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Can behavioral �nance models account for
historical asset prices?

Rhys ap Gwilym 1

Bangor Business School, Bangor University, Hen Goleg, Bangor, Gwynedd, LL57
2DG, Wales, UK

Abstract

I construct a behavioral model of asset pricing in which agents choose whether to
base their expectations on chartist or fundamental forecasts. I simulate the model
in order to test its e¢ cacy in explaining the moments and time series properties of
the FTSE All-Share index, and �nd that the model cannot be rejected as the data
generating process.

JEL classi�cation: G12, D03
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1 Introduction

In a recent paper, Meenagh, Minford and Peel (2007) test an e¢ cient markets
model of the FTSE and conclude that,

�the hypothesis of e¢ ciency, if constructed to incorporate the possibility of
extreme events, can mimic the behavior of the FTSE. It remains to be seen
if the same is true of alternative hypotheses, such as behavioral �nance�

In this paper, I respond to that challenge by showing that a simple behavioral
model can account for all of the time series properties of the FTSE All-Share
Index.
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There is, in fact, widespread evidence that �nancial market practitioners make
use of a variety of forecasting techniques, both technical analysis and funda-
mental analysis, in forming their investment decisions. Furthermore, in con-
tradiction to the e¢ cient markets hypothesis (EMH), evidence suggests that
technical analysis is often pro�table (see Park and Irwin (2007) for a review
of the literature).

Behavioral �nance theory accounts for this phenomenon through the presence
of an additional source of risk in the market, often known as noise trader risk
(see De Long et al (1990) for the seminal account). This ine¢ ciency is caused
by traders using simple, heuristical forecasting rules in preference to basing
their expectations on an analysis of the fundamentals. Such forecasting rules
may be self-reinforcing because the ine¢ ciency they create may make their
use more pro�table than fundamental analysis.

Behavioral �nance models have been shown to be e¤ective in accounting for
many of the famous puzzles in the �nance literature. For example, Benartzi
and Thaler (1995) show how loss aversion can explain the equity premium
puzzle. However, to date, there has never been an attempt to test whether
behavioral models can explain all of the features of an asset price series.

2 A Behavioral Asset Pricing Model

The model that I test is a development of the behavioral model used by De
Grauwe and Grimaldi (2006) (henceforth, DGG) to model the exchange rate.
I have chosen this model for two reasons. Firstly, it models noise trader risk
explicitly, using a simple and general forecasting rule. Secondly, DGG use the
model to explain the entire time series properties of an asset market rather
than particular anomalies (though they consider the exchange rate market,
and only make general comparisons to the dynamics of real world markets,
rather than providing a full test).

In this model, heterogeneous agents make a portfolio choice in order to maxi-
mize their utility. However, the expectations on which they base their choice
are not rational in the conventional sense, but based on one of two simple
heuristical rules. Agents choose to base their expectations either on a funda-
mental model of the asset price, or on a technical (or chartist) analysis of past
asset price movements. Their choice of which rule to apply depends upon the
past pro�tability of the rules. In this way the model can be viewed as being
evolutionarily rational.
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2.1 Details and Characteristics of the Model

Heterogenous agents choose the portfolio of risky and riskless assets that max-
imizes their utility. Utility is a mean-variance function of wealth, based on the
forecasting rule, i, that the agent employs:

U (Wi;t+1) = Ei;t (Wi;t+1)�
1

2
�Vi;t (Wi;t+1) (1)

Agents face the wealth constraint:

Wi;t+1 = Pt+1di;t + (1 + r)(Wi;t � Ptdi;t) (2)

where � is the coe¢ cient of risk aversion, di;t is the quantity of the risky asset
held from period t until t + 1, and (Wi;t � Ptdi;t) is therefore the holdings of
the risk free asset.

It is straightforward to derive that the optimal holding of the risky asset
is equal to its risk adjusted expected excess return. By aggregating across all
agent types I get the market demand function. Setting this equal to the supply
of the asset, which is normalized to zero, gives rise to the market clearing price
in period t:

Pt =

X
i=f;c

wi;tEi;t(Pt+1)

�Vi;t(Pt+1)

(1 + r)
X
i=f;c

wi;t
�Vi;t(Pt+1)

+ �t �t � iid(0; ��) (3)

where wi;t is the proportion of people who use forecasting rule i in time period
t. �t is a white noise pricing error.

The essence of the model is the forecasting rules that individuals use. They
choose between two possible rules. The fundamentalist rule forecasts that the
market price will move towards its fundamental value, P �, during the next
period, unless it is already close to the fundamental, de�ned by the bounds
�C:

Ef;t (Pt+1)=Pt�1 �  (Pt�1 � P �t�1) where(Pt�1 � P �t�1) > C (4)
=Pt�1 where(Pt�1 � P �t�1) 6 C (5)

We can think of C as a band of uncertainty around the fundamental price. It
is only when the gap between the actual asset price and its fundamental value
is large enough (greater than C) that fundamentalists take an active trading
position.
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The chartist rule, on the other hand, simply extrapolates the previous move-
ments of the market rate:

Ec;t (Pt+1) = Pt�1 + �
1X
j=1

�j�1(1� �)�Pt�j (6)

Neither of these expectations forming processes is rational in the conventional
sense. The contention of behavioral economics is that the level of complexity in
the real world makes it impossible for agents to fully comprehend the markets
in which they trade. In such a world, the ex-ante use of simple rules such
as those in this model may constitute a best response. However, even in a
complex world, the ex-post assessment of trading rules is relatively cheap.
Some limited rationality is therefore imposed in the form of an evolutionary
switching procedure based on the ex-post pro�tability of the competing rules.
Agents are assumed to assess the ex-post risk adjusted pro�tability, �

0
i;t, of

each of the forecasting rules and then select the rule that they will use in the
next period. Hence, the proportions of agents using each of the rules develops
according to the following identities:

wf;t=
exp(�

0
f;t)

exp(�
0
f;t) + exp(�

0
c;t)

(7)

wc;t=
exp(�

0
c;t)

exp(�
0
f;t) + exp(�

0
c;t)

(8)

�
0

i;t=�i;t � ��2i;t (9)

�i;t= [Pt�1 � (1 + r)Pt�2]:sign [Ei;t�1(Pt)� (1 + r)Pt�1] (10)

�2i;t=
1X
j=1

�j�1(1� �) [Ei;t�j�1 (Pt�j)� Pt�j]
2 (11)

where wf;t is the proportion of agents at time t using the fundamentalist rule
and wc;t is the proportion using the chartist rule.  is a parameter measuring
the intensity of revision of the forecasting rules. If  = 0 then agents never
change the forecasting rule that they use, and exactly half the population uses
each rule. As  approaches in�nity all agents switch immediately to the rule
that was most pro�table in the preceding period. For all intermediate values
agents switch between rules, but only sluggishly. This suggests some form of
status quo bias, as suggested by Tversky and Kahneman (1974).

The tension between the simple heuristical rules produces the type of complex
dynamics that are characteristic of many asset price series in the real world:
fat tails, excess kurtosis and GARCH properties.
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3 The Test Procedure and Data

We can think of the fundamental price on which fundamentalists base their
expectations as being akin to a rational expectation of the asset price. In other
words, it is a discounted sum of the future cash�ows arising from ownership
of the asset. In the case of equities, this is equivalent to the discounted sum
of future pro�ts.

I can, therefore, use the historical UK pro�ts series as a basis for determin-
ing the fundamental value of the FTSE. Given this fundamental value, I can
then test whether this model could have produced the historical FTSE time
series. Figures 1 and 2 present the FTSE real quarterly returns and the �rst
di¤erences of the log of the UK pro�ts series. They also report the estimated
population moments for each series and the most parsimonious representation
of the series, selected using the Hannan-Rissanen procedure with Schwartz
selection criterion.

In order to test the model�s ability to account for the empirical facts, I make
use of the methodology adopted by Meenagh, Minford and Peel (2007). I
begin by taking 50,000 bootstraps of the UK pro�ts series and discount them
to provide possible realizations of the fundamental value of the FTSE. I then
stochastically simulate the model with each of these potential realizations of
the fundamental. In this way, I derive 50,000 stochastic simulations of the
FTSE series under the null hypothesis that the model is true.

I then use the distribution of the moments and time series properties from
these simulations to construct 95% con�dence intervals. If I �nd that the
moments and time series properties of the actual FTSE series lie outside the
con�dence intervals then I can reject the null hypothesis that the model is
true. Conversely, if the properties of the actual FTSE lie within the con�dence
bounds, then I cannot reject the model. I also employ a joint test of all the
moments and GARCH parameters.

The model has a number of parameters. Of these, only the coe¢ cient of risk
aversion can be estimated independently of the model. I, therefore, use a search
algorithm to �nd the best-�tting values for the behavioral parameters and the
standard deviation of the pricing shock (subject to reasonable restrictions).

4 The Results

The search algorithm gives rise to the following parameterization:
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 � �  � C ��

0.425 0.99 0.2 3.75 1.0 0.5 0.025

Table 1 summarizes the moments and time series properties of the FTSE
simulations from the model and compares them to the actual data. As can be
seen, in each case the actual data falls within the con�dence bounds produced
by the model simulations. I, therefore, cannot reject the behavioral model as
the data generating process behind the FTSE.

I also use a Wald test of all the moments and properties. This test, proposed
by Minford, Theodoridis and Meenagh (2007), is based on the Mahalanobis
distance. Figure 3 shows the distribution of the test statistic for the simulated
series, and the dashed line shows the value for the actual historical FTSE.
Unsurprisingly, given that the model matches every individual moment, the
model is also within the 95% bounds for the joint test. In fact the joint test
yields a p-value of 0.46994, and a likelihood value of 6.66.

5 Conclusions

I have shown that a simple behavioral �nance model can account for all of the
dynamic properties of the FTSE. Pro�t-seeking switching between alternative
heuristical forecasting rules produces complex, even chaotic, dynamics which
are consistent with the FTSE series. The model involves a straightforward
pro�ts process but complex and ine¢ cient market behavior.

On the other hand, Meenagh, Minford and Peel (2007) have shown that an
e¢ cient market coupled with a complex pro�ts process can also account for
the FTSE time series.

The implications of these two explanations are starkly di¤erent. If we accept
the �rst then there is a source of ine¢ ciency in equity markets, in the form of
noise trader risk, and that might justify intervention in the market to mitigate
that risk. If we accept the second then asset prices re�ect the true riskiness of
asset ownership.

Unfortunately, on the basis of the present test, we cannot reject either account
as the basis for the FTSE.

6



References

[1] Benartzi, S. and R.H. Thaler, 1995, Myopic loss aversion and the equity premium
puzzle, Quarterly Journal of Economics 110(1), 73-92.

[2] De Grauwe, P. and M. Grimaldi, 2006, The exchange rate in a behavioral �nance
framework. (Princeton University Press).

[3] De Long, J.B., A. Shleifer, L.H. Summers and R.J. Waldmann, 1990, Noise trader
risk in �nancial markets, Journal of Political Economy 98, 703-738.

[4] Meenagh, D., P. Minford and D. Peel, 2007, Simulating stock returns under
switching regimes - a new test of market e¢ ciency, Economics Letters 94, 235-
239.

[5] Minford, P., K. Theodoridis and D. Meenagh, 2007, A bootstrap test for the
dynamic performance of DSGE models - an outline and some experiments,
Cardi¤ Economics Working Papers E2007/2, Cardi¤ University.

[6] Park, C. and S.H. Irwin, 2007, What Do We Know About the Pro�tability of
Technical Analysis?, Journal of Economic Surveys 21(4), 786-826.

[7] Tversky, A. and D. Kahneman, 1974, Judgment under uncertainty: Heuristics
and biases, Science 185, 1124-1131.

7



Fig. 1. FTSE real quarterly rates of return, estimated population moments, and
parsimonious time series representation:

Fig. 2. Rate of change of real quarterly pro�ts, estimated population moments, and
parsimonious time series representation:
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Table 1
Moments and time series properties of the simulated and actual FTSE series

ACTUAL Behavioral Model

FTSE Lower Upper

2.5% limit 2.5% limit

Mean 0.0046 -0.1403 0.1389

Variance 0.0105 0.0009 0.0155

Skewness 0.0178 -1.3116 2.2961

Kurtosis 9.5715 1.9121 14.1262

Trend 0.0080 -0.1517 0.1459

ARCH constant 0.0016 0.0000 0.0016

ARCH 0.1983 0.0000 0.9956

GARCH 0.6343 0.0000 0.9419

Fig. 3. Distribution of simulated normalized Mahalanobis distances
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