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Abstract

The human Ab peptide causes progressive paralysis when expressed in the muscles of the nematode worm, C. elegans. We
have exploited this model of Ab toxicity by carrying out an RNAi screen to identify genes whose reduced expression
modifies the severity of this locomotor phenotype. Our initial finding was that none of the human orthologues of these
worm genes is identical with the genome-wide significant GWAS genes reported to date (the ‘‘white zone’’); moreover there
was no identity between worm screen hits and the longer list of GWAS genes which included those with borderline levels of
significance (the ‘‘grey zone’’). This indicates that Ab toxicity should not be considered as equivalent to sporadic AD. To
increase the sensitivity of our analysis, we then considered the physical interactors (+1 interactome) of the products of the
genes in both the worm and the white+grey zone lists. When we consider these worm and GWAS gene lists we find that 4
of the 60 worm genes have a +1 interactome overlap that is larger than expected by chance. Two of these genes form a
chaperonin complex, the third is closely associated with this complex and the fourth gene codes for actin, the major
substrate of the same chaperonin.
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Background

Once age is taken into account, the most powerful determinants

of risk for Alzheimer’s disease (AD) are genetic; indeed, the

heritability of the disorder is estimated to be 58–79% [2,3]. In the

clinic however, this strong genetic influence is not readily apparent

because of the heterogeneous, multigenic inheritance of so-called

sporadic AD. Such complexity has encouraged geneticists to focus

on a small minority of AD cases that exhibit dominant Mendelian

inheritance [4,5]. Remarkably, these studies have shown that the

bulk of the genetic lesions resulting in familial AD (FAD) directly

influence the proteolytic processing of a single transmembrane

protein called amyloid precursor protein (APP) [6]. The cleavage

of APP by b-secretase and then c-secretase results in the

generation of a spectrum of peptides, known as amyloid b (Ab),

that are the major component of senile plaques in the brains of

patients with AD. The c-secretase is of particular interest because
its cleavage of APP determines which amino acids constitute the

C-terminus of Ab. Normally, Ab peptides are predominantly 40

amino acids in length (Ab40), while 5–10% have a further 2 amino

acids at the C-terminus (Ab42). The bulk of cases of FAD can be

accounted for by mutations that either increase the total amount of

Ab [7,8], or favour the production of longer, more aggregation-

prone, isoforms of the peptide [9]. FAD has been reported to be a

consequence of variation in the sequence or copy number of either

the APP gene, or the genes PSEN1 or PSEN2 encoding catalytic

subunits of c-secretase [7,8]. Likewise, protection from AD has

also been linked to a polymorphism in APP that interferes with b-
secretase cleavage [10]. These data, supported by studies on

sporadic AD patients [11], have given rise to the amyloid cascade
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hypothesis that places the aggregation of Ab as the first step on the

road to AD [6].

The advent of genome-wide association studies (GWAS) has

made the investigation of multigenic disorders, such as sporadic

AD, experimentally tractable. Using p,1027 as an empirical cut

off for genome-wide significance (the GWAS ‘‘white zone’’), the

first generation of multicentre AD GWAS [12,13] reported four

genes (apoE, clusterin, PICALM, and CR1) associated with disease

risk. With the publication of the second generation of GWAS

findings, the total number of risk genes is now twenty one [1,14].

Notable absentees from these lists are any of the genes implicated

in FAD. These findings may lead us to question the relevance of

Ab in the pathogenesis of sporadic AD and might indicate that the

sporadic and familial forms are different diseases.

One explanation for the absence of genes such as APP, PSEN1,
or PSEN2 from the list of candidates identified by GWAS is that

the studies were lacking sufficient power to detect small or rare

contributions to risk [15]. Increased power could be achieved by

recruiting more patients and controls and by increasing the density

of SNP genotyping [15]. However, we have taken a parallel

approach by including in our analysis not only the genes with

genome-wide significance (GWAS ‘‘white zone’’), but also GWAS

results of borderline significance (GWAS ‘‘grey zone’’) with p-

values between ,1025. This larger list of genes will include false

positives, that can safely be ignored, but equally there will be genes

that carry risk and are involved in the pathogenesis of sporadic

AD. Our approach has been to probe this larger group of GWAS

white+grey zone genes using the results of a genome-scale screen

in a model system that reports exclusively on the toxicity of the Ab
peptide. We postulate that if Ab toxicity were distinct from

sporadic AD then we would expect to see an overlap between the

worm and human genes lists that is consistent with chance.

However were the GWAS data reporting a role for Ab in clinical

AD we would expect to see a significantly increased overlap in the

network of genes identified in the human and worm screens.

Results

Feeding RNAi to C. elegans modifies the Ab-induced
paralysis phenotype
We identified 7970 human protein-encoding genes that have

orthologues in C.elegans and we used a subset of the Ahringer C.
elegans RNAi library [16] to systematically knock down the

transcript levels of each of these genes. The phenotypic

consequences of each genetic knock-down were assessed in worms

following the induction of Ab expression under the control of a

heat-inducible myocyte-specific promoter. The optimal age for Ab
induction was 48 h (stage L3) because this resulted in 50%

paralysis 30 h later (Fig. S1). Induction of Ab expression in

younger worms resulted in a more rapid progression of paralysis.

Rigorous primary and secondary screens identified RNAi clones

that significantly (p,0.05, n= 12 with 4 biological replicates)

enhanced or suppressed the Ab-induced paralysis phenotype.

Clones that modified paralysis were positively identified by DNA

sequencing. In this way, we identified 78 worm genes that

significantly suppressed (Table 1) the Ab-induced paralysis phe-

notype. Of the 3 genes that significantly enhanced the phenotype

none has a human orthologue (Table 2).

Human orthologues of worm screen hits are not identical
to GWAS genes but are network hubs
In our initial analysis, we generated a list of the human

orthologues of the worm modifier genes using EnsemblCompara

[17], and found that 61 out of the 78 worm genes had human

counterparts. This ratio is significantly higher than one would

expect by chance if one considers that there are only 7,970 worm

genes that have human orthologues out of a genome of

approximately 20,000 genes [18]. The p-value for this enrichment

is p,10211 (binomial test using probability of success = 7970/

20000, number of successes = 61, number of trials = 78), indicating

that the hits in the worm screen are much more likely to have

human orthologues than one would expect by chance.

Using worm ontology enrichment analysis (clueGO plugin for

Cytoscape) we found that a number of labels were over-

represented in our screen hits, implicating genes involved in

ATP synthesis, purine metabolism, protein binding and chaperone

activity, and components of the translational machinery (Table 3).

When we compared this list of 61 human orthologues of the

worm modifier genes with the 63 genes in the GWAS white+grey
zone (Table S1) we found no identity between the two gene lists.

Indeed when we compared the ontology labels associated with the

GWAS genes and the human orthologues of worm screen hits we

found that there was no significant similarity (using WEB-based

GEne SeT AnaLysis Toolkit, bioinfo.vanderbilt.edu/webgestalt/).

However using the BioGrid database (v. 3.2.96) [19] we found that

6 of the human orthologues of worm screen genes coded for

proteins that interact directly with the products of the GWAS

white+grey zone genes.

In order to determine which, if any, of the worm screen hits

interacted with the GWAS list to a statistically significant degree

we supplemented the candidate gene lists with genes encoding the

first-degree physical interactors (+1 interactome) of the protein

products of the primary members using the BioGrid database (v.

3.2.96). We then asked, for each member of the worm-screen hit

list, whether their +1 interactome overlap with GWAS was

greater, or less, that one would expect by chance (Fig. S2). Of the

61 worm genes, 60 were present in the Biogrid database and we

considered these further in our analysis. Of the 63 genes in the

GWAS white+grey zone, 52 were present in Biogrid database.

It was immediately apparent from the relative sizes of the +1
interactomes (Figs. 1 & 2) that the genes derived from the worm

screen were more highly interacting than the GWAS list.

Specifically each worm screen gene orthologue had, on average,

53 interactors as compared to the GWAS list where the value was

less than 14.

Ranking the distribution of gene interconnectivity
In order to determine whether the observed bias towards highly

interconnected genes in the worm modifier list was statistically

significant, we used a computational approach to compare our

observed population of genes to similar, randomly generated, lists.

Firstly we ranked the population of human genes in the Biogrid

database (13940 genes) according to their number of interactors.

This ranked list was then divided into 10 bins such that each bin

contained the same number of human orthologues of worm genes

(that is 797 in each bin). For example, this resulted in the most

highly interconnected 952 human genes in the database being put

into the first bin; the bin boundaries for the whole database were:

1–952, 953–2006, 2007–3175, 3176–4403, 4404–5735, 5736–

7134, 7135–8624, 8624–10200, 10201–12104 and 12105–13928.

Using a Monte-Carlo approach [20] we then generated 100 lists

containing 60 randomly generated human genes with worm

orthologues.

As expected the genes in the random lists segregated with equal

frequency into the various bins (Fig. 3, triangles); however, a

consequence of the highly interconnected nature of the worm

screen gene list is that .50% of its members (31 out of 60) fall

within the most highly interconnected bin on the left side of graph.

Chaperone Implicated by Alzheimer GWAS and Worm Screen
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Table 1. Suppressors of the Ab-paralysis phenotype.

C. elegans gene
symbol Human gene name

Human gene
symbol Accession number

F46E10.1 Long chain fatty acid acyl-CoA ligase ACSF2 NM_001028767

T04C12.6 Actin and related proteins ACTB NM_073416

T25C8.2 Actin and related proteins ACTG1 NM_067408

K07C5.1 Actin-related protein Arp2/3 complex, subunit Arp2 ACTR2 NM_073256

F55A12.7 AP-1 complex subunit mu-1 AP1M1 NM_059171

F29G9.3 Clathrin adaptor complex, small subunit AP1S2 NM_072158

C13B9.3 Medium subunit of clathrin adaptor complex ARCN1 NM_066062

C34E10.6 F0F1-type ATP synthase, beta subunit ATP5B NM_065710

R10E11.8 Vacuolar H+-ATPase V0 sector, subunits c/c’ ATP6V0C NM_066764

Y49A3A.2 Vacuolar H+-ATPase V1 sector, subunit A ATP6V1A NM_074158

F20B6.2 Vacuolar H+-ATPase V1 sector, subunit B ATP6V1B2 NM_076310

Y55F3AR.3 Chaperonin complex component, TCP-1 theta subunit (CCT8) CCT8 NM_067634

F09G2.4 mRNA cleavage and polyadenylation factor II complex, subunit CFT2 (CPSF subunit) CPSF2 NM_072421

M03F8.3 Cell cycle control protein (crooked neck) CRNKL1 NM_001129507

B0464.1 Aspartyl-tRNA synthetase DARS NM_066688

C55B6.2 dsRNA-activated protein kinase inhibitor P58, contains TPR and DnaJ domains DNAJC3 NM_076808

D2085.3 Translation initiation factor 2B, epsilon subunit (eIF-2Bepsilon/GCD6) EIF2B5 NM_063440

F22B5.2 Translation initiation factor 3, subunit g (eIF-3g) EIF3G NM_001276737

C40H1.4 Elongation of very long chain fatty acids protein 3 ELOVL3 NM_066655

H19N07.1 Eukaryotic Peptide Chain Release Factor GSPT2 NM_001269363

T10C6.11 Histone H2B HIST1H2BA NM_074630

F26D10.3 Molecular chaperones HSP70/HSC70, HSP70 superfamily HSPA8 NM_070667

C49F5.1 S-adenosylmethionine synthetase MAT1A NM_077601

C30A5.3 MOB-Like Protein Phocein MOB4 NM_066397

Y57G11C.12 NADH:ubiquinone oxidoreductase, NDUFA6/B14 subunit NDUFA6 NM_070389

K07C5.4 Ribosome biogenesis protein - Nop56p/Sik1p NOP56 NM_073259

T22B11.5 2-oxoglutarate dehydrogenase, E1 subunit OGDHL NM_068216

D1054.15 Isoform 1 of Pleiotropic regulator 1 PLRG1 NM_001269330

F36A4.7 RNA polymerase II, large subunit POLR2A NM_068122

K02B12.3 Prolactin regulatory element binding PREB NM_059904

R07E4.6 CAMP-dependent protein kinase type I-Alpha, regulatory subunit PRKAR1A NM_076598

C50C3.6 U5 snRNP spliceosome subunit PRPF8 NM_066384

CD4.6 20S proteasome, regulatory subunit alpha type PSMA1/PRE5 PSMA1 NM_072071

Y38A8.2 20S proteasome, regulatory subunit beta type PSMB3/PUP3 PSMB3 NM_062512

C52E4.4 26S proteasome regulatory complex, ATPase RPT1 PSMC2 NM_073604

Y49E10.1 26S proteasome regulatory complex, ATPase RPT6 PSMC5 NM_067208

C23G10.4 26S proteasome regulatory complex, subunit RPN2/PSMD1 PSMD1 NM_065946

C39F7.4 GTPase Rab1/YPT1, small G protein superfamily, and related GTP-binding proteins RAB1A NM_070996

F10B5.1 60s ribosomal protein L10 RPL10L NM_063306

T22F3.4 60S ribosomal protein L11 RPL11 NM_071607

C27A2.2 60S ribosomal protein L22 RPL22 NM_062531

C09H10.2 60S ribosomal protein L44 RPL36AL NM_063974

B0250.1 60s ribosomal protein L2/L8 RPL8 NM_075539

R13A5.8 60S ribosomal protein L9 RPL9 NM_066259

F54E7.2 40S ribosomal protein S12 RPS12 NM_065820

C16A3.9 40S ribosomal protein S13 RPS13 NM_065992

T01C3.6 40S ribosomal protein S16 RPS16 NM_074289

T05F1.3 40S ribosomal protein S19 RPS19 NM_060154

C23G10.3 40S ribosomal protein S3 RPS3 NM_065948

Chaperone Implicated by Alzheimer GWAS and Worm Screen
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More generally, the worm screen gene list exhibited a power law

distribution such that we could fit a linear regression line (gradient

21.1) to a log-log plot of gene rank bin boundary vs. frequency of

observation (Fig. 3, diamonds).

To determine whether the bias is statistically significant we

performed a two-tailed Student’s t-test [21] to see whether the

gradient of the experimental regression line is different from the

data generated in the Monte Carlo simulations. A p-value of 0.004

indicates that indeed the hits from our worm screen are more

highly interconnected that a comparable random population.

To understand whether such a bias is a common feature of

worm RNAi screens, we repeated a similar analysis for three

published modifier screens of human neurodegenerative disorders

(modelling polyglutamine [22] [Table S2a], tau [23] Table S2b]

and alpha-synuclein pathogenesis [24] [Table S2c]) and, congru-

ent with our results, we also found a skew in these screens towards

highly interconnected genes (Fig. 4 A–C). Using a one-tailed

Table 1. Cont.

C. elegans gene
symbol Human gene name

Human gene
symbol Accession number

B0393.1 40S ribosomal protein SA (P40)/Laminin receptor 1 RPSA NM_065577

F53E10.6 RRP15-like protein RRP15 NM_071312

VZK822L.1 Fatty acid desaturase SCD NM_001268666

F43D9.3 Sec1 family domain-containing protein 1 SCFD1 NM_001129225

Y113G7A.3 Vesicle coat complex COPII, subunit SEC23 SEC23B NM_075476

Y57E12AL.1 Tumor differentially expressed (TDE) protein SERINC1 NM_171479

T08A11.2 Splicing factor 3b, subunit 1 SF3B1 NM_065452

Y116A8C.42 Small nuclear ribonucleoprotein Sm D3 SNRPD3 NM_070626

ZK652.1 Small Nuclear Ribonucleoprotein Polypeptide F SNRPF NM_066307

T27F2.1 SNW domain-containing protein 1 SNW1 NM_073549

F55A11.2 SNARE protein SED5/Syntaxin 5 STX5 NM_073567

T05C12.7 Chaperonin complex component, TCP-1 alpha subunit (CCT1) TCP1 NM_063321

Y116A8C.35 U2 small nuclear RNA auxillary factor 1 isoform b U2AF1 NM_070635

C47E12.5 Ubiquitin-like modifier activating enzyme 6 UBA6 NM_001268520

*C46G7.1 – – NM_068504

*F28C6.7a – – NM_063422

*Y105E8C.e – – N/A

*K04E7.2 – – NM_076686

*F58G6.7 – – NM_069313

*ZK858.1 – – NM_060045

*Y41D4B.19 – – NM_067703

*F42D1.3 – – NM_078054

*F55C5.4 – – NM_073679

*F17C8.5 – – NM_065572

*C41C4.7a – – NM_063303

*W09B6.1 – – NM_001267098

*D2024.1 – – NM_068750

*W06H8.8 – – NM_001029030

*F25B5.4 – – NM_171139

The list consists of the human orthologues of worm genes that, when targeted by RNAi, suppress the paralysis phenotype in Ab-expressing worms (n = 78 genes).
doi:10.1371/journal.pone.0102985.t001

Table 2. Enhancers of the Ab-paralysis phenotype.

C. elegans gene symbol Human gene name Human gene symbol Accession number

W02B8.3 – – NM_064514

F08E10.7 – – NM_075028

F35A5.3 – – NM_076258

The list consists of the human orthologues of worm genes that, when targeted by RNAi, enhance the paralysis phenotype in Ab-expressing worms (n = 3 genes).
doi:10.1371/journal.pone.0102985.t002
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Student’s t-test we observed that for the polyQ (p= 0.0002, Fig. 4,

panel A), the a-synuclein (p = 0.04, panel B), and the tau (p = 0.04,

panel C) screens, the gradient of the linear regression lines was

significantly less than for the Monte-Carlo-generated data. By

contrast the equivalent gradient of the GWAS white+grey zone

genes was robustly zero (p = 0.22, two-tailed, panel D).

The bias toward highly interacting networks in the results of a

number of worm modifier screens, including our own, precludes

any simple analysis of the overlap between the worm screen and

GWAS +1 interactomes. This is because some of the worm genes

have several hundred interactors and are likely to generate an

overlap by chance. For example HSPA8 constitutes over 30% of

the overlap using the hits from our Ab screen. For these reasons,

we developed a more robust method for determining whether the

overlap in the worm and GWAS interactomes was significant or

not.

Determining the statistical significance of the overlap
between worm screen hits and GWAS results
To compensate for the bias towards highly interacting genes in

the worm screen, we designed random Monte Carlo simulations in

which each simulated worm +1 interactome has the same size as

the particular worm screen gene product being tested.

The statistical significance (p-value) of the overlap between the +
1 interactome of each worm screen hit and the GWAS +1
interactome was achieved by generating 1000 random worm +1
interactomes of equivalent size for each experimental worm gene.

We then counted how often the overlap of the random worm +1
interactomes with the GWAS +1 interactome was either.=or,

= to the experimentally observed overlap. To quantify the

statistical significance of our findings, we repeated this process

for 100 random lists of 60 worm genes.

Overall, we found that, of the 100 random lists of 60 worm

genes, 3.14 (95% confidence interval =60.34) genes had +1
interactome overlaps with GWAS that differed significantly from

expected at a level of p,0.05. As such, this number is consistent

with the random nature of the simulated gene lists. However when

we examined the experimental worm screen list, we found that 7

genes had a non-random +1 interactome overlap with the GWAS

network. When we reviewed our simulations we found that out of

100 runs only 5 resulted in 7 or more genes that had a +1
interactome overlap that differed from chance, yielding p= 0.05

for our observation.

Genes with non-random +1 interactome overlaps
When we considered the overlap between the 7 non-random

worm genes we found that 3 (NOP56, PSMA1 and RPL10L; Fig.

S5) had a lower +1 interactome overlap with the GWAS list than

would be expected by chance. The remaining four worm genes are

of particular interest because they have a larger +1 interactome

overlap with GWAS than expected. Remarkably, two of these

genes (TCP1, CCT8) are components of the TRiC/CCT

chaperone complex and the third (MOB4) interacts closely

[25,26]. The fourth gene is one of the major folding substrates

of the chaperone, namely actin (ACTB). Furthermore, TCP1,

CCT8 and MOB4 all interact directly with a single GWAS grey

zone gene, namely the kinase STK24 [26] (Fig. 5).

Discussion

Genome-wide association studies [1,13,14] and a subsequent

targeted genotyping screen [15] have shown that none of the genes

implicated in FAD carry common variants that confer risk for the

sporadic version of the disease. These results have called into

question the validity of using familial AD, where the pathogenesis

is undoubtedly related to Ab generation, as a model for the more

common sporadic AD. In particular, it is possible that the sporadic

disease may have a distinct pathogenesis, perhaps based on

immune dysregulation, that is not based on aberrant APP

metabolism and the consequent production of Ab. To address

this issue, we have employed an invertebrate model system that

exclusively reports the toxicity of Ab; that is, a worm expressing

Ab under the control of a muscle-specific driver. While, in this

particular model system, the paralysis is likely to be caused by

muscle damage, rather than neurodegeneration, it is known that

Ab toxicity can be observed across a wide range of cell types and

the mechanisms may well be conserved.

The worm screen in this study has reported on worm gene

transcripts that, when targeted by RNAi, modify the Ab-induced
paralysis phenotype. The deployment of rol-6 as a marker of Ab
expression means that we can rule out any marked artefactual loss

of the expression array in response to RNAi. However, we did not

measure expression levels of the Ab peptide in response to each

RNAi treatment, so we cannot exclude the possibility that for a

particular RNAi treatment that effects on paralysis could be

attributed to changes in transgene expression rather than an effect

on Ab toxicity. Furthermore this study can usefully be extended by

including worm lines carrying mutant alleles of the genes

implicated by the RNAi studies both in mammalian systems and

in C. elegans.
In this study our goal was to use the results of the worm genetic

screen to detect GWAS genes with borderline significance that

were nevertheless involved in the pathogenesis of sporadic AD.

Our initial, and most stringent, test indicated that none of the

genes in the GWAS white or grey zones were identical to the

human orthologues of the 61 worm modifier genes. This negative

finding suggests that, at least for the predominantly Caucasian

populations in which GWAS studies have been performed, Ab
toxicity cannot be considered as identical to sporadic AD. Rather

the data support the idea that other pathological pathways may be

important in the disorder. However, we did observe that 6 worm

gene orthologues were predicted to interact physically with

members of the GWAS white+grey zone gene products (Table 4,

asterisks). It was also notable that worm modifier genes were much

more likely than chance to have a human orthologue. This

involvement of a core and essential and highly conserved genes

reflects the profound toxic effect posed by Ab.

Table 3. Gene ontology enrichment for worm screen hits.

Molecular function

Proton transporting ATP synthase activity, rotational mechanism

Proton transporting ATPase activity, rotational mechanism

Cellular component

Cytosolic small ribosomal subunit

Eukaryotic translation initiation factor 3 complex

Chaperonin-containing T-complex

Biological process

Protein binding

Structural constituent of ribosome

Purine nucleotide binding

The worm screen hits were analysed for enrichment in molecular function,
cellular component and biological process ontology labels.
doi:10.1371/journal.pone.0102985.t003

Chaperone Implicated by Alzheimer GWAS and Worm Screen

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e102985



In order to determine whether the degree of interaction

between the worm and GWAS genes was greater, or less, than

one would expect by chance we systematically compared the

overlap between the worm and GWAS +1 interactomes for each

of the worm-screen genes (Fig. S2).

Worm-screen hits, but not the GWAS list, are highly
interconnected genes
Considering the +1 interactomes of the worm genes from our

Ab-based screen, we observed that there was a clear bias toward

genes encoding highly interactive proteins. As can be seen from

Fig. 3, there is a power law relationship between the frequency

with which we observe particular gene products and their

particular degree of interconnectedness. For our screen, the

gradient of the linear fit of the log-log plot is 21.1. This is

significantly different from a gradient of zero, which we observed

for a random set of genes where the chance of observing a gene is

independent of its degree of interconnectivity.

We were interested to know whether the gene lists from other

genetic screens in worm models of human disease also generated

similarly skewed distributions of connectivity. Indeed, when we

analysed the data for polyQ, synuclein and tau screens, we found

that they all had a negative slope (21.4, 20.5, and –0.4,

respectively) and all were significantly different from the expected

zero value.

One possible explanation for the highly interconnected nature

of the worm screen hits could be summarised as ‘‘sociological bias’’

[27]. In this context, we hypothesise that previous worm screens

have yielded similar gene lists and that the consequent interest in

the field has resulted in more interaction data being deposited in

the BioGrid database. In support of this hypothesis, we find that

the screens for Ab and polyQ yield 27 common genes, and we find

that 20 of them are highly interconnected genes (present in the first

Figure 1. GWAS genes +1 interactome. The +1 interaction network for the 52 GWAS genes with intermediate and high significance (p,105). For
the 52 genes in the GWAS white+grey zones, there were 703 interactions in the +1 interactome.
doi:10.1371/journal.pone.0102985.g001
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bin in plots in Figs. 3 & 4). Even if there is such a sociological bias,

this does not invalidate subsequent conclusion because we have

carefully compensated for differences in network connectivity.

Another explanation is that genetic modifiers of worm

phenotypes really do have more highly interconnected protein

products as compared to the average gene [28]. Highly

interconnected gene products are likely involved in more

biological pathways than less connected ones; so it may be that

highly interconnected gene products are more likely to influence

disease-related processes as assessed by a genetic screen. However

this cannot explain why there is no similar interconnectivity bias

when the same analysis is applied to the GWAS white+grey zone

genes. Indeed, the distribution of connectivity of the products of

white+grey zone genes is remarkably similar to that of the general

population of genes. This is likely to be explained by the presence

of many false-positive genes in this list.

Figure 2. Worm genes +1 interactome. The +1 interaction network for the human orthologues of the 60 worm genes that were highlighted in
our worm RNAi screen. For the 60 worm-screen genes with human orthologues, there were 3191 interactions in the +1 interactome.
doi:10.1371/journal.pone.0102985.g002

Figure 3. Distribution of rankings of worm genes. The x-axis
represents the log of the gene ranking bin boundaries, arranged in
decreasing gene-product connectedness from left to right. The y-axis
represents the log of the fraction of genes in each bin (where 100% is
60 genes). The dashed line shows the linear regression for the worm
screen results. The results of the screens are shown as black diamonds
and results of random simulations are shown as empty triangles.
doi:10.1371/journal.pone.0102985.g003
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Worm-GWAS overlap analysis implicates the TRiC/CCT
chaperone in mediating Ab toxicity in sporadic
Alzheimer’s disease
For each gene in the worm-screen hit list we estimated whether

its interactome overlapped with the GWAS interactome to a

greater or lesser extent than would be expected by chance. We

employed a Monte Carlo simulation approach where we

generated 1000 random interactomes that were the same size as

the experimental interactome (Fig. S3) and determined the

distribution of the overlap scores (Fig. S4). For 7 of the 60 worm

genes we found that the overlap differed significantly from the

chance expectation.

Three of these genes (NOP56, PSMA1 and RPL10L) have +1
interactome overlaps with GWAS white+grey zone genes that are

smaller than one would expect by chance, suggesting that they are

artifactual modifiers of the worm phenotype and unlikely to be

involved in the human disorder. Consequently, these data should

dissuade us from investigating the ribosomal [29] and proteasomal

[30] functions of these genes in AD. By contrast, the remaining 4

genes exhibited a greater than expected +1 interactome overlap

with the GWAS white+grey zone genes. Furthermore, we found

that two of these genes (TCP1, CCT8) are both members of the

TRiC/CCT chaperone that has a number of substrates including

actin (ACTB is the fourth gene) and tubulin. This chaperone

complex was also enriched in the gene ontology analysis of the

worm hits (Table 3). CCT8 and MOB4 have not been observed as

modifiers in any other worm models of neurodegeneration

however TCP1 and ACTB RNAi also modify polyQ toxicity

[22,23,24]. While this may represent conservation of pathological

mechanisms between Ab and polyQ it may alternatively indicate

that TCP1 and ACTB RNAi constructs have non-specific effects

in worm model systems. It is notable that TCP1 levels are

abnormal in foetal Down’s syndrome [31]. Furthermore TCP1,

CCT8 and MOB4 all interact with each other and also with the

kinase STK24, a member of the GWAS grey zone, that has been

linked to axonal regeneration in rats [32]. These three candidate

genes, along with STK24 and PP2A, form a multiprotein complex

that may regulate the MAPK pathway [33]. From our analysis, we

propose that both neuroregenerative pathways linked to STK24

and also the MAPK-linked phosphorylation of proteins such as tau

[34] may be the mechanisms by which the TRiC/CCT chaperone

exerts its effects in AD.

Figure 4. Distribution of rankings of worm models of neurodegenerative diseases. The x-axis represents the log of the gene ranking bin
boundaries, arranged in decreasing gene-product connectedness from left to right. The y-axis represents the log of the fraction of genes in each bin
(where 100% is 135, 23, 22 & 52 genes for panels A, B, C & D respectively). The dashed line shows the linear regression for the worm screen results.
The results of the screens are shown as black diamonds and results of random simulations are shown as empty triangles. (A) polyglutamine screen; (B)
a-synuclein screen; (C) tau screen; (D) GWAS candidate white+grey zone genes for AD.
doi:10.1371/journal.pone.0102985.g004

Figure 5. The interaction network of 4 significant worm gene
products. Four human orthologues of worm screen gene products
(MOB4, TCP1, CCT8 and ACTB) have +1 interactomes that overlap more
than expected with the +1 interactome of the GWAS white+grey gene
products. Two of these are components of the abundant cytoplasmic
TRiC/CCT chaperone, the third (MOB4) interacts closely and fourth
(ACTB), along with tubulin, is an important substrate. TRiC/CCT interacts
with STK24 and PP2a to form a complex that regulates the MAPK
pathway. This network of interactions may have a bearing on tau
phosphorylation and neuronal regeneration.
doi:10.1371/journal.pone.0102985.g005
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Table 4. Overlap between the +1 interactome for the products of genes in the GWAS white+grey zone and those of genes in
the +1 interactome of the worm RNAi screen.

Gene p-value +1 interactome overlap [experimental vs MC]

MOB4 0.003 larger*

PSMA1 0.014 smaller

TCP1 0.014 larger*

NOP56 0.014 smaller

CCT8 0.015 larger*

ACTB 0.018 larger

RPL10L 0.033 smaller

RPL9 0.058 smaller

ATP6V1B2 0.064 smaller

HSPA8 0.065 larger

RPL22 0.087 smaller

PSMB3 0.089 smaller

RPL11 0.097 smaller

RPS13 0.12 smaller

PSMC2 0.131 smaller

PSMD1 0.137 smaller

PRPF8 0.141 smaller*

ACTR2 0.153 larger

ACTG1 0.159 larger*

PLRG1 0.168 smaller

SCFD1 0.189 smaller

AP1M1 0.196 smaller

RRP15 0.199 larger

U2AF1 0.199 smaller

RPS12 0.233 smaller

SNW1 0.253 larger

RPSA 0.272 smaller

ARCN1 0.289 smaller

SCD 0.289 larger

ATP5B 0.299 larger

RPS19 0.31 smaller

RPS16 0.313 smaller

DARS 0.314 smaller

RPL8 0.322 smaller

STX5 0.33 smaller

POLR2A 0.331 smaller

GSPT2 0.333 larger

EIF3G 0.334 larger

DNAJC3 0.343 smaller

PSMC5 0.346 smaller*

CPSF2 0.362 smaller

SEC23B 0.371 larger

RAB1A 0.382 smaller

SF3B1 0.421 smaller

PRKAR1A 0.435 smaller

RPS3 0.437 smaller

OGDHL 0.449 larger

SNRPD3 0.458 smaller

ACSF2 0.467 larger
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The details of the role for TRiC/CCT in AD are unknown;

however the finding that RNAi knockdown in the worm protects

against Ab-induced paralysis indicates that the chaperone in some

way mediates Ab toxicity. TRiC has been shown to remodel

oligomeric protein aggregates in a worm model of polyQ toxicity,

with a concomitant reduction in toxicity [35]. It is therefore

surprising that knock down TRiC components is protective in our

model of Ab toxicity, however there are a number of precedents

for a reduction of chaperone activity having a protective effect (see

[36–42]) and it is hypothesised that low levels of misfolded proteins

may induce, or help maintain, the activity of regenerative

pathways. Our additional finding that actin RNAi is also

protective in the worm screen may indicate that reducing the

levels of this important substrate for TRiC/CCT promotes the

ability of the chaperone to interact with STK24 and so promote

neuroregeneration.

Conclusions

In summary, the lack of a direct overlap between genes

implicated by the GWAS studies and the hits from our modifier

screen in C. elegans indicates that AD cannot simply be considered

synonymous with Ab toxicity. However using a +1 interactome

network approach we have shown that the experimental pattern of

overlap between worm and GWAS gene products was significantly

non-random. Of those worm genes that showed increased overlap

with GWAS lists, three are part of an abundant cytoplasmic

complex with important chaperone activity; the fourth gene coded

for b-actin that is an important substrate of the same chaperone.

The interaction that the TRiC/CCT chaperone has with tubulin,

STK24 and the MAPK pathway may explain how Ab promotes

tau-linked cytoplasmic pathology.

Methods

C. elegans strains
The C. elegans strain CL4176 [smg-1(cc546ts) dvIs27(pAF29

Pmyo-3::Ab42+pRF4)], expressing Ab in body-wall muscle, and

the non-Ab expressing control, CL802 [smg-1(cc546ts) rol-
6(su1006)] have been described previously [43]. The worms were

routinely cultured at the permissive temperature of 16uC on solid

peptone nematode growth media (NGM) as described previously

[44].

RNA interference (RNAi) treatment of C. elegans
Clones of HT115 E. coli carrying RNAi expression plasmids

from the whole-genome C. elegans feeding library (Geneservice,

UK) were cultured separately, in 500 ml LB medium containing

50 mg/ml ampicillin, overnight at 37uC. A control culture,

carrying empty plasmids without an RNAi insert, was grown

simultaneously under identical conditions. Bacteria were seeded

drop-wise onto solid NGM plates, supplemented with 25 mg/ml

carbencillin and 1 mM IPTG, and incubated overnight at room

temperature. Worm embryos were harvested from synchronised

worms as described previously [45] and transferred to NGM agar

plates seeded with RNAi-expressing, or control, bacteria and left

48 h to develop into L3 larvae. Ab expression was then induced by

increasing the ambient temperature to 23uC for 24 h, when the

worms were scored for the incidence of the paralysis phenotype.

Primary screen to detect RNAi modifiers of Ab-induced
paralysis
The interaction of each RNAi-expressing clone with the Ab

paralysis phenotype in the worm was assessed in triplicate and

compared with triplicate wells of worms fed with control bacteria

carrying an empty vector. Each plate also had a well containing

bacteria expressing RNAi to unc-22 that normally results in

uncoordinated body wall twitching. As a quality control, any plate

in which the unc-22 RNAi-fed worms failed to twitch was

discarded and the experiment was repeated.

Locomotor behaviour was assessed at two time-points following

the increase in ambient temperature. The first assay was

performed 22 h post-induction, at which time Ab-expressing
worms fed control bacterial cultures were all moving normally.

When all worms in each of the triplicate wells for a particular

RNAi clone at this time point were seen to be paralysed, then the

clone was defined as an enhancer of Ab toxicity. This enhance-

ment was specific to Ab-expressing worms as no similar paralysis

was seen in the corresponding treatment of non-Ab-expressing
CL802 worms. Clones that non-specifically paralyse worms were

not considered. The second time-point, at 32 hr, permitted the

detection of suppressors of the paralysis phenotype. At this time-

Table 4. Cont.

Gene p-value +1 interactome overlap [experimental vs MC]

NDUFA6 0.486 larger

UBA6 0.515 larger

CRNKL1 0.535 larger

MAT1A 0.539 smaller

RPL36AL 0.55 larger

ATP6V1A 0.557 larger

SERINC1 0.577 larger

EIF2B5 0.58 smaller

HIST1H2BA 0.58 smaller

AP1S2 0.655 smaller

ATP6V0C 0.759 larger

The human AD GWAS white+grey zone genes, and their +1 interactors, overlap with the human orthologues of worm-screen hits, and their +1 interactors. Worm screen
genes that have human orthologues with a significantly non-random +1 interactome overlap with the GWAS list are shown in bold. Worm screen genes that have
human orthologues that interact directly with GWAS genes are marked with an asterisk.
doi:10.1371/journal.pone.0102985.t004
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point, Ab-expressing worms under control conditions were all

paralysed and so any RNAi-expressing clone that protected the

locomotor function of all the worms, in triplicate wells, was defined

as a suppressor of Ab toxicity.

Secondary screen to confirm the RNAi modifiers of Ab-
induced paralysis
The secondary screen consisted of a further three experiments,

each performed in triplicate wells, for each hit from the primary

screen. Paralysis curves were generated by hourly observation of

locomotor behaviour and were analysed using Kaplan-Meier plots

with statistical significance being estimated using the Mantel-Cox

Log Rank test (GraphPad, Prism); p,0.05 was considered

significant.

Finding human orthologues of worm genes
According to our pre-planned study design, we considered only

those genes in C.elegans that have one or more human

orthologues. We used the EnsemblCompara phylogenetically

based orthology prediction method (http://www.ensembl.org/)

[17] to find human orthologues of worm genes with minimum

25% amino acid identity [46] with respect to the query gene

product. In cases where there was more than one human

orthologue, then the gene with the highest % identity was chosen.

In approximately 15% of cases one worm gene had multiple

human orthologues all with the same percent identity; in these

cases, the preferred orthologue was chosen using MetaPhOrs

(http://orthology.phylomedb.org/) [47] where the consistency

score for any orthology was used as the tie-breaker. This score is 1

where an orthology is supported by all the available databases and

decreases as agreement is less consistent.

Using this method, human orthologues for 61 out of 78 worm

genes were found. The human orthologues of this series of worm

genes was then compared with the GWAS white+grey zone genes

(Fig. S2.1) as published at the Database of Genotype and

Phenotype (dbGaP) of the National Center for Biotechnology

Information [48] (http://www.ncbi.nlm.nih.gov/projects/

gapplusprev/sgap_plus.htm, p,1025, Disease = ‘‘Alzheimer Dis-

ease’’, access date June 2013).

Network Generation
The ‘‘GWAS +1 interactome’’ consists of all the GWAS white+

grey zone genes plus all the genes encoding proteins with which

their products physically interact. The ‘‘worm +1 interactome’’

was generated in a similar manner, using 61 human orthologues of

the worm modifier screen ‘‘hits’’. The list of interactions was

retrieved from the ‘‘Biogrid’’ database (http://thebiogrid.org, v.

3.2.96) [19]. The statistical significance of the overlap between the

worm +1 interactome and the GWAS +1 interactome was

determined by Monte Carlo simulation [49].

Monte Carlo simulations
To test whether any particular worm screen hit g had a +1

interactome that overlapped more with the GWAS +1 interactome

than expected by chance, we used the following computational

algorithm (Fig. S2):

1. The size of the +1 interactome for each human orthologue of

the worm screen hits was determined.

2. Random +1 interactomes, of the same size as the network in

step 1, were then generated (Fig. S3). This was achieved by

randomly choosing one of the 7970 human orthologues of

worm genes, and then generating its +1 interactome and using

this list to progressively populate a random +1 interactome.

Once this random list had reached the required length, the

process was terminated. If, however, the first randomly selected

human orthologue of a worm gene had insufficient interactors

to completely populate the required random +1 interactome,

then additional random genes and their associated interactor

lists were added until the random list was complete.

3. The generated set of random genes was compared with the +1
interactome of the GWAS white+grey zone genes and the

number of identical genes was counted (the overlap).

4. Steps 2–3 were repeated 1000 times, yielding a Monte Carlo

set of 1000 overlap scores.

5. The number of times that the random overlap was equal to, or

greater, than the experimental overlap was counted - this was

termed nright,g (Fig. S4, panel A)

6. Similarly the number of times that the random overlap was

equal, or less, than the experimental score was also counted -

this was termed nleft,g (Fig. S4, panel B)

7. We divided either nright,g or nleft,g, whichever was smaller, by

the number of simulations (n = 1000) to give the p-value for the

overlap (Fig. S2), thus ensuring that a one-tailed test was

simulated.

Supporting Information

Figure S1 Paralysis timecourse following induction of
Ab expression. Increasing the ambient temperature to 23uC
when the worms are 48 h old (stage L3) induces Ab expression and

results in progressive paralysis in worms fed on E. coli containing
empty vector (a, round symbols). By contrast, a typical suppressor

clone rescues this locomotor deficit (square symbols). The

paralysed worms (b, arrows) are straighter and largely immobile

whereas non-paralysed worms exhibit a marked ‘‘roller’’ pheno-

type (c, arrowheads), but otherwise move normally.

(TIF)

Figure S2 Computational pipeline for determining the
significance of the overlap between the +1 interactomes
of worm-screen hits and GWAS white+grey zone genes.
The algorithm is described more fully in the ‘‘Monte Carlo

simulations’’ section of the methods section.

(TIF)

Figure S3 Generation of equivalent random +1 inter-
actomes. An illustration of how random +1 interactomes (right)

were generated to compare with the +1 interactomes of each of the

worm screen hits. Random +1 interactomes were generated

containing the same number of genes (in this example, n= 11).

Human orthologues of worm-screen hits are labeled with ‘‘1’’ (left).

Random human genes with a worm orthologue are labeled with

‘‘2’’ (right). Human +1 interactors are represented by small green

dots.

(TIF)

Figure S4 Estimating the significance of highly overlap-
ping/poorly overlapping +1 interactomes. The +1 inter-

actome of the human orthologues of worm screen genes may

overlap more than expected (panel A, contributing to nright) or less

than expected (panel B, contributing to nleft). Generation of 1000

random +1 interactomes allows the p value for the experimental +
1 interactome to be derived. Further details can be found in the

‘‘Monte Carlo simulations’’ section of the methods section.

(TIF)
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Figure S5 Venn diagram indicating the degree of the +1
interactome overlap for GWAS white+grey genes and
each of the significant genes from the worm screen.
Seven genes from the worm screen have human orthologues that

have +1 interactomes that overlap more or less than one would

expect by chance with the GWAS +1 interactome. Four overlap

more (left panel), and three less (right panel), than expected. The

area of each circle or overlap is proportional to the number of

genes. Worm screen genes that have human orthologues that

interact directly with GWAS white+grey zone gene products are

marked with asterisks.

(TIF)

Table S1 The 63 human genes in the AD GWAS white+grey
zones.

(DOCX)

Table S2 Worm RNAi modifiers for screens of various disease

models. The genes that modified fly phenotypes when targeted

with RNAi are listed for a) polyglutamine, b) tau and c) a-
synuclein.

(DOCX)
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11. Jensen M, Schröder J, Blomberg M, Engvall B, Pantel J, et al. (1999)
Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer’s disease

and declines with disease progression. Ann Neurol 45: 504–511.

12. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, et al. (2009)
Genome-wide association study identifies variants at CLU and PICALM

associated with Alzheimer’s disease. Nat Genet 41: 1088–1093.

13. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, et al. (2009) Genome-
wide association study identifies variants at CLU and CR1 associated with

Alzheimer’s disease. Nat Genet 41: 1094–1099.

14. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, et al. (2011)
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP

are associated with Alzheimer’s disease. Nat Genet 43: 429–435.

15. Gerrish A, Russo G, Richards A, Moskvina V, Ivanov D, et al. (2012) The role
of variation at AbPP, PSEN1, PSEN2, and MAPT in late onset Alzheimer’s

disease. J Alzheimers Dis 28: 377–387.

16. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, et al. (2003) Systematic
functional analysis of the Caenorhabditis elegans genome using RNAi. Nature

421: 231–237.

17. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, et al. (2013) Ensembl 2013.
Nucleic Acids Res 41: D48–55.

18. Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, et al. (2005) Genomics in

C. elegans: so many genes, such a little worm. Genome Res 15: 1651–1660.

19. Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, et al.
(2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:

D816–23.

20. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:
335–341.

21. Fisher RA (1970) Statistical methods for research workers. Edinburgh Oliver

Boyd.

22. Nollen EAA, Garcia SM, van Haaften G, Kim S, Chavez A, et al. (2004)
Genome-wide RNA interference screen identifies previously undescribed

regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101:

6403–6408.

23. Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006)

Molecular pathways that influence human tau-induced pathology in Caenor-

habditis elegans. Hum Mol Genet 15: 1483–1496.

24. van Ham TJ, Thijssen KL, Breitling R, Hofstra RMW, Plasterk RHA, et al.

(2008) C. elegans Model Identifies Genetic Modifiers of a-Synuclein Inclusion

Formation During Aging. PLoS Genet 4(3): e1000027. doi:10.1371/journal.p-

gen.1000027.

25. Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, et al. (2010) 4.0-A

resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals

its unique subunit arrangement. Proc Natl Acad Sci U S A 107: 4967–4972.

26. Goudreault M, D’Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, et al. (2009)

A PP2A phosphatase high density interaction network identifies a novel striatin-

interacting phosphatase and kinase complex linked to the cerebral cavernous

malformation 3 (CCM3) protein. Mol Cell Proteomics 8: 157–171.

27. Chen J, Aronow BJ, Jegga AG (2009) Disease candidate gene identification and

prioritization using protein interaction networks. BMC Bioinformatics 10: 73.

28. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human

disease network. Proc Natl Acad Sci U S A 104: 8685–8690.

29. Gautier T, Bergès T, Tollervey D, Hurt E (1997) Nucleolar KKE/D repeat

proteins Nop56p and Nop58p interact with Nop1p and are required for

ribosome biogenesis. Mol Cell Biol 17: 7088–7098.

30. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and

26S proteasomes. Annu Rev Biochem 65: 801–847.

31. Yoo BC, Fountoulakis M, Dierssen M, Lubec G (2001) Expression patterns of

chaperone proteins in cerebral cortex of the fetus with Down syndrome:

dysregulation of T-complex protein 1. J Neural Transm Suppl: 321–334.

32. Lorber B, Howe ML, Benowitz LI, Irwin N (2009) Mst3b, an Ste20-like kinase,

regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci

12: 1407–1414.

33. Zhou TH, Ling K, Guo J, Zhou H, Wu YL, et al. (2000) Identification of a

human brain-specific isoform of mammalian STE20-like kinase 3 that is

regulated by cAMP-dependent protein kinase. J Biol Chem 275: 2513–2519.

34. Lambourne SL, Sellers LA, Bush TG, Choudhury SK, Emson PC, et al. (2005)

Increased tau phosphorylation on mitogen-activated protein kinase consensus

sites and cognitive decline in transgenic models for Alzheimer’s disease and

FTDP-17: evidence for distinct molecular processes underlying tau abnormal-

ities. Mol Cell Biol 25: 278–293.

35. Behrends C, Langer CA, Boteva R, Böttcher UM, Stemp MJ, et al. (2006)

Chaperonin TRiC promotes the assembly of polyQ expansion proteins into

nontoxic oligomers. Mol Cell 23: 887–897.

36. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu C-C, Visvikis O, et

al. (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates

longevity in Caenorhabditis elegans. Nat Commun 4: 2267.

37. Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress

resistance and longevity. Cell 153: 1435–1447.

38. Russell RC, Tian Y, Yuan H, Park HW, Chang Y-Y, et al. (2013) ULK1 induces

autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat

Cell Biol 15: 741–750.

39. Riedel CG, Dowen RH, Lourenco GF, Kirienko N V, Heimbucher T, et al.

(2013) DAF-16 employs the chromatin remodeller SWI/SNF to promote stress

resistance and longevity. Nat Cell Biol 15: 491–501.

40. Guisbert E, Czyz DM, Richter K, McMullen PD, Morimoto RI (2013)

Identification of a Tissue-Selective Heat Shock Response Regulatory Network.

PLoS Genet 9(4): e1003466. doi:10.1371/journal.pgen.1003466.

41. van Oosten-Hawle P, Porter RS, Morimoto RI (2013) Regulation of organismal

proteostasis by transcellular chaperone signaling. Cell 153: 1366–1378.

Chaperone Implicated by Alzheimer GWAS and Worm Screen

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e102985



42. Kirstein-Miles J, Morimoto RI (2013) Ribosome-associated chaperones act as

proteostasis sentinels. Cell Cycle 12: 2335–2336.

43. Link CD (1995) Expression of human beta-amyloid peptide in transgenic

Caenorhabditis elegans. Proc Natl Acad Sci U S A 92: 9368–9372.

44. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

45. Strange K, Christensen M, Morrison R (2007) Primary culture of Caenorhab-

ditis elegans developing embryo cells for electrophysiological, cell biological and

molecular studies. Nat Protoc 2: 1003–1012.

46. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, et al. (2011)

Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinfor-
matics 12: 124.

47. Pryszcz LP, Huerta-Cepas J, Gabaldón T (2011) MetaPhOrs: orthology and

paralogy predictions from multiple phylogenetic evidence using a consistency-
based confidence score. Nucleic Acids Res 39: e32. doi:10.1093/nar/gkq953.

48. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, et al. (2007) The NCBI
dbGaP database of genotypes and phenotypes. Nat Genet 39: 1181–1186.

49. Besag J, Clifford P (1991) Sequential Monte Carlo p-values. Biometrika 78: 301–

304.

Chaperone Implicated by Alzheimer GWAS and Worm Screen

PLOS ONE | www.plosone.org 13 July 2014 | Volume 9 | Issue 7 | e102985


