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Abstract 

Deregulation, re-regulation and continuing globalisation embody an imperative that banks 

increase efficiency in order to survive. We employ the Simar-Wilson (2007) two-step double 

bootstrap Data Envelopment Analysis method to measure whether cost efficiency among 

Jamaican banks has improved between 1999 and 2009 following a number of post-crisis 

responses aimed at strengthening and improving the sector. Efficiency is extracted from a 

meta-frontier construction for the full sample period. In addition we conduct tests for 

unconditional beta- and sigma-convergence and overall, the results suggest that there has 

been a tendency towards improvement in bank efficiency levels for the industry as a whole 

but there is also evidence that foreign banks show a higher trend improvement in efficiency. 

 

Keywords: Bank efficiency, DEA, bootstrap, convergence, Jamaica 

JEL Codes: G21, G28 

 

Corresponding author: Kent Matthews, +44 2920 875855; email: matthewsk@cardiff.ac.uk 

 

 

We gratefully acknowledge funding support from The University of the West Indies, Mona 

Campus, and NCB Foundation. 

 

mailto:matthewsk@cardiff.ac.uk


2 

 

 

 

 

 

 

1. Introduction 

The Jamaican banking sector of today is largely the legacy of unprecedented financial crisis 

during the last decade of the twentieth century and has undergone many changes 

consequentially.  The crisis resulted in a transformation of the sector in terms of number, 

types, and ownership of banks.
1
  In addition, regulatory amendments imposed by the central 

bank and reporting changes imposed by an amended Companies Act and Jamaica’s adoption 

of International Financial Reporting Standards (IFRS) have also had, as expected, significant 

impact of the reported performance of banks (see, for example, Jain, 2002).  

While the explanations for Jamaica’s past banking problems vary, there is tacit 

consensus that the macroeconomic environment as well as bank size, ownership and 

operational efficiency were among the most significant factors contributing to the failure of 

banks.  We make a rigorous attempt to measure efficiency relative to best practice to answer 

this question: what statistical inference can we draw from point-estimates of efficiency 

provided by the use of bootstrapping technology?  In our investigation of the post-crisis 

efficiency levels of individual Jamaican banks we implicitly address whether the hypothesis 

of greater correlation between efficiency and increased foreign ownership holds true for 

Jamaican banks.   

We address the presumption that a sound regulatory framework can serve as a 

                                                 

 

 

 

 

 

 

 

 
1
 The number of banks was reduced due mainly to regulator-initiated closures and mergers. 
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bulwark from instability and engender increased operational performance within banks by 

implicitly investigating whether the profusion of post-crisis enhancements to the regulatory 

and supervisory framework is evidenced in improved operational efficiency among Jamaican 

banks.  Specifically, has the regulatory reform focused on transparency and accuracy of non-

performing loans (NPLs) influenced greater efficiency within banks? We examine this is by 

the treatment of NPLs as a bad output, in some of the models examined in this paper.  

Another benefit of our paper is the information it provides from tests of convergence 

specified on the bank efficiency estimates. Utilising the concept of β-convergence and σ-

convergence borrowed from the growth convergence literature, we examine for unconditional 

convergence among banks in the sample frame. Generally speaking, the findings are 

indicative of improvement in efficiency in general but that foreign owned banks are 

converging at a slower rate towards a higher trend improvement in cost efficiency. 

The next section contextualises Jamaica’s banking sector. Section 3 reviews the 

literature on bank efficiency for developing countries and the DEA methodology. Section 4 

discusses model strategy and data. Section 5 presents the results, including a discussion of the 

convergence tests and section 6 concludes. 
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2. Efficiency and Jamaica’s banking sector in context 

Jamaica’s banking environment has changed markedly over the last decade.  In the early 

1990s following a period of deregulation in the financial sector, there was a proliferation of 

banks in the island: 37 by 1993 of which 30 were locally owned.
2
 However, a weak 

institutional and regulatory framework, regulatory forbearance and internal weaknesses 

within banks resulted in high levels of non-performing loans, poor capitalisation and 

inefficiency (Daley 2007).
3
  By January 1997, the government was forced to intervene to 

mitigate the effects of a system-wide crisis.
4
  Fourteen of the 21 bank failures in the period 

1994-98 occurred in one year (1998). Daley (2007) argues that the peculiar features of the 

failed banks played a more significant role in the event of failure than did the ‘macro’ factors 

during that year that would have affected all banks.  According to Daley et al. (2008) ‘… the 

likelihood of failure in any year, t, is significantly related to the …the level of efficiency with 

which management conducts its affairs in t-3 and in t-1 …’ (p.295).   

Of course, there are significant potential welfare gains from efficiencies within the 

banking sector. The finance-growth nexus suggests strong positive correlation between 

financial market development and economic growth in developing countries where banks are 

                                                 

 

 

 

 

 

 

 

 
2
‘Banks’ refer to deposit-taking entities that may be commercial banks or merchant banks. As a consequence of 

continual restructuring within the Jamaican banking sector, 5 of the 6 commercial banks operating at the end of 

2007 had majority foreign ownership. 
3
 Efficiency (or inefficiency) in this instance was measured by a higher ratios of expenses to income. 

4
 See, for example, Duncan and Langrin (2004), Tennant (2006) and Daley (2007) for more detailed discussions 

of the crisis. 
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the primary intermediary, as capital markets tend to be thin and not well developed (see, for, 

La Porta example et al. 1998).  The events taking place both within and outside of the 

Jamaican banking sector since the 1990s dictate the need for continued focused attention and 

examination of those factors that are significant correlates to banks’ performance and 

ultimately banking and financial sector system stability.  

The efficiency optimisation imperative is acknowledged and, indeed, well-understood 

in Jamaica, where efficiency is increasingly emphasised as a priority in performance targets.  

Unfortunately, banking efficiency in Jamaica remains under-researched.  This is probably due 

to the relatively small number of banks and the inaccessibility to high-quality bank-specific 

data.  While several authors make reference to efficiency in relation to bank spreads (for 

example, Tennant 2006) or bank failure (Daley 2007; Daley et al. 2008), Bailey (2006) is the 

only known study to have specifically examined efficiency in the Jamaican banking sector 

between 2005 and 2006.  We contribute to the literature on banking efficiency in developing 

countries by examining the efficiency of Jamaican banks at the firm level between 1998 and 

2009.  This is the first work to our knowledge to examine efficiency in banking using non-

parametric bootstrapping technology and to perform a test of convergence on bank efficiency 

for Jamaica.   

 

3. Bank efficiency literature and methodology 

Tennant’s (2006) examination of interest rate spreads in Jamaica argues that interest rate 

spreads act as ‘a key indicator of [an] institution’s efficiency’ (p.88), and reports from a 

survey of Jamaican financial sector stakeholders that recorded high spreads have been 

attributed to inefficiency, inter alia.  Consequently, he notes the perception that increased 
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operational efficiencies can help to reduce bank spreads. 

According to Bailey (2006), technical efficiency for the Jamaican banking sector in 

general declined during 2006 relative to 2005.   A Stochastic Frontier Approach (SFA) was 

applied to quarterly data for the period December 2004 to December 2006 and resulted in 

average technical inefficiency of 25.7% and 9% for commercial and merchant banks, 

respectively, in 2006 relative to 4.1% and 2.0%, respectively, in 2005. 

Not surprisingly, extensive research has been conducted on bank efficiency using data 

for the United States of America.  However, there is also a growing body of literature for 

developing countries with an increasing number of studies conducted using data for transition 

economies in Europe, for Pakistan, India and China (see, for example, Berger et al. 2009 for 

a brief survey). Generally speaking, the empirical findings relating to bank ownership and 

efficiency are mixed.  Berger et al. (2009:115) note that: ‘The most common findings for 

developing nations are that on average, foreign banks are more efficient than or 

approximately equally efficient to private [non-state] domestic banks. …there are variations 

on all of these findings.’  

Perhaps it is as a result of the heterogeneity of the outputs and inputs related to banks 

why there is a lack of consensus in the literature as to their precise classifications.  

Consequently, the intermediation and production approaches are often utilised as 

classification guides. The intermediation approach assesses deposit-taking entities as 

financial intermediaries that utilise labour and capital to transform deposits into loans and 

other earning assets; the production approach is predicated on the entity as a producer of loan 

and deposit services from labour and capital (see, for example, Drake 2003).  The choice of 

approach may alter the efficiency scores obtained but not the qualitative conclusions (see, for 
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example, Berger et al. 1997). 

The above approaches are now associated with empirical research on banking 

efficiency utilising frontier parametric and non-parametric techniques. The parametric 

approaches impose a structural form on the data and are subject to criticism.  Despite certain 

drawbacks, non-parametric approaches are commonly used since they avoid the restrictions 

of a defined functional form and infer the results from the banks’ output directly.    

While bank efficiency has been measured by either parametric or non-parametric 

methods, there remains no consensus on the preferred method for determining the best-

practice frontier against which relative efficiencies are measured. The parametric approach, 

such as the stochastic frontier approach (SFA), specifies a functional form and allows for 

random errors which follow a symmetric normal distribution while the inefficiencies are 

measured by a truncated distribution.  

However, the parametric approach suffers from the problem of misspecification of the 

functional form, and possibly inefficiency and multi-collinearity. Usually a local 

approximation such as the trans-log is specified, which has been argued to provide poor 

approximations for banking data (see McAllister and McManus 1993; Mitchell and Onvural 

1996). In theory, parametric estimators offer faster convergence and produce consistent 

estimates, but this would be true only if there is no misspecification of the functional form. In 

contrast, the nonparametric model, such as the conventional Data Envelopment Analysis 

(DEA), does not require the explicit specification of the form of the underlying production 

relationship, but at the cost of slower convergence rates and hence larger data requirements. 

The nonparametric approach also has been criticized for not considering errors due to chance, 

measurement errors, or environmental differences; hence all deviations are attributed to the 
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measured inefficiency. The conflict between the nonparametric and parametric approaches is 

important because the two types of methods tend to have different degrees of dispersion and 

do not always produce a common ranking of the same financial institutions (Berger and 

Humphrey 1997). Bias, and large variance may be the result when the number of inputs and 

outputs is large, unless a very large quantity of data are available (Kneip, Park and Simar 

1998). Also, the efficiency measure is sensitive to outliers and is upward biased by 

construction. The bootstrap provides an attractive alternative to the conventional DEA
5
.  

The essence of the bootstrap idea (Efron 1979, 1982; Efron and Tibshirani 1993) is to 

approximate the sampling distributions of interest by simulating, or mimicking, the data 

generating process (DGP). The bias in the DEA estimator then can be estimated and 

confidence intervals can be built by using this approximated distribution. Simar and Wilson 

(2007) propose a two-stage semi-parametric bootstrap model, which is capable of 

incorporating the effects of environmental variables in estimating efficiencies. Environmental 

factors are a set of factors that probably affect the production process, but are not under the 

control of firm’s managers. These factors might reflect differences in ownership, size, market 

share, regulatory constraints, business environment, competition, etc. among the firms under 

analysis. Simar and Wilson (2007) cite 47 published papers that employed a two-stage 

approach wherein non-parametric, DEA efficiency estimates are regressed on a set of 

                                                 

 

 

 

 

 

 

 

 
5
 The first application of the bootstrap method to frontier models dates to Simar (1992). Its use in non-

parametric envelopment estimators was developed by Simar and Wilson (1998, 2000) 
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environmental variables in a parametric, second-stage analysis. The typical two-stage 

approaches do not provided a coherent description of a DGP, and the method of inference is 

flawed since the DEA efficiency estimates are biased estimates and are serially correlated, in 

a complicated, and unknown way.    

In order to deal with the problem described above, Simar and Wilson (2007) define a 

DGP that provides a rational basis for regressing non-parametric, DEA efficiency estimates 

on some environmental variables in a second-stage analysis. In addition, they suggest 

bootstrap procedures to provide valid inference in the second-stage regression, as well as to 

increase the efficiency of estimation and correct the estimation bias
6
.  

Following Färe, Grosskopf and Lovell (1985) the efficiency of a firm can be defined 

and measured as the radial distance of its actual performance from a frontier. In the first 

stage, we employ the Tone (2002) new cost efficiency model, which allows for heterogeneity 

in unit prices of input. As a general rule, efficiency levels measured relative to one frontier 

cannot be directly compared with efficiency levels measured relative to another frontier. In 

order to make the later cross-time convergence analysis more sensible, we use a meta-frontier 

framework, wherein, efficiencies of all observations are measured relative to a common 

frontier for the full sample period. We chose to use the input oriented efficiency measure and 

constant return to scale (CRS) is assumed as an optimal scale in the long run.  

                                                 

 

 

 

 

 

 

 

 
6
 We adopt the algorithm 2 of the two-stage semi-parametric double bootstrapping method set out by Simar and 

Wilson (2007). 
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The cost efficiency  ̂ for the j-th bank is defined as; 

(1)                                                                                  ˆ *

jjj xexe  

where      is a row vector with all elements being equal to unity, and  ̅ 
  is the 

optimal solution of the LP given below; 

 

0                           

                          

(2)                                                                     ..                 

 min
 ,x

            Cost *
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where  ,),...,(  with ),, ... ,(  111

T

mjmjjjjn xpxpxxxX  is the matrix of individual factor 

costs, and ns

n RyyY  ),...,( 1 is a matrix of outputs. 

The cost efficiency measure ≤1 is the scalar efficiency score for the j-th bank. If 

j̂ =1 the i-th bank is cost efficient as it lies on the frontier, whereas if j̂ <1 the bank is 

inefficient and need a (1- j̂ ) reduction in the total cost.  

In the second stage, the efficiency estimates j̂  are regressed on a set of environmental 

variables jz  by using a maximum likelihood method. In practice, Shephard’s (1970) 

definition of efficiency is used to avoid two boundaries points. Shephard’s efficiency 

measure is merely the reciprocal of the conventional Farrell efficiency score ( jj  ˆ/1ˆ  ), and 

can be treated as a measure of inefficiency. If jz is a vector of environmental variables for the 

j
th 

bank and  is a vector of parameters associated with each factor to be estimated, then 

equation (3) below describes the model to be estimated 

1ˆ  jjj z       (3) 

j̂ 
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under (left normal) truncated regression (use only 1ˆ j  in this step) and j is a truncated 

random error )ˆ,0( 2
N , truncated at ( ̂1 jz ). The algorithm steps are; 

Step 1: bootstrap, for each nj ,...,1 , we draw
*

j  from the distribution )ˆ,0( 2
N with left-

truncation at ( ̂1 jz ) and compute ** ˆ
jjj z   . 

Step 2: construct a pseudo sample by setting ** /ˆ jjjj xx   for all banks and keep the output 

measure unchanged, jj yy * .  

Step 3: re-estimate DEA cost efficiency 
*

ˆ j by replacing ),( jj yx by ),(
**

jj yx .  

Step 4: loop over this procedure 100 times ( 1001 L ), take the mean,
*

ˆ j , of 100 
*

ˆ j  

estimates, then compute the bias-corrected estimator j


for each bank, such that

*
ˆˆ2 jjj  


. The bias-corrected Farrell efficiency score can be easily obtained by taking 

the reciprocal of j


, that is jj 


/1ˆ̂  . 

Step 5: re-estimate the marginal effects of environmental variables, jz , using the bias-

corrected efficiency estimate, j


, to obtained coefficients estimates 
ˆ̂

, by left-truncated 

regression with 10002 L  bootstrap replications. Once the set of 2L  bootstrap parameter 

estimates for   and  
2
  have been obtained, the percentile bootstrap confidence intervals can 

then be constructed.  

We hypothesize, consistent with the extant literature, that post-crisis regulatory 

enhancements leads to greater efficiency, and that the larger banks are more efficient as are 

banks with greater foreign ownership.  We therefore report the efficiency of banks generally 

and in addition, we seek to identify whether there is discernable common speed of 
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convergence across the banks.  

 

 

4. Measuring bank efficiency: model strategy and data 

Given the relatively virgin research ground in Jamaica, there is the potential to construct 

different models of varying specifications and sophistication that could be useful to a variety 

of policy decisions relating to banks.  However, our final models – both in number and design 

– were determined by data availability. We utilise the full population of banks that existed 

during the period 1998 to 2009. Table 1 summarises the environmental variables used in step 

5 of the algorithm outlined in the previous section and also sets out the four different models 

tested in the paper. In all four models the intermediation approach was taken and the common 

factor inputs to the cost efficiency construction were labour (number of bank personnel), real 

fixed assets, and real bank deposits. The unit costs of the factor inputs were given as unit 

price of labour (personnel costs divided by number of bank personnel), unit price of fixed 

assets (non-personnel costs divided by fixed assets) and unit cost of funds (interest costs 

divided by total bank deposits. 

 

Table 1 Variable Definitions 

Category Mnemonic Description 

 

Environmental CATM Dummy variable; Commercial bank = 1, zero 

otherwise 

 COST Cost-Income ratio 

 SIZE Logarithm of total assets deflated by consumer 

price index 

 BR Branches per bank as proportion of total 

branches 

 GROWTH Real GDP growth 
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 GDP Real GDP 

 OWN Dummy variable; Foreign owned/acquired = 1, 

zero otherwise 

 CR3 Three-bank concentration ratio 

Inputs LAB Total number of personnel per bank 

 FA Fixed assets deflated by consumer price index 

 DEP Total customer deposits deflated by consumer 

price index 

 PL Personnel costs per bank divided by total 

number of personnel per bank 

 PK Non-personnel costs divided total fixed assets 

 

 PF Total interest costs per bank divided by 

customer deposits 

Model 1 RLOAN Total loans per bank deflated by consumer price 

index 

 ROEA Other earning assets per bank deflated by 

consumer price index 

 RNONINT Non-interest earnings deflated by consumer 

price index 

Model 2 RLOAN-RNPL Total real loans per bank less non-performing 

loans deflated by consumer price index 

 ROEA As above 

 RNONINT As above 

 (RNPL)
-1

 Inverse of real non-performing loans (bad 

output) 

Model 3 RLOAN-RNPL As above 

 ROEA As above 

 (RNPL)
-1

 As above 

Model 4 RLOAN As above 

 ROEA As above 

 

 

Model 1 is conventional in the literature and treats all loans as a good output. It also 
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treats the non-interest income flows of a bank as an output. The traditional measure of bank 

income is interest income, but many banks de-emphasise the less profitable ‘plain vanilla’ 

banking function, to promote a broader role and emphasize a wider range of services
7
 (for 

example, Drake 2003). Model 2 differs from model 1 in that it takes performing loans as an 

output so as to give zero weight to NPLs and following Thanassoulis et al. (2008) treats 

NPLs as a bad output by defining a variable that is its inverse. Model 3 removes non-interest 

earnings from the set of outputs but continues to treat only performing loans as a good output 

and NPLs as a bad output. Model 4 is a restrictive version of Model 1 and excludes non-

interest earnings from the set of output.  

We test our hypotheses using annual audited unconsolidated financial data for all 

Jamaican banks during the period 1998 to 2009 as available. Data were obtained from 

publicly available resources, including Bankscope, financial statements and Annual Reports, 

the website of the respective banks, the website of the Central Bank, and media reports.
8
  

Notably, all the banks now use International Financial Reporting Standards (IFRS) to report 

financial information.
9
  In the final analysis we used an unbalanced panel of 12 banks with 

108 bank-year observations.  

                                                 

 

 

 

 

 

 

 

 
7
 Non-interest earnings are a flow of income which proxies the stock equivalent so that the integrity of the 

outputs as stocks is maintained. 
8
 Bankscope database is a resource providing financial and other data for over 29,000 banks all over the world. 

9
 IFRS was adopted or all financial reporting on or after July 1, 2002.  Some financial statements have therefore 

been reported using the superseded local accounting standards (Local GAAP). Daley (2004), Jain (2002) and 

Daley (2002), for example, discuss the likely impact of the change. 
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5. Empirical Results 

Table 2 presents the second stage of the double-bootstrap methodology of Simar and Wilson 

(2007). Each model utilises a common set of environmental variables. The table shows the 

point estimate of the coefficients and the lower and upper bound estimates at the 95 

percentile.  

 

Table 2: Stage 2 regression model; upper and lower bound in parenthesis at 95
th

 

percentile 

Environmental 

Variable 

Model 1 Model 2 Model 3 Model 4 

Intercept 2.65  

(1.28, 20.7) 

27.1  

(-11, 65) 

5.31 

(-21.7, 35.3) 

21.5 

(-15.7, 57.4) 

CATM 1.38*  

(0.04, 2.50) 

0.72  

(-1.25, 2.89) 

1.05 

(-.068, 2.72) 

1.35 

(-1.03, 3.50) 

COST 0.53  

(-2.4, 3.56) 

3.71  

(-1.9, 9.9) 

-.275 

(-5.3, 4.7) 

4.37 

(-2.5, 10.8) 

SIZE .001* 

 (.000, .002)  

.001*  

(.000, .002) 

.001* 

(.000, .002) 

.001* 

(.000, .002) 

BR -7.8*  

(-1.2, -3.33) 

-10.3* 

(-19, -1.7) 

-13.9* 

(-22.5, -4.9) 

-13.5* 

(-22.3, -2.9)  

GROWTH -.19  

(-.04, 0.04) 

-.83* 

(-1.5. -.3) 

-.41 

(-.09, .13) 

-.79* 

(-1.47, -.15) 

RGDP -.10* 

(-.02, -.002) 

-.34* 

(-.06, -.11) 

-.14 

(-.03, .04) 

-.21 

(-.004, .04) 

OWN 2.57*  

(1.47, 3.66) 

1.91* 

(.004, 3.71) 

3.16* 

(1.19, 5.07) 

2.67* 

(.022, 4.71) 

CR3 0.09  

(-.002, 0.18) 

0.051 

(-.017, 0.28) 

0.11 

(-.007, .29) 

-.02 

(-.026, .19) 

* significant at the 5% 

 

 

Bearing in mind that the dependant variable is the inverse of the cost efficiency 

measure (values greater than unity indicate inefficiency and values of unity indicate 100% 
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efficiency), Table 2 provides consistent results for the role of size, branch network and 

ownership. Size in terms of assets is associated with lower efficiency but banks with larger 

branch networks are associated with higher efficiency. Contrary to expectations, foreign 

ownership is associated with lower cost efficiency. One possible reason for this result is that 

foreign acquisition of domestic banks occurred in the aftermath of the 1998-2000 banking 

crisis picking up the weaker of the available banks. Macroeconomic factors play a role in 

some of the models but the influence is not robust. 

  Table 3 summarises the mean cost efficiency in groups of three-year intervals by 

model, for the conventional DEA result, the bootstrapped bias-corrected estimate, the average 

lower bound and average upper bound intervals at the 95
th

 percentile.  

 

Table 3: Mean Cost Efficiency Scores; Mean percentage efficiency shown in parenthesis 

Model Year range DEA Score Bias-

corrected 

Lower 

bound 

Upper 

bound 

Model 1 1998-2000 1.928* (51.9%) 2.291
# 
(43.6%) 2.079 2.529 

 2001-2003 1.692 (59.1%) 1.781
#
 (56.1%) 1.541 2.034 

 2004-2006 1.412 (70.8%) 1.199 (83.4%) 0.920 1.475 

 2007-2009 1.271* (78.6%) 1.044 (95.8%) 0.614 1.234 

Model 2 1998-2000 2.106*(47.5%) 2.699
# 
(37.1%) 2.477 2.923 

 2001-2003 1.709 (58.5%) 1.846
#
 (54.2%) 1.583 2.107 

 2004-2006 1.370 (73.0%) 1.120 (89.2%) 0.816 1.432 

 2007-2009 1.350 (74.1%) 1.119 (89.4%) 0.795 1.422 

Model 3 1998-2000 2.268 (47.5%) 3.142
#
 (31.8%) 2.196 3.311 

 2001-2003 1.969* (50.8%) 2.492
#
 (40.1%) 2.235 2.703 

 2004-2006 1.466 (68.2%) 1.335
#
 (74.9%) 1.057 1.627 

 2007-2009 1.542 (64.8%) 1.510
#
 (66.2%) 1.217 1.812 

Model 4 1998-2000 2.260* (44.3%) 3.107
#
 (32.2%) 2.899 3.291 

 2001-2003 2.003* (49.9%) 2.558
#
 (39.1%) 2.328 2.774 

 2004-2006 1.530 (65.4%) 1.466
#
 (68.2%) 1.218 1.735 

 2007-2009 1.459 (68.6%) 1.299
#
 (77.0%) 1.018 1.599 

*Significant bias at the 95
th

 percentile; significantly different from unity at the 5 per cent 
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As averages of individual scores the bias-corrected scores can only be interpreted as 

indicative. However, they show that the bias in the plain DEA scores is not universally 

frequent. Often the simple DEA score is not significantly different from the bias-corrected 

score. However, the distribution of scores can confirm if the measured efficiency score is 

significantly different from the benchmark. One noticeable feature is that the measure of 

efficiency is lower in the models that include NPLs as a bad output. As a test for robustness 

we report the simple correlation of the scores between each model for comparison
10

. Table 4 

shows the results. 

Table 4 Simple correlations of efficiency scores 

 Model 1 Model 2 Model 3 Model 4 

Model 1 1.0000    

Model 2 0.9565 1.0000   

Model 3 0.8717 0.9134 1.0000  

Model 4 0.8947 0.8430 0.9315 1.0000 

 

 

 

6.  Tests for convergence 

We borrow from the growth convergence literature of Barro and Sala-i-Martin (1992) to test 

for unconditional β-convergence and σ-convergence.  -convergence measures the speed of 

                                                 

 

 

 

 

 

 

 

 
10

 Results from a Spearman rank correlation were very similar. 
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convergence to the best practice frontier and  -convergence measures at which the 

dispersion of efficiency narrows to the mean.  

Following Fung (2006) we estimate unconditional convergence using panel 

estimation techniques. Equation (1) below describes the basic model. 

   tititti uCETRENDCE ,1,,      (4) 

 

Where CE = cost efficiency, TREND represents a time trend, and u is a stochastic 

disturbance. A negative value of λ is a necessary condition for convergence. The larger the 

absolute value of λ, the faster the speed of convergence. Also the further a bank is from the 

benchmark the faster the speed of convergence. The coefficient on the TREND term identifies 

the steady-state efficiency improvement path for the industry as a whole. To allow for 

variable speed of adjustment speed between domestic banks and foreign owned banks and 

possible differences in the trend path of efficiency improvement, equation (4) is modified to 

be; 

                                                        

           (5) 

The stead-state values of efficiency improvement for foreign banks      
   and domestic 

banks     
 )  is given as; 

     
   

            

   
 

     
   

        


 

 

To estimate cross sectional dispersion or σ-convergence, which is testing the 
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convergence towards the industry average level of efficiency, we adopt the following 

autoregressive distributed lag model specification
11

, following the specification for panel data 

used by Parikh and Shibata (2004). 

                          (6) 

Where                
̅̅ ̅̅ ̅ ,                   ̅̅ ̅̅    , and   ̅̅ ̅̅   is the mean efficiency score at 

time t. A negative value for the parameter φ implies unconditional  -convergence. The 

intercept μ indicates the average dispersion from the mean. 

Table 5 below presents some selected results of beta-convergence for each model 

which, as described above, measures cost efficiency based on alternative output measures and 

Table 6 shows the results for σ-convergence.  

We experimented with interactive terms to identify different speeds of adjustment for 

different groups of banks and for alternative steady-state efficiency improvement paths. It 

was found that an interactive adjustment response of efficiency in the post-crisis period 

(2001-2009) was not significant when included with the interactive adjustment response with 

ownership (OWN). This is very likely because a number of banks were foreign acquired post 

the crisis. The most important and consistent result to focus on is that the lag of technical 

efficiency is negative and strongly significant in all four models. The trend was negative and 

generally significant indicating an improving efficiency path for the industry. The interactive 

                                                 

 

 

 

 

 

 

 

 
11

 Similar specifications have been estimated, among others, by Fung (2006), Weill (2009) and Casu and 

Girardone (2010). 
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term of ownership and lagged cost efficiency suggests that the speed of convergence of the 

foreign owned banks is lower than domestic but an interactive term with the trend suggests 

that the trend efficiency path of average efficiency is marginally higher than the industry. The 

foreign banks have a slower speed of adjustment but the steady-state trend path shows a 

faster improvement in efficiency over time than domestic banks. 

 

Table 5:  Tests for Beta-convergence in cost efficiency; Dependant variable ΔCEi,t  

Variable 

 

Model 1 Model 2 Model 3 Model 4 

Intercept 100.66** 

(0.038) 

110.97** 

(0.046) 

93.49 

(0.135) 

152.0*** 

(0.006) 

CEi,t-1 -.5868*** 

(0.000) 

-.8370*** 

(0.000) 

-.7178*** 

(0.000) 

-.8301*** 

(0.000) 

TRENDt -.0499** 

(0.039) 

-.0549** 

(0.048) 

-.046 

(0.139) 

-.0753*** 

(0.007) 

OWN*CEi,t-1 0.1499* 

(0.060) 

0.4293*** 

(0.000) 

0.4611*** 

(0.004) 

0.5576*** 

(0.000) 

OWN*TRENDi 0.00002 

(0.807) 

-.00002* 

(0.096) 

-.0004** 

(0.038) 

-.0004*** 

(0.005) 

Wald Chi(4) 

 

45.3 221.0 31.5 108.4 

Note: GLS panel estimation, heteroskedastic adjusted standard errors, p-values in parentheses, *** significant at the 1%, ** 

significant at the 5%, * significant at the 10% 

 

Table 6: Tests for Sigma-convergence; Dependant variable ΔEi,t,  

Model Ei,t-1 Wald Chi-Sq(1) 

Model 1 -.4210*** (0.000) 35.3 

Model 2 -.5853*** (0.000) 94.3 

Model 3 -.2990*** (0.000) 20.2 

Model 4 -.3922*** (0.000) 36.0 

Note: GLS panel estimation, heteroskedastic adjusted standard errors, p-values in parentheses, *** significant at the 1%,  
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Table 6 confirms the existence of σ-convergence, which says that the improvement in 

efficiency of banks in post-crisis Jamaica has also resulted in the narrowing of the dispersion 

of efficiency. 

 

6. Concluding Remarks 

Motivated by the potential impact of recent events on Jamaica’s critical banking sector, this 

paper has presented a number of models for measuring individual bank efficiency in Jamaica.  

Frontier models show that the use of the bootstrapping technique mitigates bias and therefore 

show superiority in favour of the bootstrapping technique over the standard DEA.  There 

were wide fluctuations in efficiency levels over the period 1998 to 2009 but there was a 

discernible trend towards improvement particularly for the foreign-owned commercial banks.  

The inclusion of the non-performing loans as a bad output produced more telling 

results than its mere inclusion or exclusion. In general, efficiency levels declined when the 

bad output is introduced.  With the introduction of IFRS, International Accounting Standard 

(IAS) 39 mandates guidelines and a rigorous approach to credit provisioning which must be 

observed. This increases the difficulty for banks to go undetected with under-provisioning as 

with previous accounting requirements.  In line with expectations, the post-IFRS results 

appear to be more transparent and to better reflect the true economic value of assets and 

liabilities.  

Issues regarding bank efficiency are of particular interest in Jamaica where there 

banks compete for a share of the small, open market.  A bank’s response to market conditions 

is likely to be better the more efficiently that bank operates. Reliable information about the 

level of efficiency and changes to these levels over time will assist bankers in determining 
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how to ‘bundle,’ price, and market banking services.  Furthermore, any long-term impact on 

bank profitability is likely to have relevance to customer welfare and economic development 

and therefore to policymakers in a wider sense.  The results from this paper inform an 

exercise in measurement that may be used to improve managerial performance by 

highlighting banks that score high on best practices and also to address research issues such 

as the variation in efficiency based on different definitions of output. It is therefore useful for 

policymakers at both the micro and the macro levels.  These results must be considered in 

relation to other factors such as banks’ productivity and the impact of accounting measures 

on reported financial data that are used to impute efficiency levels in frontier analysis.   
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