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Abstract 

 

Purine and pyrimidine nucleoside and nucleotide analogues have been extensively studied as 

anticancer and antiviral agents. In addition to this, they have recently shown great potential 

against Mycobacterium Tuberculosis, the causative agent of Tuberculosis (TB). TB ranks as the 

tenth most common cause of death in the world. The current treatment for TB infection is limited 

by side effects and cost of the drugs and most importantly by the development of resistance to 

the therapy. Therefore the development of novel drugs, capable of overcoming the drawbacks of 

the existing treatments, has become the focus of many research programs. In parallel to that, a 

tremendous effort has been made to elucidate the unique metabolism of this pathogen with the 

aim to identify new possible targets.  

This review presents the state of the art in nucleoside and nucleotide analogues in the treatment 

of TB. In particular, we report on the inhibitory activity of this class of compounds, both in 

enzymatic and whole-cell assays, providing a brief insight to which reported target these novel 

compounds are hitting.  

 

 



Introduction  
 

In 1882, Robert Koch identified Mycobacterium tuberculosis (M.tb) as the etiological agent of 

human tuberculosis (TB) [1-2]. M.tb is part of the Mycobacterium tuberculosis complex within 

the Mycobacterium genus along with M. africanum, M. bovis, M. caprae, M. microti, M. 

pinnipedii, M. canettii and M. mungi [3].  

 

n   Key term 

Mycobacterium tuberculosis is a Gram-positive acid fast bacterium with a G + C-rich genome 

and a cell envelope containing an additional layer beyond the peptidoglycan that is exceptionally 

rich in unusual lipids, glycolipids and polysaccharides. Novel biosynthetic pathways generate 

cell-wall components such as mycolic acids, mycocerosic acid, phenolthiocerol, 

lipoarabinomannan and arabinogalactan, and several of these may contribute to mycobacterial 

longevity, trigger inflammatory host reactions and act in pathogenesis. 

 

The World Health Organisation (WHO) indicates TB as a global emergency, estimating that in 

2011 there were 8.7 million new cases and 1.4 million deaths due to the infection, including 

350,000 deaths associated with a HIV co-infection [4].  

Sub-Saharian Africa has the highest rates per capita of TB, while India, China, South Africa and 

the Russian Federation share 60% of all TB cases worldwide [4].  

TB predominantly affects the lung although extra pulmonary forms exist and may affect the 

central nervous system, urogenital tract, digestive system and cutis [5]. All types of 

mycobacterial infections are initiated by the inhalation of viable bacilli contained in droplets 

exhaled by patients with active disease [6]; the progression and resolution of the disease is 

divided into different stages, in which the bacteria are first disseminated by lymphatic circulation 

to regional lymph nodes in the lung and then spread to extra pulmonary areas leading to 

secondary manifestations such as tuberculosis meningitis, pleural inflammation (pleurisy) and 

bones and joints lesions [5,7]. In the pulmonary manifestation, mycobacteria are taken up by 

macrophages and carried to the lung where additional immune cells are recruited [8] and the 

immune system organises structures called granuloma, pathological hallmarks of TB, whose aim 

is to contain the infection, making the chemotherapeutic eradication extremely difficult, due to 



the sequestration of bacilli within shielded lesion compartments [9-11]. These pulmonary lesions 

evolve to necrotising granulomas containing a caseum core resulting from lysis of host and 

bacterial cells, and surrounded by fibroblasts layers [9].  

This stage of TB infection is called latent phase and is not infectious [12]. However the 

progression from latent to active TB may occur at any time, from soon after infection to many 

years later and can be triggered by different factors [13]. Patient groups at higher risk include 

those infected with HIV, children younger than 5 years of age and people who are receiving 

immunosuppressive drug therapy following organ transplantation [14-15].  

 

Current treatment 

Drug Main Affected Pathway Reference 
First-line Drugs   

Isoniazid Mycolic acid synthesis [16,17] 

Rifamicins 
(Rifampicin, Rifapentine, Rifabutine) RNA transcription [18] 

Pyrazinamide RNA trans-translation/fatty acid 
synthesis [19,20] 

Ethambutol Arabinogalactan biosynthesis [21] 
Second-line drugs   

Injectable aminoglycosides  
(Streptomycin, Kanamycin, Amikacin) Protein synthesis [22,23] 

Injectable polypeptides 
(Capreomycin, Viomycin) Protein synthesis [24] 

Oral and injectable fluoroquinolones  
(Ofloxacin, Ciprofloxacin, Levofloxacin, 

Moxifloxacin, Gatifloxacin) 
DNA supercoiling [25] 

Para-aminosalicilic acid Folate biosynthesis [26] 
Terizidone Cell wall synthesis [27] 

Ethionamide 
Prothionamide Mycolic acid biosynthesis [28,29] 

Thioacetazone Mycolic acid biosynthesis [30] 
Linezolid Protein synthesis [31] 

Cycloserine Peptidoglycan synthesis [32] 
Third-line drugs   

Clofazimine DNA synthesis [33] 



 

Table 1. Classification and main targets of first, second and third line treatments of TB. 

 

Streptomycin, discovered in 1946, was the first drug found to successfully treat TB [37]. 

Therapy for drug-sensitive TB has evolved leading to the establishment of a first two month-long 

“intensive phase” requiring a combination of four different drugs among the first line treatments: 

isoniazid, rifampin, pyrazinamide, ethambutol (Table 1) [3,38]. The following “continuation 

stage” requires administration of isoniazid and rifampin for four months, completing the 

treatment [3,38,39]. Within the first few weeks of this drugs combination the patient loses 

infectiousness, although the remaining months are crucial to eradicate the slow growing fraction 

of the bacilli. This treatment is recommended for drug-susceptible TB cases and achieves cure 

rates of  >95% when administered under directly observed therapy (DOT) [40-41]. Important 

side effects, such as hepatotoxicity, in some cases force the termination of the cure; this, together 

with lengthy cure duration, is responsible for patient’s non-compliance to the treatment [42-45]. 

HIV and TB co-infection in a patient is the worst case scenario, due to pharmacokinetic drug-

drug interactions causing loss of efficacy and increase in toxicity [3,46,47]. These issues led to 

the emergence of M.tb multidrug-resistant strains (MDR-TB), resistant at least to isoniazid and 

rifampin [48,49]. The treatment of MDR-TB includes at least four second line drugs whose anti-

tuberculosis effectiveness was proven (Table 1), over a period of 18-24 months [3,48,50]. 

Resistance to treatment increased with the emergence of extensively drug-resistant tuberculosis 

(XDR-TB) which does not respond to most of the first and second-line anti-TB drugs and 

requires the use of third line anti-TB drugs for longer periods of time (Table 1) [51,52].  

Agents used for the treatment of MDR-TB and XDR-TB cause more severe side effects than first 

line anti-TB drugs, including nephrotoxicity, ototoxicity, hepatotoxicity and dysglycaemia 

[37,45,49]. Statistics show MDR-TB is now global, especially affecting the developing countries 

with an estimated 500,000 cases reported in 2011 [4]. XDR-TB, on the other hand, has been 

reported in 92 countries [4]. The cost of treating MDR-TB is up to 200 fold higher than the 

treatment of drug-sensitive TB, often requiring up to two years of treatment, daily injections and 

Amoxicillin plus Clavulanate, 
Imipenem plus Ciliastatin Cell wall synthesis [34,35] 

Clarithromycin Protein synthesis [36] 



in-patient care [53]. Moreover, the achievement of universal access to MDR-TB and XDR-TB 

treatment and preventive therapy can prove logistically and economically prohibitive [4]. The 

vaccine Bacille Calmette-Guérin (BCG) is being used today to prevent TB in infants [54]. But 

while BCG is the most widely used vaccine in the world, it has not successfully eliminated the 

disease due to its limited efficacy and potential side effects [54]. In summary, progress in the 

knowledge of the pathology and bacteriology of TB could potentially help achieve global control 

of this epidemic by discovering new therapeutic targets and introducing new agents that could 

ameliorate the current treatment of TB by: 

- shortening treatment duration 

- eradicating MDR and XDR strains 

- increasing patient compliance to the treatment (reducing the daily pill burden and dosing 

frequency) 

- reducing toxicities 

- allowing optimal treatment of potential HIV co-infection [45].  

 

Nucleosides analogues as anti-mycobacterial agents  
 

n   Key term 

Nucleoside analogues are synthetically modified nucleosides that generally exert their 

therapeutic activity after intracellular phosphorylation to nucleotide and act as antimetabolites, 

mimicking their natural counterparts and altering the processes in which they are involved. 

 

Nucleosides and nucleotides are essential for many cellular functions, including the storage of 

genetic information, gene expression, energy metabolism and cell signaling. These compounds 

have already proven their importance as anticancer and antiviral agents [55]. In addition, these 

derivatives have shown moderate to good activity against several bacterial strains. This review 

will focus on the anti-mycobacterial potential of nucleoside analogues. 

A thorough understanding of the enzymes involved in mycobacterial purine and pyrimidine 

metabolic pathways led to the identification of nucleoside analogues that potently and selectively 

inhibit M.tb viability.  

 



n   Key terms 

Nucleotide salvage pathway is a pathway in which purine and pyrimidine nucleotides are 

synthesized from bases and nucleosides that are released during degradation of RNA and DNA. 

This recovery process is important in those organs that cannot undergo nucleotide de novo 

synthesis.  

Nucleotide de novo pathway is a pathway in which the nucleotides are assembled from simpler 

starting materials such as amino acids, at the expense of ATP. The framework for a pyrimidine 

base is assembled first and then attached to a ribose, while purine nucleotides are synthesized 

piece by piece directly onto a ribose-based structure. 

 

Within the purine nucleoside group, few agents were identified as inhibitors of enzymes involved 

in the purines de novo and salvage pathways [56], such as hypoxanthine-guanine 

phosphoribosyltransferase, purine nucleoside phosphorylase and 5-amino-imidazole-4-

carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase. Some 

classes of purine nucleoside derivatives are also able to interfere with enzymes specifically 

expressed in M.tb [57]. Among these are aryl/acyl adenylating enzymes such as biotin protein 

ligase (BIR A) and aminoacyl tRNA synthase (aaRSs) and enzymes responsible for syderophore 

(MtbA), pantothenate (PANC) and mycothiol MshC biosynthesis, the activity of which has been 

proven essential for M.tb virulence. 

The alternative pyrimidine nucleoside structures, on the other hand, represent a crucial class of 

inhibitors of thymidylate synthase (ThyX) and thymidine monophosphate kinase (TMPKmt) 

enzymes, involved in pyrimidine nucleoside metabolism [58].  

This review covers the medicinal chemistry of anti-mycobacterial nucleoside analogues, 

including their enzymatic inhibition and/or in vitro anti-mycobacterial activity. The activity of 

some analogues whose target has yet to be identified will be reported in the last section.  

The identification of multiple targets for nucleoside analogues treatment of TB and the desperate 

need for new anti-TB therapies support the potential of such molecules as new anti-

mycobacterial candidates. 

 

 

 



Nucleoside inhibitors of enzymes involved in purine metabolism 
 

Purine metabolism is conserved among eukaryotic and prokaryotic organisms. Evidence shows 

that mycobacterial genome encodes for enzymes involved in the de novo and salvage synthesis 

of purine nucleoside monophosphate. However it is still unclear when the switch between one 

and the other occurs. The exploitation of the differences between human and mycobacterial 

enzymatic mechanisms and structures has helped identifying some potential anti-mycobacterial 

agents. 

 

Hypoxanthine–guanine phosphoribosyltransferase 

 

Phosphoribosyltransferase enzymes (PRTs) are expressed in the purine salvage pathway. They 

are essential for the reproduction and survival of different pathogens, such as M.tb [59]. Within 

this family of enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was 

identified as an interesting target for the development of new anti-mycobacterial agents [60]. 

M.tb is able to internalise 6-oxopurines hypoxanthine (Hyp) and guanine (Gua) from the 

extracellular medium. Subsequently, HGPRT catalyses the Mg2+-dependent reversible transfer of 

the 5-phosphoribosyl group from 5-phosphoribose-1-pyrophosphate (PRPP) to the N9 position 

of 6-oxopurines (Hyp and Gua), to form respectively inosine monophosphate (IMP) and 

guanosine monophosphate (GMP) with the release of inorganic pyrophosphate (PPi) (Figure 

1A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  
A. Enzymatic reaction catalyzed by hypoxanthine-guanine phosphorybosyl transferase.  
B. Enzymatic reaction catalyzed by purine nucleoside phosphorylase.  
C. Enzymatic reaction catalysed by ATIC enzyme.  
(Hyp = hypoxanthine, Gua = guanine, PRPP = 5-phosphoribose-1-pyrophosphate, HGPRT = hypoxanthine-
guanine phosphoribosyltransferase, IMP = inosine monophosphate, GMP = guanosine monophosphate, PPi = 
inorganic pyrophosphate, Ado = adenosine, Guo = guanosine, Ino = inosine, dAdo = 2’-deoxyadenosine, dGuo = 
2’-deoxyguanosine, dIno = 2’-deoxyinosine, PNP = Purine nucleoside phosphorylase, Ade = adenine, Gua = 
guanine, Hyp = hypoxanthine, R-1-P = riose-1-phosphate, AICAR = 5-aminoimidazole-4-carboxamide; FAICAR 
= 5-formylaminoimidazole-4-carboxamide ribonucleotide, 10-Formyl-THF = N10-formyltetrahydrofolate; THF = 
tetrahydrofolate). 
 
 

The low sequence homology (24% assigned by pairwised amino acid sequence alignment) 

between human and mycobacterial HGPRT isoforms may indicate no conservation of key 

catalytic residues, resulting in distinct steady-state kinetic constant and enzymatic mechanism. 

On the other hand, the sequence alignment between HGPRT expressed in Escherichia coli 

(EcHGPRT) and mycobacterial HGPRT (MtHGPRT) shows that these enzymes share 50% 

identity and 71% similarity in the amino acid residues present in the binding site. Nucleoside 

phosphonates 1-3 and 7 have been reported to be good inhibitors of EcHGPRT, with Ki values as 

low as 10 nM (Figure 2A,B) [61].  
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n   Key term 

Ki (inhibitory constant) is the concentration of inhibitor required in order to decrease the 

maximal rate of the reaction by half. 

 

To understand whether the mentioned structure similarity between EcHGPRT and MtHGPRT 

could translate into a potential MtHGPRT inhibitory activity of compounds 1-3 and 7, Keough et 

al. described the synthesis and anti-mycobacterial evaluation of different prodrugs (4-6 and 8) of 

the already identified acyclic nucleoside phosphonates (1-3 and 7) (Figure 2A,B) [61].  
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Inhibitors of EcHGPRT, MtPNP and ATIC. 

A. Acyclic nucleoside phosphonates 1-3 (EcHGPRT inhibitors) and relative prodrugs 4-6. 
B. Acyclic nucleoside phosphonate 7 (EcHGPRT inhibitor) and relative prodrug 8. 
C. Acyclovir 9 (MtPNP inhibitor).  
D. 4-carboxy-5-formylaminoimidazole ribonucleotide (CFAIR, 10) and 4-carboxy-5-aminoimidazole ribonucleotide 
(CAIR, 11), an ATIC inhibitor. 
 

The common chemical structure of these prodrugs (4-6 and 8) is based on the covalent 

attachment of hydrophobic groups to the phosphoric oxygen atoms (Figure 2A,2B). The purpose 

of these attachments is to mask the negative charges of the phosphonate groups and thus increase 

cell permeability. Once within the microbial cells, these moieties are thought to be hydrolysed to 

release the active species. 

 

n   Key terms 

MIC (minimum inhibitory concentration) is the lowest concentration of an antimicrobial that 

will inhibit the visible growth of a microorganism usually by the 50% (MIC50), 90% (MIC90) or 
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99% (MIC99), after overnight incubation.  

EC50 (half maximal effective concentration) refers to the concentration of a drug, antibody or 

toxicant which induces a response halfway between the baseline and maximum after a specified 

exposure time. 

 

Prodrugs (4-6 and 8) were assayed in vitro against M.tb and resulted in minimum inhibitory 

concentration values (MIC90) ranging between 20 and 75 µM. On the other hand, none of the 

parent compounds (1-3 and 7) exhibited antimycobacterial activity at concentrations ≥ 250 µM, 

validating the prodrug strategy as a method to target M.tb. Cytotoxic evaluation in human lung 

carcinoma cells (A549) resulted in EC50 > 100 µM, leading to a selectivity index 

[cytotoxicity/MIC50] ≥ 17, suggesting a potential therapeutic window.  

 

Purine nucleoside phosphorylase 

 

Purine nucleoside phosphorylase (PNP) is responsible for catalyzing the reversible 

phosphorolysis of purine nucleosides (adenosine: Ado, guanosine: Guo, inosine: Ino) and 2’-

deoxyribonucleosides (deoxyadenosine: dAdo, deoxyguanosine: dGuo, deoxyinosine: dIno), in 

the presence of Pi, generating ribose-1-phosphate (R-1-P) and the corresponding purine base 

(adenine: Ade, guanine: Gua, hypoxanthine: Hyp) (Figure 1B). M.tb was proven to encode for a 

specific isoform of this enzyme (MtPNP), in particular during the latent stages of its life cycle 

[62]. Therefore, targeting this enzyme could potentially eradicate M.tb during this phase.  

A number of research groups have dedicated their efforts to determine specificity of substrates, 

kinetic mechanism, and three-dimensional structures for MtPNP in comparison to the human 

PNP (HsPNP) [63].  

No specific MtPNP inhibitor has been identified so far. 9-(2-Hydroxy-ethoxy-methyl)guanine 

(acyclovir, 9) is an acyclic nucleoside analogue endowed with anti-herpetic activity, which has 

also shown a moderate HsPNP inhibitory activity (Ki = 91 µM) (Figure 2C) [63]. Data from 

acyclovir inhibition studies demonstrate that acyclovir is also a competitive inhibitor of MtPNP, 

with a Ki value of 150 nM [63].  

Crystollographic studies of MtPNP in complex with acyclovir and phosphate group allowed the 

comparison between MtPNP and HsPNP active sites. 



These studies also showed that some crucial residues for the proper ligand binding into HsPNP 

do not seem to retain importance for the binding with MtPNP. Such differences could be 

exploited for the drug-design of novel and selective MtPNP inhibitors. 

  

Inosine monophosphate synthase (ATIC or PurH) 

 

The last two steps to the de novo synthesis of IMP are catalyzed by the bifunctional enzyme 5-

amino-imidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate 

cyclohydrolase, also known as ATIC or PurH [64]. This enzyme catalyses the transfer of a 

formyl group from N10-formyltetrahydrofolate (10-formyl-THF) to the 5-amino group of the 

substrate 5-aminoimidazole-4-carboxamide (AICAR) to give 5-formylaminoimidazole-4-

carboxamide ribonucleotide (FAICAR) and cyclisation of FAICAR to give IMP (Figure 1C) 

[65].  

Human ATIC (hATIC) is a dimer containing two distinct functional domains in each monomer. 

Evidence shows that hATIC exhibits half-of-site reactivity. The THF-dependent formyl transfer 

reaction takes place in the C-terminal domain of only one monomer, generating FAICAR that 

undegoes cyclisation in the N-terminal domain of the same monomer. Interestingly, there is no 

evidence of any tunnel connecting these two active sites. In 2011 Baker et al. expressed the 

MtATIC enzyme in E. coli and cristallysed it in complex with the substrate AICAR, without the 

addition of any ligands [65]. From X-ray analysis it was found that, similarly to the human 

isoform, MtATIC contained two indipendent ATIC molecules organized as tightly associated 

dimers. However, the MtATIC dimer was found fundametally different to the human enzyme, 

with the two trasformyl and cyclohydrolase domains rotated by 90o. The origin of this difference 

lies in the connecting peptide. During these crystallographic studies an adventitius nucleoside, 

identified as 4-carboxy-5-formylaminoimidazole ribonucleotide (CFAIR, 10),  was found in the 

cyclohydrolase binding site (Figure 2D); CFAIR structural similarity to carboxyaminoimidazole 

ribonucleotide CAIR (11) (Figure 2D), an earlier intermediate in the de novo IMP synthesis, 

already recognised as a 10 µM inhibitor of ATIC, suggests that CFAIR could be produced by 

formylation of CAIR by ATIC under the conditions of overexpression in E. coli. Althought 10 

was never synthesized, crystallisation studies show this nucleoside is capable of favorable 

interactions within the MtATIC active site, strongly suggesting it could be an effective inhibitor 



of this enzyme. These results and the observed differences between the crystal structures of 

hATIC and MtbATIC constitute an excellent starting point for the development of more potent 

inhibitors of this enzyme family. 

 

Adenosine Kinase 

 

Among all the enzymes from the M.tb purine savage pathway, adenosine kinase (ADK) is 

considered another promising target for drug development. ADK catalyses the phosphorylation 

of adenosine (Ado) to adenosine monophosphate (AMP) through a phosphoryl-transfer reaction 

of the γ-phosphate group from adenosine triphosphate (ATP), releasing adenosine diphosphate 

(ADP) (Figure 3) [66]. 

 

 
 
 
 
 
 
 
FIGURE 3. Enzymatic reaction catalyzed by ADK.  
Ado = adenosine, ATP = adenosine triphosphate; ADK = adenosine kinase, AMP = adenosine monophosphate, 
ADP = adenosine diphosphate. 
 
ADK is present in fungi, plants and parasites but is not commonly found in bacteria. The 

expression of ADK has been confirmed in M.tb and biochemical characterization indicates that 

this enzyme shares low structural similarity and different mechanism of action compared to the 

human isoform [66]. 2-Methyladenosine (12) demonstrated promising anti-mycobacterial 

activity, with an in vitro MIC99 value of 3.0 µg/mL (Figure 4). Mycobacterial ADK (MtADK) 

and human ADK (hADK) exhibited different affinities for 12, suggesting a potential difference 

in the substrate-binding sites of these enzymes [67]. The anti-mycobacterial activity of 12 was 

suggested to follow its phosphorylation and incorporation into the RNA. The selective activity of 

12 against M.tb has prompted the synthesis of nucleoside analogues that could potentially inhibit 

MtADK.  

 
 
 

N

NN

N

NH2

O

OHOH

N

NN

N

NH2

O

OHOH

+ ATP
ADK

+ ADP

AMPAdo

OO PP
O

-O
O-

O
-O

O-



 
 
 
 
 
 
 
 
 
 
Figure 4. MtADK inhibitors and antimycobacterial compounds 12-14.  
 

Among this class of compounds, several 6-substituted-7-deazapurine ribonucleosides proved to 

be strong and selective inhibitors of MtADK [68]. However most of these compounds resulted as 

inactive in whole cell assays, except 6-methyl-7- deazapurine ribonucleoside (13) that showed 

potent antimycobacterial activity against Mycobacterium bovis (M. bovis, MIC50 = 0.3 µM) 

(Figure 4). Surprisingly, 13 showed the highest cytotoxicity and the weakest in vitro MtADK 

inhibition, which may indicate an alternative mode of action. More recently, a new series of 7-

(het)aryl-7-deazaadenine ribonucleosides showed specific MtADK inhibition, along with 

micromolar in vitro activity and low cytotoxicity [69]. Among this series, the dibenzofuran 

derivative 14 showed the best therapeutic index, with submicromolar MtADK inhibitory activity 

and a MIC99 value of 0.19 µM against M. bovis (Figure 4). 

 

Adenylating enzyme (AEs) 

 

Adenylating enzymes (AEs) are essential to all living organisms. They take part in protein 

synthesis, glycolysis, lipid metabolism, and cofactors biosynthesis (biotin, coenzyme A, and 

nicotinamide adenine dinucleotide). 

M.tb encodes for more than 60 adenylating enzymes, many of which are reported to be essential 

for the bacterial virulence, and therefore make attractive targets for the development of effective 

anti-mycobacterial agents [57].  

These enzymes catalyse the transfer of an acyl moiety to the phosphate group of AMP, 

generating acyl adenylate (acyl-AMP). In a second step, the acyl group is then transferred to 

different nucleophilic moieties such as alcohol, thiol, and amino groups (Figure 5A).  
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Figure 5.  
A. General enzymatic reactions, catalyzed by adenylating enzymes from M.tb. 
B. Enzymatic reaction catalyzed by MbtA.  
C. Enzymatic reaction, catalyzed by aaRSs.  
D. Enzymatic reaction catalyzed by PanC.  
E. Enzymatic reaction catalyzed by MshC.  
F. Enzymatic reaction catalyzed by BIR A.  
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(Sal = salicylic acid, ATP = adenosine monophosphate, PPi = inorganic pyrophosphate, Sal-AMP = 5’-O-salicyl 
adenosine monophosphate, AA = amino acid, amino-acyl-AMP = 5’-O-aminoacyl adenosine monophosphate, PA = 
pantoic acid, PA-AMP = 5’-O-panthyl adenosine monophosphate, β-Ala = beta alanine, Cys = Cysteine, Cys-AMP 
= cysteinyl adenosine monophosphate, GluN-Inositol = Glucosamine-inositol disaccharide, Bio-AMP =Biotinyl 
adenylate, ACC = acyl coenzyme A carboxylase, Bio-ACC = Biotinyl acyl coenzyme A carboxylase).     
 
 

Aryl acid adenylating enzyme (MbtA) 

 

Mycobactins, also known as siderophores, are small iron-chelating molecules synthesised by 

M.tb in order to overcome the lack of readily available iron by chelating the metal from host 

serum or tissues [70]. Disruption of genes involved in mycobactin biosynthesis results in 

weakening of M.tb virulence and leads to its inability to replicate in vitro and grow within 

pulmonary macrophagic environment, unless chemically complemented with exogenous 

mycobactin [71]. Targeting mycobactin biosynthesis may therefore represent a novel strategy for 

the development of anti-mycobacterial agents.  

Four adenylating enzymes are part of a multi-enzyme complex, which is responsible for 

mycobactin biosynthesis [72]. The aryl acid adenylating enzyme (MbtA) is the most 

characterised of these enzymes and is responsible for initiating the biosynthesis of mycobactins. 

This enzyme catalyses firstly the adenylation of salicylic acid (Sal) to 5’-O-salicyl adenosine 

monophosphate (Sal-AMP) and secondly the transfer of the salycilate group onto a thiol 

containing residue on the carrier protein MbtB (Figure 5B). Following these steps, a series of 

further steps involving the other three adenylating enzymes lead to the formation and release of 

the mycobactins. 

5′-O-[N-(salicyl)sulfamoyl]adenosine (15) is the first rationally designed inhibitor of MbtA, and 

its structure mimics the natural intermediate Sal-AMP, with the hydrolytically labile acyl-

phosphate moiety replaced by a more stabile acyl-sulfamate linker (Figure 6A) [73]. 15 is a 

potent MbtA inhibitor with a Ki = 7 nM. Furthermore, it displays potent activity in a whole cell 

assay against H37Rv mycobacterial strain under iron-limiting conditions, resulting in MIC50 = 

0.39 µM, therefore competing with the first-line clinical agent isoniazid. Structure activity 

relationship studies were carried out to investigate whether modifications on linker, aryl, 

glycosyl or nucleobase moieties could lead to an advantage in terms of anti-mycobacterial 

activity. Modification of the nucleobase portion of 15 by introduction of a phenyl substituent in 

position 2 (16) resulted in a notable increase in MtbA inhibition (Ki = 0.27 nM, MIC99 = 0.049 



µM) (Figure 6A) [74]. Introduction of a fluorine substitution in the para position on the salicylate 

aromatic ring (17) led to an improved MIC99 = 0.0098 µM and a Ki = 0.012 µM on the enzyme 

(Figure 6A) [75]. Modifications on the sugar moiety improved the binding affinity for the 

enzyme but surprisingly led to a decrease in the in vitro antitubercular activity [76]. Compound 

18, bearing a 2-phenyl substituted triazole in position 2 of the nucleobase, was the most potent 

(Ki = 3.23 nM, MIC99 = 3.13 µM), selective (active only in iron-deficient conditions) and least 

cytotoxic derivative of the series (CC50 > 100 µM in VERO cells) (Figure 6A) [77].  

 
Figure 6. Inhibitors of MtbA, MtbB, aaRSs, PanC, MshC and BIRA. 
 
A. MtbA bisubstrate inhibitors and antimycobacterial compounds 15-18, MtbA bisubstrate inhibitor 19. 
B. aaRSs bisubstrate inhibitor 20. 
C. PanC bisubstrate inhibitors  21-23.  
D. MshC bisubstrate inhibitor 24.  
E. BIRA bisubstrate inhibitors and antimycobacterial compounds 25-27.  
 
Conformationally restricted analogues of Sal-AMS were designed to improve oral bioavailability 

by removal of the two rotable bonds and the charged sulfamate moiety [78]. However, 

biochemical studies showed that the negative charge on Sal-AMS structure is crucial to maintain 

potent activity. In fact, compounds lacking an ionizable function displayed significantly reduced 

potency. On the contrary derivative 19, containing an ionizable NH moiety at N-1 position on the 

quinolone portion, was only 18-fold less active as MtbA inhibitor than Sal-AMS (Ki = 0.12 µM) 

(Figure 6A). It was hypothesised that the loss of potency would be counterbalance by its 

substantially improved physicochemical properties. However 19, despite showing significant 

biochemical potency, proved inactive in the whole-cell assay with a MIC50 value higher than 50 

µM. 
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Aminoacyl tRNA transferase (aaRSs) 

 

M.tb encodes for all the different aminoacyl tRNA transferase enzymes (aaRSs), whose purpose 

within RNA biosynthesis is the activation of each amino acid and its association with its cognate 

tRNA molecule [79-80].  

Each aaRSs is specific for its corresponding amino acid and catalyses at first its conversion into 

acyl adenylate (amino-acyl-AMP), using ATP as AMP donor and releasing PPi. Consequently, 

the enzyme catalyses the amino acid transfer onto an alcoholic residue on the appropriate tRNA 

generating acylated tRNA (amino-acyl-tRNA) (Figure 5C).  

The evolutionary divergence between eukariotic and prokaryotic aaRSs has made selective 

inhibition of these enzymes possible, whereas the high conservation of aaRSs in prokaryotes 

opens the possibility for the development of broad-spectrum drug. Inhibitors of aaRSs have been 

extensively reported and reviewed.  

The bisubstrate inhibitor 20 as been reported as a moderate mycobacterial methionyl-tRNA 

synthase inhibitor (Figure 6B) [81-82]. Unfortunately this compound did not show activity in in 

vitro whole cell assays. 

 

Adenylating enzyme pantothenate C (PanC) 

 

Pantothenate or otherwise known as vitamin B5 is a component of coenzyme A, an essential 

cofactor in the central pathway of cellular respiration and lipid metabolism [83]. M.tb as many 

other bacteria encodes four enzymes (PanA-D) responsible for the synthesis of panthotenate. 

Among them PanC is the best biochemically and structurally characterized adenylating enzyme 

in M.tb. Genetic studies have shown that the panthotenate mutant strain of M.tb, lacking the 

PanC gene are not capable to establish virulence in a mouse model of infection [84]. Strains 

defective of both PanC and PanD are indeed under consideration as human vaccine candidate for 

TB [85].  

In the pantothenate biosynthesis, pantoic acid (PA) is condensed to β-alanine (β-Ala) by 

adelynating enzyme PanC to afford pantothenic acid (vitamin B5) (Figure 5D).  

Three inhibitors that mimic the structure of the adenylate intermediate in the enzymes catalytic 



mechanism, have been described [86]. Compound 21 resembles the 5’-O-panthyl adenosine 

monophosphate (PA-AMP) most closely and was evaluated as the diasteroisomeric mixture at 

the C-2 hydroxy position of the pantoate moiety, showing a Ki = 0.22 µM (Figure 6C). 

Replacement of the hydroxyl group with an amino group in both compounds 22 (Ki = 4.0 µM) 

and 23 (Ki = 18.0 µM) lead to derivatives from 18 to 80 fold less active than 21 (Figure 6C). 

Unfortunately, the anti-mycobacterial activities for these compounds have been not reported.  

 

Adenylating enzyme responsible for mycothiol biosynthesis (MshC) 

 

The mycothiol biosynthetic pathway has been considered attractive for the development of 

potential antitubercular agents since mycothiol is unique to mycobacteria and essential for their 

growth [87-88].  The biosynthesis of mycothiol is carried out in five steps, the adenylating 

enzyme MshC is responsible for the penultimate step that catalises the ligation of the cysteine 

(Cys) to the glucosamine-inositol disaccharide (GlcN-Inositol) to generate the desacetyl 

mycothiol (Figure 5D) [89].  

Compound 24 is the only reported MshC inhibitor of this enzyme, having a nucleoside like 

structure (Ki = 0.3 µM) (Figure 6D). While this compound serves as useful tool for mechanistic 

analysis it was not considered interesting for further development due to its concomitant 

inhibition of the corresponding human cysteinyl-tRNA transferyl enzyme [88].  

 

Biotin protein ligase (BIRA) 

 

The mycobacterial biotin protein ligase regulates lipid methabolism in M.tb trough biotinylation 

of acyl coenzyme A carboxylases, which is involved in lipid biosynthesis [90]. In particular this 

reaction is accomplished in two steps: in the first half reaction, BIRA binds biotin and ATP and 

catalyses the nucleophillic attack of the biotin carboxylate (Biotin) onto the α-phosphate of ATP 

to yield the acyl-adenylate (Bio-AMP) and PPi (Figure 5F). In the second–half reaction BIRA 

transfer biotin from bio-AMP onto a conserved lysine residue within the acyl coenzyme A 

carboxylase  (ACC) to provide biotinylated-acyl coenzyme A (Figure 5F).  

Bistubstrate inhibitors, which mimic the intermediate acyl-adenylate and are therefore capable to 

interact with both substrate binding pockets of BIRA have ben reported [90-91]. Among them is 



the Bio-AMP derivative 25, in which the labile acylphosphate linkage has been replaced with the 

bioisosteric acylsulfamate, showed an affinity for the enzyme 1.4 fold lower than the endogenous 

substrate biotin (Figure 6E). This lack of potency was probably due to chemically instability. 

Replacement of the 5’ oxygen atom in 25 with a nitrogen atom or a methylene group produced 

respectively acylsulfamide 26 and acylsulfonamide 27 with an improved chemically stability 

(Figure 6E). 

These derivatives with an enzyme affinity 1700 fold higher than biotin, were evaluated in 

whole–cell assays against drug-sensitive M.tb H37Rv strain and as well as a panel of MDR and 

XDR strains, showing impressive anti-mycobacterial activity (MIC99 = 3.12 µM and 0.78 µM, 

respectively for 26 and 27). These studies show that this class of compounds represents an 

excellent probe to chemically validate anti-mycobacterial therapeutic development.  
  

Nucleoside inhibitors of enzymes involved in pyrimidine metabolism  
 
The de novo and salvage pyrimidine pathways have been documented in Mycobacteria [92-93]. 

Thymidylate synthase (ThyX) and thymidylate kinase (TMPKmt) enzymes were identified as 

targets for the development of several inhibitors with nucleosidic structure. The following 

reports the structures and biological data of these agents. 

 
Thymidylate synthase (ThyX)  

 

Thymidylate synthase enzyme (ThyA), was originally discovered as essential for eubacteria, 

plants and eukaryotic cells, for the de novo synthesis of thymidine monophosphate (TMP) [94]. 

ThyA catalyses the reductive methylation of 2’-deoxyuridine-5’-monophosphate (dUMP) to 

TMP, by means of the cofactor R-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2THF) which is 

in turn converted into 7,8-dihydrofolate (DHF), acting as both a methylene and hydride donor 

(Figure 7A) [94-95]. The final step of this cycle is the reduction of DHF to tetrahydrofolate 

(THF) catalysed by dihydrofolate reductase (DHFR), with the concomitant reintroduction of a 

methylene group by the enzyme serinehydroxymethyl transferase (SHMT) (Figure 7A) [95].  



 
Figure 7.  
A. Enzymatic reaction catalyzed by ThyA enzyme.  
B. Enzymatic reaction catalyzed by ThyX enzyme.  
(dUMP = 2’-deoxyuridine-5’-monophosphate, CH2THF = R-N5,N10-methylene-5,6,7,8-tetrahydrofolate, DHF = 
7,8-dihydrofolate, SHMT = serinehydroxymethyl transferase, THF = tetrahydrofolate, DHFR = dihydrofolate 
reductase, TMP = thymidine monophosphate, FAD = flavin adenine dinucleotide, FADH2 =  reduced flavin adenine 
dinucleotide, NADPH = reduced nicotinamide-adenine dinucleotide phosphate,  NADP+ = nicotinamide-adenine 
dinucleotide phosphate). 
 
In further investigations, several microorganisms were found to lack the genes encoding for 

ThyA and DHFR but retain viability in thymidine-deficient media. These microorganisms are 

able to express the ThyX enzyme, a flavin-dependent thymidylate synthase (FDTS). This 

enzyme and the parent ThyX gene are rare in eukaryotes and absent in humans [96-97].  

Although both catalyzing the conversion of dUMP to dTMP, ThyX and ThyA share no structural 

similarity, due to a different catalytic mechanism: ThyX activity depends on CH2THF only as a 

methylene donor, whereas the hydride donor is in this case represented by reduced flavin adenine 

dinucleotide (FADH2) (Figure 7B) [96,98]. During the catalysis cycle, nicotinamide adenine 

dinucleotide phosphate (NADPH) is oxidized to NADP+ allowing the regeneration of FADH2 via 

reduction of FAD (Figure 7B). 

M.tb encodes for ThyX, along with ThyA and DHFR enzymes. Despite some studies showing 

that M.tb requires ThyX for survival within the macrophages, it is still unclear when this gene is 

activated instead of ThyA. Since macrophages represent a reservoir of M.tb in the latent form of 

the disease, selective ThyX inhibitors may have an effect on this phase of the mycobacterial life 

cycle. 

5-Fluoro-2’-deoxyuridine-5’-monophosphate (28, Figure 8A), was the firstly reported ThyX 

inhibitor, with an IC50 = 0.57 µM, although also inhibiting ThyA at a similar concentration (IC50 

= 0.29 µM) [97].  
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n   Key term 

IC50 (half maximal inhibitory concentration) is a measure of the effectiveness of a substance in 

inhibiting a specific biological or biochemical function. 

 

 

Figure 8. 
A. ThyX and ThyA inhibitors 28 and 29. 
B. Anti-mycobacterial compounds 30-32, prodrugs of 29.  
C. ThyX inhibitor 33.  
D. ThyX and ThyA inhibitors 34 and 35.  
 

The first selective ThyX inhibitors were synthesised by Herdewijn et al. who identified N-(3-(5-

(2’-deoxyuridine-5’-phosphate))prop-2-ynyl)octanamide (29, Figure 8A) as the most active 

candidate in a series of differently C-5 alkynyl-substituted 2’-deoxyuridine-5’-monophosphate 

analogues, with an IC50 value of 0.91 µM against ThyX [99]. This compound was also found to 

be selective for ThyX, showing 92.8 % inhibition at 50 µM compared to only 15.6 % inhibition 

for ThyA at the same concentration. 

Despite the intriguing selectivity of this powerful new ThyX inhibitor, its antimycrobial 

evaluation was impossible due to its high polarity limiting the mycobacterial cell wall 

penetration. In 2014 McGuigan et al. applied the ProTide prodrug approach to this promising 

derivative, in order to enhance the drug-like characteristics of this compound [100]. This strategy 

consists in masking the negative charges on the monophosphate group by two lipophilic 

moieties: an amino acid ester and an aryloxy group [101]. As a consequence, this prodrug 

approach increases the possibility of cell penetration through passive diffusion and stability 

towards dephosphorylation. Enzymatic and spontaneous steps are required then for the 

intracellular delivery of the monophosphate drug. This strategy was already successfully applied 

to anticancer [102,103] and antiviral [104] nucleoside analogues. A series of prodrugs of 29 was 
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prepared. Compounds 30-32 showed moderate anti-mycobacterial activity ranging from MIC99 = 

62.5 and 125 mg/L against a drug sensitive strain of M.tb (H37Rv) (Figure 8B) [100].  

Alternative modifications on the structure of 29 involved the replacement of the sugar 

monophosphate moiety with a potentially more chemically stable acyclic phosphonate group 

(Figure 8C) [105]. Only compound 33 was reported to have moderate ThyX inhibitory activity 

with 43% inhibition of ThyX at a concentration of 50 µM (Figure 8C) [105].  

Herdewijn et al. synthesised 6-aza-2’-deoxyuridine-5’-monophosphate (34) and a series of its C-

5 differently substituted analogues and tested these compounds against ThyX and ThyA [106]. 

Both 34 and one of the most active derivatives 35 (6-aza analogue of compound 29), showed 

weak ThyX and ThyA inhibitory activities (% inhibition at 50 µM ranging respectively between 

33.5% and 40.9% against ThyX and 0.99% and 13.8% for ThyA) (Figure 8D) [106].  
 

Thymidylate kinase (TMPKmt) 

 

Thymidine monophosphate kinase (TMPK) belongs to the superfamily of nucleoside 

monophosphate kinase (NMPK) enzymes. It catalyses the phosphorylation of TMP to thymidine 

diphosphate (TDP) by means of ATP as phosphoryl donor. It represents the last specific junction 

enzyme between the de novo and salvage pathways of the synthesis of thymidine triphosphate 

(TTP). In the de novo pathway TMP derives from dUMP via thymidylate synthase (ThyA/ThyX) 

enzyme; in the salvage pathway thymidine (T) is monophosphorylated by thymidine kinase (TK) 

to produce TMP (Figure 9) [107,92].  

TMPK has already been considered as an interesting target for the synthesis of inhibitors both as 

anticancer [201] and as antiviral agents [108], and it recently attracted interest also for the 

development of anti-tubercular agents that could selectively target the M.tb isoform TMPKmt. In 

fact, TMPKmt appeared to be essential for mycobacterial DNA synthesis and biochemical and 

structural characterizations revealed only a 22% of sequence homology with the human isozyme 

(hTMPK) [109].  



 
Figure 9. Enzymatic mechanism catalyzed by TMPKmt.  
(dUMP = 2’-deoxyuridine-5’-monophosphate, T = thymidine, TS = thymidylate synthase, TK = thymidine kinase, 
TMP = thymidine monophosphate, TMPK = thymidine monophosphate kinase, ATP = adenosine triphosphate, 
ADP = adenosine diphosphate, TDP = thymidine diphosphate). 
 

TMPKmt was firstly crystallised in 2001 by Li de la Sierra et al. [110]. Soon after, 3’-azido-3’-

deoxythymidine 5’-O-monophosphate (AZT-MP, 36) was identified as the very first inhibitor of 

TMPKmt (Ki = 10 µM) (Figure 10) [110].  

 
Figure 10. TMPKmt inhibitor 36-39. 
 

TMPKmt does not phosphorylate AZT-MP, possibly due to an interaction of the terminal 

nitrogen of the azido group with a residue in the active site of TMPKmt. This potentially leads to 

less efficient binding of ATP, the cofactor, to the active site [111]. Modifications of the structure 

of compound 36 generally reduced TMPKmt inhibitory activity [112]. On the other hand, some 

nucleoside derivatives, lacking the 5’-monophosphate group, were found to be good TMPKmt 

inhibitors, the better examples being 5-bromo-2’-deoxyuridine (37) and 5’-azido (38) or 5’-

aminothymidine (39) whose Ki were reported to be ranging from 5 to 12 µM (Figure 10). 

The synthesis of 3’-branched nucleosides was also considered by Vanheusden et al., in order to 

investigate the effect of bulky substituents on TMPKmt inhibitory activity [113]. The 

introduction of 3’-azidomethyl- (40), 3’-aminomethyl- (41) and 3’-fluoromethyl (42) substituents 

	  

N

O

ON

O

N3

Na2O3PO

36

N

O

ON

O

OH

R1

R

37: R = Br, R1 = OH;
38: R = CH3, R = N3;
39: R = CH3, R = NH2;



on the thymidylate structure led to the highest affinities for TMPKmt enzyme in this series (Ki 

ranging from 10.5 to 15 µM) (Figure 11A) [113].  

 
Figure 11. 
 
A. TMPKmt inhibitors 40-42 
B. TMPKmt bicyclic inhibitors 43-45 and dinucleoside inhibitor 46. 
C. Optimisation of compound 46 to compound 48. 
D. TMPKmt inhibitor 49.  
 

Deletion of the phosphate group in this series of compounds resulted in a better selectivity 

profile, despite the modest affinity loss, producing promising new leads [112].  

Bicyclic thymidine analogues 43, 44 and di-nucleoside 46 were discovered by serendipity and, 

despite their peculiar structures, these compounds were soon recognised as potent and selective 

TMPKmt inhibitors, showing Ki values of respectively 13.5 µM, 3.5 µM and 37 µM (Figure 

11B) [113].  

The selectivity most likely arises from the unique flexibility of the sugar ring within the 

TMPKmt active site [113]. The potent inhibitory activity of the di-nucleoside 46 was initially 

surprising, due to the lack of any binding site for a second nucleoside in TMPKmt active site. 

Competition experiments performed with TMP and ATP, however, subsequently revealed that 

this compound behaves as a competitive inhibitor of both substrates. In a further study, 

derivative 45, lacking of the 5’-hydroxyl group, resulted as the most potent bicyclic analogues, 

with a TMPKmt Ki value of 2.3 µM [114]. The same compound was also selected to be tested for 

in vitro whole cell assay, resulting in a weak inhibitor of M.tb growth (MIC99 = 100 µM), 

without showing any additional cytotoxicity against VERO cell lines up to a concentration of 

500 µg/mL [114]. 	  

The unexpected activity of di-nucleoside analogue 44 prompted to the synthesis of derivatives 

that could enhance its inhibitory potency. In the optimisation process, one of the two thymidine 
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monomers was replaced by different phenyl groups, and the urea linker group was replaced by a 

thiourea connection (47, Figure 11C) [115]. Within this series of 3’-branched β-thymidine 

derivatives, substituents on the phenyl ring of the 3’-group were found to significantly affect the 

activity of compounds, with lipophilic and electron-withdrawing groups leading to the highest 

potencies. A further optimisation of this initial 3’-modified-β-nucleoside led to the inversion of 

the nucleoside configuration from β to α, switching the 3’-substituent with the 5’-group (48, 

Figure 11C).  

5’-modified-α-analogues showed consistently higher activities compared to the β-counterparts. 

Accompanying this, lipophilic and electron-withdrawing phenyl substituents notably increased 

the inhibitory activity. Molecular modelling confirmed that the superiority of α-analogues 

depended on a more favourable arrangement inside TMPKmt binding pocket. Compound 49 

showed the most promising activity with a Ki value of 0.6 µM, a selectivity index versus TMPKh 

of 600 and a good growth inhibition of M.bovis (MIC99 = 20 µg/mL) (Figure 11D).  The activity 

of 49 on M.tb growth reached a maximum of 39% at a concentration of 6.25 µg/mL.  

In a following study, a successful investigation of acyclic nucleoside analogues as TMPKmt 

inhibitors was conducted by Familiar et al. [116]. From an initial screening this research group 

identified the thymidine acyclic analogue 50 as a micromolar TMPKmt inhibitor (Ki = 42 µM) 

(Figure 36).  

 
 
 
 
 
 
 
 

 
Figure 12. TMPKmt inhibitors 50-52. 
 

Modifications were introduced on the nucleobase moiety, on the distal 1,8-naphthalimide, and on 

the linker between these two groups. The introduction of a (Z)-butenyl linker (51) resulted 

beneficial in terms of activity. The best results were obtained for the naphtholactam containing 

compound 51 and the naphthosultam 52 (Ki = 0.42 µM and Ki = 0.27 µM, respectively) (Figure 

12). Unfortunately no antimycobacterial activity was detected against M.bovis BCG and M.tb up 

to a concentration of 7.5 µg/mL and 32 µg/mL, respectively. 
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Nucleoside analogues with unclear target. 
 

Some initial studies report the synthesis of nucleoside analogues and their evaluation as anti-

mycobacterial agents without a clear identification of the intracellular target. An overview about 

these molecules follows. 

Kumar et al. were the first research group who synthesised nucleoside analogues and tested them 

in in vitro antimycobacterial activity assays [117]. They prepared unnatural deoxyribose, ribose 

and dideoxyribose pyrimidine nucleosides to determine the effects of size and electronegativity 

of groups at C-5, C-2’ and C-3’ on the antimycobacterial activity against M. bovis and M. avium 

[117]. Their hypothesis was that these compounds could interact with mycobacterial enzymes 

involved in the nucleic acid synthesis as inhibitors or competitive substrates, hence altering DNA 

or RNA synthesis [117]. Their efforts yielded some selective inhibitors of M. avium growth: 

compounds 5-(1-hydroxyethyl)-2’-deoxyuridine (53), 5-(1-fluoro-2-chloroethyl)-2’-deoxyuridine 

(54) and 5-(1-fluoro-2-bromoethyl)-2’-deoxyuridine (55) inhibited the M. avium growth up to 

90% with concentrations of 5 µM, similarly to the positive control rifampicin (MIC90 = 2 µg/mL) 

(Figure 13A) [117].  

 

Figure 13. Anti-mycobacterial compounds 53-73. 
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The introduction of an azidovinyl group in position 5 of 2’-deoxyuridine (56) led to moderate 

activity against M.avium (MIC50 = 1-5 µg/mL), although proving to be surprisingly inactive 

against M.bovis and M.tb (Figure 13A) [118].  

5-Dodecynyl (57, 60), 5-tetradecynyl (58) and 5-decynyl (59) derivatives of 2’-deoxyuridine 

and/or 2’-deoxycytidine showed moderate activity against M. bovis growth, with MIC90 values 

ranging from 10 to 50 µg/mL (Figure 13B), while the introduction of either a ribose sugar moiety 

or smaller 5-alkynyl chains induced a decrease in antitubercular activity [119].  

In an attempt to introduce further variability in the nucleoside scaffold, Kumar et al. decided to 

synthesise nucleoside analogues in which the cyclic carbohydrate moiety is replaced with open-

chain “acyclic sugar moieties” [120]. Compounds with similar structure already proved to be 

effective therapeutic agents, possibly due to the ability of the acyclic side chain to mimic the 

interactions of the glycosyl portion with the putative target, although retaining flexibility [121]. 

Moreover this modification stabilizes the nucleoside structure towards phosphorolysis, a 

catabolic process responsible for the glycosidic bond cleavage and further inactivation of 2’-

deoxyuridine analogues [122].  

Within this new series, compounds bearing different 5-(1-azido-2-haloethyl)- substituents (61–

63) on the common 1-(2-hydroxyethoxy)methyl uracil scaffold, were reported to be endowed 

with moderate activity against M.tb (MIC50 = 10 µg/mL) (Figure 13C) [120]. Similar activity was 

retained with the introduction of a 1-[(2-hydroxy-1-(hydroxymethoxy)ethoxy)methyl] moiety as 

acyclic sugar analogue and 5-decynyl and 5-dodecynyl side chain on the uridine structure (64, 

65, Figure 13C) [120]. 

Investigations on other possible sugar modifications that could lead to enhancement in 

antimycobacterial activity of nucleoside analogues afforded 1-β-D-2’-arabinofuranosyl and 1-

(2’-deoxy-2’-fluoro- β-D-ribofuranosyl) pyrimidine nucleosides bearing different sets of alkynyl, 

alkenyl, alkyl and halo substituents at the C-5 position of the uracil [123]. In this series, the 5-

alkynyl derivatives proved the most potent anti-mycobacterial activities, the most active 

structures being 1-β-D-2’-arabinofuranosyl-5-dodecynyluracil (66), 1-(2’-deoxy-2’-fluoro- β-D-

ribofuranosyl)- 5-dodecynyluracil (67) and 1-(2’-deoxy-2’-fluoro- β-D-ribofuranosyl)- 5-

tetradecynyluracil (68), with activity against M.tb and M.bovis close to that of the reference drug 

rifampicin (MIC90 = 1-5 µg/mL), but only low results on M. avium growth inhibition (MIC90 > 



10-50 µM) (Figure 13D) [123]. Very interestingly, these compounds were also found to retain 

sensitivity against a rifampicin-resistant strain of M.tb H37Rv at similar concentrations [123].  

Other C-5-alkynyl uridine derivatives bearing 3’-fluoro-2’,3’-dideoxysugars (69) and 2’,3’-

dideoxysugars (70-73) ranged from potent to modest inhibitors of M.bovis, M.tb and M.avium 

(Figure 13E) [124]. Also in this case, the uridine derivatives bearing 5-alkynyl side chains 

between 10 and 14 carbon atoms in length, showed the best anti-mycobacterial potencies, with 

MIC90 ranging from 1 to 2-50 µg/mL, approaching the reference drug rifampicin, and also 

retaining activity towards a rifampicin-resistant strand of M.tb [124].  

In 2010 the first antimycobacterial in vivo data in a mouse model infected with H37Ra M.tb 

strain were published [125]. After synthesis and antimycobacterial in vitro evaluation of a novel 

series of 5-alkyl and 5-alkyl(or aryl)alkynyl pyrimidines, 5-(2-pyridylethynyl)-uracil (74) was 

selected as a potent candidate for further investigations (Figure 14A) [125]. The promising in 

vitro activity of this compound (MIC50 = 1-5 µg/mL on M.bovis, MIC50 = 5 µg/mL on M.tb] 

prompted to in vivo evaluation of its efficacy in female BALB/c mice infected with H37Ra at a 

dose of 50 mg/kg, formulated in 10% DMSO-saline, by the intraperitoneal route. Drug treatment 

was started five days post infection and was given for 5 weeks (5 days a week). Encouragingly, 

compound 74 caused considerable reduction of the CFU (colony forming units) counts in the 

lungs, liver, and spleen of the drug treated animals compared with those of the untreated 

controls.  

 

n   Key terms 

CFU (colony-forming unit) in microbiology is a rough estimate of the number of viable bacteria 

or fungal cells in a sample. Viable is defined as the ability to multiply via binary fission under 

the controlled conditions. 

 

However, 74 was found to be much less active than isoniazid administered at 25 mg/kg dose, 

although no toxicity was observed in any of the treated mice. In the same study, both the 2’-

deoxyuridine (75) and the 2’-deoxycytidine (76) analogues of 74 were synthesized and their in 

vitro antimycobacterial activity against M.tb showed an improvement (68-70% inhibition at 10 

µg/mL) as compared to 74 (70% inhibition at 50 µg/mL) (Figure 14A) [125]. Compound 76 

demonstrated no cytotoxicity in Huh-7 cells up to a concentration of  > 200 µg/mL, whereas 



compound 75 showed 25% inhibition in cell viability at 200 µg/mL; therefore, 76 was selected to 

test its potency in a mouse model infected with H37Ra mycobacterial strain. Drug treatment was 

carried out similarly to 74. The efficacy of 76 was compared to that of cycloserine at 50 mg/kg 

and isoniazid at 25 mg/kg, which were administered as parallel treatment. Compound 76 showed 

significant activity in three out of five mice (85-90% reduction of the CFU in the lungs) 

compared to the untreated control group and reduced the bacterial load to 50% in four out of five 

mice in the liver tissues. In the spleens, compound 76 was slightly less effective, providing 50% 

inhibition of the CFUs in only three mice. Mice administered with compound 76 at 50 mg/kg for 

5 weeks showed no adverse effects in terms of weight loss, behavioral changes, or in the findings 

of gross necroscopy after the mice were euthanized. Although compound 76 was less active than 

isoniazid both in vitro and in vivo, it exhibited similar in vitro and superior in vivo inhibition of 

mycobacterial replication in all organs (lungs, spleen, liver) as compared to another reference 

drug cycloserine.  
 

Figure 14A-D. Anti-mycobacterial compounds 74-85. 
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concentration of 25 µg/mL, demonstrating higher activity against intramacrophagic 

mycobacteria than extramacrophagic mycobacteria [126]. Moreover, no citotoxicity was found 

up to the highest concentration of compound tested (CC50 > 100-200 µg/mL) [126].  

Further investigations generated in 2012 a series of 5-alkyl(or halo)-3’-azido(amino or halo) 

analogues of pyrimidine nucleosides, of which only 3’-azido-5-ethyl-2’,3’-dideoxyuridine (78), 

was found to have significant antimycobacterial activities against M.bovis, M.tb and M.avium 

(MIC50 ranging from 1 and 5 µg/mL) (Figure 14B) [127].  

In the same year, Kumar et al. reported the synthesis of 5-ethyl and 5-(hydroxymethyl or 

methoxymethyl) substituted pyrimidine analogues. Among these compounds, the 2’-fluorinated 

analogue 79, 1-(3-bromo-2,3-dideoxy-2-fluoro-β-D-arabinofuranosyl)-5-ethyluracil provided 

promising in vitro activity against M.bovis and M.tb alone and in combination with isoniazid 

(MIC50 = 5 µg/mL) (Figure 14B).  

1-(β-D-arabinofuranosyl)-4-thio-5-hydroxymethyluracil (80) displayed the most potent inhibition 

of wild-type H37Ra (MIC50 = 0.5 µg/mL), rifampicin-resistant H37Rv (MIC50 = 1 µg/mL) and 

M.bovis (MIC50 = 1 µg/mL), along with inhibition of M.avium (MIC50 = 10 µg/mL) (Figure 

14B). 

Again in the same year, a different research group published anti-mycobacterial results of a new 

series of 5’-nor carbocyclic uracil derivatives [128]. Carbocyclic nucleosides, despite the 

replacement of the O atom by a methylene group, are still recognised by many receptors and 

enzymes whose natural substrates are nucleosides, and there is evidence of their anticancer and 

antiviral activity [129]. Moreover, they show increased stability towards phosphorylase- and 

glycosylase-induced catabolism. 5’-Nor carbocyclic nucleosides lack of the 5’-hydroxyl group, 

therefore they cannot be phosphorylated by intracellular kinase enymes, resulting in less toxic 

compounds and useful tools for understanding whether phosphorylation of the nucleoside 

analogue is required for antimycobacterial activity. Among this series of 2’,3’-dideoxy-2’,3’-

didehydro-5’-noruridine analogues bearing 4’-hydroxy-2’-cyclopentenyl residues, the racemic 1-

[4’-hydroxy-2’-cyclopentenyl-1’-yl]-5-tetradecynyluracil (81) completely inhibited the growth of 

laboratory sensitive H37Rv at a concentration of 10 µg/mL, retaining activity also on MS-115  

(resistant to rifampicin, isoniazid, streptomycin, ethambutol, pyrazinamide) (Figure 14C). These 

results demonstrate that 5-substituted uracil derivatives should have an alternative mechanism of 



M. tuberculosis inhibition. The activity of the (-) isomer was found to be the highest against the 

H37Rv strain, however comparable with the racemic mixture. 

In 2013, the same research group synthesised a new set of 5-modified derivatives of pyrimidine 

2’-deoxynucleosides containing extended alkyloxymethyl or alkyltriazolidomethyl groups [130]. 

The most active compounds in this series, 5-dodecyloxymethyl-2’-deoxyuridine (82), 5-

decyltriazolidomethyl-2’-deoxyuridine (83), 5-dodecyltriazolidomethyl-2’-deoxyuridine (84) and 

5-dodecyltriazolidomethyl-2’-deoxycytidine (85), inhibited with low MIC99 values (10-50 

µg/mL) the growth of wild-type H37Rv and drug-resistant MS-115 (Figure 14D). 

The cytotoxicity of these compounds was assayed in VERO, A549 and Jurkat cell lines, always 

resulting in LD50 ≥ 100 µg/mL. The introduction of different substituents in 3’ or 5’ positions of 

the sugar moiety (amino-, iodo-, alkylamino-) only slightly affected the antituberculosis activity, 

although it considerably increased the cytotoxicity (up to CD50 = 5 µg/mL). 

 

Future perspective 

 
The need for new anti-TB agents has risen fast in the last few decades, especially due to the 

emergence of MDR and XDR mycobacterial strains. In order to overcome this issue, interest has 

grown in anti-mycobacterial research to identify new targets and novel drugs for TB treatment. 

Nucleoside analogues represent important agents for the treatment of a range of human diseases 

and only recently their potential as anti-mycobacterial agents has emerged. Many nucleoside 

analogues have, in fact, been shown to target enzymes involved in the mycobacterial 

metabolism. These pathways have never been exploited before for the treatment of TB and 

therefore may offer an advantage in terms of overcoming resistance. Although still an evolving 

field of research, the application of nucleoside analogues already shows a great potential to 

become part of the future of anti-TB therapy. Among this class of compounds, several analogues 

have been identified as both potent and selective enzyme inhibitors, whereas others have shown 

potent in vitro anti-mycobacterial activity, although their biological targets have not yet been 

clearly identified. 

Future investigations should aim at translating the enzymatic activity of these compounds in 

antitubercular activity by chemically tuning their pharmacokinetic properties and thus improving 



their mycobacterial cell wall penetration. In this context, effective prodrug approaches should be 

further explored. 

With regards to the nucleoside derivatives whose in vitro activity has not been paralleled by the 

identification of the appropriate targets, efforts should be made to connect their activity with the 

inhibited pathway. This will certainly aid the construction of structure activity relationships in 

order to improve their anti-TB activity.  

The chemistry of nucleoside analogues together with their pharmacokinetic properties and 

toxicological profiles have been thoroughly investigated in the past century. Therefore it is easy 

to anticipate that this knowledge will offer many advantages for their development as anti-TB 

agents. 

 

Executive summary 
 
Tuberculosis:  

• TB is an airborne infectious disease caused mostly by M.tb. 
• It predominantly affects the lungs, but extra pulmonary forms exist. 
•  Approximately eight million people develop active disease each year and 

between two and three million cases of active disease result in death. 
Current treatment and drawback: 

• Different regimens based on three lines drugs exist. 
• Despite the current treatment TB still remains a global threat, due to the 

emergence of multi and extensively resistance M.tb strains.  
• Drug-drug interaction impedes the cure to people with HIV, who are taking 

antiretroviral therapy, whereas the cost and the length of these therapies limit 
their coverage for the less-developed countries.  

• The side effects rangeg from mild to severe and can sometimes even warrant a 
change or end of medication. 

Nucleoside and nucleotides analogues 
• Derivatives of natural nucleosides and nucleotides have become cornerstones 

of treatment for patients with cancer or viral infections. Recently their 
antituberculosis activity was also recognized. 

• Several purine and pyrimidine nucleoside are able to target enzymes 
specifically involved in M.tb metabolism, whereas others proves selective 
toward enzymes from M.tb, but also expressed by the host. These derivatives 
may also be active in M.tb whole-cell assays. 

• Some analogues show activity in whole-cell assay but not target has been yet 
identified for them. 
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MIC (minimum inhibitory concentration) is the lowest concentration of an antimicrobial that 

will inhibit the visible growth of a microorganism usually by the 50% (MIC50) or 90% (MIC90), 

after overnight incubation.  

 

IC50 (half maximal inhibitory concentration) is a measure of the effectiveness of a substance in 

inhibiting a specific biological or biochemical function.  

 

 

 

 

 

 


