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Comparing behavioural and rational
expectations for the US post-war economy�

Chunping Liu Nottingham Trent University
Patrick Minford Cardi¤ University and CEPR

August 18, 2012

Abstract

The banking crisis has caused a resurgence of interest in behavioural
models of expectations in macroeconomics. Here we evaluate behavioural
and rational expectations econometrically in a New Keynesian framework,
using US post-war data and the method of indirect inference. We �nd that
after full reestimation the model with behavioural expectations is strongly
rejected by the data, whereas the standard rational expectations version
passes the tests by a substantial margin.

Key words: behavioural expectation, rational expectation, bank crisis,
indirect inference

1 Introduction

Since the banking crisis of 2007 there has been a resurgence of interest in macro-
economic models embodying expectations-formation other than rational expec-
tations. Evidence of biases in expectations, of herd behaviour and of chart-
following has been found by a number of researchers in behavioural economics-
for example, Kagel and Roth (1995), McCabe (2003), Camerer et al. (2005) and
Della Vigna (2009). Kirman (2011) and De Grauwe (2010) have suggested that
such behaviour can be found at the macroeconomic level also (they reject the
�rational learning�models of Sargent (1993) and Evans and Honkapohja (2001),
in which for many cases learning converges on rational expectations). Accord-
ingly in this paper we examine how far a model of this behavioural type can
account for US business cycle behaviour over the past few decades including the
recent crisis period; and we compare its performance with that of a standard
New Keynesian model. Our (indirect inference) procedure asks whether each
model can match US business cycle behaviour, as described by the variances of

�We are grateful to Huw Dixon and Paul de Grauwe for helpful comments.
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the three main variables, output, in�ation and interest rates, and a VAR em-
bodying their inter-relationships. The match is gauged by a Wald statistic that
has a well-de�ned distribution, enabling us to assess the statistical signi�cance
of �t. To enable each model to achieve its best possible performance, we allow
its model coe¢ cients to be reestimated and only perform the �nal tests after
this has been done.
The models are identical in form, conforming to a standard New Keynesian

model, with a forward-looking IS curve, a Phillips Curve, and a Taylor Rule
governing interest rates. The only di¤erence lies in expectations-formation; in
the standard model these are rational expectations whereas in the alternative
(�behavioural�) version they are determined by groups of speculators who fol-
low �fundamentalist�and �extrapolative�expectations patterns, as set out by de
Grauwe (2010). While initially we calibrate these models with typical para-
meters found in the New Keynesian literature and we report these results in
passing, the results we attach importance to are after reestimation (by indirect
estimation) to allow each model to get as close as possible to the data, within
the bounds set by its theory.
It might well be thought, given the events of recent years, that the stan-

dard model would perform badly over the recent post-war period, while the
behavioural version would do well. However, we �nd exactly the opposite: the
behavioural version is strongly rejected by the data (including the crisis pe-
riod), while the standard version is not rejected at the usual signi�cance levels.
This surprising result is of some importance to the macroeconomics debate of
the current time and so we feel it deserves to be properly exposed to a broad
economist audience.
In the rest of this paper, we �rst explain the models (section 2); we then

set out our testing and reestimation procedure (section 3); we turn next to
our results, �rst on calibrated (section 4) and then on reestimated parameters
(section 5); section 6 concludes.

2 The Two Models

The behavioural model is a stylized DSGE model similar to the model in De
Grauwe (2010). It includes a standard aggregate demand equation, an aggregate
supply function, and a policy rule equation, as follows:

~Yt = ~Et ~Yt+1 � a1(Rt � ~Et�t+1) + "1t (1)

�t = b1 ~Yt + � ~Et�t+1 + k"2t (2)

Rt = (1� c1)(c2�t + c3 ~Yt) + c1Rt�1 + ut (3)

where ~Yt is the output gap, �t is the rate of in�ation, Rt is the nominal interest
rate, and "1t, "2t, and ut are the demand error, supply error and policy error
respectively. These errors are assumed to be autoregressive processes with the
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coe¢ cients calculated from the sample estimates. Equation 1 is the aggregate
demand equation with as the expectations operator in the behavioural model
where the tilde above ~E refers to expectations that are not formed rationally.
The aggregate demand function is standard, which is determined by the expec-
tation of output gap in the next period and real interest rate. Equation 2 is the
aggregate supply function, which can be derived from pro�t maximization by
individual producers. The supply curve can also be interpreted as a New Key-
nesian Phillips Curve, which is a function of output gap and expected in�ation
in the next period. Equation 3 includes a lagged interest rate in Taylor�s (1993)
original interest rate rule to achieve smoothing of interest rate reactions over
time.
The di¤erence between the behavioural and rational expectations model lies

in expectations formation. The expectation term in the behavioural model, ~E
is the weighted average of two kinds of forecasting rule. One is the fundamental
forecasting rule, by which agents forecast the output gap or in�ation at their
steady state values. The other one is the extrapolative rule, by which individuals
extrapolate most recent value into the future. Thus:

~Eft ~Yt+1 = 0 (4)

~Eet
~Yt+1 = Yt�1 (5)

~Etart �t+1 = �
� (6)

~Eextt �t+1 = �t�1 (7)

Equation 4 and 5 are the forecasting rules for the output gap, while Equation
6 and 7 are the equivalents for in�ation. The steady state output gap is zero,
while the in�ation target in the Taylor Rule is the steady state in�ation rate,
��.
In De Grauwe (2010), it is assumed that the market forecast is the weighted

average of the fundamentalist and extrapolative rules. Equation 8 is the market
forecast for the output gap, while Equation 9 is for in�ation.

~Et ~Yt+1 = �f;t � 0 + �e;tYt�1 = �e;tYt�1 (8)

~Et�t+1 = �tar;t�
� + �ext;t�t�1 (9)

where �f;t and �e;t are the probabilities that agents will use a fundamentalist
and extrapolative rule for forecasting the output gap, �tar;t and �ext;t are the
equivalents for in�ation. These probabilities sum to one:

�f;t + �e;t = 1 (10)

�tar;t + �ext;t = 1 (11)
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These probabilities are de�ned according to discrete choice theory (see An-
derson, de Palma, and Thisse 1992 and Brock and Hommes 1997), which analy-
ses how individuals determine di¤erent choices. Agents�utilities are given by the
negative of the forecast performance (measured by the squared forecast error)
of the di¤erent rules as follows:

Uf;t = �
1X
k=1

!k(Yt�k � ~Eft�k�1
~Yt�k)

2 (12)

Ue;t = �
1X
k=1

!k(Yt�k � ~Eet�k�1 ~Yt�k)
2 (13)

Utar;t = �
1X
k=1

!k(�t�k � ~Etart�k�1�t�k)
2 (14)

Uext;t = �
1X
k=1

!k(�t�k � ~Eextt�k�1�t�k)
2 (15)

where Uf;t and Ue;t are the utilities for the output gap of the fundamentalists
and extrapolators, respectively; while Utar;t and Uext;t are the equivalents for
in�ation; !k are geometrically declining weights, de�ned as

!k = (1� �)�k (16)

where �, between zero and one, is the memory coe¢ cient.
The probabilities of the fundamentalist and extrapolator in forecasting out-

put are given by the relative utility of their forecasts:

�f;t =
exp(Uf;t)

exp(Uf;t) + exp(Ue;t)
(17)

�e;t =
exp(Ue;t)

exp(Uf;t) + exp(Ue;t)
(18)

while the probabilities of the in�ation targeting rule and extrapolative rule are

�tar;t =
exp(Utar;t)

exp(Utar;t) + exp(Uext;t)
(19)

�ext;t =
exp(Uext;t)

exp(Utar;t) + exp(Uext;t)
(20)

where  is de�ned as the �intensity of choice�, assumed to be one in De Grauwe
(2010); it measures the degree to which the deterministic component of utility
determines actual choice.
Equation 17-18 show that the probability of fundamentalists increases as the

forecast performance of the fundamental rule improves relative to the extrap-
olative rule. Similarly with in�ation, Equation 19-20, where we can interpret
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the weight on the target in the in�ation forecasting rule as a measure of the
central bank�s credibility in in�ation targeting. These mechanisms driving the
selection of the rules introduces a dynamic element to the model, rather like
adaptive expectations in the old NeoKeynesian Synthesis models.
Dealing with the in�nite sum in Equation 12 to 15, we can transform them

into recursive representation of the sum, so that model can be solved. Then
Equation 12-15 can be transformed by the following:

Uf;t = �(1� �)�(Yt�1)2 � �Uf;t�1 (21)

Ue;t = �(1� �)�(Yt�1 � Yt�3)2 � �Ue;t�1 (22)

Utar;t = �(1� �)�(�t�1 � ��)2 � �Utar;t�1 (23)

Uext;t = �(1� �)�(�t�1 � �t�3)2 � �Uext;t�1 (24)

The solution method to the behavioural model is obtained by substituting
the expectation formation of Equation 8 and 9 into Equation 1 and 2, therefore
the model becomes

~Yt = �e;tYt�1 � a1(Rt � �tar;t�� � �ext;t�t�1) + "1t (25)

�t = b1 ~Yt + �(�tar;t�
� + �ext;t�t�1) + k"2t (26)

Rt = (1� c1)(c2�t + c3 ~Yt) + c1Rt�1 + ut (27)

with the de�nition for the probabilities in Equation 12-20. This model is a pure
backward model, which can be solved in an overlapping sequence for each set
of innovations.
The stylized DSGE model with rational expectation is de�ned as Equation

1-3 except that the expectations are formed rationally. This RE version of the
model can be solved in the standard way; we use Dynare (Juillard 2001) for
this.

3 The Testing Procedure

Indirect Inference provides a framework for judging whether a model with a
particular set of parameters could have generated the behaviour found in a set
of data. The procedure provides a statistical criterion for rejecting the model
as the data generating mechanism.
Indirect inference has been well known in the estimation literature, since

being introduced by Smith (1993); see also Gregory and Smith (1991, 1993),
Gourieroux et al. (1993), Gourieroux and Montfort (1995) and Canova (2005).
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In indirect estimation the behaviour of the data is �rst described by some atheo-
retical time-series model such as a Vector Auto Regression, the �auxiliary model�;
then the parameters of the structural model are chosen so that this model when
simulated generates estimates of the auxiliary model as close as possible to those
obtained from actual data. It chooses the structural parameters that can min-
imise the distance between some function of these two sets of estimates. In
what follows we give a brief account of the method; a full account, together
with Monte Carlo experiments checking its accuracy and power and comparing
it with other methods in use for evaluating DSGE models, can be found in Le,
Meenagh, Minford and Wickens (LMMW, 2011 and 2012).
The test is based on the comparison of the actual data with the data simu-

lated from the structural model through an auxiliary model. We choose a VAR
as our auxiliary model and base our tests on the VAR coe¢ cients and also the
variances (of the variables in the VAR). The reason for choosing a VAR as the
auxiliary model is that a DSGE model like the ones here have as their solution a
restricted vector autoregressive-moving-average (VARMA), which can be closely
represented by a VAR. The VAR captures the dynamic inter-relationships found
in the data between the variables of the model. The test statistic is based on
the joint distribution of the chosen descriptors- here the VAR coe¢ cients and
the variances. The null hypothesis is that the macroeconomic model is the data
generating mechanism.
The test statistic for this joint distribution is a Wald statistic Following the

notation of Canova (2005), yt is de�ned as an m � 1 vector of observed data
(t = 1; :::; T ) and xt(�) is an m�1 vector of simulated data with S observations
from the model, � is a k�1 vector of structural parameters from the model. We
set S = T , because we want to compare simulated data and actual data using
the same size of sample. yt and xt(�) are assumed to be stationary and ergodic.
The auxiliary model is f [yt; �], where � is the vector of descriptors. Under
the null hypothesis H0 : � = �0, the auxiliary model is then f [xt(�0); (�0)] =
f [yt; �]. The null hypothesis is tested through the q � 1 vector of continuous
functions g(�). Under the null hypothesis, g(�) = g(�(�0)). aT is de�ned as
the estimator of � using actual data and �S(�0) as the estimator of based on
simulated data for �0. Then we have g(aT ) and g(�S(�0)):The simulated data
is obtained by bootstrapping N times of structural errors, so there are N sets

of simulated data. We can calculate the bootstrapped mean by
_________

g(�S(�0)) =

1
N

NP
k=1

gk(�S(�0)). The Wald statistic (WS) using the bootstrapped distribution

of g(aS)�
__________

g(�S(�0)) can be speci�ed as

WS = (g(aT )�
__________

g(�S(�0)) )0W�1(�0)(g(aT )�
__________

g(�S(�0)) )

where W (�0) is the variance-covariance matrix of the bootstrapped distribution

of g(aS)�
__________

g(�S(�0)) . Here we use a, the descriptors themselves, as g(a).
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The testing procedure involves three steps. The �rst step is to back out
the structural errors from the observed data and parameters of the model. If
the model equations have no future expectations, the structural errors can be
simply calculated using the actual data and structural parameters. If there
are expectations in the model equations, we calculate the rational expectation
terms using the robust instrumental variables methods of McCallum (1976) and
Wickens (1982); we use the lagged endogenous data as instruments and hence
use the auxiliary VAR model as the instrumental variables regression. The
errors are treated as autoregressive processes; their autoregressive coe¢ cients
and innovations are estimated by OLS. 1

Secondly, these innovations are then bootstrapped and the model is solved
by Dynare. The innovations are repeatedly drawn by time vector to preserve
any contemporaneous correlations between them. By this method we obtain
N (usually set at 1000) sets of simulated data, or bootstrap samples. These
represent the sampling variation of the data implied by the structural model.
Finally, we compute the Wald statistic. By estimating the VAR on each

bootstrap sample, the distribution of the VAR coe¢ cients and data variances is
obtained, the �. Thus, the estimates of � from the data and the model estimates
can be compared. We examine separately the model�s ability to encompass the
dynamics (the VAR coe¢ cients) and the volatility (the variances) of the data.
We show where in the Wald bootstrap distribution the Wald based on the data
lies (the Wald percentile). We also show the Mahalanobis Distance based on
the same joint distribution, normalised as a t-statistic, as an overall measure of
closeness between the model and the data.2

We use a VAR(1) as the auxiliary model. With a VAR(1), � contains 12
elements, the 9 VAR coe¢ cients and the 3 data variances. This number of
descriptors provides a strong requirement for the structural model to match.
Raising the VAR order would increase the number of VAR coe¢ cients (eg with
a VAR(2) the number would double to 18, making 21 elements in � in total); the
requirement of the test arguably becomes excessive, since we do not expect our
structural models to replicate data dynamics at such a high level of re�nement.

1The idea of using these backed-out errors is that they should be consistent with the model
and the data: otherwise the model being tested could be considered rejected by the data at
the structural stage. As noted by LMMW (2012), an alternative way to estimate the errors in
equations with rational expectations terms is to use the model (including the lagged errors)
to generate the expectations and iterate to convergence but in Monte Carlo experiments the
LIML method is slightly more accurate (if we knew the true model including the true �s, then
we could back out the exact errors by using the model to solve for the expectations; but of
course we do not).
Once the errors and their autoregressive coe¢ cients (�) are estimated, they become part of

�0 and are �xed for the testing process therefore. In indirect estimation the search algorithm
�nds the structural parameters, the backed-out errors and the �s that jointly get closest to
the � found in the data: If they are also not rejected by these �, then we may treat this model
as the data generating mechanism.

2The Mahalanobis Distance is the square root of the Wald value. As the square root of
a chi-squared distribution, it can be converted into a t-statistic by adjusting the mean and
the size. We normalise this here by ensuring that the resulting t-statistic is 1.645 at the 95%
point of the distribution.
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The steps above detail how a given model, with particular parameter values,
is tested. These values would typically be obtained in the �rst place by cali-
bration. However, the power of the test is high and the model will be rejected
if the numerical values chosen for the parameters are inaccurate. Therefore, to
test a model fully one needs to examine its performance for all (theoretically
permissible) values of these parameters. This is where we introduce Indirect
Estimation; in this we search for the numerical parameter values that minimise
the Wald statistic and then test the model on these values. If it is rejected
on these, then the model itself is rejected, as opposed merely to its calibrated
parameter values. We discuss details of this further below.

4 Data, Calibration and Calibrated Results

4.1 Data

We apply the models to quarterly US data from 1981Q4 to 2010Q4 on the
output gap ( ~Yt), the in�ation rate (�t), and the interest rate (Rt) 3 , collected
from Federal Reserve Bank of St. Louis. The data include the recent �nancial
crisis as far availability permits.
The output gap ( ~Y ) is de�ned by the percentage gap between real GDP and

potential GDP, for which we use the HP �lter. In�ation (�) is de�ned as the
quarterly change in the log of the CPI. The interest rate is the federal funds
rate, expressed as a fraction per quarter. �t and Rt are linearly detrended.
Figure 1 displays the resulting data; Table 1 also gives the ADF test results,
which show that they are all stationary.
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Figure 1: Time Paths of ~Y , �, R̂

3To calculate the lagged variables Uf;t, Ue;t, Utar;t, Uext;t, we go back to 1970Q2.
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Variable �statistics status
~Y -2.137881 stationary
� -8.313042 stationary
R̂ -4.300952 stationary

Table 1: ADF Test Results

4.2 Calibration

Table 2 shows the calibrated parameters used for the two models. The �rst part
of the table shows the parameters that are common to both models, following
Minford and Ou (2010); the second part shows the parameters individual to each
model- the values of  and � follow De Grauwe (2010). The structural errors
backed out from model and data all are autoregressive; their AR(1) parameters
are shown as �i(i = 1, demand; 2, supply; 3, policy).

BF/RE Parameters De�nitions Values
a1 real interest rate elasticity on output gap 0.50
b1 coe¢ cient of output gap on in�ation 2.36
�� in�ation target 0

BF/RE � discount factor 0.99
� coe¢ cient of supply shock on in�ation 0.42
c1 interest rate persistence parameter 0.8
c2 policy preference on in�ation 2.0
c3 policy preference on output gap 0.1
 intensity of choice parameter 1
� memory parameter 0.5

BF �1 autoregressive coe¢ cient for demand error 0.69
�2 autoregressive coe¢ cient for supply error 0.84
�3 autoregressive coe¢ cient for policy error 0.18
�1 autoregressive coe¢ cient for demand error 0.89

RE �2 autoregressive coe¢ cient for supply error 0.86
�3 autoregressive coe¢ cient for policy error 0.18

Table 2: Calibration of Behavioural and Rational Expectation Model

4.3 Test Results Based on Calibration

Our auxiliary model is the VAR(1), Equation 28,24 ~Yt
�t
Rt

35 =
24 �11 �21 �31
�12 �22 �32
�13 �23 �33

3524 ~Yt�1
�t�1
Rt�1

35+
t (28)

The VAR�s nine coe¢ cients represent the dynamic properties found in the
data. We also look at the volatility properties as indicated by the variances.

9



We consider these two properties both separately and together, calculating Wald
statistics for each. We show these as the percentile where the data Wald lies in
the Wald bootstrap distribution.

4.3.1 Behavioural Model

Table 3 shows the VAR estimates on the actual data and also the 95% bounds
of the VAR estimates from the 1,000 bootstrap samples. It shows that �ve
out of nine parameters lie outside the 95% bootstrapped bounds. They are
the coe¢ cients of the lagged interest rate on output, and of lagged in�ation
and lagged interest rates on in�ation and interest rates. It is not surprising
therefore that overall the model is strongly rejected by the dynamic properties
of the data.

Categories Actual VAR 95% Lower 95% Upper IN
Coe¢ cients Bound Bound /OUT

�11 0.9145 0.7558 0.9319 IN
�21 0.0205 -0.1187 0.0369 IN
�31 -0.2214 -0.2041 -0.0148 OUT
�12 0.0554 -0.1792 0.3909 IN
�22 0.1214 0.9468 1.1706 OUT
�32 0.1413 -0.7642 -0.3567 OUT
�13 0.0336 -0.0583 0.1758 IN
�23 -0.0073 0.3638 0.4656 OUT
�33 0.8849 0.4953 0.6697 OUT

Wald (Dynamics) 100%

Table 3: Dynamic Properties of Behavioural Model Based on Calibration

Table 4 shows the volatility properties of the data and the behavioural model.
The table shows that only the output variance can be captured by the model.
The variances of in�ation and interest rate in the data are far below the range of
the 95% model bounds. Jointly the model -generated bounds on the variances
are closer to the data, with the Wald percentile at 96.4%, indicating marginal
rejection at 95%; this can be reconciled with the rejections of the two variances
on their own by noting that the variance values generated by the model will be
highly correlated; hence the lower 95% bound of the joint distribution will lie
well below the individual 95% bounds of in�ation and interest rates.
Nevertheless, when one combines the dynamic and volatility properties, the

behavioural model is strongly rejected, with an overall Wald of 100%.

4.4 The Rational Expectations Model

Table 5 shows the test �ndings for the RE model. On its dynamic properities
the model is marginally rejected, with a Wald of 95.6%. It is therefore fairly
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Categories Actual 95% Lower 95% Upper IN
Variances Bound Bound /OUT

var(y) 0.1584 0.0768 0.2512 IN
var(�) 0.0238 0.2270 0.8546 OUT
var(r) 0.0183 0.1605 0.5726 OUT

Wald (Volatility) 96.4%

Overall Wald 100%

Table 4: Volatility and Full Properties of Behavioural Model Based on Calibra-
tion

close to the data; individually, only one out of nine parameters lies outside the
95% bootstrapped bounds- the coe¢ cient of the lagged interest rate on output.

Categories Actual VAR 95% Lower 95% Upper IN
Coe¢ cients Bound Bound /OUT

�11 0.9145 0.7143 0.9197 IN
�21 0.0205 -0.3961 0.0963 IN
�31 -0.2214 -0.2133 0.3020 OUT
�12 0.0554 -0.0748 0.0779 IN
�22 0.1214 0.1187 0.4813 IN
�32 0.1413 -0.0620 0.3252 IN
�13 0.0336 -0.0249 0.0471 IN
�23 -0.0073 -0.0221 0.1614 IN
�33 0.8849 0.7916 0.9481 IN

Wald (Dynamics) 95.6%

Table 5: Dynamic Properties of Rational Expectation Model Based on Calibra-
tion

Turning to the volatility properties, Table 6 shows that the model is not
rejected by the data, with a Wald at 26.6%; individually, all the three variances
lie well inside their 95% bounds.
When one combines the dynamics and volatility, Table 6 shows that the

model is not rejected, with an overall Wald percentile of 90.4%.
We bring all these results together in Table 7. It can be seen that, if we use

our calibrated parameter values, only the rational expectations model fails to
be rejected overall by the behaviour found in the data. However, it could be
that this conclusion depends critically on the parameter values chosen and that
the calibrated ones give a misleading impression. We accordingly now turn to
the reestimation of these parameters.
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Categories Actual 95% Lower 95% Upper IN
Variances Bound Bound /OUT

var(y) 0.1584 0.0595 0.2265 IN
var(�) 0.0238 0.0150 0.0349 IN
var(r) 0.0183 0.0108 0.0443 IN

Wald (Volatility) 26.6%

Overall Wald 90.4%

Table 6: Volatility and Full Properties of Rational Expectation Model Based on
Calibration

Wald BF Model RE Model
Dynamics 100% 95.6%
Volatility 96.4% 26.6%
Overall 100% 90.4%

Table 7: Comparison of Behavioural and Rational Expectation Model Using
Calibration

5 Indirect Inference Estimation

The main idea of indirect inference as an evaluation method is to see if the
chosen parameter set �0 could have generated the actual data. However, if it
cannot do so, another set of parameters could possibly have done so. If no set
of parameters can be found under which the model fails to be rejected, then
the model itself is rejected. Models that are already unrejected may also get
closer to the data with alternative parameters. We now use indirect estimated
variables in each equation to obtain the set of parameters that maximises the
chances of the model passing the test- in other words minimises the overall
Wald statistic. For this purpose we use a powerful algorithm due to Ingber
(1996) based on Simulated Annealing in which search takes place over a wide
range around the initial values, with optimising search accompanied by random
jumps around the space.
Table 8 and 9 show the estimation results for behavioural and rational ex-

pectation models respectively. For both models, apart from � (time preference)
which is held �xed on a priori grounds, all the parameters are allowed to vary as
required by each model. For the behavioural model, the estimated parameters
are in Table 8. The IS, Phillips Curve and Taylor Rule parameters need to vary
generally by more than 40%, which implies that the original calibrated values
were substantially at variance with the data�s requirements. The parameters of
expectation formation,  and �, vary little however, suggesting that the prob-
lem lies with the expectations scheme itself and not with its parameter values.
The autoregressive coe¢ cients of the errors also vary little, implying that the
parameter changes largely o¤set each other in their e¤ects on the left-hand-
side variable in each equation; nevertheless the changes by a¤ecting the model�s
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transmission processes can change its implied behaviour substantially.. .
Table 9 shows the equivalent results for the rational expectations model.

Here the parameters do not generally change so much; only two parameters
change more than 40%, the e¤ect of the output gap on in�ation and the policy
reaction to in�ation, both of which increase sharply over the calibrated values.

Parameters Estimates Calibration Variation
a1 0.7358 0.50 47%
b1 3.4324 2.36 45%
k 0.5980 0.42 42%
c1 0.4336 0.8 46%
c2 2.9230 2.0 46%
c3 0.0560 0.1 44%
 1.0397 1 4%
� 0.5304 0.5 6%
�1 0.69 0.69 0%
�2 0.85 0.84 1%
�3 0.16 0.18 11%

Table 8: Estimation of Behavioural Model

Parameters Values Calibration Variation
a1 0.4307 0.50 14%
b1 3.5046 2.36 49%
k 0.2935 0.42 30%
c1 0.8190 0.8 2%
c2 2.8641 2.0 43%
c3 0.0804 0.1 20%
�1 0.8849 0.89 1%
�2 0.8677 0.86 14%
�3 0.1736 0.18 4%

Table 9: Calibration of Rational Expectation Model

5.1 Testing Comparison Based on Estimated Parameters

Table 10 and Table 13 show how the test results on these estimated parameters.
The behavioural model is still strongly rejected, with six out of twelve parame-
ters still outside the 95% bounds, and while it remains quite close to the data�s
volatility it is rejected decisively on the dynamics as well as in total, with an
overall Wald of 100%.
Though it is still strongly rejected overall, the behavioural model is now

closer to the data. We can see this from the transformed Mahalanobis dis-
tance (TM) described above, which is a convenient transformation of the Wald
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Categories Actual VAR 95% Lower 95% Upper IN
Coe¢ cients Bound Bound /OUT

�11 0.9145 0.7136 0.9212 IN
�21 0.0205 -0.4512 0.0343 IN
�31 -0.2214 -0.1148 0.1964 OUT
�12 0.0554 -0.0770 0.1309 IN
�22 0.1214 0.4001 0.7728 OUT
�32 0.1413 -0.2115 0.0668 OUT
�13 0.0336 -0.0757 0.2062 IN
�23 -0.0073 0.4943 1.0040 OUT
�33 0.8849 0.2266 0.5977 OUT
var(y) 0.1584 0.0634 0.2336 IN
var(�) 0.0238 0.0220 0.0729 IN
var(r) 0.0183 0.0543 0.1799 OUT

Table 10: Testing Details of Behavioural Model

Wald Percentiles Calibration Estimation
Dynamics 100% 100%
Volatility 96.4% 96.0%
Overall 100% 100%

Table 11: Comparison of Behavioural Expectation Model results under Calibra-
tion and Estimation
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statistic: it is a normalised t-statistic taking the value1.645 at the 95% Wald
percentile. Table 12 shows that the TM for the behavioural model improves
materially after estimation.

Tsfmd Mahalanobis Calibration Estimation
Dynamics 32.00 5.55
Volatility 1.98 1.92
Overall 30.01 5.93

Table 12: Comparison TM of Behavioural and Rational Expectation Model
Using Estimated Parameters

Table 13 shows that the rational expectations model improves to consid-
erable closeness to the data behaviour. All the individual parameters are now
inside their 95% bounds and overall the model would not be rejected at 80%
con�dence (see Table 14).

Categories Actual VAR 95% Lower 95% Upper IN
Coe¢ cients Bound Bound /OUT

�11 0.9145 0.7277 0.9316 IN
�21 0.0205 -0.3817 0.1688 IN
�31 -0.2214 -0.2566 0.3016 IN
�12 0.0554 -0.0772 0.0756 IN
�22 0.1214 0.0892 0.4276 IN
�32 0.1413 -0.1136 0.2630 IN
�13 0.0336 -0.0252 0.0420 IN
�23 -0.0073 -0.0266 0.1429 IN
�33 0.8849 0.8027 0.9525 IN
var(y) 0.1584 0.0613 0.2514 IN
var(�) 0.0238 0.0119 0.0320 IN
var(r) 0.0183 0.0100 0.0408 IN

Table 13: Testing Details of Rational Expectation Model

Wald Percentiles Calibration Estimation
Dynamics 95.5% 90.0%
Volatility 26.6% 24.2%
Overall 90.4% 79.8%

Table 14: Comparison of Rational Expectation Model under Calibrated and
Estimated Parameters

In sum, we can see that while the behavioural model remains rejected over-
all, the rational expectations model has after estimation lowered the threshold
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at which it would not be rejected to 80%. It would seem that behavioural ex-
pectations are clearly rejected in favour of rational expectations in the context
of a standard macroeconomic model.

6 Conclusion

This paper investigates whether behavioural expectations can improve on ra-
tional expectations in our understanding of recent macroeconomic behaviour.
The banking crisis impelled many economists and commentators to question
the standard New Keynesian model with rational expectations; one suggested
improvement was that expectations could be formed in a behavioural manner.
We have found in our work here that in fact this would be no improvement;
indeed the standard model �ts the behaviour found in the data, including the
crisis period, rather well while the behavioural model is decisively rejected.
This is not to say that the standard model cannot be enriched in some way

to improve our understanding of the events surrounding the crisis. In particular,
our work makes no attempt to assess the shift in the economy�s trend behaviour,
as we abstract from trends in the usual way- others argue (eg Le, Meenagh and
Minford (2012)), that shifts in trend were an important determinant of the US
crisis. Nor does it attempt to model the behaviour of banks and how this was
related to the economy in the crisis. Plainly these topics are important ones to
investigate. However, our work here suggests that behavioural expectations are
not a promising route to account for the banking crisis.
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