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Structural and functional progression in glaucoma: 

some aspects 

 

This thesis explored some aspects of the relationship between structural 

progression of the glaucomatous optic nerve head (ONH) and functional 

progression of the visual field. 

 

Sixty-one individuals with a longitudinal series of ONH images were manually 

identified from a database of approximately 2800 individuals attending a hospital 

glaucoma clinic. The ONH images obtained from the various photographic 

sources were equalized, for each individual, in terms of ONH size. 

 

Custom-software was designed to enable the viewing of consecutive and 

chronologically different ONH image-pairs under monoscopic and stereoscopic 

conditions, with and without sequential flicker. The efficacy, for the 

identification of progressive glaucomatous loss, amongst the 61 individuals, of 

the four viewing techniques was qualitatively evaluated by two ophthalmologists. 

Stereo-flicker identified the largest number of cases of progression, although little 

agreement was present between the two ophthalmologists. 

 

The digital characteristics of the ONH images from 27 of the 61 individuals 

enabled quantitative digital stereo-planimetry. A weak positive curvilinear 

association was present, at baseline, between the reduction in the neuroretinal rim 

area and the outcomes of perimetry, including residual retinal ganglion cell 

(RGC) count. However, little agreement was again present between the two 

ophthalmologists. Little association was present with either ophthalmologist 

between progressive structural damage and functional damage. 

 

A separate manual search of 1000 individuals with glaucoma archived in ‘Open 
eyes’ identified 112 individuals with a minimum of 5 visual field examinations 

over a minimum of 5 years. The outcomes at each stimulus location of the 

differential light sensitivity, expressed in decibels (dB), and of the residual RGC 

count, against time to follow-up, were compared using univariate linear 

regression analysis. In general, residual RGC count identified progression, in 

terms of a greater statistical significance and/ or of more stimulus locations, at an 

earlier stage of the disease than sensitivity expressed in dB. 



iv 

 

Acknowledgments 

 

I would like first to express my sincere thanks to my supervisor Professor John 

Wild, for his guidance, assistance and support throughout my studies. 

 

I would like to thank Dr Gavin Powell, Cardiff School of Computer Science and 

Informatics, Cardiff University, for the development of the software utilities for 

digital stereo-flicker chronoscopy and planimetry, Dr Carlo Knupp, Senior 

Lecturer, Cardiff School of Optometry and Vision Sciences for the development 

of the application used to convert the dB values into RGC values and Mr David 

Shaw, Senior Medical Statistician, who performed the univariate linear regression 

analysis for the purposes of a study. I also wish to thank all my colleagues and 

staff in Cardiff School of Optometry and Vision Sciences, Cardiff University for 

their help and support with special thanks to Mrs Susan Hobbs. 

 

I am grateful to Mr Ian Cunliffe, Consultant Ophthalmologist and Mr Mike 

Austin, Consultant Ophthalmologist, for their assistance with the project. 

 

I would like to extend a special thanks to my precious friends Dr Kholoud 

Alshaghroud, and Miss Rena Karapetrou, as well as, my lovely brother Giorgos 

for their continuous encouragement and support. 

 

Finally, I would like express my gratitude to my great parents Vasiliki and 

Lampros, for their love, support and their advice that with patience, work and 

perseverance I can achieve my goals. 

 

 



v 

 

Table of Contents 

Chapter  Title Page 

Chapter 1 Fundamentals of the optic nerve head 

appearance, of digital optic nerve head imaging 

and of perimetry 

 

1.1 The normal optic nerve head (ONH) 1 

1.2 Glaucoma 5 

1.2.1 Classification of Glaucoma 6 

1.2.1.1 Primary open-angle glaucoma (POAG) 6 

1.2.1.2 Normal-tension glaucoma (NTG) 6 

1.2.1.3 Ocular Hypertension (OHT) 7 

1.2.1.4 Glaucoma Suspect 7 

1.2.1.5 Primary angle-closure glaucoma (PACG) 8 

1.2.2 Primary risk factors for glaucoma 8 

1.2.2.1 Family history 8 

1.2.2.2 Ageing 9 

1.2.2.3 Ethnicity 9 

1.2.2.4 Central corneal thickness (CCT) 10 

1.2.2.5 Intraocular pressure (IOP) 11 

1.2.3 Secondary risk factors for glaucoma 12 

1.2.3.1 Ocular perfusion pressure (OPP) 12 

1.2.3.2 Diabetes - High Myopia - Axial length 12 

1.2.3.3 Peripapillary Atrophy (PPA) 13 



vi 

 

1.2.3.4 Disc Haemorrhage (DH) 13 

1.2.3.5 Gender 13 

1.3 The ONH in primary open-angle glaucoma 14 

1.3.1 Introduction 14 

1.3.2 Neuroretinal rim (NRR) 14 

1.3.3 Measurement of the predominant ONH features in 

glaucoma 

14 

1.3.4 Peripapillary atrophy (PPA) 15 

1.3.5 Disc Haemorrhage (DH) 16 

1.3.6 Vasculature 16 

1.3.7 Laminar pores 16 

1.3.8 Pallor 17 

1.3.9 The Retinal Nerve fibre Layer (RNFL) in open-

angle glaucoma 

17 

1.4 Pathophysiology of glaucoma 18 

1.4.1 Apoptosis 19 

1.4.2 Cell shrinkage 19 

1.4.3 Mechanical and Ischemic mechanism 20 

1.4.3.1 Mechanical mechanism  21 

1.4.3.2 Ischaemic mechanism 21 

1.4.4 Treatment modalities in glaucoma 22 

1.5 Types of ONH photography 22 

1.5.1 Analogue photography 22 

1.5.2 Digital photography 22 



vii 

 

1.6 Fundamentals of perimetry 26 

1.6.1 The normal visual field 26 

1.6.2 Differential light sensitivity 26 

1.6.3 Kinetic perimetry 27 

1.6.4 Standard automated perimetry (SAP) 28 

1.6.4.1 Threshold algorithms 30 

1.6.4.2 Stimulus Program 34 

1.6.4.3 Variability of the threshold estimate 35 

1.7 Classification of visual field defects 35 

1.8 The Single Field printout of the central field 36 

1.8.1 Estimated values of sensitivity 37 

1.8.2 Grayscale 38 

1.8.3 Total Deviation values 38 

1.8.4 Pattern Deviation values 38 

1.8.5 Total Deviation probability values 40 

1.8.6 Pattern Deviation probability values 40 

1.8.7 Visual field indices 41 

1.8.7.1 Mean Deviation (MD) 41 

1.8.7.2 Pattern Standard Deviation (PSD) 42 

1.8.7.3 Visual Field Index (VFI) 42 

1.8.7.4 Glaucoma Hemifield Test (GHT) 43 

1.8.8 Reliability parameters 44 



viii 

 

1.8.8.1 False-Negative (FN) Catch Trials 44 

1.8.8.2 False-Positive (FP) Catch Trials 45 

1.8.8.3 Fixation Stability 45 

1.8.8.4 Perimetric learning effect and fatigue effect 46 

1.9 The identification of progressive visual field loss 48 

1.9.1 Empirical Clinical Judgement 49 

1.9.2 Defect Classification Systems 49 

1.9.3 Trend Analysis 50 

1.9.4 Event Analysis 50 

Chapter 2 Rational for the Research  

2.1 Introduction to structural and functional 

characteristics of the ONH 

52 

2.2 Previous work 53 

2.3 Overall and specific aims of the work 54 

2.4 Experimental Studies 56 

2.5 Logistics 57 

Chapter 3 Characteristics of the individuals within the 

database compiled for the research 

 

3.1 Acquisition of the various cohorts 63 

3.2 Evaluation of structural and/or functional 

progressive loss (Chapter 5 and Chapter 6) 

64 

3.2.1 Optic nerve head (ONH) images 64 

3.2.2 Visual field examination time series  66 

3.3 The characteristics of the various cohorts with ONH 

stereo-images and visual field examinations  

67 



ix 

 

3.3.1 Resultant cohort for the qualitative assessment of 

progressive glaucomatous ONH damage using both 

mono- and stereo-flicker chronoscopy (Chapter 5) 

74 

3.3.2 Resultant cohort for the quantitative assessment of 

progressive structural and functional glaucomatous 

damage (Chapter 6) 

79 

3.3.3 Resultant cohort for the pointwise linear regression 

of residual retinal ganglion cell (RGC) count 

(Chapter 7) 

84 

Chapter 4 Optic nerve head image registration, sizing and 

alignment, and viewing 

 

4.1 Aim 88 

4.2 Hardware 88 

4.3 Software 89 

4.4 Equalizing the ONH image size from the various 

photographic sources 

96 

4.5 Results 100 

4.6 Discussion 102 

Chapter 5 The qualitative assessment of progressive 

glaucomatous ONH damage using both mono- 

and stereo-flicker chronoscopy 

 

5.1 Introduction 104 

5.2 Aim 105 

5.3 Methods 106 

5.4 Results 112 

5.4.1 Designation of glaucoma 118 

 



x 

 

5.4.2 Designation of progressive glaucomatous ONH 

damage 

123 

5.4.3 Comparison of definite progression to that of the 

corresponding visual field outcome 

129 

5.5 Discussion 133 

Chapter 6 The quantitative assessment of progressive 

structural and functional glaucomatous damage 

 

6.1 Introduction 137 

6.2 Aim 139 

6.3 Methods 139 

6.4 Results 150 

6.5 Discussion 166 

Chapter 7 Pointwise linear regression of residual RGC 

count 

 

7.1 Introduction 171 

7.2 Aim 174 

7.3 Methods 174 

7.4 Results 179 

7.4.1 Global approach 180 

7.4.2 Pointwise approach 183 

7.5 Discussion 193 

Chapter 8 Overall Discussion, conclusion and future work 

8.1 Optic nerve head image registration, sizing and 

alignment, and viewing 

198 



xi 

 

8.2 The qualitative assessment of progressive 

glaucomatous ONH damage using both mono- and 

stereo-flicker chronoscopy 

199 

8.3 The quantitative assessment of progressive 

structural and functional glaucomatous damage 

200 

8.4 Pointwise linear regression of residual RGC count 202 

 References 206 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of acronyms used in the text 

Abbreviation Interpretation 

α-zone Alpha zone 

asb 

β-zone 

Apostilb 

Beta zone 

CCD Charge couple device 

CCT Central corneal thickness 

CDR cup-to-disc ratio 

CSLO Confocal scanning laser ophthalmoscopy  

dB Decibel 

DD Diffuse Defect 

dD Disc diameter 

DH Disc haemorrhage 

dpi Dots per inch 

EGS European Glaucoma Society 

ERF Error Related Factor 

FOS Frequency-of-Seeing curve 

FN False-Negative 

FP False-Positive 

GH General Height 

.gif Graphics interchange format 

GHT Glaucoma Hemifield Test 

GPA Guided Progression Analysis 

HFA Humphrey Field Analyzer 

HRT Heidelberg Retinal Tomography 

IOL Intraocular lens implementation 

IOP Intraocular pressure 

.jpeg Joint photographic experts group 

LC Lamina cribrosa 

LD Local Defect 

MD Mean Deviation 

NRR Neuroretinal rim 

NTG Normal-tension glaucoma 



xiii 

 

OCT Optical coherence tomography 

OHT Ocular hypertension 

OHTS Ocular Hypertension Treatment Study 

ONH Optic nerve head 

OPP Ocular perfusion pressure 

PMS Patient management system 

PSD Pattern Standard Deviation 

PPA Peripapillary atrophy 

PIGM Pigment dispersion glaucoma 

PLR Pointwise linear regression analysis 

.png Portable network graphics 

POAG Primary open-angle glaucoma 

PACG Primary angle-closure glaucoma 

PEXG Pseudo-exfoliation glaucoma 

RGB Red, Green, Blue 

RGC Retinal ganglion cell 

RNFL Retinal nerve fibre layer 

RPE Retinal pigment epithelium 

Rw/Dd Rim width-to-disc ratio 

SLP Scanning laser polarimetry 

SKP Semi-automated kinetic perimetry 

STP Size Threshold Perimetry 

SAS Statistical Analysis System 

SAP Standard automated perimetry 

SITA Swedish Interactive Threshold Algorithm 

.tiff Tagged image file format 

AGIS 
The Advanced Glaucoma Intervention 

Study 

CIGTS 
The Collaborative Initial Glaucoma 

Treatment Study 

CNTGS 
The Collaborative Normal-Tension 

Glaucoma Study 

EMGT The Early Manifest Glaucoma Trial 



xiv 

 

EGPS The European Glaucoma Prevention 

Study 

LoGTS The Low-Pressure Glaucoma Treatment 

Study 

UHW University Hospital of Wales 

VCDR Vertical cup-to-disc ratio 

VFI Visual Field Index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

List of Figures 

Figure Title Page 

Chapter 1 Fundamentals of the optic nerve head 

appearance, of digital optic nerve head imaging 

and of perimetry 

 

Figure 1.1 The Single Field Printout for Program 24-2 and the 

SITA Fast algorithm in the left eye of a patient 

with an age-related cataract and NTG. 

37 

Chapter 2 Rational for the Research  

- No figures listed. - 

Chapter 3 

 

Characteristics of the individuals within the 

database compiled for the research 

 

Figure 3.1 The distribution of the ONH and visual field 

examination in 27 patients with two or more ONH 

stereo-images with at least one visit conducted 

through Topcon TRC-EX and five or more reliable 

visual field examinations. 

83 

Chapter 4 Optic nerve head image registration, sizing and 

alignment, and viewing  

 

Figure 4.1 A screenshot of the biographical information, the 

designation of each ONH image for the given 

stereo-pair, the keratometry values, the refraction, 

the name of the camera and the date of 

examination for a given individuals as presented 

from the software. 

89 

Figure 4.2. A screenshot of the multiple align box used for 

image alignment. 

90 

Figure 4.3 A screen capture of the database illustrating an 

ONH image for the right and left eyes, 

respectively, of a given individual at each of seven 

visits. The two images contained within the 

automatically generated red square, indicate the 

two time points, selected by the operator, for the 

91 



xvi 

 

given chronological comparison of the ONH 

characteristics. 

Figure 4.4. A screen capture of the database illustrating an 

ONH image for the right and left eyes, 

respectively, of a given individual at each of five 

visits. 

92 

Figure 4.5 Multiple align box option 94 

Figure 4.6 A schematic illustrating the procedure for the 

manual resizing of the original photographic 

images for any visit (A, B, D) and the manually 

resized and aligned stereo-pairs (E) relative to 

those between Visits 1 and 2 (C). The associated 

vector comparisons for the calculation of the 

scaling factor are also shown. 

97 

Figure 4.7. Two examples of the position of a vessel 

bifurcation, indicated by the  symbol, 

considered suitable for the vector analysis. The X 

symbols represent unsuitable, positions of the 

same bifurcations. 

99 

Figure 4.8 The eight features (a to h inclusive) selected for the 

vector analysis, and the corresponding 28 vectors, 

illustrated for a given stereo-pair for a given 

individual. 

99 

Chapter 5 The qualitative assessment of progressive 

glaucomatous ONH damage using both mono- 

and stereo-flicker chronoscopy 

 

Figure 5.1 A schematic illustrating, by visit, the pseudo-

randomization of the four viewing techniques 

across the 61 individuals. 

111 

Figure 5.2 The non-colour balanced ONH images, between 

Visits 1 and 2, for each of the four cases of non-

glaucoma incorrectly designated as ‘glaucoma’ by 

both observers. 

121 



xvii 

 

Figure 5.3 The non-colour balanced ONH images, between 

Visits 1 and 2, for each of the four cases of non-

glaucoma incorrectly designated as ‘non-

glaucoma’ by both observers. 

123 

Chapter 6 The quantitative assessment of progressive 

structural and functional glaucomatous damage  

 

Figure 6.1 The pseudo-randomized order of presentation of 

the mono- and stereo-viewing techniques between 

images and between visits. 

143 

Figure 6.2 The ONH sectors from Wirtschafter and 

colleagues (1982) (top) and the mapping of the 

visual field to the ONH sectors, to estimate the 

RGC number of a given ONH sector subserving 

the given stimulus location, based upon the work 

of Garway-Heath and colleagues (2000) (bottom). 

148 

Figure 6.3 An example of the output from the application 

coded to calculate the RGC at each of the ONH 

sectors based upon the Program 24-2 stimulus grid 

of the HFA. 

148 

Figure 6.4 The between-observer difference in the NRR area 

(mm
2
) at baseline between Observer B and A 

against the mean of the NRR area (mm
2
) derived 

by the two observers. The solid line indicates the 

mean of the differences and the dotted line the 

95% limits of agreement. 

152 

Figure 6.5 The true NRR area (mm²) against the true ONH 

area (mm²) at the baseline photographic visit by 

observer for the 23 individuals who had 

undertaken perimetry reliably (top) Observer A; 

(bottom) Observer B. 

153 

Figure 6.6 The VFI (%) at the baseline visual field 

examination against the true NRR area (mm²) at 

the baseline photographic visit for the 23 

154 



xviii 

 

individuals for ‘Observer A’ (top) and ‘Observer 

B’ (bottom). 

Figure 6.7 The MD (dB) at the baseline visual field 

examination against the true NRR area (mm²) at 

the baseline photographic visit for the 23 

individuals for ‘Observer A’ (top) and ‘Observer 

B’ (bottom). 

155 

Figure 6.8 The number of RGCs (millions) at the baseline 

visual field examination against the true NRR area 

(mm²) at the baseline photographic visit for the 23 

individuals for ‘Observer A’ (top) and ‘Observer 

B’ (bottom). 

156 

Figure 6.9 The between-observer difference in the 

proportionate change in the NRR area (%) at 

baseline between Observer B and A against the 

mean of the proportionate change in the NRR area 

(%) derived by the two observers. 

157 

Figure 6.10 The proportionate change (%) in VFI from the 

baseline to the last visit against the corresponding 

proportionate change in the NRR (%), for 

Observer A (top) and Observer B (bottom).  

159 

Figure 6.11 The proportionate change in MD (%) from the 

baseline to the last visit against the corresponding 

proportionate change in the NRR (%), for 

Observer A (top) and Observer B (bottom). 

161 

Figure 6.12 The proportionate change in the number of RGCs 

(%) from the baseline to the last visit against the 

corresponding proportionate change in the NRR 

(%), for Observer A (top) and Observer B 

(bottom). 

162 

Figure 6.13 The proportionate change in the superior number 

of RGCs (%) from the baseline to the last visit 

against the corresponding proportionate change in 

163 



xix 

 

the superior NRR area (%), for Observer A (top) 

and Observer B (bottom). 

Figure 6.14 The proportionate change in the inferior number of 

RGCs (%) from the baseline to the last visit 

against the corresponding proportionate change in 

the inferior NRR area (%), for Observer A (top) 

and Observer B (bottom). 

164 

Figure 6.15 The between-observer difference in the 

proportionate change of the NRR area (%) against 

the time interval (years). 

165 

Chapter 7 Pointwise linear regression of residual retinal 

ganglion cell count 

 

Figure 7.1 The relationship between the various 

transformations of the mean differential light 

sensitivity recorded with stimulus size III using 

Program 24-2 and specified in dB. Note the 

differences in the scaling of the various axis. 

173 

Figure 7.2 The output of the univariate linear regression 

analysis illustrating the slope of each of the three 

visual field indices, MD, PSD and VFI, and of the 

global residual RGC count against time to follow-

up; the lower and upper 95% confidence limits of 

the estimate and the statistical significance of the 

estimate, at each stimulus location arranged in 

Program 24-2 format. Outcomes exhibiting a 

statistical significant estimate of the slope are 

highlighted in yellow. 

176 

Figure 7.3a The slope of the univariate linear regression of 

differential light sensitivity (dB) against time to 

follow-up, the lower and upper 95% confidence 

limits of the estimate and the statistical 

significance of the estimate, at each stimulus 

location arranged in Program 24-2 format. 

178 



xx 

 

Figure 7.3b The slope of the univariate linear regression of 

residual RGC count against time to follow-up, the 

lower and upper 95% confidence limits of the 

estimate and the statistical significance of the 

estimate, at each stimulus location arranged in 

Program 24-2 format. 

178 

Figure 7.4 An illustration of the significance printout, is given 

in Figures 7.3. The statistical significance of the 

estimate of the slope of the univariate linear 

regression of differential light sensitivity (dB) 

(top) and residual RGC count (bottom) against 

time to follow-up arranged in Program 24-2 format 

for the individual presented in Figures 7.3 a and b. 

179 

Figure 7.5 The relationship of the number of statistically 

significant progressive slopes between the various 

indices. 

182 

Figure 7.6 The number of individuals against the number of 

statistically significant negative slopes for each 

regression outcome. 

185 

Figure 7.7 The number of individuals against the number of 

additional statistically significant negative slopes 

for each regression outcome. 

186 

Figure 7.8 The relationship between the number of 

statistically significant negative slopes and the 

corresponding number of positive slopes for the 

absolute values of sensitivity (dB). The figure 

adjacent to a symbol indicates the number of 

overlapping data points. 

187 

Figure 7.9 The relationship between the number of 

statistically significant negative slopes and the 

corresponding number of positive slopes for the 

residual RGC count. The figure adjacent to a 

symbol indicates the number of overlapping data 

187 



xxi 

 

points. 

Figure 7.10 The number of locations exhibiting a statistically 

significant negative slope for each regression 

outcome, but with one outcome manifesting a 

more statistically significant slope compared to the 

other, by the mean of the absolute sensitivity at the 

two baseline examinations. 

189 

Figure 7.11 The number of additional locations exhibiting a 

statistically significant negative slope for one 

outcome compared to the absence of progression 

with the other outcome, by the mean of the 

absolute sensitivity at the two baseline 

examinations. Note the scaling of both the ordinate 

and the abscissa is different to that of Figure 7.10. 

191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxii 

 

List of Tables 

Table Title Page 

Chapter 1 Fundamentals of the optic nerve head 

appearance, of digital optic nerve head imaging 

and of perimetry 

 

- No tables listed. - 

Chapter 2 Rational for the Research  

- No tables listed. - 

Chapter 3 Characteristics of the individuals within the 

database compiled for the research 

 

Table 3.1 The number of stereo-images by the number of 

photographic visits, and the mode and resolution of 

photography at each visit, for the 212 individuals 

with two or more stereo-images. 

66 

Table 3.2 The number of individuals by the frequency of the 

available ONH images and visual field 

examinations. 

68 

Table 3.3 The number of stereo-images by the number of 

photographic visits, and the mode and resolution of 

photography at each visit, for the 116 individuals 

with two or more stereo-images and three or more 

reliable visual field examinations. 

69 

Table 3.4 The number of ONH stereo-images by the number 

of visual field examinations for the 116 individuals 

with two or more stereo-images and three or more 

reliable visual field examinations. 

69 

Table 3.5 The number and the corresponding percentage (%) 

of visits where the photography and visual field 

examinations were undertaken on the same day for 

the 116 individuals with two or more stereo-

images and three or more reliable visual field 

examinations. 

 

70 



xxiii 

 

Table 3.6 The cumulative distribution of the 116 patients 

(cells) with two or more stereo-images and three or 

more reliable visual field examinations by the 

number of, and interval between, the 

corresponding photographic and visual field 

examinations. 

70 

Table 3.7 The number of ONH stereo-images by the number 

of visual field examinations for the 97 individuals 

with two or more stereo-images and three or more 

reliable visual field examinations and with the 

pairs of respective examinations conducted within 

12 months of each other. 

71 

Table 3.8 The number of stereo-images by the number of 

photographic visits, and the mode and resolution of 

photography at each visit, for the 74 individuals 

with two or more stereo-images and five or more 

reliable visual field examinations. 

72 

Table 3.9 The number of ONH stereo-images by the number 

of visual field examinations for the 74 individuals 

with two or more stereo-images and five or more 

reliable visual field examinations. 

72 

Table 3.10 The number and the corresponding percentage (%) 

of visits where the photography and visual field 

examinations were undertaken on the same day for 

the 74 individuals with two or more stereo-images 

and five or more reliable visual field examinations 

and with at least one pair of respective 

examinations conducted within 12 months of each 

other. 

73 

Table 3.11 The cumulative distribution of the 74 patients 

(cells) with two or more ONH stereo-images and 

five or more reliable visual field examinations by 

the number of, and interval between, the 

73 



xxiv 

 

corresponding photographic and visual field 

examinations. 

Table 3.12 The number of ONH stereo-images by the number 

of visual field examinations for the 68 individuals 

with two or more stereo-images and five or more 

reliable visual field examinations and with at least 

one pair of respective examinations conducted 

within 12 months of each other. 

74 

Table 3.13 The number of stereo-images by the number of 

photographic visits, and the mode and resolution of 

photography at each visit, for the 61 individuals 

with two or more stereo-images and five or more 

reliable visual field examinations and with at least 

one pair of respective examinations conducted 

within 12 months of each other. 

75 

Table 3.14 The number of ONH stereo-images by the number 

of visual field examinations for the 61 individuals 

with two or more stereo-images and five or more 

reliable visual field examinations and with at least 

one pair of respective examinations conducted 

within 12 months of each other. 

75 

Table 3.15 The demographic characteristics of the most 

severely affected eye, by diagnosis, for the 61 

individuals with two or more stereo-images and 

five or more reliable visual field examinations 

conducted within 12 months of each other. 

77 

Table 3.16 The clinical characteristics of the most severely 

affected eye, by diagnosis, for the 61 individuals 

with two or more stereo-images and five or more 

reliable visual field examinations. 

78 

Table 3.17 The number of stereo-images by the number of 

photographic visits, and the mode and resolution of 

photography at each visit, for the 27 individuals 

79 



xxv 

 

with two or more stereo-images and five or more 

reliable visual field examinations with at least one 

pair of examinations conducted within 12 months 

of each other and with at least one photographic 

examination undertaken with the Topcon TRC-Ex 

camera. 

Table 3.18 The number of ONH stereo-images by the number 

of visual field examinations for the 27 individuals 

with two or more stereo-images and five or more 

reliable visual field examinations with at least one 

pair of respective examinations conducted within 

12 months of each other and with at least one 

photographic examination undertaken with the 

Topcon TRC-Ex camera. 

80 

Table 3.19 The demographic characteristics, of the most 

severely affected eye, by diagnosis, for the 27 

individuals with two or more stereo-images and at 

least one visit conducted through Topcon TRC-EX 

and five or more reliable visual field examinations 

conducted within 12 months of each other. 

81 

Table 3.20 The perimetric and clinical characteristics, at the 

entry visit, of the 27 individuals with two or more 

stereo-images and at least one visit conducted 

through Topcon TRC-EX and five or more reliable 

visual field examinations conducted within 12 

months of each other. 

82 

Table 3.21 The demographic characteristics of the most 

severely affected eye, by diagnosis, for the 112 

individuals with five or more reliable visual field 

examinations over a minimum follow-up of 5 

years. 

86 

Table 3.22 The perimetric characteristics at the entry visit, of 

the most severely affected eye, by diagnosis, for 

87 



xxvi 

 

the 112 individuals with five or more reliable 

visual field examinations over a minimum follow-

up of 5 years. 

Chapter 4 Optic nerve head image registration, sizing and 

alignment, and viewing 

 

Table 4.1 The summary statistics for the proportionate 

difference, in the magnitudes of the x and y 

coordinates of all 28 vectors considered together, 

between the original image and the manually 

resized image for each given imaging modality, at 

a randomly selected visit, amongst the 27 

individuals. 

100 

Table 4.2 The summary statistics median for the 

proportionate difference, in the magnitudes of the 

x and y coordinates of all 28 vectors considered 

together, between the manually resized and aligned 

images, by paired photographic modalities, at a 

randomly selected between-visit comparison, 

amongst the 27 individuals. 

101 

Chapter 5 The qualitative assessment of progressive 

glaucomatous ONH damage using both mono- 

and stereo-flicker chronoscopy 

 

Table 5.1 The demographic characteristics of the randomly 

assigned eye of the 61 individuals at the baseline 

visit. 

107 

Table 5.2 The clinical characteristics of the randomly 

assigned eye of the 61 individuals at the baseline 

visit. 

108 

Table 5.3 The median of the image quality, scored on a 0-5 

scale, by observer and by viewing technique, for 

the 50 individuals with glaucoma (top) and for the 

11 individuals with ocular hypertension (bottom), 

evaluated at each of the first three visits. 

113 



xxvii 

 

Table 5.4 The mean of the differences, and the 

corresponding 95% limits of agreement, for the 

within-observer ‘test-retest’ variability in the 

assessment of image quality for each of the 

viewing techniques, for each observer, within the 

first three visits, for the individuals with glaucoma 

(top) and the between-observer variability in the 

assessment of image quality for the second of the 

two image evaluations for each of the viewing 

techniques within the first three visits (bottom). 

114 

Table 5.5 The mean of the differences, and the 

corresponding 95% limits of agreement, for the 

within-observer ‘test-retest’ variability in the 

assessment of image quality for each of the 

viewing techniques, for each observer, within the 

first three visits, for the individuals with ocular 

hypertension (top) and the between-observer 

variability in the assessment of image quality for 

the second of the two image evaluations for each 

of the viewing techniques within the first three 

visits (bottom). 

115 

Table 5.6 Top: The median (lower and upper quartiles; 

range) of the time (seconds) taken to reach an 

outcome in terms both of diagnosis and of 

progression for each paired-comparison, by 

observer and by viewing technique, for the 50 

individuals with glaucoma. Bottom: The mean of 

the differences between the two observers, and the 

corresponding 95% limits of agreement, for the 

time to reach an outcome in terms both of 

diagnosis and of progression, by viewing 

technique, at each of the first three visits. 

116 

   



xxviii 

 

Table 5.7 Top: The median (lower and upper quartiles; 

range) of the time (seconds) taken to reach a 

diagnostic outcome for each paired comparison, by 

observer and by viewing technique, for the 11 

individuals with ocular hypertension. Bottom: The 

mean of the differences between the two observers, 

and the corresponding 95% limits of agreement, 

for the time to reach a diagnostic outcome, by 

viewing technique, at each of the first three visits. 

117 

Table 5.8 The number of ‘glaucoma’ to ‘non-glaucoma’ 

cases, by observer and by viewing technique, for 

the 50 individuals with glaucoma and for the 11 

individuals with ocular hypertension between Visit 

1 and Visit 2 (left column) and for the 30 

individuals with glaucoma and 5 individuals with 

ocular hypertension between Visits 1, 2 and 3 

(middle columns). The fourth column represents 

the outcomes from the 82 comparisons of the ONH 

images from the 17 individuals (14 with glaucoma 

and 3 with ocular hypertension) with four or more 

ONH images. 

119 

Table 5.9 The number of cases with non-progression by 

observer, by number of visits and by viewing 

technique, for the 50 individuals with glaucoma. 

126 

Table 5.10 The number of cases with definite progression and 

with possible progression (in parenthesis) by 

observer, by number of visits and by viewing 

technique, for the 50 individuals with glaucoma. 

127 

Table 5.11 The number of instances in which the given 

viewing technique identified definite progression 

at an earlier stage compared to each of the 

remaining three viewing techniques, by observer, 

by number of visits, amongst the 50 progressed 

128 



xxix 

 

individuals with glaucoma. The figure in 

parenthesis indicates the number of instances 

where agreement was present for both observers. 

Table 5.12 The outcome for the 4 cases of ocular hypertension 

incorrectly designated as glaucoma by both 

observers, by viewing technique and by ranking of 

the earliest identification of definite progression. 

128 

Table 5.13 The outcomes of the three separate visual field 

progression criteria, MD, VFI and EMGT GPA in 

isolation, and in combination,  for the 50 

individuals with glaucoma and the 11 individuals 

with ocular hypertension. 

129 

Table 5.14 The frequency of visual field progression for each 

of the three separate visual field progression 

criteria, MD, VFI and EMGT GPA in isolation and 

combined, for the 14 cases of definite progression 

confirmed by both observers using stereo-flicker 

chronoscopy and for the 20 and 22 cases, 

respectively, of definite progression for Observer 

‘A’ and Observer ‘B’, alone. 

130 

Table 5.15 The frequency of visual field progression for each 

of the three separate visual field progression 

criteria, MD, VFI and EMGT GPA in isolation and 

in combination for the 7 cases of non-progression 

of the ONH confirmed by both observers using 

stereo-flicker chronoscopy and for the 11 and 15 

cases, respectively, of non-progression for 

Observer ‘A’ and Observer ‘B’, alone. 

131 

Table 5.16 The number of the perimetric and the photographic 

visits (median, lower and upper quartiles; range) 

for the 7 out of 14 cases of definite progression 

confirmed by both observers using stereo-flicker 

chronoscopy and who exhibited visual field 

132 



xxx 

 

progression (left-hand column); for the 7 out the 

14 cases of definite progression confirmed by both 

observers using stereo-flicker chronoscopy and 

who did not exhibit visual field progression 

(middle-left column); for the 4 out of 7 cases of 

non-progression of the ONH confirmed by both 

observers using stereo-flicker chronoscopy and 

who exhibited visual field progression (middle-

right column); and for the 3 of the 7 cases of non-

progression of both the ONH and the visual field. 

Chapter 6 The quantitative assessment of progressive 

structural and functional glaucomatous damage 

 

Table 6.1 The demographic characteristics of the randomly 

assigned eye of the 27 individuals at the baseline 

visit. 

141 

Table 6.2 The clinical characteristics of the randomly 

assigned eye of the 27 individuals at the baseline 

visit. 

142 

Table 6.3 The median of the times (minutes) to complete 

planimetry of the 23 images acquired at the second 

photographic visit, by diagnosis, by observer and 

by viewing technique, together with the mean of 

the differences between the two observers, and the 

corresponding 95% limits of agreement. 

150 

Table 6.4 The descriptive statistics for the true values of the 

ONH area, NRR area, cup area, ONH diameter, 

and CDR for the 20 individuals with glaucoma 

(top) and for the 3 individuals with ocular 

hypertension (bottom), by observer and by viewing 

technique. 

151 

Table 6.5 The frequency of visual field progression by trend-

analysis (the statistical significance of the slopes of 

the VFI and MD against time to follow-up) and by 

158 



xxxi 

 

event-analysis (EMGT GPA progression criteria) 

amongst the 23 individuals. 

Chapter 7 Pointwise linear regression of residual retinal 

ganglion cell count 

 

Table 7.1 Table 7.1. The summary statistics for the age and 

gender characteristics of the 112 individuals 

together with the number of visual field 

examinations; the duration of visual field follow-

up; the visual field indices and the residual RGC 

count of the baseline visual field in the randomly 

selected eye. 

180 

Table 7.2 The number of statistically significant progressive 

slopes by each of the various visual field indices 

and by the global residual RGC count for each eye. 

180 

Table 7.3. The summary statistics of the slope of the given 

visual field index against time to follow-up for the 

total number of progressive slopes, of statistically 

significant progressive slopes, of improving slopes, 

and of statistically significant improving slopes. 

181 

Table 7.4 The number of statistically significant improving 

slopes by each of the various visual field indices 

and by the global residual RGC count for each eye. 

182 

Table 7.5 The outcomes illustrated in Figure 7.5, expressed 

in tabulated format. 

183 

Table 7.6.  The summary statistics of the number of locations 

for the 102 individuals associated with a 

statistically significant negative slope for the 

absolute values of sensitivity (dB) and for the 

residual RGC count, against time to follow-up. 

184 

Table 7.7 The summary statistics of the distributions of the 

statistically significant negative and positive slopes 

for residual RGC count, and for the absolute values 

of sensitivity (dB), against time to follow-up, 

186 



xxxii 

 

respectively, amongst the 22 individuals. 

Table 7.8. The summary statistics of the absolute values of 

sensitivity (dB) averaged across Visits 1 and 2.  

190 

Table 7.9 The summary statistics of the number of locations 

for the 10 individuals associated with a statistically 

significant positive slope for the absolute values of 

sensitivity (dB) and for the residual RGC count, 

against time to follow-up. 

192 

 

 

 

 

 

 

 

 

 

 



- 1 - 

 

Chapter 1 

 

Fundamentals of the optic nerve head appearance, of digital 

optic nerve head imaging and of perimetry 

 

1.1 The normal optic nerve head (ONH) 

The optic nerve head (ONH) is situated approximately 1.5º below and 15º 

nasally from the fovea and is a vertical oval subtending 7.5º by 5.5º. It 

contains the axons of the retinal ganglion cells (RGC) gathered into bundles of 

approximately 20μm in diameter (Jonas et al. 1999; Sramek 2002; Oddone and 

Centofanti 2005). 

 

The predominant features of the ONH are the optic cup and the neuroretinal 

rim (NRR). The normal cup is horizontally oval: the horizontal diameter is 

approximately 8% wider than the vertical diameter (Varma 1993; Sanfilippo et 

al. 2009). The NRR contains between 800,000 and 1,500,000 axons, with an 

average of 1,200,000 (Wynsberghe et al. 1995; Levin 1999) and comprises the 

area between the border of the cup and the edge of the ONH. The NRR is, 

therefore, defined by the vertical shape of the ONH and the horizontal shape 

of the cup. The vertical cup-to-disc ratio (VCDR) can be used to describe the 

predominant features of the ONH (Quigley et al. 2008; Lee et al. 2010; Stone 

et al. 2010; Breusegem et al. 2011; Swamy et al. 2012). The normal value 

ranges from 0.43 to 0.50; however, 5% of normal individuals exhibit a cup-to-

disc ratio (CDR) of 0.7 (Boland and Quigley 2007; Bourne 2012). The NRR 
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area and the cup area each exhibit a positive linear correlation with the ONH 

size (Hoffmann et al. 2007). The VCDR increases by 0.1 between the ages of 

30 to 70 years (Garway-Heath et al. 1997). 

 

The axons temporal to the macula in one horizontal hemifield follow an 

arcuate course around the macula, termed the papillomacular bundle, and enter 

the temporal sectors of the ONH. The axons from the more peripheral 

temporal region follow a course around the papillomacular bundle and enter 

the ONH at the superior or inferior pole respectively. Nasally, the axons follow 

a radial course and enter the nasal sectors of the ONH (Varma 1993; Maresco 

2002; Hoffmann et al. 2007; Morrison 2007). The peripapillary retinal nerve 

fibre layer (RNFL) is, therefore, thickest at the upper and lower poles (Radius 

1987; Azuara-Blanco et al. 2002a; Heijl and Patella 2002). Four types of 

ganglion cell have been identified in human: the midget cells, which form 89-

90% of the population (Dacey and Lee 1994); the parasol cells (Dacey and 

Brace 1992); the small bistratified cells (Kaas et al. 1978; Dacey 1993); and 

the melanopsin-containing cells (Hankins et al. 2008; Li et al. 2012). 

 

Within the ONH, collagenous extensions from the surrounding sclera form a 

fine meshwork, the lamina cribrosa (LC) (Oddone and Centofanti 2005). The 

main role of the LC is to provide mechanical support for the axon bundles and 

to maintain the intraocular pressure (IOP) gradient. The main glial element are 

the astrocytes which support the passage of the axon bundles through the pores 

between the collagen thereby isolating individual axon bundles from one 

another and from the blood vessels (Radius 1987; Maresco 2002). The LC is 
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slightly concave with its largest pores located superiorly and inferiorly 

(Hoffmann et al. 2007; Lawrenson 2007; Park et al. 2013). Elevated IOP can 

lead to posterior bowing of the LC and this displacement leads to a 

deformation of the pores with subsequent axonal damage (Radius and 

Gonzales 1981; Varma 1993; Caprioli and Coleman 2010). The NRR area 

exhibits considerable variability between individuals depending upon the 

density and diameter of the axons and upon differences in the LC and in the 

proportion of glial cells (Fingeret et al. 2005; Rolando 2005; Hoffmann et al. 

2007; Sanfilippo et al. 2009). The size of the LC pores is positively correlated 

with the size of the ONH. Large ONHs exhibit large pores and the axons are 

more sparsely arranged through the LC with less compression whilst the 

opposite occurs with small ONHs (Healey and Mitchell 2004; Lee et al. 

2012a; Park and Park 2012). 

 

The central retinal artery and vein emerge from the ONH and branch to supply 

the four quadrants of the retina. The ONH can thus be located by the point of 

convergence of the vessels (Sramek 2002; Oddone and Centofanti 2005). The 

exit position of the central vessel trunk can influence the local susceptibility of 

the NRR to damage (Jonas et al. 2001). 

 

The ONH margin is surrounded by Elschnig’s ring which is composed of 

white neuroglial tissue and separates the ONH from the retinal pigment 

epithelium (RPE) (Roff et al. 2001; Cankaya and Simsek 2012; Chauhan et al. 

2012). The fine capillaries are responsible for the pink colour of the ONH. 

In approximately 15%-20% of cases, the normal ONH can be associated with 
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peripapillary atrophy (PPA), which is an age-related degeneration of the retinal 

pigment epithelium and Bruch's membrane, and which is associated with a 

thinning of the chorioretina, and/ or an abnormal pigmentation and colour, in 

the immediate peripapillary region. Peripapillary atrophy comprises the more 

peripheral alpha (α) zone, the inner edge of which forms the border with the 

outer edge of the more central beta (β) zone. The inner edge of the β-zone 

forms the border with Elschnig’s ring (Healey et al. 2007; Radcliffe et al. 

2008; See et al. 2009; Teng et al. 2010; VanderBeek et al. 2010; Jonas et al. 

2012; Lee et al. 2012b). The β-zone is mostly present in glaucoma. 

 

The area of the normal ONH follows a near Gaussian distribution. Estimates 

of the mean area range from 2.1 mm² (SD 0.47) (Sung et al. 2009) to 2.61 mm² 

(SD 0.68) (Xu et al. 2008; Sanfilippo et al. 2009). The corresponding NRR 

area ranges from 1.50 mm² (SD 0.63) (Xu et al. 2008) to 2.03 mm² (SD 0.51) 

(Sung et al. 2009). 

 

The CDR is traditionally utilized to quantify the predominant features of the 

ONH, (Quigley et al. 2008; Lee et al. 2010; Stone et al. 2010; Breusegem et al. 

2011; Swamy et al. 2012). The VCDR is the most useful ratio (Jonas et al. 

2000; Chandra et al. 2013). The VCDR in the normal eye ranges from 0.29 

(SD 0.16) (Sung et al. 2009) to 0.54 (SD 0.26) (Jonas et al. 2000). The CDR 

increases by 0.1 between 30 and 70 years of age (Garway-Heath et al. 1997). 
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1.2 Glaucoma 

Glaucoma is the largest cause of irreversible vision loss, worldwide (Friedman 

et al. 2006; Broman et al. 2008; Gardiner et al. 2011). It affects approximately 

70 million people, worldwide, of whom approximately 10% are estimated to 

be bilaterally blind (Quigley and Broman 2006). By 2020, it is estimated that 

approximately 79.4 million people, worldwide, will have glaucoma (Garway-

Heath et al. 2013) and 10% of these will be bilaterally blind (Quigley and 

Broman 2006). Approximately 50% of cases remain undetected due to the 

asymptomatic nature of the disease (Cedrone et al. 2008; Taylor 2009; Kim 

and Varma 2010; Heijl et al. 2013a; Weinreb et al. 2014). 

 

Glaucoma is not a single disease entity and the glaucomas can be defined as a 

group of optic neuropathies characterized by progressive neuro-degeneration 

of the RGCs (Weinreb et al. 2014). The aetiology is multi-factorial (see 

Section 1.2.2) and results in characteristic changes at the ONH comprising 

focal and/ or generalized thinning of the NRR with excavation and 

enlargement of the cup and deformation of the LC, and in a thinning of the 

RNFL, leading to corresponding visual field loss (Baltmr et al. 2010; Casson 

et al. 2012b; Morgan 2012; Park et al. 2013; Williams et al. 2013). The type 

and location of the field loss reflects that of the damage to the axons. 
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1.2.1 Classification of Glaucoma 

Glaucoma is generally a primary condition (Leske 1983; Litwak 2001; Musch 

et al. 2012); however, glaucoma can occur due to secondary causes including 

trauma, corticosteroid use, inflammation, uveal melanoma, and pupillary 

block, (Bock et al. 2010; De Moraes et al. 2011; Casson et al. 2012b; Weinreb 

et al. 2014). The glaucomas are further classified in terms of the patency of the 

anterior chamber angle, i.e., whether it is open or closed. An open angle is 

essential for drainage of the aqueous humour and thereby the maintenance of 

normal IOP. 

 

1.2.1.1 Primary open-angle glaucoma (POAG) 

Primary open-angle glaucoma (POAG) is the most prevalent form (Jonas et al. 

2006; O'Neill et al. 2010; Kamdeu Fansi et al. 2011; Syed et al. 2012; Rao et 

al. 2013a). It is characterized by an IOP beyond the normal range, i.e., ≥22 

mmHg (Jonas et al. 2000; Gardiner et al. 2011) in the presence of an open 

anterior chamber angle (Moore et al. 2008; Wesselink et al. 2009; Eilaghi et al. 

2010; Boland and Quigley 2011; Garway-Heath et al. 2013; Rao et al. 2013b; 

Weinreb et al. 2014). 

 

1.2.1.2 Normal-tension glaucoma (NTG) 

Primary open-angle glaucoma in the presence of an IOP within the normal 

range, i.e., 10-21mmHg is termed normal-tension glaucoma (NTG). The 

estimates of the prevalence of NTG vary from 25% (Wax 2011) to 50% 

(Gordon et al. 2002). 
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1.2.1.3 Ocular Hypertension (OHT) 

Ocular hypertension (OHT) describes the condition where the IOP is elevated 

beyond the normal range, i.e., ≥22mmHg, in the absence both of structural and 

functional abnormality. Approximately 1%-2% of individuals will convert to 

POAG and this figure is slightly reduced if the IOP is medically lowered 

(Ocular Hypertension Treatment Study [OHTS]) (Kass et al. 2002; Laemmer 

et al. 2007). Individuals who convert to POAG progress faster than those with 

NTG (Chauhan et al. 2009; Fukuchi et al. 2010). 

 

1.2.1.4 Glaucoma Suspect 

The category ‘Glaucoma Suspect’ is a subjective entity based upon the 

anomalous appearance of the ONH or other specific feature, such as the retinal 

nerve fibre layer, that indicates a possible likelihood of developing glaucoma 

(Garway-Heath et al. 1998a; Larrosa et al. 2012). 

 

The classification of pseudo-exfoliation glaucoma (PEXG) and of pigment 

dispersion glaucoma (PIGM) is equivocal in that they can be considered as 

primary (Lindberg 1989) or secondary conditions (Cavallerano 2001; Foster et 

al. 2002). Pseudo-exfoliation glaucoma is considered to be the most common 

type of secondary open-angle glaucoma (Ritch 2001; Leske et al. 2007; 

Anastasopoulos et al. 2015). Pigment dispersion glaucoma is associated with 

young individuals with higher degrees of myopia (Azuara-Blanco et al. 2002b; 

Musch et al. 2012). 
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1.2.1.5 Primary angle-closure glaucoma (PACG) 

Primary angle-closure glaucoma (PACG) arises from an anatomically closed 

angle (when ≥270° of the angle is occluded) resulting from apposition of the 

iris leading to blockage of the trabecular meshwork and consequent prevention 

of aqueous humour drainage from the eye, resulting in an elevated IOP 

(Weinreb et al. 2014). The condition can present as an acute primary angle-

closure in less than a third of the cases which can manifest as corneal oedema, 

a dilated non-reactive pupil, conjunctival hyperaemia and a markedly elevated 

IOP (> 30 mm Hg) in the presence of a shallow anterior chamber (American 

Academy 2010; Weinreb et al. 2014). In the acute condition, the ONH 

becomes pale with minimal cupping due to the presence of an acute anterior 

ischemic neuropathy (Spaeth 1994; Musch et al. 2012). 

 

1.2.2 Primary risk factors for glaucoma 

The primary risk factors for glaucoma are family history, ageing, ethnicity, 

reduced central corneal thickness (CCT) and elevated intraocular pressure 

(Williams et al. 2013). 

 

1.2.2.1 Family history 

One fifth of cases of glaucoma exhibit a positive family history of the disease 

(Leske 1983; Balasubramanian et al. 2010; Qu et al. 2010; VanderBeek et al. 

2010). 
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1.2.2.2 Ageing 

The prevalence of glaucoma in developed countries is 3% in the population 

older than 40 years (Varma et al. 2011). The prevalence rises to 13% to 15% 

for those of black African descent aged between 80 and 96 years (Tielsch et al. 

1991; Leske et al. 1994; Fansi et al. 2009). The number of treated patients also 

increases with age: patients aged 85 years or more are 13 times more likely to 

receive glaucoma therapy compared to those aged between 40 and 64 years 

(Owen et al. 2008). The prevalence of OHT is greater for those over 50 years 

(Taylor 2009; Kim and Varma 2010). 

 

1.2.2.3 Ethnicity 

The prevalence of glaucoma amongst individuals of African descent is higher 

than that of Caucasians, with the highest prevalence amongst Afro-Caribbeans 

(Quigley 1996; Boland and Quigley 2007; Fansi et al. 2009). In general, 

African-Americans, compared to Caucasian individuals, exhibit a significantly 

larger ONH (Boland and Quigley 2007), a larger VCDR (Foster et al. 2002), a 

higher IOP (Leske 1983), a thinner CCT (Fansi et al. 2009), a poorer mean 

deviation (MD) and a more frequent bilateral presentation of glaucoma 

(Friedman et al. 2006). The onset of glaucoma amongst those of African 

descent occurs at an earlier age compared to Chinese, Hispanic and European 

ethnicities (Samarawickrama et al. 2010). In the Eastern Arabian Peninsula, 

77% of all POAG cases are associated with pseudo-exfoliation (Musch et al. 

2012). 
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The estimated prevalence of glaucoma among European Caucasians is 1.0% to 

-1.5% in 40 to 65 year olds which rises exponentially to 2.0% to 7.0% in those 

greater than 65 years (Mitchell et al. 1996; Rudnicka et al. 2006; Hoffmann et 

al. 2007; Samarawickrama et al. 2010). The prevalence amongst the Asian 

population is similar to the European Caucasian population up to the age of 65 

years but is not as high (1.6% to 3.8%) after the age of 70 years 

(Samarawickrama et al. 2010). The prevalence does not increase with age in 

Chinese and Hispanics ethnicities (Broman et al. 2008). The NTG exhibits its 

highest rates compared to POAG amongst Asians and Japanese (Dignam and 

Stutman 2001; Stein et al. 2011). The prevalence of PACG in the Chinese 

population is three times higher than that of POAG (Quigley 1996; Jackson 

2001; Foster et al. 2002). 

 

1.2.2.4 Central corneal thickness (CCT) 

A central corneal thickness (CCT) of ≤535 μm is a major risk factor for 

glaucoma (Muir et al. 2004; Jonas et al. 2006; Coleman and Miglior 2008; 

Medeiros et al. 2012d; Carbonaro et al. 2014) particularly if the presenting 

IOP is ≥21 mmHg (Leske et al. 1994; Varma et al. 2004; Grewal et al. 2009; 

Gardiner et al. 2011, 2012b; Jiang et al. 2012b). The CCT may affect the 

accuracy of applanation tonometry leading either to an underestimation of the 

true IOP among individuals with thin corneas (≤535 μm) or to an 

overestimation among those with thick corneas (≥535 μm) (He et al. 2011; 

Jiang et al. 2012b; Quaranta et al. 2013). 
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1.2.2.5 Intraocular pressure (IOP) 

Glaucomatous damage may occur at any level of IOP (He et al. 2011; Heijl et 

al. 2011; Lee et al. 2012a; Polaczek-Krupa and Grabska-Liberek 2012; Heijl et 

al. 2013a; Quaranta et al. 2013). An elevated IOP of  ≥21mmHg is a major 

risk factor for glaucoma with the risk increasing by 10% (Peeters et al. 2010; 

Gardiner et al. 2012b; Miglior and Bertuzzi 2013; Sharpe et al. 2013; Panarelli 

et al. 2015) or by 19% for each mmHg above this value (Rossetti et al. 2010). 

Intraocular pressure is the only modifiable risk factor for glaucoma. All the 

major clinical trials (the [OHTS] (Gordon et al. 2002; Kass et al. 2002), the 

European Glaucoma Prevention Study [EGPS] (Zeyen et al. 2003; Miglior et 

al. 2007) the Early Manifest Glaucoma Trial [EMGT] (Heijl et al. 2002; Leske 

et al. 2004), the Collaborative Initial Glaucoma Treatment Study [CIGTS] 

(Lichter et al. 2001; Musch et al. 2008) and the Advanced Glaucoma 

Intervention Study [AGIS]) (Gaasterland et al. 1994; Investigators 2000)) 

confirm that a reduction in IOP delays the onset of glaucomatous progression. 

The most stringent of these studies, the EMGT, found that, at the 4 year 

follow-up, 49% of those individuals with POAG but not receiving treatment 

exhibited glaucomatous progression compared to 30% of those under 

treatment (Lichter 2003). However, the reduction of IOP in the management of 

NTG is equivocal in the Collaborative Normal-Tension Glaucoma Study 

(CNTGS) (The Collaborative Normal-Tension Glaucoma Study and Group. 

1998; Pan and Varma 2011; Panarelli et al. 2015) and the Low-Pressure 

Glaucoma Treatment Study (LoTGS) (Krupin et al. 2005). 
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IOP fluctuation is also considered to be a separate risk factor for glaucoma 

(Caprioli and Coleman 2008; Fukuchi et al. 2010). 

 

1.2.3 Secondary risk factors for glaucoma 

Secondary risk factors include abnormal ocular perfusion pressure (OPP), 

systemic hypotension, systemic hypertension, diabetes, high myopia, axial 

length, peripapillary atrophy, and disc haemorrhage (DH). 

 

1.2.3.1 Ocular perfusion pressure (OPP) 

Fluctuation in the ocular perfusion pressure (OPP) resulting from disturbances 

of the physiological nocturnal reduction in blood pressure and/ or the 

physiological nocturnal reduction in IOP is a risk factor for NTG due to 

disruption of the autoregulation of the blood within the eye and consequent 

optic nerve ischaemia (Caprioli and Coleman 2010; He et al. 2011; Gardiner et 

al. 2012a; Quaranta et al. 2013). The evidence for either systemic hypotension 

or systemic hypertension as an independent risk factor for glaucoma is 

equivocal (Moore et al. 2008; Caprioli and Coleman 2010; Konstas et al. 

2010; Coudrillier et al. 2012). 

 

1.2.3.2 Diabetes - High Myopia - Axial length 

The presence of diabetes as a risk factor for glaucoma is equivocal (Lichter 

2003; He et al. 2011). High myopia and axial length ≥24mm are each 
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considered to be risk factors in glaucoma (Drance 2008; Teng et al. 2010; 

Jonas et al. 2012; Lee et al. 2012b). 

 

1.2.3.3 Peripapillary Atrophy (PPA) 

The presence of a β-zone of PPA is considered to be a risk factor for glaucoma 

(Jonas et al. 2004; Radcliffe et al. 2008; Teng et al. 2010; Jonas et al. 2012). 

The extent of the β-zone in NTG is larger than that in POAG (Broadway et al. 

1999; Jonas 2005). 

 

1.2.3.4 Disc Haemorrhage (DH) 

The presence of a disc haemorrhage (DH) is considered to be a risk factor for 

glaucoma: the prevalence is 4-7 % compared to that of approximately 1% in 

the normal eye (Ahn and Park 2002; Soares et al. 2004; Hoyng 2005). 

However, 55% of those with POAG will manifest a DH at some point during a 

follow-up period of eight years (Syed et al. 2012). Disc haemorrhages are 

visible from 8 days to 12 weeks; thus their diagnostic significance is limited 

(Ahn and Park 2002; Soares et al. 2004; Hoyng 2005). Disc haemorrhages are 

considered to be independent of the level of IOP (Bengtsson et al. 2008); 

however, the opposite hypothesis has been also supported (De Moraes et al. 

2012a). 

 

1.2.3.5 Gender 

Gender as a risk factor is equivocal (Boland and Quigley 2007; Broman et al. 

2008; Kim and Varma 2010). 
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1.3 The ONH in primary open-angle glaucoma 

1.3.1 Introduction 

Typical ONH alterations in POAG and NTG comprise diffuse or localized 

peripapillary RNFL thinning with consequent thinning of the NRR and 

increase in cupping; increase in PPA; DHs; alterations in the course and/ or 

diameter of the ONH vascularisation; and NRR pallor (Altangerel et al. 2005; 

Jonas 2005; Martus et al. 2005; Morgan et al. 2005b; Jampel et al. 2008; Iester 

et al. 2011; Heijl et al. 2013a; Li et al. 2013). Glaucoma is most prevalent in 

larger ONHs (Hoffmann et al. 2007) and this is consistent across the different 

types of glaucoma (Jonas et al. 2004). The ONH in OHT and PEXG is 

generally smaller than in POAG and NTG (Healey and Mitchell 1999; 

Hoffmann et al. 2007). 

 

1.3.2 Neuroretinal rim (NRR) 

The inferior-temporal and superior-temporal sectors of the ONH are most 

susceptible to axonal damage (Jonas et al. 1998; Drance 2008). In the later 

stages of glaucoma, the NRR thinning involves the entire temporal sector and 

the nasal NRR remains relatively unaffected and the superior-nasal region is 

wider than the inferior-nasal NRR (Nicolela and Drance 1996; Jonas et al. 

1999; Drance 2008) often with a large β-zone of PPA (Jonas et al. 2004). 

 

1.3.3 Measurement of the predominant ONH features in glaucoma 

The VCDR in glaucoma can be as low as 0.40 (Tsutsumi et al. 2012).Thus, 

there is a considerable overlap between the range in the normal eye and that in 

glaucoma (Greenfield 1997; Hafez et al. 2003). The CDR is not independent 
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of ONH size in that although the ratio may be the same for different sizes 

ONHs, the proportion of axons within each NRR is greater for the larger ONH 

(Jonas et al. 1995; Cankaya and Simsek 2012). Thus the use of CDR is of 

limited diagnostic utility (Spaeth et al. 2006; Bock et al. 2010) unless it is 

corrected for the ONH size (Garway-Heath and Hitchings 1998; Jonas et al. 

2000; Cankaya and Simsek 2012; Morgan et al. 2012; Tsutsumi et al. 2012). 

However, the CDR is insufficiently sensitive to delineate subtle focal thinning 

of the NRR (Chandra et al. 2013). 

 

An alternative approach to the CDR is the rim width-to-disc ratio (Rw/Dd), 

whereby the shape of the NRR width is described by the ratio of either the 

inferior NRR (5 to 7 o'clock hours) width or the superior NRR (11 to 1 o'clock 

hours) width expressed as a ratio of the ONH diameter (Dd) (Jonas et al. 1998; 

Saito et al. 2010; Tsutsumi et al. 2012; Chandra et al. 2013). Prediction limits 

based upon the 95th percentile have been proposed for the ratio in normal eyes 

(Bartz-Schmidt et al. 1999). However, the inferior to temporal neuroretinal rim 

width ratio and the superior to temporal neuroretinal rim width ratio, alone, are 

not sufficient indicators for the designation of glaucoma (Jonas et al. 1998). A 

Rw/Dd of ≤0.1 at either the superior or inferior region has been proposed as a 

criterion for the designation of glaucoma (Tsutsumi et al. 2012). 

 

1.3.4 Peripapillary atrophy (PPA) 

In glaucoma, the β-zone of the PPA is situated adjacent to the location of the 

NRR thinning and is consistent with the orientation of the entry/ exit position 

of the central retinal vessel trunk (Jonas et al. 2001; Lee et al. 2012b). The β-
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zone in myopic eyes is larger temporally (Broadway and Drance 1998; Jonas 

2005; Drance 2008; Teng et al. 2010). 

 

1.3.5 Disc Haemorrhage (DH) 

Disc haemorrhages are more prevalent in the superior-temporal and inferior-

temporal regions of the ONH more frequently towards the ONH margin. They 

are generally positioned in the superficial RNFL and exhibit a splinter shape. 

They are associated with local peripapillary RNFL defects and consequent 

NRR notching/ thinning (Bengtsson et al. 2008; Radcliffe et al. 2008; Uhler 

and Piltz-Seymour 2008; Pan and Varma 2011). Disc haemorrhages may also 

be located at the level of the LC where they tend to be circular (Fingeret et al. 

2005). The aetiology of DHs remain unclear (Radius 1987; Fingeret et al. 

2005; Hasnain 2006), however it is suggested that the presence of focal LC 

defects are associated with DHs (Park et al. 2013). 

 

1.3.6 Vasculature 

Changes in the position and/ or course and/ or calibre of the blood vessels of 

the ONH, such as bayonetting, baring, and nasal shift, occur concurrently with 

the major alterations to the ONH arising from glaucoma (Bartz-Schmidt et al. 

1999; Yogesan et al. 1999; Saito et al. 2010). 

 

1.3.7 Laminar pores 

Visibility of the anterior portion of the LC pores is considered to be indicative 

of NRR damage. A tilting and/ or stretching of the LC pores from an elevated 

IOP is detrimental to the passage of the axons through the LC (Radius and 
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Gonzales 1981; Healey and Mitchell 2004; Park et al. 2013). An elevated IOP 

results in a more tense posterior displacement of the LC in large discs 

compared to small discs resulting in a more ‘punched out’ appearance of the 

cup. However, even small discs can exhibit mechanical deformation of the LC 

(Hancox O.D 1999; Morrison 2007; Brusini et al. 2010; Guerri et al. 2012) 

(Pablo et al. 2009; Sanfilippo et al. 2009; Lee et al. 2012a). The displacement 

and compression of the LC can be reversed following the reduction in IOP 

arising from trabeculectomy. The resultant alteration in the LC and the 

consequent modification to the ONH can be misinterpreted as an increase in 

the NRR (Cymbor et al. 2009; Mansouri et al. 2011; Lee et al. 2012a). The 

degree of the LC reversal increases with an increase in both the presenting IOP 

and the IOP immediately prior to trabeculectomy and in the magnitude of the 

reduction in the IOP following trabeculectomy (He et al. 2011; Lee et al. 

2012a); but declines with ageing (Coudrillier et al. 2012). 

 

1.3.8 Pallor 

Advanced glaucoma can result in a pale ONH; however,  it is important to 

exclude other aetiologies in less severe cases (Broadway et al. 1999; Jonas et 

al. 1999; Fingeret et al. 2005; Hasnain 2006; Caprioli and Coleman 2010; 

O'Neill et al. 2010). 

 

1.3.9 The Retinal Nerve fibre Layer (RNFL) in primary open-angle 

glaucoma 

A global or partial reduction of the axons in the RNFL produces corresponding 

NRR thinning and visual field loss (Qu et al. 2010; Casson et al. 2012a). In 



- 18 - 

 

glaucoma, the RNFL is more susceptible inferior-temporally than superior-

temporally and both of these regions are more susceptible than the superior-

nasal region. This pattern of loss is reflected in the appearance of the NRR 

(section NRR 1.3.2). It is rare that RNFL defects initially present in the nasal 

region. Localized RNFL defects appear as dark wedge-shaped areas entering 

the ONH and which expand as the disease progresses (Jonas et al. 1999; 

Grewal et al. 2009; Lee et al. 2012b). Localized RNFL defects can occur in the 

presence of an apparently normal ONH (Lee et al. 2012b). The RNFL 

thickness in the normal eye, is positively correlated with ageing and with ONH 

size and negatively correlated with myopia and increases axial length (Huang 

et al. 2012). 

 

From an epidemiological point of view the RNFL is susceptible to ageing and 

is thicker in East Asian population compared to the European Caucasians 

(Samarawickrama et al. 2010). East Asian children between the ages of 6 and 

12 exhibit a 3% to 12% thicker RNFL compared to European Caucasian 

children of the same age. Although the CDRs were 30% to 40% larger in the 

East Asian children, the NRR areas appeared to be similar (Samarawickrama 

et al. 2010). 

 

1.4 Pathophysiology of glaucoma 

As was described in Section 1.2, glaucoma is a multifactorial disease entity 

involving at least several mechanisms (Lieven et al. 2006; Nickells 2007; 

Johnson and Morrison 2009; Schuman 2012). 
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1.4.1 Apoptosis 

The RGCs die by apoptosis (Levin 1999; Lieven et al. 2006) which is 

controlled by the caspase family of cysteine aspartyl-specific proteases that 

cleave a large number of protein substrates. The caspases are present but 

inactive in healthy RGCs and the cells include inhibitors which bind to the 

caspases resulting in deactivation (Baltmr et al. 2010; Qu et al. 2010). 

 

Apoptosis can occur extrinsically, intrinsically (Levin 1999; Lieven et al. 

2006; Qu et al. 2010; He et al. 2011; Morgan 2012). The trigger for apoptosis 

can occur from a variety of causes including neurotrophin deprivation (Lieven 

et al. 2006; Williams et al. 2013), oxidative stress (Baltmr et al. 2010; Caprioli 

and Coleman 2010), ageing (Maresco 2002; Hoffmann et al. 2007; Morrison 

2007), glial cell activation (Nickells 2007; Johnson and Morrison 2009; 

Schuman 2012), Ca
2+ 

excitotoxicity (Kisiswa et al. 2010; Qu et al. 2010), 

autoimmunity, or vascular perfusion (Levin 1999; He et al. 2011). The 

mitochondria involve in both apoptotic pathways (Lieven et al. 2006; Qu et al. 

2010; Morgan 2012) and can affect the synaptic plasticity through the 

regulation of apoptosis signalling pathways (Kisiswa et al. 2010; Williams et 

al. 2013). 

 

1.4.2 Cell shrinkage 

It still remains unclear whether the RGCs die by apoptosis in a selective or a 

non-selective manner (Morgan et al. 2006; Caprioli and Coleman 2010; 

Morgan 2012; Liu et al. 2014). Prior to the loss of the cell soma, a pruning (or 

shrinkage) of the dendritic-tree occurs which precedes the dendritic atrophy 
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(Jakobs et al. 2005; Buckingham et al. 2008; Morgan 2012; Williams et al. 

2013; Liu et al. 2014). The dendritic pruning and remodelling prior to cell loss 

supports the hypothesis that the dendritic changes precede the RGC death in 

glaucoma. The dendritic remodelling is thought to be a passive activity which 

may coexist with RGC death. Once an individual cell dies, the remaining 

RGCs have the capacity to alter their existing dendritic field in an attempt to 

maintain overall retinal function (Kisiswa et al. 2010; Williams et al. 2013). 

 

The extension of the dendrites is achieved by filopodia process which involves 

five stages: polarisation in which the dendrites gain their characteristics 

(diameter, length, growth rate and molecular composition, similar to those 

found in axons); elongation, where the dendrites extend in a defined direction 

and increase their diameter; branching, which involves the growth of the 

dendritic tree until the final dendritic spines; tiling, whereby the dendritic 

arbours are located in non-overlapping spatial territories; and finally formation 

of the synapse (Kisiswa et al. 2010; Casson et al. 2012a). The size of the soma 

is usually preserved until cell death, except in programmed cell death when 

acute changes in cell volume occur (Morgan 2002; Jakobs et al. 2005; 

Williams et al. 2013; Liu et al. 2014). 

 

1.4.3 Mechanical and Ischemic mechanism 

Although there are many theories about the mechanisms of RGC damage in 

glaucoma, there is no single cellular or molecular aetiology to characterize the 

pathogenesis of glaucoma (Caprioli and Coleman 2008; Baltmr et al. 2010). 

The various mechanisms can co-exist and/ or interact with each other (Baltmr 
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et al. 2010; Kisiswa et al. 2010; Qu et al. 2010). 

 

1.4.3.1 Mechanical mechanism 

As is partially discussed in Section 1.3.7, chronic elevation of IOP induces 

mechanical stress (force/cross-sectional area) and strain (physical deformation 

of the tissue) within the LC, leading to LC deformation (laminar bowing), and 

hence a mechanical compression of the axons. Evidence of axonal transport 

abnormalities at the ONH, exhibit sectorial anatomical differences in the 

patterns of LC (Radius 1987; Nickells 2007; Morgan 2012; Park et al. 2013; 

Williams et al. 2013). In both the acute and chronic forms of IOP elevation, 

the axonal retrograde transport is interrupted and the neurotrophins from the 

lateral geniculate nucleus cannot reach the RGC soma. This process initiates 

cell death and triggers the apoptotic cascade (He et al. 2011; Liu et al. 2014). 

 

1.4.3.2 Ischaemic mechanism 

The distortion of the lamina cribrosa also induces compression of the blood 

vessels within the ONH. This in turn reduces the OPP resulting in local 

hypoxia. The presence of hypoxia activates the auto-regulation in an attempt to 

sustain normal blood flow (Baltmr et al. 2010; He et al. 2011). The failure of 

this auto-regulation produces ischaemia in the axons of the RGCs. The axonal 

injury leads to insufficient nutrition in the RGC, including a lack of growth 

factors, subsequent degeneration and finally death (Levin 1999; Lieven et al. 

2006; Kisiswa et al. 2010). 
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1.4.4 Treatment modalities in glaucoma 

The treatment of glaucoma will/ can involve several approaches including 

neuro-protectant (Baltmr et al. 2010; Qu et al. 2010), neuro-recovery (Casson 

et al. 2012a), neuro-rescue and neuro-regeneration (Levin 1999; Baltan et al. 

2010) strategies. 

 

1.5 Types of ONH photography 

1.5.1 Analogue photography 

Analogue photography of the ONH in 35mm slide format or other film-based 

media was the ‘gold’ standard for decades. A conventional 35mm transparency 

in a 3 x 2 slide mount was the most common film format (Yogesan et al. 1999; 

Breusegem et al. 2011). A 35mm slide can be digitised using a scanner or by 

re-photography (Stone et al. 2010). Recently, digital images derived from 

either mydriatic or non-mydriatic digital fundus cameras (Bartling et al. 2009; 

Bernardes et al. 2011) have superseded analogue photography for the 

qualitative and quantitative assessment of the ONH (Morgan et al. 2005b; 

Stone et al. 2010; Schuman 2012; Syed et al. 2012). The digital images 

facilitate stereoscopic viewing and can be easily archived in electronic patient 

records (Morgan et al. 2012; Syed et al. 2012) and are suitable for tele-

medicine (Kassam et al. 2013). 

 

1.5.2 Digital photography 

Digital photography involves the image capture, the image processing and the 

image output. Image capture is produced by a charge-couple device (CCD). 

There are two different types of CCD imaging chips, the 'area CCD’, used in 
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cameras, and the 'linear CCD', used in scanners (Yogesan et al. 1999; 

Breusegem et al. 2011). The digital images are recorded in three different 

colour channels red, green and blue (RGB). The specific colour range that a 

device can record, produce, and display images is termed the ‘colour gamut’. 

An equal amount of RGB input, produces white whilst the absence of any 

input produces black colour (Bernardes et al. 2011; Balasubramanian et al. 

2012). Grayscale images can also be produced (Stone et al. 2010). 

 

Once an image is captured, it is stored as numeric data in a number of different 

formats for editing or output. The major digital formats are the lossless, the 

lossy and the no compression format. Lossless compression yields an 

approximately 2:1 compression ratio of the reconstructed image relative to the 

original and preserves the quality and conserves storage space. The most 

common lossless file format used is the Tagged Image File Format (.tiff) 

which is preferable for archiving images as it preserves all features, but at the 

cost of a large file size, and is a suitable format for image-editing software. 

Other lossless formats include Graphics Interchange Format (.gif), Portable 

Network Graphics (.png), and Raw Image Format where the file name 

extension is specific to the given camera (Tyler et al. 2003b). The lossy 

compression scheme is suitable for both full colour and grayscale images. The 

most common lossy format is the Joint Photographic Experts Group (.jpeg) 

which reduces the original file size to as much as 5% (Liesenfeld et al. 2000). 

 

A common editing tool is the ‘cropping tool’. It is frequently used with 

digitised 35mm slides to change the aspect ratio (the proportional relationship 
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between the width and the height of the image) to optimise the screen display 

or for partial display of the image (Wood et al. 2009; Bernardes et al. 2011; 

Gugleta et al. 2013). 

 

The image output represents the converted numeric data into a viewable form 

for viewing. The image quality depends upon a number of variables related to 

the patient, the camera and the photographer (Greenfield 1997; Bartling et al. 

2009). The image output should be consistent with the original image in terms 

of sharpness, illumination, contrast, exposure, colour, magnification, size and 

the clarity (Shuttleworth et al. 2000; Ewen et al. 2006; Gugleta et al. 2013). 

The sharpness is mainly dependent upon the scan focus of the camera. 

Focusing the fundus camera requires the adjustment of the relationship 

between the ONH and the camera lens such that the ONH lies within the depth 

of field of the camera lens and the receiving plane lies within the depth of 

focus of the image. The depth of focus is determined by the CCD plane which 

is used as a receiving plane (Bartz-Schmidt et al. 1999; Roff et al. 2001). A 

number of factors can influence the scan focus such as lens opacities; 

insufficient pupil dilation; differences in the scan focus settings between 

follow-up examinations, which leads to variation in the size of the pixels of 

the image; the patient’s discomfort to bright light; the available 

accommodation to the photographer (Chauhan et al. 2001; Bartling et al. 

2009). 

 

The illumination of the output image should not be under- or overexposed 

relative to the original image (Saine 2002). The magnification between the eye 
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and the camera is calculated either from the axial length (Huang et al. 2012) or 

from the corneal curvature and the refraction (Garway-Heath et al. 1998b; 

Jonas et al. 2006). The magnification of the camera is proportionate to the 

resolution. Therefore, a camera with high magnification exhibits better 

definition. The resolution in digital photography dictates the number of pixels 

within the image. Each pixel refers to a specific area in the image. The pixel 

dimensions are expressed in terms of the width and the height (i.e. 3008 x 

1960) (Bartling et al. 2009; Bernardes et al. 2011). 

 

Digital images can be viewed either monoscopically or stereoscopically. 

Stereo-viewing of digital images is still considered to be a ‘gold standard’ in 

the assessment of the ONH (Radcliffe et al. 2010; Mansouri et al. 2011; 

Swamy et al. 2012). The stereo-pair may be obtained either by sequential or 

simultaneous imaging, with the first being the most widely used. In sequential 

image capture, each component of the stereo-pair is obtained separately by 

adjusting the angle of the camera (Correnti et al. 2003). In simultaneous image 

capture a single exposure is utilized to place two images side by side on a 

constant stereo base (Tyler et al. 2003a) and overcomes the limitation from 

differences in capture angle associated with sequential image capture 

(Rosenthal et al. 1977; Zeyen et al. 2003). 
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1.6 Fundamentals of perimetry 

1.6.1 The normal visual field 

The visual field can be defined as the portion of space in which objects are 

visible at the same moment during steady fixation of gaze in one direction 

(Imaging and Perimetry Society 2014). The monocular visual field extends to 

approximately 90° temporally, 60° superiorly, 60°nasally, and 75° inferiorly 

(Anderson and Patella 1999). The binocular overlap of the visual field extends 

to approximately 120° horizontally; beyond approximately 60° temporally, the 

field is monocular. The intersection of the vertical and the horizontal 

meridians represents the fixation point and corresponds to the fovea. The ONH 

produces a physiological blind spot, 7.5° vertically and 5.5° horizontally, 

which is situated approximately 15° from and, 1.5° below, fixation in the 

temporal field (Anderson and Patella 1999). 

 

The normal visual field has been likened to a three-dimensional ‘island (or 

hill) of vision in a sea of blindness’ (Traquair 1927) whereby, under photopic 

conditions, the peak of the hill represents the fovea and exhibits the highest 

sensitivity. The contour of the island vison slopes down from the highest point 

to the shoreline where it meets the ‘sea of blindness’. 

 

1.6.2 Differential light sensitivity 

Perimetry, the technique used to quantify the visual field, measures the 

differential light threshold, ΔL/L, the minimum brightness of the stimulus, Δl, 

necessary to evoke a response when presented against a background of a 

constant luminance, L. The threshold is usually expressed in terms of its 
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reciprocal, the sensitivity. The stimulus luminance is traditionally measured in 

apostilbs (asb) but is expressed in decibels referenced to the maximum 

stimulus luminance. In the case of the Humphrey Field Analyzer (HFA), 0dB 

represents 10.000asb. 

 

The differential light sensitivity can be measured by one of two techniques. 

kinetic perimetry and static perimetry. 

 

1.6.3 Kinetic perimetry 

Kinetic perimetry adopts a horizontal approach to the ‘hill of vision’ whereby 

the stimulus is presented along a given meridian from the ‘non-seen’ to the 

‘seen’ in a centripetal direction towards fixation. The patient is required to 

indicate when the stimulus is ‘just seen’ and this location is taken to be the 

threshold. The stimulus is then moved towards fixation from this location and 

the patient is required to report if the stimulus becomes ‘not-seen’. The 

process is repeated for each 15° meridian. A line joining locations of equal 

threshold is termed an isopter. The entire process is repeated using either 

smaller and/ or dimmer stimuli (resulting in smaller isopters) or larger and/ or 

brighter stimuli (resulting in larger isopters) to achieve a topographical 

appreciation of the visual field. 

 

The ‘gold’ standard for manual kinetic perimetry still remains the Goldmann 

perimeter (Goldmann 1945). The Goldmann perimeter comprises a 

hemispherical bowl, or cupola, with a white surface of a uniform luminance of 

31.5asb (10cdm
-2

) upon which a white stimulus is presented. Six stimulus 
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sizes are available: each successive size stimulus has a twofold difference in 

the diameter and a fourfold increase in the area to that of the preceding 

stimulus. The smallest stimulus, Size 0, has a diameter of 0.05° and an area of 

1/16 mm² and the largest stimulus, Size V, a diameter of 1.7° and can area of 

64mm².  The Goldmann perimeter incorporates 20 discrete luminance values. 

The maximum luminance is 1000asb (318cdm
-2

) and the reduction in 

luminance is achieved in four major steps each of 0.5 log units. Within each of 

these four major steps are 5 minor steps each of 0.1 log units. The 

recommended stimulus velocity is 4°/sec. The outcome of kinetic perimetry is 

expressed qualitatively in terms of the size and shape of the given isopter and 

the relationship to the other isopters. 

 

The Goldmann perimeter has largely been superseded by semi-automated 

kinetic perimetry (SKP) available with the Octopus perimeter (Vonthein et al. 

2007; Nevalainen et al. 2008). The Octopus perimeter utilises the same 

stimulus characteristics as the Goldmann perimeter but overcomes many of the 

limitations of the Goldmann perimeter, namely the correction for the reaction 

time of the patient, the uniformity of the stimulus velocity and the use of age-

corrected prediction intervals for any given isopter. 

 

1.6.4 Standard automated perimetry (SAP) 

Standard automated perimetry (SAP) utilises a vertical approach to the ‘hill of 

vision’ whereby the luminance of a stationary whites stimulus, generally 

presented on a white surface of uniform white background of  31.5asb  

(10cdm
-2

), is adjusted until threshold is achieved. The default stimulus for 
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SAP is Goldmann size III (which subtends an angle of 0.431°) which is 

generally presented for 200msec. The differential light sensitivity is measured 

in decibels (dB) where 0dB represents the maximum stimulus luminance with 

a resolution of 1dB (0.1 log unit). The ‘gold’ standard perimeter for SAP is 

either the HFA (Wild et al. 1999a) or the Octopus perimeter (Buerki 2007). 

 

Threshold to a visual stimulus is classically determined in terms of the 

Frequency-of-Seeing (FOS) curve whereby, in the case of a luminance 

threshold, the frequency of a correct response is plotted against the logarithm 

of the corresponding luminance. Threshold is generally taken to be the 

luminance at which 50% of the presentations are ‘seen’. A steep curve 

indicates low variability associated with the designated threshold and a flat 

curve indicates high variability. The derivation of a frequency-of-seeing curve 

is time consuming and the technique is not a clinically viable procedure for 

examining the visual field. 

 

For perimetry, a staircase procedure is used to estimate the threshold at any 

given stimulus location whereby the ‘true’ threshold is approached in 

predetermined steps of equal stimulus luminance, in either increasing or a 

descending magnitudes, respectively. Once a change in response has been 

obtained from the observer, i.e. the ‘true’ threshold has been ‘crossed’, the 

magnitude of the luminance step is usually halved and the direction of 

approach towards the ‘true’ threshold is reversed until the ‘true’ threshold is 

crossed once again. The accuracy of the estimated threshold increases with the 

use of smaller steps, especially when close to the threshold; the number of 
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crossings of threshold and the number of repetitions (Flammer et al. 1984; 

Fankhauser et al. 1988; Bengtsson et al. 1998). However, this increase in 

accuracy is at the expense of an increased examination duration (Bebie et al. 

1976). 

1.6.4.1 Threshold algorithms 
 

The first generation threshold algorithms for SAP were the Threshold 

algorithm of the Octopus perimeter and the Full Threshold algorithm of the 

HFA. 

 

The Full Threshold algorithm of the HFA, initially estimates the threshold at 

each of four ‘seed’ locations situated at x = +/-9°, y = +/-9° in each quadrant. 

The starting luminance at each of these four seed points is 25dB, irrespective 

of the age of the patient, and the threshold is estimated twice at each of these 

four locations using 4-2dB staircase. The start level at each of the immediate 

surrounding locations is determined by extrapolation from the outcome at the 

nearest seed location (Wild et al. 1999a) and the threshold estimate is derived 

using the same 4-2dB staircase. The threshold is designated as the last ‘seen’ 

stimulus luminance (Wild et al. 1999a; Wild et al. 1999b). 

The second generation threshold algorithms for SAP reduced the accuracy of 

the threshold estimate in order to reduce the examination time and included 

the Dynamic and FASTPAC algorithms of the Octopus perimeter and the 

HFA, respectively. 
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The FASTPAC algorithm, introduced in 1991, also uses the four primary seed 

points to determine the initial stimulus luminance for the neighbouring 

stimulus locations. The luminance presented at the neighbouring points is 1dB 

brighter when the expected threshold is an even number and 2dB dimmer 

when the expected threshold is an odd number (Flanagan et al. 1993a; 

Flanagan et al. 1993b). The algorithm utilizes a 3dB step in either an 

ascending or a descending direction, respectively, and threshold is crossed 

once (Flanagan et al. 1993a). The estimated threshold is also designated as the 

‘last seen’ stimulus luminance (Wild et al. 1999a; Wild et al. 1999b). 

The third generation algorithms for the HFA were introduced in 1997 and 

maintained the accuracy of the threshold estimate derived by the Full 

Threshold algorithm whilst maintaining a similar if not slightly reduced 

examination duration compared to the FASTPAC algorithm. These algorithms 

comprised the two Swedish Interactive Threshold Algorithms (SITA), SITA 

Standard and SITA Fast, for SAP with the HFA (Bengtsson et al. 1997; 

Bengtsson and Heijl 1998). The SITA Standard algorithm uses 4-2dB staircase 

and is analogous to the Full Threshold algorithm. The SITA Fast algorithm 

uses a 4dB step, only, and is analogous to the FASTPAC algorithm 

(Bengtsson et al. 1997; Bengtsson et al. 1998). 

 

Both SITA algorithms utilize two Bayesian posterior probability, or 

likelihood, functions (models) at each stimulus location. One function is a 

distribution of the probability of the likelihood of a ‘seen’ response at any 
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given value of sensitivity in the normal eye and the other function is an 

equivalent distribution in the glaucomatous eye (Olsson and Rootzén 1994). 

The shape of each function is continually adjusted following the response to 

each stimulus presentation. At any given moment during the examination, the 

height of the function represents the most probable threshold at the given 

location and the width describes the accuracy of the threshold estimate. The 

more dominant of the two functions for the given patient is used to calculate, 

at any given moment, the magnitude of the ‘next’ stimulus luminance. The 

thresholding procedure at any given location is terminated when a 

predetermined level of accuracy, as predefined by the Error Related Factor 

(ERF) is obtained (Bengtsson et al. 1997; Bengtsson et al. 1998). The 

magnitude of the ERF at each stimulus location represents a compromise 

between the accuracy of the threshold estimate and the examination duration. 

With the SITA Standard algorithm, the threshold estimate at any given 

location can be terminated after a single crossing of threshold (Bengtsson et al. 

1997) but such a requirement is not necessary for the SITA Fast algorithm 

(Bengtsson et al. 1997; Bengtsson and Heijl 1998; Bengtsson et al. 1998). 

Both SITA algorithms determine the response time to each stimulus 

presentation (Bengtsson et al. 1997) and the subsequent inter-stimulus interval 

is based upon this individual response time characteristics. On completion of 

the examination, the threshold estimate is recalculated at each stimulus 

location based upon all the response information obtained during the 

examination (Bengtsson et al. 1997; McKendrick and Turpin 2005). This 

process is particularly useful for those locations at which the threshold 

estimate occurred at the beginning of the examination. 
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Between the two SITA algorithms, SITA Fast is approximately 60% shorter 

compared to SITA Standard (Budenz et al. 2002; Cedrone et al. 2008) and 

approximately 70% shorter compared to the Full Threshold algorithm 

(Bengtsson and Heijl 1998; Lalle 2001). The SITA Standard algorithm 

exhibits slightly higher mean sensitivity of 0.8dB (Wild et al. 1999a), 0.9dB 

(Artes et al. 2002), 1.0dB (Shirato et al. 1999), or even 1.9dB (Bengtsson et al. 

1998) compared to the Full Threshold algorithm in normal individuals. The 

SITA Fast algorithm exhibits a higher mean sensitivity of 1.3dB (Wild et al. 

1999a), 1.6dB (Artes et al. 2002) or even 2.2dB (Bengtsson et al. 1998) 

compared to Full Threshold algorithm. A similar trend has been observed 

between SITA algorithms and FASTPAC. The equivalent of SITA Standard 

has been estimated as 0.5dB lower than the SITA Fast (Wild et al. 1999a), 

whilst the equivalent of Full Threshold algorithm exhibits a range of 0.08dB to 

0.5dB higher mean sensitivity than FASTPAC (Bengtsson et al. 1998). 

 

In individuals with glaucoma, the SITA Standard algorithm also exhibits 

slightly higher mean sensitivity of 1.0dB (Shirato et al. 1999; Wild et al. 

1999b) to 1.31dB (Sharma et al. 2000) compared to the Full Threshold 

algorithm and 0.7dB higher mean sensitivity than FASTPAC (Wild et al. 

1999b). Similarly, the SITA Fast algorithm exhibits a 1.6dB higher mean 

sensitivity than FASTPAC; a 0.9dB higher mean sensitivity than SITA 

Standard and a 1.87dB higher mean sensitivity than the Full Threshold 

algorithm (Wild et al. 1999b). The SITA algorithms in individuals with 

glaucoma exhibit higher differential light sensitivity than Full Threshold and 



- 34 - 

 

FASTPAC algorithms, in particular, in the presence of a statistically deeper 

defect (Wild et al. 1999b). 

 

1.6.4.2 Stimulus Program 

The location of, and spatial distribution between, the various stimulus 

locations for a given visual field examination is termed the stimulus program. 

 

The most common programs for the HFA are Programs 30-2, 24-2 and 10-2. 

Program 30-2 incorporates 76 stimulus locations, out an eccentricity of 27°, 

based upon a square grid with an inter-stimulus separation of 6° and equally 

centred either side of the vertical and horizontal midlines. Program 24-2 is 

identical to that of Program 30-2 except that it comprises 54 stimulus locations 

out to an eccentricity of 21° and the two extreme nasal locations situated 

above and below the horizontal midline. Clearly, the probability of detecting 

visual field loss increases with an increase in either the number of locations or 

in the resolution of the stimulus program, i.e., a reduction in the inter-stimulus 

separation, or both. Clearly, such increases are at the expense of an increase in 

the examination duration. The use of a 6° separation represents a compromise 

between the examination duration and the spatial resolution: such a grid has a 

95% probability of detecting a focal defect the size of the blind spot 

(Fankhauser and Bebie 1979). Program 10-2 incorporates 68 stimulus 

locations, out an eccentricity of 9°, based upon a square grid with an inter-

stimulus separation of 2° and equally centred either side of the vertical and 

horizontal midlines. Program 10-2 is useful for increasing the spatial 
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resolution of paracentral defects and for end-stage disease (Katz and Sommer 

1986; Wall et al. 2009; Russell et al. 2012). It is also currently the feature of 

much attention in the identification of early glaucomatous field loss when the 

outcome from program 24-2 is normal (Asaoka 2013). Programs 30-1 and 24-

1 are identical in format to Programs 30-2 and 24-2 with the exception that the 

stimuli are centred along the horizontal and vertical meridians (Weber and 

Dobek 1986). As a consequence, the outcome from these Programs can be 

adversely influenced by small eye movements. 

 

1.6.4.3 Variability of the threshold estimate 

The estimate of threshold varies during the given examination and between 

examinations of a given individual. The within-examination variability is 

known as the short-term fluctuation and increases with increase in eccentricity 

and with a decline in sensitivity to approximately 12dB after which it tends to 

zero. The between-examination variability is termed the long-term fluctuation 

and, classically, is divided into two components, the homogenous component 

and the heterogeneous component. The presence of the both the short- and 

long-term fluctuation hinders the identification of visual field loss and of 

progressive visual field loss (Hutchings et al. 2000). 

 

1.7 Classification of visual field defects 

The central visual field is defined as that out to an eccentricity of 30° and the 

peripheral field as that beyond 30°. 
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A generalised reduction is sensitivity across the entire field is termed either 

generalised or diffuse loss. An area with a reduced or absent differential light 

sensitivity which is surrounded by normal sensitivity is termed a scotoma, a 

focal defect, or a localized defect. Such an area of reduced sensitivity is 

termed relative and that with no light sensitivity as absolute. The blind spot is 

a physiological example of an absolute scotoma (Anderson and Patella 1999). 

If the focal loss involves fixation, the loss is termed a central scotoma and if it 

includes both fixation and the blind spot, it is termed a centrocecal scotoma. A 

focal defect adjacent to fixation is termed a paracentral defect. A scotoma 

involving the RNFL takes on the characteristic arcuate shape of the layer. 

Visual field loss involving a localized peripheral region and extending 

centripetally into the field is termed a contraction. When the field loss is 

absolute and involves the periphery, the loss is termed a contraction. 

 

1.8 The Single Field printout of the central field 

The Single Field printout for the estimated sensitivities across the central field 

derived by each of the two SITA algorithms contains the estimated value of 

sensitivity at each stimulus location; the grayscale representation of sensitivity 

across the field; the Total Deviation values and probability levels; the Pattern 

Deviation values and probability levels; the Glaucoma Hemifield Test; the 

Visual Field Indices; the outcome to the False-Negative and Fixation-loss 

catch trials; and the outcome to the False-Positive response evaluation (Heijl et 

al. 1986). An example of the Single Field Printout for Program 24-2 and the 

SITA Fast algorithm in the left eye of a patient with an age-related cataract 

and NTG is given in Figure 1.1. 
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Figure 1.1. The Single Field Printout for Program 24-2 and the SITA Fast algorithm in 

the left eye of a patient with an age-related cataract and NTG. 

 

1.8.1 Estimated values of sensitivity 

The estimated value of sensitivity is displayed at each stimulus location as an 

integer value. The stimulus locations, themselves, are displayed in terms of 

their Cartesian coordinate position relative to fixation and this approach 
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enables the comparison of the estimated value of sensitivity at any given 

location with that obtained at one or more of its immediate neighbouring 

locations. The same approach is adopted for the Total and Pattern Deviation 

values and the associated probability levels (see below Sections 1.8.3 and 

1.8.4). 

 

1.8.2 Grayscale 

The estimated values of sensitivity across the field are illustrated in terms of 

grayscale, with each shade of gray representing a range of 5dB. Absolute 

sensitivity is displayed as a black and normal sensitivity as a light gray. The 

grayscale interpolates between stimulus locations, is neither eccentricity nor 

age corrected, and masks early paracentral and arcuate loss. It is of some use 

in end-stage loss (Lalle 2001; Heijl and Patella 2002; Bengtsson et al. 2005). 

 

1.8.3 Total Deviation values 

The difference between the estimated value of sensitivity and the 

corresponding age-corrected estimate of sensitivity in the normal eye at the 

given location is displayed as an integer value. A negative sign indicates an 

estimated sensitivity worse than the estimate in the normal eye of an 

equivalent age. 

 

1.8.4 Pattern Deviation values 

The difference between the estimated value of sensitivity and the 

corresponding age-corrected estimate of sensitivity in the normal eye at the 

given location, having corrected for any overall increase or reduction, 
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respectively, in sensitivity across the field, is displayed as an integer value. A 

negative sign indicates an estimated sensitivity worse than the estimate in the 

normal eye of an equivalent age. The correction for any overall increase or 

reduction, respectively, in sensitivity across the field is achieved by 

calculation and use of the General Height (GH) Index. 

 

The GH is defined as the 7
th

 least negative of the 52 Total Deviation values 

corresponding to the Program 24-2 format, with the three locations involving 

the blind spot omitted, ranked from the most positive to the most negative. The 

7
th

 least negative value corresponds to the 85
th

 percentile of the distribution of 

the ranked values and the rank of the value was selected, empirically, to 

minimise the influence of any false-positive peak (Wall 1997). The estimate of 

the GH is dependent upon the presence of normal values. 

 

A positive GH index indicates that the observer has a general sensitivity which 

is better than that encountered in the age-corrected normal eye whilst a 

negative value indicates the opposite. The influence of the general sensitivity 

is removed by subtracting the value of the GH from the Total Deviation value 

at each stimulus location when the GH is positive and adding the value when 

the GH is negative. The GH index is not displayed on the print-out. 

 

The calculation of the GH is dependent upon the presence of a sensitivity 

within the normal range at a minimum of the first seven ranked locations. The 

inclusion of one or more locations exhibiting an abnormal sensitivity results in 

an increasing overestimation of the magnitude of the diffuse component and, 
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therefore an under-representation of the extent of localized field loss (Asman 

et al. 2004). This phenomenon has subsequently being called, the ‘Pattern 

Deviation Reversal’ (Kothari et al. 2014) or ‘Ceiling Effect’ (Artes et al. 2011; 

Medeiros et al. 2012b). Any errors in the estimation of the GH may lead to 

errors in the calculation of indices based upon the Pattern Deviation values i.e. 

the VFI (Marin-Franch et al. 2014). 

 

An alternative method has been proposed for specifying the GH the GH-rank 

estimator or GH-r (Marin-Franch et al. 2014). The GH-r is based upon the 

assumption that the mean GH for the normal population is 1.8dB. The GH-r is 

1.8dB minus the 7
th

 least negative Total Deviation value. However, this 

approach has yet to be implemented. 

 

1.8.5 Total Deviation probability values 

The Total Deviation probability level is displayed at each stimulus location. 

The probability level is that associated with the difference at each given 

stimulus location between the estimated value of sensitivity and the 

corresponding age-corrected estimate of sensitivity in the normal eye, lying 

within the normal range. The probability levels are p<0.05, p<0.02, p<0.01 

and p<0.005, respectively. 

 

1.8.6 Pattern Deviation probability values 

The Pattern Deviation probability level is displayed at each stimulus location. 

The probability level is that associated with the difference at each given 

stimulus location between the estimated value of sensitivity and the 
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corresponding age-corrected estimate of sensitivity in the normal eye, having 

accounted for the overall elevation or reduction in sensitivity, lying within the 

normal range. The probability levels are as those for the Total Deviation 

probability values. 

 

1.8.7 Visual field indices 

The visual field indices are summary measures of various facets of the 

estimated sensitivity across all the stimulus locations and comprise the Mean 

Deviation (MD), the Pattern Standard Deviation (PSD) and the Visual Field 

Index (VFI). 

 

1.8.7.1 Mean Deviation (MD)  

The Mean Deviation (MD) index is the weighted mean across all stimulus 

locations of the difference between the estimated sensitivity and the age-

corrected estimate in the normal eye. The weighting function, which is 

propriety to the manufacturer, Zeiss, reflects the more reliable estimate of 

threshold at the more paracentral locations. As the field loss worsens, the 

index becomes increasingly negative. Functional blindness is associated with 

an MD of approximately -25dB. The MD is influenced by both generalised 

and localized abnormality. Particularly confounding factors are the presence of 

cataract and refractive defocus (Ang et al. 2011; Tanna et al. 2011; Gardiner et 

al. 2012b; Lee et al. 2014a). 
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1.8.7.2 Pattern Standard Deviation (PSD) 

The Pattern Standard Deviation (PSD) is the weighted standard deviation 

across all stimulus locations of the difference between the estimated sensitivity 

and the age-corrected estimate in the normal eye. The PSD reflects the 

magnitude of localized loss. The normal value approximates to 1dB and the 

PSD becomes increasingly positive as the area of the field loss increases until 

advanced field loss, after which the localized loss cannot be differentiated 

from the generalised loss and the PSD tends to 1.0dB as the field loss worsens 

(Heijl and Bengtsson 1998; Bengtsson et al. 2005; Gardiner et al. 2011), i.e., 

the PSD is limited by the lack of dynamic range of the perimeter, especially in 

advanced field stages (Asman et al. 2004). 

 

1.8.7.3 Visual Field Index (VFI) 

The VFI index was developed to remove the influence of generalized loss 

occurring in the presence of cataract (Bengtsson and Heijl 2008; Bengtsson et 

al. 2009). A normal visual field is defined by a 100% and a perimetrically 

blind field by 0%. The VFI is calculated from the sum of the outcome at each 

stimulus location of the Pattern Deviation probability maps when the MD is 

better than or equal to -20dB and from the Total Deviation probability maps 

when the MD is worse than -20dB. A stimulus location exhibiting a normal 

sensitivity is scored 100% and a location exhibiting absolute loss is scored as 

0% (Bengtsson and Heijl 2008; Bengtsson et al. 2009). Locations exhibiting a 

sensitivity beyond the normal range at a probability level of p<5% on the 

respective probability map are scored as 100% minus the modulus of the total 

deviation divided by the age-corrected normal value (expressed as a 
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percentage). The more centrally located stimuli are weighted with 3.29 and the 

most peripheral stimuli are weighted with 0.45 (Bengtsson and Heijl 2008; 

Hirasawa et al. 2013; Marvasti et al. 2013; Lee et al. 2014b). In addition, the 

VFI exhibits a ‘ceiling effect’ of 100% for an MD of up to approximately        

-4.5dB (Artes et al. 2010); however, the reduction in MD may merely reflect 

the influence of non-neural components. 

 

1.8.7.4 Glaucoma Hemifield Test (GHT) 

The Glaucoma Hemifield Test (GHT) compares the symmetry in the presence 

and the magnitude of the Pattern Deviation probability levels at each of five 

zones selected in the superior field to that in the inferior field. The zones are 

selected in relation to the distribution of the axons within the RNFL (Asman 

and Heijl 1992; Heijl and Patella 2002). The GHT provides a qualitative visual 

field classification: ‘Outside Normal Limits’, where one or more of the zones 

in the superior field are significantly different from the corresponding inferior 

zone(s); ‘Borderline’, where one or more of the zones in the superior field may 

be different from the corresponding inferior zone(s); ‘General Depression of 

Sensitivity’; where all zones are equally adversely affected; ‘Abnormally High 

Sensitivity’ where the threshold estimate at the stimulus locations in the zones 

are abnormally high; and ‘Within Normal Limits’ where the threshold estimate 

at the stimulus locations is within the normal range (Heijl et al. 2002; Brusini 

and Johnson 2007; Artes et al. 2010; Tanna et al. 2011). 
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1.8.8 Reliability parameters 

The interpretation of the visual field examination is undertaken in the context 

of the reliability of the examination, itself. The reliability of the examination is 

expressed in terms of the proportion of incorrect responses to the False-

Negative (FN) catch trials, the proportion of responses deemed to be False-

Positive (FP) and the assessment of fixation stability. 

 

1.8.8.1 False-Negative (FN) Catch Trials 

A False-Negative catch trial with the Full Threshold and FASTPAC 

algorithms presents the stimulus at a 9dB greater luminance than the threshold 

estimate obtained at the given location earlier in the examination.  The lower 

limit for an acceptable proportion of incorrect responses was originally 

empirically considered to be ≥33%. An incorrect response is suggestive of a 

loss of attention or of fatigue. However, the frequency of incorrect responses 

is also moderately correlated with the severity of the field loss due to the 

increased variability associated with the reduction in sensitivity (Bengtsson 

and Heijl 2000) and, therefore, the range of acceptability should be widened in 

such cases. The SITA algorithms use the same 9dB increment at locations of 

normal sensitivity, but larger increments at locations exhibiting apparent loss 

to compensate for the increased variability mentioned above (Bengtsson and 

Heijl 2000) and may be up to 20dB brighter than the previously threshold 

(Johnson et al. 2014). The range of acceptability for incorrect responses to the 

FN catch trials varies from 15-33 % (Cedrone et al. 2008; Talbot et al. 2013), 

to 20-25% (Asaoka et al. 2012; Park and Park 2012; Rao et al. 2013b) or even 
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less than 15% (Larrosa et al. 2012; Lee et al. 2012b; Sehi et al. 2012; Marvasti 

et al. 2013). 

 

1.8.8.2 False-Positive (FP) Catch Trials 

A False-Positive catch trial involves the non-presentation of the stimulus in a 

manner such that it mimics the presentation of the stimulus. The upper limit 

for an acceptable number of incorrect responses was originally empirically 

considered to be ≥33% and a value above this figure indicates a lack of 

understanding of the requirements of the examination (generally referred to as 

‘a trigger-happy’ patient) and is generally associated with a positive value of 

the GH index. The SITA algorithms designate a false-positive response as one 

which occurs within a ‘listen time’ window of 180msec immediately 

following the onset of the stimulus presentation, or as one which occurs within 

a further ‘listen time’ window (which commences at a fixed time after the 

response window and which runs into the ‘listen window’ associated with 

subsequent stimulus) (Olsson et al. 1997). As a consequence of the change in the 

method of assessment of false-positive responses, the criterion for the SITA 

algorithms has been revised downwards to 25%, 15% (Asaoka et al. 2011; Rao et 

al. 2013b ; Lee et al. 2014a), or even 10% (Wall et al. 2013). 

 

1.8.8.3 Fixation Stability 

The Fixation Stability is evaluated with the Heijl-Krakau blind spot technique 

and by gaze tracking. The Heijl-Krakau technique periodically presents the 

size III stimulus at a ‘moderately’ bright luminance into the blind spot (Heijl 

and Krakau 1975; Anderson and Patella 1999). A ‘seen’ response from the 



- 46 - 

 

observer indicates sub-optimal fixation. However, a ‘seen’ response can also 

result from an incorrect positioning of the blind spot at the start the 

examination and also when the individual responds to the noise associated 

with the presentation of the stimulus (Arnalich-Montiel et al. 2009). The upper 

limit for the proportion of acceptable fixation losses ranges from 30-33 or 40% 

(Taibbi et al. 2009; Marvasti et al. 2013), to 25-20% (Larrosa et al. 2012; Rao 

et al. 2013a) or even less than 15% (Cankaya and Simsek 2012; Lee et al. 

2014a). 

 

The gaze tracking technique tracks, by infrared imaging, the linear distance 

between the pupil centre and the 1st Perkinje image. An eye movement results 

in an increase in the linear distance since the pupil centre moves whilst the 1st 

Perkinje image remains stationary. The amplitude of the eye movement, 

truncated at 10°, is displayed on the print-out as an upward deflection. A 

downward deflection indicates a disruption to the infra-red imaging such as 

that caused by a blink or by a rupture of the pre-corneal tear film (Russell et al. 

2012; Saunders et al. 2012). 

 

1.8.8.4 Perimetric learning effect and fatigue effect 

The outcome of the threshold can be affected by many extraneous factors 

including refractive defocus (Weinreb and Perlman 1986; Henson and Morris 

1993), improper alignment of the trial lens (Lalle 2001), upper lid position 

(Cahill et al. 1987), pupil size (Flammer et al. 1984), media opacities (Heuer et 

al. 1988) the learning (Wood et al. 1987) and fatigue (Johnson et al. 1988) 

effects, exercise (Ramulu et al. 2012), accompanying music (Shue et al. 2011). 
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Two of the factors which exert a major influence on the outcome of the visual 

field are the learning and the fatigue effects. 

 

The learning effect describes the improvement in sensitivity arising with 

increased familiarity of the examination in either normal individuals or 

individuals with glaucoma. The learning effect is evident on the first visit from 

the first to the second examined eye, and between the eyes, up to five visits 

(Wood et al. 1987). An increase in the sensitivity is more pronounced in the 

peripheral areas (Wood et al. 1987; Werner et al. 1989). The learning effect 

image is independent of age but is a function of the magnitude of the 

sensitivity recorded at the first examination (Heijl et al. 1989). 

 

The fatigue effect describes the decline in sensitivity associated with the 

increase in the duration of the visual field examination. It can occur in normal 

individuals (Heijl 1977; Johnson et al. 1988), in those with ocular 

hypertension and in those with glaucomatous visual field loss (Wild et al. 

1991; Hudson et al. 1994). The fatigue effect can be reduced by rest intervals 

during the examination of each eye and between eyes (Johnson et al. 1988). 

The fatigue effect is greater in the second eye (Searle et al. 1991). 

 

Classically, perimetry uses a Goldmann size III stimulus. Recently, an 

alternative approach has been advocated: Size Threshold Perimetry (STP) or 

Size Modulation Perimetry whereby the stimulus size increases to either size V 

or size VI, dependent upon the eccentricity (Wall et al. 2013). This concept is 

based upon the rational that the larger stimulus sizes exhibit less within-test 
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variability. A further alternative approach involves the use of multiple stimulus 

sizes to determine the coefficient of spatial summation (Ricco’s area). Ricco’s 

area increases with eccentricity to reflect a constant number of RGCs at the 

given eccentricity. However, once the stimulus size exceeds Ricco’s area, 

oversampling of the perceptive field may occur and may mask the underlying 

defect (Redmond et al. 2010). 

 

1.9 The identification of progressive visual field loss 

The interval between visual field examinations for patients with glaucoma is 

equivocal. A lengthy interval may fail to identify progression and multiple 

examinations over a short interval are costly and are unlikely to identify 

progression in that the disease, itself, is generally slowly progressive. The 

recommended frequency of examinations varies from every 4 months in the 

first 2 years following diagnosis to every 6 months in the first 3 years (Rossetti 

et al. 2010). Alternatively, a ‘wait and see’ scheme has been proposed, 

involving the clustering of two or three examinations at ‘baseline’ and the two 

or three examinations over a 2year follow-up observation (Crabb and Garway-

Heath 2012). Another proposal recommends a constant interval between 

examination, the frequency of which varies at the discretion of the 

ophthalmologist (Malik et al. 2013). 

 

A further problem in the evaluation of visual field progression is the change 

from an established algorithm to a newly introduced algorithm which provides 

a better or equivalent accuracy in the estimation of threshold over a shorter 
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examination duration. Such an example occurred with the replacement of the 

Full Threshold and FASTPAC algorithms by the SITA algorithms which 

resulted in a more accurate estimate of threshold and narrowing of the 

confidence intervals for normality (Shirato et al. 1999; Sharma et al. 2000; 

Budenz et al. 2002). 

 

Various approaches are used to evaluate the presence of progressive visual 

field loss, namely, empirical clinical judgement, defect classification systems, 

trend-analysis and event-based analysis. 

 

1.9.1 Empirical Clinical Judgement 

Empirical clinical judgment is largely based upon the sequential comparison, 

and recognition of the worsening, of the number, severity and special location 

of the Total and Pattern Deviation probability levels. However, the same 

procedure can also be applied to the visual field indices and this latter 

comparison can be augmented by supplementary graphical techniques such as 

Box and Whiskers plots. 

 

1.9.2 Defect Classification Systems 

The defect classification systems comprise predefined cross-sectional criteria 

for visual field abnormality within each stage of the given system. These 

cross-sectional systems have been used to delineate visual field progression in 

terms of the progression of the ensuing visual field outcome from one stage to 

the next (more severe) stage (Investigators 2000; Miglior et al. 2007; Musch et 
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al. 2008). Typical defect classification systems are those of AGIS (Gaasterland 

et al. 1994; Caprioli and Coleman 2008; Coleman and Miglior 2008), the 

CNTGS (The Collaborative Normal-Tension Glaucoma Study and Group. 

1998; Leske et al. 1999) and the CIGTS (Musch et al. 1999; Lichter 2003; 

Vesti et al. ; Brusini and Johnson 2007), and the Bascom-Palmer (Hodapp et 

al. 1993) staging system (Mills et al. 2006; Park and Park 2012). 

 

1.9.3 Trend Analysis  

Trend-analysis describes the quantification of the assumed linear relationship 

between a given visual field outcome and the time to follow-up and provides 

an estimation of the rate of progression (Fitzke et al. 1995; McNaught et al. 

1996; Viswanathan et al. 1998; De Moraes et al. 2011). The technique is 

confounded by the frequency of examinations; the levels of within- and 

between-examination variability; the position of the examination within the 

time series; the lack of agreement over the magnitude of the slope for the 

designation of progression; the lack of separation of the normal age-decline in 

sensitivity (McNaught et al. 1996; Viswanathan et al. 1998; Crabb and 

Garway-Heath 2012; De Moraes et al. 2012b; Russell et al. 2012). The 

technique will be described in more detail in Chapter 7. 

 

1.9.4 Event Analysis 

The event-based approach is that derived for, and from, the comparison of the 

threshold estimate at any given location at any given visual field examination 

to the corresponding threshold estimates at the first two examinations (Leske 

et al. 1999; Heijl et al. 2003). The difference is then compared to the 
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distribution of the test-retest variability of the threshold at the given location in 

individuals with stable glaucoma (Heijl et al. 2003; Heijl et al. 2008). ‘Likely’ 

visual field progression is designated as three or more locations exhibiting a 

statistically significant reduction in the estimated sensitivity compared to that 

derived at the two baseline examinations, which lies outside that for stable 

glaucoma, on three or more successive examinations (Heijl et al. 2002; Nassiri 

et al. 2012). The original technique was based upon the use of the Total 

Deviation map but is now based upon the Pattern Deviation map and therefore 

is essentially resistant to the effect of progressive cataract (Leske et al. 1999). 

The technique is currently incorporated into the Guided Progression Analysis 

(GPA) analysis module of the HFA. 

 

Event analysis cannot determine the rate of change of the progression 

(Bengtsson et al. 2009; Artes et al. 2011; Asaoka et al. 2013; Lee et al. 2014a) 

and is influenced by the in between-test variability, which is high especially in 

extensively depressed stimulus locations (Rao et al. 2013b). 

 

Clinical experience dictates that the various methods should be evaluated 

concurrently to optimise the recognition of progressive visual field loss 

(Chauhan et al. 2008; Iester et al. 2011). 
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Chapter 2 

Rationale for the research 

 

2.1 Introduction to structural and functional characteristics of the ONH 

There have been numerous studies relating the magnitudes of the structural 

characteristics of the ONH in glaucoma to the functional outcome derived by 

perimetry. These studies have largely involved cross-sectional evaluation. 

 

The structural assessment has evolved from the rudimentary, e.g. the cup-to-

disc ratio, to the outcome derived by the manual analogue planimetry (Kottler 

et al. 1976; Jonas et al. 1988; Jonas and Montgomery 1995; Jonas et al. 1999) 

and onwards to the outcome derived by the current imaging techniques, such 

as confocal scanning laser ophthalmoscopy (CSLO) (Vizzeri et al. 2009; 

Kamdeu Fansi et al. 2011; Cankaya and Simsek 2012) and, concurrent with 

the development of this thesis, optical coherence tomography (OCT) (Huang 

et al. 2012; Schuman 2012; Sehi et al. 2012; Wang et al. 2012). Equally, the 

functional outcome has evolved from that obtained with manual kinetic 

perimetry (Katz and Sommer 1986; Anderson and Patella 1999; Inci Dersu 

2006; Vonthein et al. 2007) to that of SAP (Wild 1988; Bengtsson et al. 1998; 

Bartz-Schmidt et al. 1999; Delgado et al. 2002; Heijl and Patella 2002; Turpin 

et al. 2007; Wesselink et al. 2009; Pan and Varma 2011) with the level of 

sophistication of the analysis of the latter varying from the absolute values of 
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sensitivity, to the visual field indices MD (Nassiri et al. 2013), PSD (Ang et al. 

2011; Rao et al. 2013a) and VFI (Casas-Llera et al. 2009; Lee et al. 2014a) 

and to the Total and Pattern Deviation probability values (Artes et al. 2005). 

 

However, very few studies have evaluated the progressive structural damage 

to the ONH with the progressive functional outcome derived by SAP over a 

relatively long time period (i.e. a mean of 11.8 years (Laemmer et al. 2007) 

and of 9.4 years (Nassiri et al. 2012). These latter studies have compared the 

outcome from digital planimetry with the MD index (Laemmer et al. 2007); 

and the outcomes from confocal CSLO with the MD index (Nassiri et al. 

2012). 

 

2.2 Previous work 

The previous work within the Cardiff School of Optometry and Vision 

Sciences, Cardiff University, was concerned with the development of 

monoscopic and stereoscopic computer-assisted planimetry for the cross-

sectional structural evaluation of the ONH in primary open-angle glaucoma 

(Sheen 2002; Sheen et al. 2004; Bourtsoukli 2005; Morgan et al. 2005a; 

Morgan et al. 2005b; Morgan et al. 2012). A particular feature of the custom-

software for the digital viewing of the ONH is a ’floating’ measurement cursor 

which can be moved in stereoscopic (depth) space to minimize parallax errors 

encountered in the measurement of the NRR undertaken at the depth of the 

scleral rim. A further feature of the software is the ability to zoom and pan the 
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digital ONH images at the observer’s discretion. The work has shown that, for 

the identification of primary open-angle glaucoma, digital stereoscopic 

viewing of the ONH outweighed monoscopic viewing in terms of sensitivity 

and specificity and is an indicative technique for quantitative and qualitative 

assessments of the ONH in glaucoma (Sheen 2002; Sheen et al. 2004; 

Bourtsoukli 2005; Morgan et al. 2005a; Morgan et al. 2005b; Morgan et al. 

2012). The use of digital stereo-planimetry was found to enhance the 

demarcation of subtle localized changes (focal rim notches) and to enable a 

more accurate quantification of the PPA (Bourtsoukli 2005); and highlighted 

the inappropriateness of the ISNT rule for the diagnosis of primary open-angle 

glaucoma (Morgan et al. 2012). 

 

A natural extension of digital manual stereo-planimetry would be the 

assessment of progressive structural damage to the glaucomatous ONH and its 

relationship with the functional outcome. 

 

2.3 Overall and specific aims of the work 

The overall aim of the work described in this thesis was to extend the digital 

mono- and stereo-viewing techniques developed within the Cardiff School of 

Optometry and Vision Sciences to the evaluation of progressive structural 

damage to the glaucomatous ONH with particular emphasis on a longest 

possible follow-up. 
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The specific aims of the work described in this thesis were threefold. 

 

Firstly, to develop and then to evaluate the efficacy of digital stereo-flicker 

chronoscopy for the qualitative identification of progressive glaucomatous 

ONH damage over a long follow-up and to determine the relationship of the 

latter to the progressive worsening of the visual field (Chapter 5). 

 

Secondly, to evaluate the quantitative relationship between progressive 

damage to the NRR, derived by digital planimetry, and the progressive 

worsening of the visual field defined in terms of the traditional measures, 

based upon the dB notation, and in terms of a more novel approach, namely, 

the residual retinal ganglion cell (soma) count (Chapter 6). 

 

Thirdly, to evaluate for the identification of early progressive glaucomatous 

damage over a longer follow-up than was available for the ONH imaging, the 

difference between the outcomes derived by the univariate linear regression of 

sensitivity (dB) against time to follow-up and of the residual retinal ganglion 

cell (soma) count against time to follow-up (Chapter 7). 
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2.4 Experimental Studies 

The progressive structural damage of the ONH using flicker chronoscopy has 

only been utilized under monoscopic viewing conditions and this has been 

undertaken in both analogue (Heijl and Bengtsson 1989) and in digital forms 

(Radcliffe et al. 2010; VanderBeek et al. 2010). The study described in 

Chapter 5 evaluated the efficacy of digital stereo-flicker chronoscopy for the 

qualitative identification of progressive glaucomatous ONH damage. The 

cohort comprised 50 individuals with glaucoma and 11 with ocular 

hypertension. The median duration of follow-up was 9.9 years. The digital 

stereo-flicker chronoscopy in relation was evaluated not only to digital mono-

flicker chronoscopy, but also to the digital stereo-viewing and digital mono-

viewing of the ‘side-by-side’ images of the ONH. 

 

In the subsequent study, described in Chapter 6, the correlation was 

determined between progressive structural damage to the NRR, quantified by 

digital stereo-planimetry, with the visual field outcomes expressed in dBs and, 

using a novel approach, the residual retinal ganglion cell (soma) count. The 

cohort comprised 23 individuals with glaucoma and 4 with ocular 

hypertension. The median duration of follow-up was 10.3 years. 

 

The final study, described in Chapter 7, evaluated the difference between the 

outcomes derived by the univariate linear regression of sensitivity (dB) against 

time to follow-up and of the residual retinal ganglion cell (soma) count against 
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a long follow-up. It was hypothesized that the latter approach would result in 

the earlier identification of progressive early glaucomatous visual field loss. 

The cohort comprised 112 individuals with glaucoma. The median duration of 

follow-up of was 8.8 years. 

 

2.5 Logistics 

The various studies utilised retrospective longitudinal cohorts of patients 

attending the Glaucoma Clinics of the Cardiff Eye Unit, University Hospital of 

Wales (UHW). At the commencement of the research described in this thesis, 

the number of patients who had received concurrent ONH imaging and visual 

field examinations was unknown to the Cardiff Eye Unit. Equally the length of 

the follow-up of each patient was also unknown. 

 

The initial part of the work presented in this thesis, therefore, comprised the 

acquisition of a dataset containing the ONH images obtained from the various 

ONH imaging devices used in the Glaucoma Clinics and the corresponding 

visual field outcomes. 

 

The first stage in the acquisition of the database involved the manual search of 

the medical records of approximately 2800 patients who had attended the 

Glaucoma Clinics between 1998 and 2010. The first date enabled the earliest 

available images of the ONH at UHW and the later date an arbitrary cut-off 
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point for data collection (i.e. two years after commencement of the thesis). The 

search involved the identification from the medical records of the original 

analogue images in 35mm slide format and, subsequently, the identification of 

the corresponding digital images for the given patient. The analogue images in 

35mm slide format were included to maximize the follow-up period for the 

study. These analogue images were then digitised at the Department of Media 

Resources at UHW using either a slide scanner or by re-photography using a 

macro lens. The corresponding digital images for the given patient were 

sourced through the electronic archival system, Imagenet, and had been 

acquired with two different Topcon fundus cameras. 

 

The various different types of imaging modality necessitated the resizing and 

alignment of the various images to a standard reference image. For the 

quantitative analysis (Chapter 6), the images were referenced to the most 

recent fundus camera, the Topcon TRC-EX, in use at UHW. These processes 

were necessary to overcome the differences in the resolution and/ or the 

editing (i.e. cropping) of the images, which differed across the various 

photographic techniques. 

 

The second stage in the acquisition of the database involved the manual search 

of the visual field printouts for each patient with two or more ONH images. 

These printouts were sourced from the five separate Humphrey Field 

Analyzers contained within the Department of Orthoptics at UHW. 
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The minimum selection criteria for entry into the database were considered to 

be a minimum of two ONH images and three visual field examinations. The 

characteristics of the individuals within the database are described in Chapter 

3. From these individuals a further subset of individuals was identified who 

had undergone five or more visual field examinations. The latter number of 

visual field examinations was the minimum to undertake the GPA and also to 

perform univariate linear regression analysis of the given visual field outcome 

against time to follow-up (Wild et al. 1993; McNaught et al. 1996; 

Viswanathan et al. 1998; Hitchings 2008; Artes et al. 2010; Azarbod et al. 

2012; De Moraes et al. 2012b; Rao et al. 2013b). Thus, the size of any given 

cohort for the various proposed studies was limited by the requirement for five 

or more visual field examinations. However, the composition of the potential 

cohorts was further limited by the limited number of the corresponding ONH 

images, particularly, those taken at the same visit as the visual field 

examination. A further restriction in the size of the various proposed cohorts 

was the absence in some patients of one or more ONH images acquired by the 

digital photographic technique which was to be used as the reference against 

which the images from the other photographic sources were to be 

standardised. The evolution in the size of the various cohorts used in the study 

is described in Chapter 3. 

 

The third stage in the acquisition of the database was to enter the 

corresponding demographic and clinical history of each individual. 
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Concurrent with the acquisition of the database was the development of the 

user-friendly interface for the archiving, retrieving and viewing of the various 

ONH images (Chapter 4) and of the software necessary for digital stereo-

flicker chronoscopy and planimetry (Chapters 5 and 6, respectively). The 

development of the various software utilities was undertaken in conjunction 

with Dr. Gavin Powell, Cardiff School of Computer Science and Informatics, 

Cardiff University, who wrote the coding for the various applications. 

 

The various studies described in this thesis used a case series design. The 

number of individuals within each case series was determined by the number 

of photographic visits, the type of camera, the number of visual field 

examinations and the chronological association between the two diagnostic 

modalities. The available dataset was thus not amenable to power calculations 

to determine sample size. 

 

The patients who formed the cohort for the final part of the thesis, namely, the 

comparison of the two univariate linear regression techniques, i.e. sensitivity 

in dBs and the residual retinal ganglion (soma) cell count against time to 

follow-up, respectively, were identified from a search of the first 1000 patients 

entered into ‘Open Eyes’, an electronic patient database, which was introduced 

into the Cardiff Eye Unit in 2013 (Chapter 7). The dates of the visual field 

examinations of those patients with a minimum of five visual field 

examinations over a minimum of six years were extracted from the ‘Open 
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Eyes’ database. The visual field printouts were then acquired from a manual 

search of the (now) three separate Humphrey Field Analyzers contained within 

the Department of Orthoptics at UHW. 

 

The sensitivity values from the .pdf of the Single Field Analysis printouts of 

each individual were extracted using Microsoft Paint 2010 (Microsoft 

Corporation, Redmond, WA) and the resultant .tiff image was read into.txt 

format using Omnipage 18 (Nuance Communications, Inc., Burlington, MA). 

The dB values were converted into RGC values and output as a .csv file 

format via an application, produced by Dr Carlo Knupp, Senior Lecturer, 

Cardiff School of Optometry and Vision Sciences, Cardiff University, using 

Eclipse and coded in Java. The subsequent univariate linear regression 

analysis was undertaken by Mr. David Shaw, Senior Medical Statistician. Mr 

Shaw has approximately 25 years of collaboration with Professor Wild in the 

statistical analysis of perimetric data. 

 

The research had ethical approval from the South East Wales Research Ethics 

Committee, as it came under the category of Audit. It commenced in January 

2008, but was delayed by two separate Interruptions of Study which were 

formally agreed by Cardiff University and lasted a total of 18 months. 

 

One further study was initiated to compare the residual RGC count in 

glaucoma immediately prior and subsequent to cataract extraction and 

http://en.wikipedia.org/wiki/Burlington,_Massachusetts
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intraocular lens implantation (IOL). The rational for this study was to 

demonstrate the dependency of the RGC soma calculation on the absolute 

values of sensitivity which are influenced by optical as well as neural factors. 

It was expected that the post-operative residual RGC count would be greater 

than the pre-operative count, thereby demonstrating the current vulnerability 

of the RGC calculation (Harwerth et al. 2010) in the presence of age-related 

cataract. A further search was undertaken for individuals with glaucoma, 

archived in Open Eyes, who had undergone cataract surgery with IOL at the 

UHW. The search period extended from 1999 to 2014. Fifty-eight individuals 

were identified who exhibited at least three reliable visual field examinations 

prior to surgery and at least three reliable visual field examinations post-

operatively. The immediate pre- and the post-operative visual field 

examinations had to be within 1 year of the surgery. The post-operative 

residual RGC count was surprisingly found to be lower post-operatively. It 

was subsequently discovered that in all but 5 individuals, the refractive 

correction used for the pre-operative visual field examination has also been 

used for the post-operative examination, thereby causing an artificial reduction 

in the residual RGC count due to the induced optical defocus. Since the ‘true’ 

post-operative refractive correction was unknown, a potential correction of the 

sensitivities for the induced defocus could not be undertaken and, in any event, 

would have been both clinically and academically unsatisfactory. 
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Chapter 3 

 

Characteristics of the individuals within the database compiled 

for the research 

 

3.1 Acquisition of the various cohorts 

As was discussed in Chapter 2, this thesis is concerned with the identification 

of structural (i.e. optic nerve head) and/ or functional (threshold perimetry) 

progressive damage in glaucoma and, where appropriate, the association 

between these measures. 

 

The various experimental Chapters contained in this thesis use differing 

cohorts of individuals with glaucoma, depending upon the inclusion criteria 

for the given study. The individuals were selected from patients attending the 

Glaucoma Clinics of the Cardiff Eye Unit at the University Hospital of Wales. 

 

The various cohorts were acquired from a manual search of the medical 

records of approximately 2800 patients who were enrolled at the Glaucoma 

Clinics between 1998 and 2010. The number of individuals within each cohort 

was limited by the availability of the requisite data and also reduced as the 

inclusion criteria became more stringent. 

 

This Chapter provides a synopsis of the evolution of the numbers of 

individuals conforming to the various inclusion criteria and, thereby, the 
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numbers within the various cohorts. The evolutionary stages of the cohort 

acquisition are given in detail to illustrate the difficulty in obtaining a 

substantial number of requisite individuals. 

 

3.2 Evaluation of structural and/or functional progressive loss 

(Chapter 5 and Chapter 6) 

 

3.2.1 Optic nerve head (ONH) images 

The minimum inclusion criteria for the study of the association between 

structural and functional progressive loss (Chapter 5 and Chapter 6) comprised 

the presence of at least two optic nerve head images and of at least five visual 

field examinations, undertaken reliably. 

 

The medical records of the 2800 patients were searched for the presence of 

analogue stereo-images, in 35mm slide format, of the ONH (i.e. the 

conventional form of imaging modality) to ensure the longest possible time 

series. The search yielded a total of 396 patients with one or more pairs of 

images of the ONH in 35mm slide format. 

 

A search for the presence of digital stereo-images of the ONH for these 396 

patients was then undertaken. The digital ONH images had been acquired 

using various Topcon fundus cameras, upgraded with a digital single-lens 

reflex camera, over the follow-up period and were accessed using the Topcon 

Imagenet software. A total of 212 individuals manifested two or more ONH 

stereo-images, each acquired on separate visits by either analogue or digital, or 
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both, imaging modalities, in one or both eyes, together with a corresponding, 

and complete, medical history. 

 

The analogue 35mm slide ONH images from the 212 individuals were then 

digitised by the Department of Media Resources, UHW, using either a Nikon 

LS 2000 slide scanner, with the corresponding software for the scanning of 

35mm slides, or by re-photography using a Nikon D1 digital single-lens reflex 

camera and a 1.05 macro lens and a copy stand placed upon a light box. The 

resultant images from both digitising techniques were then edited using 

Photoshop (Adobe, San Jose, CA) to match the colour of the original analogue 

image, where appropriate, and to remove dust marks and/ or the effects of 

abrasions on the glass cover of the slide. The size of the resulting images was 

18cm x 12cm at 96 dots per inch (dpi), and was selected to ensure optimum 

image quality. 

 

The resolution of the digitised analogue images varied depending upon 

whether the scanner or the camera was used to acquire the image and was 

either 2000*1312 pixels or 3008*1312 pixels. The resolution of the existing 

digital images depended upon the camera used to acquire the image. For the 

Topcon TRC-50IX camera (utilizing the Nikon D1X 20° camera) the 

resolution was 768*576 pixels and for the Topcon TRC-EX camera (utilizing 

the Sony 950P 20° camera) the resolution was 3008*1960 pixels. 
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The digitised ONH image series for each of the 212 individuals, together with 

the individual’s demographic details obtained from the Cardiff Eye Unit 

Patient Management System (PMS), and the medical history of each 

individual were archived in Access, Excel and Word databases, using the 

standard patient identity numbering system operational at the UHW. The 

number of photographic visits, and the mode and resolution of photography at 

each visit, for the 212 individuals with two or more stereo-images by the 

number of photographic visits and the mode of photography is given in Table 

3.1. 

 

Mode and resolution 

(pixels) of 

photography 

Number of individuals by number of 

photographic visits 

V1 V2 V3 V4 V5 V6 =V7 

35mm slides 

(2000 x 1312) 76 17 1 0 0 0 0 

35mm slides 

(3008 x 1960) 99 43 3 0 0 0 0 

Topcon TRC-IX 

(768 x 576) 37 127 59 21 8 2 0 

Topcon TRC-EX 

(3008 x 1960) 0 25 18 15 2 0 1 

Total 212 212 81 36 10 2 1 

Table 3.1. The number of stereo-images by the number of photographic visits, and the 

mode and resolution of photography at each visit, for the 212 individuals with two or 

more stereo-images. V represents visit. 

 

 

3.2.2 Visual field examination time series 

The hard drives of the Humphrey Field Analyzer (HFA) 700 series perimeters, 

which had been, or were still, operational in the Glaucoma Clinics from 1998 

onwards, were then searched for the visual field examinations of the 212 

individuals with two or more stereo-images of the ONH. 
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3.3 The characteristics of the various cohorts with ONH stereo-images 

and visual field examinations 

 

Of the 212 individuals (Table 3.2), 180 had undertaken one or more visual 

field examinations. The visual fields from each of the 180 individuals were 

then aggregated onto the hard drive of the HFA in the Glaucoma Clinic 

(HFA750i-12495). This perimeter contained the most contemporary analytical 

software version (Version 4.2) including the GPA. The visual field files were 

also stored on floppy discs and also printed in PDF format. Of the 180 

individuals, 116 had exhibited three or more reliable visual field examinations 

either in both eyes (102) or in one eye, only (14). Of these 116 individuals, 74 

had undertaken five or more reliable visual field examinations either in both 

eyes (69) or in one eye, only (5). Of the 74 individuals, 68 had undergone each 

pair of respective photographic and perimetric examinations within 12 months 

of one another, either in both eyes (64) or in one eye only (4) (Table 3.2). The 

reliability criteria comprised ≥15% incorrect responses to the false-positive 

catch trials; ≥20% incorrect responses to the false-negative catch trials and 

≥20% fixation losses. 
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Table 3.2. The number of individuals by the frequency of the available ONH images and 

visual field examinations. 

 

 

The number of photographic visits, and the mode and resolution of 

photography at each visit, for the 116 individuals with two or more stereo-

images and three or more reliable visual fields are shown in Table 3.3. 

 

The number of ONH stereo-images by the number of visual field examinations 

for the 116 individuals with two or more stereo-images and three or more 

reliable visual field examinations is presented in Table 3.4. 

 

Selection criterion Number of patients 

Medical notes available ~2800 

Patients with  2 stereo-images of the ONH 212 

Patients with  2 stereo-images of the ONH 

and  1 visual field examinations 
180 

Patients with  2 stereo-images of the ONH 

and  3 visual field examinations 
123 

Patients with  2 stereo-images of the ONH 

and  3 visual field examinations 

with reliable outcomes 

116 

Patients with  2 stereo-images of the ONH 

and  3 visual field examinations 

with reliable outcomes and with pairs of respective 

examinations each conducted within 12 months 

97 

Patients with  2 stereo-images of the ONH 

and  5 visual field examinations 

with reliable outcomes 

74 

Patients with  2 stereo-images of the ONH 

and  5 visual field examinations 

with reliable outcomes and with pairs of respective 

examinations each conducted within 12 months. 

68 
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Mode and resolution 

(pixels) of 

photography 

Number of individuals by number of 

photographic visits 

V1 V2 V3 V4 V5 V6 =V7 

35mm slides 

(2000 x 1312) 43 6 0 0 0 0 0 

35mm slides 

(3008 x 1960) 46 15 2 0 0 0 0 

Topcon TRC-IX 

(768 x 576) 27 77 44 19 7 2 0 

Topcon TRC-EX 

(3008 x 1960) 0 18 15 14 2 0 1 

Total 116 116 61 33 9 7 1 

Table 3.3. The number of stereo-images by the number of photographic visits, and the 

mode and resolution of photography at each visit, for the 116 individuals with two or 

more stereo-images and three or more reliable visual field examinations. V represents 

visit. 

 

Table 3.4. The number of ONH stereo-images by the number of visual field examinations 

for the 116 individuals with two or more stereo-images and three or more reliable visual 

field examinations. 

 

It is clear from Table 3.4 that there was little association between the number 

of visual field examinations and the number of photographic visits. The 

majority of individuals had a greater number of visual field examinations 

compared to photographic visits. 

Number of 

visual field 

examinations 

Number of ONH stereo-images 

 

 2 3 4 5 6 7 Total 

3 16 3 4 0 0 0 23 

4 12 2 4 2 0 0 20 

5 4 5 2 0 0 0 11 

6 15 4 4 0 0 0 23 

7 8 6 1 1 0 0 16 

8 3 2 3 1 0 0 8 

9 1 1 1 0 0 0 4 

10 2 1 1 0 1 0 5 

11 0 1 1 0 0 1 3 

12 1 0 2 0 0 0 3 

Total 62 25 23 4 1 1 116 
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The number of instances at which photography and visual field examination 

were conducted on the same day, is shown in Table 3.5. Only 53 of the 116 

individuals (45.7%) had received both examinations on the same day, on at 

least one occasion. 

 

Visits with same day photography and 

visual field examination  
Number of Individuals (%) 

1 43 (37.1) 

2 8 (6.9) 

3 0 (0.0) 

4 1 (0.9) 

5 1 (0.9) 

Total 53 (45.7) 

Table 3.5. The number and the corresponding percentage (%) of visits where the 

photography and visual field examinations were undertaken on the same day for the 116 

individuals with two or more stereo-images and three or more reliable visual field 

examinations. 

 

The distribution of the interval between ONH photography and the 

corresponding visual field examination is shown in Table 3.6. 

 

Number of 

corresponding 

photographic and 

visual field 

examinations 

Interval between a given pair of photographic 

visits and the corresponding visual field 

examinations (months) 

Up to 

+/- 3 

Up to 

+/- 6 

Up to 

+/- 12 

Up to 

+/- 24 

Up to 

+/- 48 
 48 

1 43 81 89 100 103 111 

2 27 9 8 4 7 5 

3 6 0 0 0 0 0 

4 1 0 0 0 0 0 

5 1 0 0 0 0 0 

6 1 0 0 0 0 0 

Cumulative number of 

individuals 
79 90 97 104 110 116 

Table 3.6. The cumulative distribution of the 116 patients (cells) with two or more stereo-

images and three or more reliable visual field examinations by the number of, and 

interval between, the corresponding photographic and visual field examinations. 
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However, 97 of the 116 individuals had had at least one photographic visit and 

one visual field examination conducted within 12 months of each other. The 

number of ONH stereo-images by the number of visual field examinations for 

these 97 individuals is given in Table 3.7. 

 

Table 3.7. The number of ONH stereo-images by the number of visual field examinations 

for the 97 individuals with two or more stereo-images and three or more reliable visual 

field examinations and with the pairs of respective examinations conducted within 12 

months of each other. 

 

 

 

Of the 116 individuals, 74 had had at two or more stereo-images and five or 

more reliable visual field examinations. The corresponding number of 

photographic visits, and the mode and resolution of photography at each visit, 

for the 74 individuals is given in Table 3.8. 

 

 

 

 

Number of visual 

field examinations  

Number of ONH stereo-images 

 

 2 3 4 5 6 7 Total  

3 7 3 4 0 0 0 14 

4 8 2 4 2 0 0 16 

5 3 5 2 0 0 0 10 

6 14 3 4 0 0 0 21 

7 6 6 1 1 0 0 14 

8 2 2 3 1 0 0 8 

9 1 1 1 0 0 0 3 

10 2 1 1 0 1 0 5 

11 0 1 1 0 0 1 3 

12 1 0 2 0 0 0 3 

Total  44 24 23 4 1 1 97 
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Table 3.8. The number of stereo-images by the number of photographic visits, and the 

mode and resolution of photography at each visit, for the 74 individuals with two or 

more stereo-images and five or more reliable visual field examinations. V represents visit. 

 

The frequency of ONH stereo-images by the frequency of visual field 

examinations in these 74 individuals is presented in Table 3.9. 

 

Table 3.9. The number of ONH stereo-images by the number of visual field examinations 

for the 74 individuals with two or more stereo-images and five or more reliable visual 

field examinations. 

 

 

Mode and resolution 

(pixels) of 

photography 

Number of individuals by number of 

photographic visits 

V1 V2 V3 V4 V5 V6 =V7 

35mm slides 

(2000 x 1312) 29 4 0 0 0 0 0 

35mm slides 

(3008 x 1960) 23 5 0 0 0 0 0 

Topcon TRC-IX  

(768 x 576) 22 55 33 13 6 2 0 

Topcon TRC-EX 

(3008 x 1960) 0 10 12 9 1 0 1 

Total 74 74 45 22 7 2 1 

Number of 

visual field 

examinations 

Number of ONH stereo-images 

 

 2 3 4 5 6 7 Total 

5 4 5 2 1 0 0 12 

6 15 4 4 0 0 0 23 

7 8 6 1 1 0 0 16 

8 3 2 3 1 0 0 9 

9 1 1 1 0 0 0 3 

10 2 1 1 0 1 0 5 

11 0 1 1 0 0 1 3 

12 1 0 2 0 0 0 3 

Total 34 20 15 3 1 1 74 
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The number of instances at which photography and visual field examination 

were conducted on the same day, is shown in Table 3.10. Forty-three of the 74 

individuals (58.11%) had received both examination techniques on the same 

day on at least one occasion. 

Visits with same day 

photography and visual field 

examination  

Number of Individuals (%) 

1 34 (46.0) 

2 7 (9.5) 

3 0 (0.0) 

4 1 (1.4) 

5 1 (1.4) 

Total 43 (58.1) 

Table 3.10. The number and the corresponding percentage (%) of visits where the 

photography and visual field examinations were undertaken on the same day for the 74 

individuals with two or more stereo-images and five or more reliable visual field 

examinations and with at least one pair of respective examinations conducted within 12 

months of each other. 

 

The distribution of the interval between ONH photography and the 

corresponding visual field examination is shown in Table 3.11. 

 

Table 3.11. The cumulative distribution of the 74 patients (cells) with two or more ONH 

stereo-images and five or more reliable visual field examinations by the number of, and 

interval between, the corresponding photographic and visual field examinations. 

 

Number of 

corresponding 

photographic and 

visual field 

examinations 

Interval between a given pair of  photographic 

visits and the corresponding visual field 

examinations (months) 

Up to 

+/- 3 

Up to 

+/- 6 

Up to 

+/- 12 

Up to 

+/- 24 

Up to 

+/- 48 
 48 

1 29 58 62 71 72 74 

2 23 6 6 1 1 0 

3 6 0 0 0 0 0 

4 1 0 0 0 0 0 

5 1 0 0 0 0 0 

6 1 0 0 0 0 0 

Cumulative number of 

individuals  

61 64 68 72 73 74 
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3.3.1 Resultant cohort for the qualitative assessment of progressive 

glaucomatous ONH damage using both mono- and stereo-flicker 

chronoscopy (Chapter 5) 

 

Sixty-eight of the 74 individuals had had, at least, one photographic 

examination and one visual field examination conducted within 12 months of 

each other. The number of ONH stereo-images by the number of visual field 

examinations for these 68 individuals is given in Table 3.12. 

 

Table 3.12. The number of ONH stereo-images by the number of visual field 

examinations for the 68 individuals with two or more stereo-images and five or more 

reliable visual field examinations and with at least one pair of respective examinations 

conducted within 12 months of each other. 

 

 

Seven of the 68 individuals were excluded on the basis of inadequate image 

quality either of the original analogue images, of the digitised analogue images 

or of the existing digital images. The number of photographic visits, and the 

mode and resolution of photography at each visit, for the remaining 61 

individuals is shown in Table 3.13. 

Number of 

visual field 

examinations 

Number of ONH stereo-images 

 2 3 4 5 6 7 Total 

5 3 5 2 1 0 0 11 

6 14 3 4 0 0 0 21 

7 6 6 1 1 0 0 14 

8 2 2 3 1 0 0 8 

9 1 1 1 0 0 0 3 

10 2 1 1 0 1 0 5 

11 0 1 1 0 0 1 3 

12 1 0 2 0 0 0 3 

Total 29 19 15 3 1 1 68 
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Table 3.13. The number of stereo-images by the number of photographic visits, and the 

mode and resolution of photography at each visit, for the 61 individuals with two or 

more stereo-images and five or more reliable visual field examinations and with at least 

one pair of respective examinations conducted within 12 months of each other. V 

represents visit. 

 

 

The number of ONH stereo-images by the frequency of visual field 

examinations in the 61 individuals is given in Table 3.14. 

 

 

Table 3.14. The number of ONH stereo-images by the number of visual field 

examinations for the 61 individuals with two or more stereo-images and five or more 

reliable visual field examinations and with at least one pair of respective examinations 

conducted within 12 months of each other. 

 

 

Mode and resolution 

(pixels) of 

photography  

Number of  individuals by number of 

photographic visits 

V1 V2 V3 V4 V5 V6 =V7 

35mm slides 

(2000 x 1312) 21 1 0 0 0 0 0 

35mm slides 

(3008 x 1960) 14 1 0 0 0 0 0 

Topcon TRC-IX 

(768 x 576) 26 47 23 10 5 2 0 

Topcon TRC-EX 

(3008 x 1960) 0 12 12 7 0 0 1 

Total 61 61 35 17 5 2 1 

Number of 

visual field 

examinations 

Number of ONH stereo-images 

 2 3 4 5 6 7 Total 

5 1 4 2 1 0 0 8 

6 14 2 4 0 0 0 20 

7 6 5 1 1 0 0 13 

8 2 2 3 1 0 0 8 

9 1 1 1 0 0 0 3 

10 2 1 1 0 1 0 5 

11 0 0 1 0 0 1 2 

12 0 0 2 0 0 0 2 

Total 26 15 15 3 1 1 61 
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The demographic characteristics (median, lower and upper quartiles; range), 

by diagnosis, for the most severely affected eye (the age at presentation [either 

the first photographic visit or the first visual field examination, whichever 

occurred earlier]) and the length of follow-up of the reliable visual field 

examinations and of the photographic examinations, by diagnosis, for the 61 

individuals is given in Table 3.15, followed by the clinical characteristics 

(median; lower and upper quartiles; range), by diagnosis, for the most severely 

affected eye of the 61 individuals in Table 3.16. Two cases of pigment 

dispersion glaucoma and one case of angle-closure glaucoma were designated 

as ‘Others’. 
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Table 3.15. The demographic characteristics (median, lower and upper quartiles; range) of the most severely affected eye, by diagnosis, for the 61 individuals with 

two or more stereo-images and five or more reliable visual field examinations conducted within 12 months of each other.  

Diagnosis 

(No of individuals) 

Primary open-angle 

glaucoma (37) 

Ocular 

hypertension (9) 

Normal-tension 

glaucoma (5) 

Glaucoma 

Suspect (7) 

Others 

(3) 

Age (yrs) at the baseline visit 

69.5 

(59.3, 73.3; 

38.1 to 89.4) 

63.0 

(55.3, 64.8; 

43.9 to 71.4) 

69.6 

(64.8, 72.4; 

61.0 to 73.3) 

63.8 

(54.8, 66.3; 

34.1 to 77.6) 

45.8 

(37.3, 55.3; 

28.8 to 64.7) 

Male : Female 16 : 21 5 : 4 4 : 1 3 : 4 2 : 1 

Perimetric follow-up (yrs) 

7.3 

(6.2, 8.4; 

3.1 to 10.0) 

6.1 

(5.3, 8.3; 

4.0 to 10.8) 

7.2 

(7.0, 9.2; 

5.8 to 10.3) 

7.7 

(6.6 , 8.8; 

4.2 to 9.8) 

9.5 

(9.5, 9.9; 

9.4 to 10.3) 

Number of perimetric visits 

7.0 

(6.0, 8.0; 

5.0 to 12.0) 

6.0 

(6.0, 7.0; 

5.0 to 10.0) 

8.0 

(7.0, 11.0; 

6.0 to 12.0) 

6.0 

(5.5, 7.5; 

4.0 to 8.0) 

7.0 

(7.0, 7.5; 

7.0 to 8.0) 

Photographic follow-up (yrs) 

3.9 

(2.1, 5.5; 

0.3 to 9.1) 

3.6 

(3.1, 5.8; 

1.8 to 9.3) 

5.3 

(4.3, 6.3; 

3.4 to 6.3) 

 

4.6 

(3.0, 6.0; 

2.0 to 9.7) 

 

4.4 

(3.7, 5.6; 

3.0 to 6.8) 

Number of photographic visits 

3.0 

(2.0, 3.0; 

2.0 to 5.0) 

2.0 

(2.0, 4.0; 

2.0 to 6.0) 

4.0 

(3.0, 4.0; 

2.0 to 7.0) 

4.0 

(2.5, 4.5; 

2.0 to 5.0) 

3.0 

(2.5, 3.5; 

2.0 to 4.0) 

Maximum duration 

of follow-up (yrs) 

8.9 

(7.4, 9.8; 

5.4 to 15.0) 

10.6 

(8.6, 11.0; 

5.1 to 11.7) 

9.2 

(8.0, 9.3; 

7.8 to10.3) 

9.7 

(8.0, 10.4; 

4.7 to 11.4) 

10.0 

(9.7, 10.1; 

9.4 to 10.3) 
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Table 3.16. The clinical characteristics (median, lower and upper quartiles; range) of the most severely affected eye, by diagnosis, for the 61 individuals with two or 

more stereo-images and five or more reliable visual field examinations. 

Diagnosis 

(No of individuals) 

Primary open-angle 

glaucoma (37) 

Ocular 

hypertension (9) 

Normal-tension 

glaucoma (5) 

Glaucoma 

Suspect (7) 

Others 

(3) 

Mean Deviation (dB) 

at the baseline visit 

-5.38 

(-8.36, -2.57; 

-25.10 to 0.34) 

-1.53 

(-3.55, -0.74; 

-5.55 to -0.60) 

-11.88 

(-18.16, -7.74; 

-18.58 to -5.01) 

-2.97 

(-4.53, -2.17; 

-6.22 to -1.70) 

-1.77 

(-10.85, -1.60; 

-19.93 to -1.43) 

Visual Field Index (%) 

at the baseline visit 

92.0 

(79.0, 97.0; 

26.0 to 99.0) 

98.0 

(96.0, 98.0; 

94.0 to 99.0) 

73.0 

(54.0, 74.0; 

51.0 to 94.0) 

94.0 

(89.0, 96.5; 

86.0 to 98.0) 

85.0 

(69.5, 90.5; 

54.0 to 96.0) 

Pattern Standard Deviation 

(dB) 

at the baseline visit 

3.62 

(2.04, 8.80; 

1.54 to 14.42) 

1.91 

(1.56, 2.23; 

1.45 to 4.58) 

9.21 

(8.79, 9.38; 

3.36 to 13.18) 

3.65 

(2.70, 4.25; 

1.70 to 5.26) 

6.19 

(4.59, 7.76; 

2.98 to 9.32) 

Intraocular pressure (mmHg) 

at the baseline visit 

24.00 

(20.25, 26.75; 

11.00 to 39.00) 

26.50 

(22.06, 29.75; 

19.00 to 38.00) 

20.00 

(17.50, 20.00; 

13.00 to 22.00) 

19.50 

(18.00, 20.00; 

12.00 to 22.00) 

17.50 

(16.00, 23.50; 

15.00 to 29.00) 

Vertical cup-to-disc ratio 

at the baseline visit 

0.70 

(0.60, 0.80; 

0.30 to 0.90) 

0.50 

(0.40, 0.50; 

0.10 to 0.70) 

0.75 

(0.70, 0.90; 

0.65 to 0.90) 

0.60 

(0.60, 0.70; 

0.50 to 0.75) 

0.55 

(0.50, 0.68; 

0.20 to 0.80 ) 
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3.3.2 Resultant cohort for the quantitative assessment of progressive 

structural and functional glaucomatous damage (Chapter 6) 

 

The optic nerve head images of the 61 individuals had been derived from four 

different photographic modalities (two different digitising techniques for the 

analogue images and two different digital fundus cameras) (Table 3.13). The 

digital images from the Topcon TRC-IX camera had been cropped by the 

technicians immediately following image acquisition. The extent of the 

cropping varied both within- and between-technicians for any one patient. The 

images from the Topcon TRC-EX camera had not been edited. The remaining 

images could, therefore, only be scaled relative to the EX camera. The scaling 

procedure is described in Chapter 4. Of the 61 individuals, 27 manifested at 

least one image with the Topcon TRC-EX camera (Table 3.17) and this 

number represented the final cohort. 

Table 3.17. The number of stereo-images by the number of photographic visits, and the 

mode and resolution of photography at each visit, for the 27 individuals with two or 

more stereo-images and five or more reliable visual field examinations with at least one 

pair of examinations conducted within 12 months of each other and with at least one 

photographic examination undertaken with the Topcon TRC-Ex camera. V represents 

visit. 

 

Mode and resolution 

(pixels) of 

photography 

Number of individuals by number of 

photographic visits 

V1 V2 V3 V4 V5 V6 =V7 

35mm slides 

(2000 x 1312) 5 0 0 0 0 0 0 

35mm slides 

(3008 x 1960) 7 1 0 0 0 0 0 

Topcon TRC-IX 

(768 x 576) 15 15 5 1 1 1 0 

Topcon  TRC-EX 

(3008 x 1960) 0 11 12 7 0 0 1 

Total 27 27 17 8 1 1 1 
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The number of ONH stereo-images by the frequency of visual field 

examinations for the 27 individuals with two or more stereo-images and five 

or more reliable visual field examinations with at least one pair of respective 

photographic and visual field examinations conducted within 12 months of 

each other, is given in Table 3.18. 

Table 3.18. The number of ONH stereo-images by the number of visual field 

examinations for the 27 individuals with two or more stereo-images and five or more 

reliable visual field examinations with at least one pair of respective examinations 

conducted within 12 months of each other and with at least one photographic 

examination undertaken with the Topcon TRC-Ex camera. 

 

The demographic characteristics (median, upper and lower quartiles; range), 

by diagnosis, for the most severely affected eye (the age at presentation [either 

the first photographic visit or the first visual field examination, whichever 

occurred earlier]) and the length of follow-up of the reliable visual field 

examinations and of the photographic examinations, by diagnosis, of the 27 

individuals is given in Table 3.19. The clinical characteristics (median; lower 

and upper quartiles; range), by diagnosis, for the most severely affected eye of 

the 27 individuals, are given in Table 3.20. One case of pigment dispersion 

glaucoma was designated with the ‘Others’ category. 

Number of 

visual field 

examinations 

Number of ONH stereo-images 

 2 3 4 5 6 7 Total 

5 1 1 1 0 0 0 3 

6 5 1 1 0 0 0 7 

7 2 2 1 0 0 0 5 

8 1 1 3 0 0 0 5 

9 0 1 1 0 0 0 2 

10 1 0 1 0 0 0 2 

11 0 0 1 0 0 1 2 

12 0 0 1 0 0 0 1 

Total 10 6 10 0 0 1 27 
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Table 3.19. The demographic characteristics (median, upper and lower quartiles; range), of the most severely affected eye, by diagnosis, for the 27 individuals with 

two or more stereo-images and at least one visit conducted through Topcon TRC-EX and five or more reliable visual field examinations conducted within 12 months 

of each other. 

Diagnosis 

(No of individuals) 

Primary open-angle 

glaucoma (18) 

Ocular 

hypertension (3) 

Normal-tension 

glaucoma (4) 

Glaucoma 

Suspect (1) 

Others 

(1) 

Age (yrs) at the baseline visit 

69.3 

(60.5, 71.2; 

45.0 to 78.0) 

63.0 

(59.2, 63.7; 

55.3 to 64.4) 

67.2 

(63.9, 70.3; 

61.0 to 72.4)) 

68.5 45.8 

Male : Female 6 : 12 2 : 1 0 : 4 0 : 1 1 : 0 

Perimetric follow-up (yrs) 

8.0 

(7.0, 8.7; 

4.7 to 9.8) 

6.5 

(5.9, 8.7; 

5.3 to 10.8) 

8.2 

(7.1, 9.4; 

7.0 to 10.3) 

7.7 10.3 

Number of perimetric visits 

7.0 

(6.0, 8.0; 

5.0 to 11.0) 

7.0 

(6.5, 8.5; 

6.0 to 10.0) 

9.5 

(7.5, 11.3; 

6.0 to 12.0) 

5.0 8.0 

Photographic follow-up (yrs) 

5.2 

(3.5, 6.3; 

1.8 to 9.1) 

8.6 

(6.1, 9.0; 

3.6 to 9.3) 

5.8 

(4.9, 6.3; 

3.4 to 6.3) 

6.0 6.8 

Number of photographic visits 

3.0 

(2.0, 3.0; 

2.0 to 4.0) 

4.0 

(3.0, 4.0; 

2.0 to 4.0) 

4.0 

(3.5, 4.8; 

2.0 to 7.0) 

4.0 4.0 

Maximum duration 

of follow-up (yrs) 

9.1 

(8.2, 9.9; 

5.6 to 15.0) 

10.9 

(8.7, 11.1; 

6.4 to 11.3) 

8.6 

(8.0, 9.4; 

7.8 to 10.3) 

8.8 10.3 
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Table 3.20. The perimetric and clinical characteristics (median, upper and lower quartiles; range), at the entry visit, of the 27 individuals with two or more stereo-

images and at least one visit conducted through Topcon TRC-EX and five or more reliable visual field examinations conducted within 12 months of each other. 

Diagnosis 

(No of individuals) 

Primary open-angle 

glaucoma (18) 

Ocular 

hypertension (3) 

Normal-tension 

glaucoma (4) 

Glaucoma 

Suspect (1) 

Others 

(1) 

Mean Deviation (dB) 

at the baseline visit 

-3.59 

(-8.18, -1.52; 

-25.10 to 0.34) 

-4.62 

(-5.09, -2.68; 

-5.55 to -0.73) 

-9.81 

(-13.45, -7.06; 

-18.16 to -5.01) 

-3.75 -1.43 

Visual Field Index (%) 

at the baseline visit 

93.5 

(76.8, 98.0; 

26.0 to 99.0) 

94.0 

(94.0, 96.0; 

94.0 to 98.0) 

73.5 

(68.3, 79.0; 

54.0 to 94.0) 

89.0 85.0 

Pattern Standard Deviation 

(dB) 

at the baseline visit 

3.39 

(2.03, 9.47; 

1.64 to 14.42) 

2.23 

(2.07, 3.41; 

1.91 to 4.58) 

9.00 

(7.43, 9.25; 

3.36 to 9.38) 

4.73 6.19 

Intraocular Pressure (mmHg) 

at the baseline visit 

24.00 

(21.00, 27.75; 

14.00 to 36.00) 

29.50 

(26.75, 30.00; 

21.00 to 38.00) 

 

20.00 

(17.00, 20.00; 

13.00 to 22.00) 

 

15.00 16.00 

Vertical cup-to-disc ratio 

at the baseline visit 

0.70 

(0.60, 0.78; 

0.30 to 0.90) 

0.50 

(0.50, 0.50; 

0.40 to 0.50) 

0.75 

(0.70, 0.88; 

0.65 to 0.90) 

0.60 0.50 
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The chronological relationship between the ONH photography and the visual 

field examinations was searched in the 27 individuals (Figure 3.1). The search 

revealed the lack of ONH photographic visits and therefore the lack of 

chronological concordance between the two diagnostic modalities. 

Figure 3.1. The distribution of the ONH and visual field examination in 27 patients with two 

or more ONH stereo-images with at least one visit conducted through Topcon TRC-EX and 

five or more reliable visual field examinations.‘♦’ represents the ONH examinations, ‘■’, the 
visual field examination and ‘▲’ the chronological concordance of the two examinations. 
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3.3.3 Resultant cohort for the pointwise linear regression of residual 

retinal ganglion cell (RGC) count (Chapter 7) 

 

The identification of the previous cohorts, described above, was predicated 

upon the identification of individuals who had had at least two photographic 

visits and five reliable visual field examinations, irrespective of the duration of 

follow-up. 

 

It was anticipated that, in the absence of the requirement for contemporary 

ONH images, a more substantial cohort, based upon visual field examination 

alone, could be acquired for the study of functional progressive glaucomatous 

loss. The medical records of patients attending the Glaucoma Clinics at the 

Cardiff Eye Unit, UHW were therefore researched for individuals with five or 

more reliable visual field examinations over a longer follow-up (a minimum of 

5 years). 

 

In late 2013, an electronic patient record and archival system, ‘Open Eyes’, 

was introduced at the Cardiff Eye Unit. At the time of the search for this 

additional cohort (February 2014), the ‘Open Eyes’ archive contained the 

records of 1000 consecutive patients who had attended the Glaucoma Clinics 

between 1999 and 2014. 

 

The search of these 1000 patients yielded 120 individuals (70 female: 50 

male). Fourteen of the 120 individuals had been previously identified during 

the manual search for the study of structural and functional progressive 
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glaucomatous damage. These 14 individuals were retained within the cohort of 

120 individuals since the visual field series, as would be expected, was longer 

than that identified by the earlier manual search. 

 

In addition to the 120 individuals, a further 16 were included who had been 

utilized in the study of the association between structural and functional 

progressive loss and who were not listed in the ‘Open Eyes’ archive. Of these 

136 individuals, 24 were excluded on the basis of extraction and IOL 

implantation during the visual field time series. 

 

The hard drives of the HFA 700 series perimeters, which had been, or were 

still, operational in the Glaucoma Clinic from 1999 onwards, were then 

searched for the visual field examinations of the resultant 112 individuals. The 

visual fields from each of the 112 individuals were then aggregated onto 

floppy discs. The Single Field Analysis and the GPA printouts were each 

printed for each eye of each individual at each visual field visit. The visual 

field printouts were then anonymised by a numbering system and scanned and 

archived in .pdf format. 

 

The demographic characteristics (median, upper and lower quartiles; range), 

by diagnosis, for the most severely affected eye, the age at presentation and 

the length of follow-up of the reliable visual field examinations, by diagnosis, 

for the 112 individuals is given in Table 3.21. The clinical characteristics 

(median, upper and lower quartiles; range), by diagnosis, for the most severely 

affected eye of the 112 individuals, are given in Table 3.22. 
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Table 3.21. The demographic characteristics (median, lower and upper; range) of the most severely affected eye, by diagnosis, for the 112  individuals with five or 

more reliable visual field examinations over a minimum follow-up of 5 years. 

 

 

 

 

 

 

 

 

 

 

 

Diagnosis 

(No of individuals) 

Primary open- angle 

glaucoma (70) 

Ocular 

hypertension (11) 

Normal-tension 

glaucoma (21) 

Glaucoma 

Suspect (3) 

Others 

(7) 

Age (yrs)  

at the baseline visit 

64.9 

(57.7, 72.4; 

32.2 to 80.1) 

55.9 

(52.4, 66.6; 

46.3 to 72.9) 

68.3 

(61.8, 72.4; 

41.1 to 82.9 

65.1 

(60.3, 72.1; 

56.0 to 82.9) 

61.7 

(57.1, 68.1; 

45.8 to 82.1) 

Male : Female 27 : 43 5 : 6 9 : 12 1 : 2 2 : 5 

Perimetric follow-up (yrs) 

8.5 

(7.3, 9.7; 

5.0 to 14.5) 

9.9 

(7.5 , 10.7; 

5.2 to 12.4) 

9.4 

(8.6, 9.9; 

6.3 to 10.9 

9.6 

(8.6, 10.3; 

7.7 to 10.9) 

9.6 

(8.5, 10.1; 

6.4 to 10.2) 

Perimetric visits 

8.0 

(6.3, 9.0; 

5.0 to 15.0 

7.0 

(6.0, 8.0; 

6.0 to 10.0) 

8.0 

(7.0, 11.0; 

5.0 to 15.0 

7.0 

(6.0, 8.0; 

5.0 to 9.0) 

8.0 

(7.5, 8.0; 

5.0 to 9.0) 
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Table 3.22. The perimetric characteristics (median, lower and upper; range) at the entry visit, of the most severely affected eye, by diagnosis, for the 112 individuals 

with five or more reliable visual field examinations over a minimum follow-up of 5 years. 

Diagnosis 

(No of individuals) 

Primary open-angle 

glaucoma (70) 

Ocular 

hypertension (11) 

Normal-tension 

glaucoma (21) 

Glaucoma 

Suspect (3) 

Others 

(7) 

Mean Deviation  

(dB) 

at the baseline visit 

-4.86 

(-9.42, -2.59; 

-25.10 to 0.34) 

-1.09 

(-3.54, -0.68; 

-13.00 to 0.15) 

-3.87 

(-5.01, -2.59; 

-19.01 to -0.01) 

-2.40 

(-3.08, -2.33; 

-2.26 to -3.75) 

-5.21 

(-8.30, -2.52; 

-10.30 to -1.45) 

Visual Field Index 

(%) 

at the baseline visit 

91.0 

(76.3, 96.8; 

26.0 to 100.0) 

98.0 

(95.0, 99.0; 

69.0 to 100.0) 

94.0 

(88.0, 97.0; 

43.0 to 99.0 

99.0 

(94.0, 99.0; 

89.0 to 99.0) 

89.0 

(83.5, 96.0; 

78.0 to 98.0) 

Pattern Standard 

Deviation 

(dB) 

at the baseline visit 

5.51 

(2.28, 10.28; 

1.20 to 15.78) 

1.72 

(1.61, 2.52; 

1.25 to 12.82) 

3.36 

(2.02, 6.11; 

1.80 to 13.88) 

1.92 

(1.75, 3.33; 

1.58 to 4.73) 

3.03 

(1.97, 4.79; 

1.87 to 5.59) 

Number of retinal 

ganglion cells derived 

from perimetry 

at the baseline visit 

621,730 

(491789, 762355; 

90199 to 1243545) 

890949 

(756695, 1038451; 

390239 to 1075758) 

681650 

(614492, 830132; 

231515 to 1086445) 

785756 

(686.054, 809,276; 

586352 to 832796) 

606,858 

(389,230, 901,644; 

249409 to 8714052) 
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Chapter 4 

 

Optic nerve head image registration, sizing and alignment, and 

viewing 

 

4.1 Aim 

The purpose of this Chapter is twofold: firstly to describe the hardware and the 

features produced by the associated custom software for viewing of the various 

ONH images; and secondly to describe the techniques used for scaling and 

aligning the ONH images from the various photographic sources. 

 

4.2 Hardware 

The ONH images were viewed with the computer-assisted stereoscopic system 

and customised software initially developed by Morgan and colleagues (Morgan 

et al. 2005a; Morgan et al. 2005b; Morgan et al. 2012) and subsequently modified 

for the purposes of this thesis. A personal computer was used in conjunction with 

a 19 inch flat screen monitor (Trinitron G420, Sony, Tokyo, Japan) featuring 16-

bit colour and 1280x1024 resolution. The stereo presentation was facilitated by a 

Z-screen (Stereo Graphics Corporation, San Rafael, CA), placed over the screen 

of the monitor. The Z-screen controlled the orientation of the polarisation of the 

transmitted light and a set of passive polarising eyewear ensured the separation of 

the left and right on-screen images to the respective eyes. 
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4.3 Software 

Custom-software firstly created a database of images for each individual and 

secondly generated the mono- and stereo-viewing conditions in conjunction with 

the Z-screen. 

 

For any given individual, the biographical information, the designation of each 

ONH image for the given stereo-pair, the corresponding keratometry and 

refraction values, the name of the camera and the date of examination were 

entered into the software (Figure 4.1). 

 

Figure 4.1. A screenshot of the biographical information, the designation of each ONH 

image for the given stereo-pair, the keratometry values, the refraction, the name of the 

camera and the date of examination for a given individuals as presented from the software. 
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In order to generate the mono- and stereo-viewing conditions, the individual 

ONH images were stored in a .jpeg file format. As was discussed in Chapter 3, 

the images had been acquired from a variety of photographic sources, namely, 

35mm slides, the Topcon TRC-IX (utilizing the Nikon D1X 20° camera) and the 

Topcon TRC-EX (utilizing the Sony 950P 20° camera). The multiplicity of 

sources and the presence, and the magnitudes, of image cropping, necessitated 

standardisation of the sizing and alignment of the various image outputs within 

any given individual. 

 

In order to size and align the various types of image outputs, the two component 

images of each stereo-pair were aligned manually using the multiple align box in 

the software (Figure 4.2). This 

alignment box enabled the images to 

be adjusted in size by using the zoom 

option and to correct any horizontal, 

vertical and rotational disparity 

between the two images. The judgement 

of the disparity in alignment was based upon the extent of the alignment of the 

ONH margin; the width and the orientation of the vessels and any anomalies or 

abnormalities such as PPA or ONH haemorrhage. This procedure was facilitated 

by the emergence of stereopsis from the two monoscopic images as the images 

became aligned. An identical procedure was undertaken to align the respective 

ONH images for the comparison of any chronological pair and this procedure 

could be further facilitated by flickering between the respective image pairs. 

Figure 4.2. A screenshot of the multiple 

align box used for image alignment. 
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The software enabled a database which contained the ONH images of all the 

available stereo-pairs for each individual. The operator could choose any 

combination of chronological image-pairs in either stereoscopic or monoscopic 

viewing mode; select the frequency of the flicker (Figure 4.3); and add, delete or 

edit the details of the individual (Figure 4.4). 

 

Figure 4.3. A screen capture of the database illustrating an ONH image for the right and left 

eyes, respectively, of a given individual at each of seven visits. The two images contained 

within the automatically generated red square, indicate the two time points, selected by the 

operator, for the given chronological comparison of the ONH characteristics. 
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Figure 4.4. A screen capture of the database illustrating an ONH image for the right and left 

eyes, respectively, of a given individual at each of five visits. 

 

The software also contained a vertical synchronisation unit which compressed 

each stereo-pair to half of its original height and the separate right and left images 

were interlaced to form a single image. The resultant interlaced image contained 

the same number of compressed lines from each of its component images but 

only half the information contained in the original images. The interlaced image 

was stored as a .tcg file rather than a .jpeg file in order to ensure faster loading 

and automated decompression of the file when viewed within the software. The 

.tcg file format ensured that the reading process for the given file and the 

sequence of the colour triplets (RGB to BGR) was achieved without loss of 
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information. The refresh rate of the image was set to a level that allowed the 

observer to perceive a single stereoscopic image. 

 

The software enabled a range of magnification from x0.33 to x100 which was 

based upon the principles of sub-pixelation. For a 1:1 scale, each individual pixel 

of the ONH image represents one individual pixel on the screen and for a 2:1 

scale, 4 pixels on the screen. When the observer operated the zoom function, any 

four contiguous pixels are averaged to create a sub-pixel. The sub-pixelation 

enhanced the resolution of the image. 

 

The software colour-balanced, for a given individual, all the ONH images relative 

to the baseline image. The balancing was achieved by using the sub-pixelation 

technique, described above, to achieve the identical chromatic average of each 

image to that of the baseline by adjusting the weighted average of the red, green 

and blue channels. In addition, the colour-balancing was adjusted as a function of 

the magnification at any given stage of the zoom function. 

 

The image for monoscopic viewing was not compressed and, obviously, did not 

require the polarising eyewear. By convention, the right component of each 

image-pair was always displayed monoscopically. 
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The software enabled either a static ‘side-by-side’ comparison or a flickered 

comparison. The frequency of the flicker (‘Flicker Rate’) was manually 

adjustable and ranged from 0Hz to 

80Hz. The sequential comparison of 

the chronologically successive 

stereo-pairs was achieved by quad-

buffer representation whereby each 

eye receives a separate image for 

each stereo-pair, the data of which is 

held in one of four buffers. The 

separate images of the left and the 

right views of the first stereo-pair are 

stored in one double buffer and the 

corresponding images for the 

comparison stereo-pair in a second 

double buffer. The quad-buffer 

method is used to obtain flicker at a 

frequency exceeding that of the 

critical fusion frequency of the eye. 

By convention, the first stereo-pair of 

any comparison (‘Image 1’) was always the chronological older image of the 

paired-comparison. The observer had the option to pause the ‘flicker’ option, 

immediately, and/ or to change the viewing mode from stereo- to mono-viewing, 

in only one screen (Figure 4.5). The software also provided the option for a 

greyscale viewing of the ONH images. 

Figure 4.5. Multiple align box option 



- 95 - 

 

The software enabled planimetry of the cup, the ONH margin, and the α- and β-

PPA zones, respectively, in both stereo- and mono-viewing modes. The 

planimetry in stereo-viewing was undertaken using a ‘floating-cursor’ whereby 

the depth of the cursor matched the depth of the given feature and hence 

overcame parallax errors which would have resulted had the cursor being in a 

fixed plane. The cup and the ONH margin and the α-zone of the PPA were each 

delineated in black and the β-zone of the PPA in white. 

 

The clicking of the ‘calculate’ option (Figure 4.5) terminated the planimetry and 

saved the outcome as a .txt file in the same directory as the .tcg and the .jpeg files 

of the corresponding image. 

 

The software calculated the sectorial area of each ONH parameter in digital 

(pixels) units for each 5° sector and also for the composite of each parameter. The 

centre of gravity for the cup area, as demarcated by the operator, was used as the 

reference point for the sectors. The sectors were labelled from the horizontal 

temporal meridian and followed the sequence of temporal, superior, nasal, and 

inferior meridians in each eye. The 5° sectorization enabled the areal calculation 

of any given feature in 5° multiples. The software automatically recorded the 

viewing mode and the outcome of planimetry in separate .txt files. 

 

A ‘Ruler’ option was available which enabled a measurement of the cup depth at 

the given location of the cursor. A ‘Rings’ option was also available which 

enabled a series of concentric circles of fixed varying radii to act as a visual 

reference for either the cup or the ONH margins. A ‘Reload’ option reset the 
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images from the colour-balanced image to the original colour texture. None of 

these options were used in the studies described in Chapter 5 and Chapter 6. 

 

4.4 Equalizing the ONH image size from the various photographic sources 

The stereo-image pair for any given individual for the given photographic source 

at the given visit, was adjusted manually to a size which occupied approximately 

one third of the 19 inch screen of the monitor (Figure 4.6). The resultant images 

between Visits 1 and 2 were resized and aligned by manually increasing the size 

of one image and/ or reducing the size of the other, depending upon the original 

sizes of the respective images from the given two different photographic sources. 

The size for any given subsequent between-visit comparison for an individual 

was manually adjusted to that of the image size used for (i.e., referenced to) the 

comparison between Visits 1 and 2 (Figure 4.6). 

 

In order to ensure that consistency had been achieved in the manual adjustment 

between the images from a given photographic source relative to those from 

another, scaling factors were calculated for the various combinations of 

photographic sources. The scaling factor was calculated for two separate 

comparisons. Firstly, the scaling factor was calculated between the original image 

size of the stereo-pair derived at any visit for an individual and the corresponding 

image resulting from the manual alignment of the two images at any given 

comparison. The latter, itself, was influenced by the sizing of the image derived 

from the subsequent visit. Secondly, a scaling factor was calculated between the 

manually aligned images for any between-visit comparison within each 

individual (Figure 4.6). 
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Figure 4.6. A schematic illustrating the procedure for the manual resizing of the original 

photographic images for any visit (A, B, D) and the manually resized and aligned stereo-

pairs (E) relative to those between Visits 1 and 2 (C). The associated vector comparisons for 

the calculation of the scaling factor are also shown. 

 

In the absence of a ‘gold standard’ method to quantify the scaling, a novel 

quantitative technique was adopted to provide some insight into the consistency 

of the scaling factor within each of the photographic sources, between 

individuals. Twenty-eight vectors were drawn on each of the images for the given 

individual, based upon 8 predetermined features inherent in the images for that 

individual. Each vector defined the distance and the orientation between the same 

two ‘key’ features within each ONH image. The difference in the lengths of the 

given pair of vectors between the original image from the given respective 

photographic source and that at any given between-visit comparison, and the 

difference in the lengths of the given pair of vectors between the manually 

resized and aligned stereo-pairs for any between-visit comparison, were 
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separately used to calculate the corresponding scaling factors. The former 

described the magnitude of the resizing of the original images whilst the latter 

provided the error associated with the manual resizing and alignment of the 

stereo-pairs between-visits. For the second approach, the technique assumed that 

if the manual alignment of the four images, i.e., the right and left images of each 

stereo-pair, was acceptable, then the error between the two visits would be 

minimal in terms of both the vector length and the orientation. For each analysis 

the scaling factor was defined as the median of the differences. 

 

The comparison was undertaken using Image J software version J 1.47u/ Java 

1.6.0_24 (32-bit) (National Institutes of Health, Bethesda, MA) which quantified 

the length of the given vector in pixels by taking the difference in the x and in the 

y coordinates, respectively, between the two edge points defining the vectors for 

the original and the manually-aligned images. 

 

Eight features from the given pair of stereo ONH images (i.e. between the two 

given separate visits) within an individual were selected and vectors drawn 

between each of these 8 features using the rectangular tool of the Image J 

software. The total number of vectors was 28. The features had to be present 

across the images from all photographic sources within an individual and were 

generally situated one ONH diameter or more from the ONH and comprised 

vessel bifurcations, crossing of vessels, and prominent bends in the vessels. 
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The features were selected on a hierarchical basis in terms of their prominence 

and their likelihood of being 

unaffected by the glaucomatous 

process; were also chosen to 

maximise, wherever possible, the 

length of the vectors and to be 

approximately distributed across the 

four quadrants. A vessel bifurcation 

was defined as the branching of the 

vessels in the direction of the periphery 

of the image (Figure 4.7). The centre of 

the Cartesian system for each individual was defined as the centre of the cup 

(Figure 4.8). 

 

 

Figure 4.8. The eight features (a to h inclusive) selected for the vector analysis, and the 

corresponding 28 vectors, illustrated for a given stereo-pair for a given individual. 

 

Figure 4.7. Two examples of the position of a 

vessel bifurcation, indicated by the  

symbol, considered suitable for the vector 

analysis. The X symbols represent 

unsuitable, positions of the same 

bifurcations. 
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4.5 Results 

 
The median (lower and upper quartiles; range) for the proportionate difference, in 

the magnitudes of the x and y coordinates of all 28 vectors considered together, 

between the original image and the manually resized image for each given 

imaging modality, at a randomly selected visit, amongst the 27 individuals are 

given in Table 4.1. 

Imaging modality 

(pixels) 

Number of 

comparisons 

(vectors) 

Median, lower and upper quartiles; 

range of the proportionate difference 

in the magnitude of the vectors (%) 

x coordinate y coordinate 

35mm slide 

(2000 x 1312) 

4 

(112) 

-31.1 

(-42.0, -20.7; 

-77.1 to 733.3) 

-30.5 

(-42.9, -26.0; 

-75.0 to 166.7) 

35mm slide 

(3008 x 1960) 

5 

(140) 

-50.0 

(-59.0, -24.7; 

-88.5 to 100.0) 

-52.1 

(-58.3, -30.7; 

-97.7 to 966.7) 

Topcon TRC- IX 

(768 x 576) 

25 

(700) 

11.2 

(-1.2, 26.4; 

-87.9 to 6520.0) 

13.1 

(-1.1, 25.8; 

-100.0 to 314.3) 

Topcon TRC- EX 

(3008 x 1960) 

27 

(756) 

-56.5 

(-59.3, -54.1; 

-100.0 to 15.2) 

-56.7 

(-59.6, -54.2; 

-100.0 to 83.3) 

Table 4.1. The summary statistics (median, lower and upper quartiles; range) for the 

proportionate difference, in the magnitudes of the x and y coordinates of all 28 vectors 

considered together, between the original image and the manually resized image for each 

given imaging modality, at a randomly selected visit, amongst the 27 individuals. 

 

The corresponding median (lower and upper quartiles; range) for the 

proportionate difference, in the magnitudes of the x and y coordinates of all 28 

vectors considered together, between the manually resized and aligned images, by 

paired photographic modalities, at a randomly selected between-visit comparison, 

amongst the 27 individuals are given in Table 4.2. 
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Imaging modality 

(pixels) 

Number of 

comparisons 

(vectors) 

Median, lower and upper quartiles; 

range of the proportionate difference 

in the magnitude of the vectors (%) 

x coordinate y coordinate 

35mm slide 

(2000 x 1312)/ 

35mm slide 

(3008 x 1960) 

0 - - 

35mm slide 

(2000 x 1312)/ 

Topcon TRC- IX 

(768 x 576) 

2 

(56) 

1.5 

(-0.6, 3.0; 

-3.6 to 75.0) 

-0.9 

(-1.8, 0.6; 

-18.2 to 50.0) 

35mm slide 

(2000 x 1312)/ 

Topcon TRC- EX 

(3008 x 1960) 

4 

(112) 

-1.3 

(-3.2, 3.1; 

-22.7 to 120.0) 

-2.4 

(-4.2, 0.0; 

-50.0 to 200.0) 

    

35mm slide 

(3008 x 1960)/ 

35mm slide 

(3008 x 1960) 

1 

(28) 

-1.6 

(-4.6, 0.1; 

-12.5 to 3.5) 

-2.2 

(-6.7, 1.7; 

-33.3 to 12.8) 

35mm slide 

(3008 x 1960)/ 

Topcon TRC- IX 

(768 x 576) 

5 

(140) 

-1.6 

(-3.8, 0.0; 

-50.0 to 28.9) 

-1.5 

(-4.6, 0.8; 

-47.8 to 300.0) 

35mm slide 

(3008 x 1960)/ 

Topcon TRC- EX 

(3008 x 1960) 

5 

(140) 

-2.1 

(-4.0, 2.2; 

-30.8 to 29.5) 

-0.3 

(-4.0, 1.4; 

-60.0 to 83.3) 

    

Topcon TRC- IX 

(768 x 576)/ 

Topcon TRC- IX 

(768 x 576) 

10 

(280) 

0.0 

(-2.0, 1.5; 

-75.6 to 500.0) 

0.0 

(-1.7, 1.7; 

-30.8 to 200.0) 

Topcon TRC- IX 

(768 x 576)/ 

Topcon TRC- EX 

(3008 x 1960) 

23 

(644) 

0.0 

(-2.0, 1.7; 

-100.0 to 400.0) 

0.0 

(-1.4, 2.1; 

-100.0 to 300.0) 

    

Topcon TRC- EX 

(3008 x 1960)/ 

Topcon TRC- EX 

(3008 x 1960) 

9 

(252) 

-1.2 

(-2.8, 0.7; 

-33.3 to 300.0) 

-0.4 

(-2.5, 1.8; 

-75.0 to 400.0) 

Table 4.2. The summary statistics median (lower and upper quartiles; range) for the 

proportionate difference, in the magnitudes of the x and y coordinates of all 28 vectors 

considered together, between the manually resized and aligned images, by paired 

photographic modalities, at a randomly selected between-visit comparison, amongst the 27 

individuals. 
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4.6 Discussion 

The median for the proportionate difference, in the magnitudes of the x and y 

coordinates of all 28 vectors considered together, between the manually resized 

and aligned images, by paired photographic modalities, at a randomly selected 

between-visit comparison, amongst the 27 individuals ranged from -2.4% to 

1.5%. The interquartile range associated with each median reflected the 

narrowness of each distribution. Such values indicate the precision, overall of the 

manual alignment. However, the magnitudes of the range associated with each of 

the individual comparisons reflected the limitations of the vector analysis rather 

than that of the manual alignment in that such range would be clinically 

impossible. These values resulted from the consistency in denoting the prominent 

anatomical features (i.e. bifurcations) arising from variations in resolution 

between the photographic sources particularly when one or more images had 

been cropped. Clearly, such large values could not have occurred by manual 

visual alignment. 

 

The outcome from stereo-imaging of the ONH is highly dependent upon the 

optimum alignment within a stereo-pair and between chronologically different 

stereo-pairs. The delineation of the ONH and NRR margins is adversely 

influenced by both the translation (displacement) and the rotation of one image 

relative to the other image within a stereo-pair or from one stereo-pair to another. 

Failure to correct for such effects leads to parallax errors and resultant 

inaccuracies in the evaluation of the NRR. Differences in disparity between 

image-pairs reduce the degree of stereopsis and also create discomfort in viewing 

for the observer. The digital alignment of the stereo-pairs is generally undertaken 
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manually (Heijl and Bengtsson 1989; Yogesan et al. 1999; Berger et al. 2000; 

Morgan et al. 2005a; Morgan et al. 2005b; Kamdeu Fansi et al. 2011; Syed et al. 

2011), although some studies have attempted software controlled alignment with 

only limited success (Ng et al. 2015). 

 

To the Author’s knowledge, there is no commercially available software which 

enables a more accurate alignment than that by an experienced clinical operator. 

Such an operator is able to align the image-pair based upon alignment of the 

morphological clinical features (vessel pattern, ONH tilt etc.) and to compensate, 

in the same way, for rotational issues arising from photographic artefacts. The 

results described above indicate that the manual alignment was clinically 

acceptable. 
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Chapter 5 

 

The qualitative assessment of progressive glaucomatous ONH 

damage using both mono- and stereo-flicker chronoscopy 

 

5.1 Introduction 

A novel approach to the evaluation of progressive structural damage of the ONH 

is flicker chronoscopy whereby two sequential monoscopic digital images of the 

ONH are successively viewed (i.e., flickered) with a predetermined temporal 

frequency (Heijl and Bengtsson 1989; Yogesan et al. 1999; Berger et al. 2000; 

Corona et al. 2002; Radcliffe et al. 2010; VanderBeek et al. 2010) (Chapter 4). 

Such a technique has only been used monoscopically. The advantage of 

monoscopic flicker chronoscopy over ‘side-by-side’ stereo-viewing is equivocal. 

Both viewing techniques exhibit comparable sensitivity in the identification of 

progressive ONH damage and of progressive visual loss (Radcliffe et al. 2010; 

VanderBeek et al. 2010) and comparable specificity when structural change is 

absent (Berger et al. 2000). High between-observer variability can be present 

with flicker chronoscopy and the outcome can also exhibit poor concordance with 

progressive ONH damage as designated by Heidelberg Retinal Tomography 

(HRT), scanning laser polarimetry (SLP), and/ or OCT  and also with progressive 

visual field loss (Syed et al. 2011). However, mono-flicker chronoscopy exhibits 

better sensitivity for determining an increase in PPA (VanderBeek et al. 2010; 

Kamdeu Fansi et al. 2011) and in the detection of emergent disc haemorrhages 
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(Bengtsson and Krakau 1979; Leske et al. 2007; Bengtsson et al. 2008; Cymbor 

et al. 2009; VanderBeek et al. 2010; Syed et al. 2012). 

 

A digital stereo-viewing planimetric technique has been developed by Morgan 

and colleagues (Morgan et al. 2005a; Morgan et al. 2005b; Morgan et al. 2012) 

and is discussed in Chapter 4. The accompanying software enables modification 

to permit mono- and stereo-flicker chronoscopy and, therefore, presents a unique 

opportunity to evaluate the performance of stereo-flicker chronoscopy over the 

traditional mono-flicker chronoscopy and also in regards to the advantages of 

digital imaging. 

 

5.2 Aim 

The overall aim of the study was twofold. Firstly, to compare the efficacy of 

digital stereo-flicker chronoscopy using the modified software of Morgan and 

colleagues to that from mono-flicker chronoscopy for the qualitative 

identification of glaucomatous ONH damage in a case series of individuals 

attending a glaucoma clinic with a long follow-up. Secondly, to determine the 

relationship between the qualitative assessment of any progressive glaucomatous 

ONH damage and the concomitant visual field outcome. 
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5.3 Methods 

 
The cohort comprised the 61 individuals described in Section 3.3.1, Chapter 3, 

with two or more stereo-images and five or more reliable visual field 

examinations, and with each pair of respective examinations conducted within 12 

months of each other. The ONH images for each individual were randomly 

assigned between eyes. 

 

The summary statistics (median, lower and upper quartiles; range) of the 

demographics and of the clinical characteristics for the 61 individuals in the 

randomly assigned eye at their baseline visit are shown in Table 5.1 and Table 

5.2, respectively (it should be noted that the information contained in these latter 

Tables is different to that contained in Tables 3.15 to 3.16 which is based upon 

the most severely affected eye, [Chapter 3]). The latter was used to determine the 

diagnosis whilst the randomly selected eye was used to encompass the full range 

of disease stage. 

 

Two consultant ophthalmologists (‘A’ and ‘B’), trained to fellowship standard in 

glaucoma, undertook the qualitative and the quantitative assessment of the ONH 

images. The ONH images were viewed with the four separate viewing techniques 

(mono-, mono-flicker, stereo-, and stereo-flicker) using the flat screen monitor 

and the embedded Z-screen together with the passive polarising filter eyewear 

described in Chapter 4. The ‘right’ image of each stereo–pair was used for each 

of the two mono-viewing techniques. 



- 107 - 

 

Table 5.1. The demographic characteristics (median, lower and upper quartiles; range) of the randomly assigned eye of the 61 individuals at the baseline visit. 

 

Diagnosis 

(No of individuals) 

Primary open-angle 

glaucoma (34) 

Ocular 

hypertension (11) 

Normal-tension 

glaucoma (5) 

Glaucoma 

Suspect (8) 

Others 

(3) 

Age (yrs) at the baseline visit 

69.3 

(59.6, 73.8; 

38.9 to 89.4) 

64.4 

(56.3, 68.2; 

43.9 to 71.4) 

69.6 

(64.8, 72.4; 

61.0 to 73.3) 

63.2 

(46.7, 65.3; 

34.1 to 77.6) 

45.8 

(37.3, 55.3; 

28.8 to 64.7) 

Male : Female 16 : 18 5 : 6 4 : 1 3 : 5 2 : 1 

Perimetric follow-up (yrs) 

7.3 

(6.1, 8.4; 

3.1 to 10.0) 

6.3 

(5.3, 8.0; 

4.0 to 10.8) 

9.2 

(7.2, 10.3; 

5.8 to 10.3) 

7.8 

(6.6, 8.5; 

4.2 to 9.8) 

9.5 

(9.5, 9.9; 

9.4 to 10.3) 

Number of perimetric visits 

7.0 

(6.0, 8.0; 

5.0 to 12.0) 

6.0 

(6.0, 8.0; 

5.0 to 10.0) 

8.0 

(7.0, 11.0; 

6.0 to 12.0) 

6.5 

(5.8, 7.3; 

5.0 to 8.0) 

7.0 

(7.0, 7.5; 

7.0 to 8.0) 

Photographic follow-up (yrs) 

3.9 

(2.4, 5.8; 

0.4 to 9.1) 

3.4 

(2.4, 4.1; 

0.3 to 9.3) 

5.3 

(4.3, 5.3; 

3.4 to 6.3) 

5.0 

(2.1, 5.9; 

2.0 to 9.7) 

4.4 

(3.7, 5.6; 

3.0 to 6.8) 

Number of photographic visits 

3.0 

(2.0, 3.0; 

2.0 to 5.0) 

2.0 

(2.0, 4.0; 

2.0 to 6.0) 

4.0 

(3.0, 4.0; 

2.0 to 7.0) 

3.5 

(2.0, 4.3; 

2.0 to 5.0) 

3.0 

(2.5, 3.5; 

2.0 to 4.0) 

Maximum duration 

of follow-up (yrs) 

8.9 

(7.4, 9.7; 

5.4 to 10.8) 

10.0 

(8.5, 11.0; 

5.1 to 11.7) 

9.2 

(8.0, 9.3; 

7.8 to 10.3) 

9.9 

(8.4, 10.9; 

4.7 to 15.0) 

10.0 

(9.7, 10.1; 

9.4 to 10.3) 
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Table 5.2. The clinical characteristics (median, lower and upper quartile; range) of the randomly assigned eye of the 61 individuals at the baseline visit.

Diagnosis 

 

(No of individuals) 

Primary open-angle 

glaucoma (34) 

Ocular 

hypertension (11) 

Normal-tension 

glaucoma (5) 

Glaucoma 

Suspect (8) 

Others 

(3) 

Mean Deviation (dB) 

at the baseline visit 

-4.07 

(-6.93, -2.31; 

-22.09 to -0.37) 

-1.09 

(-2.57, -0.71; 

-5.55 to -0.26) 

-5.74 

(-7.74, -5.01; 

-18.16 to -1.87) 

-2.64 

(-4.14, -1.77; 

-6.22 to 0.69) 

-1.60  

(-8.04, -1.52; 

-14.48 to -1.43) 

Visual Field Index (%) 

at the baseline visit 

94.0  

(84.8, 97.8; 

31.0 to 99.0) 

98.0 

(96.5, 99.0; 

94.0 to 100.0) 

91.0 

(74.0, 94.0; 

54.0 to 98.0) 

95.0 

(89.0, 97.3; 

86.0 to 100.0) 

85.0 

(69.5, 91.5; 

58.0 to 98.0) 

Pattern Standard Deviation (dB) 

at the baseline visit 

2.69 

(1.91, 5.15; 

1.29 to 14.42) 

1.73 

(1.51, 1.96; 

1.03 to 3.09) 

4.72 

(3.36, 8.79; 

2.21 to 9.38) 

2.70 

(2.25, 3.76; 

1.39 to 5.26) 

2.98 

(2.33, 6.15; 

1.67 to 9.32) 

Intraocular Pressure (mmHg) 

at the baseline visit 

24.00 

(20.80, 28.00; 

11.00 to 39.00) 

25.00 

(22.00, 28.50; 

19.00 to 38.00) 

19.00 

(16.80, 20.50; 

13.00 to 22.00) 

19.50 

(17.80, 20.00; 

15.00 to 20.00) 

16.00 

(16.00, 17.50; 

16.00 to 19.00) 

Vertical cup-to-disc ratio 

at the baseline visit 

0.70 

(0.61, 0.80; 

0.30 to 0.90) 

0.50 

(0.30, 0.50; 

0.10 to 0.70) 

0.70 

(0.69, 0.75; 

0.65 to 0.90) 

0.60 

(0.55, 0.63; 

0.50 to 0.70) 

0.50 

(0.35, 0.60; 

0.20 to 0.70) 
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Each observer attended for two separate sessions of approximately 5 hours per 

session. Each observer evaluated all possible pairs of ONH images over the time 

series with each of the four viewing techniques and designated each pair of ONH 

images as either ‘glaucoma’ or ‘not glaucoma’. The total viewing time across the 

two sessions was 4.2 hours for Observer ‘A’ and 5.6 hours for Observer ‘B’. 

 

The ONH images were presented in a pre-determined pseudo-random sequence 

which differed across individuals (Figure 5.1). The observers were masked as to 

the nature of the pre-determined sequence. When an observer responded 

‘glaucoma’ to any one of the paired comparisons, the observer was further 

required to designate the presence or absence of glaucomatous ONH progression 

between the two images in the given pair. For any given pair of images, the prior 

image in the time series always preceded the later image such that the judgement 

by the observer required the identification of a ‘deterioration’ rather than an 

‘improvement’. 

 

In the individuals with three or more available ONH images (i.e. 3 or more 

comparisons per viewing technique) 'Definite progression' was defined as a 

consistent progression in the ONH across the appropriate comparisons and was 

scored as ‘1’. 'Possible progression' was scored as ‘2’ and was defined either as a 

progression between the first two or more comparisons, which was not present 

between the first and last images of the series, or as progression between the first 

and the last images, alone. 'Inconsistent progression' was scored as ‘3’ and 

denoted apparent progression between a given pair of images which was not 
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substantiated by other comparisons. 'No-progression' was scored as ‘4’. An 

incorrect diagnosis was scored as 'x'.  

 

A second digit defined the ranking of the four viewing techniques in identifying 

the earliest progression. The second digit ranged from ‘1 to 4’ (i.e. one value for 

each of the four viewing techniques), with the lower value representing the 

earliest designation of progression. 

 

Individuals with only two visits (i.e. one comparison per viewing technique) 

could only be scored as ‘1’, ‘4’ or ‘x’, due to the limitation in the number of 

comparisons. 

 

The combined time for the diagnostic designation and for the identification of 

progression, by each observer, was recorded for each of the paired comparisons 

for each method. 

 

Each observer was further instructed to evaluate the given pair of ONH images, 

in terms of their image quality, using a grading from 1 (poor) to 5 (excellent). 

The outcome of the diagnostic designation for each paired comparison for each 

viewing technique for each observer was evaluated relative to the hospital 

diagnosis at the UHW. 
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Figure 5.1. A schematic illustrating, by visit, the pseudo-randomization of the four viewing techniques (mono-, mono-flicker, stereo-, stereo-flicker) across the 61 

individuals.
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5.4 Results 

Each observer undertook 872 paired comparisons of the ONH images (218 

evaluations for each of the four methods). The median (lower and upper quartiles; 

range) of the image quality, scored on a 0-5 scale, by observer and by viewing 

technique, for the 50 individuals with glaucoma (top) and for the 11 individuals 

with ocular hypertension (bottom), evaluated between each of the first three visits 

is given in Table 5.3. 

 

The mean of the differences and the corresponding 95% limits of agreement, for 

the within-observer ‘test-retest’ variability in the assessment of image quality of 

the ONH images for the 30 individuals with glaucoma and with three or more 

images, for each of the viewing techniques, for each observer, within the first 

three visits is given in Table 5.4 (top). The between-observer variability in the 

assessment of image quality for the second of the two image evaluations for each 

of the viewing techniques within the first three visits is given in Table 5.4 

(bottom). The corresponding information for the 5 individuals with ocular 

hypertension and with three or more ONH images is given in Table 5.5 (top and 

bottom). Observer ‘A’ was marginally more consistent that Observer ‘B’ for the 

within-observer ‘test-retest’ assessment of image quality for the images from the 

individuals with glaucoma or from the individuals with ocular hypertension. No 

particular trend was apparent by viewing technique. The agreement between 

observers in the assessment of image quality was good. It was slightly closer for 

the images from the individuals with glaucoma when assessed under stereo-

viewing conditions compared to mono-viewing conditions. 
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Table 5.3. The median (lower and upper quartiles; range) of the image quality, scored on a 

0-5 scale, by observer and by viewing technique, for the 50 individuals with glaucoma (top) 

and for the 11 individuals with ocular hypertension (bottom), evaluated at each of the first 

three visits. 

 

 

 

 

Viewing 

method 

Mono 

 

Mono-Flicker 

 

Stereo 

 

Stereo-Flicker 

 

Observer ‘A’ 
Image 1 

Visits 

(1-2) 

3 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

4   (3, 4;   2 to 5) 

4  (3.5, 4; 4 to 3) 

4 (3, 4; 2 to 5) 

4 (3, 4; 3 to 4) 

4 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

Image 1 
Visits 

(1-3) 

 

3 (3, 4; 2 to 5) 

4 (4, 4; 2 to 4) 

3.5 (3, 4; 2 to 5) 

4    (3, 4; 2 to 4) 

3.5 (3, 4; 2 to 5) 

4    (3, 4; 2 to 5) 

3 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

Image 2 
Visits 

(1-2) 

3.5 (3, 4; 1 to 5) 

4    (3, 4; 2 to 4) 

4  (3, 4 ;   2 to 5) 

4  (3.5, 4; 4 to 2) 

4 (3, 4; 2 to 5) 

4 (3, 4; 3 to 4) 

4 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

Image 2 
Visits 

(2-3) 

4 (3, 4; 2 to 4) 

4 (3, 4; 3 to 4) 

4 (3, 4; 2 to 4) 

4 (4, 4; 2 to 4) 

4 (3, 4; 2 to 4) 

4 (3, 4; 3 to 4) 

4 (3, 4; 2 to 5) 

4 (3, 4; 3 to 4) 

Image 3 
Visits 

(2-3) 

3 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

4 (3, 4; 2 to 4) 

4 (3, 4; 2 to 4) 

4 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

4 (3, 4; 2 to 4) 

4 (3, 4; 2 to 4) 

Image 3 
Visits 

(1-3) 

3 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

4 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

3 (3, 4; 2 to 5) 

4 (3, 4; 2 to 5) 

3 (3, 4; 2 to 5) 

3 (3, 4; 2 to 4) 

Observer ‘B’ 
Image 1 

Visits 

(1-2) 

3 (3, 4; 1 to 4) 

3 (3,4; 2 to 4) 

3 (3, 4; 1 to 4) 

3 (3, 4; 2 to 4) 

3 (3, 4; 1 to 5) 

3 (3, 4; 2 to 4) 

3 (3, 4; 1 to 4) 

4 (3, 4; 3 to 4) 

Image 1 
Visits 

(1-3) 

3 (3, 3; 2 to 5) 

 4  (3, 4; 2 to 4) 

3 (3, 4; 2 to 5) 

3 (3, 4; 2 to 5) 

3 (3, 4; 2 to 4) 

4 (3, 4; 2 to 5) 

3 (3, 4; 2 to 5) 

3 (3, 4; 2 to 5) 

Image 2 
Visits 

(1-2) 

 

3 (3, 4; 2 to 4) 

4 (3, 4; 2 to 4) 

3 (3, 4; 2 to 4 ) 

4 (3, 4; 2 to 4 ) 

4 (3, 4; 2 to 5) 

4 (4, 4; 3 to 4) 

4 (3, 4; 2 to 4) 

4 (3, 4; 3 to 4) 

Image 2 
Visits 

(2-3) 

3 (3, 4; 2 to 5) 

3 (3, 4; 2 to 4) 

3 (3, 4; 2 to 5) 

4 (3, 4; 2 to 4) 

4 (3, 4; 2 to 4) 

3 (3, 4; 3 to 4) 

3 (3, 4; 2 to 5) 

3 (3, 3; 2 to 4) 

Image 3 
Visits 

(2-3) 

3 (3, 4; 2 to 5) 

3 (3, 4; 3 to 4) 

3 (3, 4; 2 to 5) 

3 (3, 3; 2 to 4) 

4 (3, 4; 2 to 5) 

3 (3, 4; 3 to 4) 

3.5 (3, 4; 2 to 5) 

4    (3, 4; 2 to 4) 

Image 3 
Visits 

(1-3) 

3 (3, 4; 2 to 5) 

3  (3, 4;2 to 4) 

3 (2, 4; 2 to 5) 

3 (3, 3; 3 to 4) 

4 (3, 4; 2 to 5) 

4 (3, 4; 2 to 5) 

3 (3, 4; 2 to 5) 

3 (3, 4; 2 to 5) 
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Table 5.4. The mean of the differences, and the corresponding 95% limits of agreement, for 

the within-observer ‘test-retest’ variability in the assessment of image quality for each of the 
viewing techniques, for each observer, within the first three visits, for the individuals with 

glaucoma (top) and the between-observer variability in the assessment of image quality for 

the second of the two image evaluations for each of the viewing techniques within the first 

three visits (bottom). 

 

 

 

 

 

 

 

 

 

 

Within-observer agreement for the individuals with glaucoma 

Viewing method Mono 

 

Mono-Flicker 

 

Stereo 

 

Stereo-Flicker 

 

Observer ‘A’ 
Image 1 

(Visits 1-2 & 1-3) 

0.1 

(-1.0 to 1.2) 

-0.1 

(-0.9 to 0.8) 

0.0 

(-1.3 to 1.3) 

-0.3 

(-1.1 to 0.6) 

Image 2 

(Visits 1-2 & 2-3) 

0.2 

(-1.1 to 1.4) 

0.0 

(-1.4 to 1.4) 

0.0 

(-1.2 to 1.4) 

-0.1 

(-1.7 to 1.6) 

Image 3 

(Visits 1-3 & 2-3) 

-0.1 

(-1.3 to 1.1) 

0.0 

(-0.9 to 1.0) 

-0.1 

(-1.2 to 1.1) 

-0.2 

(-1.2 to 0.8) 

Observer ‘B’ 
Image 1 

(Visits 1-2 & 1-3) 

0.0 

(-1.0 to 1.0) 

-0.1 

(-1.1 to 1.0) 

0.1 

(-1.4 to 1.5) 

0.3 

(-0.1 to 1.5) 

Image 2 

(Visits 1-2 & 2-3) 

-0.2 

(-1.7 to 1.2) 

-0.1 

(-1.4 to 1.2) 

-0.4 

(-1.5 to 0.7) 

-0.1 

(-1.4 to 1.3) 

Image 3 

(Visits 1-3 & 2-3) 

0.1 

(-1.3 to 1.5) 

-0.1 

(-1.7 to 1.5) 

0.0 

(-1.1 to 1.1) 

0.0 

(-1.5 to 1.5) 

Between-observer difference for the individuals with glaucoma 

Image 1 

(Visits 1-3) 

-0.3 

(-1.6 to 1.0) 

-0.3 

(-1.5 to 1.0) 

-0.1 

(-1.5 to 1.4) 

0.1 

(-1.3 to 1.5) 

Image 2 

(Visits 2-3) 

0.3 

(-0.7 to 1.3) 

-0.2 

(-1.5 to 1.0) 

-0.1 

(-1.3 to 1.0) 

-0.1 

(-1.6 to 1.3) 

Image 3 

(Visits 1-3) 

0.0 

(-1.5 to 1.5) 

-0.3 

(-1.7 to 1.1) 

0.1 

(-1.3 to 1.6) 

-0.1 

(-1.7 to 1.6) 
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Table 5.5. The mean of the differences, and the corresponding 95% limits of agreement, for 

the within-observer ‘test-retest’ variability in the assessment of image quality for each of the 
viewing techniques, for each observer, within the first three visits, for the individuals with 

ocular hypertension (top) and the between-observer variability in the assessment of image 

quality for the second of the two image evaluations for each of the viewing techniques within 

the first three visits (bottom). 

 

The median (lower and upper quartiles; range) of the time taken to reach an 

outcome in terms both of diagnosis and of progression for each paired 

comparison for each of the first three visits, by observer and by viewing 

technique, for the 50 individuals with glaucoma is given in Table 5.6 (top) and 

the mean of the differences between the two observers, and the corresponding 

95% limits of agreement, in Table 5.6 (bottom). The corresponding information 

for the 11 individuals with ocular hypertension is given in Table 5.7 (top and 

bottom). 

Within-observer agreement for the individuals with ocular hypertension 

Viewing method Mono 

 

Mono-Flicker 

 

Stereo 

 

Stereo-Flicker 

 

Observer ‘A’ 
Image 1 

(Visits 1-2 & 1-3) 

0.0 

(-1.4 to 1.4) 

-0.4 

(-1.5 to 0.7) 

-0.2 

(-1.8 to 1.4) 

-0.4 

(-1.5 to 0.7) 

Image 2 

(Visits 1-2 & 2-3) 

0.0 

 (-1.4 to 1.4) 

-0.2 

(-1.1 to 0.7) 

0.0 

(-1.4 to 1.4) 

0.0 

(-1.4 to 1.4) 

Image 3 

(Visits 1-3 & 2-3) 

0.0 

(0.0 to 0.0) 

0.0 

(0.0 to 0.0) 

0.0 

(-1.4 to 1.4) 

-0.2 

(-1.1 to 0.7) 

Observer ‘B’ 
Image 1 

(Visits 1-2 & 1-3) 

0.0 

(-1.4 to 1.4) 

0.0 

(-2.0 to 2.0) 

0.4 

(-0.7 to 1.5) 

-0.2 

(-2.3 to 1.9) 

Image 2 

(Visits 1-2 & 2-3) 

0.0 

(0.0 to 0.0) 

0.0 

(-1.4 to 1.4) 

-0.4 

(-1.5 to 0.7) 

-0.4 

(-1.5 to 0.7) 

Image 3 

(Visits 1-3 & 2-3) 

-0.2 

(-1.8 to 1.4) 

0.2 

(-0.7 to 1.1) 

0.4 

(-0.7 to 1.5) 

0.0 

(-2.0 to 2.0) 

Between-observer difference for the individuals with ocular hypertension 

Image 1 

(Visits 1-3) 

-0.2 

(-1.1 to 0.7) 

0.0 

(-2.0 to 2.0) 

0.2 

(-0.7 to 1.1) 

0.0 

(-1.4 to 1.4) 

Image 2 

(Visits 2-3) 

-0.4 

(-1.5 to 0.7) 

-0.2 

(-1.1 to 0.7) 

-0.2 

(-1.8 to 1.4) 

-0.6 

(-1.7 to 0.5) 

Image 3 

(Visits 1-3)  

-0.2 

(-1.1 to 0.7) 

-0.2 

(-1.8 to 1.4) 

0.2 

(-1.4 to 1.8) 

0.2 

(-1.4 to 1.8) 
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Table 5.6. Top: The median (lower and upper quartiles; range) of the time (seconds) taken 

to reach an outcome in terms both of diagnosis and of progression for each paired-

comparison, by observer and by viewing technique, for the 50 individuals with glaucoma. 

Bottom: The mean of the differences between the two observers, and the corresponding 

95% limits of agreement, for the time to reach an outcome in terms both of diagnosis and of 

progression, by viewing technique, at each of the first three visits. 

 

In general, the median time to reach an outcome in terms both of diagnosis and of 

progression for each paired comparison for both observers was shortest for mono-

viewing, longer but relatively similar for stereo-viewing and mono-flicker 

chronoscopy and longest for stereo-flicker chronoscopy. The median time to 

reach an outcome for stereo-flicker chronoscopy was approximately three 

quarters longer than that for mono-viewing. The agreement between the two 

Individuals with glaucoma 

Viewing 

method 

Mono 

 

Mono-Flicker 

 

Stereo 

 

Stereo-Flicker 

 

Observer ‘A’ 

Visits 

(1-2) 

18.0 

(13.3, 22.0; 

8.0 to 38.0) 

21.0 

(15.0, 28.0; 

5.0 to 60.0) 

25.0 

(18.0, 32.0; 

7.0 to 60.0) 

30.5 

(23.0, 40.5; 

12.0 to 63.0) 

Visits 

(2-3) 

12.5 

(9.0, 15.0; 

5.0 to 39.0) 

15.0 

(13.3, 20.0; 

7.0 to 41.0) 

15.0 

(10.5, 23.3; 

5.0 to 40.0) 

24.5 

(14.3, 34.0; 

5.0 to 51.0) 

Visits 

(1-3) 

14.5 

(12.0, 22.8; 

9.0 to 36.0) 

18.5 

(14.0, 30.8; 

5.0 to 44.0) 

17.0 

(12.3, 22.8; 

5.0 to 50.0) 

33.5 

(17.0, 46.8; 

10.0 to 76.0) 

Observer ‘B’ 

Visits 

(1-2) 

16.5 

(10.3, 22.0; 

3.0 to 38.0) 

20.5 

(14.0, 27.5; 

5.0 to 55.0) 

22.5 

(17.0, 29.8; 

7.0 to 53.0) 

29.5 

(21.3, 38.0; 

5.0 to 72.0) 

Visits 

(2-3) 

10.0 

(7.0, 14.0; 

3.0 to 39.0) 

15.5 

(10.3, 19.8; 

5.0 to 41.0) 

16.0 

(7.3, 23.8; 

4.0 to 52.0) 

26.0 

(15.5, 40.0; 

5.0 to 51.0) 

Visits 

(1-3) 

13.0 

(9.0, 21.0; 

3.0 to 39.0) 

24.5 

(16.0, 31.8; 

3.0 to 60.0) 

17.0 

(11.0, 23.0; 

6.0 to 50.0) 

34.5 

(22.5, 46.8; 

9.0 to 92.0) 

Between-observer difference for the individuals with glaucoma 

Visits 

(1-2) 

1.7 

(-13.9 to 17.3) 

0.4 

(-22.5 to 23.3) 

1.9 

(-18.6 to 22.5) 

0.5 

(-25.2 to 26.3) 

Visits 

(2-3) 

1.2  

(-6.4 to 8.8) 

0.6  

(-11.4 to 12.5) 

0.4  

(-9.2 to 10.0) 

-2.1  

(-21.0 to 16.8) 

Visits 

(1-3) 

2.2 

(-11.3 to 15.7) 

-2.2 

(-20.3 to 16.0) 

0.3 

 (-8.1 to 8.7) 

-2.0  

(-31.7 to 27.7) 
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observers, in terms of the median time to outcome, exhibited no particular trend 

across each of the four viewing techniques. 

Table 5.7. Top: The median (lower and upper quartiles; range) of the time (seconds) taken 

to reach a diagnostic outcome for each paired comparison, by observer and by viewing 

technique, for the 11 individuals with ocular hypertension. Bottom: The mean of the 

differences between the two observers, and the corresponding 95% limits of agreement, for 

the time to reach a diagnostic outcome, by viewing technique, at each of the first three visits. 

 

Observer ‘A’ utilized 1Hz flicker for all cases, whereas Observer ‘B’ utilized 1 

and 2Hz flicker for mono-chronoscopy and a staircase of 1, 8, and 2 Hz flicker 

for the stereo-chronoscopy of each image. 

 

Individuals with ocular hypertension  

Viewing 

method 

Mono 

 

Mono-Flicker 

 

Stereo 

 

Stereo-Flicker 

 

Observer ‘A’ 

Visits 

(1-2) 

16.0 

(12.0, 21.0; 

9.0 to 30.0) 

22.0 

(19.0, 26.5; 

15.0 to 33.0) 

21.0 

(15.0, 23.5; 

11.0 to 45.0) 

25.0 

(21.5, 33.0; 

11.0 to 51.0) 

Visits 

(2-3) 

15.0 

(9.0, 15.0; 

9.0 to 20.0) 

10.0 

(9.0, 19.0; 

7.0 to 30.0) 

15.0 

(10.0, 17.0; 

4.0 to 20.0) 

22.0 

(21.0, 24.0; 

8.0 to 38.0) 

Visits 

(1-3) 

14.0 

(11.0, 15.0; 

9.0 to 18.0) 

17.0 

(17.0, 25.0; 

12.0 to 25.0) 

16.0 

(15.0, 17.0; 

15.0 to 21.0) 

34.0 

(27.0, 50.0; 

17.0 to 64.0) 

Observer ‘B’ 

Visits 

(1-2) 

15.0 

(11.5, 21.5; 

5.0 to 39.0) 

25.0 

(12.0, 27.0; 

4.0 to 41.0) 

17.0 

(13.0, 24.0; 

10.0 to 34.0) 

27.0 

(21.0, 33.0; 

4.0 to 61.0) 

Visits 

(2-3) 

15.0 

(9.0, 15.0; 

9.0 to 15.0) 

11.0 

(10.0, 19.0; 

9.0 to 40.0) 

14.0 

(10.0, 17.0; 

7.0 to 20.0) 

14.0 

(9.0, 24.0; 

5.0 to 38.0) 

Visits 

(1-3) 

15.0 

(14.0, 20.0; 

9.0 to 30.0) 

17.0 

(14.0, 25.0; 

5.0 to 25.0) 

17.0 

(16.0, 21.0; 

3.0 to 24.0) 

36.0 

(34.0, 54.0; 

10.0 to 64.0) 

Between-observer difference for the individuals with ocular hypertension 

Visits 

(1-2) 

-0.3 

(-18.5 to 18.0) 

1.0 

(-21.9 to 23.9) 

2.0 

(-12.0 to 16.0) 

-0.2 

(-10.4 to 10.0) 

Visits 

(2-3) 

1.0 

(-3.4 to 5.4) 

-2.8 

(-11.4 to 5.8) 

-0.4 

(-12.9 to 12.1) 

4.6 

(-9.8 to 19.0) 

Visits 

(1-3) 

-4.2 

(-16.5 to 8.1) 

2.0 

(-18.7 to 22.7) 

0.6 

(-13.5 to 14.7) 

-1.2 

(-12.7 to 10.3) 
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5.4.1 Designation of glaucoma 

The number of ‘glaucoma’ to ‘non-glaucoma’ cases, by observer and by viewing 

technique, for the 50 individuals with glaucoma and for the 11 individuals with 

ocular hypertension between Visit 1 and Visit 2 (left column) and for the 30 

individuals with glaucoma and 5 individuals with ocular hypertension between 

Visits 1, 2 and 3 (middle columns) is presented in Table 5.8. The fourth column 

in Table 5.8 represents the outcomes from the 82 comparisons of the ONH 

images from the 17 individuals (14 with glaucoma and 3 with ocular 

hypertension) with four or more ONH images. 

 

Within the limitations of the dataset, between Visits 1 and 2, Observer ‘B’ 

correctly identified a substantially greater number of cases of ‘glaucoma’ 

compared to Observer ‘A’, but identified fewer cases of ‘non-glaucoma’ (i.e. 

Observer ‘B’ exhibited a higher sensitivity and a lower specificity compared to 

Observer ‘A’). 

 

For both observers, the mono-flicker chronoscopy, stereo-viewing and stereo-

flicker chronoscopy yielded a higher number of correctly identified cases of 

‘glaucoma’ compared to mono-viewing technique and a similar number of 

correctly identified cases of ‘non-glaucoma’. Observer ‘A’ benefited (i.e. 

exhibited the greater increase in correctly identified cases) from stereo-viewing 

more than Observer ‘B’. 
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Table 5.8. The number of ‘glaucoma’ to ‘non-glaucoma’ cases, by observer and by viewing technique, for the 50 individuals with glaucoma and for the 11 

individuals with ocular hypertension between Visit 1 and Visit 2 (left column) and for the 30 individuals with glaucoma and 5 individuals with ocular hypertension 

between Visits 1, 2 and 3 (middle columns). The fourth column represents the outcomes from the 82 comparisons of the ONH images from the 17 individuals (14 

with glaucoma and 3 with ocular hypertension) with four or more ONH images. M represents Mono-viewing, MF Mono-flicker, S Stereo-viewing and SF Stereo-

flicker.

Observer 

Visit 1-Visit 2 

50:11 

Visit 2-Visit 3 

30:5 

Visit 1-Visit 3 

30:5 

Visit 1- Visit 4… Visit 1-Visit n 

14:3 (64:18)  

M M F S SF M MF S SF M MF S SF M MF S SF 

‘A’ 31:7 34:6 35:8 36:7 19:3 19:3 23:3 23:2 19:3 21:3 23:2 24:2 40:15 40:12 42:13 45:12 

‘B’ 43:5 44:6 44:4 45:6 27:1 27:2 27:1 28:1 26:1 27:1 28:2 27:1 57:7 55:7 58:7 56:7 

‘A’ = ‘B’ 

Correct outcome 

25:4 25:4 26:3 26:4 14:2 14:1 14:1 15:1 14:1 14:1 14:2 14:1 50:0 50:0 50:0 50:0 

‘A’ = ‘B’ 

Incorrect  

outcome 

4:4 2:4 3:3 2:4 1:2 1:2 0:2 0:2 2:2 2:2 0:2 0:2 6:2 8:4 6:4 8:5 
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The agreement between observers in the correct designation of glaucoma cases 

was poor, i.e. only 25 or 26 of the 50 cases of ‘glaucoma’ and 4 of the 11 cases of 

‘non-glaucoma’. Both observers incorrectly designated the same four individuals 

with no glaucoma as ‘glaucoma’. Similarly, the observers both incorrectly 

designated up to a further four individuals with glaucoma as ‘non-glaucoma’. The 

above trends were also largely present between Visits 2 and 3 and Visits 1 and 3 

and between any subsequent visits. The non-colour balanced ONH images for 

each of these four individuals incorrectly designated as ‘glaucoma’ are illustrated 

in Figure 5.2. The image quality for each of the two stereo-images for these four 

individuals ranged between Grade 3 and Grade 4 for each observer. 

 

The time to diagnostic outcome for the paired comparisons for all viewing 

techniques for Observer ‘B’ and for three of the four techniques for Observer ‘A’ 

for Case 1 exceeded the upper quartile of the distribution of the corresponding 

times for the 50 individuals with glaucoma. Indeed, for both stereo-viewing 

techniques, the times to diagnostic outcome for the paired comparisons for each 

observer were the longest of the 50 individuals. These values indicate the 

difficulty in making the correct clinical judgement. For Case 2, the time to 

diagnostic outcome for each paired comparison for Observer ‘B’ was beyond the 

upper quartile of the 50 individuals for stereo-flicker chronoscopy and less than 

the lower quartile for the remaining three techniques. The time to diagnostic 

outcome for each paired comparison for Observer ‘A’ was at the maximum range 

of the 50 individuals for the mono-viewing technique, was greater than the upper 

quartile for stereo-flicker chronoscopy and was at the median for the remaining 

two techniques. These findings suggest that both observers gave greater 
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importance to the most ‘sophisticated’ viewing technique, stereo-flicker 

chronoscopy, in the evaluation of the paired image comparisons. In the remaining 

two cases, Cases 3 and 4, both observers each manifested a time to diagnostic 

outcome for the paired comparisons which was at, or above, the upper quartile for 

each of the viewing techniques. These values would again suggest the difficulty 

associated in achieving the correct clinical outcome. Neither observer changed 

the frequency of flicker for any of the four cases. 

Non-glaucoma (OHT, UHW): Glaucoma (Observers) 

      Stereo-pair Visit 1                                                   Stereo-pair Visit 2           

Right            Left                                              Right                Left 

                                     

                                   

                              

                                        

Figure 5.2. The non-colour balanced ONH images, between Visits 1 and 2, for each of the 

four cases of non-glaucoma incorrectly designated as ‘glaucoma’ by both observers. 

 

Case 1 

Case 2 

Case 3 

Case 4 
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The non-colour balanced ONH images for each of these four individuals 

incorrectly designated as ‘non-glaucoma’ is illustrated in Figure 5.3. The image 

quality for each of the two stereo-images for three of the four individuals ranged 

from Grade 3 to Grade 4 for each observer. For the fourth individual (Case 1), the 

image quality for the two stereo-pairs was graded as 2 and 3 for Observer ‘A’ and 

as Grade 1 and 2 for Observer ‘B’. In addition, two individuals (Cases 1 and 3), 

comprised unusual manifestations of the ONH, multiple drusen and myelinated 

retinal nerve fibres, respectively, which clearly confounded the correct 

designation of ‘glaucoma’. 

 

The time to diagnostic outcome for each paired comparison for Case 1 was less 

than the lower quartile value for all four viewing techniques for each observer. 

For the mono-viewing by each observer and for the mono-flicker chronoscopy by 

Observer ‘B’ was the shortest for the 11 individuals with ocular hypertension. 

The times for Case 2 were at, or beyond, the upper quartile for all four viewing 

techniques for each observer and reflected the relative difficulty in achieving a 

correct diagnosis. The times achieved by both observers for Case 3 were close to 

the median for both mono-viewing conditions and were less than the lower 

quartile for the stereo-viewing techniques. These latter values reflect the relative 

ease in achieving the apparent correct diagnosis. The times for Case 4 were either 

at, or close to the median or the upper quartile, for the various viewing techniques 

across both observers. 
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Neither observer changed the frequency of the flicker for any of these four cases. 

Glaucoma (UHW): Non-glaucoma (Observers) 

Stereo-pair Visit 1                                                 Stereo-pair Visit 2 

Right            Left                                                   Right                Left 

                                    

                                   

 

                                          

 

                                     

Figure 5.3. The non-colour balanced ONH images, between Visits 1 and 2, for each of the 

four cases of non-glaucoma incorrectly designated as ‘non-glaucoma’ by both observers. 

 

5.4.2 Designation of progressive glaucomatous ONH damage 

The number of cases of non-progression, by observer, by number of visits and by 

viewing technique, amongst the 50 individuals with glaucoma, is presented in 

Table 5.9 for the first five visits. Both non-flicker techniques yielded a higher 

number of non-progressive cases compared to the corresponding two flicker 

Case 2 

Case 3 

Case 4 

Case 1 
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techniques. Mono-viewing, alone, yielded the highest number of non-progressive 

cases. Similarly, the number of cases with definite progression and with possible 

progression, respectively, by observer, by number of visits and by viewing 

technique, amongst the same 50 individuals with glaucoma is presented in Table 

5.10 for the first five visits. Only two individuals had attended for more than five 

visits (6 and 7 visits, respectively). In general, both flicker techniques yielded a 

higher number of cases of definite progression compared to the corresponding 

non-flicker techniques. No trend between techniques or between observers was 

apparent amongst the limited number of cases exhibiting possible progression. 

 

The agreement between observers in the number of cases designated as definite 

progression was poor. With stereo-flicker chronoscopy, Observer ‘A’ identified 

20 cases, and Observer ‘B’ 22 cases, of definite progression. However, agreement 

between the two observers was present in only 14 of these cases. No trend was 

present between the two observers in the recognition of definite progression 

across the four techniques. The agreement between observers in the number of 

cases designated as non-progressive was also poor. With stereo-flicker 

chronoscopy, agreement between observers was achieved in 7 cases. However, 

Observer ‘A’ identified 11 cases of non-progression and Observer ‘B’ 15 cases. 

 

Of the four viewing techniques, stereo-flicker chronoscopy identified definite 

progression for each observer at an earlier stage (i.e. an earlier ONH image 

comparison) compared to each of the remaining three techniques (Table 5.11). 

Nevertheless, of the 14 cases of definite progression which were designated by 
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both observers, the stereo-flicker technique identified only 6 cases prior to each 

of the remaining three techniques. For Observer ‘A’ there was little difference 

between mono-flicker chronoscopy and stereo-flicker chronoscopy, whereas for 

Observer ‘B’ there was a noticeable difference, in that mono-flicker chronoscopy 

identified an earlier stage of progression definite progression in 3 cases, 

compared to 14 cases with stereo-flicker chronoscopy. No cases of ‘progression’ 

in the 7 cases of non-progression designated by both observers, were identified 

by stereo-flicker, in isolation. Of the 4 cases of ocular hypertension incorrectly 

designated as glaucoma by both observers, stereo-flicker chronoscopy identified 

definite progression, in isolation to the remaining three techniques, in two cases 

for Observer ‘B’, only (Table 5.12). 

 

The total time for the diagnostic outcome and the evaluation of ONH progression 

for the 50 cases with glaucoma was shortest for mono-viewing (15 and 13.2 

seconds for Observer ‘A’ and Observer ‘B’, respectively) and longest for stereo-

flicker chronoscopy (29.5 and 30 seconds for Observer ‘A’ and Observer ‘B’, 

respectively). Mono-flicker chronoscopy and stereo-viewing were similar to one-

another and approximately 5 seconds longer than mono-viewing technique (Table 

5.6). The times were clinically identical for the cases designated as non-

glaucomatous.
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Table 5.9. The number of cases with non-progression by observer, by number of visits and by viewing technique, for the 50 individuals with glaucoma. M 

represents Mono-viewing, MF Mono-flicker, S Stereo-viewing and SF Stereo-flicker. 

 

 

 

 

 

Observer 

2 Visits 

(18 cases) 

3 Visits 

(16 individuals) 

4 Visits 

(8 cases) 

5 Visits 

(5 cases) 

M MF S SF M MF S SF M MF S SF M MF S SF 

‘A’ 11 4 11 6 6 3 4 3 3 1 4 2 3 1 3 0 

‘B’ 12 10 10 10 9 6 7 5 7 0 5 0 2 0 1 0 

Cases of agreement 

(‘A’ = ‘B’) 

10 6 5 2 

7 4 6 6 5 1 2 1 4 0 3 0 2 0 1 0 
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Table 5.10. The number of cases with definite progression and with possible progression (in parenthesis) by observer, by number of visits and by viewing technique, 

for the 50 individuals with glaucoma. M represents Mono-viewing, MF Mono-flicker, S Stereo-viewing and SF Stereo-flicker. 

Observer 

2 Visits 

(18 cases) 

3 Visits 

(16 individuals) 

4 Visits 

(8 cases) 

5 Visits 

(5 cases) 

M MF S SF M MF S SF M MF S SF M MF S SF 

‘A’ 2 9 1 8 4 (1) 6 (2) 4 (4) 6 (2) 2 (1) 3 (0) 1 (0) 4 (0) 0 (0) 1 (1) 0 (0) 2 (1) 

‘B’ 5 6 8 7 2 (4) 3 (6) 3 (4) 7 (1) 1 (0) 3 (1) 1 (1) 5 (0) 1 (0) 2 (0) 1 (0) 3 (0) 

Cases of agreement 

(‘A’ = ‘B’) 

8 6 4 2 

1 5 1 5 1 (1) 2 (1) 0 (2) 3 (0) 1 (0) 2 (0) 1 (0) 4 (0) 0 (0) 1 (0) 0 (0) 2 (0) 

Cases of incorrect 

outcome 

(‘A’ = ‘B’) 

0 0 2 0 

0 0 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 1 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
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Viewing technique M MF S SF M MF S SF 

Visits Observer ‘A’ Observer ‘B’ 

3 2 (0) 5 (2) 3 (0) 5 (2) 2 (0) 3 (2) 2 (0) 6 (2) 

4 0 (0) 1 (0) 0 (0) 3 (3) 0 (0) 0 (0) 0 (0) 5 (3) 

5 0 (0) 1 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 3 (1) 

Total 2 (0) 7 (2) 3 (0) 9 (6) 2 (0) 3 (2) 2 (0) 14 (6) 

Table 5.11. The number of instances in which the given viewing technique identified definite 

progression at an earlier stage compared to each of the remaining three viewing techniques, 

by observer, by number of visits, amongst the 50 progressed individuals with glaucoma. The 

figure in parenthesis indicates the number of instances where agreement was present for 

both observers. M represents Mono-viewing, MF Mono-flicker, S Stereo-viewing and SF 

Stereo-flicker. 

 

Non-glaucoma (OHT, UHW) : Glaucoma (Observers) 

Viewing technique M MF S SF M MF S SF 

Cases Observer ‘A’ Observer ‘B’ 

Case 1 (4 visits) 1.2 1.1 1.4 1.2 2.4 1.2 1.3 1.1 

Case 2 (2 visits) 4 4 4 4 4 4 4 1 

Case 3 (4 visits) 4 1.1 4 3 4 3 4 1.1 

Case 4 (6 visits) 3 1.2 3 1.1 3 1.2 3 1.1 

Cases of progression 1 3 1 2 0 2 1 4 

Table 5.12. The outcome for the 4 cases of ocular hypertension incorrectly designated as 

glaucoma by both observers, by viewing technique and by ranking of the earliest 

identification of definite progression. 
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5.4.3 Comparison of definite progression to that of the corresponding visual 

field outcome 

 

The outcomes of the three separate visual field progression criteria, MD, VFI and 

EMGT GPA, in isolation and in combination, for the 61 individuals are given in 

Table 5.13. 

Visual field progression 

Criteria 

Diagnosis 

Glaucoma Non-glaucoma Total 

MD 3 - 3 

VFI 4 - 4 

EMGT GPA 4 2 6 

MD & VFI 1 - 1 

MD & EMGT GPA - - 0 

VFI & EMGT GPA 1 - 1 

MD, VFI & EMGT GPA 7 - 7 

Total individuals 20 2 22 

Table 5.13. The outcomes of the three separate visual field progression criteria, MD, VFI 

and EMGT GPA in isolation, and in combination, for the 50 individuals with glaucoma and 

the 11 individuals with ocular hypertension. 

 

The outcomes of the three separate visual field progression criteria, MD, VFI and  

EMGT GPA in isolation, and combined, for the 14 cases of definite ONH 

progression designated by both observers with stereo-flicker chronoscopy are 

given in Table 5.14. Seven of the 14 cases of definite progression with stereo-

flicker chronoscopy, also exhibited visual field progression by one or more of the 

progression criteria. Interestingly, of those ONHs deemed to have definite 

progression by each observer, alone, 35% (Observer ‘A’) and 45% (Observer 

‘B’) exhibited visual field progression by one or more of the progression criteria. 
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Visual field progression 

Criteria 

Cases of definite progression with stereo-flicker 

‘A’ = ‘B’ Observer ‘A’ Observer ‘B’ 

MD 1 1 2 

VFI 2 2 2 

EMGT GPA 1 1 1 

MD & VFI 1 1 1 

MD & EMGT GPA - - 2 

VFI & EMGT GPA - - - 

MD, VFI & EMGT GPA 2 2 2 

Proportion 7/14 7/20 10/22 

Table 5.14. The frequency of visual field progression for each of the three separate visual 

field progression criteria, MD, VFI and EMGT GPA in isolation and combined, for the 14 

cases of definite progression confirmed by both observers using stereo-flicker chronoscopy 

and for the 20 and 22 cases, respectively, of definite progression for Observer ‘A’ and 
Observer ‘B’, alone. 
 

The outcomes of the three separate visual field progression criteria, MD, VFI and 

EMGT GPA in isolation and in combination for the 7 cases of non-progression of 

the ONH designated by both observers with stereo-flicker chronoscopy are given 

in Table 5.15. Four of the 7 cases of non-progression with stereo-flicker 

chronoscopy exhibited visual field progression by one or more of the progression 

criteria. Of the 11 ONHs deemed to exhibit non-progression by Observer ‘A’, 6 

exhibited field progression by one or more of the progression criteria. Similarly, 

of the 15 ONHs deemed to exhibit non-progression by Observer ‘B’, 5 exhibited 

field progression by one or more of the progression criteria. However, there was 

some diversity in the type of visual field analysis exhibiting progression both 

within- and between-observers. 
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Visual field progression 

Criteria 

Cases of non-progression with stereo-flicker 

‘A’ = ‘B’ Observer ‘A’ Observer ‘B’ 

MD 1 1 1 

VFI - - 1 

EMGT GPA 1 1 1 

MD & VFI - - - 

MD & EMGT GPA - - - 

VFI & EMGT GPA - 1 - 

MD, VFI & EMGT GPA 2 3 2 

Proportion 4/7 6/11 5/15 

Table 5.15. The frequency of visual field progression for each of  the three separate visual 

field progression criteria, MD, VFI and EMGT GPA in isolation and in combination for the 

7 cases of non-progression of the ONH confirmed by both observers using stereo-flicker 

chronoscopy and for the 11 and 15 cases, respectively, of non-progression for Observer ‘A’ 
and Observer ‘B’, alone. 

 

There was a noticeable difference, within the limited dataset, between the length 

of the time series of both the ONH image acquisition and the measurement of the 

visual field for those with or without progression of either the ONH and/ or the 

visual field (Table 5.16). However, the length of the time series for the visual 

field examinations was approximately twice that of the ONH image acquisitions.
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Table 5.16. The number of the perimetric and the photographic visits (median, lower and upper quartiles; range) for the 7 out of 14 cases of definite progression 

confirmed by both observers using stereo-flicker chronoscopy and who exhibited visual field progression (left-hand column); for the 7 out the 14 cases of definite 

progression confirmed by both observers using stereo-flicker chronoscopy and who did not exhibit visual field progression (middle-left column); for the 4 out of 7 

cases of non-progression of the ONH confirmed by both observers using stereo-flicker chronoscopy and who exhibited visual field progression (middle-right 

column); and for the 3 of the 7 cases of non-progression of both the ONH and the visual field. 

 

 

 

Number of visits/ 

follow-up (yrs) 

14 cases of definite progression with stereo-

flicker chronoscopy 

7 cases of non-progression with stereo-flicker 

chronoscopy 

ONH & visual field 

progression (7/14) 

Visual field non-

progression (7/14) 

ONH 

non-progression (4/7) 

Visual field  

non-progression (3/4) 

Number of  perimetric visits 
7.0  

(6.0, 10.0; 5.0 to 12.0) 

7.0  

(6.0, 8.0; 4.0 to 9.0) 

7.5 

(6.8, 8.5; 6.0 to 10.0) 

6.0 

(6.0, 6.5; 6.0 to 7.0) 

Number of photographic visits 
3.0 

(2.0,4.0; 2.0 to 4.0) 

4.0 

(2.5, 4.5; 2.0 to 5.0) 

2.0 

(2.0, 2.3; 2.0 to 3.0) 

2.0 

(2.0, 2.0; 2.0 to 2.0) 

Perimetric follow-up (yrs) 
7.7 

(6.2, 8.1; 4.4 to 10.3) 

7.0 

(5.3, 8.6; 3.1 to 9.8) 

6.5 

(6.1, 7.6; 5.8 to 10.0) 

6.1 

(5.9 to 7.6; 5.7 to 9.2) 

Photographic follow-up (yrs) 
3.3 

(2.4, 5.7; 1.7 to 6.1) 

4.6 

(3.5, 5.9; 2.1 to 6.7) 

3.4 

(2.3, 4.7; 2.0 to 5.9) 

2.0  

(1.2, 2.7; 0.4 to 2.0) 
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5.5 Discussion 

The results highlight the importance of a flicker comparison, with either mono- or 

stereo-viewing, for the designation of glaucoma and for the identification of 

glaucomatous ONH progression. 

 

Observer ‘B’ adopted an approach based upon high sensitivity with a resultant 

lower specificity. Observer ‘A’ adopted an approach which yielded a high 

specificity with a resultant lower sensitivity. 

 

Regardless of the difference in the two approaches, the improvement of stereo-

viewing over mono-viewing in the diagnostic accuracy of glaucoma was 

apparent. Flicker-viewing increased the diagnostic accuracy, compared to non-

flicker viewing, and stereo-flicker manifested a slightly better diagnostic 

accuracy compared to mono-flicker viewing. That is, although the sensitivity and 

specificity relative to the hospital diagnosis varied between the two observers, the 

ranking of the four viewing techniques, in terms of diagnostic accuracy, remained 

the same. 

 

The benefit-cost of the improvement in the diagnostic accuracy with increase in 

sophistication of the viewing technique, for Observer ‘A’ who exhibited a high 

specificity in their clinical judgement (i.e. 5 additional cases [10% of the 50 cases 

with glaucoma] designated from mono-viewing to stereo-flicker chronoscopy, at 

a cost of a doubling in viewing time for all cases) is open to debate. The 

corresponding benefit-cost for Observer ‘B’, who exhibited a high sensitivity in 
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their clinical judgement, was a 2 additional cases (an increase of 4% of the 50 

cases with glaucoma) designated with stereo-flicker chronoscopy compared to 

mono-viewing. These additional two cases occurred at a cost of a doubling in 

viewing time for all cases and highlighted the time-consuming character of 

stereo-flicker chronoscopy. Such an outcome may not warrant the extra time 

involved and such an argument is also applicable to cases of non-glaucoma. 

However, regardless the time-consuming nature of stereo-flicker chronoscopy, it 

still remains a sensitive technique in the diagnosis of glaucoma. 

 

Given the intuitive logic of the ranking of the four viewing techniques in terms of 

diagnostic accuracy and given that the study was not concerned with a 

comparison of ophthalmological competence (Breusegem et al. 2011), it seemed 

of little value to augment the study by recruiting one or more further 

ophthalmologists as observers. Such observers would merely have each generated 

different levels of sensitivity and specificity and it is unlikely that this would 

have altered the ranking of the viewing techniques in terms of diagnostic 

accuracy. 

 

Given the aim of the study, the comparison of stereo-flicker chronoscopy with 

mono-flicker chronoscopy for the qualitative identification of progressive 

glaucomatous ONH damage, the outcome (i.e., the designation of ‘glaucoma’ or 

‘non-glaucoma’) was based upon a comparison of a sequential image-pair, rather 

than upon the evaluation of a single image. The latter could also have been 

undertaken for the non-flicker viewing techniques, but would have resulted in an 
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increased length of the study, which was already extensive, and which a pilot 

study had indicated would not have been viable. 

 

Little agreement was present between the various methods for the evaluation of 

visual field progression and little agreement between the outcome of these 

methods and the qualitative evaluation of ONH progression. 

 

Four cases exhibited visual field progression in the presence of a non-progressive 

ONH. This lack of concordance is likely to have arisen from the longer time 

series of the visual field examinations compared to that of the ONH image 

acquisition (median visual field follow-up 6.5 years and median ONH image 

acquisition 3.4 years). 

 

The ‘gold’ standard for the diagnosis of glaucoma was that of the UHW 

diagnosis. It is possible that such a standard contained cases with an inappropriate 

diagnosis. Indeed, two cases with a hospital diagnosis of ocular hypertension 

were each designated as glaucoma by both observers with all four viewing 

techniques over all visits. Such findings are likely to be attributable to an 

incorrect hospital diagnosis, particularly given that external review of the visual 

fields by an expert in visual field interpretation (JMW) confirmed the presence of 

a repeatable glaucomatous visual field defect in one case and a likely normal field 

in the other case. Similarly, two of the individuals with a hospital diagnosis of 

glaucoma were designated as non-glaucoma by each of the two observers. It 
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should be noted, however, that the designation of either ‘glaucoma’ or ‘non-

glaucoma’ was made on the basis of the ONH appearance, alone, and in one eye 

only, i.e. without the knowledge of the corresponding visual field information and 

the comparison of the ONH symmetry between the two eyes. 

 

As was noted previously, the designation of glaucoma was based upon a 

comparison of a sequential image-pair, rather than upon the evaluation of a single 

image. The criteria for the designation of glaucoma could, therefore, have been 

made on the basis either of an ONH appearance typical of glaucoma or of an 

ONH exhibiting progressive damage. 

 

The hospital notes did not contain sufficient information to use, as ‘gold’ 

standard a UHW definition of progressive ONH damage. As a consequence the 

dataset was evaluated in terms of the number of cases in which both observers 

each designated progressive damage. 

 

A comparison between the qualitative assessment of the ONH images and the 

quantitative planimetric outcome, described in the following Chapter (Chapter 6), 

could have been undertaken. However, given that the qualitative evaluation 

would have included assessment of non-quantifiable features such as the presence 

of disc haemorrhages and alterations of the topography of the vessels, etc, such 

an approach was considered unreliable and, therefore was not adopted. 
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Chapter 6 

 

The quantitative assessment of progressive structural and 

functional glaucomatous damage 

 

6.1 Introduction 

Analogue planimetry, derived with varying degrees of sophistication in 

technique, and either with mono- or stereo-viewing (Chapter 4), has been used for 

many years to characterize the various features of the ONH (Kottler et al. 1976; 

Jonas et al. 1988; Jonas and Montgomery 1995; Jonas et al. 1999). More recently, 

digital planimetry (Chapter 1), also with varying degrees of sophistication and 

with either mono- or stereo-viewing, has largely replaced the manual technique 

(Garway-Heath et al. 1999; Yogesan et al. 1999; Barry et al. 2000; Correnti et al. 

2003; Morgan et al. 2005a; Morgan et al. 2005b; Ramakrishnan et al. 2005; 

Hoffmann et al. 2007; Sanfilippo et al. 2009; Radcliffe et al. 2010; Morgan et al. 

2012; Tsutsumi et al. 2012; Carbonaro et al. 2014). 

 

The association between ONH structure and the functional outcome from 

perimetry has been the subject of a number of cross-sectional studies which have 

evaluated one or more ONH parameters derived either from traditional analogue 

planimetry (Garway-Heath et al. 1998a; Jonas et al. 1998; Junemann et al. 2000) 

or from digital planimetry (Garway-Heath and Hitchings 1998; Bartz-Schmidt et 

al. 1999; Grewal et al. 2009; Saito et al. 2010; Medeiros et al. 2012d) (Chapter 1). 
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Several studies have evaluated the relationship between structural progression of 

the ONH derived by analogue planimetry (Jonas et al. 2000; Johnson et al. 2003; 

Crowston et al. 2004; Jonas et al. 2004; Jonas et al. 2006; Jampel et al. 2008) or 

by digital planimetry (Nguyen et al. 2004; Laemmer et al. 2007) and the 

corresponding functional progression of the visual field. The time-frame of these 

various studies ranges from 0.5 to 8.7 years with analogue planimetry and from 

2.8 to 11.8 years with digital planimetry. 

 

The digital manual planimetric technique developed by Morgan and colleagues 

(Morgan et al. 2005a; Morgan et al. 2005b; Morgan et al. 2012) and used by 

(Sanfilippo et al. 2009; Carbonaro et al. 2014) incorporates a measurement cursor 

which can be moved in stereoscopic (depth) space to minimize parallax errors 

encountered in the measurement of the NRR which is made at the depth of the 

scleral rim. The stereoscopic images can also be zoomed and panned at the 

observer’s discretion to clarify details of the ONH (Chapter 4). 

 

Studies in animals and humans have established that the relationship between 

structural and functional outcomes is non-linear when one of the outcomes, 

usually a given measure of the ONH, is expressed linearly and the other outcome, 

usually the visual field, is expressed in log units. The various structure and 

function models have proposed either a linear or a logarithmic transformation for 

the appropriate variable to generate structural and functional outcomes on 

identical scales (Swanson et al. 2004; Drasdo et al. 2007; Hood et al. 2007; 

Drasdo et al. 2008; Gonzalez-Hernandez et al. 2009; Harwerth et al. 2010; Malik 

et al. 2012; Medeiros et al. 2012b). 
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Given the above knowledge, it would seem appropriate to develop and to 

evaluate the utility of digital stereo-flicker chronoscopy for the manual 

planimetric identification of progressive structural damage of the ONH. In 

addition, it would also seem appropriate to revisit the association between 

progressive structural damage, identified with the ‘floating cursor’ digital stereo-

planimetric technique and expressed in linear units (Morgan et al. 2005a; Morgan 

et al. 2005b; Morgan et al. 2012) and progressive functional damage, i.e., the 

outcome of the visual field, expressed in linear units as the number of the residual 

RGC soma count. 

 

6.2 Aim 

The aim of the study, therefore, was twofold. Firstly, to quantify the NRR, as a 

whole and by segments and by sectors, in a case series of individuals attending a 

glaucoma clinic over a long follow-up, using digital manual stereo-planimetry 

incorporating the ‘floating cursor’ technique of Morgan and colleagues (Morgan 

et al. 2005a; Morgan et al. 2005b; Morgan et al. 2012) and to compare the 

outcomes to those derived monoscopically. Secondly, to evaluate the relationship 

between ONH progression (defined as a thinning of the NRR) derived with the 

stereo-viewing technique, and the concomitant visual field outcome, expressed, 

linearly, as the number of remaining RGCs. 

 

6.3 Methods 

The cohort comprised 27 of the 61 individuals described in the previous Chapter 

(Chapter 5) who had two or more ONH images, five or more reliable visual field 

examinations, and at least one photographic visit using the Topcon TRC-EX 
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camera. The Topcon TRC-EX camera (utilizing the Sony 950P 20° camera) was 

used as the reference, since the images were digital and had not undergone any 

form of editing (Chapter 4). The selection procedures for, and the characteristics 

of, these 27 individuals are described in Chapter 3. Of the 27 individuals, 23 had 

‘glaucoma’ (primary open-angle glaucoma, normal-tension glaucoma, 

pigmentary dispersion glaucoma, or considered to be glaucoma suspect) and 4 

had ocular hypertension. If an individual had more than one image from the 

Topcon TRC-EX camera, the more recent image was chosen as reference image. 

 

The summary statistics (median, lower and upper quartile; range) of the 

demographic and the clinical characteristics (median, lower and upper quartile; 

range) for the 27 individuals in the randomly assigned eye at their baseline visit 

are shown in Table 6.1 and Table 6.2, respectively (it should be noted that the 

information contained in these latter Tables is different to that contained in 

Tables 3.19 to 3.20 which is based upon the most severely affected eye [Chapter 

3]). 
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Table 6.1. The demographic characteristics (median, lower and upper quartiles; range) of the randomly assigned eye of the 27 individuals at the baseline visit. 

 

 

Diagnosis 

 

(No of individuals) 

Primary open-angle 

glaucoma (16) 

Ocular 

hypertension(4) 

Normal-tension 

glaucoma (4) 

Glaucoma 

Suspect (2) 

Others 

(1) 

Age (yrs) at the baseline visit 

69.3 

(60.5, 71.9; 

49.7 to 78.0) 

63.7 

(61.1, 65.9; 

55.3 to 70.2) 

67.2 

(63.9, 70.3; 

61.0 to 72.4) 

56.8 

(50.9, 62.6; 

45.0 to 68.5) 

45.8 

Male : Female 6 : 10 2 : 2 0 : 4 0 : 2 1 : 0 

Perimetric follow-up (yrs) 

8.1 

(6.9, 8.7; 

4.7 to 9.8) 

6.8 

(6.2, 8.1; 

5.3 to 10.8) 

8.2 

(7.1, 9.4; 

7.0 to 10.3) 

7.9 

(7.8, 8.0; 

7.7 to 8.2) 

10.3 

Number of perimetric visits 

7.0 

(6.0, 8.3; 

5.0 to 11.0) 

6.5 

(6.0, 7.8; 

6.0 to 10.0) 

9.5 

(7.5, 11.3; 

6.0 to 12.0) 

6.0 

(5.5, 6.5; 

5.0 to 7.0) 

8.0 

Photographic follow-up (yrs) 

5.5 

(3.8, 6.4; 

1.8 to 9.1) 

6.4 

(4.0, 8.8; 

3.6 to 9.3) 

5.8 

(4.9, 6.3; 

3.4 to 6.3) 

4.1 

(3.1, 5.0; 

2.1 to 6.0) 

6.8 

Number of photographic visits 

3.0 

(2.0, 3.0; 

2.0 to 4.0) 

4.0 

(3.5, 4.0; 

2.0 to 4.0) 

4.0 

(3.5, 4.8; 

2.0 to 7.0) 

3.0 

(2.5, 3.50; 

2.0 to 4.0) 

4.0 

Maximum duration  

of follow-up (yrs) 

8.9 

(8.0, 9.7; 

5.6 to 10.5) 

10.5 

(9.1, 11.0; 

6.4 to 11.3) 

8.6 

(8.0, 9.4; 

7.8 to 10.3) 

11.9 

(10.4, 13.5; 

8.8 to 15.0) 

10.3 
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Table 6.2. The clinical characteristics (median, lower and upper quartile; range) of the randomly assigned eye of the 27 individuals at the baseline visit.

Diagnosis 

 

(No of individuals) 

Primary open-angle 

glaucoma (16) 

Ocular 

hypertension (4) 

Normal-tension 

glaucoma (4) 

Glaucoma 

Suspect (2) 
Others 

(1) 

Mean Deviation (dB) 

at the baseline visit 

-3.82 

(-9.10, -1.28; 

-21.88 to-0.37) 

-2.67 

(-3.59, -1.98; 

-5.55 to -0.73) 

-6.38 

(-10.35, -4.23; 

-18.16 to -1.87) 

-1.53 

(-2.64, 0.42; 

-3.75 to 0.69) 

-1.43 

Visual Field Index (%) 

at the baseline visit 

95.0 

(78.3, 98.3; 

31.0 to 99.0) 

96.5 

(95.5, 97.3; 

94.0 to 98.0) 

84.0 

(69.0, 95.0; 

54.0 to 98.0) 

94.5 

(91.8, 97.3; 

89.0 to 100.0) 

98.0 

Pattern Standard Deviation (dB) 

at the baseline visit 

2.51 

(1.64, 7.95; 

1.41 to 14.42) 

1.96 

(1.84, 2.04; 

1.73 to 2.04) 

6.08 

(3.07, 8.94; 

2.21 to 9.38) 

2.73 

(2.06, 3.40; 

1.39 to 4.07) 

1.67 

Intraocular Pressure (mmHg) 

at the baseline visit 

26.00 

(21.50, 29.00; 

14.00 to 36.00) 

26.00 

(21.80, 32.00; 

21.00 to 38.00) 

20.00 

(16.50, 21.00; 

13.00 to 22.0) 

17.50 

(16.25, 18.75; 

15.00 to 20.00) 

16.00 

Vertical cup-to-disc ratio 

at the baseline visit 

0.70 

(0.61, 0.80; 

0.30 to 0.90) 

0.50 

(0.50, 0.50; 

0.50 t0 0.50) 

0.70 

(0.68, 0.80; 

0.65 to 0.90) 

0.55 

(0.53, 0.58; 

0.50 to 0.60) 

0.20 
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The two observers (Observer A and Observer B), who had qualitatively evaluated 

both the diagnostic and the progressive outcomes for the 61 individuals described 

in Chapter 5, undertook the planimetry of the ONH images. Both observers 

undertook this second study of the 27 individuals on a separate occasion to that of 

the qualitative assessment. Each observer was instructed to designate the disc 

margin as the area inside of the Elschnig’s scleral ring and the cup margin based 

upon normal clinical judgement. The order of the presentation of two viewing 

techniques (either mono- or stereo-viewing) was pseudo-randomized between 

images and between visits. The sequence of the randomization is given in Figure 

6.1. The time for the planimetric outcome, by each observer, was recorded for 

each of the ONH images for each method. 

Individual First display of the stereo-pair Second display of the stereo-pair

V1 V2 V3 V4 V5 V6 V7 Individual V1' V2' V3' V4' V5' V6' V7'

#01 M S S #01 S M M

… S M … M S

… S M M M … M S S S

… M S … S M

… M S M M … S M S S

… S M S … M S M

… S M S … M S M

… M S M S M … S M S M S

… M S M … S M S

… S M … M S

… S M S S … M S M M

… M S S M … S M M S

… M S M M M S S … S M S S S M M

… S M … M S

… S M … M S

… M S … S M

… M S … S M

… S M M S … M S S M

#27 S M S … M S M

Figure 6.1. The pseudo-randomized order of presentation of the mono- and stereo-viewing 

techniques between images and between visits. 

 

 

The planimetric results, in pixels, for any given ONH image acquired with any 

given camera were output in a text file (.txt) and comprised the ONH area, the 
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cup area, the NRR area, and the areas of the alpha and beta zones of the PPA. 

This output was given for each 5° segment commencing from the horizontal 

temporal meridian. The area in pixels of each of the 72 segments was summed to 

produce the ONH area for each image. All measurements were then scaled 

relative to that obtained with the Topcon TRC-EX camera. The scaling factor was 

the ratio of the ONH area of the Topcon TRC-EX image to that of the image 

acquired from the given other camera. The ONH area, the cup area, the NRR 

area, the areas of the alpha and beta zones of the PPA and the corresponding 

sectors were converted from pixels into mm² using the conversion factor for the 

TRC-EX camera, supplied by Topcon Corporation, Tokyo, Japan, of 1 pixel 

equals 8.36E-06 mm². 

 

The scaled images at each visit were then further corrected for the magnification 

derived from the Topcon TRC-EX camera (utilizing the Sony 950P 20° camera) 

and that from the given eye using Littman’s formula, t=p*q*s, where, t is the 

‘true diameter’ of the ONH derived from the measured ONH area, on the 

assumption that the ONH is circular; p is the correction factor of 3.0805 for the 

Topcon TRC-EX camera (Morgan 26/09/2013); q is a correction factor, which is 

dependent on the optical dimensions of the given eye and is based upon the 

keratometry readings and the mean spherical refractive error (Garway-Heath et 

al. 1998b); and s is the diameter of the ONH acquired by the Topcon TRC-EX 

camera. Secondly, the true area magnification of the ONH, t², was then derived 

from the ‘true diameter’, t, using the formula t²= (p*q) ² * s² (Rudnicka et al. 

1998). 
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The visual fields for the 27 individuals had all been obtained using Program 24-2 

and stimulus size III with the SITA Fast algorithm of the HFA 700 series. 

Following, and masked to the results of, the planimetry, the fields of the 27 

individuals were evaluated by a visual field expert (JMW) in terms of their 

reliability. Of the 27 individuals 4 were excluded on the basis of poor quality 

perimetry, due to one or more of the following features; a marked learning effect, 

≥15% incorrect responses to the false-positive catch trials, and poor fixation. Five 

of the individuals with glaucoma exhibited a progressive cataract which 

ultimately required extraction and IOL implantation. These 5 individuals were 

analysed separately from the remaining 18 individuals and the results were 

derived from the visual field series prior to surgery. 

 

The number of residual retinal ganglion cells at each stimulus location within 

Program 24-2 for the SITA Fast algorithm were calculated for each of the 23 

individuals from the equations of Harwerth and colleagues (Harwerth et al. 

2010). 

 

m= [0.054 * (ec * 1.32)] +0.9                   (1) 

b= [-1.5 * (ec * 1.32)] – 14.8                    (2) 

rgc= {[(s – 1.87) – b] / m } + 4.7              (3) 

SAP rgc= Σ10 ^ (rgc * 0.1)                       (4), 
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where m and b are the slope and y-intercept, respectively, for the function at a 

given retinal eccentricity ec; rgc is the number of RGCs, in dBs, in the given area 

of the retina which corresponds to the given stimulus location which exhibits a 

sensitivity of s, in dBs. The constant 1.32 in equations (1) and (2) is the ratio of 

human to monkey axial lengths. The constant 1.87 in equation (3) is a correction 

for the difference between the sensitivities obtained with the Full Threshold and 

SITA Fast algorithms and the constant 4.7 converts RGC density (somas/mm²) to 

the total number of RGCs in the area of the given retina corresponding to the 

given 6° x 6° degree inter-stimulus separation of the Program 24-2 stimulus grid 

(based on a conversion factor, for the human eye, of 3.5° of visual angle per mm 

of retinal distance). The total number of RGCs (SAP rgc) is obtained from the 

anti-log of the total number of RGCs summed across the given stimulus 

locations. 

 

The Single Field Analysis printouts of the HFA for each visit of each individual 

were scanned into .pdf format. The values of sensitivity at each given stimulus 

location within the given printout were extracted from the printout using 

Microsoft Paint 2010 (Microsoft Corporation, Redmond, WA) and saved in .tiff 

format. 

 

The images in .tiff format were each converted into .txt files using OmniPage 18 

(Nuance Communications, Inc., Burlington, MA). Each dB value was then 

converted into the corresponding RGC number via an application, produced using 

Eclipse which is a web-based workspace with an extensible plug-in system for 

http://en.wikipedia.org/wiki/Burlington,_Massachusetts
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customization using the programming language Java. The output of the 

application was derived as a .csv (comma separated values) file. 

 

The RGCs sub-serving the given stimulus location were mapped to the given 

ONH sector based upon the work of Garway-Heath and colleagues (Garway-

Heath et al. 2000b) and utilizing the ONH sectors of Wirtschafter and 

colleaugues (Wirtschafter et al. 1982) (Figure 6.2). The printout from the 

application contained the number of RGCs at each of the 54 locations of Program 

24-2 and for each of the ONH sectors and for the superior and the inferior 

quadrants (Figure 6.3). 
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Figure 6.2. The ONH sectors from Wirtschafter and colleagues (1982) (top) and the 

mapping of the visual field to the ONH sectors, to estimate the RGC number of a given 

ONH sector subserving the given stimulus location, based upon the work of Garway-Heath 

and colleagues (2000) (bottom). 

 
Overleaf: Figure 6.3. An example of the output from the application coded to calculate the 

RGC at each of the ONH sectors based upon the Program 24-2 stimulus grid of the HFA. 

 

Temporal 

Temporal 

Superior 

Superior 

Inferior 

Inferior 

Nasal 

Nasal 

Optic nerve head 

Right Eye 

Visual field 

Right Eye 
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field values

0 0 28 25 25 28 0 0 0

0 30 30 28 29 29 29 0 0

27 29 31 30 29 30 30 26 0

30 24 32 31 32 30 31 29 26

30 0 32 32 33 32 32 30 28

28 30 31 30 32 30 30 29 0

0 30 30 28 31 30 29 0 0

0 0 29 32 30 29 0 0 0

field eccentricity

29.69848 25.80698 22.84732 21.2132 21.2132 22.84732 25.80698 29.69848 34.20526

25.80698 21.2132 17.49286 15.29706 15.29706 17.49286 21.2132 25.80698 30.88689

22.84732 17.49286 12.72792 9.486833 9.486833 12.72792 17.49286 22.84732 28.4605

21.2132 15.29706 9.486833 4.242641 4.242641 9.486833 15.29706 21.2132 27.16616

21.2132 15.29706 9.486833 4.242641 4.242641 9.486833 15.29706 21.2132 27.16616

22.84732 17.49286 12.72792 9.486833 9.486833 12.72792 17.49286 22.84732 28.4605

25.80698 21.2132 17.49286 15.29706 15.29706 17.49286 21.2132 25.80698 30.88689

29.69848 25.80698 22.84732 21.2132 21.2132 22.84732 25.80698 29.69848 34.20526

field m

3.016908 2.739521 2.528557 2.412077 2.412077 2.528557 2.739521 3.016908 3.338151

2.739521 2.412077 2.146891 1.990374 1.990374 2.146891 2.412077 2.739521 3.101618

2.528557 2.146891 1.807246 1.576221 1.576221 1.807246 2.146891 2.528557 2.928664

2.412077 1.990374 1.576221 1.202415 1.202415 1.576221 1.990374 2.412077 2.836404

2.412077 1.990374 1.576221 1.202415 1.202415 1.576221 1.990374 2.412077 2.836404

2.528557 2.146891 1.807246 1.576221 1.576221 1.807246 2.146891 2.528557 2.928664

2.739521 2.412077 2.146891 1.990374 1.990374 2.146891 2.412077 2.739521 3.101618

3.016908 2.739521 2.528557 2.412077 2.412077 2.528557 2.739521 3.016908 3.338151

field b

-73.603 -65.8978 -60.0377 -56.8021 -56.8021 -60.0377 -65.8978 -73.603 -82.5264

-65.8978 -56.8021 -49.4359 -45.0882 -45.0882 -49.4359 -56.8021 -65.8978 -75.956

-60.0377 -49.4359 -40.0013 -33.5839 -33.5839 -40.0013 -49.4359 -60.0377 -71.1518

-56.8021 -45.0882 -33.5839 -23.2004 -23.2004 -33.5839 -45.0882 -56.8021 -68.589

-56.8021 -45.0882 -33.5839 -23.2004 -23.2004 -33.5839 -45.0882 -56.8021 -68.589

-60.0377 -49.4359 -40.0013 -33.5839 -33.5839 -40.0013 -49.4359 -60.0377 -71.1518

-65.8978 -56.8021 -49.4359 -45.0882 -45.0882 -49.4359 -56.8021 -65.8978 -75.956

-73.603 -65.8978 -60.0377 -56.8021 -56.8021 -60.0377 -65.8978 -73.603 -82.5264

Number of Retinal Ganglion Cells

0 0 7547 6078 6078 7547 0 0 0

0 9797 12104 11171 12542 10873 8905 0 0

6890 10873 19734 24283 20982 17373 12104 6290 0

9797 0 32523 66390 80403 24283 15807 8905 5481

9797 0 32523 80403 97373 32523 17745 9797 6447

7547 12104 19734 24283 32523 17373 12104 8266 0

0 9797 12104 11171 15807 12104 8905 0 0

0 0 8266 11858 9797 8266 0 0 0

SAP_sigma= 983402.8760966102

RGC number in Quadrant 6 = 138736

RGC number in  Quadrant 11 = 100729

RGC number in Quadrants (10 11 12 13) = 346060

RGC number in Quadrants (4 5 6 7) = 300985

RGC number in sector 10 = 41187

RGC number in sector 12 = 123740

RGC number in sector 13 = 80403

RGC number in sector 4 = 89329

RGC number in sector 5 = 54854

RGC number in sector 7 = 18064  

 

Number of RGCs sub-

serving at each stimulus 

eccentricity 

b at each stimulus 

eccentricity 

Sensitivity (dB) 

m at each stimulus 

eccentricity 

Stimulus eccentricity (°) 

Number of RGCs 

sub-serving each 

sector and quadrant 
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6.4 Results 

Observer ‘A’ took 1.2 hours to complete the planimetry of the 27 individuals and 

Observer ‘B’ 3.1 hours. The median (lower and upper quartiles; range) of the 

time taken to complete the planimetry for each of the images emanating from the 

second photographic visit of the time series, by diagnostic outcome, by observer 

and by viewing technique, for the 23 individuals with glaucoma (top) and for the 

4 individuals (bottom) with ocular hypertension together with the mean of the 

differences between the two observers, and the corresponding 95% limits of 

agreement, is shown in Table 6.3. 

Table 6.3. The median (lower and upper quartiles; range) of the times (minutes) to complete 

planimetry of the 23 images acquired at the second photographic visit, by diagnosis, by 

observer and by viewing technique, together with the mean of the differences between the 

two observers, and the corresponding 95% limits of agreement. 

 

The time to complete the planimetry for the individuals with glaucoma was 

similar for the two viewing techniques; however, it was notably longer for each 

technique for Observer ‘B’ compared to Observer ‘A’. 

 

Diagnosis 
Time for mono-viewing 

(minutes) 

Time for stereo-viewing  

(minutes) 

Observer ‘A’ 
Glaucoma 

 

0.39 

(0.30, 0.44; 0.23 to 1.10)  

0.43 

(0.35, 0.47; 0.20 to 1.15) 

Non-glaucoma 
0.45 

(0.39, 0.47; 0.33 to 0.48) 

0.43 

(0.42, 0.44; 0.40 to 0.44) 

Observer ‘B’ 
Glaucoma 

 

1.04 

(0.46, 1.49; 0.26 to 4.43) 

1.05 

(0.49, 1.32; 0.21 to 2.38) 

Non-glaucoma 
0.55 

(0.48, 1.31; 0.41 to 2.06) 

0.52 

(0.50, 1.41; 0.48 to 2.30) 

Between-observer difference (‘B’-‘A’) to complete planimetry 

Glaucoma 

 

-0.80 

(-0.94 to 2.53) 

0.57 

(-0.66 to 1.80) 

Non-glaucoma 
0.59 

(-1.10 to 2.27) 

0.68 

(-1.35 to 2.70) 
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The descriptive statistics (median, upper and lower quartiles; range) for the true 

values of the ONH area, NRR area, cup area, ONH diameter, and CDR for the 23 

of the 27 individuals who had undertaken perimetry reliably, by diagnosis, by 

observer and by viewing technique, are given in Tables 6.4. 

 

Individuals with glaucoma (20) 

Feature 
Observer A Observer B 

Mono Stereo Mono Stereo 

ONH  

area (mm
2
) 

2.37 

(2.09, 2.66; 

1.27 to 3.34) 

2.38 

(2.11, 2.67; 

1.35 to 3.39) 

2.10 

(1.73, 2.39; 

1.12 to 2.87) 

2.09 

(1.71, 2.40; 

1.14 to 3.15 

NRR 

 area (mm
2
) 

1.40 

(1.07, 1.56; 

0.28 to 2.19) 

1.30 

(0.95, 1.49; 

0.28 to 2.35) 

1.03 

(0.77, 1.28; 

0.43 to 1.92) 

1.00 

(0.78, 1.29; 

0.50 to 1.84) 

Cup  

area (mm
2
) 

1.01 

(0.78, 1.33; 

0.20 to 1.63) 

1.09 

(0.74, 1.47; 

0.20 to 1.89) 

0.98 

(0.71, 1.21; 

0.15 to 1.94) 

0.98 

(0.72, 1.23; 

0.13 to 1.89) 

ONH  

diameter 

(mm) 

1.54 

(1.44, 1.63; 

1.13 to 1.83) 

1.54 

(1.45, 1.63; 

1.16 to 1.84) 

1.45 

(1.31, 1.55; 

1.06 to 1.69) 

1.45 

(1.31, 1.55; 

1.07 to 1.77) 

CDR 

0.67 

(0.58, 0.72; 

0.33 to 0.90) 

0.67 

(0.62, 0.76; 

0.34 to 0.92) 

0.70 

(0.64, 0.74; 

0.31 to 0.89) 

0.70 

(0.63, 0.76; 

0.28 to 0.87) 

Individuals with ocular hypertension (3) 

Feature 
Observer A Observer B 

Mono Stereo Mono Stereo 

ONH  

area (mm
2
) 

2.63 

(2.59, 2.71; 

2.51 to 3.34) 

2.69 

(2.61, 2.78; 

2.54 to 3.80) 

2.33 

(2.29, 2.50; 

2.27 to 2.87) 

2.35 

(2.28, 2.42; 

2.25 to 2.70) 

NRR 

 area (mm
2
) 

1.46 

(1.43, 1.47; 

1.25 to 2.22) 

1.41 

(1.33, 1.53; 

1.10 to 2.10) 

1.14 

(1.10, 1.22; 

0.99 to 1.51) 

1.15 

(1.05, 1.30; 

0.93 to 1.37) 

Cup  

area (mm
2
) 

1.15 

(1.13, 1.29; 

0.83 to 1.70) 

1.41 

(1.20, 1.55; 

1.70 to 0.95) 

1.21 

(1.16, 1.28; 

0.95 to 1.70) 

1.20 

(1.10, 1.27; 

1.65 to 1.01) 

ONH  

diameter 

(mm) 

1.62 

(1.61, 1.64; 

1.58 to 1.83) 

1.64 

(1.62, 1.67; 

1.59 to 1.95) 

1.53 

(1.51, 1.58; 

1.51 to 1.69) 

1.53 

(1.51, 1.55; 

1.50 to 1.64) 

CDR 

0.67 

(0.66, 0.69; 

0.52 to 0.73) 

0.68 

(0.67, 0.73; 

0.61 to 0.77) 

0.72 

(0.69, 0.74; 

0.64 to 0.77) 

0.72 

(0.68, 0.73; 

0.66 to 0.78) 
Table 6.4. The descriptive statistics (median, upper and lower quartiles; range) for the true 

values of the ONH area, NRR area, cup area, ONH diameter, and CDR for the 20 

individuals with glaucoma (top) and for the 3 individuals with ocular hypertension (bottom), 

by observer and by viewing technique. 
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The between-observer difference in the NRR area (mm
2
) at baseline between 

Observer B and A against the mean of the NRR area (mm
2
) derived by the two 

observers is given in Figure 6.4. 

Figure 6.4. The between-observer difference in the NRR area (mm
2
) at baseline between 

Observer B and A against the mean of the NRR area (mm
2
) derived by the two observers. 

The solid line indicates the mean of the differences and the dotted line the 95% limits of 

agreement. 

 

Observer A tended to overestimate the extent of the NRR area compared to 

Observer B (mean and median of the differences -0.245 mm
2 

and -0.251 mm
2
,
 

respectively). This between-observer difference was approximately 21% of the 

median NRR area averaged between the two observers. 

 

The true NRR area (mm²) against the true ONH area (mm²) at the baseline 

photographic visit by observer for the 20 individuals with glaucoma, and for the 3 

individuals with ocular hypertension, is given in Figure 6.5 (top) for ‘Observer A’ 

and in Figure 6.5 (bottom) for ‘Observer B’. 
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Figure 6.5. The true NRR area (mm²) against the true ONH area (mm²) at the baseline 

photographic visit by observer for the 23 individuals who had undertaken perimetry 

reliably (top) Observer A; (bottom) Observer B. The diamonds represent the 20 individuals 

with glaucoma (the filled diamonds indicate those with progressive cataract) and the filled 

circles the 3 individuals with ocular hypertension. 

 

The VFI (%) at the baseline visual field examination against the true NRR area 

(mm²) at the baseline photographic visit for the 20 individuals with glaucoma, 

and for the 3 individuals with ocular hypertension, is given in Figure 6.6 (top) for 

‘Observer A’ and in Figure 6.6 (bottom) for ‘Observer B’. The VFI declined 
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(worsened) in a curvilinear manner with reduction in the NRR area derived by 

each observer. 

 

 

 
Figure 6.6. The VFI (%) at the baseline visual field examination against the true NRR area 

(mm²) at the baseline photographic visit for the 23 individuals for ‘Observer A’ (top) and 
‘Observer B’ (bottom). The diamonds represent the 20 individuals with glaucoma (the filled 

diamonds indicate those with progressive cataract) and the filled circles the 3 individuals 

with ocular hypertension. 

 

The MD (dB) at the baseline visual field examination against the true NRR area 

(mm²) at the baseline photographic visit for the 20 individuals with glaucoma, 
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and for the 3 individuals with ocular hypertension, is given in Figure 6.7 (top) for 

‘Observer A’ and Figure 6.7 (bottom) for ‘Observer B’. The MD decreased 

(worsened) in a curvilinear manner with reduction in the NRR area derived by 

each observer. 

 

 

Figure 6.7. The MD (dB) at the baseline visual field examination against the true NRR area 

(mm²) at the baseline photographic visit for the 23 individuals for ‘Observer A’ (top) and 
‘Observer B’ (bottom). The diamonds represent the 20 individuals with glaucoma (the filled 

diamonds indicate those with progressive cataract) and the filled circles the 3 individuals 

with ocular hypertension. 
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Figure 6.8. The number of RGCs (millions) at the baseline visual field examination against 

the true NRR area (mm²) at the baseline photographic visit for the 23 individuals for 

‘Observer A’ (top) and ‘Observer B’ (bottom). The diamonds represent the 20 individuals 

with glaucoma (the filled diamonds indicate those with progressive cataract) and the filled 

circles the 3 individuals with ocular hypertension. 

 

 

The number of RGCs (millions) at the baseline visual field examination against 

the true NRR area (mm²) at the baseline photographic visit for the 20 individuals 

with glaucoma, and for the 3 individuals with ocular hypertension, is given in 

Figure 6.8 (top) for ‘Observer A’ and Figure 6.8 (bottom) for ‘Observer B’. The 
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number of RGCs decreased in a more linear manner with reduction in the NRR 

area derived by each observer. 

 

The between-observer difference in the proportionate change in the NRR area 

(%) at baseline between Observer B and A against the mean of the proportionate 

change in the NRR area (%) derived by the two observers is given in Figure 6.9. 

The mean of the differences in the proportionate changes between the two 

observers was -7.9% suggesting that Observer A identified less change in the 

NRR. However, this latter assumption was influenced by two notable outliers in 

the distribution of differences and the median of the differences was -1.8% 

indicating a much closer between-observer agreement that the mean in the 

identification of progressive change in the NRR. 

 

 
Figure 6.9. The between-observer difference in the proportionate change in the NRR area 

(%) at baseline between Observer B and A against the mean of the proportionate change in 

the NRR area (%) derived by the two observers. The solid line indicates the mean of the 

differences and the dotted line the 95% limits of agreement. 
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The frequency of visual field progression by trend-analysis (the statistical 

significance of the slopes of the VFI and MD against time to follow-up) and by 

event-analysis (EMGT GPA progression criteria) amongst the 23 individuals is 

shown in Table 6.5. Four individuals exhibited visual field progression by two or 

more of the three criteria and four by one criterion, alone. 

 

Criteria Visual field progression 

MD 1 

VFI 1 

EMGT GPA 2 

MD and VFI 2 

MD and EMGT GPA - 

VFI and EMGT GPA - 

MD, VFI and EMGT GPA 2 

Table 6.5. The frequency of visual field progression by trend-analysis (the statistical 

significance of the slopes of the VFI and MD against time to follow-up) and by event-

analysis (EMGT GPA progression criteria) amongst the 23 individuals. 

 

 

The proportionate change in VFI (%) from the baseline to the last visit against the 

corresponding proportionate change in the NRR (%), for each observer, is 

presented in Figure 6.10. There was no relationship between the proportionate 

change in the VFI, derived by either observer, and the proportionate change in the 

NRR area. 
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Figure 6.10. The proportionate change (%) in VFI from the baseline to the last visit against 

the corresponding proportionate change in the NRR (%), for Observer A (top) and 

Observer B (bottom). The diamonds represent the 20 individuals with glaucoma (the filled 

diamonds indicate those with progressive cataract) and the circles the 3 individuals with 

ocular hypertension. The red circles represent those exhibiting a statistically significant 

negative slope (p<0.5%) of the VFI against time to follow-up. 
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The proportionate change in MD (%) from the baseline to the last visit against the 

corresponding proportionate change in the NRR (%), by observer, is presented in 

Figure 6.11. There was no relationship between the proportionate change in the 

MD, derived by either observer, and the proportionate change in the NRR area. 

 

The proportionate change in the number of RGCs (%) from the baseline to the 

last visit against the corresponding proportionate change in the NRR (%), by 

observer, is presented in Figure 6.12. There was also no relationship between the 

proportionate change in the number of RGCs, derived by either observer, and the 

proportionate change in the NRR area. 

 

The proportionate change from the baseline to the last visit in the number of 

RGCs for the superior and inferior sectors, respectively, against the 

corresponding proportionate change in the NRR (%), is given in Figures 6.13 and 

6.14. There was no relationship, for either sector, between the proportionate 

changes in the NRR, derived by either observer, and the proportionate changes in 

the number of RGCs. The proportionate change in VFI and the MD could not be 

calculated for the four sectors owing to the proprietary nature of the age-corrected 

normal values. 
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Figure 6.11. The proportionate change in MD (%) from the baseline to the last visit against 

the corresponding proportionate change in the NRR (%), for Observer A (top) and 

Observer B (bottom). The diamonds represent the 20 individuals with glaucoma (the filled 

diamonds indicate those with progressive cataract) and the circles the 3 individuals with 

ocular hypertension. The red circles represent those exhibiting a statistically significant 

negative slope (p<0.5%) of the VFI against time to follow-up; the orange circles those 

individuals with a statistically significant negative slope (p<0.5%) for the MD against time 

to follow-up; and the green circles those individuals with a statistically significant negative 

slope (p<0.5%) of both the VFI and the MD against time to follow-up. 
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Figure 6.12. The proportionate change in the number of RGCs (%) from the baseline to the 

last visit against the corresponding proportionate change in the NRR (%), for Observer A 

(top) and Observer B (bottom). The diamonds represent the 20 individuals with glaucoma 

(the filled diamonds indicate those with progressive cataract) and the circles the 3 

individuals with ocular hypertension. The red circles represent those exhibiting a 

statistically significant negative slope (p<0.5%) of the VFI against time to follow-up; the 

orange circles those individuals with a statistically significant negative slope (p<0.5%) for 

the MD against time to follow-up; the green circles those individuals with a statistically 

significant negative slope (p<0.5%) of both the VFI and the MD against time to follow-up; 

the purple circles those individuals with a statistically significant negative slope (p<0.5%) of 

both the VFI and the MD against time to follow-up and ‘likely progression’ with the EMGT 

GPA criteria and the blue circles those individuals exhibiting ‘likely progression’ with the 
EMGT GPA criteria. 
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Figure 6.13. The proportionate change in the superior number of RGCs (%) from the 

baseline to the last visit against the corresponding proportionate change in the superior 

NRR area (%), for Observer A (top) and Observer B (bottom). The diamonds represent the 

20 individuals with glaucoma (the filled diamonds indicate those with progressive cataract) 

and the circles the 3 individuals with ocular hypertension. 
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Figure 6.14. The proportionate change in the inferior number of RGCs (%) from the 

baseline to the last visit against the corresponding proportionate change in the inferior NRR 

area (%), for Observer A (top) and Observer B (bottom). The diamonds represent the 20 

individuals with glaucoma (the filled diamonds indicate those with progressive cataract) and 

the circles the 3 individuals with ocular hypertension. 

 

 

The between-observer difference in the proportionate change of the NRR area 

(%) against the time interval (years) is given in Figure 6.15. 
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Figure 6.15. The between-observer difference in the proportionate change of the NRR area 

(%) against the time interval (years). The diamonds represent the 20 individuals with 

glaucoma (the filled diamonds indicate those with progressive cataract) and the circles the 3 

individuals with ocular hypertension. The red circles represent those exhibiting a 

statistically significant negative slope (p<0.5%) of the VFI against time to follow-up; the 

orange circles those individuals with a statistically significant negative slope (p<0.5%) for 

the MD against time to follow-up; the green circles those individuals with a statistically 

significant negative slope (p<0.5%) of both the VFI and the MD against time to follow-up; 

the purple circles those individuals with a statistically significant negative slope (p<0.5%) of 

both the VFI and the MD against time to follow-up and ‘likely progression’ with the EMGT 
GPA criteria and the blue circles those individuals exhibiting ‘likely progression’ with the 
EMGT GPA criteria. 
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6.5 Discussion 

The results indicate a weak curvilinear association between structure (defined as 

the extent of the NRR area and delineated by manual stereo-digital planimetry 

using a floating cursor) and function (defined separately in terms of the visual 

field indices, MD and VFI). A slightly stronger, but linear, association was 

present between NRR and residual RGC count. The outcomes of the planimetry, 

and hence the strengths of these various associations, varied between the two 

ophthalmologists. 

 

The results also indicate that there was no association between structural 

progression (defined in terms of a proportionate reduction in the NRR area and 

delineated by digital manual stereo-planimetry using a floating cursor) and 

functional progression (defined in terms of the proportionate change in the MD, 

the VFI and the residual RGCs count, respectively). The outcomes of the 

planimetry again varied between the two ophthalmologists. The association was 

not improved by the separate consideration of the superior and inferior sectors of 

the ONH. 

 

Considerable care had been taken to ensure that the images from the various 

photographic sources had been standardised between camera variations in image 

size (Chapter 4). All measurements from the various cameras were corrected for 

the magnification of the given camera, then standardised relative to the reference 

camera, and finally scaled to correct for refractive error based on an algorithm 

incorporating keratometry readings and mean spherical error. The images were 

then colour balanced relative to baseline image of the time series. 
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The dimensions of the optic disc ONH area (Table 6.4) and the relationship 

between the neuroretinal rim area and the cup area (Figure 6.5) are compatible 

with those generally accepted in the literature (Varma 1993; Garway-Heath and 

Hitchings 1998; Jonas et al. 1999; Hoffmann et al. 2007; Sanfilippo et al. 2009; 

Andersson et al. 2011; Cankaya and Simsek 2012). 

 

The weak curvilinear association between the visual field indices MD and VFI at 

baseline and the corresponding NRR area was expected given the derivation of 

these two indices from the logarithmic dB scale of perimetry. Nevertherless, it is 

contrary to the linear association with MD of r=0.57 (Saito et al. 2010). As would 

be expected, the association between visual field outcome expressed linearly in 

terms of residual RGCs count exhibited a linear function with NRR area. 

 

The extent of the disparity between the two consultant ophthalmologists, both of 

whom were trained to fellowship standard in glaucoma and whose sub-specialty 

was glaucoma, in terms of not only the qualitative analysis, but also the 

planimetry, was unexpected. The mean and median of the differences between 

ophthalmologists in the identification of the NRR area at baseline was 

approximately 21% of the median NRR area averaged across the two 

ophthalmologists. Clearly, appreciation of the subtle features of the glaucomatous 

ONH varies between ophthalmologists. The corresponding difference for the 

identification of progressive change in the NRR was approximately 4%. 

However, both ophthalmologists performed planimetry which resulted in an 

apparent improvement in the NRR in the same 11 cases. The improvement 

identified by Observer A was greater than 20% in 6 of these 11 cases and up to 
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10% in the remaining 5 cases. The corresponding improvement for Observer B 

was less than 10% in 6 cases and greater than or equal to 10% in the remaining 

five cases. These figures highlight the subjective nature of planimetry. It is not 

possible, of course, to separate a measured reduction in the NRR from a ‘true’ 

reduction and the corresponding between-observer evaluation cannot be 

undertaken. 

 

Any number of additional ophthalmologists could have been recruited to 

participate in the study. However, the study was not intended to determine 

differences between ophthalmologists in the qualitative and quantitative 

identification of glaucoma and progressive glaucoma. 

 

Digital stereo-planimetry was used as the ‘gold standard’ rather than mono-

planimetry, since the advantage of stereo-planimetry in the diagnosis of glaucoma 

has been well documented and was noted in the results described in Chapter 5. 

The use of a ‘floating cursor’ enhanced the visualization of the ONH features; 

however, the association between progressive functional and progressive 

structural damage was not seemingly improved by such a technique. 

 

The structural-functional associations were based upon the topographical 

mapping proposed by Garway-Heath which intern is based upon the ONH 

segmentation of Wirtschafter and colleaugues (Wirtschafter et al. 1982). 

Alternative models of ONH segmentation could have been used such as those of 

(Abramoff et al. 2007; Lee et al. 2010; Muramatsu et al. 2011; Fraz et al. 2012; 

Jiang et al. 2012a) however, the approach by Garway-Heath has become the ‘gold 
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standard’. Nevertheless, such segmentation has been defined by empirical 

observation and may, in itself, be a limiting factor to the structure and function 

relationship. 

 

The structural and functional progression was evaluated between the baseline and 

the most recent point in the time series to maximise the potential for deterioration 

in one or both outcomes. 

 

The lack of an association between progressive functional and progressive 

structural damage is dependent upon a number of factors including the quality of 

visual field examination and the number of individuals exhibiting progression of 

either modality within the cohort and the extent of any progression. The latter is 

influenced by the length of the time series in the given study and by the quality of 

the ophthalmological patient care. The length of the time series varied between 

the individuals in the cohort. However, there was no relationship between the 

apparent progression of either, or both, structural and functional outcomes and 

the length of the time series. The individuals in the cohort all attended a 

university teaching hospital under the care of a consultant ophthalmologist with 

an international reputation in glaucoma. 

 

Clearly, a weakness of the study was the sparsity of ONH images for any given 

individual relative to the number of visual field examinations. In addition, the 

ONH photography and visual field examination was not necessarily conducted on 

the same day. In order to obtain a realistic cohort for the study, it was necessary 

to include individuals with a maximum interval between the two techniques of up 
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to 12 months. The lack of a sufficient number of ONH images for any given 

individual prevented the calculation of the rate of NRR change with time. 

 

The ONH area and NRR area was calculated based on the assumption that each 

of these variables is a circle. The latter approach is consistent with other studies 

(Barkana 2007; Laemmer et al. 2007). However, the areas were each calculated 

from a composite of the individual seventy-two 5° sectors (Saito et al. 2010; 

Morgan et al. 2012). This technique is more sensitive to localized departures from 

the assumed circular nature of both the ONH and the NRR. Nevertheless this 

approach does not account for any theoretical between-individual ‘rotation’ of the 

ONH relative to the orientation at which the measurements are referenced to. 

However, cases of clinically detectable tilted discs were excluded from the 

cohort. 

 

Overall, the results from this chapter and those from Chapter 5 suggests that the 

subjective evaluation of the ONH in isolation, and expressed either qualitatively 

of quantitatively is insufficient for the optimum diagnostic sensitivity and 

specificity and for the evaluation of progressive loss. 
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Chapter 7 

 

Pointwise linear regression of residual retinal ganglion cell count 

 

7.1 Introduction 

The nature of the progressive structural and functional relationship in glaucoma 

remains inconclusive and the outcomes described in Chapter 6 failed to clarify 

the matter even when the functional outcome was considered in terms of the 

proportional reduction in the residual RGC based upon the visual field as a 

whole. 

 

Currently, there is no consensus on the optimum method to identify progressive 

visual field loss and, therefore, there is no accepted standard against which 

comparisons can be made. It was stated in Chapter 1 that progressive visual field 

loss can be evaluated using empirical clinical judgement, defect classification 

systems, trend-analysis (e.g., pointwise linear regression analysis [PLR]) and 

event-analysis (e.g., Guided Progression Analysis [GPA] based upon glaucoma 

change probability maps) (Ang et al. 2011; Rao et al. 2013b; Talbot et al. 2013). 

 

It was also stated in Chapter 1 that univariate linear regression analysis of the 

visual field outcome against time to follow-up can be based upon either a global 

summary measure of the visual field such as the visual field indices MD 

(Gardiner et al. 2012b; Polaczek-Krupa and Grabska-Liberek 2012), PSD (Ang et 

al. 2011; Rao et al. 2013a), VFI (Medeiros et al. 2012c; Hirasawa et al. 2013; 

Gros-Otero et al. 2014; Lee et al. 2014b) Diffuse Defect (DD) (Monhart et al. 
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2006) and Local Defect (LD) (Buerki 2007) or upon the outcome at each 

individual stimulus location such as the absolute value of sensitivity (Bengtsson 

et al. ; Iester et al. 2011) or of the Pattern Deviation value (Gardiner et al. 2011; 

Marin-Franch et al. 2014). A minimum of five reliable visual field examinations 

is required (McNaught et al. 1996; Artes et al. 2010; Teng et al. 2010; Azarbod et 

al. 2012). The technique is a 'within-individual’ analysis which does not depend 

upon the comparison with an established database of ‘stable’ patients. 

Progression is defined in terms of the statistical significance, and magnitude, of 

the slope of the function (Wild et al. 1993; McNaught et al. 1996; Viswanathan et 

al. 1998; Azarbod et al. 2012). 

 

As was discussed previously, the outcome of the visual field examination, the 

differential light sensitivity, is expressed in logarithmic units (dB) which is 

referenced to the maximum luminance of the stimulus. By definition, the dB scale 

is an exponential measure: a change of 3dB represents either a doubling or a 

halving of the stimulus luminance. Therefore, when the (functional) outcome 

from the visual field expressed in dB is plotted against the (structural) outcome 

from the ONH or RNFL expressed as a linear measure, the function is curvilinear 

(Malik et al. 2012; Medeiros et al. 2012a). For example, when the differential 

light sensitivity is plotted on a linear scale, identical increments or decrements in 

dB at differing levels of sensitivity exhibit differing increments or decrements. 

When the functional and structural outcomes are both plotted on either 

logarithmic or linear scales, the relationship is essentially linear at any given 

eccentricity. 
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Figure 7.1. The relationship between the various transformations of the mean differential 

light sensitivity recorded with stimulus size III using Program 24-2 and specified in dB. Note 

the differences in the scaling of the various axis. 

 

 

A more appropriate expression of the visual field outcome maybe that of residual  

RGC count which is a linear entity. Such an expression should overcome the 
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limitation of the logarithmic dB scale in expressing the linear magnitude of the 

functional loss corresponding to a small dB reduction at high levels of differential 

light sensitivity and the overestimation of the linear magnitude, when expressed 

in dB, at the low levels of differential light sensitivity (Garway-Heath et al. 

2000a; Medeiros et al. 2013) (Figure 7.1). The use of a linear entity based upon 

the number of the residual RGCs for the evaluation of progressive visual field 

loss should, therefore, identify progressive loss in previously normal or near 

normal areas of the visual field ‘earlier’ than that based upon the corresponding 

outcome defined in terms of the logarithmic dB scale and lessen the magnitude of 

the apparent progression in moderate to severe glaucoma. Such an approach 

would provide a more equivalent relationship with the progressive structural 

outcome. 

 

7.2 Aim 

The aim of the study was to compare, at each stimulus location, the outcome of 

univariate linear regression of differential light sensitivity (expressed in dBs) 

against time to follow-up with that of the corresponding residual ganglion cell 

count against time to follow-up in the (early) identification of progressive visual 

field loss for a long-time series. 

 

7.3 Methods 

 

The medical records of 1000 consecutive patients who had attended the 

Glaucoma Clinics at the Cardiff Eye Unit, UHW, between 1999 and 2014, were 

searched using the electronic database ‘Open Eyes’. The minimum criteria for 

inclusion were a diagnosis of primary open-angle glaucoma, in the absence of 
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any concomitant ocular disease other than age-related cataract, and 5 visual field 

examinations, undertaken reliably, over a minimum follow-up of 5 years. 

 

Perimetry had been undertaken with the Humphrey Field Analyzer Mark II, using 

either the SITA Fast or the SITA Standard strategy and Program 24-2. The 

reliability criteria were ≥15% incorrect responses to the false-positive catch trials, 

≥20% incorrect responses to the false-negative catch trials and ≥20% fixation 

losses. 

 

The search yielded a total of 112 patients. The results of the visual field 

examinations for these patients were then retrieved from the hard drives of the 

HFA 700 series perimeters, which had been, or were still, operational in the 

Department of Orthoptics from 1999 onwards. The Single Field Analysis 

printouts for each patient were then scanned and archived in .pdf format. 

 

The corresponding global indices (MD, PSD and VFI) were recorded and 

archived from each visual field examination for each individual. An ordinary 

least squares univariate linear regression analysis was separately undertaken for 

each of the three visual field indices, MD, PSD and VFI, and for the global 

residual RGC count using the Statistical Analysis System 9.4 (SAS, Cary NC). 

The output contained the estimate of the slope, the lower and upper 95% 

confidence limits of the estimate and the statistical significance of the slope 

(Figure 7.2). 
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Figure 7.2. The output of the univariate linear regression analysis illustrating the slope of 

each of the three visual field indices, MD, PSD and VFI, and of the global residual RGC 

count against time to follow-up; the lower and upper 95% confidence limits of the estimate 

and the statistical significance of the estimate, at each stimulus location arranged in 

Program 24-2 format. Outcomes exhibiting a statistical significant estimate of the slope are 

highlighted in yellow. 

 

 

The dB values of sensitivity at each given stimulus location for each given Single 

Field Analysis printout were then extracted and converted into the corresponding 

RGC value using the identical methods to those described in Chapter 6 (page 145 

to page 149). The values of sensitivity at each given stimulus location within the 

given printout were firstly extracted from the printout using Microsoft Paint 2010 

(Microsoft Corporation, Redmond, WA) and saved in .tiff format. The images in 

.tiff format were then converted into .txt files using OmniPage 18 (Nuance 

Communications, Inc., Burlington, MA). Each dB value was then converted into 

http://en.wikipedia.org/wiki/Burlington,_Massachusetts
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the corresponding RGC number using the formulae of Harwerth et al, (Harwerth 

et al. 2005; Harwerth et al. 2010) which is given in full in Chapter 6, via an 

application programmed in Java and outputted as a .csv file. 

 

The dB and residual RGC count at each stimulus location in each eye were then 

separately regressed against time to follow-up using ordinary least squares 

univariate linear regression analysis. The calculation was undertaken using the 

same Statistical Analysis System 9.4. 

 

The output contained the estimate of the slope, the lower and upper 95% 

confidence limits of the estimate and the statistical significance of the estimate at 

each stimulus location arranged in a Program 24-2 format for the dB values and 

the residual RGC count, respectively (Figures 7.3a and b). 
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Figure 7.3a. The slope of the univariate linear regression of differential light sensitivity (dB) 

against time to follow-up, the lower and upper 95% confidence limits of the estimate and the 

statistical significance of the estimate, at each stimulus location arranged in Program 24-2 

format. 

 

Figure 7.3b. The slope of the univariate linear regression of residual RGC count against 

time to follow-up, the lower and upper 95% confidence limits of the estimate and the 

statistical significance of the estimate, at each stimulus location arranged in Program 24-2 

format. 
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A further output contained the magnitude of the statistical significance associated 

with the estimate of the slope at each location arranged in Program 24-2 format 

and denoted in terms an asterisk where ‘*’ indicated p<0.05; ‘**’ p<0.01; ‘***’ ; 

p<0.001; and ‘****’ p<0.0001 (Figure 7.4). 

Figure 7.4. An illustration of the significance printout, is given in Figures 7.3. The statistical 

significance of the estimate of the slope of the univariate linear regression of differential 

light sensitivity (dB) (top) and residual RGC count (bottom) against time to follow-up 

arranged in Program 24-2 format for the individual presented in Figures 7.3 a and b. ‘*’ 
indicates p<0.05; ‘**’ p<0.01; ‘***’ ; p<0.001; and ‘****’ p<0.0001. 
 

7.4 Results 

The visual fields from one eye of each individual were pseudo-randomly selected 

for the analysis to ensure an equal distribution between right and left eyes. The 

summary statistics (median, lower and upper quartiles; range) for the age and 

gender characteristics of the 112 individuals; together with the number of visual 

field examinations; the duration of visual field follow-up; the visual field indices 

and the residual RGC count of the baseline visual field in the randomly selected 

eye, are given in Table 7.1. 
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Age (years) 
64.9 

(57.5, 71.8; 32.2 to 82.9) 

Gender (male : female) 44 : 68 

Number of visual field examinations 
8.0 

(6.0, 9.0; 5.0 to 15.0) 

Duration of visual field follow-up 

(years) 

9.0 

(7.3, 9.9; 5.0 to 14.5) 

Mean Deviation (dB)  

at the baseline visit 

-2.79 

(-6.17, -1.08; -25.10 to 1.46) 

Pattern Standard Deviation (dB)  

at the baseline visit 

2.42  

(1.77, 5.66; 1.03 to 13.73) 

Visual Field Index (%)  

at the baseline visit 

96  

(87.8, 98.0; 26.0 to 100.0) 

Number of residual RGCs  

at the baseline visit 

752796  

(579123, 953804; 90199 to 8714052) 
Table 7.1. The summary statistics (median, lower and upper quartiles; range) for the age 

and gender characteristics of the 112 individuals together with the number of visual field 

examinations; the duration of visual field follow-up; the visual field indices and the residual 

RGC count of the baseline visual field in the randomly selected eye. 

 

7.4.1 Global approach 

Of the 112 individuals, 70 exhibited a statistically significant progressive slope, 

in the designated eye, for one or more of the visual field indices including the 

global residual RGC count. The outcomes are shown in Tables 7.2 and 7.3.  

 

Thirty-two individuals exhibited a statistically improving slope in the designated 

eye for one or more of the visual field indices including the global residual RGC 

count; however, only seven of these slopes were statistically significant. The 

outcomes are shown in Tables 7.3 and 7.4. 

Eye  

(number of 

individuals) 

Mean 

Deviation 

Pattern Standard 

Deviation 

Visual Field 

Index 

Residual 

RGC count 

Right eyes 

(27) 
20/27 19/27 16/27 16/27 

Left eyes 

(43) 31/43 20/43 30/43 35/43 
Table 7.2. The number of statistically significant progressive slopes by each of the various 

visual field indices and by the global residual RGC count for each eye. 
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Index 

(unit/ year) 
Progressive slope 

Statistically significant 

progressive slope 
Improving slope  

Statistically significant 

‘improved’ slopes 

Mean Deviation 

(dB/ year)  

-0.39 

(-0.64, -0.17; 

-2.58 to -0.01) 

-0.56 

(-0.85, -0.34; 

-2.32 to -0.15) 

0.12 

(0.06,0.20; 

0.02 to 1.20) 

0.28 

(0.24, 0.74; 

0.20 to 1.20) 

Pattern Standard 

Deviation 

(dB/ year)  

0.16 

(0.07,0.38; 

0.0 to 1.47) 

0.26 

(0.16,0.66; 

0.04 to 1.47) 

-0.10 

(-0.22, -0.04; 

-1.21 to -0.01) 

-1.07 

(-1.14, -0.62; 

-1.21 to -0.16) 

Visual Field Index 

(%/year) 

-0.81 

(-1.92, -0.19; 

-7.11 to -0.01) 

-1.65 

(-2.50,-0.66; 

-6.78 to -0.07) 

0.15 

(0.04, 0.34; 

0.01 to 3.01) 

0.61 

(0.42, 1.25; 

0.03 to 3.01) 

Residual RGC count 

(count/ year)  

-24951 

(-36600, -10685; 

 -255007 to -519) 

-33859 

(-42693,-26598; 

-98539 to -8595) 

12563 

(7675,17602; 

92 to 127890) 

11660 

Table 7.3. The summary statistics (median, lower and upper quartiles; range) of the slope of the given visual field index against time to follow-up for the total 

number of progressive slopes, of statistically significant progressive slopes, of improving slopes, and of statistically significant improving slopes. 
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Eye  

(number of 

individuals) 

Mean 

Deviation 

Pattern Standard 

Deviation 

Visual Field 

Index 

Residual 

RGC count 

Right eyes 

(5) 
2/5 2/5 2/5 1/5 

Left eyes 

(2) 1/2 1/2 2/2 0/2 
Table 7.4. The number of statistically significant improving slopes by each of the various 

visual field indices and by the global residual RGC count for each eye. 

 

 

The relationship of the number of the statistically significant progressive slopes 

between the various indices, are shown in Figure 7.5 and in tabular format in 

Table 7.5. 

 

 
Figure 7.5. The relationship of the number of statistically significant progressive slopes 

between the various indices. Turquoise represents the statistically significant progressive 

slopes with the MD index; green, the statistically significant progressive slopes with the PSD 

index; orange, the statistically significant progressive slopes with the global residual RGC 

count; and blue, the statistically significant progressive slopes with the VFI index. 
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Twenty individuals exhibited a statistically significant progressive slope with all 

four measures; 11 individuals with the residual RGC count, MD and VFI; and 13 

significant slopes with residual RGC count and MD. 

 

Technique of progression 
Frequency 

(70/112) 

PSD 5 

VFI 3 

RGC 3 

MD, PSD 2 

MD, VFI 1 

MD, RGC 13 

PSD,VFI 4 

PSD, RGC 1 

VFI,RGC 1 

MD, PSD, VFI 4 

MD, PSD, RGC 1 

MD, VFI, RGC 11 

PSD, VFI, RGC 1 

MD, PSD, VFI , RGC 20 

Total 70 
Table 7.5. The outcomes illustrated in Figure 7.5, expressed in tabulated format. 

 

A statistically significant decline in the residual RGC count together with a 

statistically significant decline in either or both the PSD and the VFI indices 

could be construed as progression of a localized visual field defect. However, the 

data in Table 7.5 do not seem to support this notion. 

 

7.4.2 Pointwise approach 

Of the 112 individuals, 102 exhibited a total of 1312 statistically significant 

negative (progressive) slopes with either, or both, the univariate linear pointwise 

regressions of the absolute value of sensitivity (dB) and the residual RGC count 

against time to follow-up. The summary statistics (median, lower and upper 
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quartiles; range) of these 1312 locations is given in Table 7.6. Of the 1100 

locations exhibiting a statistically significant negative slope common to both 

regression outcomes, 166 exhibited a greater statistical significance for the 

residual RGC count and 108 for the absolute value of sensitivity. One hundred 

and seven locations exhibited a statistically negative significant slope for the 

residual RGC count, only, and 111 for the absolute value of sensitivity, only. 

 

Total number of locations 

associated with a statistically 

significant negative slope 

Number of 

locations 

Median 

(lower and upper 

quartiles; range) 

Total 1312 
10.0 

(3.0,20.8; 0.0 to 47.0) 

Absolute value of sensitivity (dB) 1206 
8.5 

(3.0, 18.8; 0.0 to 46.0) 

Residual RGC count 1202 
8.0 

(2.3, 17.8; 0.0 to 47.0) 

Common to both outcomes 1100 
7.0 

(2.0, 16.0; 0.0 to 46.0) 

Common locations with equal 

statistical significance 
821 

6.0 

(2.0, 11.0; 0.0 to 34.0) 

Greater statistical significance: 

Absolute value of sensitivity (dB) 
108 

0.0 

(0.0, 1.0; 0.0 to 9.0) 

Greater statistical significance: 

Residual RGC count  
166 

0.5 

(0.0, 2.0; 0.0 to 16.0) 

Additional locations: Absolute 

value of sensitivity (dB) 
111 

0.0 

(0.0, 1.0; 0.0 to 10.0) 

Additional locations: 

Residual RGC count  
107 

0.5 

(0.0, 1.0; 0.0 to 8.0) 
Table 7.6.The summary statistics (median, lower and upper quartiles; range) of the number 

of locations for the 102 individuals associated with a statistically significant negative slope 

for the absolute values of sensitivity (dB) and for the residual RGC count, against time to 

follow-up. 

 

 

The number of individuals against the number of statistically significant negative 

slopes for each regression outcome is given in Figure 7.6. Both techniques 

exhibited comparable results. 
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Figure 7.6. The number of individuals against the number of statistically significant negative 

slopes for each regression outcome. 

 

The number of individuals by the number of additional statistically significant 

negative slopes for each regression outcome is given in Figure 7.7. Similarly, the 

two techniques exhibited comparable results. Approximately 80% of the 

additional locations with statistically significant negative slopes were contiguous 

with other locations exhibiting statistically significant negative slopes. 
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Figure 7.7. The number of individuals against the number of additional statistically 

significant negative slopes for each regression outcome. 

 

Of the 102 individuals with statistically significant negative slopes, 22 also 

exhibited one or more statistically significant positive slopes (median 2.0; lower 

and upper quartiles 1.0, 2.8; range 1.0 to 4.0). The median number of locations 

exhibiting negative slopes for these 22 individuals was 2.0 (lower and upper 

quartiles 1.0, 11.8; range 1.0 to 24.0 (Table 7.7). The relationship between these 

two outcomes amongst the 22 individuals is illustrated in Figures 7.8 and 7.9. 

 

Significant 

locations 

Residual 

RGC count 

(negative 

slope)  

Residual 

RGC count  

(positive 

slope) 

Negative 

slope dB 

Positive  

slope dB 

Total 

locations 
120 38 127 36 

Median 

(lower, 

upper 

quartiles; 

range 

2.0 

(1.0, 9.5;  

0.0 to 24.0) 

2.0 

(1.0, 2.0;  

0.0 to 3.0) 

2.0 

(1.0, 10.0;  

0.0 to 25.0) 

1.0 

(1.0, 2.0;  

1.0 to 3.0) 

Table 7.7. The summary statistics (median, lower and upper quartiles; range) of the 

distributions of the statistically significant negative and positive slopes for residual RGC 

count, and for the absolute values of sensitivity (dB), against time to follow-up, respectively, 

amongst the 22 individuals. 
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Figure 7.8. The relationship between the number of statistically significant negative slopes 

and the corresponding number of positive slopes for the absolute values of sensitivity (dB). 

The figure adjacent to a symbol indicates the number of overlapping data points. 

 

 

 
Figure 7.9. The relationship between the number of statistically significant negative slopes 

and the corresponding number of positive slopes for the residual RGC count. The figure 

adjacent to a symbol indicates the number of overlapping data points. 
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The number of locations exhibiting a statistically significant negative slope for 

each regression outcome, but with one outcome manifesting a more statistically 

significant slope compared to the other, by the mean of the absolute sensitivity at 

the two baseline more examinations is given in Figure 7.10. Within the 

limitations of the dataset, between a baseline mean of approximately 31dB to 

26dB inclusive, more statistically significant slopes were present for residual 

RGC count compared to that for absolute sensitivity. For baseline means between 

25.5dB to approximately 23dB, the proportions of more statistically significant 

slopes were similar between the two outcomes. Below a baseline mean of 

approximately 23dB, a difference in the magnitude of the statistical significance 

of the slopes between the two regression outcomes could not be discerned. 
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Figure 7.10. The number of locations exhibiting a statistically significant negative slope for each regression outcome, but with one outcome manifesting a more 

statistically significant slope compared to the other, by the mean of the absolute sensitivity at the two baseline examinations. 
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The number of additional locations exhibiting a statistically significant negative 

slope for one outcome compared to the absence of progression with the other 

outcome, by the mean of the absolute sensitivity at the two baseline examinations 

is given in Figure 7.11. Within the limitations of the dataset, between a baseline 

mean of approximately 31dB to 25.5dB inclusive, more additional locations with 

statistically significant slopes were present for residual RGC count compared to 

that for absolute sensitivity. For baseline means between 25dB to approximately 

22dB, a difference between the two outcomes could not be discerned. Below a 

baseline mean of approximately 22dB, more statistically significant slopes were 

present, overall, for the absolute value sensitivity. 

 

The summary statistics (median, lower and upper quartiles; range) of the absolute 

values of sensitivity (dB) averaged across Visits 1 and 2 is given in Table 7.8. 

 

 

Greater statistical significance Additional locations 

Absolute value 

of sensitivity 

(dB) 

Residual 

RGC count 

Absolute value 

of sensitivity 

(dB) 

Residual 

RGC count 

Number 

of 

locations 

108 166 107 111 

Baseline 

average 

Visits  

1 and 2 

26.3 

(24.0, 28.5; 

14.5 to 33.0) 

28.0 

(25.2,29.5; 

13.5 to 34.5 

26.0 

(19.3,30.0; 

0.0 to 33.5) 

27.5 

(25.0,29.5; 

8.5 to 33.5) 

Table 7.8. The summary statistics (median, lower and upper quartiles; range) of the 

absolute values of sensitivity (dB) averaged across Visits 1 and 2.  
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Figure 7.11. The number of additional locations exhibiting a statistically significant negative slope for one outcome compared to the absence of progression with the 

other outcome, by the mean of the absolute sensitivity at the two baseline examinations. Note the scaling of both the ordinate and the abscissa is different to that of 

Figure 7.10. 
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Of the 112 individuals, 10 individuals exhibited a total of 51 statistically 

significant positive slopes with either, or both, the univariate linear pointwise 

regressions of the absolute value of sensitivity (dB) and the residual RGC count 

against time to follow-up. The summary statistics (median, lower and upper 

quartiles; range) of these 51 locations is given in Table 7.9. 

 

Total number of locations 

associated with a statistically 

significant negative slope 

Number of 

locations 

Median 

(lower and upper 

quartiles; range) 

Total  51 
3.5 

(2.3, 4.0; 1.0 to 18.0) 

Absolute value of  sensitivity (dB) 40 
2.0  

(2.0, 3.5; 1.0 to 13.0)  

Residual RGC count 48 
3.0  

(2.0, 3.5; 1.0 to 18.0) 

Common to both outcomes 37 
2.0  

(2.0, 2.5; 1.0 to 13.0) 

Common locations with equal 

statistical significance 
32 

2.0 

(2.0, 2.5; 1.0 to 9.0) 

Greater statistical significance: 

Absolute value of sensitivity (dB) 
0 

0.0  

(0.0, 0.0; 0.0 to 0.0) 

Greater statistical significance: 

Residual RGC count  
5 

0.0  

(0.0, 0.0; 0.0 to 5.0) 

Additional locations: Absolute 

value of sensitivity (dB) 
3 

0.0 

(0.0, 0.5; 0.0 to 1.0) 

Additional locations: Residual 

RGC count  
11 

1.0  

(0.0, 1.0; 0.0 to 5.0) 
Table 7.9. The summary statistics (median, lower and upper quartiles; range) of the number 

of locations for the 10 individuals associated with a statistically significant positive slope for 

the absolute values of sensitivity (dB) and for the residual RGC count, against time to 

follow-up. 
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7.5 Discussion 

The results (Figures 7.10 and 7.11) generally indicate that the outcome of the 

univariate linear regression, at each stimulus location, of the residual ganglion 

cell count against time to follow-up identifies progression at higher levels of 

baseline sensitivity compared to the corresponding outcome of the differential 

light sensitivity (expressed in dB) against time to follow-up. This outcome was 

manifested by a greater statistical significance of the slope and/ or number of 

stimulus locations exhibiting progressive loss in the absence of progressive loss 

based upon the absolute values of sensitivity (dB). These results are in agreement 

with the hypothesis of Garway-Heath and colleagues (Garway-Heath et al. 

2000a).  

 

The outcomes of the univariate linear regression analyses at each stimulus 

location were evaluated in terms of the statistical significance of the slope rather 

than the magnitude of the slope, itself. The age-related decline in absolute 

sensitivity at each location in the normal eye is unknown. As a consequence, 

various empirical values have been proposed for the definition of progressive 

loss. A reduction in sensitivity of 1 dB/ year (approximately ten times the normal 

age-related decline compiled from cross-sectional data) with a statistical 

significance at p<0.01 at two or more locations corresponding to the RNFL 

distribution is considered to be ‘exclusive progression’ (Viswanathan et al. 1998; 

Manassakorn et al. 2006; Strouthidis et al. 2007; Heijl et al. 2009; Heijl et al. 

2013b; Nassiri et al. 2013; Anderson 2015). Alternatively, for stimulus locations 

beyond 15° eccentricity, a more conservative criterion of 2dB/ year at  p<0.01 or 

p<0.05 has been proposed to account for the increased within- and between-
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examination variability compared to the more central locations (Spry and Johnson 

2002; Artes et al. 2005; De Moraes et al. 2012b; Anderson 2015). The use of a 

less stringent significance level of p<0.05 and a reduction 0.5dB/ year increases 

the sensitivity to detect progressive loss at the expense of a reduction in 

specificity (Wilkins et al. 2005; De Moraes et al. 2012b). The Guidelines of the 

European Glaucoma Society (EGS 2008) consider a clinically significant rate of 

progression to be 2-4 dB/ year (Rossetti et al. 2010). The age-related decline, in 

the normal eye, of the residual RGC count at each location is also unknown. 

However, a decline of 7877 ganglion cells/ year (Medeiros et al. 2012b) across 

the central field, as a whole, has been proposed from a knowledge of the number 

of residual ganglion cell soma and the RNFL thickness. The magnitudes at each 

stimulus location of the statistically significant slopes for both regression 

outcomes, although available (Figures 7.3a and 7.3b) were not analysed given 

that they were not directly comparable and that the respective normal age-related 

decline is unknown for the residual RGC count. A knowledge of the age-related 

decline for each modality could be used to standardize each modality in terms of 

the ratio of the measured slope to the age-corrected slope. Such standardization 

would then permit a comparison of the rate of change compared to that of the 

normal for absolute sensitivity and for residual RGC count at each stimulus 

location for each individual. The next stage of the work will involve the 

derivation of the respective normal age-related declines, at each stimulus location 

obtained from cross-sectional data. 
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The slope of the univariate linear regression analysis for each of the visual field 

indices MD, PSD and VFI against to follow-up would be expected to 

approximate to zero in the normal eye in that each of these measures are age 

corrected. Progressive loss is identified by the presence of a statistically 

significant progressive slope and the magnitude of the slope varies across studies 

depending upon the characteristics of the cohort and the nature of the study. The 

median rate of statistically significant progression for the MD in the current study 

was -0.56dB/ year. This value lies within the range for the mean of -0.29dB/ year 

(Cho et al. 2012), to mean of -1.26dB/ year (Smith et al. 1996). The median rate 

of statistically significant progression for the VFI of -1.65%/ year in the current 

study was compatible with that for the mean of -1.30%/ year (Casas-Llera et al. 

2009). The median rate of statistically significant progression for PSD in the 

current study was 0.26dB/ year which is slightly less than that of 0.71dB/ year 

(Smith et al. 1996). The decline in residual RGC count of -33859 (lower quartile -

42693, upper quartile -26598)/ year is almost identical to that of -33369 cells/ 

year derived from SAP and OCT of the RNFL thickness, combined (Medeiros et 

al. 2012b). 

 

It can be conjectured that the relative lack of agreement between the global 

indices reinforces the need to considered progressive visual field loss in terms of 

each individual stimulus locations. 

 

A strength of the study was the relatively long time series of the visual field 

examinations (9.0 years; IQR 7.3, 9.9; range 5.0 to 14.5) and the corresponding 

large number of reliable visual field examinations within the time series (8.0 
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examinations; 6.0, 9.0; 5.0 to 15.0). A weakness of the study was the lack of a 

structural comparison (i.e., the optic nerve head and/ or RNFL thickness) over the 

same time series with which to validate the apparent visual field progression 

defined with either regression outcome. 

 

The outcome of the analysis derives from univariate regression analysis (i.e. trend 

analysis). The outcome could be compared to that derived from the GPA analysis 

that follows the EMGT progressive criteria (i.e. event analysis). However, the 

current version of the GPA software (Version 4.2) does not permit the integration 

of the outcomes from the SITA Standard and SITA Fast algorithms. 

 

Retinal ganglion cell soma and axon estimations were derived from the model of 

Harwerth (Harwerth et al. 2005; Harwerth et al. 2010) since the model has been 

used relatively extensively in the context of glaucoma (Medeiros et al. 2012a; 

Medeiros et al. 2012b; Medeiros et al. 2012c; Medeiros et al. 2012d; Medeiros et 

al. 2013). However, various other models of the cross-sectional structure and 

function relationship, based upon either RGC axonal thickness or density, could 

have been used including the linear models of Hood and Kardon (Hood et al. 

2007; Raza et al. 2011; Raza and Hood 2015), Harwerth (Garway-Heath et al. 

2000a; Harwerth et al. 2010; Asaoka et al. 2012; Medeiros et al. 2012b; Porciatti 

and Ventura 2012) and Drasdo (Drasdo et al. 2007; Drasdo et al. 2008) and the 

logarithmic ‘Hockey-Stick’ model of Swanson (Swanson et al. 2004). 
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A Mean Sensitivity of 0dB corresponded to a residual RGC count of 23906. 

Thus, the linear relationship between the RGC count and the absolute values of 

sensitivity is limited by the dynamic range of SAP in that residual RGCs may 

exist in the presence of perimetric blindness. The limitation of the dynamic range 

might be overcome by the use of Goldmann stimulus size V. Alternatively; the 

apparent count may reflect the non-neuronal component which is evident by OCT 

of the RNFL. 

 

Recently, the linearity of visual field progression, expressed in terms of the MD 

(Pathak et al. 2013), and in terms of pointwise linear regression analysis (Pathak 

et al. 2015) has been challenged in that an exponential model would appear to be 

more appropriate. However, a linear approach has also been advocated (Bryan et 

al. 2013). In the current study, all 46 individuals who exhibited a statistically 

significant progression of the VFI by linear regression analysis manifested 

progression with exponential regression analysis at the same probability level. 

One individual exhibited progression by exponential regression only. Similarly, 

of the 51 individuals who exhibited statistically significantly progressive slopes 

for the global residual RGC count 47 exhibited an identical outcome by 

exponential regression. Clearly, the pointwise dataset is such that the efficacy of 

alternative regression models such as linear and exponential can be evaluated in 

the future. 
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Chapter 8 

 

Overall Discussion, conclusion and future work 

 

The study which has relied upon the analysis of retrospective data, has 

highlighted the importance of the acquisition of good quality data, collected at 

regular intervals and integrated with other diagnostic techniques, not only for the 

benefit of the patient, but also for the benefit of research. 

 

8.1 Optic nerve head image registration, sizing and alignment, and viewing 

A novel quantitative approach was utilized to ensure the consistency in scaling 

and aligning of the ONH images from the various photographic sources. Twenty-

eight vectors were drawn on each of the images for the given individual, based 

upon 8 predetermined features inherent in the images for the given individual. 

Each vector defined the distance and the orientation between the same two ‘key’ 

features within each ONH image. 

 

The magnitude of the resizing, and the error associated with the manual resizing 

and alignment of the stereo-pairs, was described by the difference in the lengths 

of the given pair of vectors: for each analysis, the scaling factor was defined as 

the median of the differences. The median of the proportionate difference in the 

magnitudes of the x and y coordinates of all 28 vectors, considered together, 

between the manually resized and aligned images ranged from -2.4% to 1.5%. 

Such values indicate a satisfactory overall precision in the manual alignment. 
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Automated registrations of ONH images acquired with digital photography and 

by SLP (Ng et al. 2015) and between monoscopic ONH images (Radcliffe et al. 

2010; Syed et al. 2012) have been described and a similar approach should be 

adopted for stereo-images acquired across the complete spectrum of analogue and 

differing digital modalities. In particular, it will be essential to develop a reliable 

automated digital alignment technique between each stereo image-pair which is 

based upon the recognition of individual morphological clinical features (vessel 

pattern, ONH tilt etc.) and which simultaneously, compensates for rotational 

issues arising from photographic artefacts. Such a technique will offer a simple 

and reliable tool for routine clinical practice to assist in the identification of 

glaucoma and/ or the presence of glaucomatous progression. 

 

8.2 The qualitative assessment of progressive glaucomatous ONH damage 

using both mono- and stereo-flicker chronoscopy 

The study evaluated the efficacy of digital stereo-flicker chronoscopy compared 

to that of mono-flicker chronoscopy for the qualitative identification of 

glaucomatous ONH damage in a case series of 61 individuals attending a 

glaucoma clinic over a long follow-up. Although both ophthalmologists who 

evaluated the ONH images exhibited little agreement with each other, the flicker 

comparison, with either mono- or stereo-viewing, increased the diagnostic 

accuracy for glaucoma and for the identification of glaucomatous progression. In 

particular, stereo-flicker manifested a slightly better diagnostic accuracy 

compared to mono-flicker viewing. 
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The relationship was determined between the qualitative assessment of 

progressive glaucomatous ONH damage and the corresponding visual field 

outcome. The relationship was confounded by the diversity in the length of the 

time series of both the ONH images and of the visual field examinations. 

However, there was little agreement between the various methods for the 

evaluation of visual field progression and little relationship between visual field 

progression and ONH progression. 

 

8.3 The quantitative assessment of progressive structural and functional 

glaucomatous damage 

The NRR was quantified, as a whole, by segments and by sectors, in a case series 

of 23 individuals attending a glaucoma clinic over a long follow-up, using digital 

manual stereo- and monoscopic planimetry incorporating the ‘floating cursor’ 

technique of Morgan and colleagues (Morgan et al. 2005a; Morgan et al. 2005b; 

Morgan et al. 2012). The use of a ‘floating cursor’ enhanced the visualization of 

the ONH features. The relationship was then investigated between ONH 

progression (defined as a thinning of the NRR) and the concomitant visual field 

progression (defined in terms of the MD, VFI and residual RGC count). 

 

Digital manual stereo-planimetry was used as the ‘gold standard’ rather than 

mono-planimetry. A weak curvilinear association was present, at baseline, 

between the extent of the NRR area and the magnitudes of the MD and VFI and a 

slightly stronger, linear, association between NRR and residual RGC count. 
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No association was present between structural and functional progression for 

either the NRR as a whole or for the superior and the inferior sectors. The 

structural and functional progression was evaluated between the baseline and the 

most recent point in the time series in order to maximise the potential for 

deterioration in one or both outcomes. The quantification of the ONH through 

planimetry, and hence the strengths of the various associations, varied between 

the two ophthalmologists. 

 

The lack of an association between progressive functional and progressive 

structural damage was limited by variations in: the quality of the visual field 

examinations; the number of individuals exhibiting progression with either 

modality; the extent of progression which inevitably is influenced by the length 

of the time series; and the quality of the ophthalmological care between 

individuals. No relationship was present between the apparent progression of 

either, or both, structural and functional outcomes and the length of the time 

series. 

 

During the study, the introduction and clinical acceptance of spectral domain 

OCT for use in glaucoma has radically altered the image resolution and the 

objective quantification of the ONH and of the RNFL, in particular. Optical 

coherence tomography of the ONH parameters has already superseded digital 

manual planimetry (Ramakrishnan et al. 2005; Sung et al. 2009; Lee et al. 2010; 

Liu et al. 2011; Chauhan et al. 2012; Huang et al. 2012; Naghizadeh et al. 2012; 

Tatham et al. 2013; Bussel et al. 2014; Leung 2014; Rao et al. 2015). 
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Current research involves the construction of the automated depth segmentation 

of the ONH in three dimensional space from OCT ONH images (Abramoff et al. 

2009; Sharma et al. 2011; Moghimi et al. 2012; Lee et al. 2013). However, the 

extent to which the outcome of clinical practice is dependent upon observation of 

a high resolution digital stereo-image, complete with ‘floating’ cursor is 

unknown. Such automated depth segmentation will inevitably replace the 

traditional stereo-viewing, but it would be useful to determine the utility of such a 

technique in the context of current automated depth segmentation. In addition, the 

utility of automated depth segmentation of the ONH should be applied to the 

evaluation of progressive structural damage by alignment of the serial images. 

 

8.4 Pointwise linear regression of residual RGC count 

The outcome of the univariate linear regression of differential light sensitivity 

(expressed in dB) against time to follow-up with that of the corresponding 

residual ganglion cell count against time to follow-up in the (early) identification 

of progressive visual field loss for a long-time series was compared at each 

stimulus location. The study involved 112 individuals, with five or more reliable 

visual field examinations, over a minimum follow-up of 5 years. 

 

The results indicated that the residual RGC count identified progression at higher 

levels of sensitivity at baseline compared to that for the differential light 

sensitivity. This outcome was manifested by a greater statistical significance of 

the slope and/ or a greater number of stimulus locations exhibiting statistically 

significant progressive loss. The outcomes were evaluated in terms of the 

statistical significance of the slope rather than the magnitude of the slope. 
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A univariate regression analysis was also undertaken for each of the visual field 

indices (MD, VFI, and PSD) and the corresponding residual RGC count against 

time to follow-up. The results indicated agreement between the MD, VFI and 

PSD and residual RGC count in 20 of the 70 individuals who exhibited 

statistically significant progression by one or more index. In a further 28 

individuals, a statistically significantly progressive residual RGC count was 

associated with at least one other index exhibiting statistically significant 

progression. It may well be that an index based upon residual RGC count will be 

a more sensitive measure for identifying visual field progression; however, the 

sensitivity and specificity of the residual RGC count for identifying progressive 

loss is unknown. 

 

The magnitudes at each stimulus location of the statistically significant slopes for 

both regression outcomes are available and could be further analysed. Given a 

knowledge of the (cross-sectional) age-related decline for each modality the 

slopes for each modality could be standardised in terms of the ratio of the 

measured slope to the age-corrected slope. The next stage of the work will 

involve the derivation of the respective normal age-related declines, at each 

stimulus location. 

 

A subsequent stage of the work will involve the comparison of the outcomes 

derived from the two regressions with that derived from the Event-based analysis 

of Heijl and Bengtsson (Leske et al. 1999; Heijl et al. 2003; Heijl et al. 2008). 
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The calculation of the residual RGC count is based upon the absolute value of 

sensitivity and does not exclude the influence of ‘optical’ (i.e. non-neural 

factors). A next stage of the work will be to correct the calculation of residual 

RGC count for these optical factors by, for example, adjusting for the current 

General Height index or other types of separation (Marin-Franch et al. 2014). An 

important part of this work will be to evaluate the residual RGC counts pre- and 

post-operatively in patients undergoing cataract extraction and IOL implantation, 

as proposed in the aborted study outlined in Chapter 2. 

 

A further aspect will be the automated registration of the spatial distribution of 

residual RGC soma derived by perimetry with that of RGC axonal thickness 

derived by OCT. 

 

The outcomes of the current study should be placed in the context of the 

continuing advance in available computing power enabling greater and greater 

capability for the storage, processing, display and electronic transfer of ONH 

images provides a concurrently greater opportunity for improve the health care 

via the development of electronic based health care monitoring and management. 

The extensive use of the internet and the evolution in mobile technology, 

worldwide, can be utilized to provide ‘immediate’ outcomes for patients with 

glaucoma, e.g., applications, or text alerts, to improve compliance in taking 

medication and online visual field testing, etc., whilst retaining patient 

confidentiality. In the context of the current study, stereo-ONH images obtained 

remotely could be compressed, sent via email, uploaded in a predefined internet 
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space and viewed by the receiving clinician for almost real-time evaluation. The 

application of such technology not only has obvious benefits for developing 

countries, but also can reduce the cost of health care provision, whilst improving 

quality of care. In countries such as the United States, Canada and Australia, 

public healthcare programs are willing to reimburse for tele-glaucoma and tele-

retinal screening programs, which are considered cost-effective, although the 

legislation for their activation may vary by state/provincial governments (Kassam 

et al. 2013). 

 

The use of meta-data, for example those of the epidemiological characteristics of 

glaucoma; the relationship between the rate of structural and functional 

progression in relation to age of detection of the disease; the type of, and 

compliance with, therapy; the development of more statistically appropriate 

values for normality of current or future diagnostic devices with the ensuing 

advantage of improved/ optimal specificity and sensitivity etc.; provide the 

potential for the ongoing optimisation of glaucoma care and delivery, for e-

learning; for e-research including the development and use of future 

pharmacological therapies, and other advantages not yet known. Similar concepts 

have also been discussed elsewhere (Strouthidis et al. 2014; Wright and Diamond 

2015). 

The deconstruction of the structure and function relationship via the analysis of 

meta-data should also lead to the development of optimized pharmaceutical or 

surgical strategies for the treatment of the various different types, and stages, of 

glaucoma and the eradication of the disease. 
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