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Abstract

We use the method of indirect inference, using the bootstrap, to test the Smets and Wouters

model of the EU against a VAR auxiliary equation describing their data. We �nd that their

model generates excessive variance compared with the data. But their model �ts the dynamic
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chosen using New Classical priors (notably excluding shocks to preferences). Both versions
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1 Introduction

In a notable recent contribution Smets and Wouters (2003) proposed a dynamic stochastic general

equilibrium (DSGE) model of the EU which they estimated by Bayesian methods after allowing

for a complete set of pre-specified, but ad hoc, stochastic shocks. They reported that, based

on measures of fit and dynamic performance, their model was superior in performance both to

a Bayesian and a standard VAR. In this paper we look carefully at their innovative model and

review its performance, using a new evaluation procedure that is suitable for either a calibrated

or, as here, an estimated structural model. The method is based on indirect inference. It exploits

the properties of the model’s error processes through bootstrap simulations. We ask whether the

simulated data of a calibrated or an estimated structural model, treated as the null hypothesis,

can explain the actual data where both are represented by the dynamic behaviour of a well-fitting

auxiliary model such as a VAR. Our proposed test statistic is a multi-parameter portmanteau

Wald test that focuses on the structural model’s overall capacity to replicate the data’s dynamic

performance.

The Smets-Wouters (SW) model follows the model of Christiano et al. (2005) for the US but

is fitted to the data using Bayesian estimation methods that allow for a full set of shocks. It is a

New-Keynesian model, i.e. it is based on the New Neo-Keynesian Synthesis involving a basic Real

Business Cycle framework under imperfect competition in which there are menu costs of price and

wage change modelled by Calvo contracts and a backward-looking indexation mechanism; monetary

policy is supplied by an interest-rate setting rule. The effect is to impart a high degree of nominal

rigidity to the model, both of prices and inflation. A central tenet of New-Keynesian authors is

that this is necessary in order to fit the dynamic properties of the data which are characterised

by substantial persistence in output and inflation, and hump-shaped responses to monetary policy

shocks. In this paper we probe this argument. Specifically, we compare the SW model with a

flexprice version in which prices and wages are flexible and there is a physical one quarter lag in

the arrival of macro information. Thus our alternative model is a type of ‘New Classical’ model

(SWNC). We also assess the contribution to the success of their structural model of the ad hoc

structural shocks assumed by Smets and Wouters.

Indirect inference has been widely used in the estimation of structural models, see Smith (1993),

Gregory and Smith (1991, 1993), Gourieroux et al. (1993), Gourieroux and Monfort (1995) and

Canova (2005). Here we make a different use of indirect inference as our aim is to evaluate an

already estimated or calibrated structural model. The common element is the use of an auxiliary

model. In estimation the idea is to choose the parameters of the structural model so that when
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this model is simulated it generates estimates of the auxiliary model similar to those obtained from

actual data. The optimal choice of parameters for the structural model are those that minimise

the distance between a given function of the two sets of estimated coefficients of the auxiliary

model. Common choices of this function are the actual coefficients, the scores or the impulse

response functions. In model evaluation the parameters of the structural model are given. The

aim is to compare the performance of the auxiliary model estimated on simulated data from the

given structural model with the performance of the auxiliary model when estimated from actual

data. The comparison is based on the distributions of the two sets of parameter estimates of the

auxiliary model, or of functions of these estimates.

We find that the properties of the prior distributions of the parameters and the stochastic

shocks, whether assumed or generated from the observed data, are the key element in the success

or failure of both the Smets-Wouters model and our New Classical variant. The more the error

properties conform to New Keynesian priors where there is considerable price stickiness and de-

mand shocks are dominant, the better the Smets-Wouters model performs and the worse our New

Classical is. But, in contrast, the more the errors conform to New Classical priors, the better this

model performs and the worse the Smets-Wouters model is. Further investigation reveals that only

a small degree of price stickiness incorporated in the New Classical model is sufficient to allow it to

fit the data well. This suggests that price stickiness, whilst relevant, is not as important as might

be suggested by the results of Smets and Wouters.

We begin by describing our model evaluation procedure in section 2 and relate it to estimation

by indirect inference. In section 3 we describe the SW model and its findings based on its own

detrended data (which we use throughout this paper). In section 4 we apply our proposed testing

procedure to the model and compare its performance with a New Classical version of the model.

Section 5 compares the New Keynesian and New Classical models and introduces a weighted

combination of the two, and section 6 concludes.

2 Model evaluation by indirect inference

The aim is to evaluate an already estimated or calibrated (DSGE) macroeconomic model by in-

direct inference. By evaluate we mean carry out classical statistical inference on the estimated

or calibrated model. This is related to, but is different from, estimating a macroeconomic model

by indirect inference. The common feature is the use of an auxiliary model in addition to the

structural macroeconomic model. Before considering model evaluation by indirect inference, we

discuss estimation by indirect inference.
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2.1 Estimation

Estimation by indirect inference chooses the parameters of the macroeconomic model so that when

this model is simulated it generates estimates of the auxiliary model similar to those obtained

from the observed data. The optimal choice of parameters for the macroeconomic model are those

that minimize the distance between a given function of the two sets of estimated coefficients of the

auxiliary model. Common choices of this function are (i) the actual coefficients, (ii) the scores, and

(iii) the impulse response functions. In effect, estimation by indirect inference gives the optimal

calibration.

Suppose that yt is an m × 1 vector of observed data, t = 1, ..., T, xt(θ) is an m × 1 vector of

simulated time series generated from the structural macroeconomic model, θ is a k × 1 vector of

the parameters of the macroeconomic model and xt(θ) and yt are assumed to be stationary and

ergodic. The auxiliary model is f [yt, α]. We assume that there exists a particular value of θ given

by θ0 such that {xt(θ0)}
S
s=1 and {yt}

T
t=1 share the same distribution, i.e.

f [xt(θ0), a] = f [yt, α]

where α is the vector of parameters of the auxiliary model.

The likelihood function for the auxiliary model defined for the observed data {yt}
T
t=1 is

LT (yt;α) = ΣT
t=1 log f [yt, α]

The maximum likelihood estimator of α is then

aT = argmax
α

LT (yt;α)

The corresponding likelihood function based on the simulated data {xt(θ)}
S
s=1 is

LS[xt(θ);α] = ΣS
t=1 log f [xt(θ), α]

with

aS(θ) = argmax
a

LS[xt(θ);α]

The simulated quasi maximum likelihood estimator (SQMLE) of θ is

θT,S = argmax
θ

LT [yt;αS(θ)]
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This is the value of θ that produces a value of α that maximises the likelihood function using the

observed data. We suppose that the observed and the simulated data are such that this value of

α satisfies

plim aT = plim aS(θ) = α

hence the assumption that xt(θ) and yt are stationary and ergodic, see Canova (2005). It can then

be shown that

T 1/2(aS(θ)− α) → N [0,Ω(θ)]

Ω(θ) = E[−
∂2L[α(θ)]

∂α2
]−1E[

∂L[α(θ)]

∂α

∂L[α(θ)]

∂α

′

]E[−
∂2L[α(θ)]

∂α2
]−1

The covariance matrix can be obtained either analytically or by bootstrapping the simulations.

The extended method of simulated moments estimator (EMSME) is obtained as follows. Con-

sider the continuous p × 1 vector of functions g(aT ) and g(αS(θ)) which could, for example, be

moments or scores, and let GT (aT ) =
1
T Σ

T
t=1g(aT ) and GS(αS(θ)) =

1
SΣ

S
s=1g(αS(θ)). We require

that aT → αS in probability and that GT (aT )→ GS(αS(θ)) in probability for each θ. The EMSME

is

θT,S = argmin
θ

[GT (aT )−GS(αS(θ))]
′W (θ)[G(aT )−GS(αS(θ))]

2.2 Model evaluation

The parameters of the macroeconomic model and their distributions are now taken as given –

either estimated or calibrated. The aim is to compare the performance of the auxiliary model based

on observed data with its performance based on simulations of the macroeconomic model derived

from the given distributions of the parameters. The test statistic is based on the distributions of

these functions of the parameters of the auxiliary model, or of a function of these parameters. We

choose the auxiliary model to be a VAR and base our test on a function of the VAR coefficients.

Non-rejection of the null hypothesis is taken to indicate that dynamic behaviour of the macro-

economic model is not significantly different from that of the observed data. Rejection is taken to

imply that the macroeconomic model is incorrectly specified. Comparison of the impulse response

functions of the observed and simulated data should reveal in what respects the macroeconomic

model fails to capture the auxiliary model.

A Wald test statistic is obtained as follows. We assume that there exists a particular value of θ

given by θ0 such that {xt(θ0)}
S
s=1 and {yt}

T
t=1 share the same distribution, where S = cT and c ≥ 1.

If θ̂ is the estimated or calibrated value of θ then the null hypothesis can be expressed as H0 : θ̂→

5



θ0. Consider again the continuous p×1 vector of functions g(aT ), g(αS(θ)), GT (aT ) =
1
T Σ

T
t=1g(aT )

and GS(αS(θ)) =
1
SΣ

S
s=1g(αS(θ)). The functions g(.) may be impulse response functions. Given an

auxiliary model and a function of its parameters, our test statistic for evaluating the macroeconomic

model is based on the distribution of GT (aT )−GS(αS(θ̂)). The resulting Wald statistic is

[GT (aT )−GS(αS(θ̂))]
′W (θ̂)[GT (aT )−GS(αS(θ̂))]

where the estimate of the optimal weighting matrix is

W (θ̂) = {[
∂G(α(θ̂))

∂α
]Ω(θ̂)[

∂G(α(θ̂))

∂α
]′}−1

Alternatively, the distribution of GT (aT )−GS(αS(θ̂)) and the Wald statistic can be obtained

using the bootstrap. We take the following steps in our implementation of the Wald test by

bootstrapping:

Step 1: Determine the errors of the economic model conditional on the observed data and θ̂.

Solve the DSGE macroeconomic model for the structural the errors εt given θ̂ and the observed

data. The number of independent structural errors is taken to be less than or equal to the number

of endogenous variables. The errors are not assumed to be Normal

Step 2: Construct the empirical distribution of the structural errors

On the null hypothesis the {εt}
T
t=1 errors are omitted variables. Their empirical distribution is

assumed to be given by these structural errors. The simulated disturbances are drawn from these

errors. In some DSGE models the structural errors are assumed to be generated by autoregressive

processes. This is the case with the SW model; we discuss below the precise assumptions made.

Step 3: Compute the Wald statistic

The test is here based on a comparison of the VAR coefficient vector itself rather than a multi-

valued function of it such as the IRFs. Thus

g(aT )− g(αS(θ)) = aT − αS(θ)

also therefore

GT (aT )−GS(αS(θ̂)) = aT − αS(θ̂)

The distribution of aT − αS(θ̂) and its covariance matrix W (θ̂)−1 are estimated by bootstrapping

αS(θ̂). This proceeds by drawing N bootstrap samples of the structural model, and estimating

the auxiliary VAR on each, thus obtaining N aS(θ̂). This set of vectors represents the sampling
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variation implied by the structural model, enabling its mean, covariance matrix and confidence

bounds to be calculated directly. N is generally set to 1000. We can now compute the properties of

the model and compare them with those of the data; in particular we examine the model’s ability

to encompass the variances of the data. Assuming the model can do so, we go on to compute

the bootstrap Wald statistic [aT − αS(θ̂)]′W (θ̂)[aT − αS(θ̂)]. We also compute this statistic with

a diagonalised covariance matrix; this amounts to the sum of the squared t-statistics of the a

coefficients, taken individually, and can be treated as a measure of the closeness of the estimated

coefficients to the bootstrap means – which we call a ‘joint t-test’ (see below for more details.) It

turns out in what follows that virtually all the model versions we examine fail the Wald test, while

varying with respect to the joint t-test; hence the latter is useful as an overall ranking criterion.

Because the Smets-Wouters model is a log-linearised rational expectations DSGE model, and

hence there is an exact VAR representation of the model, in principle, analytic methods could be

used rather than the bootstrap. Nonetheless, we prefer the bootstrap because we wish to preserve

the actual residuals implied by the structural model. We also draw the shocks by time vector, so

as to preserve their contemporaneous relation.

We use a VAR(1) as our principal auxiliary model to provide a parsimonious description of the

‘dynamic facts’ against which several models may be compared with high power of discrimination

for their ability to match this description. We also look at higher order VARs as supplementary

information but we find they add nothing to our assessments.

2.2.1 The method in visual form:

To illustrate the bootstrap evaluation method and the role of the covariance matrix, we show below

a three-dimensional figure for the parameter distribution of a VAR with just two parameters, for

example inflation and interest rates regressed only on their own individual past (a diagonalised

VAR). Suppose that the model distribution is centred around 0.5, and 0.5; and the data-based

VAR produced values for their partial autocorrelations of 0.1 and 0.9 respectively for inflation and

interest rates – the two VAR coefficients. Suppose too that the 95% range for each was 0—1.0 (a

standard deviation of 0.25) and thus each is accepted individually. If the parameters are uncorre-

lated across samples, then the situation is as illustrated in the 3-D diagram below. The height of

the diagram shows the density of parameter combinations across the samples. Here the mean of

each parameter’s distribution remains constant regardless of the value of the other parameter. Of

course the joint parameter combination will also be accepted because of this independence.

Now consider the case where there is a high positive correlation between the parameter estimates

across samples. Thus suppose that in samples with high inflation autocorrelation we also find high
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interest rate autocorrelation (because of the Fisher effect perhaps). For example Figure 1 illustrates

the case for a 0.9 correlation between the two parameters. The effect of the high correlation

is to create a ‘ridge’ out of the ‘density mountain’. Hence at high values of the interest rate

autocorrelation the mean of the inflation autocorrelation is now increased from 0.5; for example

at an interest rate parameter of 0.9 the mean of the inflation parameter distribution will be 0.86;

the distance of 0.1 from a mean of 0.86 is 3.04 standard deviations. Thus the joint parameter

combination of 0.1,0.9 will be rejected even though individually the two parameters are accepted.

When there are numerous VAR parameters, each pair will have the characteristics just de-

scribed, creating ridges in multiple dimensions. The joint distribution of the VAR parameters will

clearly in general have many such ridges, reflecting the way in which the parameters are jointly

estimated in the various bootstrap samples in order to fit the bootstrap sample data. For exam-

ple, here if we ignore the covariances (diagonalise the covariance matrix), we find that the a large

proportion of the implied joint parameters in the distribution generate instability.

0

0.5

1

-0.200.20.40.60.811.2

0.5

1

1.5

2

2.5

Correlation=0

0

0.5

1

-0.200.20.40.60.811.2

1
2
3
4
5

Correlation=0.9

Figure 1: Bivariate Normal Distributions (0.1, 0.9 shaded) with correlation of 0 and 0.9.
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3 The Smets-Wouters DSGE model of the EU

Following a recent series of papers Smets and Wouters (2003), SW have developed a DSGE model of

the EU. This is in most ways an RBC model but with additional characteristics that make it ‘New

Keynesian’. First there are Calvo wage- and price-setting contracts under imperfect competition

in labour and product markets, together with lagged indexation. Second, there is an interest-rate

setting rule with an inflation target to set inflation. Third, there is habit formation in consumption.

The model is described in full in the Appendix A.

Ten exogenous shocks are added to the model. Eight – technical progress, preferences and

cost-push shocks – are assumed to follow independent AR(1) processes. The whole model is then

estimated using Bayesian procedures on quarterly data for the period 1970q1—1999q2 for seven

euro-area macroeconomic variables: GDP, consumption, investment, employment, the GDP de-

flator, real wages and the nominal interest rate. It is assumed that capital and the rental rate

of capital are not observed. By using Bayesian methods it is possible to combine key calibrated

parameters with sample information. Rather than evaluate the DSGE model based only on its

sample moment statistics, impulse response functions are also used. The moments and the impulse

response functions for the estimated DSGE model are based on the median of ten thousand sim-

ulations of the estimated model. A third-order VAR is fitted to the original data and is used to

provide the impulse response functions for the original data. We now summarise the main findings

of Smets and Wouters.

Comparing the auto-covariances of the VAR and the simulated DSGE model, those from the

VAR are generally quite close to those of the DSGE model. The VAR auto-covariances lie within

the confidence bands of those for the DSGE model; the bands are, however, quite wide, indicating

parameter uncertainty. The main discrepancy concerns the auto-covariances between output and

the expected real interest rate. These are higher in the VAR, but the differences are not significant.

Turning to the impulse response functions for the DSGE model, first we consider the responses

to a positive productivity shock, εat . This causes output, consumption and investment to rise, but

employment and the utilisation of capital to fall. The real wage also rises, but only gradually. The

fall in employment is consistent with evidence on the impulse responses to US productivity shocks,

but is in contrast to the predictions of the standard RBC model without nominal rigidities. A

possible explanation is that, due to the rise in productivity, marginal cost falls on impact and, as

monetary policy does not respond strongly enough to offset this fall, inflation declines gradually.

The estimated reaction of monetary policy to a productivity shock is comparable to results for the

US.
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A positive labour supply shock has a similar effect on output, inflation and the interest rate

to a positive productivity shock. Due to the higher persistence of the labour supply shock, the

real interest rate is not greatly affected. The main differences compared to a standard RBC model

are first that employment also rises in line with output and, second, that the real wage falls

significantly. This fall in the real wage leads to a fall in marginal cost and in inflation. A negative

wage mark-up shock has similar effects to these, except that the real interest rate rises, and real

wages and marginal costs fall more on impact. The effects of a negative price mark-up shock on

output, inflation and interest rates are also similar, but the effects on real marginal cost, real wages

and the rental rate of capital are opposite in sign.

Positive demand shocks generally cause real interest rates to rise. A positive preference shock,

while increasing consumption and output, crowds-out investment. The increase in capacity neces-

sary to satisfy increased demand is delivered by an increase in the utilisation of installed capital

and an increase in employment. Increased consumption demand puts pressure on the prices of the

factors of production, and both the rental rate on capital and the real wage rise thereby putting

upward pressure on marginal cost and inflation.

A positive government expenditure shock raises output initially, but crowds-out consumption

which, due to increases in the marginal utility of working, leads to a greater willingness of house-

holds to work. As a result the effects on real wages, marginal costs and prices are small.

A negative monetary policy shock (increase in the interest rate shock ηRt ) has temporary effects

on all variables apart from the price level, which falls permanently. For the first few periods,

nominal and real short-term interest rates rise, and output, consumption, investment and real

wages fall. The maximum effect on investment is about three times as large as that on consumption.

Overall, these effects are consistent with other evidence on the euro area, though the price effects

in the model are somewhat larger than those estimated in some identified VARs.

A permanent increase in target inflation (
_
πt) does not have a strong effect on output, consump-

tion, employment, the real wage or the real interest rate, although all rise quickly. It has a larger

effect on investment and, of course, causes the price level to rise permanently.

The contribution of each of the structural shocks to variations in the endogenous variables may

be obtained from the forecast error variances at various horizons. At the one-year horizon, output

variations are driven primarily by the preference shock and the monetary policy shock. In the

medium term, both of these shocks continue to dominate, but the two supply shocks (productivity

and labour supply) account for about 20% of the forecast error variance. In the long run, the

labour supply shock dominates, but the monetary policy shock still accounts for about a quarter of

the forecast error in output. The monetary policy shock is transmitted mainly through investment.
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The price and wage mark-up shocks make little contribution to output variability. Taken together,

the two supply shocks, the productivity and the labour shock, account for only 37% of the long-run

forecast error variance of output, which is less than is found in most VAR studies. The limited

importance of productivity shocks, which explain a maximum of 12% of the forecast error variance

of output, is probably due to the negative correlation between output and employment.

In the short run, variations in inflation are mainly driven by price mark-up shocks. This appears

to be a very sluggish process, with inflation only gradually responding to current and expected

changes in marginal cost. In the medium and long run, preference shocks and labour supply shocks

account for about 20% of the variation in inflation, whereas monetary policy shocks account for

about 15%.

In summary, in this study by Smets and Wouters three structural shocks explain a significant

fraction of output, inflation and interest rates at the medium to long-term horizon: the preference

shock, the labour supply shock and the monetary policy shock. In addition, the price mark-up

shock is an important determinant of inflation, but not of output, while the productivity shock

determines about 10% of output variations, but does not affect inflation. Smets and Wouters do

not report corresponding results for government expenditure shocks, though these shocks appear

to have a strong temporary effect on output. This suggests that RBC models, with their focus on

productivity shocks, do not give an adequate representation of the economy, or even of output,

and that the effects of monetary and, possibly, fiscal policy should also be represented in a DSGE

macroeconomic model together with labour supply effects.

Comparing the estimated parameters with those obtained by other studies, their general conclu-

sion is that they are similar. They also report various other tests: They compare the DSGE model

with VAR(p) (where p=1,2,3) and Bayesian VAR(p) through the use of the Marginal Likelihood or

the Bayes factor. They also provide impulse response and variance decomposition analysis. Their

assessment is that the model behaves satisfactorily.

4 Testing the SW Model using the method of indirect in-

ference

We now apply our proposed testing procedure to this model using throughout the same data

for the period 1970—1999 as SW and the same detrended series obtained by taking deviations of

all variables from a mean or a linear trend. We appear to replicate the solution of their model

with reasonable accuracy; the method used is Dynare (Juillard (2001)). The distribution of SW’s

impulse response functions (IRFs) are obtained from repeated draws out of the structural parameter
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posterior distributions. The IRFs of our version of their model have been produced from the median

of the posterior distribution of their structural parameters, using the loglinearised version of their

model that they too used. Of course we cannot know how the IRFs from any particular parameter

combination will compare with their distribution; however the combination of median parameters

might reasonably be expected to produce IRFs that for the most part lie inside the 95% bounds

shown – and this seems to be the case (see Annex Alph@̧section for details).

We begin by estimating a VAR on the observed data, using the five main observable variables:

inflation (quarterly rate), interest rate (rate per quarter), output, investment and consumption

(capital stock, equity returns, and capacity utilisation are all constructed variables, using the

model’s identities; we omit real wages and employment from the VAR) all in units of percent

deviation from trend. We focus on a VAR(1) in order to retain power for our tests, this yields 25

coefficients, apart from constants.

4.1 Evaluating the SW model using SW’s own assumed error properties

Our first evaluation of the SW model in its New Keynesian form (SWNK) uses the error properties

they themselves assumed (i.e. obtained as the posteriors from their Bayesian estimation procedure).

This is an important starting point as the properties they report for the model are based on these

assumptions and not on the actual errors we will discuss shortly (we need to scale their errors

by 0.25). Given that they have estimated the model satisfactorily with these assumed errors, we

would expect it to perform well. This is indeed the case.

We notice first that the model’s variance bounds comfortably encompass all the variables we

focus on. We then find that the model passes the joint t-test with a statistic of 75.7; all the

VAR coefficients bar one lie inside the 95% model bounds. With two marginal exceptions, the

IRFs of the VAR (when identified by the model) also lie within the model bounds (again from

the model bootstrap distribution of VAR coefficients). The two exceptions are the effect of a

consumption shock on inflation and interest rates. Similarly, the gross cross-correlations in the

data largely lie within the model bounds. The exceptions are, however, more serious. The interest

rate autocorrelation structure and the correlation structure from output to interest rates are under-

predicted, as is the correlation structure between consumption and output. Though most of the

discrepancies are modest (less than 0.2), nevertheless the model’s failure to match some IRFs and

cross-correlations presumably accounts for its failure on the Wald statistic.

The variance decomposition is dominated by the shocks to consumer preferences, with the

investment shock contributing also to Q and investment itself. Productivity and monetary shocks

have little effect, underlining the model’s New Keynesian provenance.
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Actual Estimate Lower Bound Upper Bound State t-stat*
AC
C 0.88432 0.67784 2.17487 TRUE -1.29699

AI
C -0.09612 -1.01321 0.71139 TRUE 0.13541

Aπ
C 0.01867 -0.02040 0.20112 TRUE -1.18651

AY
C 0.07935 -0.06675 1.26126 TRUE -1.43262

AR
C -0.00824 -0.05480 0.19518 TRUE -1.24489

AC
I -0.02461 -0.08517 0.12605 TRUE -0.89331
AI
I 0.91856 0.80536 1.04445 TRUE -0.22981

Aπ
I -0.01074 -0.01390 0.01436 TRUE -1.61228

AY
I -0.01190 -0.06222 0.11812 TRUE -0.83873

AR
I -0.00504 -0.01477 0.01963 TRUE -0.85038

AC
π -0.04105 -2.75549 1.36838 TRUE 0.58582
AI
π -0.71538 0.00212 4.65028 FALSE -2.81450

Aπ
π 0.68194 0.33816 0.94001 TRUE 0.05555

AY
π -0.00692 -2.00221 1.50416 TRUE 0.27295

AR
π -0.01605 -0.37265 0.34662 TRUE -0.00606

AC
Y 0.21989 -1.42637 0.58019 TRUE 1.21983

AI
Y 0.38855 -1.10769 1.14039 TRUE 0.64902

Aπ
Y 0.05457 -0.20815 0.08309 TRUE 1.54982

AY
Y 0.93795 -0.55498 1.18992 TRUE 1.32594

AR
Y 0.06281 -0.22013 0.11210 TRUE 1.43788

AC
R -0.37666 -1.83366 0.58254 TRUE 0.40611

AI
R -0.97612 -3.20523 -0.88981 TRUE 1.76556

Aπ
R -0.05704 -0.22694 0.09598 TRUE -0.04928

AY
R -0.40669 -1.84650 0.09677 TRUE 0.85200

AR
R 0.89695 0.60858 0.98785 TRUE 0.91781

Wald Statistic 100 Joint t-test 75.7
*t-stat from bootstrap mean

Table 1: VAR Parameters & Model Bootstrap Bounds (SW model with SW rhos and variances)

Consumption Investment Inflation Output Interest Rate
Actual 5.4711 37.1362 0.2459 3.6085 0.3636
Lower 3.2602 10.5080 0.0453 1.8286 0.1013
Upper 16.4491 101.1404 0.2578 8.6823 0.5723
Mean 7.8083 40.1094 0.1164 4.3093 0.2565

Table 2: Variance of Data and Bootstraps for SW’s Model with SW rhos and variances

Prod Cons Gov Inv Price Int Wage TOTAL
C 0.561 95.276 0.293 2.577 0.092 1.173 0.027 100
I 0.622 79.123 0.036 18.336 0.161 1.689 0.034 100
K 0.499 80.629 0.054 17.609 0.098 1.084 0.028 100
L 3.472 91.455 1.435 2.028 0.105 1.454 0.051 100
π 0.295 95.017 0.033 0.310 3.285 0.880 0.181 100
Q 1.059 51.598 0.007 38.638 0.632 7.973 0.093 100
R 0.447 98.729 0.042 0.325 0.070 0.365 0.021 100
rk 0.546 90.329 0.221 7.749 0.143 0.800 0.212 100
W 0.638 86.600 0.066 7.464 0.699 2.445 2.088 100
Y 0.891 90.848 1.139 4.976 0.159 1.943 0.044 100

Table 3: Variance Decomposition for SW’s Model with SW rhos and variances
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More details can be found in Annex Alph@̧section.

We also find that the SWNC model does badly under these error assumptions – see Annex

Alph@̧section. Thus we can summarise this test as confirming the relatively good model perfor-

mance that SW themselves found with their model under the error posterior assumptions they

made, while rejecting the alternative NC version we have created.

4.2 The New Classical version of SW using error properties chosen to

suit NC priors

A key claim of Smets and Wouters is that the good performance of their model reflects the impor-

tance of price and wage stickiness. In this section we look at a version of SW’s model with flexible

wages and prices in which we add an information lag for labour supply as in the Lucas (1972)

original ‘islands’ model. In some respects the same idea has been picked up in ‘sticky’ information;

the difference is that the ‘stickiness’ of a short lag is solely due to the physical availability (via

collection and publication typically) of macro data and not e.g. to ‘rational inattention’ or other

processing costs – cf Mankiw and Reis (2002) and Sims (2003). Such a model with a one-period

information lag would correspond to the original ideas of ‘New Classical’ macroeconomics in which

prices and wages were assumed to be flexible subject to available information.

Like Smets and Wouters we assume a set of priors about the error properties but, in contrast,

we assume processes in keeping with New Classical thinking. As a result of these changes our

NC alternative is somewhat handicapped. Therefore, apart from our adaptation to NC form, we

adopt SW’s parameters and assume a simpler Taylor Rule of the form Rt−Etπt+1 = 1.5(πt− π
∗)

that better stabilises the NC model than the original SW rule. However it turns out that the

key assumptions are about the errors. We followed many authors of Real Business Cycle models

in assuming zero shocks to consumer and investment preferences; otherwise we simply used the

actual shocks generated by the data and the NC model to find both their variance and their AR

parameters (details of these actual errors are given below), scaling the errors by only 0.7.

The remarkable thing about this exercise is that this SWNC version of the model is also

reasonably compatible with the data. It seems that if one chooses suitable error properties one

can match both NK and NC versions of the model! We find that the data variances of our key

variables all lie inside the model’s 95% bounds. Then the SWNC model passes the joint t-test

with a value of 85.0, with only one VAR coefficient lying outside the 95% bounds. The model’s

variance decomposition is now dominated for real variables by productivity and labour supply

(wage) shocks; and for nominal variables by labour supply and monetary (inflation) shocks. The
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VAR IRFs for real variables under the productivity and labour supply shocks lie outside the model

95% bounds – the model underestimates them. For nominal variables they are close for these

shocks and inside for the monetary shock. The cross-correlations all lie inside the 95% model

bounds, with the exceptions of the cross-correlations with output of both inflation and interest

rates which are somewhat more positive than the model bounds. (Nevertheless these failures are

sufficient, as with SWNK above, to ensure the SWNC model’s rejection by the Wald statistic.)

Thus again we find that SWNC fits reasonably well when the errors are chosen using NC priors;

furthermore the SWNK fits badly under these NC priors – see Annex Alph@̧section.

Actual Estimate Lower Bound Upper Bound State t-stat*
AC
C 0.88432 0.38922 1.00516 TRUE 0.99529

AI
C -0.09612 -0.83115 0.13808 TRUE 1.11278

Aπ
C 0.01867 -0.15051 0.22081 TRUE -0.09127

AY
C 0.07935 -0.31773 0.33397 TRUE 0.42883

AR
C -0.00824 -0.25663 0.33100 TRUE -0.24559

AC
I -0.02461 -0.06432 0.06105 TRUE -0.60798
AI
I 0.91856 0.84056 1.02208 TRUE -0.43247

Aπ
I -0.01074 -0.03590 0.03334 TRUE -0.58558

AY
I -0.01190 -0.04825 0.07188 TRUE -0.70474

AR
I -0.00504 -0.05913 0.05865 TRUE -0.19061

AC
π -0.04105 -0.11680 1.21684 TRUE -1.87390
AI
π -0.71538 0.39292 2.45209 FALSE -4.10970

Aπ
π 0.68194 0.59311 1.31572 TRUE -1.56029

AY
π -0.00692 -0.13882 1.09768 TRUE -1.62757

AR
π -0.01605 -0.27846 1.01944 TRUE -1.15563

AC
Y 0.21989 -0.09905 0.43690 TRUE 0.37025

AI
Y 0.38855 -0.03180 0.76454 TRUE 0.12325

Aπ
Y 0.05457 -0.18409 0.13951 TRUE 0.90608

AY
Y 0.93795 0.54713 1.06406 TRUE 0.81169

AR
Y 0.06281 -0.30796 0.22601 TRUE 0.67308

AC
R -0.37666 -1.23808 -0.19850 TRUE 1.19908

AI
R -0.97612 -2.70167 -0.90465 TRUE 1.84734

Aπ
R -0.05704 -0.40124 0.21020 TRUE 0.21640

AY
R -0.40669 -1.12134 -0.07573 TRUE 0.80559

AR
R 0.89695 0.02191 1.00569 TRUE 1.41461

Wald Statistic 100.0 Joint t-test 85.0
*t-stat from bootstrap mean

Table 4: VAR Parameters & Model Bootstrap Bounds (SWNC Model with NC Priors)

Consumption Investment Inflation Output Interest Rate
Actual 5.4711 37.1362 0.2459 3.6085 0.3636
Lower 0.6578 4.8250 0.0986 0.5769 0.1910
Upper 6.4263 56.6121 0.3985 5.3142 0.6991
Mean 2.3265 20.6644 0.2055 1.9926 0.3864

Table 5: Variance of Data and Bootstraps for SWNC Model with NC Priors
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Prod Gov Monetary Labour Supply TOTAL
C 35.621 0.388 0.032 63.959 100
I 30.511 0.240 0.001 69.248 100
K 36.036 0.141 0.000 63.823 100
L 25.702 2.225 0.046 72.026 100
π 2.543 0.643 84.751 12.064 100
Q 18.231 1.804 0.759 79.206 100
R 8.928 2.185 46.138 42.749 100
rk 32.623 0.686 0.010 66.681 100
W 83.989 0.163 0.002 15.846 100
Y 34.674 1.190 0.025 64.111 100

Table 6: Variance Decompositon for SWNCl Model with NC Priors

4.3 The actual disturbances implied by the model compared with the

assumed errors

So far we have supplied both the NK and NC versions of the SW model with essentially imaginary

error properties, chosen by assumption. We now turn to the actual errors derived from using the

observed data. We calculate the model’s structural errors, that is the error in each equation given

the actual data and the expected variables in it.

Under our procedure the exact way to derive these structural residuals is to back them out

of the equations and the data. For certain equations expected variables do not enter and so the

structural residuals can be backed out directly from the equations and the data. However, when

expected variables enter an equation, these have to be derived from the model in order to back out

the residuals.

The exact way to derive these is to solve the model conditional on available information each

period; but in doing so we must include in the model the time-series processes governing the errors.

However, we have to estimate these time-series processes. This introduces an inexact element since

in order to estimate them we need to know what the structural residuals are; but we cannot know

these without knowing the time-series processes already.

One way to solve this problem is to iterate to a fixed point between the error processes used

to project the model expectations and the resulting errors found when these expectations are used

to calculate them. It is however possible that there is no unique fixed point, given that we do not

know the order of the ARMA process governing the errors. Thus under this method we could find

the wrong residuals unless we can be confident there is a unique fixed point.

An alternative procedure is to use the fact that under the null hypothesis the data will be

driven by the structural model. This model inclusive of the unknown error processes has a VAR

representation which we can and have estimated directly and efficiently as our auxiliary equation.

This estimated VAR will when projected provide an efficient estimate of the rational expectation of
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future variables. The residuals can then be calculated given these estimates. Thus instead of trying

to estimate the error processes jointly with the expectations we estimate the expectations directly.

Having done so we can back out the residuals and directly estimate their time-series processes. The

resulting residuals will now contain an extra random error equal to the expectations error (due to

the difference between estimated VAR and the true VAR implied by the structural model and the

true error processes) but we can reasonably suppose that this will be small relative to the scale of

the true residual itself.

This is the method we have used here, in preference to the iterative alternative above. Some

experiments with this alternative produced implausibly wild residuals, presumably because of this

interaction of the error processes with the expectations.

It should also be noted that we excluded the first 20 error observations from the sample because

of extreme values; we also smoothed two extreme error values in Q. Thus our sample for both

bootstraps and data estimation was 98 quarters, i.e. 1975q1—1999q2.

The results of our procedure are shown in Figure 2. There are six behavioural errors: con-

sumption, investment, productivity, interest rates (monetary policy), wage- and price-setting, and

one exogenous process, government spending, which only enters into the goods market-clearing

equation (or ‘GDP identity’). The first error is that of the Euler equation and has a standard

error of 0.5%, roughly half as much again as assumed by SW (see Canzoneri et al. (2007) on the

peculiarities of actual Euler equation errors), that for investment in the second has a standard

error of 1.2%, around ten times that assumed by SW. Furthermore the AR coefficients (ρs) of the

structural residuals are very different; there is hardly any persistence in the estimated residuals for

consumption and investment, unlike the high persistence assumed by SW. In contrast, the actual

inflation and Taylor Rule errors are persistent and do not have zero ρs, as assumed. The Table

below shows the comparison between SW’s assumed shocks and those shown in the graphs below.

These differences will turn out to be an important factor in the tests we will carry out.

Variances Cons Inv Inflation Wage Gov Prod Tayl rle
Data var 0.260 1.520 0.0007 0.278 0.141 0.091 0.227

SW var 0.088 0.017 0.026 0.081 0.108 0.375 0.017
Ratio 2.95 89.41 0.03 3.43 1.31 0.24 13.35

ρ
Data −0.101 0.063 0.154 −0.038 0.751 0.940 0.565

SW 0.886 0.917 0 0 0.956 0.828 0

Table 7: Variances of innovations and AR Coefficients (rhos) of shocks (data-generated v. SW
assumed shocks)
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Figure 2: Single Equation Errors from SW Model

Using the actual errors we proceeded to bootstrap their model again.1 The resulting variables’

bootstrap variances are massively in excess of the variances of the observed data – about 16

times larger. Thus the model fails to replicate the data in a rather basic way. Such findings are

not uncommon in models with calibrated parameters especially where, as here, tight bounds are

placed on the model variances to adjust them to match, say, the overall variance of GDP. Under

such a procedure it would be open to the authors to assume that the latent errors simply need to

be scaled down – this was what we did above with the assumed error properties.

The problem is more serious when the structural residuals are used. The inability of the model

to capture the scale of the variances of the data represents a real model failure. In order to take

further tests seriously we need to have a means to set the poor variance fit on one side. We do

1 Needless to say, none of the above discussion on estimating the structural residuals has anything to do with
how the model is solved for given shocks once the residuals and their time-series processes have been estimated and
built into the model. The solution method here follows the standard dynare procedure.
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so by notionally dividing the effect of the model disturbances into two parts: the impact effect

and the effect through lags of both the errors and the endogenous variables. We could think of

the model’s failure as reflecting the excessive size of the impact effect. We could then scale down

this impact effect, assuming that some misspecification could be isolated that is responsible for

its excessive size. We can then investigate the models’ lag effects or ‘transmission process’ – as

summarised in the VAR coefficients. We note that the impact effect results from the whole model

structure and whatever misspecification is responsible will also affect the lag transmission process.

Nevertheless we suppose for purposes of further investigation alone that it would be possible to

modify the impact effect while maintaining the transmission process.2 Our scaling procedure is

the same for all errors. We choose the scaling factor separately for each model version in such a

way that the 95% bounds on the bootstraps contain the variances of the data. For the SW model

as above the scaling factor needed is 0.25. In the context of SW’s methods we can think of this as

choosing lower error standard deviations by this amount.

4.4 The SW New Keynesian model using actual errors

Here we take the structural residuals implied by the data and base the model’s behaviour on these.

We then re-estimate the error processes with new autoregressive parameters (ρs). Bootstrapping

their random components – drawing them as vectors to preserve any dependence between them

– we get the results in Table 8 below. We have scaled the errors by 0.25; although the variances

of the errors are much higher than SW’s, their autocorrelation is far less so that the two effects

cancel out in terms of the model’s simulated variances.

The results are rather mixed. The model passes the joint t-test with a value of 93.6. However,

it cannot reproduce the data variances, even with the heavy scaling we have used (Table 9). For

interest rates the data variance lies very far above the model’s upper bound; while for investment

it lies rather below the model’s lower bound. Out of the four VAR coefficients that lie outside

their 95% bounds, three concern interest rate effects, as one might expect from the model’s failure

to capture the variance of the interest rate. The fourth concerns investment, for which the model

variance is greatly excessive.

2 Let the model be given by Ayt = MEtyt+1 + Nyt−1 + ut, where ut = Φut−1 + ǫt. This can be transformed
into yt = A−1MB−1yt + A−1NLyt + A−1ut; where L is the lag operator and B−1 is the forward operator
leading the variable while keeping the date of expectations constant (here at t). Assume that the model satisfies
the saddlepath Blanchard-Kahn conditions (with f forward and l backward roots), then we can rewrite it as
f∏

i=1

(1 − γiB
−1)

l∏

j=1

(1 − λjL)yt = K(L;M,N,A)ut. Here we note that K is a function of all the parameters of

the model, as well as involving lags of the errors produced by the backward roots and current values of the errors
produced by the forward roots. We can solve for yt in terms of the current shocks and its own lagged values by
projecting the forward roots onto the errors and then projecting all the backward roots, as well as error autoregressive
roots, onto yt. It is clear that the impact effect, just like the transmission effect, comes from the complete parameter
set.
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Actual Estimate Lower Bound Upper Bound State t-stat*
AC
C 0.88432 -0.72761 1.56433 TRUE 0.72681

AI
C -0.09612 -3.67952 1.97243 TRUE 0.52460

Aπ
C 0.01867 -0.25012 0.15093 TRUE 0.63888

AY
C 0.07935 -1.18984 0.97379 TRUE 0.32915

AR
C -0.00824 -0.10728 0.07514 TRUE 0.20002

AC
I -0.02461 -0.12365 0.02746 TRUE 0.49674
AI
I 0.91856 0.59652 0.96120 TRUE 1.49397

Aπ
I -0.01074 -0.01690 0.00811 TRUE -1.04404

AY
I -0.01190 -0.08305 0.05315 TRUE 0.02955

AR
I -0.00504 -0.00099 0.00983 FALSE -3.34577

AC
π -0.04105 -0.63612 2.05088 TRUE -1.17884
AI
π -0.71538 1.97340 9.92243 FALSE -3.58523

Aπ
π 0.68194 0.54220 1.11755 TRUE -1.41208

AY
π -0.00692 -0.36242 2.13874 TRUE -1.51517

AR
π -0.01605 -0.08937 0.11765 TRUE -0.53770

AC
Y 0.21989 -0.81029 1.85980 TRUE -0.36596

AI
Y 0.38855 -2.35381 4.09609 TRUE -0.23243

Aπ
Y 0.05457 -0.16908 0.27962 TRUE 0.03882

AY
Y 0.93795 -0.32156 2.14998 TRUE 0.09489

AR
Y 0.06281 -0.11977 0.08366 TRUE 1.50196

AC
R -0.37666 -4.28405 -0.20281 TRUE 1.75415

AI
R -0.97612 -7.78487 1.53307 TRUE 0.89647

Aπ
R -0.05704 -0.65743 -0.00702 TRUE 1.62513

AY
R -0.40669 -4.19901 -0.44180 FALSE 1.99106

AR
R 0.89695 0.45640 0.75317 FALSE 3.78248

Wald Statistic 100.0 Joint t-test 93.6
*t-stat from bootstrap mean

Table 8: VAR Parameters & Model Bootstrap Bounds (SW with estimated rhos)

Consumption Investment Inflation Output Interest Rate
Actual 5.4711 37.1362 0.2459 3.6085 0.3636
Lower 3.5651 47.5781 0.0745 3.3518 0.0244
Upper 23.6006 409.0063 0.3819 22.1150 0.0808
Mean 10.2900 168.5409 0.1857 9.8493 0.0442

Table 9: Variance of Data and Bootstraps for SW’s Model (with estimated rhos)

Prod Cons Gov Inv Price Int Wage TOTAL
C 2.875 0.163 0.007 0.056 0.033 96.845 0.021 100
I 1.361 0.000 0.003 0.586 0.037 97.995 0.017 100
K 2.521 0.000 0.004 0.376 0.034 97.044 0.021 100
L 2.612 0.161 0.296 0.063 0.031 96.806 0.032 100
π 0.651 0.002 0.003 0.010 1.739 97.426 0.168 100
Q 0.140 0.005 0.002 0.075 0.042 99.724 0.012 100
R 6.430 1.099 0.190 0.137 0.399 91.511 0.234 100
rk 1.333 0.047 0.077 0.255 0.074 97.977 0.236 100
W 2.515 0.003 0.002 0.060 0.114 96.580 0.727 100
Y 2.565 0.108 0.196 0.077 0.034 97.001 0.020 100

Table 10: Variance Decompositon for SW model (with estimated rhos)

20



Turning to the VAR IRFs it can be seen (Annex Alph@̧section) that rejections are scattered

across the five variables in our VAR and also across the structural shocks. In particular, we find

that the interest rate responses are well outside their permitted bounds for most shocks. This is

consistent with the model’s failure to capture the variance of the interest rate. We show a number

of these below.

Figure 3: Interest Rate Responses to Various Shocks with 95% Bounds (SWNK with actual errors)

The cross-correlations (see Annex Alph@̧section) reveal that the model underpredicts the au-

tocorrelation of consumption and badly underpredicts the positive data cross-correlations of both

consumption and investment with output (both from lagged output to consumption and investment

and from lagged consumption and investment to output).

It is therefore not surprising that this model is rejected on the Wald statistic. What seems to

be undermining the model’s performance is the virtual elimination of the autocorrelation in both

the main demand shocks, consumption and investment. This is what generates the poor prediction

of the persistence and cross-correlations for the real variables. It also produces too little interest

rate variation because inflation and so interest rates respond less to less persistent shocks. The

overwhelmingly dominant shock is now that to the Taylor Rule, because it has a high variance (it

includes all the shocks to potential output) as well as moderate persistence.
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Thus in summary the SWNK model fails in several important ways to match the data, once

actual error behaviour is substituted for assumed behaviour. The reason is the drop in persistence

of the actual demand shocks compared with SW’s assumed shocks.

4.5 The New Classical Version of SW using actual errors

Here we used the same SWNC model as above but with the full set of actual errors. The model now

requires scaling by 0.67. It passes the joint t-test with a value of 76.8. However like SWNK this

too cannot match the individual variable variances well. It overpredicts both inflation and interest

rate variances both of which lie rather below the model’s lower 95% bound. This is reflected

in the four VAR coefficients that lie outside their bounds: the cross-effects from inflation and

interest rates to consumption and from inflation on interest rates, all of which the model makes

excessively negative, and the partial autocorrelation of interest rates which the model greatly

underpredicts. The excessive variation in inflation and associated interest rates produces low

interest rate persistence; and the model generates from it high negatively correlated responses of

consumption.

The same story shows up in the IRFs. The dominant shocks on real variables are now the

labour supply (wage) and productivity shocks while for nominal variables they are consumption,

monetary and labour supply. We find that the responses of consumption and output to labour

supply and productivity lie well outside the rather narrow model 95% bounds, reflecting the model’s

inadequate variance for these. Those for interest rates and inflation start in or close to the bounds;

but thereafter they die off more slowly in the data than in the model – see Figure 4
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Actual Estimate Lower Bound Upper Bound State t-stat*
AC
C 0.88432 0.52259 1.18525 TRUE 0.12292

AI
C -0.09612 -0.96369 1.27543 TRUE -0.42842

Aπ
C 0.01867 -0.97493 -0.01531 FALSE 1.96524

AY
C 0.07935 -0.17288 0.45474 TRUE -0.36065

AR
C -0.00824 -1.23870 -0.03653 FALSE 1.97025

AC
I -0.02461 -0.06602 0.04563 TRUE -0.69450
AI
I 0.91856 0.68911 1.07953 TRUE 0.19148

Aπ
I -0.01074 -0.07240 0.09956 TRUE -0.49211

AY
I -0.01190 -0.04235 0.05387 TRUE -0.76602

AR
I -0.00504 -0.08904 0.12880 TRUE -0.37198

AC
π -0.04105 -0.94409 1.02284 TRUE -0.29536
AI
π -0.71538 -2.79046 4.28830 TRUE -0.92632

Aπ
π 0.68194 0.16140 3.20631 TRUE -1.45758

AY
π -0.00692 -0.84830 1.03652 TRUE -0.30382

AR
π -0.01605 -0.60757 3.17618 TRUE -1.52104

AC
Y 0.21989 -0.31978 0.50850 TRUE 0.56298

AI
Y 0.38855 -1.38295 1.34478 TRUE 0.53247

Aπ
Y 0.05457 -0.35789 0.84976 TRUE -0.60112

AY
Y 0.93795 0.38835 1.13783 TRUE 0.85587

AR
Y 0.06281 -0.39085 1.05363 TRUE -0.64525

AC
R -0.37666 -0.81912 0.73652 TRUE -0.80463

AI
R -0.97612 -3.31798 2.22810 TRUE -0.18695

Aπ
R -0.05704 -2.57757 -0.25199 FALSE 2.37433

AY
R -0.40669 -0.78257 0.66123 TRUE -0.81601

AR
R 0.89695 -2.64767 0.23123 FALSE 2.91387

Wald Statistic 100.0 Joint t-test 76.8
*t-stat from bootstrap mean

Table 11: VAR Parameters & Model Bootstrap Bounds (SWNC Model)

Consumption Investment Inflation Output Interest Rate
Actual 5.4711 37.1362 0.2459 3.6085 0.3636
Lower 0.7330 9.8999 0.4497 0.6434 0.6906
Upper 6.8787 84.0695 0.9583 5.6327 1.4368
Mean 2.4783 34.5926 0.6678 2.2226 1.0270

Table 12: Variance of Data and Bootstraps for SWNC Model

Prod Cons Gov Inv Price Wage TOTAL
C 35.360 0.237 0.385 0.495 0.032 63.491 100
I 27.903 0.060 0.219 8.488 0.001 63.329 100
K 34.697 0.027 0.135 3.689 0.000 61.451 100
L 25.517 0.278 2.209 0.442 0.046 71.508 100
π 1.739 31.512 0.440 0.083 57.973 8.252 100
Q 15.320 13.421 1.516 2.547 0.638 66.558 100
R 5.607 36.900 1.372 0.301 28.975 26.846 100
rk 31.196 0.090 0.656 4.285 0.010 63.763 100
W 83.085 0.022 0.161 1.053 0.002 15.675 100
Y 34.437 0.152 1.182 0.531 0.025 63.673 100

Table 13: Variance Decompositon for SWNC Model
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Figure 4: Labour Supply Shock to New Classical Version of SW

We can see the same story too in the cross-correlations. Here the autocorrelations of con-

sumption and output, and also their cross-correlations are picked up well by the model; even

though it underpredicts their variance, it has no trouble with their dynamic patterns. However,

for inflation and interest rates the model greatly underpredicts their autocorrelations, and also

their cross-correlations with output. The excessive variance of both the former due to the model’s

price-flexibility does not produce enough correlation with persistent output.

So in summary the new classical version of the model too fails to match the data – and is also

rejected on the Wald statistic. Here the reason is that the substantial demand shocks produce high

variance in inflation and interest rates; because these shocks die out quickly they also produce too

little persistence to match the data for these.

If we compare the New Classical with the New Keynesian versions of SW we may note that

in SWNC supply shocks determine real variables while demand shocks determine nominal ones;

whereas in SWNK demand shocks dominate both real and nominal variables. SW’s original NK

model assumed highly persistent demand shocks and these were helpful in matching the data’s

dynamic patterns. However, withdraw the persistence of these shocks, as we find in the actual

errors, and the NK model fails – essentially because it cannot generate enough persistence in

real variables. As for the NC version, these demand shocks retain high variance together with low

persistence; and this produces the same patterns in nominal variables which now fail to match the
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data. Real variables are well-matched by the model’s response to persistent supply shocks.

4.6 Robustness tests treating the data in alternative ways

We have placed much emphasis on the actual errors implied by the model and the data. This raises

the issue of whether the errors are affected in any important way by alternative ways of treating

the data. One major issue is that of filtering the data to obtain approximate stationarity. SW

simply take out a constant and linear trend. However, this leaves one data-series on the borderline

of trend-stationarity: viz wages, though this is not included in our VAR while its error has virtually

no autocorrelation. We redid the exercise using the Hodrick-Prescott filter.

Another question that arises is whether the data were affected by non-stochastic elements

which acted in the same way as ‘trend’ factors. Thus we could attempt some division of the errors

into ‘non-stochastic’ (once-for-all events) and stochastic (repetitive events). This is similar to the

idea of detrending in the sense that it removes elements that are not properly components of the

business cycle. To do this accurately would require us to specify what these once-for-all events

were and remove their effects both from the model and from the data, just as in principle we do for

‘trend’. Such one-off events over the EU’s history include waves of new membership and German

reunification. In another check we redid the exercise after regressing the SW data on a set of

dummies for idnetifiable events of this sort – we then took these dummy effects out of the data

and used the adjusted data from that point.

Results of both these checks are reported in our annexes from Annex Alph@̧section to Annex

Alph@̧section; they make no material difference to our results.

5 Comparing the New Keynesian and New Classical ver-

sions of the SW model – a weighted combination?

In this paper we have sought to test the SW model and to assess its capacity to replicate dynamic

features of the data as compared with a quite different model. Such a comparison makes sense if

there is still significant controversy about what type of model should be used, and it matters both

for understanding events and for making policy. SW made certain prior modelling choices, some of

which remain controversial within macroeconomics. One of these was their main innovation, the

assumptions relating to the degree of price and wage rigidity in their model. We have re-examined

the implications of these assumptions at some length by positing a New Classical version of their

DSGE model which does not have price and wage stickiness.
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We found that the properties of the errors are the key element in the success or failure of

both SWNK and SWNC in these tests. The more the error properties conform to NK priors, with

dominant demand shocks, the better the SWNK model performs and the worse the SWNC does. In

contrast, the more the errors conform to New Classical priors, the better the SWNC performs and

the worse SWNK does. When the error properties are derived from observed data, both models

have difficulty fitting the data, though SWNC model is probably the closest to doing so. What is

the explanation for these results?

In the SWNK model, because capacity utilisation is flexible, demand shocks (consumption/

investment/money) dominate output and – via the Phillips Curve – inflation, then – via the

Taylor Rule – interest rates. Supply shocks (productivity, labour supply, wages/inflation mark-

ups) play a minor role as ‘cost-push’ inflation shocks as they do not directly affect output. Persistent

demand shocks raise ‘Q’ persistently and produce an ‘investment boom’ which, via demand effects,

reinforces itself. Thus the model acts as a ‘multiplier/accelerator’ of demand shocks. Demand

shocks therefore dominate the model, both for real and nominal variables. Moreover, in order to

obtain good model performance for real and nominal data, these demand shocks need to be of

sufficient size and persistence.

In the SWNC model an inelastic labour supply causes output variation to be dominated by

supply shocks (productivity and labour supply) and investment/consumption to react to output in

a standard RBC manner. These reactions, together with demand shocks, create market-clearing

movements in real interest rates and – via the Taylor rule – in inflation. Supply shocks are prime

movers of all variables in the SWNC model, while demand shocks add to the variability of nominal

variables. In order to mimic real variability and persistence suitably sized and persistent supply

shocks are needed, but to mimic the limited variability in inflation and interest rates only a limited

variance in demand shocks is required; and to mimic their persistence the supply shocks must be

sufficiently autocorrelated.

The observed demand shocks have too little persistence to capture the variability of real vari-

ables in the SWNK model, but they generate too much variability in nominal variables in the

SWNC model. The observed supply shocks matter little for the SWNK but are about right in

size and persistence for the real variables in the SWNC. The implication is that the flexibility of

prices and wages may lie somewhere between New Keynesian and the New Classical models. For

example, adding a degree of price and wage stickiness to the SWNC model would bring down the

variance of nominal variables, and boost that of real variables in the model.

A natural way to look at this is to assume that wage and price setters find themselves supplying

labour and intermediate output partly in a competitive market with price/wage flexibility, and
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partly in a market with imperfect competition. We can assume that the size of each sector depends

on the facts of competition and do not vary in our sample. The degree of imperfect competition

could differ between labour and product markets. For the exercise here we will initially assume

that it is the same in each market and given by a single free parameter, v. This implies that the

price and wage equations will be a weighted average of the SWNK and SWNC equations, with

the weights respectively of (1 − v) and v. We will also assume that the monetary authority uses

this parameter to weight its New Keynesian and New Classical Taylor Rules as we have found

that different rules work best for a competitive (NC) model and an imperfect competition (NK)

economy. In practice we can think of the weight v as giving the extent of the NC (competitive)

share of the economy.

We now choose a value of v for which the combined model is closest to matching the data

variances while also passing the joint t-test. This is an informal use of indirect inference which

provides a broader criterion which better reflects our concerns with the models’ perfomance than

simply applying a Wald score to, for example, the VAR coefficients. The optimal value turns out

to be 0.94. This implies quite a small NK sector of only 6% of the economy, but it is sufficient

to bring the overall economy’s properties close to the dynamic facts. We allowed the weight to be

further varied around this to generate an optimum performance: in labour markets (vw = 0.08),

product markets (vp = 0.06), and monetary policy (vm = 0.04). We now consider how good a fit

this is.

The key difference is the ability of the model to replicate the variances in the data. No scaling

of the shocks is required and all the data variances lie within the model’s 95% bounds (Table

15). The model therefore satisfies the necessary basic conditions for us to take it seriously: it

produces behaviour of the right size for both real and nominal variables when the structural errors

are generated from the model using the observed data and are not rescaled.

The joint t-test is 90.8 with just three VAR coefficients lying outside their 95% bounds. The

main discrepancy is the partial autocorrelation of interest rates which the model underpredicts.

The other two coefficients involve the cross-effects of inflation and interest rates on consumption,

which are marginally outside their bounds.

The variance decomposition of real variables is now heavily skewed towards being caused by

supply shocks with 75% of the output variance being due in the model to labour supply and

productivity shocks. In contrast, nominal variables are dominated by demand shocks with 74% of

the variance of inflation due in the model to the shocks to the Taylor Rule. Being the sum of a

real variable and expected inflation, about one thirds of the variance of nominal interest rates is

due to productivity and labour supply shocks, with virtually all the remainder due to shocks to
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Actual Estimate Lower Bound Upper Bound State t-stat*
AC
C 0.88432 0.26572 1.02827 TRUE 1.17662

AI
C -0.09612 -0.92015 1.19403 TRUE -0.39647

Aπ
C 0.01867 -0.30244 0.08489 TRUE 1.27573

AY
C 0.07935 -0.36553 0.28805 TRUE 0.72452

AR
C -0.00824 -0.33625 -0.00284 TRUE 1.83460

AC
I -0.02461 -0.06640 0.06491 TRUE -0.75793
AI
I 0.91856 0.68054 1.05976 TRUE 0.30909

Aπ
I -0.01074 -0.02810 0.05323 TRUE -1.14494

AY
I -0.01190 -0.04254 0.07168 TRUE -0.91032

AR
I -0.00504 -0.01937 0.04928 TRUE -1.13906

AC
π -0.04105 -0.28473 1.84441 TRUE -1.51365
AI
π -0.71538 -1.68976 4.13846 TRUE -1.38882

Aπ
π 0.68194 0.44617 1.57336 TRUE -1.23414

AY
π -0.00692 0.08981 1.93824 FALSE -2.00415

AR
π -0.01605 0.10374 1.04049 FALSE -2.51828

AC
Y 0.21989 -0.27066 0.71764 TRUE 0.03638

AI
Y 0.38855 -1.34895 1.33299 TRUE 0.50045

Aπ
Y 0.05457 -0.25489 0.27741 TRUE 0.25731

AY
Y 0.93795 0.38837 1.25734 TRUE 0.42118

AR
Y 0.06281 -0.19508 0.25990 TRUE 0.19567

AC
R -0.37666 -2.04721 0.26606 TRUE 0.87186

AI
R -0.97612 -4.17678 2.09513 TRUE 0.07900

Aπ
R -0.05704 -1.05222 0.07775 TRUE 1.45411

AY
R -0.40669 -2.12602 -0.15480 TRUE 1.28935

AR
R 0.89695 -0.52286 0.45459 FALSE 3.79338

Wald Statistic 100.0 Joint t-test 90.8
*t-stat from bootstrap mean

Table 14: VAR Parameters & Model Bootstrap Bounds (Weighted Model)

Consumption Investment Inflation Output Interest Rate
Actual 5.4711 37.1362 0.2459 3.6085 0.3636
Lower 1.7200 20.7905 0.2292 1.5284 0.2036
Upper 13.7364 172.3241 0.8405 11.3359 0.7146
Mean 5.0452 69.2529 0.4425 4.4535 0.3764

Table 15: Variance of Data and Bootstraps for the Weighted Model

Prod Cons Gov Inv Price Lab. Supply Wage SW Taylor Rule TOTAL
C 26.041 6.513 0.413 2.903 0.068 49.568 0.000 14.494 100
I 13.792 0.054 0.158 34.390 0.003 33.683 0.000 17.920 100
K 20.767 0.033 0.121 18.648 0.002 39.724 0.000 20.706 100
L 22.861 4.391 6.197 2.762 0.033 54.190 0.000 9.566 100
π 1.087 11.414 0.556 0.469 6.091 6.246 0.002 74.135 100
Q 9.344 5.299 1.284 12.582 1.428 43.131 0.001 26.931 100
R 5.141 20.320 2.297 2.421 6.155 27.080 0.011 36.574 100
rk 8.240 32.100 1.832 9.411 0.960 17.745 0.004 29.708 100
W 14.806 36.872 0.182 2.092 1.301 9.770 0.008 34.969 100
Y 24.531 4.518 3.780 3.538 0.052 48.228 0.000 15.352 100

Table 16: Variance Decompositon for Weighted Model
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the Taylor Rule (a quarter) and to other demand shocks.

The model bounds for the VAR impulse response functions enclose many of the data-based

IRFs for the three key shocks: labour supply, productivity and shocks to the Taylor Rule. The

main discrepancies in response to supply shocks are the longer-term predictions of interest rates

and inflation which in the data wander further from equilibrium than in the model. Again, apart

from the longer-term interest rate predictions, all data-based IRFs for the Taylor Rule demand

shock lie inside; these are (as we saw from the VAR coefficient) a lot more persistent in the data

than in the model. Hence the model performance based on the IRFs is fairly good, with the main

weakness in the interest rate prediction. However, the failures on the IRFs that we observe can

plausibly account for the model’s failure on the Wald statistic, in common with all versions of the

model we have examined.
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Figure 5: Taylor Rule Shock to Weighted Model
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Figure 6: Productivity Shock to Weighted Model

Looking at cross-correlations for the real variables, we find, as for the New Classical model alone,

that the data-based correlations all lie inside the model’s bounds. Now, however, the weights on

SWNK wage, price and Taylor rule equations, although small, produce behaviour in the nominal

variables that is almost within the 95% bounds of the weighted model (only the interest rate cross-

correlation with output lies much outside). Again, this marginal failure is consistent with the Wald

statistic overall rejection of the model.
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Figure 7: Cross-Correlations for weighted model (C=consumption, I=investment, P=inflation,
Y=output, R=nominal interest rate)

To summarise, we find that small weights on SWNK wage, price and interest rate equations

suffice to get the mixed New Classical-New Keynesian model to pass most of our tests. There

are still some failures, so that the problem of finding a fully satisfactory specification remains,

as indicated by the continued failure to pass the overall Wald statistic. Nonetheless, within the

specifications at our disposal here, we can say that the EU economy appears to be closest to a New

Classical specification.

We note that these methods could be applied to other features of Smets and Wouters’s model.

The method of indirect inference permits a variety of explorations of alternative modelling choices

while maintaining the overarching DSGE framework. It is possible that it is simply too hard for a

DSGE model to pass the tests we propose here (the viewpoint of Canova (1994) and also an early
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viewpoint of Lucas and Prescott cited in Evans and Honkapohja (2005) for example). But in our

experiments here the DSGE models we look at come close enough in some cases to suggest that

this is too pessimistic a view.

6 Conclusion

In this paper we have applied the method of indirect inference to testing an influential DSGE

model for the EU created by Smets and Wouters (2003). In many key respects this model follows

an approach developed by Christiano et al. (2005) for the US. Using indirect inference a structural

model’s parameters may be chosen to optimise its capacity to replicate the parameters of an auxil-

iary time-series model whose role is to describe the data parsimoniously. Instead of using indirect

inference to estimate the model, here we use it to test the model by deriving the small sample

distribution of our test statistic under the null hypothesis that a calibrated or estimated structural

DSGE model is correct. The DSGE model’s errors are recovered and used for bootstrapping (after

whitening); the resulting pseudo-samples are used to obtain the sampling distribution it implies for

the parameters of the auxiliary time series model. The test then consists of determining whether

functions of the parameters of the time-series (VAR) model estimated on the actual data lie within

some confidence interval of this distribution. We use a joint t-test and a Wald test statistic to

evaluate the overall fit of the DSGE model to the whole set of VAR parameters.

Our interest in conducting such a test lies in our wish to discriminate between very different

models’ capacities to embrace the dynamic behaviour of the data; in particular New Keynesian

models with substantial nominal rigidity as compared with models with flexible prices. We found

that the SW model in any form exhibits greatly excessive volatility compared with the data. If

this mispecification is dealt with by rescaling to match the data variances, then much depends on

the error properties used in the testing process. If one uses SW’s assumed error properties (but

rescaled) then their model fits the data reasonably well, which is consistent with their own findings,

but the New Classical version fails. If, however, one uses New Classical priors, which emphasise

price flexibility and supply shocks, then the New Classical version fits reasonably and SW’s New

Keynesian model fails. If the actual error properties are assumed then both models have difficulties

fitting the data variances. The New Keynesian produces too little variation in nominal variables

(especially interest rates) and too much in real variables; in contrast, the New Classical model has

too much variation in nominal and too little in real variables. When the two models are artificially

combined, and the weight on the NC formulation is dominant at over 90%, the combined model

passes most of our tests. This suggests that only some minor modification of the NC to allow for a
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degree of nominal rigidity is required in order to get close to fitting the dynamic facts. Nevertheless

more work has to be done to get even this model to fit entirely satisfactorily, as ultimately tested

by the overall Wald statistic.

These preliminary explorations in testing a large DSGE model raise two main issues that require

further work. First, Smets and Wouters estimated their model using Bayesian methods. This relies

on priors about the error distributions, whereas our classical testing procedure is based on solving

the model using the observed data. This leads to different conclusions. It would be helpful to gain

a better understanding of how the two approaches may be made compatible. Second, we have

found faults with the SW model’s structure (in all the versions examined) which suggests the need

for further work on model specification.
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Appendix A The Smets-Wouters model

Households

The household utility function is

U

(
cit, nit,

Mit

Pt

)
=



(cit − hcit−1)

1−σc

1− σc
−
nit

1+σnεnt
1 + σn

+

(
Mit

Pt

)1−σm
εmt

1− σm


 εBt

where cit, nit, and Mit

Pit
denote the consumption, work and real money balances of the ith household,

the εit, (i = B,n,m) are preference shocks, and Pt is the general price level. The term hct−1 is

to capture consumption habits, where ct is aggregate consumption. The real household budget

constraint is

Mit

Pt
+ pBt

Bit

Pt
=
Mt−1

Pt−1
+
Bi,t−1

Pt−1
+ yit − cit − iit

where bonds Bit are one-period securities with a price of pBt . Total household income is

yit = witnit + ait + rkt zitki,t−1 −Ψ(zit) ki,t−1 + dit

where wit is the real wage rate, kit is the capital stock, rkt is the rate of return to capital, the

term rkt zitki,t−1 − Ψ(zit)ki,t−1 represents income from capital after depreciation, zit is capacity

utilisation and dit is dividend income.

The resulting Euler equation is

Et

[
β
λt+1
λt

RtPt
Pt+1

]
= 1

where Rt is the gross nominal rate of return on bonds (Rt =
1
pBt

) and λt is the marginal utility of

consumption:

λt = (ct − hct−1)
−σcεBt

The demand for money is

(
Mt

Pt

)−σm
εmt = (ct − hct−1)

−σc −
1

Rt

Households are assumed to act as price setters in the labour market. Their nominal wages are

given by

Wit =

(
Pt−1
Pt−2

)γ

Wi,t−1

36



Households set their nominal wages to maximise their inter-temporal objective function subject to

their budget constraint and the demand for labour which is given by

nit =

(
Wit

Wt

)− 1+λw,t

λw,t

nt

where nt the aggregate labour demand and Wt, the aggregate nominal wage, are given by

nt =
[∫ 1
0
(nit)

1
1+λw,t di

]1+λw,t

Wt =
[∫ 1
0 (Wit)

−
1

λw,t di
]−λw,t

and

λw,t = λw + ηwt

and ηwt is an i.i.d. shock.

The result of this maximisation is the following mark-up equation for the re-optimised wage:

˜
wt

Pt
EtΣ

∞

s=0β
sξsw

(
Pt/Pt−1

Pt+s/Pt+s−1

)γ
ni,t+sUc,t+s

1 + λw,t+s
= EtΣ

∞

s=0β
sξswni,t+sUn,t+s

where
˜
wt is the new optimal nominal wage, ξw = 0 if wages are perfectly flexible. The real wage

is a mark-up 1 + λw,t over the current ratio of the marginal disutility of labour to the marginal

utility of an additional unit of consumption. As a result, the aggregate wage satisfies

W
−

1
λw

t = ξ

[
Wt−1(

Pt−1
Pt−2

)γ
]− 1

λw

+ (1− ξ)
˜
w
−

1
λw

t

Households, who own firms, choose the capital stock and investment to maximise their inter-

temporal subject to their budget constraint and the capital accumulation condition

kt = (1− δ)kt−1 + I

(
itεit
it−1

)
it

where I(
itε

i
t

it−1
) is an adjustment cost function, and εit is an investment shock determined by the

autoregression

εit = ρεit−1 + ηit
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The first-order conditions are

Qt = Et

[
β
λt+1
λt

[
Qt+1(1− δ) + zt+1r

k
t+1 −Ψ(zt+1)

]]

1 = QtI
′

(
itε

i
t

it−1

)(
itε

i
t

it−1

)
+ βEtQt+1

λt+1
λt

(
it+1εit+1

it

)(
it+1εit+1

it

)(
it+1
it

)

rkt+1 = Ψ′(zt)

where Qt is the value of installed capital.

Firms

It is assumed that there is a single final competitive good and a continuum of monopolistically

produced intermediate goods indexed by j, where j is distributed over the unit interval (j ∈ [0, 1]).

The final good is produced by

yt =

[∫ 1
0
y
j 1
1+λp,t

t dj

]1+λp,t

where yjt is the intermediate good and νt is a mark-up generated by

λp,t = λp + ηpt

where ηpt is an i.i.d. shock. Cost minimisation gives the demand function for intermediate goods

as

yjt =

(
pjt
Pt

)−1+λp,t

λp,t

yt

and the final goods price level which is

Pt =
[∫ 1
0
(pjt)

−
1

λp,t dj
]−λp,t

where pjt are the prices of intermediate goods.

Intermediate goods are produced using the technology

yjt = (ztkj,t−1)
αN1−α

j,t εat −Φ

where Nj,t is an index of different types of labour used by firms, Φ is a fixed cost and εat is the

productivity shock. Cost minimisation implies that

WtNj,t

rkt ztkj,t−1
=

1− α

α
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The firm’s marginal cost is

MCt =
1

εat
W 1−α

t

(
rkt
)a [

α−α(1− α)−(1−α)
]

which is independent of the intermediate good produced. Nominal firm profits are

πj,t = (pjt −MCt)

(
pjt
Pt

)−1+λp,t
λp,t

yt −MCtΦ

Firms are assumed to be able to re-optimise their price randomly with probability 1− ξp as in

the Calvo model. The optimal price
˜
pt is obtained from the first-order condition

EtΣ
∞

s=0β
sξspλt+syj,t+s

[
˜
pt
Pt

(
Pt+s−1/Pt−1
Pt+s/Pt

)γ

− (1 + λp,t+s)
MCt+s

Pt+s

]
= 0

which shows that the optimal price is a function of future marginal costs, and is a mark-up over

them unless λp = 0. The general price index therefore satisfies

P
−

1
λp,t

t = ξp

(
Pt−1(

Pt−1
Pt−2

)λp
)− 1

λp,t

+ (1− ξp)
˜
pt
−

1
λp,t

Market equilibrium

Final goods market equilibrium satisfies the national income constraint

yt = ct + it + gt +Ψ(zt)kt−1

Solution

We solve the model in its log-linearised form with DYNARE. The errors named in the text are

given as follows

ǫBt = Preference Shock ηnt = Labour Preference Shock
ǫit = Investment Shock ηwt = Wage Mark-up Shock

ηQt = Equity Shock ǫgt = Government Spending Shock
ǫat = Productivity Shock π̄t = Inflation Objective Shock
ηpt = Price Mark-up Shock ηRt = Monetary Shock
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Log-linearised model

For the empirical analysis by SW the model is log-linearised around its non-stochastic steady-

state. Denoting log-deviations about equilibrium by a caret ˆ, and noting that variables dated

t+ 1 are rational expectations, the log-linearised model is

ĉt =
h

1 + h
ĉt−1 +

1

1 + h
ĉt+1 −

1− h

(1 + h)σc

[(
R̂t − π̂t+1

)
+
(
ε̂bt − ε̂

b
t+1

)]

ı̂t =
1

1 + β
ı̂t−1 +

β

1 + β
ı̂t+1 +

ϕ

1 + β
Q̂t + βε̂it − ε̂

i
t

Q̂t = −
(
R̂t − π̂t+1

)
+

1− δ

1− δ +
_
r
k
Q̂t+1 +

_
r
k

1− δ +
_
r
k
r̂kt + η̂Qt

π̂t =
ν

1 + βγp
π̂t−1 +

β

1 + βγp
π̂t+1 +

(1− βξp)(1− ξp)

(1 + βγp)ξp

[
αr̂kt + (1− α)ŵt − ε̂

a
t + ηpt

]

ŵt =
1

1 + β
ŵt−1 +

β

1 + β
ŵt+1 +

γw
1 + β

π̂t−1 −
1 + βγw
1 + β

π̂t +
β

1 + β
π̂t+1

−
(1− βξw)(1− ξw)

(1 + β)
[
1 + (1+λw)σn

λw

]
ξw

[
ŵt − σnN̂t −

σc
1− h

(ĉt − hĉt−1)− ε̂
n
t − η

w
t

]

N̂t = −ŵt + (1 +Ψ)r̂kt + k̂t−1

ŷt = (1− δky − gy)ĉt + δky ı̂t + gyε̂
g
t = φ[ε̂gt + αk̂t−1 + αψr̂kt + (1− α)N̂t

R̂t = ρR̂t−1 + (1− ρ)
[_
πt + rπ

(
π̂t−1 −

_
πt
)
+ ryŷt

]
+ r∆π (π̂t − π̂t−1) + r∆y (ŷt − ŷt−1)

−raη
a
t − rnη

n
t + ηRt

where ϕ = I ′′−1, β = (1 − δ +
_
r
k
)−1, ψ = Ψ′(1)

Ψ′′(1) ,
_
πt is the inflation target and the equations

include various parameters which are long-run average values. Thus, there are nine endogenous

variables and ten independent shocks. Five of the shocks arise from technology and preferences

(εat , ε
i
t, ε

b
t , ε

n
t , ε

g
t ) which are generated by first-order autogressive processes, three are cost-push

shocks (ηwt , η
p
t , η

Q
t ) which are i.i.d. shocks and two are monetary shocks (

_
πt, η

R
t ).
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