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1. Introduction

The implication of partial current information in rational expectations models

was first demonstrated by Lucas (1972) in his "islands story" of spatially separated

markets. There is no doubt that the insights unveiled by Lucas (1972) and Lucas

(1973), have had a major impact on the modern macroeconomic thinking. The

assumption of partial information alters the solution of rational expectations (RE)

models since, current observed variables contain partial information about current

disturbances. The inferences made from this information will in turn, influence the

current state of the system, and hence the observation themselves.

While Lucas’s articles have been widely cited there has been little subsequent

empirical work on macroeconomic models that embed the signal extraction

assumption. Arguably, the most important reason why these papers have not

generated more empirical and numerical results is because specifying and

determining an equilibrium within which agents extract signals from endogenous

variables have proved to be technically complex2.

The method of solving forward-looking RE macro-models conditional on full

past information is widely practised by a variety of computer algorithms. The

problem emerges when the agents’ information set contains all past data and partial

current data. Previous attempts3 at modelling current observed endogenous financial

variables in a macroeconomic model have concentrated on only one observed

endogenous variable – namely the short term rate of interest (Matthews et. al 1994a,

b). The solution method for dealing with more than one observed endogenous

variable has so far been computationally intractable.

                                                                                                                                                                     

2 For some previous attempts on modelling the signal extraction in macro models see for example,
Thomas Sargent (1991), Neil Wallace (1992), Jean-Pascal Benassy (1999,2001), Pearlman et al.
(1986).
3 Methods, using state-space representations and the Kalman filter, for solution in linear models have
been proposed by Pearlman et al. (1986) and Sargent (1991). However, these methods cannot be used
for non-linear models unless linearised around a particular path, which could prove to be
computationally expensive and costly in research time.
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This paper applies a general search algorithm to a macroeconomic model with

an observed interest rate and exchange rate to solve the signal extraction problem.

The algorithm is tested against a linear model with a known analytical solution. The

model is solved numerically and examines the implication of signal extraction for the

interpretation of shocks in a simulation framework. Observation of the current values

of macroeconomic variables is shown to offer a possible explanation of why the

economy might respond ‘paradoxically’ to shocks.

The exposition is organised as follows. The conceptual framework is set out in

section 2. Section 3 describes a stylised open economy macro model with partial

information and shows how the analytical solution is obtained. The algorithm is

outlined in section 4. Section 5 applies the algorithm to a numerical version of the

model and examines the implication of partial current information for the

interpretation of shocks to the model. Section 6 concludes.

 2. The Conceptual Framework

The application of partial current information can be viewed as a solution to

the "ragged edge" problem of forecasting, where the forecaster is aware of the values

of some endogenous variables only with a lag but can observe other current

endogenous variables at the time of forecast. A typical example is the observation of

current interest rates and exchange rates. The framework for the use of observed

endogenous variables in forecasting with a linear model is examined in Wallis (1986),

which applies the properties of the multivariate normal distribution in order to obtain

the optimal forecast.

Consider a general structural form of a linear stochastic econometric model:

ttt GxFy ε=+ (2.1)

where ty is a vector of endogenous variables, tx  is a vector of pre-determined

variables, tε is a vector of stochastic disturbance terms, and F and G are appropriate

matrices of coefficients of the known structural parameters. The stochastic

disturbances are assumed to be normally distributed with mean zero and the

covariance matrix Σ=εε )( T
ttE , where superscript T denotes transpose. Also, each
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stochastic disturbance term is assumed to be uncorrelated with any stochastic

disturbance term at any other point in the sample.

If matrix F is non-singular the structural form (2.1) can be solved for the

endogenous variables as explicit functions of all exogenous variables and stochastic

disturbance terms. Pre-multiplying (2.1) by 1F− and solving for ty  yields the reduced

form:

ttt xy ω+Π= (2.2)

where GF 1−−=Π  and tt F εω 1−= .

The covariance matrix of tω is Ω and is given by:

Ω=Σ== −−−− TTT
tt

T
tt FFFEFE )())(()( 1111 εεωω (2.3)

The reduced form (2.2) uniquely determines the probability distributions of

the endogenous variables, given the exogenous variables, the coefficients, and the

probability distributions of the stochastic disturbance terms.

The equality in (2.3) implies that
TFFΩΣ = (2.4)

showing the relationship between the covariance matrix of the structural form Σ and

that of the reduced form Ω. The assumptions related to the elements of Σ imply that

the forecasting equations are of the form:

tt xy Π=ˆ (2.5)

From (2.2) and (2.5) it immediately follows that, if all future exogenous

variables are treated as known, the one-step-ahead forecast errors tt yy ˆ−  coincide

with the reduced formed disturbances tω .

To differentiate between the variables that are known at the time of the

forecast and those that are not, it is useful to partition the reduced form equation (2.2)

as follows:
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With the elements of the sub-vector ty1  assumed to be known, the optimal

forecast of the unobserved vector ty2 is given by its conditional expectation,

)()|( 11
1

1121212 ttttt xyxyyE Π−ΩΩ+Π= − (2.7)

where the Ω matrix is partitioned as

⎥
⎦

⎤
⎢
⎣

⎡
ΩΩ
ΩΩ

=Ω
2221

1211

Thus, the required forecast is given by the unconditional forecast tx2Π to which it is

added the observed forecast errors tt xy 11 Π− , with coefficients 1
1121
−ΩΩ .

  3. The Theoretical Model

3.1 The Structure of the Model

Consider the following open economy version of the Minford and Peel (1983)

model. The model assumes the existence of a global capital market and partial

information:

ttttttttt uPSPEPERY ++−+−−= + )()( 1 γα (3.1)

tttttt vYYPEPY ++−+−= −1
*)1()( µµβ (3.2)

ttt
d
t RYPM δ−+= (3.3)

tt
s
t MMM εθθ ++−= −1

*)1( (3.4)

1+−= tttt SESR (3.5)

where α, β, µ, δ, γ and θ are all positive real numbers and u, v and ε are random

shocks normally independently distributed with known variances .,, 222
εσσσ vu  Here Y

denotes output, R is the nominal interest rate, P represents the price level, S is the

exchange rate, Md is money demand and Ms denotes money supply. Long -run

equilibrium values of output and money are denoted by Y* and M* respectively.

Following the usual tradition all variables except the interest rate are in logarithms.
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The subscript t indicates time and the mathematical operator Et denotes the

expectation conditional on information available at time t. Consequently, EtPt

represents the current expectation conditional on last period's full data and this

period's partial data.

Equation (3.1) is an open economy version of the IS curve, (3.2) is a Sargent

and Wallace type supply curve which allows for the persistence of shocks, (3.3) is a

conventional money demand function, (3.4) is a money supply rule with a feedback

response θ(Mt-1 - M* ), and (3.5) is the uncovered interest parity condition where the

foreign rate of interest is assumed to be zero for convenience.

The effects of the shocks on the model solutions depend on the signal

extraction agents make. Because they know what the model is, after observing current

endogenous variables Rt and St, agents form an expectation regarding the shocks,

which will be a function of the model parameters and the known variances of the

shocks. To solve the model we first need to get the expressions for the expected

shocks.

3.2 Extracting Signals about Unexpected Shocks

Rational expectations models with expectations based on information

available in the current period assume that agents are aware of all relevant

information, including current innovations. However, in the case of partial current

information their task is more difficult. Agents are limited in their current knowledge

of the economy and they face a signal extraction problem having to estimate the

unobserved current innovations from the observed variables in the system. The

conditional expectations of the innovations will turn out, as discussed below, to be a

linear combination of the two pieces of current information. The first piece of

information is contained in the observation of the interest rate Rt and the second is

contained in the observation of the exchange rate St.

The observed vector of current endogenous variables, Zt, is assumed to be a

function of a deterministic component plus a linear combination of reduced form

shocks. In matrix form it can be written as:
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Although the assumption of linearity regarding the current effects on current one-

period shocks is made to make the solution more tractable, as experience shown, it is

also a good approximation for most non-linear macro models.

The elements in matrix Xt-1, which consist of the long-run equilibrium values

of output and money and their lagged values, are assumed throughout to be contained

in the current individual information set so that )|( 11 −− Φ=Ψ ttt
T ZEX . Matrices Ψ

and K contain elements that are constants derived from the model parameters4.

Taking expectations of (3.6) and noting that Zt = EtZt , we get:

)U(E)|Z(EZ tt
T

1ttt Κ+Φ= − (3.7a)

Subtracting 3.6 from 3.7a yields

0U)U(E t
T

tt
T =Κ−Κ (3.7b)

The conditional expectation of the vector Et(Ut) contains information, which

is revealed in the observation of both Rt and St, that is:

RS
T

tt U)U(E Γ= (3.8)

where

⎥
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1

ttt

ttt
RS SES

RER
U

                                                          
4 This result is valid as long as the variances of the shocks are stable as it is the present case.
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It can be seen that equation 3.8 above has the same interpretation as the

equation 2.7. Intuitively the elements of the Γ matrix can be seen as least-squares

estimates - using the known population variances and covariances - obtained by

regressing the elements of Ut on the vector of unobserved structural form shocks

given by URS. Under the assumption of independence and normality of current

disturbances ut, vt, and εt, the elements of the Γ matrix can be easily determined using

the conditional probability properties for the multivariate normal distribution (see also

Graybill, 1962). Thus,

ΩΩ=Γ − TT KKK 1)( (3.9)

where Ω is a diagonal (3x3) variance-covariance matrix5 given by:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=Ω
2

2

2

00
00
00

εσ
σ

σ

v

u

More explicitly, the general linear solution for the rate of interest and the

exchange rate is of the form:

tttttt CBvAuMYMYR ε+++Ψ+Ψ+Ψ+Ψ= −− 114113
*

12
*

11 (3.10)

tttttt CvBuAMYMYS ε'''
124123

*
22

*
21 +++Ψ+Ψ+Ψ+Ψ= −− (3.11)

and the expected shocks are given by:

)]|S(ES[
'A

)]|R(ER[
A

uE 1ttt
1

1ttt
1

tt −− Φ−
β

+Φ−
α

= (3.12)

)]|([
'

)]|([ 1
2

1
2

−− Φ−+Φ−= tttttttt SES
B

RER
B

vE βα (3.13)

)]|([
'

)]|([ 1
3

1
3

−− Φ−+Φ−= tttttttt SES
C

RER
C

E
βαε (3.14)

                                                          
5 The covariances between the innovations were all set to zero in order to make the solution more
tractable.
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In (3.12) – (3.14) the terms of the unexpected components of the interest rate,

)|( 1−Φ− ttt RER , and exchange rate, )|( 1−Φ− ttt SES , have an obvious regression

interpretation.

3.3 Model Solution

By solving the model given by equations (3.1) – (3.5), the solutions for the

exchange rate and interest rate turn out, as shown in the Appendix A, to be

tttt

tt1ttttt
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1

1vE11
1

1

uE
)1)((
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(3.16)

The solutions for the exchange rate - given by (3.15) - and the interest rate –

given by (3.16) – are a function of the expected shocks which, in turn depend on the

value of the coefficients A, B, C, A', B', C'. To obtain these values we first substitute

the expected values of the innovations given by equations (3.12) - (3.14) into (3.15)

and (3.16). Using the method of undetermined coefficients we obtain:
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where for simplicity we denote:
1)1( −−+= θδδS , 1)( −−+= µαγαT , 1)1( −−+= µδδU , 11 )1()( −− ++= δγαV

Unfortunately the solution for the constants A, B, C, A', B', C' cannot be

written as closed-form expressions because the αi and βi (i=1,2,3) are themselves non-

linear in the constants. However, the system of equations given by (3.17) – (3.22) can

be solved numerically.

4. The Solution Algorithm

This section describes a general search algorithm which, applied to a

macroeconomic model with an observed interest rate R and exchange rate S, solves

the signal extraction problem. The algorithm according to Minford and Webb (2002)

searches over the parameter space for the undetermined coefficients relating the

observed endogenous variables to the unobserved current shocks in a way similar to a

hill-climbing search. The superiority of this method over other search algorithms

resides in its relative simplicity of implementation. The convergence process is also

achieved relatively quickly without a loss in accuracy6.

The solution algorithm searches for the coefficients for which the absolute

differences )]|R(ER[ 1ttt −Φ− and )]|S(ES[ 1ttt −Φ− are both less than a tolerance

level, taking the following steps:

Initialisation. Choose a set of shocks 000 ,, εandvu , a set of initial guesses for the

parameters to be determined, the step variations, and specify a tolerance limit λ.

Construct a base run conditional on information set 1−Φ t from which

)|S(Eand)|R(E 1tt1tt −− ΦΦ  are obtained.

                                                          
6 It is well known that, with large numbers of parameters both grid and normal multidimensional hill-
climbing search, where combinations of parameters are varied, are computationally difficult to
implement.
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Step 1. Using the signal extraction formula given by equation (3.8) compute a set of

expected shocks 000 ,, εEandEvEu .

Step 2. The model is solved conditional on the expected shocks from step 1 and the

solution values obtained for interest rate (EtRt) and exchange rate (EtSt) are retained.

Step 3. With expectations held constant from step 2 the model is simulated for the

actual shocks. Again the solutions for the interest rate - call this R* - and exchange

rate – call this S* are retained.

Step 4. Check if the sum of the absolute differences λ≤−+− |SES||RER| tt
*

tt
* 7.

If the inequality holds, the process stops if it does not, go to step 5.

Step 5. Each initial parameter is varied in turn by plus and minus some percentage of

its initial value and for each of these changes a new set of pairs (R*, EtRt) and (S*,

EtSt) is calculated. Whichever parameter’s movement generates a sum of the absolute

differences that is closer to λ is adopted.

Step 6. With the newly altered parameter set the procedure from step 5 continues until

either the convergence criteria specified at step 4 is achieved, in which case the

algorithm stops, or there is no improvement in the minimisation criteria from step 4,

in which case go to step 7.

Step 7. Once a step variation is exhausted, the search process continues, repeating

steps 4 - 6 for all pre-defined step variations. The algorithm stops if no improvement

in  the minimisation criteria is obtained for the last pre-defined step variation.

The starting values for the parameters were obtained as follows. Given a set of

initial conditions and known fixed exogenous variables a base run on lagged

information was constructed. Next, the model was shocked by a hundred drawings of

innovations – )1.0,0(N,v,u ≈ε  - for each of the three behavioural equations. Finally,
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the model deviation from its base value for each of the two observed endogenous

variables were regressed on the set of drawings of the shocks.

It is worth noting that the values from the regressions obtained in this way are

taken to be only indicative starting values. This is because we assume that the

variance of all three sets of shocks is the same. If the variances were different and, for

example, a noise in one of the innovations predominated, the agents would

misinterpret the effects of the shocks. Such an imperfect signal perception implies

that the actual coefficients could, in such a case, be different. In practice it might be

useful not to impose a tolerance limit but to leave the algorithm to find a minimum.

Thus, if the algorithm finds more than one set of parameters that satisfy the

minimisation criteria from step 4 it will choose the one which is the closest to zero.

Given the initial starting values for the parameters a certain minimisation

number - representing the left-hand side of the inequality from step 4 - is obtained.

Then, according to the pre-defined step variation each of the parameters are

sequentially increased and decreased by the corresponding amount. Thus, if the

number of the parameters to be determined was ‘n’ the programme would generate

‘2n+1’ sets of parameters - including the initial starting values - and for each set a

minimisation criteria would be computed. Each set will contain ‘n-1 ‘of the initial

coefficients and a coefficient changed by the pre-specified percentage, either up or

down. The set corresponding to the lowest absolute value given by the minimisation

criteria is then used for the next iteration replacing the initial starting values in the

input file.

The search process begins with +/– 50% variations in parameter values. The

algorithm uses 6 pre-defined step variations: {50, 25, 10, 5, 2, and 1}%. Once there is

no improvement in the minimisation criteria for a given percentage change the

programme 'jumps' to the next one until a minimum is reached for the last change.

The above values were arbitrarily chosen. They can be easily modified and is

                                                                                                                                                                     
7 It is the sum of the absolute differences that is minimised and not each absolute difference in part due
to massive computational difficulties that arise from number manipulations in the later case.
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advisable to start with a larger percentage change especially when there is no

indication about the area where the final solution set may be.

As with all algorithms there is no guarantee it will find the global maximum.

With a single set of errors the algorithm achieves convergence relatively quickly. But,

there is still a possibility that the parameters obtained in this way represent a local

solution. In order to reduce the likelihood of such an event occurring we used 100

different sets of errors as input files8.

On average, with a 100 sets of shocks the time length varies between 12-15

minutes per iteration and it could take 45-50 iterations. Obviously, the length of the

convergence process is sensible to the initial starting values, the pre-defined

percentage changes, and the load of the system.

5. A Numerical Model

This section describes the solution of the model given by equations (3.1) –

(3.5) for a particular numerical example9. Our objective is to find the unique set of

constants represented by the elements of K that satisfy equation (3.7b).

A constant term (Yc = 10.02) was added to equation (3.1), and the remaining

parameter values of the model were set as:

α = 0.2 β = 0.3 µ = 0.8 δ = 0.5 γ = 0.5 θ = 0.6

The exogenous variables were set as Y* = 10, M* = 1 and the initial conditions

M0 = 0.9, Y0 = 9.5, and S0 = -0.9. The model was solved for 15 periods for forward

rational expectations with the tolerance for successive iterates being arbitrarily set to

0.005. Given the initial conditions and the known set of fixed exogenous variables10

                                                          
8 Now, for one iteration, in the case of ‘n’ parameters, the programme computes (2n+1)x100
minimisation criteria corresponding to each set of shocks for each of the ‘2n+1‘sets of coefficients. For
the same set of coefficients a resulting minimisation criteria is calculated which is taken to be an
average across 100 shocks corresponding values. The computational burden increases somewhat,
nevertheless the time length in which the convergence is achieved is still fairly reasonable.
9 The calculations of this section were executed using an algorithm that solves the rational expectations
models by dynamic programming using the method of terminal conditions as in Minford et al. (1980).
10 The exogenous variables for the base run were fixed to their long–run equilibrium values. The
money supply was held fixed for all simulations.
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we first constructed a base run that is also consistent with the lagged information

expectation.

The second step was to generate the expected innovations using equations

(3.12) – (3.14). The starting values for the elements of matrix K were obtained from

the least squares regression of )]|R(ER[ 1t−Φ−  and )]|S(ES[ 1t−Φ−  on .,, εandvu

For a randomly selected sample size of 100 sets of shocks, the regression coefficients

turned out to be:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=

670439.0658378.0
754112.0218797.0

942497.098555.0
K regression

The model was shocked by the expected innovations to generate the expected

outcome given by a set of data Y, P, R, S, and r, where r is the real rate of interest.

The third step was to shock the model by the actual innovations keeping the

expectations from the previous step fixed. This is because the expectations have

already being formed and cannot be changed in the current period. Of course they

will be altered in the following period once the true nature of the shocks is revealed.

The true values of the elements of K were obtained by algorithmic solution11.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=

902263.0361813.0
707906.0128436.0

931200.0944714.0
K true ,

and the corresponding values of the constants αi and βi (i=1,2,3) are

⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

720866.0686915.0407781.0
234682.0139589.0374271.1trueΓ

The coefficients corresponding to the lower minimisation criteria obtained

using the solution algorithm were

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=

902401.0361822.0
707855.0128313.0

932712.0944675.0
K orithmlga

                                                          
11 It is well known that the Gauss-Seidel method needs good initial guesses otherwise the convergence
may not achieved. And there is still the question regarding the uniqueness of the solution set. We tried
different starting values for which the solution algorithm converged either to the same coefficient
values presented here or to a solution set that was a multiple of them. Multiple solution sets would also
make little economic sense (see also Barro 1980).
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Comparing the two sets of coefficients it can be seen that the algorithm settles

on a set of parameters in the neighbourhood of the true values.

The informational advantage of applying the signal extraction algorithm to all

the current observed endogenous variables is examined in terms of the implication for

a forecasting exercise and the response of the model to various shocks. The paper

proceeds as an exercise on simulation, which identifies some paradoxical responses

due to misperceptions of specific macroeconomic shocks. As an example we examine

the effects on inflation and output of an unanticipated temporary shock to the IS

schedule, a shock to the supply curve, and an expansionary monetary shock.

However, we also examine the implication for forecasting accuracy as discussed in

Appendix C. If the elements of matrix K are the true values of the searched

coefficients then we should observe a gain in the forecasting efficiency under the

assumption of current partial information. The error statistics reported in tables C1

and C2 in Appendix C confirm the improvement in forecasting efficiency.

Tables 5.1 – 5.3 present the results. The first column reports the base run

values, which are of course, the same for all three simulations. Armed with the

information on the two global variables, the interest and exchange rate, and all the

equations of the (global) macro-model the agents form a view of the shocks driving

the observed global variables, which must be consistent with what the model would

produce. This is the expected outcome presented in column 2. But it must also be the

case that the actual shocks, which will in general differ from what they expect, must

via the model produce the same interest rate and exchange rate. This is the actual

outcome shown in column 3. Column 4 reports what happens when the values of Rt

and St are not known in the current period. The results presented in columns 3 and 4

represent the response of output and the price level in the first period, when the shock

occurs. Charts 1 – 6 in Appendix B show the behaviour of output and inflation for the

whole simulation period for the three shocks considered.

All shocks exhibit conventional effects. A positive shock to the IS schedule

raises output and the price level (and thereby inflation). Across the expected and

actual outcome the values of interest and exchange rate are the same. However, as it
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can be seen from Table 5.1 output expands by less and the price level increases by

more than under the assumption of lagged information.

Table 5.1. A Shock to the IS schedule
Actual Shocks12: u = 0.0434, v = 0, ε = 0, Expected Shocks: Eu = 0.0419, Ev = 0.0053, Eε = -0.0057

Base Run Partial Information Partial Information Lagged Information

Expected Outcome Actual Outcome

R 0.1508 0.2087 0.2088 0.1997

Y 9.5995 9.6048 9.6020 9.6046

P 1.3833 1.3937 1.4022 1.4006

R 0.0651 0.1080 0.1081 0.1098

S -0.603 -0.5634 -0.5634 -0.5630

In this case the magnitude of the expected shock to the IS curve, 0.0419, is close to

the magnitude of the actual shock, 0.0434. In addition agents expect a small positive

supply shock and a negative monetary shock which have an overall effect of

dampening the expansion in output – shown in Chart 1 as fraction of a difference

from base - under the assumption of partial information.

Table 5.2 shows the results for an unanticipated negative aggregate supply

shock. The shock is misinterpreted as a combination of negative shocks, with almost

similar weights being assigned to the expected aggregate supply and monetary

shocks. The contraction in output shown in Chart 3 is marginally higher in the partial

information case. Also inflation (Chart 4) raises by slightly more under the partial

information.

                                                          
12 The shocks used here were randomly chosen from three independent )1.0,0(~N
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Table 5.2. Aggregate Supply Shock
Actual Shocks: u = 0, v = -0.0239, ε = 0, Expected Shocks: Eu = -0.0029, Ev = -0.0131, Eε = -0.0115

Base Run Partial Information Partial Information Lagged Information

Expected Outcome Actual Outcome

r 0.1508 0.1545 0.1545 0.1431

Y 9.5995 9.5861 9.5805 9.5820

P 1.3833 1.3892 1.4064 1.4048

R 0.0651 0.0744 0.0745 0.0729

S -0.603 -0.5888 -0.5888 -0.5861

The implication of signal extraction is not so obvious in this case. The

negative supply shock is interpreted as a combination of negative demand, supply and

monetary shocks that broadly produces a similar overall outcome to the lagged

information case.

The results for the current period for an unanticipated increase in the money

supply are shown in Table 5.3. Again the shock is misinterpreted as a combination of

supply, demand, and monetary shocks.

Table 5.3. Money Supply Shock
Actual Shocks: u = 0, v = 0, ε = 0.0298, Expected Shocks: Eu =-0.0039, Ev = 0.0144, Eε = 0.0145

Base Run Partial Information Partial Information Lagged Information

Expected Outcome Actual Outcome

r 0.1508 0.1346 0.1355 0.1326

Y 9.5995 9.6134 9.6058 9.6043

P 1.3833 1.3741 1.3971 1.3991

R 0.0651 0.0464 0.0473 0.0468

S -0.603 -0.6227 -0.6220 -0.6214

However, the size of the expected monetary shock, 0.0145, is half the size of

the actual shock. Moreover the agents expect a relatively large positive aggregate

supply shock. As a consequence, under partial information output increases by more

than under lagged information (Chart 5). Due to the presence of the output persistence

term in the aggregate supply equation it takes 9 quarters for output to come back to its
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long-run equilibrium in the partial information case compared to 6 quarters under

lagged information.

Clearly the knowledge of current partial information can have strong

implications for the short–term properties of the model. Because the expected shocks

are a function of the model parameters and the variances of the shocks, a different

combination of these is likely to impact differently on the behaviour of output and

inflation. A decomposition of the historical shocks could yield useful information

regarding the expectations formation.

The existence of lagged effects in the model implies that the influence of the

expected shocks will persist even after agents have discovered the true nature of the

shocks. This shows the striking complexity in the contemporaneous response of the

economy to shocks. Thus, the global signal extraction process can be viewed as a

further contemporaneous transmission mechanism of shocks, over and above their

direct transmission mechanism.

6. Conclusion

We have presented a simple algorithm for the solution of a rational

expectations model with an observed interest rate and exchange rate which was used

to solve the signal extraction problem. Its implementation is extremely useful in non-

linear models where an analytical solution is difficult to obtain. The algorithm was

tested on a theoretical model with a known analytical solution. Convergence was

achieved without a loss in accuracy in a short number of iterations but this came at no

surprise given the linearity of the model.

There are two potential applications for the use of the algorithm. Firstly, it

may be used to explain the apparent peculiar responses of the economy in some

circumstances. The effects of the shocks being misinterpreted are well known at the

level of everyday comment. A suggestive example would be the behaviour of the UK

economy in 1980 when people misinterpreted the monetary shock as a predominantly

supply shock; an interpretation that may have seriously worsened the recession13.

                                                          
13 See also Matthews and Minford (1986).
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As our simulation exercise has shown, there are potential implications for

policy from the misperceptions of specific macroeconomic shocks. As long as people

do not have full information, the course of the economy is contemporaneously

influenced by what they think are the shocks driving it. Because of the existence of

the lagged effects in the model the persistence of shocks applies not only to their

direct effects but also to their indirect effects due to signal extraction.

Secondly, the signal extraction method could be used to improve the forecasts

of the unobserved endogenous variables over and above that produced by a ‘pure’

model forecast. The results shown here support this view. However, it has to be borne

in mind that in reality the forecasts contain a certain amount of judgement in the form

of residual adjustments to equations. For this reason a good forecast team will always

beat a mechanical method of forecasting14. Even so, the use of partial current

information may be useful as a ‘benchmark’ for gauging relative performance.

                                                          
14 Matthews et al. (2002) apply the algorithm for the solution of partial current information presented
here to a macroeconomic model of the UK for the period 1992q4-2001q4. Their results validate the
conclusion that the algorithm does not add too much to the forecasts made by the forecasting team.
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Appendix A

The derivation of the analytical expressions for the expected interest rate and

exchange rate.

In order to solve for the expected values of Pt, Rt and St, we first equate (3.3)

with (3.4). Substituting the resulting expression for Yt into (3.2) and then taking

expectations yields:

tttttttttt EMMREvEYYPE εθθδµµ ++−=−++−+ −− 1
*

1
* )1()1( (A1)

Equating (3.1) with (3.2) and taking expectations gives us:

ttttttttttttttt vEYYuEPESEPEPERE ++−=++−+−− −+ 1
*

1 )1()()( µµγα (A2)

Taking expectations of (3.5) and then substituting the expression of EtRt into

(A1) and (A2) respectively yields:

0EMM)1(

)SESE(vEYY)1(PE

tt1t
*

1tttttt1t
*

tt

=ε−θ−θ−

−−δ−+µ+µ−+

−

+− (A3)

0)1(

)()(

1
*

11

=−−−−

++−−++−

−

++

ttttt

tttttttttttt

vEYYuE

PESEPEPESESE

µµ
γα

(A4)

Equations (A3) and (A4) provide the solutions for the EtPt and EtSt. Using the

backward operator, B15, equation (A4) can be written as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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α−γ+α−

−
=

⎟⎟
⎠

⎞
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⎝

⎛
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1

tttt1t
*

tttt

B1)(
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B1)(

uEvEYY)1(
PESE (A5)

Noting that an expression of the form 11
1

−− Bλ
 can be expanded into an infinite series

(given that λ<1)

.........1
1

1 221
1 +++++=

−
−−−

−
NN BBB

B
λλλ

λ
  ,

then, the right hand side of (A5) generates an infinite forward expansion. Imposing

the stability condition, the remainder term of the expansion is forced to zero as

N→ ∞. Thus, equation (A5) becomes:

                                                          
15 The backward operator B instructs us to lag only the expected variable but not the date of
expectations, that is B(EtPt)=EtPt-1. For a more detailed explanation of how to solve RE models using
the backward operator B see Sargent (1980).
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since 0janyfor0uE jtt >=+ .
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−
+

+

j
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Substituting for EtPt given by (A7) into (A3) the expression for the exchange

rate turns out to be:
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Using the properties of the backward operator once again and writing each

term of equation (A8) separately we obtain:

Term in Yt:
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Term in Y*:
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Term in M*:
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Term in Mt-1:
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Term in Etut: 1)]1)([( −δ+γ+α (A13)

Term in Etεt: 1)1( −+− δ (A14)

Term in Etvt: ])(1[)1( 11 −− −+−+ µαγαδ (A15)

Substituting equations (A9)-(A15) into (A8) we get the solution for the

exchange rate given by equation (3.15) in the paper.

To obtain the expression for tt RE  we first have to derive a solution for EtPt

which can be obtained by substituting the expression of tt SE ,given by (3.15), into

(A6):
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Taking expectations of (3.3) and (3.4) and then substituting for EtYt – given

by (3.2) - yields the solution for the interest rate as described by (3.17) in the paper.

Using equation (3.9), the constants αi and βi (i=1,2,3) which link the expected shocks

with the unobserved components of interest and exchange rates can be expressed as:
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where ζ1, ζ2, ζ3  are given by:
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Appendix B

Chart 1: Output response to a shock to IS schedule
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Chart 2: Inflation response to a shock to IS schedule
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Chart 3: Output response to a supply shock
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Chart 4: Inflation response to a supply shock
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Chart 5: Output response to a monetary shock
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Chart 6: Inflation response to a monetary shock
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Appendix C

This appendix presents the results of an exercise that reinforce the predictive

superiority of the use of current partial information. We first generated a base run on

lagged information. Next, a set of data consistent with the assumption on expectations

based on lagged information was obtained. The model was then shocked by a

randomly selected 11 sets of innovations to generate the model solved endogenous

variables. The error statistics are reported in Table C1.

Table C1

Error Statistics – Lagged Information Case

Variable Mean Error RMSE Theil

r 0.0609 0.1178 0.3057

Y -0.0084 0.0853 0.0044

P -0.0336 0.1358 0.0496

R 0.0681 0.1115 0.4957

S 0.0723 0.1344 0.1173

The next step was to use the signal extraction method to check if it improves

the forecasts of the unobserved endogenous variables over and above that produced

by the model under the assumption of lagged information. The results are shown in

Table C2 below.

Table C2

Error Statistics – Current Partial Information Case

Variable Mean Error RMSE Theil

r -0.0002 0.0007 0.0016

Y -0.0181 0.0461 0.0024

P 0.0550 0.1399 0.0505

R -0.0002 0.0006 0.0019

S -0.0001 0.0004 0.0003

There is a significant improvement in prediction efficiency in the use of

current partial information. Apart from inflation, which is marginally worse off, there

is a clear gain in the forecasts of all other endogenous variables. This proves the fact

that the use of superior information reduces the expectational errors.




