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Summary of thesis

Understanding the mechanism by which stars become supernovae is a major unsolved
problem in astrophysics. They are driven by the release of gravitational energy,
which is expelled largely in the form of neutrinos. After almost 40 years of numerical
simulations, it is still unclear how and why large stars explode. A core-collapse
supernova (CCSN) begins when its core collapses and drives a shock wave outwards.
Due to the emission of neutrinos and the inward pressure of the core collapse, the
shock wave briefly subsides. The mechanism for the revival of the shock wave and
subsequent supernova explosion is presently unknown. Proposed mechanisms include
the neutrino, magnetorotational, and the acoustic mechanisms. Gravitational Waves
(GWs) will help answer how large stars explode. The violent motions of dense matter
in the stars core produce GWs, and their shape is determined by that motion.
Therefore, the physical processes (i.e. either the neutrino, magnetorotational, or
the acoustic mechanisms) can be inferred by studying the GWs. Estimates from
numerical simulations indicate that the GWs from a supernova anywhere in the
Milky Way would be strong enough to be detectable by advanced LIGO. A large
burst of neutrino particles is also emitted in the core collapse; together with the
GWs, these can determine the location of the supernova on the sky before the shock
breakout, giving astronomers a chance to see the earliest stages of the explosion.
Because the Galactic supernova rate is no larger than about one every thirty years, it
is necessary for a search to be ready from the beginning of the operation of advanced
LIGO. This search should include the ability to detect any plausible GW polarization
that could arise from a CCSN. Specifically, the knowledge of the precise time and sky
location of the SN provided by neutrino and optical detection respectively constrains
how the GW signal will appear in a network of detectors. Thus, deviations from the
expected detector response could reveal if GWs contain polarizations beyond those
predicted by GR. This thesis explores the ability of aLIGO to detect scalar polarized
GWs from CCSNe and other possible galactic sources.
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Chapter 1

Introduction

Einstein’s general theory of relativity (GR) predicts that all accelerating objects
with non-symmetric mass distributions produce gravitational waves (GW), which
are oscillations in the space-time metric [13]. In the same way as light, gravitational
effects do not propagate with infinite speed. Whenever the distribution of mass in a
given system changes (for example, when one drops a basketball), the gravitational
field adapts to this new mass distribution. The speed at which this change propa-
gates is equal to the speed of light. The resulting change in the gravitational field
is a GW.

GWs are predicted by any theory which assumes that gravitational effects prop-
agate at finite speed. Characteristics such as the GW polarization, phase, and
amplitude change depending on the theory assumed. It is for this reason that GWs
can be used to test general relativity. In addition, they can be used to explore the
physics of objects such as black holes, gamma-ray bursts, and supernovae above and
beyond the information currently available from astronomy [13].

As GWs pass through space, space is contracted and expanded in directions
orthogonal to the direction of propagation. According to GR, the GW can be de-
composed into a linear combination of two transverse polarizations, known as plus
and cross. Assuming the direction of propagation is along the z-axis, the plus po-
larization occurs in the x and y-directions and the cross along the two diagonals.
Figure 1.1 shows these polarizations. The plus and cross components of GWs are
exploited in order to detect them with interferometric detectors. There are alterna-
tive theories, however, which predict the existence of up to 6 polarizations [14, 15].
For the purposes of this thesis, I will explore the addition of one polarization trans-
verse to direction of propagation, the breathing or scalar mode. Again, assuming
the propagation is along the z-axis, the scalar polarization stretches the x-y space
equally in all directions, also in figure 1.1. The scalar polarization arises from the
addition of a scalar field to Einstein’s field equations, as discussed in Section 2.2.
Perturbations of this field cause scalar polarized GWs.

Before the observation of the binary pulsar system PSR 1913+16, GWs were
strictly theoretical. Analysis of this system showed that the orbit of this neutron
star pair lost energy at the rate predicted by General Relativity for GW emission[16].
Although there still exists no direct detection of GWs, this discovery provides in-
direct evidence for the existence of GWs. It, therefore, became useful to develop
detectors in order to make direct findings. Over the past fifty years, a number of
gravitational-wave detectors have been designed with various degrees of sophistica-
tion and purpose. Joseph Weber constructed and published results from the first
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Figure 1.1: Cartoon illustrating GW polarizations. On the left is the deformation
of space in the x and y-directions by a GW with a plus polarization. In red is the
static case and blue is the case where the GW is at its maximum and minimum. In
the middle is the deformation of space in the x and y-directions by a GW with a
cross polarization. On the right is the deformation of space in the x and y-directions
by a GW with a scalar polarization.

of these detectors. The analysis looked for strains caused by passing GWs in an
aluminum bar [17]. Although he claimed a GW detection, it is likely these “de-
tections” were only noise sources. Many, more sophisticated detectors exist today.
Examples of this sophistication include that the detectors are seismically isolated
and cryogenically cooled in order to reduce the natural vibrations in the bars and
increase their sensitivity [18].

There exists a number of modern day interferometric ground-based detectors.
The interferometric ground-based detectors are Michelson interferometers with Fabry-
Perot cavities. This type of interferometer consists of a monochromatic light source,
which today is almost exclusively a laser. Its light is sent to a beam splitter and
sent down two orthogonal arms. At the end of each of these arms is a reflective
mirror. The beams reflect off of these mirrors and recombine at the beam splitter,
thereby sending a portion of the light toward a photodiode, and the remaining light
back towards the laser. This photodiode outputs a current proportional to the av-
erage photon flux at the detector [19]. Any differential variation in the lengths of
the arms will change the power seen at the photodetector. For example, if a GW
passes through an interferometer perpendicular to its arms, space orthogonal to the
direction of its motion will expand and contract. This will change the length of
both arms, causing the power to modulate as function of time. Figure 1.2 shows a
schematic for the LIGO interferometer.

Current ground-based detectors include LIGO [20], Virgo [21], and GEO600
[22]. LIGO consists of two 4 kilometer interferometers at Hanford, WA (H1) and
Livingston, LA (L1) in the United States. Virgo consists of one 3 kilometer inter-
ferometer located in Pisa, Italy (V1). GEO consists of one 600 meter interferometer
located in Hanover, Germany (G1). The LIGO detectors collected data as part of
their fifth science run from November 4 2005 to September 30 2007 (S5) and Virgo
collected data as part of its first science run from May 18, 2007 until September 30,
2007. The period starting May 18, 2007 is called the S5-VSR1 joint science run and
is the period of data of interest for this thesis.

Future proposed underground detectors include the Einstein Telescope (ET) [23],
and space-based detectors, such as LISA [24]. These experiments intend to provide
direct detections of GWs and use that information to study certain astrophysical
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Figure 1.2: Illustration of the optical layout of a LIGO interferometer [1].
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Introduction

sources. Possible astrophysical sources that the detectors are sensitive to include the
coalescence of massive binary systems containing massive objects such as neutron
stars or black holes, the core collapse of a massive star into a Type II supernova,
and processes from the time of the Big Bang that produce a stochastic background
of GWs [25]. Because of their extremely small amplitudes, a direct detection of
GWs from any of these systems is challenging. Their space displacements are on
the order of 10−18 m, which is a 1000 times smaller than the nucleus of an atom.
In order to obtain sensitivity at these amplitudes, LIGO and Virgo use special
interferometry techniques, state-of-the-art optics, highly stable lasers, and multiple
layers of vibration isolation [20].

This thesis explores a variety of topics related to GW detection from Supernovae.
It is organized as follows. In chapter 2, I discuss methods for the detection of scalar
polarized GW signals. These include formulating signal processing statistics specific
to the scalar mode and exploring the current viable scalar field parameter space. I
also estimate the sensitivity of one of the LIGO standard data analysis packages,
X-Pipeline, to these waveforms.

In chapter 3, I discuss the current implementation of the SuperNova Early Warn-
ing System (SNEWS) analysis. I describe how neutrino detection of a Galactic Su-
pernova can guide a low-latency X-Pipeline analysis. I also assess sensitivity to SNe
waveforms for two cases. First, the case where the precise location of the SN is
known due to the optical observations. Second, the case before the optical SN is
detected and only the neutrino early warning signal, with little or no sky location
information, is available to guide the search. The latter analysis is performed in
order to detect the GW signal before the optical detection in order to help direct
the optical observers to the correct sky region to catch the earliest stages of the
optical signal.
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Chapter 2

Detection of scalar-polarized
gravitational waves in the
aLIGO era

Gravitational Wave Bursts (GWBs) have been sought as a source of gravitational
waves from the beginning of gravitational-wave searches. Burst searches have ranged
from GWBs associated with gamma-ray-bursts (GRBs) [11] to those associated with
core collapse supernovae (CCSN) [26] . Previous burst searches focused on detecting
the polarizations predicted by GR, plus and cross [27], as well as special cases of
the plus and cross polarization, the circular [11] and linear [26] polarization. In this
paper, I will refer to searches that assume any of these polarizations as a standard
GWB analysis.

Typical gravitational-wave searches for GWBs employ the technique of a coher-
ent analysis [27–31]. A coherent analysis uses both individual and combined detector
data streams in order to better reject background noise events and thereby increase
sensitivity to GWBs. The idea behind using combined and individual data streams
is that GWBs will appear in some quantifiable capacity in all the data streams,
but loud data transients, called “glitches,” would typically occur in only one of the
detectors at a given time.

In our analysis, I use and modify a software package known as “X-Pipeline” [27].
X-Pipeline has been used as a search algorithm for GWB sources such as GRBs
and CCSN in initial LIGO searches. For these astrophysical events, the algorithm
uses sky location information of the source to tune the analysis. In the standard
analysis, the detectors will have different sensitivities to a plus and cross polarized
GWB from different sky directions. These responses can be mathematically modeled
and various likelihood statistics calculated to extract time-frequency pixels from the
data that are more likely to be GWBs [32]. In this work, I use these same standard
statistics but modify them for the scalar mode and compare the performance of
scalar versus standard statistics when searching for scalar GWBs.

Most previous work in GWBs used the GR framework for their searches. In gen-
eral, this was reasonable because energy in the form of gravitational radiation is ex-
pected to be stronger in the standard modes than the alternative modes. The weaker
energy can be traced to the ω coupling parameter in the Brans-Dicke-Jordan-Fierz
theory. This parameter is a value that ensures scalar-tensor theories are consistent
with current observations. That is, GR has passed all tests to this point. There-
fore, any deviations from GR must be relatively small which is exemplified by the 1

ω
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Search for Alternative Polarizations

parameter. The limit of Brans-Dicke as ω approaches infinity is standard GR [14].
The solar system experiment carried out by the Cassini probe placed a constraint on
ω of greater than 4× 105 [5], although recent papers [33, 34] suggest even stronger
constraints can be placed on this value through the detection of gravitational-waves.
Despite this small value of 1

ω , scalar gravitational waves are worth considering with
respect to a SNe. This is because spherically symmetric systems cannot produce
GWs in GR, but they can emit scalar polarized signals. Therefore, in nearly sym-
metric systems such as SNe, they could be the dominant form of the GWs produced.
This chapter also explores other nearly spherically symmetric systems such as a Neu-
tron Star (NS) collapse to a Black Hole (BH) and the spontaneous scalarization of
a NS.

The advanced detector era, which includes advanced LIGO [1], advanced Virgo
[35], KAGRA [36] and begins operations in late 2015, provides new hope for de-
tecting standard and alternative gravitational-wave polarizations. In particular, the
proposed search for GWBs associated with a Galactic Supernova (GS) is especially
promising. The nearby distance of the source and increased sensitivity of the ad-
vanced era detectors make the search for alternative gravitational wave modes a
tempting proposition. Also, these factors could mean that the current sky-localized
burst searches, as they are currently implemented, could potentially detect scalar
GWBs. GWs from the next GS will provide a wealth of information concerning SNs.
This includes learning information such as the structure of massive stars, core col-
lapse dynamics, and the still uncertain CCSN explosion mechanism [37]. In addition,
GWs could provide insight into explosive nucleosynthesis and mixing of synthesized
elements that occur during the explosion as well as insight into fundamental physics
such as the equation of state of nuclear matter and neutrino interactions [38].

In this chapter, I benchmark the feasibility of searching for scalar polarized
waveforms from a source such as a galactic CCSN, and determine the sensitivity of
the standard sky-localized burst search with respect to the scalar polarization in the
early aLIGO era. I emphasize the sky-localized aspect of the search because previous
work has explored this question in relation to all-sky burst searches [39]. Initial work
demonstrated that these searches are sensitive to these waveforms, but the recovered
sky location in many cases was demonstrated to be poor. This effect occurs because
the all-sky search incurs a degeneracy of the scalar signal with the GR signal. That
is, a scalar signal from direction Ω1 may look similar in the network to a GR signal
coming from direction Ω2. A triggered search removes this degeneracy because Ω
is known beforehand. In principle, this makes it possible to distinguish the scalar
signal from the GR signal, motivating a more extensive study for burst searches that
utilize sky position as part of the search.

For the advanced detector era there are three major benefits of such an analysis.
First, it provides evidence for the feasibility, or lack thereof, that burst searches
utilizing sky localization of the source in their search would capture a scalar po-
larized waveform. As all present burst searches assume standard polarizations, it
will suggest whether follow-up runs for different theorized polarizations for these
searches should be conducted at some point. If the efficiency of detection is only
marginally less in the specially designed search, then it would inform the priorities
of performing this type of search. Second, it provides evidence at what distances a
scalar polarized waveform could feasibly be detected by the detectors. If the scalar
waveforms prove too quiet to be detectable, then follow-up searches for some events
would be unnecessary. This is vital to the Supernova Neutrino Early Warning Sys-
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tem (SNEWS) triggered search planned for the early aLIGO science runs [40]. I also
address whether or not an implementation of the scalar search should be included
as part of a follow-up to such an alert.

In section 2.1, I discuss why GW emission mechanisms from CCSNe provide good
sources for GWs. In section 2.2, I provide a summary of the scalar polarization and
perform a brief literature review of the GW applications. In section 2.3, I give an
overview of the X-Pipeline algorithm and its modifications that I made for the scalar
search. In section 2.4, I discuss the factors that went into selecting the waveforms
and supernovae used to benchmark the GR and scalar searches. In section 2.5, I
present our results from the simulated SNEWS-like search using the scalar analysis.
In section 2.6, I offer concluding remarks and suggest directions for future research.

2.1 Gravitational Waves and core-collapse Supernova

In this section, I briefly explain the process of a core-collapse supernova, including
how they emit GWs, why a detection is anticipated, and what potential information
is associated with those GWs (please see [37] and references therein for further
information).

When a massive star on the order of > 10M� explodes, the stellar core collapses
to a hot proto-neutron star. After, the proto-neutron star cools down through
neutrino emission. Next, the collapse halts suddenly when the collapsing iron core
reaches neutron-star density. The collapse over-shoots equilibrium density, causing
a rebound, the “bounce”, that launches a shockwave. When the shockwave reaches
the surface of the star, it lights up the star in a supernova explosion. The mystery in
this process is that the shockwave is not energetic enough to plow through the stellar
mantle. In theory, the absorption of a small fraction ( 10%) of the neutrinos within
the first second after the creation of the proto-neutron star fuels the shockwave.
In particular, the neutrinos heat up the collapsing mass above the proto-neutron
star which drives convection. This convection provides one source of GWs from
CCSNe. The heated material at the bottom of the stellar material will rapidly rise
in comparison to the cool stellar mass towards the mantle of the star. This bulk
motion of large quantities of material leads to the emission of GWs. Other sources
of GWs from the CCSN depend on other variables. If, for instance, the star’s core
is spinning prior to core collapse, then the initial creation of the proto-neutron star
will emit a burst of GWs lasting only a few milliseconds. In Sections 3.2 and 2.4.1,
I discuss CCSN waveforms in more detail.

Depending on the distance of the CCSN, Earth based detectors can detect the
neutrinos from this process. For example, Super Kamiokande (Super K), one of
these Earth-based neutrino detectors, detected neutrinos from the last GS, super-
nova SN 1987A, which exploded in the Large Magellanic Cloud. Unfortunately, in
1987 no detectors sensitive enough to CCSN GWs existed. As discussed in the in-
troduction, the planned sensitivity of the next generation of GW detectors along
with theoretical predictions of the GW emission from CCSNs [37] suggest there is a
chance of detecting GWs from a CCSN in the Milky Way. In addition to the close
distance of a CCSN in the Milky Way, the other cause for optimism is because the
neutrinos from the supernova will be detected by detectors such as Super K [41].
These detectors will provide a precise timestamp of the event which will help guide
the GW search.

The observation and characterization of GWs from the next GS will provide
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information unattainable through optical analysis. First, in the CCSN context,
GWs directly probe the uncertain degree of asymmetry of the supernova engine
because they are produced by bulk aspherical accelerated motion of mass-energy. For
instance, the angular momentum of the collapsing core can be measured using GWs
from rotating core collapse, see [42, 43]. Second, GWs are expected to be emitted
by a broad range of processes, e.g. [37, 38], many of which can be directly associated
with particular explosion mechanisms. This means that GWs can either eliminate
or validate various theoretical explosion mechanisms. For example, the neutrino
explosion mechanism links to the GW signal from the neutrino-driven convection
and the magnetorotational explosion mechanism links to a strong signal from a
rotating CCSN, see [44, 45]. Moreover, the moment of the onset of explosion can be
inferred and the structure of the nascent neutron star can be constrained through
the detection of GWs from neutrino-driven convection and the standing accretion
shock instability. With this information, constraints can be placed on the nuclear
equation of state [8, 46, 47]. Finally, the abrupt end of GW and the simultaneous
neutrino emission would indicate the formation of a black hole, see [48, 49]. As
such, a GW detection will clarify much of the unknown physics that occurs as a star
transitions from collapse to explosion.

This potential wealth of science has motivated work towards understanding GW
emission from CCSN and quantifying with varying degrees of refinement the de-
tectability of the GWs. Examples of this work include theoretical estimates of
optimal or angle-averaged signal to noise ratios, see [37], sensitivity estimates based
on real data that has been rescaled to match the expected noise characteristics of
aLIGO in its first observing run, [12] and an ongoing search to detect or place up-
per limits on GWs from an extra-galactic CCSNe in initial LIGO data [26]. These
studies show that a galactic CCSN at a distance of a few kpc may be detectable by
the advanced LIGO detectors in their first observing run in late 2015, referred to
as the O1 observing run. With a detection, focus will shift towards waveform re-
construction and parameter estimation in order to determine some of the important
astrophysical questions poised above. CCSN occuring at distances beyond the Milky
Way are unlikely to be detectable with the projected advanced detectors sensitiv-
ity on the basis of current GW signal predictions from detailed multi-dimensional
simulations, see [7, 8, 37]. However, useful science can be sought and obtained from
more distant CCSN in the case of extreme emission scenarios associated with longer-
lasting (few seconds) barmode instabilities, see [50] or fragmenting accretion disks,
see [51].

These estimates and studies have, however, only been conducted on models and
simulations assuming plus and cross polarized signals. No work has yet been con-
ducted on detecting scalar polarized signals. The detection of scalar GWs would
provide both insights into the CCSN physics and revolutionize our understanding of
gravity and space-time. These factors motivate the importance of determining the
feasibility of detecting scalar GWs.

2.2 Overview of Scalar-Tensor Gravity

In this section, I discuss the basic idea of scalar gravitational waves. For a thorough
analysis of the addition of the scalar field to standard GR, see [52]. I discuss only
aspects of the theory that are important to this analysis.

Figure 1.1 shows the three polarizations of GWs of interest for this analysis, the
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cross, plus and breathing mode. Essentially, a scalar field is added to the standard
Einstein field equations and perturbations of this 0-spin field φ create scalar polarized
GWs. With the addition of this 0-spin field, the action now has the form

I = (16π)−1
∫ √

−g
(
φR− gµν

ω(φ)

φ
δµφδνφ

)
d4x

+Im [Ψm, gµν ]

(2.1)

where ω(φ) is an arbitrary function and Im is the action for the matter fields Ψm.
Equation 2.1 is in the so-called Brans-Dicke frame. In order to get from the Brans-
Dicke frame into the more commonly used Einstein frame, two terms need to be
defined

1

G∗A2(ϕ)
= φ (2.2)

and

α2(ϕ) =
1

3 + 2ω(φ)
. (2.3)

In Brans-Dicke theory, G∗ is the value of Newton’s constant in asymptotic limit and
φ is a constant. In this way, α(ϕ) and, by design, the ω(φ) are constant. A(ϕ) and
α(ϕ) relate in the following way

α(ϕ) =
dlnA(ϕ)

dϕ
. (2.4)

With these substitutions, the action now has the form

I = (16πG∗)
−1
∫
d4x
√
−g∗ (R∗ − 2gµν∗ δµϕδνϕ)

+Im
[
Ψm, A

2(ϕ)g∗µν
] (2.5)

where gµν = A2(ϕ)g∗µν . It is clear that as α(ϕ) → 0 or equivalently ω(φ) → ∞
then A2(ϕ) will approach 1 and the equations revert back to the standard Einstein
equations.

In most studies, the function α(ϕ) is assumed to take the form of a Taylor
expansion

α(ϕ) = α0 + β0(φ− φ0) + β1(φ− φ0)2 + · · · . (2.6)

For all models in this chapter, α(ϕ) is defined by the two variable parameter space
of α0 and β0:

α(ϕ) = α0 + β0(φ− φ0). (2.7)

Finally, I can now define A(φ) in terms of α0 and β0.

A(ϕ) = eα0(φ−φ0)+ 1
2
β0(φ−φ0)2 (2.8)

One potentially exciting result of the addition of a scalar field to standard theory
is that a perturbed scalar field will emit monopole and dipole GWs instead of just
quadrapolar GWs. Dipolar waveforms would be expected in binary coalescences.
For a review of alternative theories of gravity and how their inclusion impacts data
analysis in the case of compact binary coalescences of neutron stars and black holes,
please see [15]. I concentrated on the scalar polarization which would result from
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spherically symmetric systems of which core-collapse supernovae provides a poten-
tial source. Research has been conducted to benchmark current all-sky burst search
algorithms, such as coherent Wave Burst (cWB) [39], to scalar waveforms. Prelimi-
nary results found the all-sky search to be sensitive to the scalar polarization with
the standard (GR) search, but these results showed that recovered versus injected
sky-location was very different. Because of this, I decided to explore the impact of
sky localized searches on scalar GWs. It is also important to separate this analysis
from research that is on-going in constraining alternative gravity with the detection
of GWs. Without more than three detectors, it is impossible to determine whether
a detected GW event was, in fact, scalar polarized, due to the degeneracy with
the longitudinal mode [53]. To decouple the two, at least four detectors would be
required. Determining whether a GW possessed an alternative polarized signal is
not the purpose of this study. I simply aim to assess the detectability of a scalar
polarized signal by itself. The determination of the exact polarization of the signal
is left to a future study.

2.3 Overview of Coherent Analysis

An overview of the standard method and notation of an X-Pipeline analysis now
follows (for a more complete discussion, see [27]). A GWB search has three necessary
components, the sky location Ω, the detector data d for a given detector α and the
characterization of the GW in the plus and cross polarizations, (h+(t), hx(t)). The
detector data d can be further subdivided into two component parts. These parts are
the data that is background noise n and the data that is signal, which is given by the
detector response Fα(Ω)+ and Fα(Ω)×, multiplied by the signal. The sky location
plays two roles in this analysis. First, given a sky location, I know the exact time-
of-arrival delay, written as ∆tα(Ω), of the GW signal between the various detectors.
Second, I can use the sky location to calculate the detector responses to the signal.
These functions have the form

F+(Ω) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ
(2.9)

F×(Ω) = −1

2
(1 + cos2 θ) cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ
. (2.10)

Here, φ is the azimuthal angle of the source in detector-based coordinates, θ is the
polar angle of the source in Earth-Centered coordinates, and ψ is the polarization
angle of the GW. Because Equation (2.9) and (2.10) are written in detector-based
coordinates both θ and φ vary with time.

With this in mind, I characterize the data as a function of time as follows,

d(t+ ∆tα(Ω)) = Fα(Ω)+h+(t) + Fα(Ω)×h×(t)+

nα(t+ ∆tα(Ω)).
(2.11)

Now, if I apply a time shift of the individual detector streams corresponding to
∆tα(Ω), then I obtain the simultaneous contributions of energies among the detectors
that would contain the GWB. After this time-shift is performed, only a time- series
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of detector strains remains. At this point, searches for GWBs move from the time-
domain to the frequency-domain in the form of time-frequency maps proportional
to GW strain power. The pixels of these time-frequency maps are computed by
dividing detector strain time series in segments and computing Fourier transforms
of the segments. The Fourier transform of the strain data from detector α for the
segment with a mid-time of t is denoted s̃α(t; f). For the results presented here, I
use 50%-overlapping, Hann-windowed segments with fast-fourier transform (FFT)
lengths ranging from 1

2 s to 1
128 s. I utilize a range of TF-pixel sizes because I do not

know ahead of time what pixel size will best capture the GWB. The one-sided noise
spectrum for detector α is defined as Sα(f) = ((s̃α(t; f))2)/T , where T is the FFT
length. During this process I also whiten the data, which accomplishes the results of
a relatively flat Fourier spectrum of our time series of data. Thus, for a given pixel
of center time t and frequency f , a new equation can be written that characterizes
the data as,

d = F+h+ + F×h× + n. (2.12)

where the boldface variables are vectors with D dimensions, i.e. the number of
detectors. Specifically, each variable expands as follows:

d =

 d1(t, f)/
√
S1(f)

...

dD(t, f)/
√
SD(f)

 (2.13)

n =

 n1(t, f)/
√
S1(f)

...

nD(t, f)/
√
SD(f)

 (2.13)

F+,× =

F
+,×
1 (t, f)/

√
S1(f)

...

F+,×
D (t, f)/

√
SD(f)

 (2.13)

The noise and detector response are each normalized by the square root of the
one sided noise power spectrum Si(f) of the detectors.

In their present states, the detector data streams that have been whitened and
FFTed have not been transformed to maximize the benefit of analytically writing
the data as I have in Equation (2.12). To do so, I make a change of orthonormal
basis. In its present form, the superfluous detector noise n is uncorrelated between
the detectors and thus its covariance matrix would be unchanged through a change
in basis. Given the form of Equation (2.12) the natural choice for the new basis of
the detector data streams is F+ and F×. This basis of the detector data will work
for two or more detectors, where the first two streams span the F+ and F× and
the remaining D-2 streams are null streams which are orthogonal to the F+ and F×

plane. Once transformed to this new basis, the streams no longer correspond to any
single detector. The final transformation performed on our data characterization
is to further transform the F+ and F× basis by selecting the polarization basis
such that F+ and F× are orthogonal and ||F+|| ≥ ||F×||. In this special basis, F+

and F× are denoted by f+ and f×. This basis is called the Dominant Polarization

– 11 –



Search for Alternative Polarizations 2.3. Overview of Coherent Analysis

Frame [28]. It is here that I make a key remark. The value e+ = f+

||f+|| and e× = f×

||f×||
represent our template for what a GWB signal looks like in the data. Essentially, it is
template based on signal amplitude. The benefit of characterizing and transforming
the data in this manner is twofold. First, there are two unknown values in each
pixel, (h+(t), h×(t)), and with three or more data samples, i.e. detectors, per pixel
then it is possible to solve for these quantities. It would be possible to solve with
only two data samples if there was no noise. With only two detectors and the
addition of a time constraint on the coincidence of candidate events, which are
“loud” groups of TF-map pixels clustered together, however, then I can determine
(h+(t), h×(t)). Second, and in a similar line of reasoning, this basis can be used
to construct two types of statistics: detection or ranking statistics and coherent
consistency statistics. A detection statistic is used to determine the probability
that a given data segment contains a gravitational-wave signal and will be discussed
in Section 2.3.1. Coherent consistency tests, on the other hand, are used to reject
spurious noise transients which can be confused as a signal by these ranking statistics
if not eliminated beforehand and will be discussed in Section 2.3.2.

2.3.1 Detection Statistic for Scalar Gravitational Waves

This analysis relies on incorporating the above coherent analysis for GR polariza-
tions, to an identical analysis for the scalar polarization. For a robust multi-polarized
GW signal search, this would entail characterizing the data as

d = F+h+ + F×h× + Fbhb + n, (2.14)

and then finding an orthonormal basis and utilizing four or more detectors to extract
the signal. I propose a different analysis, however, as the multi-polarized search has
two major challenges. First, in the early advanced detector era, only Hanford and
Livingston are expected to be running in coincidence. Also, a fourth detector is
not expected for another decade. Second, our source object is a CCSN which, if
it undergoes near perfect spherically symmetric collapse and there are alternative
polarization to those predicted by GR, it is possible that most of that energy will
be in the form of monopole radiation. Therefore, I propose a simplified analysis
where the data is characterized as exclusively a scalar GW and modify existing GR
detection and coherent statistics for that polarization. The data model simplifies to

d = Fbhb + n. (2.15)

In the case of the scalar polarization, it is unnecessary to transform the antenna
response function into the dominant polarization frame because there is only the one
mode. More precisely, this signal is already linearly polarized and so the basis Fb is
already maximized to the scalar signal. The scalar mode antenna response function
has the form [15]

Fb(θ, φ) =
1

2
sin2 θ cos 2φ. (2.16)

For consistency with the GR case, however, I refer to “dominant polarization” an-
tenna response as fb. Also, as before, I define our template for a scalar GWB as the
unit vector in the scalar frame: the scalar antenna response over the norm of the
response, eb = fb/||fb||.
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Our formulation of the breathing mode coherent and detection statistics is as
follows. For a complete treatment of this issue, see [32]. First, I start with the
familiar matched-filter likelihood ratio [54]

L =
p(d|hb,n)

p(d|n)
. (2.17)

For this ranking statistic, the assumption is the noise is Gaussian. This allows
the denominator of our equation to be written as.

p(d|n) ∝ exp

(
−1

2

∫ ∞
−∞

2|d|2

Sf
df

)
. (2.18)

The numerator takes the form

p(d|hb,n) ∝ exp

(
−1

2

∫ ∞
−∞

|(d− hb)|2

Sf
df

)
. (2.19)

Now rewrite Eq. 2.17 as,

L =
p(d|hb,n)

p(d|n)
=

exp
(
−1

2

∫∞
−∞

|(d−hb)|2
Sf

df
)

exp
(
−1

2

∫∞
−∞

2|d|2
Sf

df
) . (2.20)

By taking the log, the above equation reduces to

2 log(L) = −||(d− hb)||2 + ||d||2 = 2(d · hb)− ||hb||2 (2.21)

where ||a||2 = a · a and

a · b =

∫ ∞
−∞

a∗(f)b(f)

S(f)
df (2.22)

where ∗ is the complex conjugate.
I now can define the signal to noise ratio (SNR). The SNR is the expected value

of the log-likelihood ratio over all noise realizations. The SNR is as follows

E[2 log(L)|d = hb + n] = E[d · hb + d · n− ·h2
b ]

= 2||hb||2 − ||hb||2 = ||hb||2.
(2.23)

The above analysis was performed by assuming that the signal was known per-
fectly beforehand. That is, that the template signal and the real signal were the
same. In reality, I know this is not the case and that the signal in the data will
be different from our template. In the case of burst searches this is because our
template is a time-frequency pixel with energy, eb. So, let h∗b represent the signal as
found in the data and then the SNR becomes the

E[2 log(L)|d = h∗b |] = maxhb(2(h∗b · hb)− ||hb||2). (2.24)

Now, I must determine the factor of our template hb that I believe to be the unknown
component. The most significant unknown factor in the determination of signal hb
is its amplitude. Therefore, I write hb as A hb

||hb|| . Maximizing over amplitude A,

maxA,hb

(
2

(
h∗b ·A

hb
||hb||

)
− ||A hb

||hb||
||2
)
. (2.25)
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After taking the first derivative with respect to A and setting it equal to zero, I arrive

at A =
h∗b ·hb
||hb||2

. Finally, after incorporating this characterization of the amplitude,

the appropriate matched-filter detection statistic is as follows

SMF = maxhb

(
(h∗b · hb)2

||hb||2

)
. (2.26)

I now explore the Bayesian framework for creating the scalar detection statistic.
The intuitive difference between these two frameworks is as follows. Bayesian infer-
ence is designed in order to just determine whether the data contains a signal or not.
The match filter statistic, however, relies on the concept of templates as a way to
produce a likelihood of a signal existing in the data or not. Put more simply, I aim
to limit the assumptions I make when creating a detection statistic, and because
the template signal is not very reliable in the case of a GWB, it is advantageous to
use the Bayesian framework which does not rely on templates. The marginalized
likelihood takes the form

L(d) =

∫
hb

L(d|hb)p(hb)dhb. (2.27)

The two components I must determine for this analysis are an appropriate prior p(hb)
and the form of L(d|hb). In calculating the former, I must separate the signal hb
into its unknown components. Like the matched-filter analysis, the most significant
unknown is the amplitude. Therefore, for this statistic, I assume that the strain
of the actual waveform has a Gaussian distribution of width σh. More precisely,
I assume that a characteristic burst signal will have some strain σh in the range
[10−23, 10−21]Hz−

1
2 [55]. As before, I separate out the part of the template that is

the amplitude and call it A. Therefore, I rewrite hb as A hb
||hb|| and the p(A) is

p(A) =
1√

2πσ2
h

exp

(
−1

2

A2

σ2
h

)
. (2.28)

This choice of σh allows us to integrate out the amplitude, but I must rewrite
L(d|hb) as L(d|Ahb, σh).

L(d) =

∫
hb,σh,A

L(d|Ahb, σh)p(A)p(σh)p(hb)dAdσhdhb. (2.29)

For a complete treatment of integrating out the amplitude please see Appendix 5.1.
When the marginalization is complete, I am left with a log-likelihood value of

log(L(d|hb, σh)) =
(d · hb)2

||hb||2 + 1
σ2
h

− log
(
σh||hb||2 + 1

)
(2.30)

The above analysis may look familiar, but a key substitution is necessary in order
to incorporate it into our present analysis framework. In our framework, the value
of the normalization of the template signal hb/||hb|| is actually eb = fb/||fb||. This
changes the matched-filter and Bayesian inference formulation to

log(L(d|hb, σh)) =
(d · eb)2

1 + 1
(σh||fb||)2

− log
(
σh||fb||2 + 1

)
(2.31)
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SMF = maxhb

(
(h∗b · hb)2

||hb||2

)
= maxeb(h

∗
b · eb)2 (2.32)

See Appendix 5.2 for a complete treatment of this substitution. The important
similarity between these two statistics is that the numerator (h∗b · eb)2 is applied to
some threshold. In fact, following [32] it can be shown that both of these statistics
reduce to the same quantity when the waveform template is very well known before-
hand. However, in burst searches, this is not the case and it is therefore useful to
use Bayesian inference.

I am still not finished with the Bayesian inference approach, however, as it is
still necessary to marginalize out the characteristic burst strain σh. I marginalize
over a discrete set of strains, Σ. As mentioned previously, I select signals covering
[10−23, 10−21]Hz−

1
2 . I assume a prior of 1

σh
which corresponds to log-spaced values

of σh. From this, the final statistic looks as follows

L(d) = log

∑
σh∈Σ

1

σh
exp (L(d|hb, σh))

 (2.33)

2.3.2 Coherent Consistency Checks

One critical assumption prevalent throughout the discussion of the detection or
ranking statistic section was the idea that the background noise distribution was
consistent with Gaussian noise. However, in reality I know that the noise is filled with
loud noise transients, also known as glitches. The attempt to make the background
noise Gaussian motivates the next section and highlights a significant advantage of
the coherent analysis. In general, loud noise transients are uncorrelated among the
detectors, unlike the gravitational wave signal, and therefore I can compute statistics
and perform tests to eliminate these transients. In the analysis, I take the data d
and project it onto the null space, i.e. the space orthogonal to the unit orthonormal
basis eb, defined as en. In this framework, I can now define two terms, the coherent
and incoherent null energy labelled as En and In, respectively. For α, β ∈ D where
D is the number of detectors, the projection operator takes the form

En = ||en · d||2 =
∑
α,β

en∗α e
n
βd
∗
αdβ (2.34)

In =
∑
α

en∗α e
n
αd
∗
αdα =

∑
α

||enα||2||dα||2 (2.35)

where ∗ represents the complex conjugate of the variable. The important determi-
nation with these statistics is to calculate where a GWB would be expected to fall
on a line of equal coherent and incoherent energy, which I will call the E − I line.
To understand this, I can think of this statistic in terms of the discussion concerning
detection statistics. Instead of taking the match-filter statistics of Equation (2.17),
I took the maximum likelihood ratio of

L =
maxhb (p(d|hb,n))

p(d|0)
. (2.36)

This statistic represents the maximum likelihood I can achieve under the hy-
pothesis that there is a GW in the data. Thus, this energy is equal to the maximum
energy in the scalar polarization. For a more complete treatment on this statistic,
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also known as the standard likelihood statistic ESL, as it is formulated in the GR
frame, see [27]. Therefore, I can think of the null stream as simply the coherent
energy leftover after the maximum energy consistent with a GW is subtracted out.
The total coherent energy can be found by taking the dot product of the data with
itself

Etot = ||d||2 (2.37)

Therefore, the null energy can be represented as

En = Etot − ESL = Etot − Eb (2.38)

= ||d||2 − max (p (d|hb,n))

p(d|0)
(2.39)

= ||d||2 − ||eb · d||2. (2.40)

In other words, the null energy can be thought of as the minimum amount of
energy in the data that is due to noise.

This nuanced way of looking at the null stream coherent energy can give us an
idea on what side of the E − I line GWBs will fall when it comes to the incoherent
and coherent null energy. The coherent null energy of a GWB will be very small
as I have subtracted out the standard likelihood. Conversely, the incoherent energy
will be large. Therefore, I anticipate that GWBs will fall to the left of this line,
i.e. En << In. The loud noise, however, will tend to have similar coherent and
incoherent null energy. This general analysis of the null energy can be applied to
the coherent statistics involving the polarization energies themselves. For instance,
I can project the scalar energy eb onto the data. Unlike the null energy case, I have
constructed this statistics such that a scalar polarized signal should have a build up
of coherent energy and end up to the right of the E − I, i.e. Eb >> Ib. In general,
loud noise in this statistic may look like a scalar signal in one detector, but will not
look like a signal in the coherent energy. Therefore, it will fall on the Eb − Ib line.
Fig. 2.1 demonstrates these two cuts.

2.3.3 Benchmarking Performance

Lacking from the discussion above is that choosing cut C requires the analysis to
know how far from the E − I diagonal the GWB would fall. This is why the
analysis also simulates signals and injects them into the on-source region, i.e. the
time around the astrophysical event a GWB could have entered the data. Because
the waveforms I simulate directly impact the choice of cut C, it is critical that I
choose waveforms representative of potential signals from the astrophysical event. I
discuss the choices of scalar waveform in Section 2.4 and choices made for GRBs are
discussed in [11] and choices for CCSN are discussed in both [12] and Section 3.2.
In addition, the potential for the background to have loud noise transients during
the on-source period must be taken into account. Therefore, an identical analysis
is performed on a large number of TF-maps from data surrounding the trigger time
to characterize the noise in the detector. This data is referred to as the off-source
data and is assumed to not posses a GWB.

The process for determining cut C is as follows. Initially, I divide the injected
signals randomly into two groups, a tuning set and an upper limits set. In general,
for N injected signals there tend to be N/2 injections for tuning and upper limits. I
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Figure 2.1: Graphs demonstrating the effectiveness of coherent consistency checks.
Top-Left: Null Coherent by Null Incoherent Energy. The square plot points repre-
sent the simulated GWB signals which appear on the left side of the E-I line and
the crosses represent the background noise. As you can see the dashed red cut
line recovers most of signals, while eliminating most of the background. Top-Right:
Null Scalar Coherent versus Null Scalar Incoherent. Because the scalar signal is a
single polarization the scalar coherent statistics have an additional scalar specific
null stream. As with the null energy, the GWBs appear on the left side of the E-I
line. Bottom: Scalar Coherent by Scalar Incoherent Energy. Again, as expected the
simulated GWB signals appear on the right side of the E-I line.

also break the off source trials into two sets, those used for tuning and those used
for upper limits. Between the off-source and injection tuning sets, I test a set of
linear cuts CLinear and alpha cuts Calpha. These two coherent cuts have different
shapes. The linear cut compares the ratio of I

E to some threshold value. The alpha

cut compares the value 2(E−I)
(E+I)α , where the constant α is 0.8. I choose Clinear as

the threshold that most effectively recovers 95 percent of the tuning injections. In
order for a tuning injection to be recovered, it must pass a given cut threshold and
be louder than the loudest surviving tuning off-source event at some false alarm
probability (FAP). This captures the quintessential balance with coherent cuts. The
stronger the cuts the less significant the background will be, but the more injections
that will also be discarded with a statistic designed to distinguish them from the
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background. Conversely, the weaker the cuts the more injections that will pass, but
the louder the background will be and the more likely the background will contain
loud noise transients. The FAR relates to the selection of the loudest background in
the following way. For Ntuning background trials, I select the loudest surviving event
from each trial and then rank them in magnitude. I then take the FAP ∗ Ntuning

index event from this ranking, and subsequently the whole trial from which that
event came from, as the fake on-source trial. For the analysis, the definition of“most
effectively” is the cut that minimizes the sum squared fractional excess upper limit
(SSFEUL) statistic. For waveforms w ∈ Ω, the SSFEUL is defined as

∑
w

(
I95 −min(I95)

min(I95)

)2

(2.41)

where I95 is the injection scale or amplitude at which for all larger amplitudes 95
percent or greater of the tuning injections are recovered. After I pick a cut CLinear, I
choose Calpha as the threshold that most effectively recovers 50 percent of the tuning
injections after having the linear cut already applied. Finally, after the ranking
statistic and coherent cuts have been selected, they are applied to the injections and
background assigned for upper limits. It is the recovery of these injections that get
plotted to make the efficiency curves. Therefore, upper limit statements made using
these curves indicate that with some confidence I would be able to recover GWs
that had the characteristics of the simulated signals.

Through the tuning and upper limits process above, I have only discussed upper
limit curves in terms of some FAP off-source event. Of course, any signal from
the astrophysical event would be in the part of the data called the on-source. The
reason the background gets so much attention and testing is because once I look
at events in the on-source window, then there is no point of return. In the case of
SN waveforms, I provide an upper limits curve and produce a 90 percent confidence
distance limit. The off source is used to select thresholds so that the tuning is not
biased by any GW signal in the on-source data. This is called the “blind tuning”
of the analysis. To decide if a GW is present, the most significant on-source event
is compared to the off-source events to assign its FAR. If no significant on-source
event is found, then limits on the amplitude of the signal can be placed. In this
case, that statistic means that, in an ensemble of identical experiments (i.e. a SN
exploding at the same distance and same spot every year), then the true distance
to the source will be greater than the stated 90 percent distance limit for 90 percent
of those experiments.

2.4 Benchmarking the Scalar Search

The analysis performed in this section considers the H1L1 and H1L1V1 detector
configurations. I use data from the S5-VSR1 observing run rescaled to the expected
01 sensitivity. In order to provide a realistic idea of the detection sensitivity of
the searches, I chose seven test waveform models and four test supernovae sky-
locations with right ascension and declination angles of [284.0054 -52.4654], [298.9727
-41.4060], [309.3363 -28.9943], and [317.4038 -15.9633]. In the following subsections,
I discuss the criteria behind the selected waveforms and sky locations.
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2.4.1 Choice of Scalar Waveforms

The simulated waveforms I selected for the analysis are critical as they will impact
what coherent cuts the pipeline chooses. Our three main criteria for the selection
of scalar gravitational waveforms are as follows. First, I chose waveforms from a
wide variety of astrophysical models that could produce scalar gravitational waves.
Although this analysis is for a GS, it is unclear what scalar gravitational waveforms
would look like and having a range of astrophysical models will assist in capturing
that uncertainty. Second, I chose waveforms that had a wide range of scalar gravi-
tational radiation energies, from the very optimistic to the pessimistic, because the
strength of scalar waveforms is a subject of debate. Third, I want waveforms that
span the frequency range from 64 to 2000 which is our planned Supernova frequency
search range. This range is motivated by all of the possible GWs associated with a
CCSN summarized here [37].

The first waveform was theorized by Nishizawa et al. [2], who modeled the grav-
itational collapse of a spherically symmetric dust fluid into a BH. This astrophysical
phenomenon is similar to the gravitational collapse that occurs during a CCSN.
Specifically, I utilized the A1 model from the paper which simulates the collapse of
a 10 solar mass dust fluid at a distance of 10 Mpc. I performed modifications to the
distance and mass of this model in order to achieve a diverse set of central frequency
values for this waveform.

The second set of waveforms are simulations by Novak and Ibanez of scalar GWs
associated with a CCSN and the subsequent formation of a neutron star [3]. This
paper had 5 different SN models, labelled A-E, but only models C-E were scalar
gravitational wave progenitors. These models all simulated a 1.39 M� white dwarf
but differ in two characteristics. First, Models C and E use “standard” values for
the equation-of-state parameters, but model D has a “stiff” equation-of-state value.
Second, Model C and D are simulated assuming α and β values of -0.01 and -4
respectively whereas Model E’s values are -0.001 and -7. For this reason, Model
E is the most optimistic of the simulations possessing the most energy in the form
gravitational radiation because large β values lead to large gravitational energy.

The third set of waveforms are simulations by Novak of a NS undergoing spon-
taneous scalarization [56] as well as a spherical collapse to a black hole [4]. For
the first of these papers, an unstable NS transition to a strong-scalar-field state is
explored. A NS can achieve this “spontaneous secularization” if β is low enough.
In this analysis, I use the waveform from solution 4, which is a 1.37 solar mass NS
that is 13.2 kilometers in diameter and α and β values of -0.01 and -6, respectively.
For the second of these two papers, Novak simulated four different types of NS col-
lapse, labelled A-D. I utilize the waveform resulting from collapse B in this chapter.
This collapse follows the collapse of a 2.07 solar mass NS that is 11.8 kilometers in
diameter and α and β values of -0.025 and -5, respectively.

The final waveform chosen was a scalar sine-Gaussian which serves as a standard
proxy for a physical scalar waveform model. These models are useful as it is easy
to manipulate the frequency of the signal. In addition, these are standard waveform
templates used for bench-marking burst searches in LIGO and Virgo [11]. The
frequency, scalar coupling parameter, and more information on all these waveforms
is available in Table 2.1. Additionally, Figure 2.2 shows examples of some of these
waveforms.

As discussed in the introduction, the constraints on the α0, β0 parameter space
have tightened since the creation of these waveform models due to the solar system
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Figure 2.2: A selection of the scalar waveforms used in this analysis. The α0, β0

values are in parenthesis. Top-Left: Dust undergoing gravitational collapse to a BH
(3.5× 10−3, 0) [2]. Top-Right: Model C CCSN explosion and subsequent formation
of a NS, (4 × 10−4,−4) [3]. Bottom-Left: sine-Gaussian waveform Bottom-Right:
NS collapse to a BH, (0.025,−5) [4].

experiments from the Cassini probe and those from the discovery of the white dwarf
J1738+0333. The question becomes with the scalar models in this analysis what
transformations can be performed to make these waveforms compliant with present
constraints on the α0 and β0 parameter space. In particular, I need to know how the
amplitude of the waveform scales with respect to one or both of the parameters α0

and β0. This relationship is important because the amplitude is the only component
of the waveform I can manipulate in the analysis. β0 cannot be altered because it will
change the shape of GW, and thus, a complete rerun of the simulation would need to
be performed. Fortunately, the amplitude scales directly with α0 and changing this
parameter does not change the shape of the waveform. In the Novak simulations,
the amplitude relates to the parameters α0, distance and a2(φ0), which represents
the scalar field at the source, as follows

h(t) =
2

d
a2(φ0)α0F (t). (2.42)

In the Shibata paper, the peak amplitude roughly relates to the parameters α0,
mass and distance as follows

δφ ' α0M

d
(2.43)
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Source Hz Dist. (Kpc) α0(−1× 10−5) β0 Mass (M0)

Dust Collapse into BH [2]

183
413
781
984
1034

15
3
1
1

0.2

350
350
160
350
40

0

5
3
1

0.9
0.5

SN Models (C-E) [3]

163
126
103

10

40
40
1

-4
-4
-7

1.39

NS Spontaneous Scalarization [56] 147 10 1 -6 2
NS Collapse to BH [4] 120 10 40 -5 2.07

Table 2.1: This table lists my parameter choices for the waveforms and sources in
this analysis. The parameters that were modified from their original values are the
distance, the α0 parameter and the mass.

In general, I only modified the α0 parameter to the boundary of the constraint.

Unfortunately, three of our waveform models are no longer consistent with the
viable β0 parameter space. But these models are meant to illustrate the method
of detecting a scalar polarized signal, so I included them in the analysis with α0

lowered to place these waveforms close to allow parameter space. Figure 2.3 details
the degree to which I modified the α0 in order to place these waveforms within the
viable parameter space. Due to the weakness of the scalar signal, I believed that
the plausibility of detecting the signal would rely on allowing for the largest possible
values associated with the strength of the scalar field. For two Shibata injections,
however, I changed α0 such that it fell well below the largest allowable α0 value.
This was done in order to see if aLIGO could probe well below current constraints
in the event new constraints were placed during its operation.

2.4.2 Choice of Sky Location

There were three criteria for the simulated sky-location and alert or trigger time of
our GS. First, I selected sky-locations that lined up with the location of the galactic
disk on the sky for a given GPS time. In particular, one of the sky locations was
the location of the galactic center. The choice of these sky-locations was in order to
emulate the plausible location of a GS in case of a real alert. That is to say, the GS
will likely come from the Galactic center or nearby. Second, the sky-location and
trigger time maximized the detector sensitivity to the scalar polarization. Finally, I
ensured that there was sufficient usable detector data surrounding the trigger time.
Figure 2.4 demonstrates the antenna response of the detectors for the trigger and
sky-locations I chose for this analysis.

There are two important things to note from these plots. First, there is a stark
contrast in GR and scalar antenna response. I chose a time with very different
responses to determine the potential magnitude of the effect of performing a GR-
only search for a scalar signal. If there is little difference between the GR and scalar
search in this case, it shows that a separate search for a scalar waveform associated
with a GS is unnecessary. Second, there is one sky-location that has a poor detector
sensitivity compared with the other three. This is in order to gauge the fall off
in efficiency in the recovery of signals with the dedicated search when dealing with
fringe sensitivity levels. Because the amplitude of scalar waveforms is expected to be
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Figure 2.3: Current constraints on the α0, β0 parameter space. It is bounded by
the Cassini probe experiments (under the black line) [5] and by the white dwarf
J1738+0333 observations (under the blue line) [6]. The diamonds represent the
original assumed values of α0 and β0 for the various scalar waveforms considered
and the squares are the new values used in the analysis done in this chapter.

small relative to the GR case, I anticipate not being able to recover the waveforms
for this sky-location.

2.5 Galactic Search results

2.5.1 Upper Limits

In this section, I initially seek to answer whether scalar gravitational waves emitted
at reasonable distances are detectable within the viable α0, β0 parameter space.
Following this discussion, I explore more questions such as whether the addition of
the statistics presented in this paper improve the sensitivity of the search over and
above existing GR polarization statistics.

Figure 2.5 provides insight on the first question. This plot shows that a Shibata
waveform with parameters 2M�, α0 = 0.0035 and a Novak SN Model C waveform
are detectable at distances of a few kpc. These two waveforms highlight models
whose α0, β0 values were on the boundary of the viable parameter space.

Table 2.2 provides information on the 50 percent detection distance of all the
waveforms average over the 4 sky locations for H1L1 and H1L1V1 detectors. I aver-
aged over the sky locations because they roughly cover the minimum and maximum
detector sensitivity. As expected, the waveforms whose α0 fell well below the largest
allowable value have detection distances less than 1 kpc. Also, those waveforms with
β0 larger than current limits on β0, i.e. NS collapse to BH and SN Model E, have

– 22 –



Search for Alternative Polarizations

HLV GR Antenna Response with chosen Galactic Points GPS = 871728757
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Figure 2.4: These plots show the antenna response for the GR (F 2
+ +F 2

×) and scalar
polarizations (F 2

b ) over the whole sky summed over different detector configurations
H1L1 and H1L1V1 at a GPS time of 871728757. Top-Left: Shows the plus/cross
response for H1L1V1 detector configuration. Top-Right: Shows the scalar response
for H1L1V1 detector configuration. Bottom-Left: Shows the scalar response for
H1L1 detector configuration. Bottom-Right: Shows the plus/cross response for
H1L1 detector configuration. The overlaid ’x’ marks the locations of the four sky
points considered in this chapter.

detection thresholds on the order of a few tens of kpc. Even though the α0 value for
these signals was small, scalar fields with large negative β0 values result in a large
scalar signal. Additionally, Novak Model D has encouraging detection distances, but
it is important to note that this simulation was done assuming a “stiff” equation of
state and thus has a stiffer bounce. These results are still promising, as they imply
that a GS can prove useful in either eliminating certain scalar waveform models, fur-
ther constraining the α0, β0 parameter space or constraining the equation of state
of NS stars.

It appears that scalar mode signals with α0 and β0 values allowed by current
constraints are detectable at astrophysically relevant distances, i.e. kpc. The next
step was to determine if a dedicated scalar search was necessary or if the standard GR
search could detect these signals as efficiently. Therefore, I duplicated the analysis
utilizing the preexisting coherent statistics, plus/cross, circular, and linear. Figure
2.6 highlights the results from this analysis. The sensitivity of the various searches
across the waveforms and sky positions looked very similar. There are a few trends
worth noting. The resulting efficiencies from the run on the sky position with the
best plus/cross and worst scalar response overlapped more closely than those from
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Figure 2.5: Efficiency for a 1% false alarm rate threshold for a dust collapse and SN
waveform injection using the scalar statistics formulated in this chapter. The four
curves represent the four sky locations with the least sensitive recovery (farthest
left) coming from the smallest antenna response to the scalar polarization and the
most sensitive curve (farthest right) coming from the sky locations with the best
scalar polarization response. Both models utilize α0 and β0 parameters that are
valid but on the fringe of the parameter space as indicated in 2.3: (3.5 × 10−3, 0)
and (4× 10−4,−4).

the sky location where the reverse was the case. Figure 2.6 exemplifies this trend.
This difference in sensitivity, although visible, is negligible with systematic and
statistical errors associated with this type of search. Another important insight from
these follow up analyses is that the best performing ranking statistics chosen in every
analysis was the scalar statistic formulated through Bayesian inference which was
demonstrated in this chapter. Therefore, the small improvement that comes from
utilizing scalar coherent cuts means a specialized scalar analysis is only necessary in
cases where the GW is marginally detectable, i.e. the distance of the GS is slightly
farther than these upper limit detection distances.

I attribute this result, the successful sensitivity of the standard statistics in the
recovery of scalar signals, to the antenna response functions of the detector with
respect to the scalar and plus/cross modes. It is possible that the cross/plus and
scalar antenna response values are identical to within, say, 5 percent for a given
polarization angle. Mathematically, this means that if there exists a polarization
angle ψ and scale λ such that Fb = λF+(ψ) to within some accuracy then the scalar
signal hb would be indistinguishable from a GR signal with amplitude h+ = λhb. Fb

and F+(ψ) are a vector of the individual detector responses as in Eq. 2.44.

F+(ψ) =

[
F+
H (ψ)
F+
L (ψ)

]
Fb =

[
F bH
F bL

]
(2.44)
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Figure 2.6: Comparing detection efficiency of the scalar-mode search with that of
the GR-mode search. For region of sky tested, see that scalar GWs are picked up by
the GR search about as well as by dedicated scalar search. Yet, for the sky position
with the best GR detector sensitivity compared with the scalar sensitivity (right
plot) the distinction is even harder to make between the searches than the analysis
where the opposite was the case (left plot). That is, the scalar sensitive was the best
compared with the GR sensitivity.

Therefore, I calculated the antenna responses for a grid of sky positions to see
for which sky points there were distinctive values for scalar and plus/cross antenna
response. To do this, I rotated the polarization angle for each sky point from [0, 2π].
Figure 2.7 shows that this degeneracy is highly likely in the case of two detectors. All
of the sky locations which coincide with distinctive antenna responses to the scalar
versus plus/cross polarization are also associated with extremely poor sensitivity
values.

Another result that deserves more exploration is the fact that adding the third
detector data stream, in this case Virgo, either does not affect or decreases sensitivity
to scalar signals. This result is curious as the results should at least scale upwards
proportional to the sensitivity of the third detector. I believe the reason for this
odd result is twofold. First, the data from the Virgo detector is less Gaussian, i.e.
more ”glitchy”, than the data from the LIGO detectors, Hanford and Livingston,
see Figure 2.8. This fact within itself would not inherently lead to poorer sensitivity.
Therefore, the second reason is that the sensitivity of the Virgo to the scalar polar-
ization is low for all these sky locations (< 0.1), and this means the addition of the
Virgo data stream is mostly only adding background noise some of which is much
louder than the Hanford and Livingston data. Although I would anticipate that
a better detector sensitive to the scalar mode coupled with less noisy data would
improve the sensitivity of a specialized scalar search, it is unlikely that the scalar
statistics would have an impact even in this scenario. This is because the addition of
a sensitive third data stream is equivalent to the addition of a powerful null stream
of data. As discussed in Section 2.3, this data stream is helpful in the detection of a
GWB, but does not rely on any assumptions of the polarization of the signal. Thus,
the standard statistics would likely provide identical results to the scalar statistics.
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Figure 2.7: Left: HL antenna response overlapped with a scatter plot of sky positions
where the scalar and plus/cross polarization are distinguishable in value by more
than 5 percent. Right: Same as left except with scalar antenna response. This figure
highlights an unfortunate caveat when searching for a scalar signal with specialized
statistics, the sky locations where the polarization are distinguishable are associated
with extremely poor sensitivity to the scalar polarization.

2.6 Conclusion

It appears that even with constraints that are presently acceptable in scalar tensor
theories, there is some hope at certain distances ranging from a few kpc to more than
10 kpc that one could detect a scalar waveform. However, it seems that a dedicated
scalar follow up is only useful if the following conditions are present. First, the sky
location is in an area where there is no degeneracy between the plus/cross and the
scalar antenna response. Second, the sky location is in an area where there is a
fairly strong scalar antenna response. Third, in the case of three detectors, if null
stream data proves a source of a powerful coherent cut then the assumption of the
polarization of the signal could prove unhelpful and the dedicated statistics would
lose some of their value.
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Figure 2.8: Plot depicting ”glitchiness” of the data. The Gaussanity measure is the
variance(S)

mean(S) in each frequency bin where S is the one-sided noise power. A value of 2 is
expected for stationary Gaussian noise. The dotted lines indicate 3-sigma variations.
Excursions to large values indicate the data is more variable than expected for
Gaussian noise, i.e. “glitchy”. Excursions to low values indicate low variability. The
green and red dips to low values are due to large steady values of power that are
associated with known events such as the 60Hz power lines.

Source 50% Dist. (kpc) HL 50% Dist. (kpc) HLV

Dust Collapse into BH [2]

19.3

4.3

1

0.55

0.04

19.1

4.3

1

0.55

0.04

SN Models (C-E) [3]

5.0

26.9

33.8*

5.0

26.4

30.8*

NS Spontaneous Scalarization [56] 5.1* 4.7*

NS Collapse to BH [4] 28.2* 29.7*

Table 2.2: This table lists the 50% detection efficiency distance at a false alarm rate
of 1%. The values are derived from an equal weighted average across the four sky
locations in our analysis. The detection distances for the waveforms with very large
β0 are due to the large amplitudes associated with models that assume β0 6= 0. The
asterisk indicates a waveform model whose β0 value falls outside current constraints.
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Chapter 3

Supernova Early Warning
System Online Search

In Chapter 2, I discussed the potential of a GS occurring. The rate of GS is uncertain
and can range widely, but estimates roughly average a maximum of 1 every 30 years
[57]. This means a GWB search for a GS should be ready to automatically follow-up
an alert and send information to the larger astrophysical community as quickly as
possible, to maximize the scientific exploitation of these events. The community in
charge of the initial alert of a GS is the SuperNova Early Warning System (SNEWS).
The current members of the SNEWS experiment include Super Kamiokande (Super-
K) [41], the Large Volume Detector (LVD) [58], IceCube [59], Borexino [60], Daya
Bay [61], and KamLAND [62]. The Sudbury Neutrino Observatory (SNO) [63] is
also a member but is currently undergoing upgrades. The majority of these detectors
were designed for other purposes than strictly the detection of GS neutrinos, but
all are capable of serving this purpose. In this chapter, I will discuss the current
implementation of the low latency, quick turnaround, online search that would follow
from a SNEWS alert. I first introduced the X-Pipeline algorithm in Chapter 2, in
order to motivate the analysis done in this chapter. In general, a search of detector
data upon a receipt of a GS alert has two crucial components, speed and accuracy.
Therefore, this chapter highlights techniques and benchmarking done to improve
both components.

In Section 3.1, I describe how SNEWS works, and why neutrinos provide ideal
external triggers for GWB searches. In Section 3.2, I detail the SN waveforms
used in this analysis. In Section 3.3, I discuss the challenges involved in an all-sky
triggered versus optically triggered GWB search. In Section 3.4, I present sensitivity
estimates for both the all-sky and optical search using recolored initial detector data.
In Section 3.5, I discuss future work that would be useful for further improving this
analysis.

3.1 Neutrino Detection of a Galactic Supernova

In this section, I will briefly discuss the method for detecting neutrinos from Su-
pernovae, why neutrinos provide excellent external trigger timestamps, and how the
alert is distributed to the astrophysical community.

The detection of neutrinos has two components. First, the actual detection
of a sufficient number of neutrinos to assure the source is a GS, and second, any
information on the source direction obtainable by the detection. Neutrinos undergo
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neutrino-electron scattering and the detectors can measure if the energy of the recoil
electrons, Tact, in the detector exceeds some experimental threshold Texp, which
is different for each detector. For an example of how this happens in practice, I
will summarize the process used by Super-K. Super-K analyzes data in two minute
chunks. It searches for clusters of neutrinos, in time windows varying from half
a second to ten seconds. If pre-defined thresholds are exceeded in any of these
clustering windows, then noise reduction algorithms are applied to these clusters.
After this noise reduction, the candidate clusters undergo stricter thresholds. For
clusters that surpass this secondary threshold, the mean time between clusters is
calculated. The motivation for this calculation is that clusters with small mean times
are unlikely to be astrophysical in nature. When 100 cluster events have sufficiently
large mean times and pass both thresholds, then staff members on site are alerted
of a possible supernova candidate. Like GWB searches, the threshold is set at some
FAR to ensure that the candidate event is not simply a “loud” background event.
Also like the GWB search, it is difficult to confirm a detection with a single detector.
Therein lies the motivation for SNEWS, which would confirm a detection through
coincident neutrino detections among all detectors. This has the opportunity to
reduce the FAR to less than 1 per century, which would be critical given the rare
nature and importance of a GS.

Neutrino detectors can achieve pointing information one of two ways. First,
detectors can utilize the scattering angle of the neutrinos to extract the direction
from which they came. Second, a group of neutrino detectors, like those in SNEWS,
can employ a technique called trianglization. This takes the timing of neutrino
detection from several detectors and attempts to triangulate the source. Both of
these techniques, especially the latter, present a number of challenges which are
discussed in [64]. Nonetheless, any sky location information would be valuable not
only to optical astronomers, but also in assisting the GWB search. In Section 3.3,
I highlight the advantages of sky location information for the X-Pipeline analysis.
Regardless, any sky location information would be unavailable with the first SNEWS
alert. Therefore, it is necessary to prepare a GW search which would utilize no sky
location information.

While the sky location information may be poor, the timestamp provided by
SNEWS is both accurate and valuable for a GWB search. CCSN most likely emit
GWBs either during the collapse or during the explosion over the next few seconds
following the collapse. Recent simulations show that the time of the bounce and the
maximum amplitude of the GWB from a CCSN have a strong correlation. Simula-
tions also show that the time of the bounce is correlated with the onset of neutrino
luminosity [65]. The question is, within what margin of error can the time of the
first neutrino detection from the CCSN bound the time of the core bounce, and
consequently, the time of the largest GWB. In a study by Pagliaroli et al, [65], the
timing of the first neutrino detection and the core bounce is on the order of millisec-
onds. This means we can comfortably place a window of plus or minus 2 minutes
around the neutrino alert and know that it would contain the GWB from the core
bounce. The reason for the larger than necessary window is that other processes
before and after the core bounce may also create GWBs [37].

To understand the impact of this narrow time window on the search, it is useful to
compare with the time windows provided for more distant CCSN. Electromagnetic
observations provide these time windows. These observations, however, typically
only localize the time of GW signal to a 10 - 100 hour on-source region. The main
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causes of this large window is observation cadence. That is, when a SN is observed,
the window can only be constrained to the last time that portion of the sky was
observed by a telescope. There are two key advantages to this small time window.
First, the background, i.e. detector noise, around the event is easier to understand.
In the case of a neutrino trigger, the analysis employs the same 3 hour background
estimation that the GRB search utilizes. This 3 hour background helps ensure that
the detectors are operating under similar sensitivity levels for both off-source and
on-source trials. More importantly, this 3 hour background means there are fewer
background noise events then for 10+ hours. The fewer background events means
lower amplitudes of GWs can be detected. Third, the computational cost involved
in a search of 4 minutes of on source data and 3 hours of background data with
the goal of a 3-sigma detection is far less than a search with 10-100 hours of on
source data. Follow-up analysis, if shown necessary, will be easier to conduct than
follow-up analysis to EM triggered CCSN.

SNEWS will publicize two types of alerts, GOLD and SILVER. A SILVER alert
requires manual on-site follow-up of the candidate event. On the other hand, a
GOLD alert will be automatically sent to the astronomical community at large with
the following information; the UTC time of the coincidence, all detectors involved in
the coincidence and the type of alert. There are three criteria for a GOLD alert, and
all criteria are in order to avoid a false alert. First, there must be at least 2 coincident
detections within 10 seconds from two physically separated experiments. Second, at
least two of the alarms from the individual detectors are tagged as GOOD. Finally,
the detectors signifying a GOOD alert must have had consistent rates of GOOD
detection candidates leading up to the coincident detection. A rate of GOOD alerts
that is considered consistent is on the order of 1 per week. In the instance of a
GOLD alert, an online GW event catalog system called GraceDB will receive and
parse the information. This information will be used to set-up and automatically
launch an X-Pipeline analysis. If more information such as sky location is available
in a later alert, then a follow-up analysis of the event will be performed.

3.2 Discussion of Supernova Waveforms

In this section, I discuss the characteristics of the SN waveforms utilized in this study.
As with the scalar waveforms, the selection of a diverse and comprehensive set of
waveforms is important in the benchmarking of the analysis. Previous work shows
that standard sine-Gaussian waveform templates like those used in GRB searches are
not sufficient for the tuning of an analysis pipeline for a supernova. For example,
the diversity of theorized explosion mechanisms of SN provide a wider range of
signal morphologies than simple sine-Gaussians can capture. In addition, because
of the near spherically symmetric geometry of a CCSN the GW signal may be
linearly polarized. Therefore, numerical simulations of SN provide much better test
waveforms for the search. Moreover, using waveforms from numerical simulations
will allow for meaningful upper limits on the strength of GWs from SN as well as
the elimination of theorized explosion mechanisms in the event of a non-detection.

The characteristics such as duration, frequency content, and polarization as well
as its overall amplitude of a CCSN GWB depend on multiple factors including the
dominant emission process and the complex structure, rotation, and thermodynam-
ics of the progenitor star. Unlike CBC signals, it is impossible to robustly predict
the signal’s detailed time series because the CCSN explosion is necessarily messy
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Waveform Type Ref. Model Name hrss fpeak EGW Polarizations
[10−22@10 kpc] [Hz] [10−8M�c

2]

Rotating Core Collapse [9] Dim-s15A2O05ls 1.052 774 7.686× 10−1 +
Rotating Core Collapse [9] Dim-s15A2O09ls 1.795 753 2.630 +
Rotating Core Collapse [9] Dim-s15A3O15ls 2.692 237 2.783× 10−1 +
Rotating Core Collapse [10] Sch-R1E1CA-L +, ×
Rotating Core Collapse [10] Sch-R3E1AC-L +, ×
Rotating Core Collapse [10] Sch-R4E1FC-L +, ×
3D Convection [8] Müller-L15-3 1.273× 10−2 144 2.20× 10−3 +, ×
3D Convection [8] Müller-N20-2 1.480× 10−2 175 1.11× 10−3 +, ×
3D Convection [8] Müller-W15-4 1.531× 10−2 204 2.52× 10−3 +, ×
3D Convection [7] Ott-s27 +, ×

Table 3.1: This table is taken from [12]. From left to right it provides the physical
mechanism, literature reference, model name, the root sum square gravitational wave
strain (hrss), the peak frequency of gravitational wave emission (fpeak), the total
energy emitted in gravitational waves (EGW) and polarizations for the numerical
waveform injections utilized in this chapter.

not unlike the merger and ringdown of a CBC signal. Even if the CCSN explosion
mechanism was known and understood beforehand, this issue would still persist
on account of this randomness. This fact is the key to understanding the bayesian
ranking statistic versus the matched-filter statistic. Because the match-filter method
relies on a theoretical prediction of the detailed wave signal (either of its time series
or spectrum and phase), it is unhelpful to think of detecting a GW from a SN in this
manner. As discussed before, the Bayesian statistic does not rely on any template
information which is why it is a powerful and useful tool in here and in all burst
searches.

This analysis uses waveforms from two types of CCSN mechanisms. These wave-
forms are a subset of those used in Gossan et al. [12]. The first GWBs are those
from neutrino driven convection. In this type of explosion, the progenitor is non-
rotating. This theory says that the stalled explosion is re-energized from neutrino
heating. From among other things, GWBs form from the core bounce, prompt and
neutrino-driven convection, and aspherical neutrino emission. In the search, I con-
sidered 3D simulations from Ott [7] and Mueller [8]. 2D simulations result in only
one polarization, the plus, whereas the 3D simulations will have both plus and cross
polarizations. The second type of explosion considered is that resulting from rotating
core-collapse SN. In this case, the progenitor is rotating, which accounts for roughly
1 percent of all galactic CCSN. A strong GWB from pressure-dominated core-bounce
will result from the core-collapse of a rotating progenitor. In this search, I consider
simulations from Dimmelmeier (2D) [9] and Scheidegger (3D with magnetic fields)
[10]. All of the rotating core-collapse models are based on 15M� progenitor with the
LS180 equation of state and parameterized rotation profile. Table 3.1 summarizes
useful information about these waveforms and Figure 3.1 shows what some of these
waveforms look like. In the following results sections, I will present results from
both 2D and 3D simulations as well as the two types of explosion mechanisms.
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Figure 3.1: A selection of the SN waveforms used in this analysis. Top-Left: Wave-
form from a 3D simulation of neutrino driven convection explosion mechanism from
Ott [7]. Top-Right: Waveform from a 3D simulation of neutrino driven convection
explosion mechanism from Mueller [8]. Bottom-Left: Waveform from a 2D simula-
tion of a rotating CCSN from Dimmelmeier [9]. Bottom-Right: Waveform from a
3D simulation of a rotating CCSN from Scheidegger [10].

3.3 SNEWS Triggered All-Sky vs. Optically Triggered
Search

In this section, I describe the difference between a SNEWS triggered all-sky search
and an optically triggered analysis. The difference between these two searches is that
a SNEWS or neutrino trigger gives no sky position information whereas an optical
trigger would contain the precise sky position of the SN. The motivation behind the
setup for the all-sky search is the same as the optical. In the optical case, the time
delay between the detectors is known from the sky location and thus the search can
coherently combine the individual detector data streams without potential loss of
signal. In the all-sky case, there is an infinite number of possible time delays for
the Hanford, Livingston detector configuration. Therefore, in order to ensure the
entire recovery of the signal, it would be necessary to search over all possible sky
locations. This analysis is, however, computationally inefficient and the analysis
with X-Pipeline would take too long. The key to constructing the all-sky search
is creating a dense enough grid of sky locations that will sufficiently cover the full
range of possible time delays. In [66], by J. Aasi et al. it is shown that using a linear
grid of sky positions was sufficient to detect GWBs in GRB searches with sky areas
of several hundred degrees. In this chapter, I extend the idea to an all-sky search
and evaluate its effectiveness. Specifically, the grid must be dense enough so one or
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more of the grid points will recover at least 90% of the SNR of the signal. In order
to accomplish this, I chose a time delay between grid points of 0.1 milliseconds. To
see why, imagine the worst case scenario of this grid of sky locations. This scenario
would occur if the actual time delay was represented by a sky location halfway
between two of the grid points. To see how 90 percent of the SNR would still be
recovered, imagine a sine-Gaussian waveform. A sine-Gaussian waveform coming
from this location would be maximally out of phase of a sine-Gaussian coming from
either of the two grid points around it. The timing error of this sine-Gaussian would
be 0.05 milliseconds. The SNR loss from this phase shift can be quantified as

SNR2 = cos(2πfsignalterr)× SNR2
max (3.1)

where terr is the timing error in seconds and SNR2
max is the SNR from a sine-

Gaussian at one of the two nearby grid points. In this analysis, the search looks
for signals up to 2 kHz. Therefore, if this extreme situation is considered, that is
fsignal = 2000 Hz and terr = 0.00005 seconds, then

SNR2 = cos(2πfsignalterr)× SNR2
max

SNR2 = cos(0.2π)× SNR2
max = 0.81× SNR2

max

SNR = 0.9× SNRmax

(3.2)

Thus, with this grid spacing, even in the worst case scenario, i.e. maximal
frequency signal coming from a sky location whose time delay is represented by a
point half way between two grid points, the recovery of the signal is still at roughly 90
percent. Next, it is necessary to determine the appropriate number of sky locations
based on the time delay selection of 0.1 milliseconds. The time delay of a GWB
between Hanford and Livingston is 10 milliseconds and the maximal timing error
is 0.05 milliseconds. Thus, by simply dividing the two numbers, the search must
be conducted on 201 sky locations. Figure 3.2 helps visualize this search grid. In
addition, we added the galactic disk to the picture to demonstrate how the sky
location steps line up with the galactic disk (which is where a GS would most likely
occur.)

In this analysis, I ran with the same GPS time of 871728757 and on the same
rescaled data as the analysis performed in Chapter 2. I test two cases, a SNEWS
triggered linear grid search and an optically triggered, i.e. single grid point, search.
I tested only the H1L1 configuration as this configuration is what is expected to be
operational in late 2015 to early 2016. The right ascension and declination of the
optically triggered analysis is [256.0009, -41.4060]. This point was selected as it lies
in the galactic plane and is near the galactic center, [266.3644 -28.9943].

Because the validity of the coherent statistics formulated in the previous chapter
relied on prior knowledge of the sky location of the source, the all-sky search provides
some challenges for these statistics. First, the large range of time delays tested by
the search will lead to much louder background than the optically triggered search.
This is because there are more opportunities for background glitches in the detectors
to appear in coincidence. In this analysis, the GR search statistics as formulated in
[11] for the loudest background in the linear grid search was roughly 8000 whereas
it was 5000 for the optical analysis. Moreover, no coherent cuts were selected by
the post-processing of the output of the linear-grid search. This means none of the
loud background events were eliminated by the post-processing and therefore all
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Figure 3.2: This figure shows the summed antenna response to the plus and cross
polarization of Hanford and Livingston (F 2

+ + F 2
×) overlaid with the linear search

grid used in this search (dashed line). The solid line is the location of the Galactic
Disk on the sky at this GPS time. The blue star at the intersection of the two lines
represents the Galactic Center and is near the sky location used in benchmarking
this search.

these events, including the event with a value of 8000, were still viable threshold
candidates. In the optically triggered search, however, the loudest background post
coherent cuts was around 38. The drastic reduction in background noise provided by
the optical search over the linear grid search highlights issues inherent with the all-
sky search. Figure 3.3 demonstrates the background issues in the triggered all-sky
versus optically triggered analysis.

These plots raise the question as to why the loud background is not being vetoed
out in the all-sky search to look more like the background in the optical search. The
motivation for the coherent statistics was that the GWBs would separate themselves
from the background, especially the “loud” background, and allow cuts to be made
on the data. Without any sky location knowledge, however, all sky locations must
be tested and some of these sky locations will cause a handful of the injected values
to have qualities similar to the background. Figure 3.4 highlights these challenges.

Many of the injections fall away from the diagonal as expected, but a sufficient
amount fall either on the E-I line or on the side of E-I line which is unexpected for a
GWB. This is most likely because the antenna response at the grid points searched
is not similar enough to the antenna response at the actual SN location, and so the
coherent analysis fails. Because a nontrivial number of injections behave this way,
no cut is selected for the linear grid search. As expected, the combination of the
increased significance of the background in general combined with no cut selections
causes the significance threshold at a FAR of 0.1 percent to be significantly larger
than it is for the optical. This leads to poorer than expected efficient curves for the
linear grid case. Figure 3.5 compares the linear versus optical efficiency curves at
the 0.1 FAR for four different SN waveforms. The linear grid search loses an order
of magnitude in recovery. Also, the linear, GR, and circular cuts display identical
efficiency curves in the linear grid case because no cuts were selected on any of the
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Figure 3.3: Left: The distribution of the significance (detection statistic), or “loud-
ness”, of the background for the optical search using the loghbayesiancirc statistic
[11]. The black line represents the entire background before any coherent consistency
cuts are made and the blue represents the surviving background. Right: Same as
the left except for the linear grid search. There is no blue line in this case as no cuts
were selected, so the blue and black lines are identical.

Figure 3.4: Left: Coherent versus Incoherent linear energy of the Ott 3D waveforms
[7] in the optical search for the injection amplitude for which 90 percent of the
injections were detected. The signals lie clear to the right of the E-I line and allow
for an effective coherent cut selection. Right: Same as the left except for the linear
grid search. This time a nontrivial number of the recovered signals energies lie on
or on the opposite side of the E-I line. Although there are a number of injections
whose statistics follow the expectation of the optical search, there are not enough in
order to trigger a cut selection from the search.

post processing. These results appear discouraging at first glance, but information
from the coherent versus incoherent plots such as Figure 3.3 provides evidence for
a different approach. The background looks no different in the linear versus optical
analysis in terms of where it falls on the E-I line. It is only the injections which falter.
This implies it would be useful to force the cuts selected by the optical analysis onto
the linear grid analysis. It is likely that the efficiency curves for the linear search will
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never reach 100 percent but it seems probable that the 50 percent recovery would
be nearly identical. The risk involved in accidentally cutting a GWB by employing
these cuts as opposed to the cuts selected through X-Pipeline, is mitigated by the
fact that follow-up analysis will also occur when better sky-location information is
available. Therefore, it is useful to obtain the best possible 50 percent change at
signal recovery at the initial alert than run an analysis that is unlikely to detect
anything due to “loud” background. The results of this analysis are discussed in the
next Section.

3.4 SNEWS Benchmarking

In this section, I seek to answer the following questions. First, in either the optically
triggered or SNEWS triggered all-sky analysis, do any of the coherent statistics
provide a significant improvement in the recovery of the signals. Second, how do the
optical and linear grid efficiencies compare when employing the cuts selected by the
optical post-processing on the linear grid search. Third, what potential solutions to
the linear-grid search could be employed to fix the poor detection efficiencies. With
the two detector configuration of Hanford and Livingston, it appears clear that there
is no significant difference between using the circular, GR, or linear cuts. This result
was not surprising as Hanford and Livingston are essentially aligned detectors and
distinguishing polarization in the two detectors is challenging. Table 3.2 shows the
50 percent detection distance for the three cut types for all of the waveforms in
this study for the optical analysis. Although the results are similar, the circular
cuts provided the best 50 percent recovery in 9 out of the 10 waveforms. The X-
Pipeline GRB search uses the circular statistics and they have shown to be effective
at eliminating background [11]. In addition, for all the coherent cut types, either
the loghbayesian [27] or loghbayesiancirc [11] were selected as the ranking statistic.
This information suggests the use of only the circular statistics, and perhaps the
plus/cross, is robust to effective recovery of these signals. This information will help
reduce computational and time costs associated with the actual SNEWS search.
This is because there is a nontrivial time involved in calculating the linear coherent
statistics compared to the plus/cross and circular statistics. On average, three sky
positions without the linear statistics can be analyzed in the same amount of time as
one sky position with the linear statistics. Given the size of the grid in this analysis,
this leads to nontrivial time increases, especially when doing enough background
trials to achieve a 3-sigma detection.

A similar comparison of the coherent cuts in the linear grid search would prove
unhelpful as no coherent cuts were selected by any of the post processing. Therefore,
the circular, GR, and linear analyses are all identical as no background events were
eliminated. If the coherent cuts selected in the optical analysis are applied to the
linear grid results, then better than 50 percent detection efficiency are achieved for
some waveforms, but for others the cuts are too extreme and eliminate over half of
the simulated injection, even at high amplitudes. Unfortunately, this idea failed to
deliver the desired result.

In addition to forcing some amount of coherent cuts on the linear grid results,
information on the likely location of the GS can also help improve the analysis. As
the name would suggest, a GS would come from the Milky Way Galaxy. The Milky
Way’s location on the sky at any given GPS time can be calculated and the overlap
between these sky locations and the time delay between the Hanford and Livingston
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Figure 3.5: The different coherent consistency cuts use different assumptions of
polarization content. The GR cuts assume a plus and cross polarized signal, the
circular cut assumes a circularly polarized signal, and the linear cut assume plus
polarized signal only with an arbitrary polarizations angle. The –x refers to detec-
tion efficiency for the linear grid search which consists of a grid that is sufficiently
dense over the sky without being too large to process quickly. The –o refers to the
detection efficiency for an optically triggered, single sky point, search. Top-Left:
A linearly polarized Dimmelmeier waveform [9]. Top-Right: A 3D Ott neutrino
driven convection waveform [7]. Bottom-Left: A linearly polarized sine-Gaussian
waveform. Bottom-Right: A 3D rotating core-collapse waveform from Scheidegger
[10].

detectors can be used to reduce the size of the grid. By overlap, I mean throwing
out any sky location from the original sky grid for which the declination angle is
outside of the declination angle of the Milky Way. Figure 3.8 demonstrates the
results from this analysis. Depending on the GPS time, this information can reduce
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the grid to as little as 60 percent of its original size. Unfortunately, the number of
grid points is only reduced in 70 percent of cases. I did this analysis for every 10
minutes block of time over the course of a year starting at an arbitrarily selected
date. These parameters were chosen in order to see what sort of structure the effect
of using the Milky Way had on the linear grid over the course of the year. Figure 3.8
shows two days of this year and is representative of the entire year. The GPS time
selected for this search coincided with a time where there was a reduction in the
size of the grid. Therefore, in order to highlight the potential gain in sensitivity
from this information, I constructed background and efficiency curves for this new
linear grid. Although this did reduce the significance of the background and improve
the location of the GWBs on the coherent and incoherent energy plane, there were
still no cuts selected and the efficiency curves only improved slightly. Figure 3.6
demonstrates the difference in background significance between the reduced linear
grid and original linear grid search. The statistic selected by the post-processing
was the powerlaw statistic which takes the power in each pixels and raises it to some
power d. In Figure 3.7, the difference in location on the E-I plane for the plus and
cross coherent statistics is shown for the two searches. The reduced grid shows an
improvement in the location with the GWBs falling farther off of the line than in
the linear grid case. Again, this leads me to believe that as currently implemented
the analysis is failing to appropriately account for antenna response functions and
thus the coherent analysis is still failing, although less than the search with the full
grid. Further work will need to be completed to refine the linear grid search, but it
appears with a little tweaking it will prove an effective search. Two potential options
include using a linear grid constructed from the actual position of the galactic disk
on the sky and using a full 2D grid with large spacing in between which can account
for the antenna response more accurately.
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Figure 3.6: Left: The distribution of the significance (detection statistic), or “loud-
ness”, of the background for the optical search using the powerlaw statistic. The
black line represents the entire background before any coherent consistency cuts
are made and in both the linear grid and reduced linear grid no cuts were selected.
Right: Same as the left except for the reduced linear grid search. Overall, the loudest
background event is less significant in the reduced grid but by not a large margin.
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Figure 3.7: Left: Coherent versus Incoherent linear energy of the Ott 3D waveforms
[7] in the linear grid search for the injection amplitude for which 90 percent of the
injections were detected. Again, the signals do not appear to have any consistent
pattern. Right: Same as the left except for the reduced grid search. This time a
more clear pattern is emerging as these signals are starting to clearly fall to the right
of the E-I line. This improvement in the reduced grid suggests that, although the
time delays are appropriately accounted for, the antenna response function may be
miscalculated and the coherent combination of the data is incorrect for the linear
grid search.
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Figure 3.8: This figure shows the potential reduction in number of grid points of
the linear grid search when utilizing information from the location of the MilkyWay
on the sky. This information is over an arbitrarily chosen 48 hour period.The x-
axis shows the percentage of the original number of grid points needed when the
information from the MilkyWay is included.

3.5 Conclusions

In this Chapter, I explored the performance of a fast analysis for a SNEWS triggered
all-sky search compared to the sensitivity of an optically-triggered analysis. Specif-
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SNEWS 3.5. Conclusions

Waveform Type Model Name Opt. 50 % distance Opt. 50 % distance Opt. 50 % distance
Circular Plus/Cross Linear

Rotating Core Collapse Dim-s15A2O05ls 27.58 26.20 27.58
Rotating Core Collapse Dim-s15A2O09ls 25.73 25.24 23.61
Rotating Core Collapse Dim-s15A3O15ls 20.56 20.81 19.56
Rotating Core Collapse Sch-R1E1CA-L 0.69 0.66 0.66
Rotating Core Collapse Sch-R3E1AC-L 41.88 40.00 40.45
Rotating Core Collapse Sch-R4E1FC-L 48.32 43.85 45.00
3D Convection Müller-L15-3 2.12 2.05 2.08
3D Convection Müller-N20-2 0.94 0.89 0.94
3D Convection Müller-W15-4 1.27 1.25 1.24
3D Convection Ott-s27 2.33 2.28 2.22

Table 3.2: We present the 50 percent detection distance at a false alarm probability of
0.1 percent utilizing the various coherent statistic and assumptions on polarization
content. Across all waveforms, these coherent statistics provide nearly identical
recovery distances. Nonetheless, the circular coherent consistency cuts proved best
in 9 of the 10 waveforms.

ically, I tested a linear sky-grid that had been previous employed in GRB searches.
In the end, the sensitivity was poor and not to astrophysical relevant distances.
Further exploration indicated the problem was most likely due to antenna responses
changing too much between the actual CCSN location and the linear grid points that
were searched. Two solutions to this issue include using a linear grid constructed
from the actual position of the galactic disk on the sky and using a larger number
of grid points to cover the antenna response more accurately.
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Chapter 4

Conclusions

This thesis has explored both the scientific benefits of gravitational wave bursts from
a galactic core-collapse supernovae as well as techniques to detect these signals in
detector data.

In Chapter 2, I motivated an analysis for alternative polarized signals that could
arise from a galactic supernova. LIGO and Virgo are sensitive to gravitational wave
signals not only from the plus and cross polarizations predicted by general rela-
tivity, but potentially also to gravitational waves predicted by alternative theories
of gravity. The type of polarization I studied in my thesis is known as the scalar
mode which is predicted to arise from spherically symmetric systems (unlike in gen-
eral relativity, where spherically symmetric systems do not produce gravitational
waves). One particular system of interest for such signals is core-collapse super-
novae. Because these are nearly spherically symmetric systems, it is possible that
the dominant form of emission could come in the form of scalar polarized signals.
Therefore, I explored the formulation of statistics designed for the extraction of these
signals from the detector data. These statistics came in the form of ranking or detec-
tion statistics and coherent statistics, which are designed to reject background noise
events. After this formulation, I ran a search on a variety of possible scalar signals.
These signals included waveforms from simulations of a core-collapse supernovae to
neutron-star remnant, neutron-star collapse to black-hole, galactic dust collapsing
to a black hole, and the spontaneous scalarization of neutron stars. I estimated the
sensitivity to and feasibility of detecting these types of waveforms. I showed that
scalar gravitational-waves are detectable to a few kiloparsecs with advanced LIGO,
even when restricting scalar parameters to their currently constrained values. Initial
runs proved promising, and it appears possible to make meaningful scientific claims
about scalar-tensor theories, signals models, and the equation-of-state.

In Chapter 3, I discussed the current implementation of the low-latency SNEWS
triggered X-Pipeline search. Galactic supernovae are one of the most important
targets for the advanced LIGO and Virgo detectors. While the rate of a galactic
supernovae is quite uncertain, they occur at most about once every 30 years. For
this reason, a prompt gravitational-wave search from such an event will be important
to maximize the science from these events by the astronomical community at large.
Using events identified by a consortium of neutrino detectors, LIGO and Virgo will
be able to perform rapid coincident searches in their detector data. The sky location
information provided by such triggers is relatively poor, but the timing information
is very valuable due to the limiting amount of time required for a search. I explored
the ramifications of this fact by performing a simulation where a supernova trigger
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has occurred but with poor sky location information. I show the loss in sensitivity
between using an all-sky analysis (where the sky location is not known at all) to an
optically triggered analysis (where the sky location is known). I showed a simple
linear grid of time-delays is not effective for such a search due to the change in
antenna response across time delays. I briefly discussed potential solutions to this
issue. One potential solution is to perform a coarse two-dimensional grid search
to account for the antenna factors. Another solution to speed-up the analysis is
to reduce the portions of the sky searched to overlap with the Milky Way Galaxy,
which can reduce the number of points by a factor of two at certain times. I also
detailed the numerical supernovae waveforms used in the analysis that could arise
from a variety of explosion mechanisms.

In this thesis, I have discussed improvements to existing searches using optimized
sky location grids and statistics. But another potential area of improvement is in
the clustering techniques. Most searches for unmodeled transients use seed-based
nearest neighbor clustering of strain power spectrograms [67, 68], which identify
GW signals by searching for pixels of excess power above some threshold, seeds,
which leads to the creation of seeds along a spectrogram track. The algorithm then
uses a rule to connect neighboring seeds to form a cluster. Detection statistics are
then computed based on these clusters, which determine whether it is consistent with
signal or noise. These algorithms are beneficial for signal morphologies that have
no or few defining characteristics. For sources, such as core-collapse supernovae [69]
for which numerical relativity simulations and waveform catalogs exist, a potential
alternative is to use Principal Component Analysis (PCA) based catalogs to perform
the clustering. “Seedless clustering,” integrates the signal power along spectrogram
tracks using pre-defined “templates” chosen to capture the salient features of a wide
class of signal models. We can combine the power of PCA catalogs and seedless
clustering to search for gravitational-wave signals.

Original work for this project was funded by the NSF through the University of
Florida’s IREU program. Final work for this project was funded by the Fulbright
Scholarship through the United States Department of State.
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Chapter 5

Appendix

5.1 Appendix A: Likelihood Marginalization

L(d|hb, σh) =

∫
A
L(d|Ahb)p(A)dA. (5.1)

L(d|Ahb) has the form of Eq. 2.21, where hb is now Ahb.

∫
A
exp

(
(d ·Ahb)−

1

2
||Ahb||2

) exp
(
−1

2
A2

σ2
h

)
√

2πσ2
h

dA (5.2)

Next I rearrange the equation.

1√
2πσ2

h

∫
A
exp

(
A(d · hb)−

1

2
A2

(
||hb||2 +

1

σ2
h

))
dA (5.3)

Now, I make a couple coefficient substitutions, d · hb = b and R = ||hb||2 + 1
σ2
h
.

1√
2πσ2

h

∫
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exp

(
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2
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)
dA (5.4)

The payoff of these substitutions and rearrangement, is that our integral now
has the form of a Gauss Integral which looks like∫

RM
exp

(
−1

2
x†Rx + b†x + c

)
dx (5.5)

The Gauss Integral has the solution√
det2πR−1exp

(
1

2
b†R−1 + c

)
(5.6)

Therefore, in our case, the solution is

L(d|hb, σh) =
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L(d|hb, σh) =
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1
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exp
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1

2
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)
(5.8)
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Appendix 5.2. Appendix B: Detection Statistic Substitution

Finally, I take the log of both sides and plug back in for R and b.

log(L(d|hb, σh)) =

(
1

2
b

1

R

)
+ log

 1√
Rσ2

h

 (5.9)
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5.2 Appendix B: Detection Statistic Substitution

The two substitutions that need to be made are eb||hb|| = hb and ||hb|| = hb
eb

. Also,
for our analysis ||hb|| = ||fb||.
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– 44 –



Bibliography

[1] Gregory M. Harry. Advanced LIGO: The next generation of gravitational wave
detectors. Class.Quant.Grav., 27:084006, 2010. doi: 10.1088/0264-9381/27/8/
084006.

[2] Masaru Shibata, Kenichi Nakao, and Takashi Nakamura. Scalar-type gravi-
tational wave emission from gravitational collapse in brans-dicke theory: De-
tectability by a laser interferometer. Phys. Rev. D, 50:7304–7317, Dec 1994.
doi: 10.1103/PhysRevD.50.7304. URL http://link.aps.org/doi/10.1103/

PhysRevD.50.7304.

[3] Jerome Novak and Jose Ibanez. Gravitational waves from the collapse and
bounce of a stellar core in tensor-scalar gravity. Astrophys. J., 533(1):392,
2000. URL http://stacks.iop.org/0004-637X/533/i=1/a=392.
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