid fibroblasts (AG02262 from Coriell Institute) of lung origin were used 

as they represent a typical fibroblasts exhibiting appropriate mesenchymal markers and 

are non-transformed and become senescent after approximately ten population 

doubling. In addition, the majority of these fibroblasts can differentiate into 

myofibroblasts under the control of TGF-β1 and have been widely used in the study of 

exosome controlled differentiation (Webber et al. 2010; Webber et al. 2014).  

 

The BM-MSCs were plastic adherent and morphological evaluation by phase-contrast 

microscopy revealed the cells to possess a rounded cell body with long and thin cell 

processes (figure 4.1A) which agree with published literature (Martinez et al. 2007). 

However, evaluation of fibroblasts and myofibroblasts (generated from fibroblasts 

treated with sTGF-β1 over 72h) also exhibited a similar cell shape. Therefore 

morphology fails to distinguish the BM-MSCs from fibroblasts and myofibroblasts. This 

led us to assess the phenotype of the cells by immunofluorescence staining for alpha 

smooth muscle actin (α-SMA), a well-known myofibroblast marker. Unlike 

myofibroblasts, BM-MSCs and fibroblasts do not constitutively express α-SMA (Figure 

4.1B) thus α-SMA cannot distinguish between these two cell types. 

 

The surface-phenotype of BM-MSCs was analysed according to the classical ISCT criteria 

using flow cytometry. The majority of the BM-MSCs positively expressed the markers 

CD73, CD90 and CD105 and were negative for haematopoietic markers CD14 and CD45 

(figure 4.2A). Thus the BM-MSCs well satisfied characteristics suggested by the ISCT. The 

phenotype of BM-MSCs was explored a little deeper, by evaluating the expression of 

other surface proteins such as CD44, CD146, SSEA-4 and GD-2. Previous studies have 

reported BM-MSCs to express CD44 (Spaeth et al. 2013; Yang et al. 2010), CD146 
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(Espagnolle et al. 2014) and the glycoprotein, stage-specific embryonic antigen-4 (SSEA-

4) which are usually found in undifferentiated pluripotent human embryonic stem cells 

(Gang et al. 2007). Furthermore a study has reported ganglioside-2 (GD-2) a protein 

commonly found in embryonic stem cells to be expressed in adipose derived MSCs and 

absent in foreskin fibroblasts (Martinez et al. 2007), making it a potential marker to 

distinguish MSCs from fibroblasts. Here, we revealed all the BM-MSCs to highly express 

CD44 and likewise the majority of all the cells positively expressed SSEA-4 and GD-2 and 

to a lesser extent, CD146 (figure 4.2B). Fibroblasts and myofibroblasts were compared 

to this panel and found to display similar characteristics to the BM-MSCs (figure 4.2C). 

However, staining for SSEA-4 and GD-2 was absent or low in both fibroblasts and 

myofibroblasts (P≤0.001), demonstrating BM-MSCs are phenotypically distinct from 

other stromal cell types. 

 

In our hands, SSEA-4 was exclusively expressed in BM-MSCs and not fibroblasts and 

myofibroblasts and so this antigen raised the possibility of detecting MSCs within the 

tumour stroma as well as tumour associated myofibroblasts of MSC origin. To test this, 

normal and prostate cancer stromal cells were obtained from the Wales Cancer Bank 

and the stromal cells were evaluated for the expression of SSEA-4 (figure 4.3). There was 

a 2% higher population of SSEA-4 positive cells found within the tumour stromal cells, in 

comparison to the normal prostatic stroma. This observation was not significant, but the 

data still indicates the presence of SSEA-4 positive cells within the prostate stroma, may 

indeed be MSCs 

 

In summary, the morphology and phenotype of BM-MSCs to other stromal cells are 

similar, but α-SMA can identify myofibroblasts whilst SSEA-4 can uniquely distinguish 

BM-MSCs from fibroblasts and myofibroblasts and so this marker may enable us to track 

BM-MSCs as contributors to the tumour stroma. In this particular case, however, there 

is an insignificant increase in SSEA-4 positive cells in tumour stroma, suggesting little 

MSC contribution in the tumour stroma. 
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Morphology and α-SMA phenotype of the stromal cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 4.1: BM-MSCs, fibroblasts and myofibroblasts are spindle-shaped but only the myofibroblasts 
express α-SMA. The spindle-shaped appearance of BM-MSCs, fibroblasts and myofibroblasts (generated by 
treating fibroblasts with 1.5ng/ml sTGF-β1 for 72h) were imaged live in vitro using light microscopy under 
phase contrast. Scale bar 100μm (A). The stromal cells were fixed and immunofluorescently stained with 
monoclonal antibody against α-SMA, followed by goat anti-mouse FITC secondary antibody (green). The cell 
were additionally stained with DAPI (blue). IgG2a isotype control were also included. Scale bar 100μm (B). 
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Surface Phenotype of BM-MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: BM-MSCs express surface antigen suggested by the ISCT and also express CD44, CD146, SSEA-4 and GD-2. BM-MSCs were fixed and stained with 
conjugated antibodies against the ISCT suggested molecules; CD73, CD90, CD105, CD14, CD45, CD44 (A), as well as other cell surface molecules; CD146, SSEA-4, and 
GD-2 (B). Flow cytometric histograms show a positive shift in the cell surface molecules expression (black) from the isotype control (grey). No shift in CD14 and CD45 
(black) are seen from the isotype (grey). Dot blot show the percentage of cells positive (black) for the specified marker (CD73, CD90, CD105, CD14, CD45, CD44, 
CD146, SSEA-4, and GD-2) in relation to the isotype control (grey). 
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Comparison of the BM-MSCs, fibroblasts and myofibroblasts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.2 continued: BM-MSCs, fibroblasts and myofibroblast express similar cell surface molecules. Fibroblasts and myofibroblasts (fibroblasts treated with 
1ng/ml sTGFb1 for 72h) were treated in the same manner as BM-MSC and summary data (bar) to compare various cell surface antigen expression among the three 
cell types; BM-MSCs (black), fibroblasts (blue) and myofibroblasts (green). Median Fluorescence Intensity (MFI) plotted after isotype subtraction (above) and 
percentage positive cells (below) are recorded ± SD of duplicates (C). Students T-test *P≤ 0.005, **P≤ 0.01 and ***P≤ 0.001.  
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SSEA-4 positive cells in primary prostate stromal cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.3: SSEA-4 positive stromal cells are found in the prostate. Normal and prostate cancer stromal 
cells were fixed and stained with FITC-conjugated monoclonal antibody against SSEA-4. Median 
Fluorescence Intensity (MFI) of cell surface expression of SSEA-4 plotted after isotype subtraction (right) 
and percentage positive cells (left) are shown with ± SD of duplicates. T-test: not significant.  
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4.1.2 Adipogenic differentiation of BM-MSCs and the response to DU145 exosomes 

BM-MSCs have already been shown to differentiate into adipocytes, osteoblasts and 

chondrocytes according to the supplier. Nevertheless, we wanted to be certain this 

property of cells was real in our hands, by examining the ability of BM-MSCs to undergo 

at least one of the classical programmes of differentiation, focusing on adipogenesis in 

this case. BM-MSCs were cultured in the adipogenesis media (containing 

dexamethasone, IBMX, insulin and indomethacin) for a period of 21 days as described 

by Pittenger (1999). The BM-MSCs developed multiple lipid droplets within the cytosol, 

which stained intensely with Oil red O (figure 4.4A). Fibroblasts treated identically 

showed no signs of adipogenic differentiation. Therefore we have genuine MSCs that 

can be used for our planned investigations. 

 

Since this thesis intends to examine the effect of PCa exosomes upon the fate of BM-

MSC differentiation, we explored the impact of adding exogenous sTGF-β1 or TGF-β1 

bearing exosomes from PCa cells to this adipogenic system. A dose of 1ng/ml of sTGF-

β1 was used, as this is a common concentration known to induce MSC differentiation 

into various mesenchymal cell types such as vascular smooth muscle cells and 

chondrocytes (Guerrero et al. 2014; Motoyama et al. 2010). Furthermore, exosomes in 

the previous chapter were shown to contain around 7pg of TGF-β1 per μg of DU145 

exosomes and this agreed with published literature (Webber et al. 2010; Clayton et al. 

2007). Thus sTGF-β1 (at 1ng/ml) or DU145-exosomal TGF-β1 (150μg/ml) at a dose 

approximately equivalent to 1ng/ml TGF-β1 were added to some wells together with 

the adipogenic differentiation factors every 3 days throughout the 21 day experiment 

and the effect on adipogenesis was compared (figure 4.4B). To obtain quantification of 

the adipogenic differentiation, adipocyte were counted from a total of 10 microscopic 

fields from the different conditions (figure 4.4C). Evaluation under microscopy revealed 

either treatment of sTGF-β1 or exosomal TGF-β1 to result in significant (P<0.001) 

inhibition of the differentiation into adipocytes, by 96% and 87% respectively in 

comparison to the untreated adipogenic differentiation of BM-MSCs.  

 

In addition, we examined whether BM-MSCs under the influence of PCa exosomes, 

differentiate to a myofibroblast-like phenotype. The BM-MSCs under the same 
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conditions as mentioned above were evaluated for the myofibroblastic marker, α-SMA 

by immunohistochemistry and proportion of α-SMA positive cells were quantified. BM-

MSCs in standard (DMEM with 10% FBS) or adipogenesis media exhibited a low 

proportion of α-SMA positive cells (<7%) and this was not altered following sTGF-β1 

treatment (figure 4.5A and B). In contrast more than 50% of the cells exhibited strong 

α-SMA expression following treatment with exosomes at a matched TGF-β1 dose as 

observed by filamentous stress fibres, which are not seen in other conditions. In 

summary BM-MSCs possess the ability to differentiate into adipocytes when cultured 

under appropriate conditions. However, this differentiation pathway is attenuated 

when either sTGF-β1 or PCa exosomes were added, indicating the potent strength of 

these factors, being able to override this differentiation programme. By evaluating α-

SMA expression, it is clear that exosomes drive MSC differentiation into myofibroblast-

like cells, although the response was heterogeneous. In contrast, α-SMA expression was 

not apparent with sTGF-β1 along with the adipogenesis media, therefore differentiation 

of BM-MSCs into myofibroblast-like cells may not be possible when stimulated with the 

soluble form of TGF-β1. 
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Adipogenic differentiation of BM-MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.4: BM-MSCs have the capacity to differentiate into adipocytes and this differentiation is inhibited by 
either sTGF-β1 or PCa exosomes. BM-MSCs and fibroblasts cultured in standard media (top) or with the 
addition of adipogenic stimulants (bottom) for 21 days was stained for adipocytes using Oil Red O solution and 
nuclei was stained using haematoxylin (A). Selection from image showing clusters of Oil Red O-stained fat 
droplets in adipocytes (A, inset). During adipogenic differentiation, sTGF-β1 (1ng/ml) or DU145 exosomes 
(150μg/ml) were repeatedly added along with the adipogenic stimulants and the formation of Oil Red O positive 
adipocytes (black arrows) examined at day 21. Scale bar 100μm (B). Bars show the mean (±SD) number of 
adipocytes per field of view, from a total of 10 microscopic fields examined in duplicate wells per treatment 
and are representative of two independent experiments (C).***P≤0.001 One-way ANOVA with Tukey’s post-
test. 
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Myofibroblast-like phenotype 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.5: Presence of DU145 exosomes in the adipogenesis media trigger enhanced α-SMA expression 
in BM-MSCs. BM-MSCs were cultured in standard media or adipogenesis media (with or without sTGF-β1 
(1ng/ml) or DU145 exosomes (150μg/ml) as depicted) over 21 days. The cells were stained for α-SMA 
(green) and DAPI (blue). Scale 100μm (A). Quantification of the proportion of α-SMA positive cells, from a 
total of 6 microscopic fields examined in duplicate wells per treatment, is shown (B). Representative of 
two independent experiments. ***P≤0.001 One-way ANOVA with Tukey’s post-test. 
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4.2 Discussion 

Our data fulfils ISCTs criteria for defining MSCs, as the cells were plastic adherent, 

spindle-shaped in appearance, expressed the cell surface molecules CD73, CD90, CD105 

and were negative for the hematopoietic markers. Therefore, we have genuine MSCs 

which are not contaminated with hematopoietic cells or other stromal cells. In addition, 

we also demonstrated the expression of the protein CD44 on BM-MSCs, in agreement 

with previous studies (Spaeth et al. 2013; Yang et al. 2010). CD44 was demonstrated to 

facilitate MSC migration in vitro through the interaction with extracellular hyaluronan 

(Zhu et al. 2006), which may be crucial for recruitment of MSCs into wound and tumour 

sites. BM-MSCs also expressed GD-2, similar to that of adipose-derived MSCs (Martinez 

et al. 2007), but the function of GD-2 on MSCs is unknown. In addition, our data revealed 

a subpopulation of BM-MSCs to express CD146 and this heterogeneity was also noted 

by others (Tomin et al. 2011; Espagnolle et al. 2014; Russell et al. 2013). CD146 positive 

and negative BM-MSCs were found to express similar levels of CD73, CD90 and CD105 

but under appropriate conditions, only the CD146 positive MSCs were committed 

towards a vascular smooth muscle lineage characterised by up-regulation of calponin-1 

and the ability to contract collagen matrix (Espagnolle et al. 2014). Therefore there are 

subpopulations of BM-MSCs that are more prone to differentiate into certain cell types.  

 

The panel of cell surface molecules used to characterise MSCs do not distinguish MSCs 

from fibroblasts and myofibroblasts as they also display similar characteristics. The 

presence of α-SMA stress fibres was able to distinguish myofibroblasts from the other 

two stromal cell types, but it remained difficult to discriminate between fibroblasts and 

BM-MSCs. Based on this reason, some researchers argue that MSCs and fibroblasts are 

identical (Hematti 2012). However, the SSEA-4 glycoprotein usually expressed in 

embryonic stem cells was also expressed on BM-MSCs (Gang et al. 2007) and here we 

confirm the value of SSEA-4 in distinguishing MSCs from fibroblasts and myofibroblasts 

in an unequivocal manner. SSEA-4 does not play critical roles in maintaining the 

pluripotency of embryonic cells (Brimble et al. 2007), but instead is related to the 

multipotency function, as only the MSCs expressing SSEA-4 exclusively exhibited the 

capacity to differentiate into the classical multi-lineage pathways in vitro (Rosu-Myles et 

al. 2013). Therefore the SSEA-4 subpopulation within the MSCs is indicated to truly 
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exhibit the multi-lineage capacity. Overall, it is a challenge to define MSCs in tissues, but 

SSEA-4 may be a definitive marker for MSCs which can help identify these cells in situ. 

Our data demonstrated an insignificance difference in SSEA-4 positive cells among the 

normal and prostatic stromal cell populations (taken from prostatectomy tissue). This 

may have been partly affected by the small sample size used for assessment which is 

taken into account by the t-test, resulting in a bigger p-value. Nevertheless, there was a 

small percentage of stromal cells from both normal and tumour prostate to be SSEA-4 

positive, suggesting the presence of MSCs in prostatic stromal cell populations. 

However, the origin of SSEA-4 positive MSCs within the prostate stroma are unknown. 

It may be that SSEA-4 is also expressed on MSCs from other sources such as adipose 

tissue and SSEA-4 may also be expressed on cancer stem cells. In addition, whether 

SSEA-4 expression decreases once MSCs have migrated or differentiated requires 

investigation. A marker unique to BM-MSC, will enable us to track BM-MSCs as 

contributors to the tumour stroma. 

 

The last criteria and arguably the most important for defining MSCs, is their functional 

multi-lineage differentiation capacity. Here we confirm that BM-MSCs can differentiate 

into adipocytes and the addition of sTGF-β1 or DU145 exosomes along with the 

adipogenesis media had the capacity to override the potent adipogenic differentiation 

programme. However, it was only the PCa exosomes that imposed a switch towards 

generating myofibroblast-like cells. TGF-β1 is a key cytokine driving the differentiation 

of MSCs into various mesenchymal cell types at the dose used in this study (1ng/ml). For 

example, MSCs treated with sTGF-β1 over 14 days can differentiate into vascular smooth 

muscle cells (Guerrero et al. 2014). In addition the presence of sTGF-β1 along with the 

adipogenic stimulants, dexamethasone can halt MSC differentiation towards adipocytes 

and drive the MSCs to differentiate into osteoblasts (Jaiswal et al. 1997; Bruder et al. 

1997). Furthermore, 3-dimensional conformation of MSC aggregates with sTGF-β1, 

dexamethasone and insulin will undergo chondrogenic differentiation (Johnstone et al. 

1998; Mackay et al. 1998; Lee et al. 2004b). Therefore sTGF-β1 within the adipogenesis 

media may drive MSCs to differentiate into mesenchymal cell types, other than the 

adipocytes or myofibroblasts. 
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Our data show that PCa exosomes can differentiate MSCs into myofibroblast-like cells, 

but whether this effect is solely dependent on PCa exosomes and not observed as a 

synergistic effect with other hormones present within the adipogenesis media requires 

investigation. DU145 and PC3 exosomes have been demonstrated to express high levels 

of latent TGF-β1, which can be presented to recipient cells in a biologically active manner 

(Webber et al. 2010). In addition, a distinct phenotype and function of myofibroblasts 

generated from fibroblasts using exosomes, in comparison to using sTGF-β1 has been 

shown (Webber et al. 2014). Thus, even though the interaction between exosomes and 

MSCs are not well understood, exosomal-TGFβ1 is believed to play a role in this 

myofibroblastic differentiation, and can be a focus for a mechanistic investigation. In 

addition the function of exosome-modified MSC in promoting tumour progression 

warrants further investigation. 
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Chapter 5: Differentiation of 
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5.1 Direct effect of exosomes on MSC phenotype 

In the previous chapter, prostate cancer exosomes within the adipogenesis media were 

shown to drive BM-MSC differentiation away from adipogenesis and towards a 

myofibroblast-like cells. Here, the direct effect of PCa exosomes on BM-MSCs 

differentiation will be explored.  

 

5.1.1 Phenotypic changes of BM-MSCs in response to exosomes 

To assess the fate of BM-MSC differentiation in response to PCa exosomes, the BM-

MSCs were firstly growth arrested overnight once 70% confluent. Thereafter BM-MSCs 

were cultured in standard media (DMEM 1% exosome depleted FBS) alone or with a 

single stimulation with sTGF-β1 (1ng/ml) or exosomes from DU145 or PC3 cell lines at 

equivalent TGF-β1 dosage (150μg/ml or 75μg/ml, respectively) over a 14 day period. The 

BM-MSCs were fixed and phenotypic changes such as the expression of α-SMA were 

explored by immunohistochemistry. In addition, the percentage of positive cells were 

counted over six microscopic fields (figure 5.1 A,B), revealing BM-MSCs treated with 

sTGF-β1 to exhibit negligible change in α-SMA positive cells, compared to that of the 

untreated MSCs. Only the PCa exosomes (DU145 or PC3 derived) drove a significant 

elevation, in α-SMA positive cells, by a 6-fold increase in comparison to the untreated 

MSCs (P≤0.01). Importantly α-SMA protein was not simply elevated in these 

experiments but was present as organised stress-fibres; the onset of which is a key 

characteristic of myofibroblasts. Thus, unlike sTGF-β1, cancer exosomes differentiate 

the majority of BM-MSCs into α-SMA positive myofibroblast-like cells. 

 

The level of pro-angiogenic growth factors such as VEGF-A and HGF secreted by the 

undifferentiated and differentiated BM-MSCs was also investigated, by measuring the 

quantity of these growth factors present within the BM-MSC conditioned medium (CM) 

which has been normalised to their cell number (figure 5.1C). There was around twice 

as much of VEGF-A found in MSC CM in the presence of exosomes (P≤0.05) in 

comparison to untreated MSC CM. Similarly, there was an elevated level of HGF 

(P≤0.001) in exosome-treated MSC CM in comparison to the untreated. In contrast, 

there was less HGF in the CM when BM-MSCs was treated with sTGF-β1. From this we 
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can conclude that exosomes and sTGF-β1 differentiate MSCs but towards different end 

points, as shown by the striking difference in phenotype and secretory profile.  
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Myofibroblastic differentiation of BM-MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.1: DU145 and PC3 exosomes differentiate BM-MSCs to a myofibroblast-like 
phenotype. BM-MSCs at passage 3 were growth arrested overnight and were either left 
untreated, or cultured in the presence of sTGFβ (1ng/ml) or DU145 exosomes (150ug/ml) 
or PC3 exosomes (75μg/ml) in DMEM with 1% exosome depleted FBS over 14 days. BM-
MSCs were examined by immunohistochemistry for the expression of α-SMA (green) and 
DAPI (blue). Selected region (grey box) show the presence of α-SMA positive stress fibres. 
Scale bar 100μm (A). The proportion of α-SMA positive cells over 6 microscopic fields were 
examined in duplicates per treatment. Representative for three such experiments (B). 
Conditioned media (normalised for cell number) from the undifferentiated and 
differentiated BM-MSCs was analysed by ELISA for VEGF-A and HGF levels (C). One-way 
ANOVA with Tukey’s multiple comparison test.* P≤0.05, **P≤0.01 and ***P≤0.001 and 
****P≤0.0001 
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5.1.2 Dose and kinetics of MSC differentiation in response to DU145 exosomes 

So far we know that PCa exosomes can differentiate BM-MSCs into myofibroblast-like 

cells. However the optimal dose and time of exosome exposure needed to generate 

myofibroblasts from BM-MSCs is not yet known. Most researchers use sTGFβ-1 at a dose 

of 1-1.5ng/ml to differentiate cells into myofibroblasts (Lewis et al. 2004; Lijnen et al. 

2003; Jester et al. 1999). Likewise a single dose of 200µg/ml of PCa exosomes which was 

a matched-TGF-β1 dose to 1.5ng/ml sTGF-β1 induced fibroblasts to differentiate into α-

SMA positive myofibroblasts after 72h (Webber et al. 2010). With regard to MSCs, Gu et 

al. (2012) treated umbilical cord derived MSCs with 800μg/mL of gastric cancer 

exosomes repeatedly every 3 days, over a 14 day period, resulting in α-SMA positive 

myofibroblast-like cells. In contrast to this high dose, as little as 4 or 20µg of breast 

cancer exosomes was used to investigate if adipose-derived MSCs differentiate into 

myofibroblasts, they did not however mention how long the MSCs were treated for. 

Nevertheless, low levels of α-SMA positive cells were observed but the actin stress fibres 

were not detected (Cho et al. 2012). Thus, exosomes at a very low dose was probably 

too weak to have an effect on MSC differentiation towards myofibroblast-like cells. In 

addition, in these cases, the expression level of TGF-β1 on exosomes was not known and 

even though both low and high range of exosome dose have been used to study 

myofibroblastic differentiation, the optimal dose and time of exosome exposure needed 

to generate myofibroblasts from BM-MSCs are not yet known. 

 

Here, the kinetics of BM-MSC differentiation in response to PCa exosomes was tested 

by treating the BM-MSCs with a single dose of 150μg/ml DU145 exosomes over different 

time points (3d, 6d, 9d and 14d period). After each time point, α-SMA expression was 

assessed by immunohistochemistry and the proportion of α-SMA positive cells were 

counted. There was no spontaneous elevation of α-SMA in the untreated BM-MSCs. The 

kinetics of α-SMA onset was slower than we had expected, certainly slower than that 

for fibroblasts in which α-SMA peaks at around 3 days post-exosome stimulation 

(Webber et al. 2010). Here, there was no change in α-SMA status by day 3 for BM-MSCs, 

with changes only becoming apparent 6 days post exosome treatment but continuing 

steadily thereafter approaching 70% positivity with α-SMA stress fibres by day 14 (figure 

5.2 A,B). The level of pro-angiogenic factors, VEGF-A and HGF secreted by the 
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exosomally-differentiated BM-MSCs were also measured using ELISA and compared to 

untreated and sTGF-β1 treated BM-MSCs. As expected, the secretion of these growth 

factors by the untreated BM-MSCs was low over 14 days and the VEGF-A level remained 

unchanged with sTGF-β1 treatment (figure 5.2C), agreeing with earlier observations. In 

contrast, elevated secretion of VEGF-A and HGF by exosome-treated BM-MSCs 

occurred, with peak elevation of VEGF and HGF secretion (P≤0.001) observed at day 8 

and 6 respectively. Therefore, there was notable changes in the cells at time point’s 

preceding the changes in the cytoskeleton (α-SMA), and so the response to exosomes is 

actually quick but takes two weeks to fully generate into myofibroblasts. 

 

The impact of exosome dose on BM-MSC differentiation was examined, by treating BM-

MSCs with DU145 exosomes at 75μg/ml, 150μg/ml or 300μg/ml for 14 days. The 

response to exosome treatment was dose dependent, with an approximately 3 fold 

elevation to around 30% of the population becoming α-SMA positive at 75µg/ml. This 

increased to around 75% with very high exosome doses of 300µg/ml (figure 5.3 A,B). 

When evaluating levels of pro-angiogenic factors secreted by the MSCs, there was no 

significant difference in VEGF-A concentration between the untreated and 75μg/ml 

exosome treated MSCs. However, a 4 fold increase in VEGF-A secretion was observed 

with 150μg/ml and this incremented further with 300μg/ml exosomes (P≤0.0001) 

(figure 5.3C). Similarly, HGF secretion by exosome-treated BM-MSCs was dose-

dependent, as HGF secretion was elevated with increasing exosome-dose. In summary, 

our data show exosome-mediated MSC differentiation is time and dose-dependent. 
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Kinetics of MSC differentiation by DU145 exosomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.2: MSC differentiate into myofibroblast-like cells in a time-dependent manner. BM-MSCs were growth arrested overnight 
and cultured in standard media (DMEM 1% exosome depleted FBS) alone or with DU145 exosomes (150µg/ml) over different time 
points (3d, 6d, 9d and 14d). The MSCs were examined by immunohistochemistry for the expression of α-SMA (green) and DAPI (blue). 
Scale bar; 200μm (A).The proportion of α-SMA positive cells were counted from 6 microscopic fields of view across duplicate wells 
and plotted as bar graph (B). One-way ANOVA with Tukey’s post-test. ***P≤0.001 and ****P≤0.0001. 
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Kinetics of MSC differentiation by DU145 exosomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 continued: MSC differentiate into myofibroblast-like cells in a time-dependent 
manner. Conditioned media (normalised for cell number) taken from BM-MSCs treated with 
sTGF-β1 or DU145 exosomes at specified time point, were analysed by ELISA for levels of VEGF-
A or HGF (C). Two-way ANOVA with Benferroni post-test.  * P≤0.05, **P≤0.01 and ***P≤0.001 
(n=3). 
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Dose-dependence of MSC differentiation by DU145 exosomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

BM-MSC + 75µg/ml exosome + 150µg/ml exosome + 300µg/ml exosome 
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Figure 5.3: Exosome generate α-SMA positive cells in a dose-dependent 
manner. BM-MSCs were growth-arrested (DMEM 1% exosome-depleted FBS) 
for 24h and thereafter stimulated for 14d with increasing doses of exosomes 
(0-300µg/ml). The MSCs were examined for the expression of α-SMA (green) 
and DAPI (blue) by immunohistochemistry. Scale bar; 200μm (A). 
Quantification of the proportion of α-SMA positive cells from a total of 6 
microscopic fields were examined in duplicate wells per treatment, are shown 
(B) One-Way ANOVA, Tukey’s multiple comparison test. Conditioned media 
(normalised for cell number) taken from BM-MSCs treated with differentiate 
exosome dosage were analysed by ELISA for levels of VEGF-A or HGF (C). Two-
way ANOVA with Benforri post-test.  * P≤0.05, **P≤0.01, ***P≤0.001 and 
****P≤0.0001. 
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5.2 The relative importance of exosomes, as a component of the cancer 

secretome, in driving MSC differentiation 

The secretion of exosomes is regulated by Rab27a; a GTPase involved in the fusion of 

multivesicular endosomes containing exosomes to the plasma membrane, resulting in 

the release of exosomes (Ostrowski et al. 2010; Bobrie et al. 2012). Blockade of Rab27a 

has been shown to decrease the secretion of exosomes in many studies (Li et al. 2014; 

Bobrie et al. 2012; Ostrowski et al. 2010). Here, the secretion pathway of exosomes was 

interfered by Rab27a knock down in DU145 cells using the ribozyme silencing method, 

carried out by our group in collaboration with Prof Wen Jiang (Cardiff University). These 

DU145 Rab27aKD cells were then used to test the exosome-dependency of BM-MSC 

differentiation. 

 

5.2.1 Characterisation of Rab27aKD DU145 cells 

Two RAB27aKD DU145 cell lines were generated using the ribozyme silencing method, 

referred to as RAB27aKD2 and RAB27aKD3. Confirmation of the knock down of RAB27a 

was carried out using qPCR to show the relative quantitation (RQ) of the RAB27a mRNA 

(figure 5.4). In comparison to the DU145Control Vector cells, RAB27a mRNA level was 

reduced by 53% and 65% in DU145RAB27aKD2 and DU145RAB27aKD3, respectively. Therefore 

DU145RAB27aKD3 had the lowest mRNA level of RAB27a. To investigate the effects of 

RAB27a silencing upon the endocytic tract, the DU145Control Vector and DU145RAB27aKD3 cells 

were stained for the early endosome antigen-1 (EEA-1) and lysosome associated 

membrane protein-2 (LAMP-2) and evaluated using immunohistochemistry. Given the 

association of exosomes with the late endocytic tract, it was predicted that there will be 

very little impact in the distribution of EEA-1 due to the silencing of RAB27a. As expected 

the knock down of RAB27a did not affect the localisation of EEA-1, as in both the control 

vector and RAB27aKD cells, EEA-1 protein was found to be spread throughout the cell 

(figure 5.5A). Conversely, expression of LAMP-2, a marker of lysosomes and endosomes, 

became concentrated near the nuclei (principally where the late endosomes are 

located) (figure 5.5B). This cytopathic effect was also reported by Ostowski et al. (2010) 

when silencing RAB27a, and is suggestive of a failure to secrete LAMP-2 positive 

exosomes, with the cell having to concentrate this molecule into lysosomes possibly for 

degradation. 
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To observe whether knock down of RAB27a mRNA affected exosome secretion, the 

particle concentration was quantified. To do this, the conditioned media from the 

DU145 control vector and both the RAB27aKD DU145 cells were collected, spun at 400g 

and 2000g to remove cells and cellular debris, and filtered to remove large non-

exosomal particles. The media was normalised to cell count and then subjected to 

Nanoparticle Tracking Analysis, as mentioned in materials and methods. In comparison 

to the DU145Control Vector CM, the particle concentration within the DU145RAB27aKD2 CM and 

DU145RAB27aKD3 CM was reduced by 16.8% (P<0.01) and 67.3% (P<0.0001), respectively 

(figure 5.6A). This agreed well with the aforementioned decrease in cellular mRNA for 

RAB27a. Because the NTA method does not discriminate exosomes from other nano-

particles, it was important to use other approaches to confirm these data. To confirm 

the loss of exosomes from RAB27a knock down, the CM from the control and RAB27aKD 

cells were normalised to cell count and subjected to high speed ultracentrifugation 

(120,000g) to obtain a pellet, which should contain exosomes if any present. The 

resuspended pellet was stained for the exosome-associated proteins ALIX and GAPDH 

(figure 5.6B). As expected, DU145RAB27aKD2 had reduced ALIX staining in comparison to 

the control, whereas negligible amount of ALIX and GAPDH staining were seen in the 

DU145RAB27aKD3 sample. Our conclusion is that DU145RAB27aKD3 is the better knockdown 

and attenuates exosome secretion the most. From hereafter, DU145RAB27aKD2 was no 

longer used for analysis. 

 

Another way to deplete exosomes from tumour cell conditioned media is by high speed 

ultracentrifugation at 120,000g as mentioned in materials and methods and as 

described above. Nanoparticle Tracking Analysis of the conditioned media revealed 91% 

reduction in nanoparticle concentration by this method, in comparison to the control 

tumour cell CM (pre-spin CM)  (figure 5.7), indicating that the majority of the exosome 

particles can be removed by high speed ultracentrifugation. Therefore exosome 

deficient DU145 conditioned media can be produced by gene manipulation or directly 

by physical manipulation, respectively.  
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Figure 5.4: Ribozyme silencing method of Rab27aKD cells have reduced Rab27a mRNA expression. 
Relative quantitation (RQ) of Rab27a mRNA among the low passage of DU145Control Vector, DU145Rab27aKD2 
and DU145Rab27aKD3 were evaluated using qPCR with GAPDH marker as the internal control (housekeeping 
gene). 
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Location of EEA1 and LAMP-2 within the DU145 control vector and 

RAB27aKD
 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: RAB27aKD does not affect the location of EEA-1 but affects the location of LAMP-2. 
DU145control vector and DU145Rab27aKD3 cells were fixed and expression of EEA-1 (green) (A) and 
LAMP-2 (green) (B) were assessed by immunohistochemistry. DAPI (blue) was used to stain 
nuclei. The spread-out and concentrated location of LAMP-2, in the DU145Control vector and 
DU145Rab27aKD are shown, respectively in the grey box. Scale bar 100μm. 
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RAB27a knock down attenuates exosome secretion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: RAB27aKD attenuate exosome secretion.  
Conditioned media from the DU145Control Vector, DU145Rab27aKD2 and DU145Rab27aKD3 cells were 
collected, normalised to cell count and particle count was measured using Nanoparticle Tracking 
Analysis and percentage of particle concentration by the different cells plotted as a bar graph. 
6 measurements were taken per sample. One-way ANOVA with Tukey’s post-test **P≤0.01, 
***P≤0.001 and ****P≤0.0001 (A). Exosome pellet from the different cell types were stained 
for the antibodies against ALIX and GAPDH and evaluated by western blotting blot (B). 
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High speed ultracentrifugation removes exosomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5.7: Exosomes can be removed by high speed ultracentrifugation.  
Normal DU145 conditioned media pre-spin (black) and post-spinning (green) by high speed 
ultracentrifugation were subjected to Nanoparticle Tracking Analysis for quantifying exosome 
particle concentration. Six measurements were obtained from each sample. One-way ANOVA 
with Tukey’s post-test * P<0.05, **P<0.01 and ***P<0.001. 



Differentiation of BM-MSCs 

 

136 
 

5.2.2 MSC cultured in exosomes depleted DU145 culture media do not differentiate into 

myofibroblasts 

To investigate whether BM-MSC differentiation was solely dependent on prostate 

cancer exosomes, BM-MSCs were cultured in culture media (CM) from exosome-

proficient and exosome-deficient DU145 cells. DU145 cancer cells had been rendered 

exosome-deficient by Rab27a knockdown, or alternatively the exosomes were depleted 

from the CM using ultracentrifugation at 120,000 x g. In addition, the exosome 

containing pellet generated by the spin was resuspended in the original volume and 

used to culture the BM-MSCs. After 14 days, α-SMA expression was assessed by 

immunohistochemistry and the proportion of α-SMA positive cells were examined. 

 

Untreated BM-MSCs exhibited negligible levels of α-SMA positive cells, as expected and 

in the presence of non-manipulated DU145 CM, the majority of BM-MSCs differentiated 

into α-SMA positive myofibroblasts (figure 5.8 A,B). This myofibroblastic differentiation 

failed to occur when the BM-MSCs were cultured with exosome-depleted DU145 CM, in 

which the DU145Rab27aKD CM or exosome depleted DU145 CM post-spin revealed a 6-fold 

and 5-fold reduction in α-SMA positive cells, respectively (figure 5.8B), akin to the 

findings with untreated BM-MSCs in standard media. The exosome containing pellet 

however was sufficient to fully restore myofibroblastic differentiation to that of the 

DU145 control CM. Therefore our data show that cancer exosomes and not other 

soluble factors within the cancer cell secretome are chiefly responsible for controlling 

the differentiation of BM-MSCs into myofibroblasts. 
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Myofibroblastic differentiation of BM-MSCs is dependent on PCa-derived exosomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.8: Myofibroblastic differentiation of BM-MSCs is PCa exosome dependent. BM-MSCs were growth arrested overnight 
and thereafter cultured in standard media (DMEM 1% FBS) alone or with DU145 culture media (CM) at a 1:1 ratio. CM used was 
normalised for cell number and was taken from DU145Control or DU145Rab27aKD cells, or from DU145Control cells following 
ultracentrifugation to pellet exosomes (120,000g supernatant), or the exosome containing pellet from this spin (120,000g pellet) 
which was resuspended in the original volume. After 14 days, cells were assessed for the expression of α-SMA (green) and DAPI 
(blue) by immunohistochemistry. Scale bar 200µm (A). Quantification of the proportion of α-SMA positive cells from a total of 6 
microscopic fields were examined in duplicate wells per treatment, and mean (±SD) proportion of α-SMA positive cells are shown. 
Representative of two experiments (B). Students T-test ***P≤0.001. 

Untreated BM-MSCs + DU145Control  + DU145Rab27aKD  

+Exosome depleted  

DU145  
+ Resuspended exosomal 

pellet 

Untreated BM-MSCs 
+DU145Control 
+DU145Rab27aKD 
+Exosome depleted DU145 
+Resuspended exosomal pellet 

(B) 
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5.3 The role of exosomal TGF-β1 in MSC differentiation 

The mechanism by which exosomes trigger alterations in recipient cells are not well 

understood. PCa exosomes have been shown to express TGF-β1 in the previous chapter 

and is hypothesised to be chiefly responsible for BM-MSC differentiation into 

myofibroblast-like cells. 

 

5.3.1 Blocking exosomal TGF-β1 partially inhibits a-SMA expression 

To test the role of exosomal TGF-β1 on BM-MSC differentiation, TGFβ signalling was 

blocked using either an inhibitor of the ALK5 TGFβ-receptor I, SB431542 (10µM) or using 

a neutralising antibody (10µg/ml) against TGF-β that will bind to and inhibit exosomally-

delivered TGF-β1 as described by others (Webber et al. 2010; Webber et al. 2014). The 

proportion of α-SMA positive cells, arising following stimulation was assessed by 

immunohistochemistry and quantified, revealing a 6 fold increase in α-SMA positive cells 

forming stress fibres, in the presence of exosomes. However, exosomes added with 

either inhibitors, failed to trigger differentiation into α-SMA positive cells, as the 

percentage α-SMA positive cells remained low, similar to that of the untreated or sTGF-

β1 treated BM-MSCs (figure 5.9 A,B). Therefore, the mechanism by which prostate 

cancer cells modulate BM-MSC fate requires exosomes and exosomally-delivered TGF-

β1. 
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(B) 

(A) 

α-SMA expression in BM-MSCs after abrogating exosomal TGF-β 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.9: Myofibroblastic differentiation of MSC is DU145 exosome dependent.  
BM-MSCs were growth arrested for 24h and then cultured in standard media (DMEM 1% FBS) 
alone or with sTGFβ (1ng/ml), or DU145 exosome (150µg/ml) in the absence or presence of the 
Alk-5 inhibitor SB431542 (10µM) or neutralising antibody against TGFβ (10µg/ml). At day 14, the 
cells were assessed for the expression of α-SMA (green) and DAPI (blue) by 
immunohistochemistry. Filamentous stress fibres are observed with exosome treatment (grey 
box). Scale bar; 200μm (A). Quantification of the proportion of α-SMA positive cells from a total 
of 6 microscopic fields were examined in duplicate wells per treatment are shown (B). Bars, Mean 
±SD. One-Way ANOVA with Tukey’s post test ***P≤0.001 and ****P≤0.0001. 

BM-MSCs + sTGF-β1 + DU145 exosomes 

+ DU145 exosomes 

+ SB431542 

+ DU145 exosomes 

+ TGF-β neutralising Ab 
BM-MSCs 
+ sTGF-β 
+ DU145 exosomes 
+ DU145 exosomes + SB431542 
+ DU145 exosomes + TGF-β neutralising Ab 
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5.4 Discussion 

Soluble TGF-β1 is a well-known cytokine involved in the myofibroblastic differentiation of 

fibroblasts (Thannickal et al. 2003; Midgley et al. 2013).  In this chapter, the phenotype of BM-

MSCs differentiated by sTGF-β1 or TGF-β1 positive PCa exosomes was shown to differ. 

Treatment with sTGF-β1 resulted in low levels of α-SMA positive cells and VEGF-A secretion, 

similar to that of the untreated BM-MSCs and a decreased level of HGF secretion. Therefore, 

unlike with fibroblasts, sTGF-β1 fails to differentiate BM-MSCs into myofibroblast-like cells 

and the reasons for this are not well understood. However, MSCs can clearly respond to sTGF-

β1 as they have the TGF-β receptor and intracellular signalling machinery to do so (Shangguan 

et al. 2012) and sTGF-β1 is known to play an important role in directing fate decisions for 

MSCs. For example, sTGF-β1 is a key requirement for stimulating the initial stages of 

chondrogenic differentiation of MSCs (Tuli et al. 2003; Niger et al. 2013), by supporting MSC 

condensation, chondrocyte proliferation, extracellular matrix deposition of type II collagen 

and aggrecan, and finally terminal differentiation which is required for chondrogenesis. For 

example, MSC condensation is strongly stimulated by TGF-β1 induced elevation of N-cadherin 

expression, which in turn enhances cell adhesion. TGF-β1 signalling via Smad 1/5/8 is required 

for chondrocyte hypertrophy, a part of the differentiation process (Tuli et al. 2003; Song et al. 

2007). Likewise, TGF-β1 can provide support for osteoblast (Zhou, 2011) and smooth muscle 

cell differentiation (Alimperti et al. 2014), but inhibits adipogenesis (Choy et al. 2003) and 

myogenesis (Liu et al. 2001). Therefore, under the influence of sTGF-β1, MSCs maybe more 

prone to differentiate into cell types other than myofibroblasts. 

 

In contrast, PCa exosomes had the potent capacity to differentiate BM-MSCs into 

myofibroblasts, as noted by the onset of α-SMA stress-fibres. This finding agrees with recent 

observations in umbilical cord and adipose tissue derived MSCs using gastric cancer and 

breast cancer exosome, respectively (Gu et al. 2012; Cho et al. 2012). Furthermore, we have 

shown that exosome treated BM-MSCs secrete elevated levels of the pro-angiogenic factors; 

VEGF and HGF, which are consistent with features of prostate cancer-associated 

myofibroblasts, as shown by previous studies (Webber et al. 2014). Our data demonstrates 

the response to exosome treatment is dose and time-dependent, where exosomes had a 

remarkable effect on BM-MSCs with a single treatment of 150µg/ml, giving a dramatic 
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differentiation towards α-SMA stress fibres myofibroblasts-like cells at day 14. This differed 

to Gu et al. (2012) study, where umbilical cord-MSCs required 800μg/ml gastric cancer-

exosomes, with repetitive exposure every 3 days over a 14 day period. The difference may be 

because the expression of TGF-β1 from PCa exosomes may significantly differ from exosomes 

of gastric cancer cells. Also, these studies isolate exosomes using crude pelleting with no 

sucrose cushion, which results in pelleting exosomes along with a lot of contaminants as 

shown by Webber et al. (2012). These contaminants which contribute to the dose of 

exosomes used may have no effect on BM-MSCs. Unlike these studies, I have isolated 

exosomes using the sucrose cushion, which obtains exosomes with much less contaminates 

as shown by Webber (2012). Thus it is likely that the exosomes isolated from the sucrose 

cushion are more pure, and so a much more apparent effect is seen with lower dose of 

exosomes. 

 

The kinetics of α-SMA in MSCs takes longer, up to 14 days, in comparison to fibroblasts 

(Webber et al. 2010) in which α-SMA peaks at around 72h post exosome stimulation. In 

general, BM-MSCs take longer to differentiate, for example 21 days are required for 

differentiation into adipocytes and chondrocytes and osteoblasts to occur (Pittenger et al. 

1999; Solchaga et al. 2011; Birmingham et al. 2012). 

 

Next, in this chapter, we investigated whether BM-MSC differentiation was solely dependent 

on cancer exosomes and to address this, exosome-deficient cancer cells were used by knock 

down of Rab27a. This manipulation attenuated exosome secretion from the cells, significantly 

as shown by loss of exosome associated protein (ALIX) within the exosome containing pellet 

and a reduction in particle concentration, in agreement with the similar reduction of Rab27a 

mRNA. Knock down of Rab27a also accumulated LAMP-2 around the nuclei, suggesting an 

accumulation of exosomes in the cell. This observation agreed with previous studies (Webber 

et al. 2014; Ostrowski et al. 2010) and additionally Ostrowski (2010) noted Rab27aKD to result 

in an enlarged MVE, most possibly from the accumulation of exosomes. Inhibition of Rab27a, 

however, for assessing exosome function is flawed as inhibition of Rab27a also effects 

secretion of soluble factors such as placenta growth factor and platelet-derived growth 

factors in melanoma cells (Peinado et al. 2012). Similarly, in breast cancer cells, secretion of 

other non-exosome associated proteins such as MMP-9 was decreased, with Rab27a knock 
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down (Bobrie et al. 2012). This makes the Rab27aKD approach inadequate for the purpose 

intended as it is not entirely exosome-specific and evaluation must be taken with caution. We 

used high speed ultracentrifugation as another approach to remove exosomes and our data 

demonstrated BM-MSCs failed to differentiate into α-SMA positive myofibroblast-like cells, 

when cultured in exosome-deficient cancer CM, by either the genetic manipulation or the 

biophysical approach. Furthermore, the addition of the resuspended exosome rich pellet 

restored the generation of α-SMA positive-myofibroblasts. Therefore, myofibroblastic 

differentiation is predominantly an exosome-mediated effect and not governed by other 

factors derived from the cancer cells. 

 

Lastly, in this chapter, we tried to touch upon the mechanism of interaction between the BM-

MSCs and PCa exosomes, involved in the myofibroblastic differentiation. Previous studies 

have reported fibroblasts and umbilical cord derived MSCs differentiation into myofibroblasts 

to be exosomal TGF-β1 dependent (Webber et al. 2010; Gu et al. 2012). Here, we interfered 

with TGF-β1 signalling by using the ALK5 inhibitor (SB431542), revealing the myofibroblastic 

differentiation of BM-MSCs to be dependent on TGF-β receptor 1 (TGF-βRI). However, other 

factors also bind to TGF-βRI, such as activin (Goumans et al. 2003). Thus the neutralising 

antibody against TGF-β1 was used as a blocking experiment to show that the TGF-β1 and TGF-

βRI interaction is required for BM-MSC differentiation into myofibroblast-like cells. In 

addition, studies have demonstrated exosomal TGF-β1 to trigger phosphorylation of 

SMAD2/3 signalling pathway and inhibition of TGF-β1 on exosomes attenuated SMAD2/3 

phosphorylation and the subsequent differentiation of cells into α-SMA positive 

myofibroblasts (Webber et al. 2010; Gu et al. 2012). Therefore the myofibroblastic 

differentiation of BM-MSCs induced by exosomally expressed TGF-β1 may be SMAD-

dependent, but this has not been investigated here.  

 

The myofibroblastic differentiation cannot be reproduced using a matched-dose of sTGF-β1 

and the reason for this difference may be due to the differences in the interaction between 

the sTGF-β1 and exosome expressing TGF-β1. TGF-β1 is tethered to the exosome surface by 

the transmembrane proteoglycan betaglycan and inhibiting the expression of betaglycan 

using siRNA or releasing betaglycan from exosome surface using pervanadate reagent, both 

reduced exosome TGF-β1 levels. This in turn, reduced the onset of α-SMA stress fibres in 
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fibroblasts (Webber et al. 2010), indicating that betaglycan aids the delivery of exosomal TGF-

β1 to the recipient cell. Furthermore, generating myofibroblasts from fibroblasts using 

exosomes was dependent on herparan sulphate (HS) side chains. Cleavage of HS side chains 

from the exosome surface, resulted in the attenuation of SMAD-dependent signalling, 

therefore the HS side chains are important in delivering efficient SMAD 2/3 signalling to the 

fibroblasts, and the same may occur to BM-MSCs. In contrast, soluble TGF-β1 is known to 

induce SMAD 1/5/8 and the Wnt signalling pathway which drive MSC differentiation towards 

chondrogenesis (Tuli et al. 2003). Whether exosomal TGF-β1 drive SMAD-independent 

pathways such as the Wnt signalling have not been explored. Furthermore exosomes are 

complex vesicles containing various growth factors, mRNA, miRNA (Valadi et al. 2007) which 

can be taken up by recipient cells (Escrevente et al. 2011). Therefore, as well as the interaction 

with exosomal TGF-β1, the possible co-delivery of other growth factors, mRNA and miRNA 

from the cancer exosomes may influence differentiation of BM-MSCs into myofibroblasts. 

Further investigation of the phenotype of exosome-differentiated BM-MSCs may provide us 

with an insight of the potential function of these myofibroblast-like cells. 
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Phenotype of exosome-differentiated BM-MSCs 

The cellular and molecular mechanisms found active in wounds are also found in cancer 

and so these observations led Harold Dvorak in 1986, to postulate that “tumours are 

wounds that do not heal” (Dvorak 1986). These include the presence of αSMA positive 

myofibroblasts (Gabbiani 2003; Orimo et al. 2005; Ueno et al. 2004) and an increase in 

proliferation and invasion of epithelial cells (Sternlicht et al. 1999). In healing wounds, 

myofibroblasts are generated from fibroblasts, by TGF-β signalling and other factors, 

which allows efficient re-epithelialization of the injured site and the myofibroblasts are 

terminated via apoptosis when the wound is fully covered by a new epidermis (Gabbiani 

2003). In carcinoma, however, this process is not self-limiting, and is more akin to 

chronic wounds, resulting in uncontrollable tumour growth and eventually metastasis 

(Schäfer and Werner, 2008).  

 

A key step in prostate cancer (PCa) metastasis is the degradation of the extracellular 

matrix (ECM). Matrix metalloproteinases (MMPs), such as MMP-1 and MMP-13, have 

been found to be expressed by invasive PCa epithelial cells (PC3 cell line) which help 

break down collagen type I and type II within the ECM, respectively (Wu et al. 1991; Daja 

et al. 2003). MMPs and other proteolytic enzymes are also produced by stromal cells, 

such as fibroblasts within breast cancer stroma (Witty et al. 1995) which degrade the 

ECM, allowing the migration and invasion of the cells. We know α-SMA is increased in 

exosome treated BM-MSCs but a more in-depth exploration of the phenotype has not 

been done before. Since the control of the matrix is a major function of stromal cells 

and because this is perturbed in cancer, we predicted that we would discover several 

alterations in relation to this following exosome-mediated differentiation. 

 

To do this, exosome treated BM-MSCs were analysed using a human fibrosis ProliferTM 

PCR array. The array covers transcripts of key genes encoding ECM remodelling 

enzymes, TGF-β signalling molecules and inflammatory cytokines, as well as additional 

genes important for a chronic wound setting. This would give us a focused read-out and 

allow us to rapidly assess their validated factors of release. 
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6.1 Changes in mRNA profile of exosome-differentiated BM-MSCs 

The untreated BM-MSCs, sTGFβ treated and exosome treated BM-MSCs were analysed 

using the PCR fibrosis array to identify any characteristic features of the exosome-

generated myofibroblasts. 

 

6.1.1 RT-qPCR fibrosis array analysis of BM-MSCs and differentiated BM-MSCs 

From the previous chapter, we know that HGF and VEGF-A secreted by exosome treated 

BM-MSCs was elevated at a time point earlier than 14 days. Hence we predicted day 4 

to be the time point most likely to see changes in growth factors such as VEGF and HGF 

as well as other proteins involved in fibrosis. Thus BM-MSCs after 4 days of treatment 

with sTGF-β1 or DU145 exosomes were analysed using the PCR fibrosis array, which 

contained 84 transcripts of known involvement in fibrosis. The mean fold-change of the 

transcripts compared to untreated BM-MSCs are shown in table 6.1 with bold highlights 

to indicate changes considered differentially expressed based on the criteria of ± 3 fold 

change compared to the untreated BM-MSC with a p-value ≤0.05. In addition the mean 

fold change of exosome treated and TGF-β treated BM-MSCs were compared to 

highlight changes unique to the exosome-generated phenotype and the data are 

presented as volcano plots. Treatment with sTGF-β1 was not inert, as we saw elevated 

mRNA for IL-1A and INHBE, whilst there was a decrease in SMAD3, SMAD6, CCL2, IL5, 

ITGB8 and HGF compared to the untreated BM-MSC (figure 6.1, blue circles). Treatment 

with exosomes also elevated INHBE and IL-1A, whilst decreasing ITGB8, but otherwise 

the alterations were dissimilar to those mediated by sTGF-β1. Exosomes strongly 

elevated MMP-3, MMP-13 and SerpinA-1 and less strongly ITGA2, ITGB6 and MMP1 

compared to the untreated BM-MSCs. Exosome treatment also triggered a decrease in 

AGT and BCL2 (figure 6.1, red circles). Unexpectedly, in comparison to the untreated 

BM-MSCs, HGF are found to be down-regulated in exosome-differentiated BM-MSCs 

(fold change ratio of 0.43), which does not agree with our protein data (in the previous 

chapter). The mRNA for VEGF-A was up-regulated in exosome-treated BM-MSCs but was 

not greater than the 3 fold change boundary. In addition there was no change in the 

αSMA expression, but we know the αSMA protein to increase at day 9 or more. Thus the 

array data cannot always be in total agreement with our known protein data. The 

transcripts that could discriminate sTGF-β1 treated BM-MSCs from exosome-treated 
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BM-MSCs are HGF, IL5, CCL2, which were significantly declined by sTGF-β1 treatment.  

Whereas, mRNA for TGF-β3 and metalloproteinase’s such as MMP-1, -3 and -13 were 

significantly up-regulated by exosome treatment (figure 6.1, green circles). Therefore, 

both sTGF-β1 and exosome stimulation of BM-MSCs change the mRNA for various 

fibrosis-related transcripts in comparison to the BM-MSCs. However, it is the exosome-

treated BM-MSCs that have features consistent with matrix turnover and inflammation. 
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PCR-Fibrosis Profiler Array  

 

 

 

 Exosome vs 
Untreated 

TGFβ vs 
Untreated 

Exosome vs 
TGFβ 

mRNA FOLD Change p Value FOLD Change p Value FOLD Change p Value 
ACTA2 0.9834 0.9930 1.9776 0.0123 0.4973 0.0183 

AGT 0.2326 0.0318 0.4236 0.0572 0.5492 0.1434 
AKT1 0.8463 0.2831 0.7163 0.2052 1.1815 0.5812 
BCL2 0.3112 0.0042 0.3901 0.0003 0.7978 0.6274 

BMP7 1.0990 0.6299 1.4227 0.2531 0.7725 0.6699 
CAV1 0.5660 0.0144 0.8912 0.5112 0.6351 0.0334 
CCL11 0.4747 0.1508 0.3332 0.2757 1.4245 0.8367 
CCL2 1.6428 0.1743 0.2161 0.0070 7.6032 0.0185 
CCL3 1.4448 0.4934 0.6953 0.4092 2.0781 0.3863 
CCR2 0.7085 0.5419 0.8021 0.5720 0.8833 0.8901 

CEBPB 1.4727 0.0269 0.5894 0.1547 2.4988 0.0238 
COL1A2 1.4808 0.0005 1.9265 0.0023 0.7686 0.0250 
COL3A1 1.7498 0.0160 1.8150 0.0056 0.9641 0.7933 

CTGF 1.0502 0.6893 1.3088 0.0480 0.8024 0.0813 
CXCR4 2.6848 0.2667 2.5817 0.3556 1.0399 0.8841 
DCN 1.3845 0.1447 0.6306 0.0127 2.1953 0.0196 

EDN1 0.8315 0.0207 1.0616 0.3456 0.7833 0.0137 
EGF 1.6083 0.0991 2.4336 0.0250 0.6609 0.1004 
ENG 1.0461 0.7206 0.6580 0.0692 1.5899 0.1135 

FASLG 0.9232 0.8077 2.2583 0.3459 0.4088 0.3389 
GREM1 1.1101 0.1362 0.7078 0.0145 1.5684 0.0098 

HGF 0.4372 0.0009 0.1219 0.0000 3.5852 0.0125 
IFNG 0.9232 0.8077 1.4227 0.2531 0.6489 0.2473 
IL10 0.6114 0.9924 0.4446 0.1992 1.3751 0.4786 
IL13 1.6605 0.4195 1.5333 0.0908 1.0830 0.5322 

IL13RA2 0.5018 0.0323 0.6284 0.1111 0.7985 0.2892 
IL1A 9.1426 0.0250 22.2091 0.0307 0.4117 0.1334 
IL1B 0.8149 0.6342 0.9906 0.8526 0.8226 0.6590 
IL4 1.6118 0.7286 3.0142 0.3439 0.5347 0.4425 
IL5 0.7856 0.3181 0.1545 0.0124 5.0844 0.0331 
ILK 0.7063 0.0178 0.8300 0.3770 0.8510 0.4203 

INHBE 10.9874 0.0161 26.8968 0.0220 0.4085 0.0848 
ITGA1 8.7288 0.7019 0.8786 0.7089 9.9350 0.3637 
ITGA2 3.9709 0.0024 2.5603 0.0469 1.5509 0.1547 
ITGA3 0.5088 0.0172 0.7562 0.3628 0.6728 0.2717 
ITGAV 0.9610 0.7879 0.8673 0.6429 1.1080 0.7745 
ITGB1 1.4364 0.0299 1.2772 0.0998 1.1246 0.3636 
ITGB3 0.6096 0.0200 0.9124 0.4853 0.6682 0.0716 
ITGB5 1.0796 0.5151 0.9136 0.6991 1.1818 0.4560 
ITGB6 6.5460 0.0017 7.4509 0.2202 0.8786 0.5316 
ITGB8 0.1929 0.0145 0.1179 0.0102 1.6359 0.3754 
JUN 1.0620 0.6512 1.0433 0.7437 1.0179 0.9078 

Table 6.1: The Human Fibrosis RT2 ProfilerTM PCR Array profiles the expression of 84 key genes 
involved in fibrosis, depicting differentially expressed transcripts 
Untreated BM-MSCs or treatment of BM-MSCs with sTGF-β1 or DU145 exosomes (over 4 days) 
were compared using the RT2-ProfilerTM Fibrosis array. Bold text highlights mRNA considered 
differentially expressed according to the criteria of ±3 x fold change and a p-value of <0.05 (t-test 
based on biological triplicates per treatment). 
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PCR-Fibrosis Profiler Array  

 

 

 Exosome vs 
Untreated 

TGFβ vs 
Untreated 

Exosome vs 
TGFβ 

mRNA FOLD Change p Value FOLD Change p Value FOLD Change p Value 
LOX 0.9665 0.8121 1.1998 0.1474 0.8056 0.1798 

LTBP1 1.1981 0.1146 1.1053 0.4087 1.0839 0.4323 
MMP1 3.361 0.0161 0.7416 0.5907 4.5322 0.0147 

MMP13 14.3312 0.0013 1.8575 0.0864 7.7155 0.0018 
MMP14 1.3842 0.1216 0.7739 0.6900 1.7885 0.1908 
MMP2 1.6081 0.0662 1.0982 0.5897 1.4643 0.1878 
MMP3 42.4110 0.0096 0.5927 0.0992 71.5576 0.0093 
MMP8 0.7126 0.2574 1.4758 1.4758 0.4829 0.0273 
MMP9 3.2356 0.3071 0.8412 0.5845 3.8469 0.2139 
MYC 1.8240 0.0150 2.3413 0.0015 0.7791 0.0976 

NFKB1 0.9104 0.5020 0.7172 0.0188 1.2694 0.1947 
PDGFA 0.6840 0.0546 1.1063 0.5935 0.6183 0.1044 
PDGFB 0.9232 0.8077 1.4227 0.2531 0.6489 0.2473 
PLAT 0.9863 0.9482 0.7119 0.1616 1.3854 0.1979 
PLAU 1.2081 0.3322 1.2233 0.2320 0.9876 0.9912 
PLG 0.7913 0.3020 0.4363 0.0443 1.8134 0.0568 

SERPINA1 13.2713 0.0147 0.9513 0.8363 13.005 0.0155 
SERPINE1 1.0189 0.8402 1.7801 0.0849 0.5724 0.0936 
SERPINH1 1.4507 0.0088 2.6688 0.0013 0.5436 0.0039 

SMAD2 0.7627 0.0502 0.8805 0.2932 0.8662 0.3487 
SMAD3 0.3752 0.0483 0.1604 0.0098 2.3392 0.1149 
SMAD4 0.8963 0.5901 0.7615 0.0187 1.1771 0.3504 
SMAD6 0.6809 0.2149 0.3109 0.0045 2.1899 0.0892 
SMAD7 1.3734 0.1058 0.7495 0.3231 1.8326 0.0555 
SNAI1 2.1055 0.0627 0.9437 0.8715 2.2312  0.1779 

SP1 0.9925 0.8698 0.6750 0.3475 1.4703 0.2878 
STAT1 1.5344 0.0957 0.7639 0.2424 2.0086 0.0086 
STAT2 0.6487 0.0662 1.4970 0.8734 0.4334 0.5621 
TGFB1 1.5107 0.0941 1.6242 0.1965 0.9301 0.6896 
TGFB2 1.2627 0.0088 1.9774 0.0003 0.6386 0.0011 
TGFB3 1.0061 0.9888 0.3261 0.0265 3.0848 0.018 

TGFBR1 1.0905 0.6675 0.5638 0.0919 1.9341 0.0711 
TGFBR2 0.6924 0.1494 0.4326 0.0233 1.6007 0.0762 
TGIF1 1.5901 0.0037 1.4112 0.0296 1.1268 0.2588 
THBS1 0.7754 0.0959 0.8742 0.5876 0.8870 0.5287 
THBS2 0.9094 0.6834 0.8009 0.6788 1.1354 0.8971 
TIMP1 2.2392 0.0012 2.7349 0.0000 0.8188 0.0391 
TIMP2 0.5663 0.2508 0.5551 0.2430 1.0201 0.9224 
TIMP3 0.6663 0.1198 1.0161 0.9549 0.6557 0.0841 
TIMP4 0.8829 0.5808 1.2689 0.0813 0.6958 0.0986 

TNF 0.5817 0.3729 2.5033 0.3031 0.2324 0.1517 
VEGFA 1.81 0.0716 2.0893 0.0411 0.8663 0.6159 

Table 6.1 continued: The Human Fibrosis RT2 ProfilerTM PCR Array profiles the expression of 84 key 
genes involved in fibrosis, depicting differentially expressed transcripts 
Untreated BM-MSCs or treatment of BM-MSCs with sTGFβ or DU145 exosomes (over 4 days) were 
compared using the RT2-ProfilerTM Fibrosis array. Bold text highlights mRNA considered differentially 
expressed according to the criteria of ±3 x fold change and a p-value of <0.05 (t-test based on 
biological triplicates per treatment) 
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PCR fibrosis array of untreated, TGF-β1 or exosome treated BM-MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 6.1: MP-1, MMP-3, MMP-13 and serpinA-1 are highly expressed in exosome-stimulated 
BM-MSCs 
Volcano plot, depicting results from RT2-Profiler™ fibrosis array comparing day 4 untreated BM-
MSC with sTGF-β1 treated (1ng/ml) (left) or with exosome-treated (150µg/ml) BM-MSC (middle) 
or exosome-treatment vs sTGF-β1 treatment (right). Applied thresholds were a fold change of 
±3 and a p-value of <0.05 (t-test based on biological triplicates per treatment). 
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6.1.2 Verification of mRNA gene expression changes 

The PCR array revealed transcripts for MMP-1, -3, -13, SerpinA-1 and AGT to significantly 

distinguish exosome-treated BM-MSCs from the other BM-MSCs. Thus these transcripts 

were verified among the BM-MSCs using individual primers against these genes using 

TaqMan PCR array. In agreement with the array data, there was a particularly strong 

(p≤0.001) elevation in MMP-3 and also elevated MMP-13 (p≤0.001), MMP-1 (P≤0.05) 

and SerpinA-1 (p≤0.05), with decreased mRNA for AGT (P≤0.001). However sTGF-β1 was 

also shown to decrease AGT (figure 6.2), which differed from the PCR array. Together 

the data show that exosomes impart a phenotype that has some overlap with that of 

sTGF-β1 stimulus, but points some unique features, particularly, the heightened matrix 

regulating proteases such as MMP’s and SerpinA-1.  
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mRNA level of MMPs, SerpinA1 and AGT in BM-MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 6.2: MMP-1, MMP-3, MMP-13 and SerpinA-1 are highly expressed in exosome-
stimulated BM-MSCs 
TaqMan-PCR verification of selected transcripts identified by the array (MMP-1, MMP-3, MMP-
13, SerpinA-1 and AGT), revealing reproducible and significant changes in relative mRNA with 
GAPDH as an internal standard, at day 4. Columns represent Log2 (relative expression) ±SD, 
compared to untreated BM-MSC (based on biological triplicates). 



The phenotype of exosome-differentiated BM-MSCs 

 

153 
 

6.2 Changes in exosome-differentiated BM-MSCs at protein level 

Since, mRNA of MMPs and SerpinA-1 were up-regulated in exosome-treated BM-MSCs, 

the protein of these matrix remodelling enzymes was assessed. 

 

6.2.1 Protein analysis using immunohistochemistry 

For protein detection, the untreated, sTGF-β1 treated or exosome treated BM-MSCs 

after 6 days of stimulation were fixed-permeabilised and then subjected to intracellular 

staining using the antibodies against MMP-1, -3, -13, SerpinA-1 and visualised by 

immunohistochemistry (figure 6.3). MMP-1 was not stained in all three types of BM-

MSCs, whereas, MMP-3 and MMP-13 were positively stained in exosome treated BM-

MSCs, with little or no staining in untreated and sTGF-β1 treated BM-MSCs. SerpinA-1, 

however, was highly elevated in exosome treated BM-MSCs. Therefore, unlike the 

MMP-1 which was not detected under these conditions in BM-MSCs, MMP-3, -13 and 

SerpinA-1 are elevated in exosome-treated BM-MSCs, and may play an important role 

in the function of exosome-treated BM-MSCs. 
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Expression of MMPs and SerpinA-1 in BM-MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Exosome-treated BM-MSCs are highly positive for SerpinA-1 and to a lesser extent 
positive for MMP-3 and MMP-13 
BM MSCs were cultured in untreated DMEM 1% MSC-FBS or with the addition of sTGFβ (1ng/ml) 
or DU154 exosomes (150µg/ml) over 6 days. The cells were then fixed-permeabilised and 
stained with monoclonal antibodies against MMP-1, MMP-3, MMP-13 and SerpinA-1 (green) 
and DAPI (blue). Scale, 200μm.   
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6.3 Discussion 

mRNA expression in BM-MSCs 

The tumour microenvironment is known to resemble that of the chronic wound or a 

fibrotic diseased organ (Ueno et al. 2004). Thus, using a fibrosis PCR array, we explored 

the consequence of exosome stimulation on BM-MSCs arising which may resemble 

myofibroblast-like cells found within carcinoma and chronic wound healing sites. For 

analyses of phenotypic differences among the BM-MSCs, an arbitrary threshold of ± 3 

fold change was used. A lower threshold would have given us more candidates, but our 

confidence that these changes can be validated will be reduced. Here the selected 

threshold will help us to find the more extreme changes, which may be easier to validate 

and potentially have a bigger biological effect, with regard to the function of 

differentiated BM-MSCs. 

 

Exosome treated BM-MSCs had some overlapping features to that of sTGFβ-1 treated 

BM-MSCs as they both had elevated INHBE and IL1-A. INHBE is a member of the activin 

beta family, required for the production of activin which was initially described as a 

protein that stimulates the release of follicle stimulating hormone from the pituitary 

(Aroua et al. 2012). In recent years, INHBE has been identified to be overexpressed at 

wound healing sites and skin carcinomas (Antsiferova and Werner 2012). Moreover, 

clinical data showed that circulating levels of INHBE, measured by ELISA, was found to 

correlate with invasive breast cancer and prostate cancer patients with bone metastasis, 

whilst INHBE remained low among normal controls (Incorvaia et al. 2007; Leto et al. 

2006). In addition, the pro-inflammatory cytokine, IL-1A was previously found to be 

highly expressed in prostate cancer tissues, compared to normal prostate or benign 

prostate hyperplasia (BPH), as shown by immunohistochemistry and western blot 

(Ricote et al. 2004). Furthermore, IL-1A knock out mice with melanoma had a much 

lower tumour development in comparison to the wild type mice and in the absence of 

IL-1A, the carcinoma cells were shown to have a low migration rate in matrigel plugs 

(Voronov et al. 2003). Therefore INHBE and IL-1A from sTGF-β1 treated or exosome 

treated BM-MSCs may support tumour progression. Other similarities between sTGF-β1 

treated and exosome treated BM-MSCs is the decreased mRNA levels of integrin beta-8 

(ITGB8). High mRNA of ITGB8 are found in breast cancer patients with lung metastasis, 
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making ITGB8 gene a predictor for lung metastasis in breast cancer patients (Culhane 

and Quackenbush 2009; Hedenfalk et al. 2001). However, ITGB8 expression was not 

observed by sTGF-β1 or exosome treated BM-MSCs. Apart from these similarities, sTGF-

β1 treated and exosome treated BM-MSCs are dissimilar, in which the sTGF-β1 treated 

BM-MSCs have a significant decrease in CCL2, IL5, and HGF. These components are 

required for tumour progression. For example, the monocyte chemoattractant, CCL2 is 

overexpressed in prostate cancer in correlation with the advanced stages (Lu et al. 2006) 

and CCL2 is found to mediate the proliferation and invasion of PCa cells in vitro (Loberg 

et al. 2006) and tumour growth in vivo, as shown using inhibitory experiments (Loberg 

et al. 2007). IL-5 and HGF has also been found to enhance the invasion of bladder cancer 

cells and squamous cell carcinomas, respectively (Lee et al. 2012; Ren et al. 2005). In 

addition, HGF is known to promote tumour angiogenesis (Ren et al. 2005) and the 

decrease in this pro-angiogenic factor, here, by sTGF-β1 treated BM-MSCs agrees with 

the decrease in HGF secreted by the sTGF-β1 treated BM-MSCs, as shown in chapter 5. 

Therefore, unlike exosome treated BM-MSCs, the TGFβ treated BM-MSCs may be 

predicted as being less able to promote disease. 

 

Exosome-treated BM-MSCs have strongly elevated mRNA for MMP-3, MMP-13 and 

SerpinA-1 and to a lesser extent MMP-1, as revealed by the PCR fibrosis array and 

verified by TaqMan qPCR analysis. Furthermore, the protein expression level of MMPs 

and SerpinA-1 in exosome-treated BM-MSCs analysed by immunohistochemistry 

correlated with their mRNA expression. These findings agree with published literature, 

where up-regulation of MMPs such as MMP-3 mRNA expression have been found in 

breast cancer (Witty et al. 1995; Sternlicht et al. 1999; Lochter et al. 1997), and prostate 

cancer (Daja et al. 2003). Most of the MMPs are found to be secreted by the stromal 

cells, rather than the epithelial cells (Witty et al. 1995), thus stromal cells secretion of 

MMPs are of critical importance in tumours. MMPs are well known to break down the 

ECM, by cleaving collagen II, IX, X and XI (Wu et al. 1991; Knäuper et al. 1996). MMP-3, 

in particular, can also disrupt cell-cell junction by cleaving E-cadherin, as shown by a 

marked decrease in E-cadherin by immunohistochemistry (Lochter et al. 1997; Sternlicht 

et al. 1999), allowing the epithelial cells to lose anchorage dependency and invade. 

MMPs are synthesised and secreted as a pro-enzyme and are activated by removal of 
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the N-terminal pro-domain (Becker et al. 1995). Activated MMP-3 are pro-invasive, as 

they have been shown to support migration of the cells through matrigel in a Boyden 

chamber assay and this invasion capacity induced by MMP-3 was abolished when MMP 

inhibitor was added (Lochter et al. 1997). Other than the direct pro-invasive property of 

MMP-3, they can also activate other MMPs, such as pro-MMP-1, pro-MMP-9 and pro-

MMP-13 (Shapiro et al. 1995; Knäuper et al. 1996), by cleaving the N-terminal bond to 

generate fully active MMPs (Suzuki et al. 1990; Knäuper et al. 1993). Therefore MMPs, 

in particular, MMP-3 are important for the invasion of epithelial cells as they can initiate 

an MMP cascade that can further enhance tumour invasion. Additionally, exosome-

treated BM-MSCs also have up-regulated SerpinA-1, which has been found in previous 

studies to be up-regulated by tumour epithelial cells, such as squamous cell carcinoma 

(SCC) (Farshchian et al. 2011) and gastric cancer cells (Shin et al. 2012). SerpinA-1 was 

found to correlate with poor prognosis both at mRNA and protein level. Additionally, 

gastric cancer cells which had been manipulated to overexpress SerpinA-1, enhanced 

the migration and invasion of gastric cancer cells in a transwell system (Kwon et al. 

2014). Therefore SerpinA-1 may also play a role in tumour invasion in prostate cancer.  

 

Exosome treatment also decreased the mRNA of B-cell lymphoma 2 (BCL2) and 

angiotensinogen (AGT) in BM-MSCs. BCL-2 may aid tumour progression via its anti-

apoptotic function (Yip and Reed 2008). Whereas, AGT delays tumour angiogenesis by 

inhibiting the proliferation of endothelial cells. An in vivo experiment demonstrated 

mice of hepatocellular carcinoma overexpressing AGT had a longer survival in 

comparison to hepatocellular carcinoma control cells (Vincent et al. 2009). Thus, even 

though tumour-promoting BCL-2 is decreased in exosome treated BM-MSCs, a greater 

decrease in AGT may aid tumorigenesis. In summary, the fibrosis array revealed 

exosome treated BM-MSCs to impart a phenotype that has some overlap with sTGF-β1 

treated BM-MSCs, but exosome stimulation results in some unique features which 

signify a more tumour-supporting function.
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7.1 Possible influence of differentiated BM-MSCs on endothelial cell 

behaviour 

Access to a disorganised vasculature offers a means of systemic dissemination of the 

tumour cells. Thus the new growth in the vascular network, the process of which is called 

angiogenesis, is important since the proliferation as well as metastatic spread of cancer 

cells depends on adequate supply of O2
 and nutrients and the removal of waste 

products. Various studies have shown angiogenesis to directly correlate with the 

incidence of tumour metastasis (Weidner et al. 1991; Macchiarini et al. 1992; Tanigawa 

et al. 1996; Graham et al. 1994). Thus angiogenesis is of critical importance for growth 

of primary neoplasm and provides an avenue for hematogenous metastasis. 

Angiogenesis is a multi-step, multi-cellular process involving the proliferation, migration 

and organisation of endothelial cells into vessel-like structures (Hoeben et al. 2004). 

Various growth factors secreted from cancer epithelial and stroma cells have been 

identified to promote angiogenesis.  For example, the expression of vascular endothelial 

growth factor (VEGF) and its receptor, VEGFR-2 was significantly higher in metastatic 

than non-metastatic neoplasms and was found to directly correlate with vessel count in 

specimens from colon or gastric cancer patients (Takahashi et al. 1995, 1996).  In 

addition, expression of interleukin (IL-8), basic fibroblast growth factor (bFGF) and plate-

derived endothelial cell growth factor (PD-ECGF) were also observed to correlate with 

vessel count in gastric carcinomas (Kitadai et al. 1998; Tanimoto et al. 1991; Takahashi 

et al. 1998). These components may therefore be involved in supporting vessel 

formation but the source of these factors have not been thoroughly investigated. 

Immunohistochemical staining, however, showed that the growth factors are released 

from epithelial cells and stromal cells such as fibroblasts as well as infiltrating stromal 

cells such as macrophages (Kitadai et al. 1998; Tanimoto et al. 1991). 

 

Tumour-associated myofibroblasts are pro-angiogenic as demonstrated in many 

studies. For example, breast cancer cells admixed with tumour myofibroblasts revealed 

extensive vascular formation in a xenograft model (Orimo et al. 2005). In contrast 

capillaries were far less developed when cancer cells were admixed with non-cancerous 

fibroblasts. Likewise, myofibroblasts from gastric cancer enhanced endothelial cell tube 

formation in vitro (Guo et al. 2008). It should be noted, however, that not all 
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myofibroblasts are pro-angiogenic. Recent studies have shown α-SMA positive 

myofibroblasts generated from sTGF-β1 induced fibroblasts did not have elevated 

angiogenic growth factors (Webber et al. 2014). In contrast, prostate cancer (PCa) 

exosome induced fibroblasts differentiated into myofibroblasts which were pro-

angiogenic, as observed by elevated growth factors and their ability to promote 

endothelial vessel-like structure formation in vitro (Webber et al. 2014). Additionally PCa 

myofibroblasts (tumour educated in vivo) were pro-angiogenic unlike the normal non-

myofibroblastic stroma. However the normal non-myofibroblastic stroma became pro-

angiogenic myofibroblasts after PCa exosome stimulation. Therefore, only some forms 

of myofibroblasts exhibit a pro-angiogenic influence, possibly through the production of 

VEGF-A, HGF and other factors. 

 

I have shown PCa exosomes, to be a vital factor for BM-MSC differentiation into 

myofibroblast-like cells. Whether these exosome-differentiated MSCs exert tumour 

promoting functions akin to myofibroblasts at tumour sites has yet to be explored. In 

this chapter, I will explore the effects exosome-differentiated BM-MSCs have on 

endothelial cells. The hypothesis is that exosome-differentiated BM-MSC and their 

secreted factors drive the angiogenesis behaviour of endothelial cells.  
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7.1.1 The effects of exosome-differentiated BM-MSCs on endothelial cell proliferation 

and survival 

Whether or not exosome-differentiated BM-MSCs exhibit a pro-angiogenic function was 

explored in this chapter. To do this several aspects of endothelial cell behaviour, such as 

their proliferation, migration and organisation into vessel-like structures in vitro, in 

response to exosome-differentiated BM-MSCs was investigated. Angiogenesis studies 

requires an appropriate endothelial cell source, such as the human umbilical vein 

endothelial cell line (HUVECs). HUVECs are the most commonly studied endothelial cell 

type in angiogenesis as they are well characterised and conveniently accessible and so 

HUVECs were used for the experiments. 

 

The proliferation and survival properties of HUVECs were examined by equally seeding 

the cells (1x104) in vitro in the presence of BM-MSC conditioned medium (CM) which 

had been normalised for cell number. The CM was collected from BM-MSCs untreated 

or pre-treated for 4 days with sTGF-β1 (1ng/ml) or DU145 exosomes (150μg/ml) and 

added to the HUVECs in the absence of exogenous endothelial-cell growth factors. After 

6 days of culture, cell number and cell viability was determined by flow cytometry using 

the ViaCount reagent. The ViaCount assay distinguishes viable and non-viable cells 

based on differential permeabilities of two DNA-binding dyes within the ViaCount 

reagent; the nuclear dye which stains only nucleated cells and the viability dye, which 

brightly stains dying cells. The data shows the endothelial cell numbers poorly expanded 

with CM from the untreated BM-MSCs, whilst there was a higher proliferative response 

to CM from sTGF-β1 treated BM-MSC (figure 7.1A). This was significantly stronger, 

however following exosome-treated BM-MSC CM which resulted in a > 4-fold elevation 

of endothelial cell numbers at day 6. Exosome-differentiated BM-MSCs must therefore 

produce factors which support endothelial cell expansion. The viability of the 

endothelial cells grown in untreated BM-MSC CM was >75%, but there was a small 

increase using CM from either sTGF-β1 or exosome treated BM-MSCs (Figure 7.1B). 

Therefore survival of endothelial cells is supported by CM from exosome treated BM-

MSCs and to a lesser extent from sTGF-β1 treated BM-MSCs CM. 
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Figure 7.1: Exosome-treated BM-MSC CM increase HUVEC cell proliferation 
1x104 primary HUVEC were cultured with conditioned media normalised for cell number from 
BM-MSC pre-treated for 4 days by sTGFβ or DU145 exosomes. Following 6 days in culture, 
HUVECs were harvested and total viable cell number (A) and percentage viability (B) were 
measured using the ViaCount system on a GUAVA flow cytometer. (Bars, mean ± SD, of 
triplicates, One-way ANOVA with Tukey’s multiple comparison post-test, **p<0.01, 
***p<0.001. 

(A) (B) 



Influence of exosome-differentiated BM-MSCs on endothelial cells 

 

163 
 

7.1.2 The effect of conditioned medium from exosome-differentiated BM-MSCs on 

endothelial migration 

For angiogenesis to occur, endothelial migration is essential. Hence the influence of 

exosome-differentiated BM-MSCs on endothelial cell migration using an endothelial 

monolayer scratch assay was examined. One of the major advantages of this simple 

scratch assay is that it mimics to some extent the migration of the cells in vivo. For 

example, the removal of part of the endothelium in blood vessels will induce migration 

of endothelial cells into the denuded area close to the wound (Liang et al. 2007). So, by 

creating an empty space in a monolayer of endothelial cells, the cells should be able to 

migrate to cover the scratch created, in response to particular stimulus. 

 

The confluent monolayer of endothelial cells was growth arrested overnight, followed 

by removal of the media and then a scratch was created using a 200µL pipette tip as 

mentioned in materials and methods. The endothelial cells were then cultured in 1:1 

ratio of EBM-2 media to conditioned media from BM-MSCs, which had been untreated 

or pre-treated with TGF-β1 or DU145 exosomes (150μg/ml) over 4 days. Images of 

scratch closure were taken over 24h and the distance between the wound margins was 

measured. Conditioned media, from exosome-treated BM-MSCs accelerated scratch 

closure, with full closure occurring by 24h (figure 7.2A,B). In contrast the scratch 

exposed to sTGF-β1 treated BM-MSC conditioned media was only 50% closed by 24h 

(figure 7.2B). At this time point, the endothelial cells were alive but poorly adherent in 

the presence of CM from untreated BM-MSC, and as such it was not possible to 

determine the position of the scratch margins at 24h. Nevertheless, scratch closure for 

this treatment was clearly less complete at 6, 12 and 18h compared to the other 

treatments and this phenomenon of loss of plastic adherence was apparent in three 

independent experiments. Therefore, exosome-treated BM-MSCs exhibit heightened 

capacity to encourage endothelial cell motility. 
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Motility of endothelial cells in the presence of BM-MSC conditioned medium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7.2: Conditioned media from exosome-differentiated MSCs accelerate 
endothelial migration. 
Monolayer of HUVEC was scrapped using a 200l pipette tip to create a single vertical 
scratch. CM normalised for cell number from BM-MSCs pre-treated with sTGFβ (1ng/ml) 
or DU145 exosomes (150µg/ml), were added, and the distance between two sides of the 
scratch, highlighted by vertical white lines and arrows, was monitored at specified time 
points microscopically up to 24 hr. Scale bar 200µM (A). The distance of scratch closure 
was measured using Image J. The symbol † depicts a loss of HUVEC adhesion at 24h, hence 
scratch width could not be measured (B). (Graph shows Mean ± SD, of duplicate wells per 
treatment. Data are representative of three such experiments. One-Way ANOVA with 
Tukey’s multiple comparison test *p<0.05, **p<0.01, ***p<0.001). 

(A) (B) 
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7.1.3 The effect of exosome-differentiated BM-MSCs on the formation of vessel-like 

structures 

The process of angiogenesis, resulting in a highly ordered network of blood vessels, 

requires proliferation and precise control over the migration and branching of 

endothelial cells (Aase et al. 2007). To measure proliferation, migration and cell 

organisation, an in vitro tubule-formation assay was performed, through co-culture of 

pre-treated BM-MSCs monolayers with endothelial cells as described by Sheldon et al 

(2010). BM-MSCs were left untreated or treated with sTGF-β1 or DU145 exosomes with 

or without anti-TGFβ neutralising antibody (10μg/ml) for 4 days prior to the drop-wise 

and scattered addition of endothelial cells to the wells. After a further 6 days of culture, 

cells were fixed and stained for the endothelial marker CD31. In wells containing either 

the untreated or sTGF-β1 treated BM-MSCs, some clusters of CD31-positive cells formed 

on top of the BM-MSC monolayer, but these were relatively rare, forming short 

structures with no evidence of branching (figure 7.3A). In contrast, exosome-treated 

BM-MSCs allowed the support of multiple branched, long and wide structures consistent 

with supporting more elaborate vessel-like structures. Additionally, these CD31 positive 

vessel-like structures occupied a significant area of the well they were cultured in (figure 

7.3B). However, the addition of anti-TGF-β1 neutralising antibody, along with the 

exosomes, generated rare vessel-like structures which were short and thin with very 

little branching and did not occupy a large area of the culture system (figure 7.3A,B). 

Therefore, exosome-differentiated BM-MSCs support the proliferation, motility and 

organisation of endothelial cells and is consistent with a pro-angiogenic function. Even 

though sTGF-β1 had no effect on the formation of multi-branched vessel-like structures, 

blockage of exosomal TGF-β1 attenuated the ability of the BM-MSCs to support 

endothelial vessel-like structure formation.  
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Vessel like structure formation by endothelial cells co-cultured with BM-MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Exosome-differentiated MSCs support endothelial cells to form vessel-like structures. 
Monolayers of BM-MSCs were pre-treated with sTGFβ (1ng/ml) or DU145 exosomes (150µg/ml) with or without anti-TGFβ neutralising antibody (10μg/ml) for 
4 days, at which 50% of the culture medium was removed, and replaced by the same volume of EBM-2 endothelial cell culture medium lacking growth factors, 
containing 20,000 HUVEC per well. After 6 day incubation, the co-cultures were fixed and immunofluorescently stained for CD31 (green) and DAPI (blue). Scale 
400µm (A). Quantification of surface area of the CD31-positive structures was performed using Image J (B). (Bars, Mean±SD of triplicate well per condition. One-
way ANOVA with Tukey’s post-test *p≤0.05 and **p≤0.01. Representative of three such experiments). 
 

Untreated BM-MSCs + TGF-β1  

+ Exosome + Exosome 
+ anti-TGFβ 

(A) (B) 
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7.2 Discussion 

Angiogenesis is a multistep and multi-cellular process that involves proteolytic 

degradation of the extracellular matrix, followed by migration, proliferation and 

organisation of endothelial cells (Hoeben et al. 2004). In this chapter, I have shown that 

conditioned medium (CM) from exosome-differentiated BM-MSCs can strikingly elevate 

endothelial proliferation as well as survival in vitro, in comparison to the untreated BM-

MSC CM. This proliferative effect were also observed by myofibroblasts in various 

cancers (Orimo et al. 2001, 2005; Sobral et al. 2011), suggesting exosome-differentiated 

BM-MSCs have characteristics consistent with tumour-associated myofibroblasts. The 

CM from sTGF-β1 differentiated BM-MSCs, had a much weaker influence on endothelial 

proliferation and survival and so these BM-MSCs were not completely inert. Similar 

observations were reported using sTGF-β1 and exosome-treated fibroblasts, where 

exosome-treated fibroblasts had the greatest proliferative effect upon endothelial cells 

(Webber et al. 2014). Therefore myofibroblasts generated by tumour exosomes have 

characteristics that are consistent with tumour-associated myofibroblasts. 

 

A monolayer scratch assay is a commonly used method by many researchers to examine 

the motility of endothelial cells (Pin et al. 2012; Chim et al. 2011; Chrzanowska-

Wodnicka et al. 2008). The scratch assay, however, does not establish a chemical 

gradient and thus does not replace well-established methods for chemotaxis such as the 

Boyden chamber assays. Nevertheless, the monolayer scratch assay is the simplest and 

an inexpensive method to study cell motility in vitro (Reinhart-King 2008). Using this 

method, my data showed that endothelial cells cultured in CM from untreated BM-MSCs 

were very poorly motile and in fact a good proportion became non-adherent under 

these conditions at 24h, although the cells remained alive. The reason behind this has 

not been investigated thoroughly, but there are however, some studies showing BM-

MSCs to express BMP-9 (Liu et al. 2013) which can inhibit migration of breast cancer 

cells (Ren et al. 2014). Additionally, studies report BM-MSCs to secrete anti-tumorigenic 

factors such as TIMP-1 and TIMP-2, which also inhibit the migration of breast cancer 

cells, in a transwell assay (Clarke et al. 2014). Thus, similar factors may also negatively 

impact endothelial cells motility. In contrast to the untreated BM-MSC CM, my 

experiment showed that the CM from exosome treated BM-MSCs were able to complete 
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endothelial migration by 24h. Similar results was observed using fibroblasts by our 

group, where unlike the untreated or sTGF-β1 treated fibroblasts, the exosome 

differentiated fibroblasts accelerated endothelial cell motility (Webber et al. 2014). Thus 

exosome differentiated BM-MSCs exhibit a clear pro-motility function and may again 

mimic this property of tumour- associated myofibroblasts.  

 

There is currently no gold standard method to study angiogenesis in vitro. Since 

angiogenesis is the formation of blood vessel from pre-existing blood vessels, the use of 

a 3-dimentional ex-vivo mouse aortic ring assay would have been a more physiologically 

relevant assay to use, in comparison to the traditional cell-based assays (Baker et al. 

2011). However, this ex-vivo method has limitations which include the requirement for 

fresh mouse tissue, the lack of non-aortic tissues and the regression of vessels over time, 

giving a limited window for analysis (Baker et al. 2011). In addition, unlike endothelial 

cells from aortic vessels, endothelial cells from veins such as HUVECs are more 

appropriate for studying angiogenesis, as they are prone to generating capillaries, akin 

to ones found at tumour sites. Here, using the co-culturing method, my data revealed 

exosome-differentiated BM-MSCs to be pro-angiogenic as their interaction with the 

endothelial cells were essential for the formation of long and thin multi-branched 

vessels. Furthermore, matrigelTM was not used and so vessel formation was purely due 

to cell-cell interaction between the endothelial cells and the BM-MSCs and not due to 

matrix components. The pro-angiogenic function of exosome-differentiated BM-MSCs 

are similar to tumour-associated myofibroblasts. For example, gastric cancer derived 

myofibroblasts promoted angiogenesis in mice (Guo et al. 2008). Similarly, 

myofibroblasts from prostate cancer or myofibroblasts generated from cancer 

exosome-induced fibroblasts were pro-angiogenic, as observed by endothelial cells 

forming vessel-like structures in vitro. In contrast, myofibroblasts generated using sTGF-

β1- induced fibroblasts failed to support angiogenesis (Webber et al. 2014), indicating 

that not all myofibroblasts are tumour promoting. Here, my experiments demonstrated 

PCa exosomes drive BM-MSCs to differentiate into myofibroblasts which have a pro-

angiogenic phenotype consistent with tumour-associated myofibroblasts. Earlier 

chapters demonstrated the myofibroblastic differentiation of BM-MSCs were 

dependent on exosomes expressing TGF-β1. Likewise, blockage of TGF-β1 here, 
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abrogated the pro-angiogenic function of the differentiated BM-MSCs, suggesting the 

dependence of TGF-β1 bearing exosomes in driving BM-MSCs into pro-angiogenic 

myofibroblast-like cells. 

 

The pro-angiogenic feature of exosome differentiated BM-MSCs may be driven by the 

enhanced secretion of VEGF-A and HGF (shown in previous chapters). Even though the 

role of these growth factors in angiogenesis has not been explored here, various studies 

show that VEGF-A and HGF stimulate angiogenesis (Hoeben et al 2004). The HGF 

receptor, cMET is found on endothelial cells (Takahashi et al. 1995) and activation of the 

receptor induces angiogenesis through the up-regulation of VEGF-A, HGF and down 

regulation of thrombospondin-1 expression, a potent angiogenic inhibitor (Shojaei et al. 

2010; Tomita et al. 2003). Activation of cMET also phosphorylates annexin-1 (ANXA1) 

which induces endothelial cell proliferation and migration (Pin et al. 2012). The 

microRNA, miR-196, represses ANXA1 induced angiogenesis (Luthra et al. 2008), but 

VEGF-A declines the expression of miR-196 (Pin et al. 2012), suggesting that VEGF and 

HGF are both required for angiogenesis. Furthermore, binding of VEGF-A to its receptor 

on endothelial cells, results in activation of various signalling pathways such as the 

extracellular regulated kinase (Erk) pathway which  induces proliferation, migration and 

increases vascular permeability (Murphy et al. 2006). Activation of VEGF receptor also 

leads to the production of nitric oxide by the endothelial cells (Arsham et al. 2002; 

Gerber et al. 1998), resulting in endothelial migration and increased vascular 

permeability (Fulton et al. 1999). Therefore, both VEGF and HGF are pro-angiogenic and 

these factors secreted from differentiated BM-MSCs may stimulate angiogenesis. 

Matrix-metalloproteinase enzymes (MMP-1, MMP-3 and MMP13) are also up-regulated 

by exosome-differentiated BM-MSCs (previous chapter) which may be involved in the 

degradation of the ECM, thus aiding endothelial migration. Additionally, pro-angiogenic 

growth factors can be bound to the ECM matrix via ECM-binding domain (Park et al. 

1993) and studies demonstrate a subset of MMPs (including MMP-1 and MMP-3) to 

cleave the matrix-bound growth factors such as VEGF-A (Lee et al. 2005), thus amplifying 

the pro-angiogenic effect. Taken together, in this chapter, I have shown exosome-

differentiated BM-MSCs to support the proliferation, motility and organisation of 
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endothelial cells into forming vessel-like structures. The data are consistent with a pro-

angiogenic phenotype and function of tumour-associated myofibroblasts.  
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8.1 Influence of exosome-differentiated BM-MSCs on prostate cancer cell 

behaviour 

The progression of tumours requires the cancer cells to be proliferative, motile and 

invasive and myofibroblasts are believed to play an essential role in these properties of 

carcinoma cells. For example, myofibroblasts or fibroblasts isolated from invasive breast 

cancer or non-cancerous stroma from the same patients were administered with the 

breast carcinoma cells in mice. Unlike the fibroblasts, the presence of myofibroblasts 

enhanced tumour growth the most, by promoting tumour cell proliferation (Orimo et al. 

2005). Furthermore, tumour-associated myofibroblasts may direct the invasion of 

cancer cells, as myofibroblasts are found to be concentrated at the invasive front of the 

tumours (Gaggioli et al. 2007; Conti et al. 2011). Additionally, the conditioned media 

(CM) containing HGF from tumour-associated myofibroblasts or sTGF-β1 generated 

myofibroblasts, promoted the invasive capacity of carcinoma cells through a Matrigel (a 

mixture of basement membrane proteins). In contrast, the CM from carcinoma cells 

alone did not provide a pro-invasive effect to such an extent (Lewis et al. 2004; Cat el al. 

2006; Conti and Thomas 2011; Dimanche-Boitrel et al. 1994). Therefore myofibroblasts 

are an important element in tumour progression. 

 

Even though myofibroblasts derived from BM-MSCs are known to recruit to the prostate 

cancer stroma (Luo et al. 2014), the functions of myofibroblasts-derived from BM-MSCs 

has not been widely explored. In earlier chapters, my data revealed that unlike sTGF-β1, 

prostate cancer exosomes differentiate BM-MSCs into α-SMA positive myofibroblasts-

like cells with heightened production of VEGF-A, HGF, MMPs and SerpinA-1. Whether 

myofibroblastic-differentiation of BM-MSCs driven by exosomes possess pro-

tumorigenic function, similar to that of diseased prostate stroma has not been 

investigated. In this chapter, the effects of exosome-differentiated BM-MSCs upon 

prostate cancer cell lines will be investigated. The hypothesis is that exosome-

differentiated BM-MSCs alter the behaviour of tumour cells towards a more aggressive 

phenotype. 
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8.1.1 The effect of conditioned media from exosome-differentiated BM-MSCs on 

prostate cancer cell proliferation and survival 

Cancer-associated myofibroblasts promote tumour growth by up-regulating the 

proliferation of cancer epithelial cells (Orimo et al. 2005). In this chapter, I examined the 

impact of exosome-differentiated BM-MSCs on DU145 prostate cancer cell proliferation 

and survival. To do this, 1 x 104 DU145 epithelial cells were cultured in the presence of 

BM-MSC conditioned medium (CM) which were normalised for cell number. The CM was 

collected from untreated BM-MSCs or BM-MSCs pre-treated for 4 days with sTGF-β1 or 

exosomes. After 3 days of culture, cell number and viability was determined by flow 

cytometry using the ViaCount reagent. In comparison to the untreated CM, a 3.5 fold 

and 7 fold increase (P≤0.001) in the proportion of live cells was observed with sTGF-β1 

or exosome treated BM-MSC CM respectively (figure 8.1). When examining the 

percentage of viable cells, a higher percentage of viable tumour cells was observed with 

CM from sTGF-β1 treated BM-MSCs in comparison to the untreated BM-MSC CM 

(P≤0.05). However, an even greater viability was noted with the exosome BM-MSC CM 

(P≤0.01) where 90% of the cells were viable. Therefore BM-MSCs do produce factors 

which support prostate cancer cell expansion, with exosome-differentiated BM-MSCs 

having the greatest effect. 

 

Proliferation of another PCa cell line, PC3, in response to the same conditions was also 

assessed, with a similar positive effect on proliferation. Whereby, exosome treated BM-

MSC CM resulted in a 5-fold increase in the total PC3 viable cells (P≤0.0001), in 

comparison to the untreated BM-MSC CM (figure 8.2). sTGF-β1 treated BM-MSC CM 

also increased the cell number, but only double the amount to that of the untreated 

BM-MSC CM (P≤0.05). Thus exosome-differentiated BM-MSC CM again resulted in the 

greatest degree of cell expansion. There was no difference in cell survival of the tumour 

cells cultured in the presence of the untreated or sTGF-β1 treated BM-MSC CM. In 

contrast, exosome-treated BM-MSC CM gave a small but significantly increased tumour 

survival (P≤0.01), where the tumour cell viability was more than 80%. Hence, exosome-

differentiated BM-MSCs supported proliferation and survival of both the DU145 and PC3 

cells. 
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Proliferation and survival of DU145 cells when cultured in the different 

BM-MSC CM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Exosome-treated MSC CM promote the proliferation of DU145 cells. 
1x104 DU145 tumour cells were cultured in 1:1 ratio of RPMI media and CM from equally seeded 
BM-MSCs (untreated or pre-treated for 4 days with sTGFβ1 at 1ng/ml or DU145 exosomes at 
150μg/ml). Following 3 days in culture, DU145 cells were harvested and viability and cell counts 
performed using the ViaCount system on a Guava flow cytometer (Bars, mean±SD, of triplicates, 
One-way ANOVA with Tukey’s multiple comparison test *p≤0.05, **p≤0.01, ***p≤0.001). 
Representative of three such experiments with the DU145 cell line. 
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Proliferation and survival of PC3 cells when cultured in the different BM-

MSC CM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 8.2: Exosome-treated MSC CM promote the proliferation of PC3 cells. 
1x104 PC3 tumour cells were cultured in 1:1 ratio of RPMI media and CM from equally seeded 
BM-MSCs (untreated or pre-treated for 4 days with sTGFβ1 at 1ng/ml or DU145 exosomes at 
75μg/ml). Following 3 days in culture, PC3 cells were harvested and viability and cell counts 
performed using the ViaCount system on a Guava flow cytometer (Bars, mean±SD, of triplicates, 
One-way ANOVA with Tukey’s multiple comparison test *p≤0.05, **p≤0.01, ***p≤0.001, 
****p≤0.0001). Representative of three such experiments with the PC3 cell line. 
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8.1.2 The effect of conditioned media from exosome-differentiated MSC on prostate 

cancer cell motility 

To investigate if exosome-differentiated BM-MSCs possess tumour-promoting functions 

which can aid metastasis, the effects of CM from exosome-differentiated BM-MSCs on 

the motility of PCa cells were examined using a monolayer scratch assay. To do this, a 

monolayer of DU145 cells was growth arrested overnight, followed by a vertical scratch 

using a pipette tip. The media was replaced with CM normalised for cell number from 

untreated, sTGF-β1 or exosome-treated BM-MSCs and tumour cell motility in response 

to the different BM-MSC CM was then examined by imaging and measuring scratch 

closure over 24h. From an early time point of 6h, the epithelial scratch closure in 

response to the untreated or sTGF-β1 treated BM-MSC CM was less than 50% (figure 

8.3A,B). Whereas, the epithelial response to exosome-differentiated BM-MSC CM was 

much faster, as noted by the scratch closure of more than 60% (P≤0.001) and was  

almost completed after 10h (95%) (P≤0.001). In contrast, untreated or sTGF-β1 treated 

BM-MSC CM were extremely slow (<70%) at this time point. Therefore, soluble factors 

from exosome-differentiated BM-MSCs enhance the motility of tumour cells. 

 

The pro-motility effect was also examined on PC3 cells in the same way. Similar to DU145 

cells, the PC3 cancer cell scratch closure in response to exosome-differentiated BM-MSC 

CM was more than 60% at 6h and closure almost completed at 10h (figure 8.4 A,B). In 

contrast, the motility of PC3 cells was much slower in response to the untreated or sTGF-

β1 treated BM-MSC CM with complete closure observed at 24hr. Therefore, soluble 

factors from exosome-treated BM-MSCs also accelerated the motility of PC3 prostate 

cancer cells. 
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Motility of DU145 epithelial cells in the presence of differented BM-MSC CM 
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Figure 8.3: Exosome-treated MSC CM enhance motility of DU145 epithelial cells.  
Confluent monolayer of DU145 cells were subjected to a single vertical scratch and CM 
normalised for cell number from BM-MSC pre-treated for 4 days with sTGF-β1 (1ng/ml) 
or DU145 exosomes (150μg/ml) were added. Microscopic images of scratch closure were 
taken over 24h. Scale bar 100μm (A). The distance between the two sides of the scratch, 
highlighted by vertical white lines and arrows, was measured (B). Graph shows Mean±SD, 
of duplicate wells per treatment. Two-way ANOVA with Bonferroni post-test ***p≤0.001 
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Motility of PC3 epithelial cells in the presence of differented BM-MSC CM 
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Figure 8.4: Exosome-treated MSC CM enhance motility of PC3 epithelial cells.  
Confluent monolayer of PC3 cells were subjected to a single vertical scratch and CM 
normalised for cell number from BM-MSC pre-treated for 4 days with sTGFβ or 
exosomes were added. Microscopic images of scratch closure were taken over 24h. 
Scale bar 100μm (A). The distance between the two sides of the scratch, highlighted by 
vertical white lines and arrows, was measured (B). Graph shows Mean±SD, of duplicate 
wells per treatment. Two-way ANOVA with Bonferroni post-test ****p≤0.0001. 
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8.1.3 The effect of BM-MSCs on tumour growth in a 3D spheroid model 

3D-multicellular tumour spheroids mimic growth characteristics of in vivo tumour more 

closely than in vitro 2-D (monolayer) culture, as spheroids exhibit natural cell-cell 

attachments, elevated cell survival and proliferation in their outer layers, whilst the 

inner hypoxic core have reduced proliferation (due to diffusion gradient) (Pistollato et 

al. 2010). Thus, heterotypic spheroids were used to assess the effects BM-MSCs have on 

tumour growth, under the presence or absence of cancer exosomes. 

 

Exosome-deficient DU145 cells were established by shRNA lentiviral knockdown of 

Rab27a (carried out by Dr Jason Webber). The DU145 non mammalian shRNA control 

(DU145NM Control) or DU145Rab27aKD were used in this experiment as exosome-proficient 

or exosome- deficient cancer cells, respectively. The DU145NM Control or DU145Rab27aKD 

were incubated alone or together with BM-MSC at a ratio of 4 tumour cells: 1 MSC, in 

Poly-hema coated 96-well “u”- bottom plates. The spheroids were cultured in a 1:1 ratio 

of RPMI: DMEM 10% FBS and every other day, 50% of the culture media was replaced 

by fresh media, similar to other protocols used to generate spheroids (Vinci et al. 2012). 

The spheroids were fully established at day 4 (figure 8.5A) with some cellular debris 

around the spheroid. From an early time point of day 4, all the way to day 20, the centre 

of the spheroids containing BM-MSCs was darker in comparison to spheroids with no 

BM-MSCs. This may be because light has to travel through more thickness, indicating 

the presence of a greater number of cells within the inner core of the spheroids. 

 

Spheroid growth was measured over a 20 day period and the free hand tool on image J 

was used to measure the radius of the spheroid which was then used to estimate the 

spheroid volume using the formula; (4/3)r1r2r3 (Wapnir et al. 1996). At an early time 

point of day 4, the spheroid volume in the absence of BM-MSCs was smaller in 

comparison to spheroids containing BM-MSCs. By day 8, the spheroid volume of all 

spheroids declined (figure 8.5B), indicating some contraction of the spheroids, resulting 

in a more compact sphere. In the absence of BM-MSCs however, there was a significant 

decline in tumour size from day 4 to day 20, by 40% and 44% in the DU145NM and 

DU145Rab27aKD spheroids, respectively (P<0.0001). In contrast, spheroids containing BM-

MSCs remained the same size, with only a small decline in volume in spheroids 
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containing exosome-deficient tumour cells with BM-MSCs (P<0.001). Collectively, the 

data shows no spheroid growth over a 20 day period, among the different conditions, 

but the absence of BM-MSCs reduced the spheroid size immensely. However the 

presence of BM-MSCs maintained spheroid size, with the availability of PCa exosomes 

providing the greatest spheroid size stability. This suggests that BM-MSCs promote cell 

proliferation, and under the influence of PCa exosomes, the BM-MSCs have a stronger 

proliferative effect. 

 

 

 

  



Influence of exosome-differentiated BM-MSCs on tumour cells 

 

181 
 

Tumour growth in a heterotypic spheroid model over a 20 day period 
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Figure 8.5: Spheroids containing BM-MSCs maintain tumour 
growth over 20 days of culture 
Spheroids were established in poly-hema coated plates, composed 
of DU145 cells (non-mammalian control or Rab27KD) alone or with 
BM-MSC (at a ratio of 4:1 respectively), at 104 total cells/spheroid.  
After 4 days when cells had formed firm spheroid structures, 
microscopic images were taken over a period of 20 days. Scale bar 
200μm (A). Over 20 days, the spheroid volume was measured using 

the formula; (4/3)r1r2r3 (B). Graph shows Mean±SD, n=10-15, Two-
Way ANOVA with Bonferroni post-test ****p≤0.0001, ***p≤0.001 
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8.1.4 The effect of BM-MSCs on prostate cancer cell invasion 

Myofibroblasts can remodel the extracellular matrix through enzymes, rendering the 

tumour microenvironment more supportive for tumour cell invasion (Kessenbrock et al. 

2010; Levental et al. 2009). To test if BM-MSCs under the influence of PCa exosomes 

promote the invasion of prostate cancer cells, an invasion assay was carried out using 

heterotypic spheroids. Like before, DU145NM Control or DU145Rab27aKD cells were used in 

this experiment as exosome-proficient or exosome- deficient cancer cells, respectively.  

 

Once the 3D tumour spheroids with or without BM-MSCs were established at day 4, they 

were transferred to fresh wells and MatrigelTM was added burying the spheroids in a 3D 

basement membrane (figure 8.6A). On top of the MatrigelTM was the media which 

consisted of 1:1 (v/v) of RPMI and DMEM in 10% FBS. Each spheroid was microscopically 

examined for 96h, and the area of the outgrowth was measured to ascertain whether 

or not there was any effect on escape of cells out from the spheroid, into the 

surrounding matrix. Both the DU145NM Control and DU145Rab27aKD alone showed a paucity 

of cell outgrowth even at 96 hours (figure 8.6B). In marked contrast, combining BM-

MSCs with the DU145NM cells revealed outgrowth as early as 24hr, and growing beyond 

the field of view at x10 microscope objective at 48 hours. By tiling multiple images, I was 

able to continue to assess invasion for up to 96 hours demonstrating a highly significant 

increase in the matrigel area occupied by extra-spheroidal cells (p≤0.0001) (figure 8.6C). 

Spheroids comprising BM-MSCs and exosome deficient tumour cells resulted in 

outgrowths at a later time point of 48h and outgrowths were drastically less extensive 

by 96 hours, with a clear attenuation of invasion capacity in the absence of an intact 

exosome secretion pathway. In summary, BM-MSCs under the influence of PCa 

exosomes is required to trigger the matrix invasion characteristics of the 3D-spheroid 

model, and attenuating exosome secretion, strongly attenuates tumour invasion. 
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Invasion assay MSC with or without exosome deficient tumour cells 
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Figure 8.6: Spheroids comprised of BM-MSCs 
and exosome-proficient tumour cells promote 
the invasion capacity of the tumour cells 
Spheroids were established in poly-hema coated 
plates, composed of Du145 cells (non-
mammalian control or Rab27KD) alone or with 
BM-MSC (at a ratio of 4:1 respectively), at 104 
total cells/spheroid.  After 4 days when cells had 
formed firm spheroid structures, they were 
transferred to fresh wells and Matrigel™ was 
added, followed by RPMI:DMEM (1:1) media (A). 
The area occupied by extra-spheroidal cell 
outgrowths was measured daily for up to 96hr. 
For late time-points, multiple images of the 
spheroid-outgrowths were taken and these were 
tiled to form a composite representation of the 
full extent of outgrowth (B). Area of outgrowth 
from the periphery of the spheroid was measured 
using Image J (white line) (C). (Graph shows 
Mean±SD, quadruplicate spheroids per 
treatment, Two-Way ANOVA with Bonferroni 
post-test *p≤0.05, **p≤0.01, ***p≤0.001, 
****p≤0.0001). 
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8.1.5 RT-qPCR analysis MMP-3 and SerpinA-1 in the spheroids 

The RT-qPCR fibrosis array performed in chapter 6 revealed exosome-treated BM-MSCs 

express high levels of matrix-metalloproteinase (MMP-3) and serpinA-1 in comparison 

to the untreated and sTGFβ-treated BM-MSCs. MMP-3 and serpinA-1 are known to be 

involved in the degradation of the extracellular matrix and thus have the capacity to 

support cellular invasion (Sternlicht et al. 1999; Daja et al. 2003; Tahara et al. 1984). For 

this reason, the level of these transcripts were evaluated in these tumour cell and BM-

MSC heterotypic spheroids used for my experiments. The DU145NM Control and 

DU145Rab27aKD spheroids alone or with MSCs were collected and RNA was isolated using 

Tri Reagent as described in materials and methods. The relative levels of mRNA for 

MMP-3 or SerpinA-1 were compared among the different spheroids using TaqMan PCR 

assay. Relative quantification using the 2-ΔΔCt method was used to observe differences in 

the gene expression of the MMP-3 or SerpinA-1 among the different spheroids relative 

to the DU145NM Control spheroids. The mRNA for MMP-3 and SerpinA-1 was significantly 

up-regulated by 70% and 74% respectively in DU145NM Control with BM-MSCs (figure 8.7). 

In contrast, exosome deficient cells with or without BM-MSCs showed no increase in 

MMP-3 or SerpinA-1. Overall, in agreement with the PCR fibrosis array data in chapter 

6, MMP-3 and SerpinA-1 are confirmed to be highly expressed in tumour spheroids 

containing PCa exosome and BM-MSCs, and the invasive capacity of the tumour cells 

were also elevated in this group the most. Hence MMP-3 and SerpinA-1 may be involved 

in supporting the invasion of the tumour cells. 
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Figure 8.7: Tumour spheroids containing PCa exosomes and BM-MSCs have heightened 
transcripts for MMP-3 and SerpinA-1. 
RNA was isolated from the DU145NM Control and DU145Rab27aKD spheroids with or without BM-MSCs 
at day 23. Quantification of mRNA expression levels for MMP-3 and serpinA-1 in the different 
spheroids were measured relative to the DU145NM Control using qPCR.  (Bars, Mean±SD, technical 
replicates. One-way ANOVA with Tukey’s multiple comparison test, *p≤0.05, **p≤0.01, 
***p≤0.001)  
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8.1.6 The effect of BM-MSCs on tumour growth in a xenograft model 

Tumour growth in the presence of BM-MSCs with exosome proficient (DU145Control Vector) 

or exosome-deficient (DU145Rab27aKD) PCa cells was assessed in mice. Exosome-deficient 

cancer cells were generated using ribozyme targets of Rab27a. This experiment was 

carried out before we had received the more efficient and reliable lentiviral delivery of 

shRNA for Rab27a knock down in DU145 cells. Nevertheless, the ribozyme knockdown 

approach has been used by Dr Jason Webber for many years successfully in xenograft 

model systems in vivo. Our group showed that administration of exosome-proficient 

DU145 (DU145Control vector) cells with fibroblasts accelerated tumour growth in mice, 

whereas exosome-deficient DU145 (DU145Rab27aKD) cells with the fibroblasts failed to do 

this. Therefore cancer exosomes are suggested to be required to educate stromal cells 

to become tumour-promoting. 

 

Since BM-MSCs are also precursors of myofibroblasts, we chose to repeat the above 

mentioned experiment, but substituting fibroblasts for BM-MSCs. In collaboration with 

Prof Wen Jiang and his group, DU145control vector or DU145 Rab27aKD cells alone or with BM-

MSCs were injected into immune-deficient mice, at a 4 tumour: 1 MSC ratio. As a 

negative control BM-MSCs alone were also administered. Tumour growth was assessed 

over a 28 day period by the current standard technique for volume determination by 

using an external caliper to measure the height and width of the tumour. These 

measurements were then used to calculate tumour volume using the formula; 0.523 x 

width2 x length, as described previously (Escudero-Esparza et al. 2012).  

 

Throughout the 28 day period, BM-MSCs administered alone did not cause any tumours, 

as expected. At an early time point of day 8, there was no significant difference in 

tumour volume among the different conditions (figure 8.8). By day 15, however, mice 

containing BM-MSCs with PCa cells resulted in a greater tumour volume, which where 

almost double the size in comparison to the tumours in the absence of BM-MSCs. By day 

28, mice with BM-MSCs and DU145Control vector cells had significantly larger tumours 

(P≤0.001) to that of DU145Control vector cells alone. In contrast, there was no difference 

between BM-MSCs with DU145Rab27aKD cells and DU145Rab27aKD cells alone. Thus, at the 

end point of day 28, it may seem that BM-MSCs with exosome-proficient PCa cells 
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promote tumour growth. However, since there was a very heterogeneous range of 

tumour growth across the different conditions, the effect of BM-MSCs under the 

influence of exosomes on tumour growth is inconclusive. Collectively, the data shows 

that adding BM-MSCs with tumour cells enhances growth in vivo, regardless of the 

exosome-secretion status of the tumour cells. We were disappointed not to have 

revealed a clear cut role of exosomes in this experiment and wanted to explore potential 

reasons why this may have happened. 
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Tumour growth in a xenograft model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8: BM-MSCs with exosome-proficient PCa cancer cells accelerates tumour growth after 28 days post injection into mice. 
DU145Control Vector or DU145 Rab27aKD cells were administered alone or with BM-MSCs in a 4:1 ratio respectively, into the hindlimbs of immunodeficient mice. BM-MSCs 
alone were also administered into the mice. Tumour height and width was measured using an external caliper and used to calculate tumour volume over 28 days. 
(Graph shows Mean±SD, n=12, except for BM-MSC alone control which has an n=6. Two-Way ANOVA with Bonferroni post-test ***p≤0.001) 
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8.1.7 Instability of Rab27a knock down 

Since there was no significant difference between the DU145Control vector with BM-MSCs 

and DU145Rab27aKD with BM-MSCs, this raised the question if the knock down of Rab27a 

using the ribozyme silencing method was stable enough to sustain this exosome-

deficient property of the cancer cells over time. To test this, DU145Control vector and 

DU145Rab27aKD cells were cultured in T75 flasks and RNA was sequentially collected over 

8 weeks of culture. mRNA for Rab27a was assessed using qPCR. After 2 weeks of cell 

culture, there was a decrease in Rab27a gene expression in DU145Rab27aKD cells by 64% 

(P≤0.0001) in comparison to the DU145Control vector cells (figure 8.8). By 4th and the 6th 

week of culture, there was only ~30% loss of Rab27a gene expression in the 

DU145Rab27aKD cells in comparison to the DU145Control vector. The knock down of Rab27a 

was further declined to 7% at 8 weeks of cell culture. Therefore, knock down of Rab27a 

was lost with time, suggesting that exosome secretion is no longer blocked. The 

instability of Rab27a knock down could explain why there was no drastic difference 

amongst the exosome-deficient tumour cells with BM-MSCs to that of exosome-

proficient tumour cells with BM-MSCs. Furthermore, the Rab27a status of DU145 cells 

used for the in vivo work was not confirmed prior to the experiment, thus the cells 

injected into the mice may have already lost the knockdown. This may have allowed BM-

MSCs to differentiate into myofibroblasts under the influence of exosomes and thus 

promote tumour growth in mice containing DU145Rab27aKD with BM-MSCs. 
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Figure 8.9: Stability of Rab27aKD declines over time 
RNA was isolated from DU145 Control Vector and DU145Rab27aKD cells over 8 weeks of cell culture. 
Relative quantification (RQ) of mRNA for Rab27a were evaluated using qPCR, using GAPDH as 
the housekeeping gene. (Bar Mean±SD, n=3, Two-Way ANOVA with Benforri post-test, *p≤0.05, 
****p≤0.0001) 
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8.2 Discussion  

Exosome-differentiated BM-MSCs increase tumour cell proliferation and motility  

Cancer associated myofibroblasts are important determinants of tumour cell behaviour, 

as the stromal cells act to condition the tumour microenvironment, favouring tumour 

growth and metastasis (Orimo et al. 2005; Webber et al. 2014). I have shown that CM 

from exosome-differentiated BM-MSCs strikingly elevates the proliferation of prostate 

cancer cells (DU145 and PC3 cell lines). CM from sTGF-β1 treated BM-MSCs also 

increased the proliferation of PCa cells but to a much lesser extent to that of exosome-

differentiated BM-MSCs. Metastasis is a key consequence of tumour progression, which 

requires carcinoma cells to be motile and invade the ECM, in order to enter the 

circulation and reach a distant organ. In the presence of soluble factors from exosome-

differentiated BM-MSCs there was a heightened motility of PCa cells in a scratch assay, 

almost completing scratch closure by 10 hours. The mechanism behind the pro-

proliferative and pro-motility effect has not been explored here, but published literature 

reports HGF secreted from cancer stroma cells promotes the proliferation and motility 

of carcinoma cells in liver cancer and colon cancer (Jia et al. 2013; Kermorgant et al. 

2001). Moreover, VEGF has been revealed to enhance the proliferation of breast cancer 

cells by inducing the anti-apoptotic protein BCL-2 (Liang et al. 2006). Thus the enhanced 

secretion of VEGF-A and HGF from exosome-differentiated BM-MSCs may also be 

involved and by selectively blocking VEGF-A or HGF, we can determine their relative 

importance in tumour proliferation and motility. 

 

BM-MSCs and tumour growth in vitro 

Spheroids generated with DU145NM Control, DU145Rab27aKD cells alone or with BM-MSCs 

were cultured over 20 days. During growth of the spheroids, a dense core was observed, 

suggestive of a necrotic core from other studies. Such studies have reported cells in the 

inner core to be deprived of oxygen, glucose, ATP and other nutrients, whereas 

metabolic waste accumulates, resulting in a necrotic core (Bertuzzi et al. 2010). Analysis 

of tumour spheroid growth revealed a rapid decline of tumour only spheroids, similar to 

other reports, attaining a limiting size, regardless of how often new media was provided 

or how much open space was made available for growth (Folkman and Holchberg 1973). 

In contrast, the presence of PCa exosomes and BM-MSCs, maintained a consistent 
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tumour size over 20 days. Similar was observed with BM-MSCs with exosome-deficient 

tumour cells but to a lesser extent. The overall shrinkage of the spheroids may have 

been due to the organisation of the cells and cellular contraction (Nyga et al. 2013; 

Sodek et al. 2009), but the presence of BM-MSCs possibly promoted tumour cell 

proliferation and hence the maintenance of tumour cell size. 

 

The presence BM-MSCs with prostate cancer exosomes did not seem to cause an 

immense spheroid growth in comparison to BM-MSCs with exosome-deficient cancer 

cells. However, the measurement of tumour volume may have been a hindrance of 

observing any differences which may have existed. The estimation of tumour volume 

was based on spheroid surface measurement in 2D, which is not a good representative 

of tumour growth, as we are assuming that the spheroids are all perfect spheres but the 

depth of the spheroids may actually be different. Thus, spheroids which look small on 

the surface, may have been greater in depth, but would not be noted based on this 

measurement. 

 

BM-MSCs and tumour invasion in vitro 

Using 3D spheroids in a matrigel invasion assay, the control DU145 cells along with BM-

MSCs drastically supported the invasion of tumour cells through the MatrigelTM. 

Whereas Rab27aKD DU145 cells along with BM-MSCs, did not support tumour invasion 

as well. This suggests that the presence of PCa exosomes, may have generated 

myofibroblasts using the BM-MSCs which are an important element in controlling the 

invasion of cancer cells.  

 

The mechanism behind the pro-invasive property of exosome-differentiated BM-MSCs 

has not been investigated before. Like with proliferation and motility, elevated factors 

from exosome-treated BM-MSCs, such as VEGF-A and HGF (shown in chapter 5) may be 

involved in the invasion of PCa cells. Studies have reported the requirement of VEGF-A 

and HGF secreted by myofibroblasts for supporting the invasion of squamous cell 

carcinoma cells in a transwell matrigel assay (Cat et al. 2006). HGF stimulated 

invasiveness of cancer cells has been associated with the increased secretion of the 

protease, urokinase-plasminogen activator (uPA) and its receptor, uPAR by the cancer 
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cells (Jedeszko et al. 2009). The receptor bound uPA generates a proteolytic cascade 

that contributes to the degradation of the basement membrane and ECM (Kobayashi, 

1996). Similarly, an up-regulation of uPA are also observed by prostate cancer stromal 

cells and exosome-differentiated fibroblasts (Webber et al. 2014), and so high uPA is 

secreted by both cancer epithelial and stromal cells. Therefore HGF secreted from 

exosome-differentiated BM-MSCs may also trigger a proteolytic cascade for ECM 

breakdown. 

 

RT-qPCR analysis revealed mRNA for MMP-3 and SerpinA-1 was highly expressed in 

tumour spheroids containing BM-MSCs with PCa exosome proficient cell. This agreed 

with the high mRNA levels of MMP-3 and SerpinA-1 found in exosome-treated BM-MSCs 

(shown in chapter 6). Therefore, MMP-3 and SerpinA-1 may be involved in promoting 

invasion of tumour cells. By blocking the MMPs and SerpinA-1 selectively, the relative 

importance they have in the spheroid culture for invasion can be determined. MMP-3 

has been shown to promote breast cancer cell invasion in vitro, in a dose-dependent 

manner (Phromnoi et al. 2009), by degrading numerous ECM substrates such as 

collagens, laminins, fibronectin and ECM proteoglycans (Lu et al. 2011; Sternlicht et al. 

1999). Thus inhibiting MMP-3 attenuated the invasion capacity of the tumour cells 

(Phromnoi et al. 2009). Furthermore, SerpinA-1 is up-regulated and correlated with poor 

prognosis in adenocarcinoma (Tahara et al. 1984) and gastric cancer (Shin et al. 2012). 

Immunohistochemical staining of serpinA-1 was shown to increase with increasing 

gastric tumour size and knock down of serpinA-1 decreased invasion and migration of 

the cancer cells (Shin et al. 2012). SerpinA-1 was found to up-regulate mRNA level and 

release of MMP-8 by gastric cancer cells (Kwon et al. 2014).  In addition MMP-3 can 

cleave the precursors of MMP-8 to activate them (Page- McCaw et al. 2007), which can 

further break down the ECM. Therefore spheroids comprising of BM-MSCs with 

exosome-proficient PCa cells can up-regulate matrix remodelling proteins which can 

degrade the ECM and support the invasive nature of the tumour.  

 

The data in this chapter revealed exosome-differentiated BM-MSCs to have a pro-

proliferative and pro-motility effect on prostate cancer cell lines. Furthermore, co-

culture of BM-MSCs and exosome proficient PCa cells, maintain growth and promote 
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the tumour cell invasion in vitro. Therefore BM-MSCs under the influence of PCa 

exosomes are tumour promoting. 

 

BM-MSCs and tumour growth in vivo 

An attempt to examine the dependency of cancer exosomes and BM-MSCs on tumour 

growth in a xenograft model was carried out. DU145 cells, whether exosome-proficient 

(DU145Control Vector) or exosome-deficient (DU145Rab27aKD), had accelerated tumour 

growth over 28 days in the presence of BM-MSCs, but there was no difference in growth 

between the DU145Control Vector cells with BM-MSCs vs the DU145Rab27aKD cells with BM-

MSCs. From the in vitro experiments, we know that exosome-differentiated BM-MSCs 

support tumour progression by substantially increasing tumour cell proliferation. But 

here, it is only at a later stage, of day 28 that tumour volume was the largest in the 

presence of DU145Control Vector with BM-MSCs. After seeing no difference between the 

DU145Control Vector cells with BM-MSCs vs the DU145Rab27aKD cells with BM-MSCs at earlier 

time point, the in vivo experiment was ended at day 28, but that was when the tumour 

promoting effects of exosome-differentiated BM-MSCs started to become noticeable. 

Therefore tumour growth may be dependent on both the cancer exosomes and BM-

MSCs and hence the exosome-generated myofibroblasts from BM-MSCs.  

 

In comparison to previous studies by our group, the DU145Control Vector cells showed 

accelerated growth in the presence of normal fibroblasts over 32 days, whereas 

DU145Rab27aKD cells with fibroblasts showed no growth enhancement and these 

differences were seen from an earlier time point of day 20 (Webber et al. 2014). But it 

is known that myofibroblastic differentiation of fibroblasts only takes 72hr (Webber et 

al. 2010), whereas I have shown α-SMA myofibroblastic differentiation of BM-MSCs to 

take up to 14 days. Therefore a bigger difference in tumour growth between the 

DU145Control Vector with BM-MSCs and DU145RAB27aKD with BM-MSCs may have been 

appeared at a later date. 

 

Furthermore, tumour volume was measured using an external caliper which is the 

current gold standard for volumetric measurements of xenograft tumours, but this 

method is often affected by errors such as variability of tumour shape and subcutaneous 
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fat layer thickness. Other techniques such as the microCT has been found to be more 

accurate (Jensen et al. 2008), as it measures the depth of the tumour more accurately 

than the external caliper which assumes the depth of the tumour is same as the 

outgrowth of tumour measured. This means, that the tumour-promoting effect of 

exosome-differentiated BM-MSCs may be underestimated if the tumour grew inwardly. 

However the most likely reason as to why there was no big difference between the 

DU145Control Vector with BM-MSCs and Du145Rab27aKD with BM-MSCs is due to the instability 

of the Rab27aKD using the ribozyme silencing method, as the mRNA level for Rab27a 

was seen to increase with time of cell culture. Thus, there may have been enough 

exosomes secreted by the cancer cell to generate myofibroblast-like cells from BM-

MSCs which may in turn accelerate tumour growth. A better approach would have been 

to use lentiviral shRNA knock down of Rab27a, which has been used in my spheroid 

model.  However, exosome-deficient DU145 cells using such method was not available 

during the mice studies. 

 

Alternatively, the administration of BM-MSCs that had already been differentiated by 

PCa exosomes in vitro, may have been a better approach to observe a bigger response 

of accelerated tumour growth by the exosome-differentiated BM-MSCs, in comparison 

to the untreated or sTGF-β1 treated BM-MSCs. This would have allowed BM-MSCs to 

have had a head-start on differentiating into myofibroblast-like cells. Nevertheless, the 

in vitro experiments in this thesis revealed exosome-differentiated BM-MSCs to be 

essential for the increase in PCa cell proliferation, motility, invasion and maintenance of 

tumour growth all of which are required for the tumour to progress. 
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9.1 General Discussion  

9.1.1 Summarising Discussion 

Prostate Cancer (PCa) is the most common cancer in men in the UK (NICE 2009) and a 

lot of therapies for PCa are targeted towards the prostatic cancer cells. However, it 

should not be forgotten that the cancer cells exist in close and symbiotic relationship 

with the reactive stromal compartment. Recently there has been a renewed interest in 

the cross-talk between the cancer cells and the stromal cells, with increasing evidence 

for a profound influence of fibroblastic stromal cells in driving disease progression, 

dictating treatment response and ultimately relating to poor clinical outcome 

(Yamashita et al. 2012; Tomas et al. 2010). Several studies have identified common 

characteristics of cancer associated stromal cells across diverse solid cancer types. These 

include the molecular traits of myofibroblasts, which promote tumour cell growth 

directly and stimulate angiogenesis, by providing various growth factors such as PDGF, 

VEGF, FGF and uPA (Webber et al. 2014; Tuxhorn et al. 2002; Orimo et al. 2005; Galie et 

al. 2005; Liang et al. 2005). However, there are some recent reports in pancreatic 

carcinoma where myofibroblasts play a protective role and limits the tumour growth 

(Rhim et al. 2014; Gore et al. 2014). Whilst, such data has not been shown for other 

cancer types, the main paradigm is that cancer associated myofibroblasts promotes 

tumour growth and can be used as an indicator of a poor prognosis. Therefore the 

cancer associated myofibroblasts may represent new potential therapeutic targets. 

However, there remains an incomplete understanding about the stroma, the generation 

of cancer associated myofibroblasts, their cellular and molecular nature and their 

consequence in terms of disease outcome.  

 

There are multiple origins of myofibroblasts and although soluble TGF-β1 secreted by 

cancer cells has remained the principle culprit driving myofibroblastic differentiation, 

studies have shown TGF-β1 expressed on the surface of cancer exosomes to also drive 

this differentiation pathway (Clayton et al. 2007; Webber et al. 2010). Studies by our 

group (Webber et al. 2010) have recently highlighted a role of exosome vesicles in 

delivering TGF-β1 to differentiate fibroblasts into α-SMA positive myofibroblasts, which 

in turn promote cancer growth in vivo (Webber et al. 2014). Additionally, others have 

shown cancer derived exosomes to differentiate MSCs from umbilical cord or adipose 
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tissue into myofibroblasts (Gu et al. 2012; Cho et al. 2011; Cho et al. 2012). However, 

most studies have shown bone marrow-derived MSCs (BM-MSCs) to migrate to the 

tumour sites (Shinagawa et al. 2010; Teo et al. 2012), but the effect that the BM-MSCs 

have in cancer, under the influence of cancer exosomes has not been explored before 

and is the main focus in this thesis. 

 

MSCs exhibit cellular plasticity, capable of differentiating into multi-lineage cell types, 

under appropriate hormonal or growth factor stimulants applied sequentially, often 

over long time periods such as a month. MSCs can differentiate into adipocytes when 

cultured under appropriate adipogenic stimulants (Pittenger et al. 1999). However, the 

addition of sTGF-β1 or the equivalent dose of exosomal TGF-β1 inhibited the adipogenic 

differentiation of BM-MSCs. sTGF-β1 in the presence of adipogenic stimulants, including 

dexamethasone and insulin along with other growth factors may halt MSC 

differentiation towards adipocytes and drive them to differentiate into other cell types. 

For example, sTGF-β1 along with dexamethasone is known to differentiate MSCs into 

osteoblasts (Bruder et al. 1997; Jaiswal et al. 1997). Similarly, MSCs placed in aggregate 

cultured with sTGF-β1, along with dexamethasone, insulin and other factors will 

undergo chondrogenic differentiation (Johnstone et al. 1998; Mackay et al. 1998; Lee et 

al. 2004b). Therefore sTGF-β1 has the capacity to differentiate MSCs into various cell 

types. Interestingly however, exosome associated TGF-β1 and not sTGF-β1 was able to 

skew MSC differentiation away from adipocytes and instead towards α-SMA positive 

myofibroblasts. What is equally remarkable is that a single stimulation with exosomes 

(at 150μg/ml) over 14 days was sufficient to trigger the onset of α-SMA stress fibres, 

suggesting a myofibroblast-like differentiation. My data suggests, cancer exosomes may 

be capable of overriding the natural control of MSC differentiation in vitro, away from 

self-renewal or reparative phenotypes, towards undesirable disease promoting 

myofibroblasts.  

 

Previous studies have shown fibroblasts to exhibit the capacity to differentiate into 

myofibroblasts under the influence of sTGF-β1, and this requires additional factors such 

as endogenous hyaluronic acid production and the interaction between CD44 and the 

EGF receptor (Midgley et al. 2013). However, the detailed myofibroblastic phenotype 
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arising from sTGF-β1 treatement appears to differ from cancer associated stromal cells, 

as it is not pro-angiogenic and fails to enhance PCa growth in xenograft models (Webber 

et al. 2014). In contrast, stimulating the fibroblasts (same stromal cell source) with TGF-

β1 bearing PCa exosomes generated myofibroblasts that mimic those extracted from 

cancerous tissues, such as driving angiogenesis and promoting tumour growth in vivo 

(Webber et al. 2014). In this thesis, the phenotypic differences between sTGF-β1 treated 

and exosomal TGF-β1 treated MSCs have been explored. PCa exosomes differentiated 

BM-MSCs towards a myofibroblastic phenotype exhibiting heightened VEGF and HGF 

secretion. The cell arising, therefore represent those above-mentioned traits of cancer 

associated stroma even though the originating cell source is different. This suggests that 

it is the nature of the trigger (i.e. exosomes), rather than the originating cell type, that 

is the most important for the phenotype and function of the myofibroblast arising. In 

contrast, sTGF-β1 stimulation of BM-MSCs gave a drastically different response that 

lacked the onset of αSMA-stress fibres or elevated VEGF and reduced constitutive HGF 

secretion. Comparing the direct effect of exosomal TGF-β1 and sTGF-β1 highlighted the 

profound difference in the cell response arising, with the exosomal TGF-β1 treated BM-

MSCs being more akin to the stromal cells naturally arising at the site of prostate cancer 

(Webber et al. 2014). A detailed mechanistic explanation for this difference is lacking 

and given the molecular complexity of exosomes secreted by the cancer cell, makes it 

significantly challenging. 

 

It is clear that unlike sTGF-β1, exosome-mediated generation of myofibroblasts from 

BM-MSCs exhibit the characteristic traits of cancer associated stromal cells and these 

myofibroblastic features are dependent on TGF-β1 as shown by blocking TGF-β1 

signalling. This agrees with previous findings using fibroblasts and DU145 exosomes, 

where blocking TGF-β signalling attenuated the differentiation of fibroblasts into α-SMA 

expressing myofibroblasts and the pro-angiogenic function of these differentiated 

stromal cells (Webber et al. 2014). A key difference between sTGF-β and exosomal TGF-

β1 delivery is that exosomes have TGF-β receptor III (a heparan sulphate proteoglycan 

called betaglycan) on their surface which aids the delivery of TGFβ1 to the stromal cells 

for their differentiation into myofibroblasts (Webber et al. 2014). The presence of 

heparan sulphate proteoglycan (HSPG) on exosomes, however only shows the 
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differences between the sTGF-β1 and the exosomal TGF-β1 and not necessarily their 

behavioural differences. Nevertheless, it has been revealed that intact HSPG is required 

for functional delivery of vesicular TGF-β1 (Webber et al. 2014). In the case of 

fibroblasts, cleavage of the heparan sulphate side chains by heparinase III, still 

maintained the tethering of TGF-β1 to the exosome surface (no impact on TGFβ levels), 

however exosome-induced SMAD-3 dependent TGF-β1 signalling was attenuated, 

resulting in the loss of α-SMA expression and the pro-angiogenic function of the 

differentiated fibroblasts. Thus the heparan sulphate side chains appear to have 

functions that control the behaviour of exosomal TGF-β1 and similar interactions may 

apply with BM-MSCs, as precursor cells of myofibroblasts. It should be noted, however 

that cells also express HSPG which can aid the delivery of the TGF-β1 ligand to the TGF-

βR I and TGF-βR II (Lopez-Casillas et al. 1993). Thus this feature alone cannot explain the 

differences in phenotype and function observed between sTGFβ treated and the 

exosomal TGF-β1 treated BM-MSCs. Some studies have shown active sTGF-β1 in culture 

to have a short half-life (Rollins et al. 1989; Coffey et al. 1987) in comparison to the 

latent form of TGF- β1 (Wakefield et al. 1990). The reason behind this is unknown, but 

TGF-β1 expressed on the exosome surface is predominantly in the latent form (Webber 

et al. 2010) therefore exosomal TGF-β1 may exhibit a longer time of bioavailability, a 

facet likely to be very relevant for the slow-differentiation process of MSCs. Still, this 

does not explain the phenotypic and functional differences between the sTGFβ-induced 

and exosome-induced myofibroblasts generated. Exosomes are complex vesicles, 

consisting of various mRNA and miRNA, growth factors, enzymes and molecules 

associated with the biogenesis and secretion of exosomes. The possible co-delivery of 

these contents from exosomes along with TGFβ delivery may influence BM-MSC 

differentiation and is an area of interest for future investigation.  

 

By interfering with the exosome secretion pathway via Rab27a silencing, my data 

clarifies that cancer exosomes are the dominant factor in mediating myofibroblastic 

differentiation. It is acknowledged that the specificity of the Rab27a silencing approach 

for selective inhibition of exosome secretion and not other factors by the cells is 

somewhat controversial (Bobrie et al. 2012) and so reliance on Rab27a knockdown as 

the exclusive approach for evaluating the role of exosomes must be taken with caution. 
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Another approach of reducing the level of exosomes in cancer cell conditioned media, 

is by high speed centrifugation, which generates cell conditioned media that is poor in 

driving myofibroblast differentiation. From this, the differentiation was observed to 

reside in the 120,000 g pelletable fraction, strongly implicating exosomes as 

mechanistically central to cancer mediated control of MSC. It should be noted, however, 

the pellets containing exosomes may also contain other factors. Thus, treating MSCs 

with different density fractions from a continuous sucrose gradient containing 

exosomes, may definitively show that myofibroblastic differentiation of MSCs is 

exclusively focused on exosomal vesicles and not co-pelleted material. But this has yet 

to be tested. Nevertheless, the use of pellets containing exosomes and the Rab27a 

silencing approach collectively provide data supporting these conclusions. 

 

The functional properties of exosome-generated myofibroblasts support the premise 

that cancer exosomes have a disease-promoting influence. Although the direct effect of 

cancer exosomes on angiogenesis has been well documented (Sheldon et al. 2010; Al-

Nedawi et al. 2009), the impact of exosome-differentiated BM-MSCs on this process has 

not to our knowledge been studied. Endothelial cells exhibited enhanced proliferation 

and migration in the presence of soluble factors produced by the exosome-

differentiated BM-MSCs. The endothelial cells have also been documented to form 

complex vessel-like structures in the presence of exosome-differentiated BM-MSCs. 

These structure were akin to those produced using PCa derived stroma cells (Webber et 

al. 2014). Growth factors such as VEGF-A and HGF which are found to be highly secreted 

by exosome differentiation MSCs may be involved in this pro-angiogenic function. To 

investigate this, blocking antibodies against HGF and VEGF can be used to examine if the 

angiogenic influence is abolished. 

 

In a similar fashion, exosome-differentiated MSCs have a direct positive effect on 

tumour cell proliferation and migration, and provide an enhanced tendency for cells to 

invade into the extracellular matrix using a 3D spheroid model. Whether the invading 

cells are principally epithelial or mesenchymal in nature are unknown, but given the 

predominance of tumour cells (4:1) in the spheroids, and the pro-proliferative influence 

of BM-MSC on tumour cells, the invading cells are most likely to be epithelial cells as 
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suggested by their cobblestone appearance. The extensive invasion property was 

abrogated when targeting exosome secretion by Rab27a silencing. Additionally, the 

invasion of the cancer cells were absent when BM-MSCs were left out of the spheroids 

highlighting the role of this stromal cells and exosomes in directing the invasion 

behaviour. This high invasive capacity of the system agrees with additional evidence 

showing exosome-driven elevation of metalloproteinases in BM-MSCs, a feature found 

specifically from exosome treatment and not observed when using sTGF-β1. Such 

factors, which include the collagenases MMP-1 and MMP-13 and the stromelysin MMP-

3, have well documented roles in disease progression and can in particular aid cell 

penetration through the extracellular matrices, supporting invasion and metastasis in 

several types of cancer (Ala-aho et al. 2005). Notably a recent study highlighted BM-

derived myofibroblasts found at the primary tumour site in a skin cancer model as the 

principal source of MMP-13 in situ (Lecomte et al. 2012) and that this MMP was required 

for subsequent invasive behaviour (Lecomte et al. 2012; Zigrino et al. 2009). 

Furthermore, a recent study has demonstrated that down-regulation of MMP-3 in 

cancer associated fibroblasts subsequently attenuated PCa cell invasion (Slavin et al. 

2014). Other transcripts modulated by exosomes were ITGB6 and ITGB8 encoding for 

components of the integrin αvβ6 and αvβ8, respectively, which are implicated in the 

conversion of latent-TGFβ to bioactive TGF-β in several systems (Minagawa et al. 2014; 

Aluwihare et al. 2009). The importance of these exosome mediated changes in BM-MSCs 

for TFG-β1 activation and adhesive functions has not yet been investigated but is an area 

of interest for future investigation. The outcome of my experiments indicates that the 

onset of αSMA stress fibres in stromal cells are not directly coupled to their tumour 

modulating function and therefore a better alternative indicator of stromal functionality 

may be the secretion of certain factors including MMPs, VEGF and HGF. However, we 

don’t know yet if the exosome differentiated BM-MSCs enhanced secretion of MMPs is 

relevant to the heightened invasion that is observed. One way to investigate this would 

be to inhibit specific MMPs such as MMP-1, MMP-3 and MMP-13 using blocking 

antibodies or generating specific MMP deficient cell model using siRNA targets of MMPs 

(Jiang et al. 2005; Gencer et al. 2011; Hayami et al. 2008). This will allow us to examine 

the function of the secreted factors from the stromal cell. One should be aware that 

exosomes themselves may also contain matrix remodelling molecules which may also 
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be responsible for the invasion property of the cancer cells. Exosomes from melanoma 

cells carry the active form of MMP-14 which was able to activate latent MMP-2 and 

degrade collagen type I and gelatin, suggesting exosomal MMP-14 was functionally 

active (Hakulinen et al. 2008). Lastly, exosomes from the differentiated BM-MSCs may 

also contribute the breakdown of the matrix and so the role exosomes play in the 

invasive property of PC is worth investigating in the future. 

 

The spheroid models revealed the tumour size to decline gradually as the inner core 

became necrotic. Other studies have also reported a reduction in tumour growth in 

spheroid models (Folkman et al. 1973) and this was due to the degradation of cells 

within the inner core. However, it was noted that the presence of exosomes and BM-

MSCs maintains the spheroid growth over time, perhaps by enhancing tumour cell 

proliferation. Additionally, exosome-deficient tumours with BM-MSCs also maintains 

tumour growth, but to a much lesser extent. Since the knock down of Rab27a reduces 

exosome secretion and hence an attenuation of exosome generated myofibroblasts 

from BM-MSCs, tumour growth was expected to be attenuated in vivo, similar to 

previous observations using fibroblasts (Webber et al. 2014). However, there was no 

significant difference in tumour size in the presence of BM-MSCs along with exosome 

proficient or exosome-deficient tumour cells after 28 day period. This may have been 

due to the poor stability of the ribozyme method used for silencing Rab27a in DU145 

cells for the in vivo assessment of tumour growth and hence the tumour cells were not 

truly exosome-deficient. Knock down of Rab27a using lentiviral would have been a more 

stable method and thus a better model for evaluation of exosome-dependence on 

tumour growth in vivo. Since BM-MSCs take longer to differentiate into tumour 

promoting myofibroblasts in comparison to fibroblasts, which take only 3 days (Webber 

et al. 2014), the use of pre-differentiated BM-MSCs injected along with tumour cells may 

be a better approach to observe an earlier response and to ensure BM-MSCs had time 

to differentiate. Nevertheless, the collective functional data, such as the pro-invasive 

and pro-angiogenic properties of the differentiated BM-MSCs correlate well with the 

phenotypic alterations induced by exosome stimulation. These changes emphasise the 

profound role of MSCs with tumour cells in driving distinct aspects of disease 
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progression, and that a functional cancer exosome secretion pathway is essential for 

this influence. 

 

In conclusion my study identifies PCa exosomes as potent factors for controlling the 

phenotypic and functional differentiation of BM-MSCs towards pro-angiogenic and pro-

invasive myofibroblasts. The phenotype is similar to that reported for cancer associated 

stromal cells, with exosomes and not other soluble factors required to generate this 

dominant form of differentiation. Therefore molecular targeting of this cancer exosome 

driven process in a clinical setting is likely to attenuate tumour-manipulation of the local 

microenvironment, and slow disease progression. 

 

9.1.2 Future Directions 

Cancer exosomes have been demonstrated to be strong drivers of myofibroblastic 

differentiation and hence aid tumour to progress. Further understanding of the role of 

exosomes may provide avenues for inhibiting exosome secretion by the cell or lowering 

their effect, and thus slowing tumour progression.  

 

Are the responses to cancer exosomes specific to a sub-population of BM-MSCs? 

The nature of the BM-MSCs response to exosome stimulation in terms of the cell 

population has not been addressed, and it is currently unclear as to whether the 

response is homogenous or whether it is a sub-population of MSCs which differentiate 

into myofibroblasts that subsequently proliferate to take over the population. My 

studies have shown around 60-70% of MSCs exhibit αSMA positivity after around 2 

weeks which is quite different from stimulating fibroblasts where almost ~100% of the 

cell population differentiate into αSMA positive myofibroblasts by 3 days (Webber et al. 

2010). Such observations suggest a more heterogeneous response with BM-MSCs as a 

stromal cell source. The question may have in vivo relevance, as the infiltration of the 

cancer microenvironment by a few BM-MSCs may be sufficient to generate a growing 

population of myofibroblastic cells in situ. Addressing such questions will enable us to 

gain a greater insight into such exosome mediated changes in subpopulations of stem 

cells. 
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The in-depth mechanism of exosome induced myofibroblast differentiation  

The full mechanism involved in the generation of myofibroblasts by cancer exosomes is 

still incomplete. Recent studies have demonstrated internalisation of exosomes by 

recipient cells in which the exosomes can incorporate components such as miRNA and 

mRNA into the recipient cells (Valadi et al. 2007; Batagov and Kurochkin 2013). Among 

these molecules found in exosomes, miRNAs have attracted most attention, due to their 

regulatory roles in gene expression. However, there are limitations to the current 

functional studies with exosome associated miRNAs. Firstly, there are numerous 

methods for isolating exosomes, which can result in slight variation in exosomal content, 

including proteins and miRNAs (Rekker et al. 2014; Tauro et al. 2012; Taylor et al. 2011). 

The variability of miRNAs may regulate different signalling pathways, resulting in 

different result outcomes on recipient cells. This makes it challenging to fully understand 

the functions of exosomal miRNAs. Secondly, some studies use RNAse to examine the 

function of miRNA, but one should remember that exosomes can prevent RNAse from 

damaging miRNA held within the vesicle (Koga et al. 2011). Hence in these studies, 

researchers may not be examining exosome-associated miRNA, but instead are 

examining the effects of free miRNAs (extracellular soluble miRNAs). Hence the 

functional results from some studies may not be due to the exosomal associated 

miRNAs.  

 

Identifying miRNAs highly abundant in cancer exosomes and utilising knock down 

experiments of candidate genes may identify those involved in generating tumour-

associated myofibroblastic phenotype. In collaboration with an Australian group, our 

group profiled the miRNAs in DU145 cell derived exosomes, revealing some highly 

abundant miRNA with in silico predicted association with the TGF-β signalling pathways. 

Theoretically, this would implicate miRNA delivery by exosomes as relevant. However, 

following treatment of fibroblasts with exosomes, qPCR primers against miRNAs showed 

no changes in these exosomally carried miRNA species, or indeed any changes in several 

of the top-predicted miRNA targets. Nevertheless differentiation into myofibroblasts 

still occurred (unpublished data, personal communication by Dr Aled Clayton). Thus 

exosomal miRNA are probably not incorporated into the recipient stromal cells 

machinery for controlling mRNA translation or the miRNAs may be degraded rapidly by 
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the cells. Therefore, the exosome-induced myofibroblastic differentiation seems to be 

RNA independent but the data however, requires further investigation. Lastly, a recent 

study obtained exosomes from different sources (including the plasma, seminal fluid, 

dendritic cells, mast cells and ovarian cancer cells) and quantified exosomes using the 

Nanosight Tracking Analysis and the number of miRNA molecules in the exosome 

preparations using qPCR, revealing that on average, exosomes do not contain enough 

miRNAs to have a functional effect (Chevillet et al. 2014). Taken together, this leads us 

to question the emphasis made in the exosome field on miRNA. There is a possibility 

that exosomes do not exert functions via miRNAs and the functional outcomes observed 

in some studies may be due to free miRNAs and not ones associated with exosomes. 

 

Cancer exosome-mediated recruitment of cells  

Several studies have revealed the migration of BM-MSCs into various tumour sites 

(Quante et al. 2011; Shinagawa et al. 2010; Jung et al. 2013). However, the recruitment 

signals involved are poorly understood. In a recent study, mouse-derived bone marrow 

macrophages secreted heightened levels of chemokines following treatment with 

exosomes from M. tuberculosis-infected macrophage, whereas the uninfected 

macrophages secreted low levels of chemokines. The resultant M. tuberculosis-infected 

macrophages possessed the capacity to induce cellular recruitment of immune cells such 

as myeloid cells, neutrophils, macrophages and splenocytes both in vitro and in vivo 

(Singh et al. 2012). Thus exosomes can direct the recruitment of cells. Whether or not 

PCa cells can also generate pro-recruiting exosomes is an open question of considerable 

interest. Additionally, melanoma derived exosomes have been documented to play a 

role in long-distance communication to the bone and mobilise BM-progenitor cells into 

the blood, to influence disease progression. This mobilisation is speculated to be driven 

by the exosomal transfer of MET receptor as noted by elevated levels of MET receptors 

on circulating BM progenitor cells in patients with advanced melanoma. Furthermore, 

in a murine model, the knock down of MET levels in exosomes using shRNA lowered the 

metastasis capacity of the BM progenitor cells. Additionally, the inhibition of exosome 

secretion by knockdown of Rab27a attenuated metastasis (Peinado et al. 2012). 

Therefore mobilisation of BM progenitor cells are exosomal MET-dependent. Whether 

PCa exosomes are capable recruiting BM-MSCs to the prostate in a similar fashion, is in 
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an area of great interest for future investigation, and if so, when along this mobilisation 

route, do BM-MSCs differentiate into myofibroblasts is an open question of considerable 

interest. 

 

Function of exosomes produced by exosome differentiated MSCs 

The function of exosomes released from cancer-associated myofibroblasts have not 

been investigated thoroughly. A recent study demonstrated Wnt11 tethered to CD81 

positive exosomes from myofibroblasts to be internalised by breast cancer cells, which 

in turn promoted breast cancer cell motility and metastasis in vivo (Luga et al. 2012; 

Hoffman et al. 2013). The Wnt 11 ligand was associated with the enhanced motility and 

metastasis of breast cancer cells by signalling through the Frizzled (Fzd) receptors, 

indicating that exosomes from myofibroblasts allow cross-talks between the stromal 

and cancer cells to promote metastasis. Furthermore, a recent study reported exosomes 

from MSCs to increase VEGF expression in tumour cells, resulting in enhanced 

angiogenesis which promoted tumour growth in vivo (Zhu et al. 2012). However, the 

function of exosomes from BM-MSCs differed depending on the phenotype of the BM-

MSCs. For example, exosomes released by BM-MSCs from multiple melanoma patients 

had higher levels of oncogenic proteins, cytokines and adhesion molecules in 

comparison to exosomes from BM-MSCs of healthy individuals (Roccaro et al. 2013). 

Furthermore, in a xenograft model, the exosomes from BM-MSCs of multiple melanoma 

patients promoted disease progression whereas exosomes from BM-MSCs of healthy 

individuals inhibited tumour growth in vivo (Roccaro et al. 2013). This indicates that 

exosomes from stromal cells such as BM-MSCs under disease conditions can be tumour-

promoting. Similar observations were reported by other researchers (Bruno et al. 2013). 

In a similar manner, exosomes released from PCa exosomes-differentiated BM-MSCs 

may also promote tumour growth. Since BM-MSCs in general are immunosuppressive 

(Ringden et al. 2006; Figueroa et al. 2012) their secreted exosome may also exhibit an 

immunosuppressive property which may in turn help cancer cells evade the immune 

surveillance. Investigating the role of exosomes from PCa exosomes-differentiated BM-

MSCs will further our knowledge in the function of exosome generated myofibroblasts 

in tumour progression. 
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Targeting exosomes as a therapeutic approach 

Since my data emphasises the disease promoting nature of cancer exosomes, targeting 

exosomes as a new therapeutic approach may help slow down tumour progression. A 

negative feedback system has been revealed for regulating exosome release by the cells, 

in which the exosomes secreted by normal mammary epithelial cells into the 

extracellular space inhibits any further release of exosomes from the cells (Riches et al. 

2014). The same negative feedback is observed between breast cancer cells and their 

exosomes. Furthermore, when exosomes from normal epithelial cells were added to 

breast cancer cells, there was a marked inhibition in exosome release. The level of 

exosome secretion was actually much lower than that of the untreated normal epithelial 

cells used as a control (Riches et al. 2014).  Fluorescently labelled normal epithelial cell 

derived exosomes were internalised into the tumour cells, suggesting a dynamic 

equilibrium and thus implicating a mechanism for negative feedback control. This 

approach of adding exosomes from healthy cells to cancer cells may be applicable in 

controlling exosome release by prostate cancer cells.  

 

Exosomes have been identified to aid cellular chemoresistance by exporting drugs out 

from the cells, attenuating the beneficial effect of chemotherapy. Instead drugs which 

interfere with the stability of the cytoskeletal components involved in directing the 

exocytosis pathway such as taxanes and vinca alkaloids, may be able to inhibit the 

secretion of exosomal vesicles and hence hindering chemoresistance of the cells (Iero et 

al. 2008). Furthermore, methods involved in altering the exosome composition that are 

tumour promoting may also be a good approach to lower the detrimental effect of 

exosomes. One such example, is the dietary component, curcumin which was found to 

reduce the immunosuppressive activities of breast cancer exosomes against NKs cells. 

Curcumin was speculated to alter the cargo sorting of exosomes during their biogenesis 

into MVBs (Zhang et al. 2007). Thus there are numerous pharmacological approaches 

open for further investigation for blocking the tumour promoting effects of exosomes.  

 

The use of blood filtration is an attractive strategy which could be used to remove 

exosomes from circulation. An adaptive dialysis-like affinity platform technology 

(ADAPTTM) has been developed by Aethlon Medical (Aethlon Medical Inc, San Diego, 
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USA) which can separate particles based on their size and phenotype. This device is 

composed of an outer compartment containing immobilised affinity agents and the 

compartment integrates with a standard renal dialysis machine. As the patient’s blood 

is passed through the dialysis, only particles less than 200nm will pass through the 

porous fibres to the outer compartment and interact with the immobilised affinity 

agents to which exosomes can be selectively attached to. White blood cells and non-

bound serum components, on the other hand, will carry on passing through the dialysis 

and so the blood is free from selected exosomes (reviewed by Marleau et al. 2012). This 

strategy can therefore be used to capture tumour-derived exosomes. For example in 

HER2 positive breast cancer, anti-HER2 antibodies in combination with antibodies 

against exosome associated proteins may enable the entrapment of breast cancer 

exosomes. In a similar manner, this ADAPTTM machine should be able to isolate PCa 

exosomes from the patient’s blood. The safety and efficacy of this ADAPTTM machine for 

exosome removal, however, has yet to be clinically tested. Taken together, recent 

reports highlights some therapeutic approaches which may control the deleterious 

effects of tumour exosomes. 

 

Concluding Remarks 

My studies show for the first time, that prostate cancer exosomes educate BM-MSCs 

into tumour-promoting cells. This emphasises along with literature that cancer 

exosomes are an essential factor for generating a tumour promoting microenvironment 

and thus targeting exosomes is likely to be a valuable therapeutic approach for 

attenuating tumour progression.
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