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Abstract

With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished
for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A
combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data,
has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by
overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia
datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for
schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes
with consistent association signals. We validated the module genes in an independent dataset, and also examined them
through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a
joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate
genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are
involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had
Pmeta,161024, including the gene HLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous
studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-
based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can
be applied to any other complex diseases/traits where multiple GWAS datasets are available.
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Introduction

Genome-wide association (GWA) studies have, during the past

decade, become a powerful tool to study the genetic components

of complex diseases [1]. Although an increasing number of genes/

markers have been uncovered in GWA studies, which have

provided us important insights into the underlying genetic basis of

complex diseases such as schizophrenia [2,3,4], it has also become

evident that many genes are weakly or moderately associated with

the diseases. Most of these variants have been missed in single

marker analysis, as investigators typically employ a genome-wide

significance cutoff P-value of 561028. Alternatively, the gene set

analysis (GSA) of GWAS datasets provides ways to simultaneously

examine groups of functionally related genes for their combined

effects and thus have improved power and interpretability [5].

Many GSA methods have been reported to date, such as the

gene set enrichment analysis [6], the adaptive rank-truncated

product [7], the gene set ridge regression in association studies

(GRASS) [8], etc. Most of these methods were designed to use pre-

defined gene sets such as the KEGG database [9] or the Gene

Ontology (GO) annotations [10]. Alternatively, studies are

emerging by incorporating protein-protein interaction (PPI)

networks into GWAS analysis. Baranzini et al. [11] first adopted

a network-based method that was initially designed for gene

expression data [12] to analyze the GWAS data for multiple

sclerosis. Recently, Rossin et al. [13] developed the Disease
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Association Protein-Protein Link Evaluator (DAPPLE); it tests

whether genes that are located at association loci in a GWAS

dataset are significantly connected via PPIs. We have also

developed the dense module search (DMS) method [14], which

overlays the gene-wise P values from GWAS onto the PPI network

and dynamically searches for subnetworks that are significantly

enriched with the association signals.

The advantages of network-based analysis of GWAS data in

comparison with the standard GSA methods lie in many aspects.

First, most GSA methods test on pre-defined gene sets, which

heavily rely on a priori knowledge and are incomplete. For

example, the popular KEGG database has pathway annotations

covering only ,5,000–5,500 genes [15], accounting for less than

30% of the genes in GWAS datasets. In contrast, the annotations

of PPI data cover a much larger proportion of human proteins.

For example, a recent integrative analysis of PPI data from

multiple sources has reconstructed the human PPI network by

recruiting ,12,000 proteins and ,60,000 protein interaction pairs

with experimental evidence [16]. There are other assembled PPI

datasets that include both experimentally supported and compu-

tationally predicted interactions; thus, they could annotate even

more proteins and interactions [17,18]. Second, the standard GSA

methods are typically based on canonical definitions of pathways

or functional categories, but the association signals from GWAS

might converge on only part of the pathway [19]. In such cases,

analysis of the whole pathway as a unit would reduce the power.

On the other hand, network-assisted methods allow for the

definition of de novo gene sets by dynamically searching for

interconnected subnetworks in the whole interactome and, thus,

can effectively alleviate the limitation of the fixed size in pathway

analysis.

Despite these advantages, there are challenges in the application

of network-based approaches to GWAS data. For example, the

methods for defining or searching subnetworks vary greatly. While

it is impractical to examine all possible subnetworks due to the

intensive computing burden, different methods or algorithms may

identify substantially different subnetworks [20], making it difficult

to decide in real application. Additionally, network-based analysis

could be confounded by nodes with high degrees (i.e., the number

of interactors of each node in the network), although these nodes

constitute only a small proportion according to the framework of

power-law distribution [21]. One example is TP53, which

interacts with several hundreds of other proteins in the whole

PPI network. The existence of such hub nodes with strong

interaction in the network may help them more likely to be

selected in searching subnetworks and, thus, overwhelm the

resultant subnetworks. Appropriate adjustments are needed.

In this study, we aim to search for modules that are significantly

enriched with association signals in human PPI network weighted

by GWAS signals. We take advantage of our recently developed

dense module search (DMS) algorithm [14] to conduct module

searching and construction. Based on this, we introduced statistical

evaluations of the modules identified by DMS, including a

significance test based on module scores, a weighted resampling

method to adjust potential biased in GWAS data (e.g., caused by

gene length or SNP density), a topologically matched randomi-

zation process to adjust the bias in network (e.g., the high degree

nodes), and a permutation test to determine the disease association

of the modules. In addition, we propose a bi-directional

framework to search for consistent association signals from

multiple GWAS datasets available for one specific disease or trait.

Specifically, two GWAS datasets were analyzed in parallel: one is

assigned as a discovery dataset and another as an evaluation

dataset, and vice versa. This strategy provides robust results with

partial validation — only the modules that were consistently highly

scored would be selected for further validation and functional

assessment. We demonstrated it in schizophrenia using two major

GWAS datasets for module identification, and incorporated a

third dataset to independently replicate the results. Finally, we

performed a meta-analysis of the markers that were mapped in the

module genes. We identified 18 SNPs in 9 module genes that are

of particular interests (Pmeta,161024).

Results

An overview of the network framework for GWAS
We incorporated two case-control GWAS datasets for schizo-

phrenia in this study for module search: the International

Schizophrenia Consortium (ISC) study and the Genetic Associa-

tion Information Network (GAIN) dataset. A third dataset, the

Molecular Genetics of Schizophrenia (MGS) - nonGAIN dataset,

was included in the validation stage by bringing independent

samples for disease association test. Each of the three datasets was

preprocessed and quality controlled, with none observed to have

substantial population stratification. As shown in Figure 1, we

started with the GAIN dataset for module discovery, followed by

module evaluation using the ISC dataset. In the parallel thread,

the ISC dataset was used for constructing modules and the GAIN

dataset for evaluation. In both threads, a series of significance tests

were performed, each of which aims to build null distributions for

different purposes and adjust specific biases. The modules that

passed the filtering criteria in both datasets were selected and

merged. Module genes were collected and considered as schizo-

phrenia candidate genes, whose association signals were further

examined in an independent GWAS dataset, the nonGAIN

dataset, as well as, by meta-analysis using three GWAS datasets

(ISC, GAIN, and nonGAIN).

More specifically, our algorithm for multiple GWAS datasets

includes the following steps.

Step 1. Candidate module search in one GWAS dataset. The

gene-wise P values from the GWAS results were converted to z-

Author Summary

The recent success of genome-wide association studies
(GWAS) has generated a wealth of genotyping data critical
to studies of genetic architectures of many complex
diseases. In contrast to traditional single marker analysis,
an integrative analysis of multiple genes and the assess-
ment of their joint effects have been particularly promis-
ing, especially upon the availability of many GWAS
datasets and other high-throughput datasets for numer-
ous complex diseases. In this study, we developed an
integrative analysis framework for multiple GWAS datasets
and demonstrated it in schizophrenia. We first constructed
a GWAS-weighted protein-protein interaction (PPI) net-
work and then applied a dense module search algorithm
to identify subnetworks with combinatory disease effects.
We applied combinatorial criteria for module selection
based on permutation tests to determine whether the
modules are significantly different from random gene sets
and whether the modules are associated with the disease
in investigation. Importantly, considering there are many
complex diseases with multiple GWAS datasets available,
we proposed a discovery-evaluation strategy to search for
modules with consistent combined effects from two or
more GWAS datasets. This approach can be applied to any
diseases or traits that have two or more GWAS datasets
available.

Network-Based Investigation of SZ GWAS
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scores and overlaid to the background human interactome (the

whole PPI network), with each node being weighted by the z-score

of the encoding genes. For each node in the network, DMS is

performed to generate a best module, i.e., with the largest module

score, Zm (see Materials and Methods). We performed this module

construction step for each GWAS dataset using the R package,

dmGWAS, which implements the original DMS algorithm [14],

and the default parameters were used.

Step 2. Module assessment. We provide three types of

significance tests to assess the candidate modules: (1) the

significance test based on module scores (P(Zm)); (2) the evaluation

of module scores in the context of various biases (PGL, PnSNPs, and

Ptopo); and (3) the permutation test by shuffling disease labels in the

GWAS datasets (Pemp). Detailed information can be found in the

Materials and Methods section.

Step 3. Module selection. In practice, several thousands of

modules are likely to be constructed, corresponding to the

thousands of genes used as seed; thus, further selection for top

modules is needed. In a single GWAS-weighted module search

process, we employed the following combinatorial criteria to select

modules: (1) P(Zm),0.05; (2) PGL,0.05, PnSNPs,0.05, and

Ptopo,0.05; and (3) Pemp,0.05. When there are two GWAS

datasets available for the same disease or trait, we propose to use

one dataset serving as discovery (discov) and the other as evaluation

(eval), and vice versa (Figure 1). This allows us to select the most

reliable modules with enriched association signals from more than

one study. For each module generated by the discovery dataset, we

also computed the corresponding P(Zm(eval)) using the same set of

genes (i.e., in the same module) with gene weights based on the

evaluation GWAS dataset, as well as Pemp(eval) by shuffling the case/

control labels in the evaluation GWAS dataset. Modules were

selected if they have P(Zm(eval)),0.05 and Pemp(eval),0.05.

Dense module search for schizophrenia
Using GAIN as the discovery dataset, we identified a total of

8,739 modules (Figure 2A). The module size ranged between 5

and 17, with a median value of 11 (Figure S2). A total of 935

modules passed the combinatorial criteria, i.e., (1) P(Zm),0.05; (2)

PGL,0.05, PnSNPs,0.05, and Ptopo,0.05; and (3) Pemp,0.05.

Among them, 71 modules were also significant in the ISC

evaluation dataset (P(Zm(eval)),0.05). Furthermore, 68 out these 71

modules passed the permutation test in the evaluation dataset

(Pemp(eval),0.05). They were denoted as the final list of modules.

Similarly, using ISC as the discovery dataset, we identified

8,899 modules (Figure 2B), with the module size ranging between

5 and 18 and a median value of 11 (Figure S2). A total of 259

Figure 1. Workflow of network-assisted strategy to identify candidate genes for schizophrenia.
doi:10.1371/journal.pcbi.1002587.g001
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modules passed the combinatorial criteria. However, only one

module was significant when adding the GAIN dataset for

evaluation, involving 11 genes. We then merged the two lists to

build a PPI subnetwork, which consisted of 205 module genes

(Figure S3).

Module genes as candidates for schizophrenia
A substantial proportion of the 205 module genes had

nominally significant P values (defined as P,0.05 without multiple

testing correction) in the corresponding GWAS dataset: 139

module genes (67.80%) had PGAIN,0.05, and 125 module genes

(60.98%) had PISC,0.05. The remaining module genes with non-

significant P values were recruited in the top modules due to their

physical interactions with the nominally significant genes in the

PPI network, as DMS aims to identify joint effects of a set of

schizophrenia genes in the context of the PPI network. In

summary, 97 of the 205 genes (47.32%) were nominally significant

in both the GAIN and ISC datasets, and 167 (81.46%) were

nominally significant in either dataset.

Further comparison of these genes with previous association

studies in the SZGene database [22] (as of January 26, 2011)

showed that 31 (15.12%) of the module genes had been studied for

association with schizophrenia. The SZGene database manually

curates the association results from previously published associa-

tion studies as well as recent GWAS findings. Among these 31

genes, 16 had at least one positive association study in previous

work. Eighteen of these 31 genes (58.06%) were nominally

significant (gene-wise P value,0.05) in both the GAIN and ISC

datasets, while 26 (83.87%) had nominal significance in either

dataset. These proportions were similar to those evaluated for the

whole 205 module genes above. In contrast, the corresponding

proportions of nominally significant genes in whole GWAS

datasets were much lower (16.43% genes with nominal signifi-

cance in both datasets and 55.77% in at least one dataset),

indicating that the identified module genes were closer to genes

known to be associated with schizophrenia.

Replication in an independent GWAS dataset
We further evaluated the 205 module genes in an independent

GWAS dataset, the nonGAIN dataset. First, we assessed whether

the module genes contain a proportion of significant genes than

randomly expected. This was done through weighted resampling

while controlling the potential biases of gene length and SNP

density in the nonGAIN dataset. Representing each module gene

by the smallest P value among the SNPs located in its gene region,

we denote the gene as significant if its nominal P value was less

than 0.05. The 205 module genes were pooled together and

denoted as one gene set, in which we found 76 genes were

observed to be nominally significant in the nonGAIN dataset. We

executed the weighted resampling process by 10,000 times, and

built a null distribution of the number of significant genes given

the number of module genes. This process was executed in the

same way as the second significance test in module assessment.

The details can be found in the Materials and Methods section, as

well as in previous study [23]. The empirical P for the module

gene set was 0.002 when adjusting gene length, and 0.003 when

adjusting SNP density, indicating that these genes are not expected

from random cases.

Second, we assessed the module genes in nonGAIN through

resampling of SNPs. The 205 module genes had a total of 15,548

SNPs in the nonGAIN dataset. In each resample, we randomly

selected the same number of SNPs (i.e., 15,548 SNPs) out of all the

SNPs genotyped in the nonGAIN dataset, and recorded the

number of significant SNPs, which were again defined as those

whose nominal P values,0.05. We repeated this process by 10,000

times and counted the number of resample processes having more

significant SNPs than that of the real case. This analysis resulted in

an empirical P value of 0.022, indicating that the SNPs harbored

in these module genes contained a higher proportion of nominally

significant SNPs than randomness.

Note that the nonGAIN dataset is independent of the GAIN

and ISC datasets we used to discover the module genes. Therefore,

these results provide an independent replication of our module

genes and showed that they are significantly enriched with

association signals to schizophrenia.

Meta-analysis
There were 15,252 SNPs in the genomic regions of the 205

module genes that were genotyped in all three GWAS datasets.

Using the inverse-variance weighted meta-analysis method and

heterogeneity test, we identified a total of 1032 SNPs having

nominal significance (Pmeta,0.05) after removing substantial

heterogeneity (Pheterogeneity,0.05).

To determine whether the module genes contain a proportion

of significant SNPs higher than expected by chance, we

randomly sampled SNP sets with the same number of SNPs

mapped to module genes (i.e., 15,252) and computed the

proportion of significant SNPs (defined as those with

Pmeta,0.05). Repeating the random process by 1000 times, we

computed the empirical P value by Pemp = f# random sample
sets with K§kg=ftotal # of random sample setsg, where K is

the number of significant SNPs with Pmeta,0.05 in a random set,

and k is the number in the real case, i.e., k = 1032. This random

process showed that the module genes contains a significantly

higher proportion of significant SNPs (Pemp,0.001), further

proving the enriched signal in the module genes.

Among the significant module SNPs by meta-analysis, 18

SNPs in 9 genes were shown to have Pmeta,161024 (Table 1).

The most significant module SNPs were located in the gene

HLA-DQA1, followed by MAD1L1 (Table 1, Figure 3). There are

two SNPs in HLA-DQA1 with Pmeta,161024: rs9272219

(Pmeta = 1.4661026) and rs9272535 (Pmeta = 1.5861025). Both

were in the top list reported in a previous combined analysis of

three GWAS datasets for schizophrenia [2,3,4], which included

all the GWAS datasets we used here plus the SGENE dataset

[4], to which we do not have access currently. The combined P

value in the previous work [4] was Pcomb = 6.961028 for

rs9272219 and Pcomb = 8.961028 for rs9272535. Both SNPs

are located in the MHC region chr6: 27,155,235–32,714,734, a

region that was reported to harbor a genome-wide significant

association signal for schizophrenia [2]. Another gene, MAD1L1,

has six SNPs with small Pmeta values (4.3061026,6.0161025,

Table 1). MAD1L1 is a long gene (,417 kb) and has 70

overlapped SNPs examined in the meta-analysis. We further

examined whether these 6 SNPs are located in the same LD

block. Using the HapMap3 CEU data (http://www.hapmap.

org/, release R2), we found that these SNPs were located in 4

blocks, suggesting that they might represent independent

association signals.

Figure 2. Distribution of module scores (Zm) from two GWAS datasets. Each circle in the plot represents a module. The circles in red indicate
those selected modules (see text). X-axis: module scores from the discovery GWAS dataset. Y-axis: module scores from the evaluation GWAS dataset.
doi:10.1371/journal.pcbi.1002587.g002
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Functional enrichment analysis
Table 2 summarizes the results of pathway enrichment analysis

of the 205 module genes by the Ingenuity Pathway Analysis (IPA).

Enrichment results of KEGG [15] pathways were shown in Table

S1. The enriched pathways included Wnt/b-catenin signaling,

CREB signaling in neurons, Calcium signaling, Ga12/13

signaling, and synaptic long term depression. Overall, the results

are consistent with the neuropathology and immune/inflamma-

tion hypotheses in schizophrenia [24,25], suggesting that our

DMS-based strategy is effective on detecting joint association

signals from multiple GWAS datasets.

Discussion

We proposed a novel strategy to prioritize candidate genes from

multiple GWAS datasets in the context of the human interactome

and applied it to schizophrenia. Integration of the PPI network

and implementation of our dense module search algorithm greatly

improved the coverage of gene annotations, introduced gene set

flexibility when searching for candidate genes, and allowed for

dynamic identification of putative genes. The bidirectional strategy

we proposed here made full use of the discovery and evaluation

datasets to avoid potentially incomplete discovery using either one

of them separately. The final subnetwork and candidate gene list

display the combined results of the two processes, namely GAIN

(discovery) R ISC (evaluation) and ISC (discovery) R GAIN

(evaluation); thus, they are comprehensive and cohesive in

revealing the signals from both datasets. At the molecular level,

the module genes we identified showed substantial overlap with

previous studies. We also identified novel genes that had not been

studied in schizophrenia, yet could be promising new candidates.

The procedure we proposed in this study implemented our

previously developed dense module search algorithm. One

important improvement is that we introduced P(Zm) for module

selection, instead of simply relying on the module score, Zm,

although the latter is straightforward and has been proved effective

in our previous work [14]. In this study, we adopted the Efron

et al. [26] method and computed P values based on Zm scores

through the estimation of empirical null distribution. Theoretical-

ly, Zm and the corresponding P(Zm) values are expected to have

identical rank, which has also been observed in real data

(Spearman correlation coefficient = 1). In contrast to applying a

straightforward cutoff value of Zm to perform module selection,

P(Zm) examines the overall distribution of all module scores and

has the advantage to provide a statistical evaluation. Thus, we

replaced Zm by P(Zm) for module selection in the current study.

Alternatively, using simulated genotyping and phenotype data to

estimate the proportions of modules that can capture the most

causal variants will help module selection. In such cases,

appropriate simulation data for the analyzed disease model is

important for both power estimation and module selection, and

will be considered in our future work.

One limitation of our method is that the dense module

searching process is sensitive to the background network. The

algorithm of DMS examines all the neighborhood nodes within

the distance of d and selects the best node in every step of module

expanding. Although this is an advantage to recruit the best

node(s) in each step, it also makes the DMS algorithm heavily rely

on the searching space defined by the background interactions.

Currently, our knowledge of human PPI network is far from

complete. To reduce the uncertainty of network data, we required

our working network only include interactions with experimental

Table 1. Results of meta-analysis using GAIN, nonGAIN, and ISC GWAS datasets (Pmeta,161024 and Pheterogeneity$0.05).

SNP ID Module Genes Chr. Position Allele Pmeta Beta s.e. PGAIN PnonGAIN PISC Pheterogeneity

rs9272219 HLA-DQA1 6 32710247 T/G 1.4661026 20.15 0.03 0.06 0.06 1.5861025 0.76

rs10244946 MAD1L1 7 1887594 A/G 4.3061026 20.16 0.03 1.8161024 0.18 2.3661023 0.27

rs3778994 MAD1L1 7 2142381 A/C 6.7961026 20.15 0.03 4.5461024 0.61 1.2061024 0.07

rs10275045 MAD1L1 7 1887352 T/C 9.7961026 20.13 0.03 1.4461024 0.20 3.6161023 0.16

rs4721190 MAD1L1 7 1921258 A/G 1.3961025 20.15 0.03 3.0761024 0.17 6.4261023 0.32

rs2056480 MAD1L1 7 1920827 A/G 1.4461025 20.12 0.03 4.1561025 0.31 5.6961023 0.07

rs9272535 HLA-DQA1 6 32714734 A/G 1.5861025 20.16 0.04 0.07 0.07 8.2761025 0.41

rs3132649 RPP21,TRIM39 6 30429036 A/G 1.6461025 20.20 0.05 0.01 0.46 6.4661027 0.00

rs10224497 MAD1L1 7 2116493 G/A 1.7561025 20.14 0.03 4.3261025 0.91 8.4661024 0.02

rs741326 CD207,CLEC4F 2 70912343 G/A 2.6561025 20.12 0.03 0.31 0.09 4.1461025 0.46

rs12646184 SMARCAD1 4 95402239 T/C 3.2161025 0.12 0.03 2.8561025 0.11 0.03 0.05

rs2071278 AGER, NOTCH4 6 32273422 G/A 3.2361025 20.16 0.04 0.10 0.98 2.7861026 0.06

rs2664871 SMARCAD1 4 95365304 T/C 4.6961025 0.12 0.03 3.8961025 0.12 0.04 0.05

rs172531 RERE 1 8418177 G/A 5.6261025 0.12 0.03 0.01 0.75 4.0361025 0.06

rs2087170 SMARCAD1 4 95381983 G/T 5.8361025 0.14 0.03 5.5961025 0.10 0.12 0.11

rs3757440 MAD1L1 7 2239462 G/A 6.0161025 20.14 0.04 6.4161024 0.56 2.3561023 0.14

rs301791 RERE 1 8390959 T/A 6.4561025 0.12 0.03 4.8861023 0.78 9.9061025 0.06

rs301801 RERE 1 8418532 C/T 6.6661025 0.12 0.03 0.01 0.73 4.5161025 0.06

rs302719 RERE 1 8412907 G/T 7.0161025 0.12 0.03 0.01 0.73 4.8461025 0.06

rs349171 PTPRG 3 62026751 T/C 9.3961025 20.16 0.04 0.50 0.08 9.5861025 0.35

rs8336 SMARCAD1 4 95430633 T/C 9.8161025 20.13 0.03 1.4361023 0.18 0.02 0.47

Rows were ordered by Pmeta.
doi:10.1371/journal.pcbi.1002587.t001
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evidence while excluding interactions predicted by computational

algorithms. However, because our aim is to search for a

subnetwork that is significantly enriched with GWAS signals, the

background PPI network can be extended to any network that is

built under a rational biological hypothesis, e.g., co-expression

network, functional correlated network, or network based on co-

occurrence in literature. Using any of these potential datasets, the

strategy we proposed here can be easily extended while the aim is

always to search for a subnetwork that is significantly enriched

with association signals from GWAS data.

We performed meta-analysis using three GWAS datasets, two of

which have already been used for module construction. In the

latter case, the ISC and GAIN datasets were used at the gene and

module levels, while in the meta-analysis, the examination of the

three GWAS datasets was conducted at the SNP level, including

its mutation direction. The results of meta-analysis were intended

to provide a complementary view and further examination of

association signals of the module genes at the SNP level rather

than in any single GWAS dataset. Of note, an ideal way of

replication of the module genes is to test them in other datasets

that are completely independent of those having already been used

in the module construction step; however, there are only limited

number of independent GWAS datasets for schizophrenia at the

current stage. To partially accomplish this evaluation goal, we

examined the module genes in the nonGAIN dataset, an

independent dataset from those (ISC and GAIN) in module

selection. The evaluation results of the nonGAIN dataset thus

provide some replication evidence of the module genes.

There have been a few previous studies combining network data

with GWAS data. A representative method is DAPPLE, which

takes the association loci in GWAS datasets as input and tests

whether genes located in these loci are significantly connected via

PPI. The advantages of DAPPLE include that it does not require

the genotyping data of the original GWAS datasets, it provides a

comprehensive randomization test to address the high-degree

nodes, and it has an online tool for public use. Although DAPPLE

and the method we proposed here both use PPI network to

analyze GWAS data, they differ substantially in term of the

underlying hypothesis. DAPPLE tests whether the associated genes

are significantly connected compared to random networks while

our method searches for modules that are significantly associated

with the disease. Due to this main difference as the starting point,

the two methods differ in many aspects in the subsequent analyses,

such as the way to build the resultant network and the way to

evaluate the results. For example, DAPPLE only takes the

associated loci as input, which are typically defined by 561028

and all the other loci, including those with weak to moderate

association levels, would be discarded. This might be less efficient

in searching association modules, especially for diseases or traits

that do not have strong association signals from GWAS. For

example, for psychiatric diseases such as schizophrenia, association

signal of the markers in any single GWAS dataset failed to reach

the genome-wide significance level 561028. Specifically, if we use

DAPPLE to analyze any of the three GWAS datasets used in this

study, we would not have any associated loci based on the

significance level 561028. In contrast, DMS considers all the

genes genotyped in the GWAS as input (seeds) in the network, and

searches for the final modules in a weight-guided fashion. Here,

the weight is from GWAS P values. Subsequently, many

moderately associated genes (e.g., those with P values between

0.05,561028) might have chance to be included in the final

modules for an examination of their joint effects. In practice,

depending on the purposes of each study and data availability,

investigators may choose appropriate methods for their specific

testing.

The merged subnetwork (Figure S3) included a number of well-

studied candidate genes for schizophrenia, such as DISC1, DLG2,

DLG3, DRD5, GNA12, GNA13, and GNAI1. Many genes have been

Table 2. Enriched pathways for module genes by Ingenuity Pathway Analysis.

Ingenuity Canonical Pathways -log(PBH) Molecules

Huntington’s Disease Signaling 7.17 GRIN2B, HDAC2, GRB2, CREBBP, HDAC1, GNB2L1, DNM3, ITPR1, POLR2B, SIN3A,
EP300, JUN, IGF1, CACNA1B, PRKCE, PIK3CB, PRKCH, EGFR

Wnt/b-catenin Signaling 6.52 GJA1, TGFBR3, HDAC1, CREBBP, SOX13, ACVR1B, EP300, MYC, CDH2, CDH1, JUN,
CSNK2A1, CTNNB1, ACVR2A, SOX5

Androgen Signaling 4.97 JUN, AR, GNA12, GNB2L1, CREBBP, GNAI1, PRKCE, PRKCH, POLR2B, GNA13, EP300

CREB Signaling in Neurons 4.86 GRIN2B, GRB2, GNA12, GNB2L1, CREBBP, GNAI1, POLR2B, ITPR1, EP300, PRKCE,
PIK3CB, PRKCH, GNA13

Prolactin Signaling 4.82 MYC, FYN, JUN, GRB2, CREBBP, PRKCE, PIK3CB, PRKCH, EP300

TGF-b Signaling 4.40 JUN, GRB2, HDAC1, CREBBP, SMAD7, SMAD5, ACVR2A, ACVR1B, EP300

Calcium Signaling 4.31 GRIN2B, TNNT1, TRPC1, HDAC2, RYR3, RYR2, HDAC1, CREBBP, MYH9, ITPR1, ACTA1,
EP300

Ga12/13 Signaling 4.12 CDH2, CDH1, JUN, F2R, GNA12, IKBKE, PIK3CB, GNA13, CDH16, CTNNB1

Synaptic Long Term Depression 3.97 PRKG1, IGF1, GNA12, RYR3, RYR2, GNAI1, PRKCE, PRKCH, GNA13, ITPR1

Dopamine-DARPP32 Feedback in cAMP Signaling 3.80 KCNJ12, PPP1CC, GRIN2B, PRKG1, CREBBP, GNAI1, CACNA1C, PRKCE, DRD5, PRKCH,
ITPR1

P values adjusted by Benjamini & Hochberg (BH) method [33].
doi:10.1371/journal.pcbi.1002587.t002

Figure 3. Meta-analysis results of the two most significant genes. Figures were generated using the LocusZoom online tool. X-axis is the
genome coordinate. Y-axis is the -logPmeta values. Each point represents a SNP. The color of points is according to their level of linkage disequilibrium
(LD) with the index SNPs. In this case, the index SNP is the most significant one in each panel. The LD measure is r2 based on the HapMap CEU
population (release 22).
doi:10.1371/journal.pcbi.1002587.g003
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studied in previous association studies [2,3]. Interestingly, GRB2

was present in the merged network. We identified GRB2 as a

candidate gene for schizophrenia in our previous study through a

network-assisted strategy [24] and then validated it in the Irish

Case Control Study of Schizophrenia (ICCSS) sample [27]. Here,

using an independent strategy and datasets, we again identified

this gene, further supporting GRB2 as a candidate gene for

schizophrenia. The canonical pathways enriched in the module

genes also confirmed the involvement of neuro-related genes and

pathways in schizophrenia.

In summary, we have performed a comprehensive network-

based analysis using our DMS-based approach augmented with

IPA software to facilitate interpretation. The outcome of this

analysis not only supports previously reported associations with

schizophrenia, but also implicates functional components such as

the Calcium signaling, Ga12/13 signaling, and the synaptic long

term depression pathways in schizophrenia risk. Future work to

estimate the power of this network-based strategy through

simulation and validation in independent samples will enhance

the applications of this method in other diseases or traits.

Materials and Methods

GWAS datasets
The Genetic Association Information Network (GAIN) dataset

for schizophrenia was genotyped using the Affymetrix Genome-

Wide Human SNP 6.0 array, and our access to it was approved by

the GAIN Data Access Committee (DAC request #4532-2)

through the NCBI dbGaP. We used the samples of European

ancestry. Quality control (QC) was executed as follows. For

individuals, we excluded those with a high missing genotype rate

(.5%), extreme heterozygosity rate (63 s.d. from the mean value

of the distribution), or problematic gender assignment. We used

PLINK [28] to compute the identify-by-state (IBS) matrix to

pinpoint duplicate or cryptic relationships between individuals,

and we retained the sample with the highest call rate for each pair

of samples with an identity-by-descent (IBD).0.185. Principle

component analysis (PCA) was performed using the smartpca

program in EIGENSTRAT [29] to detect population structure

and to allow removal of outlier individuals. Eight significant PCs

with the Tracy Widom test P value,0.05 were then used as

covariates for logistic regression (additive model). For genotyped

SNPs, we removed those with a missing genotype rate.5%, minor

allele frequency (MAF),0.05, or departing from Hardy-Weinberg

equilibrium (P,161026). The final analytic dataset included

1,158 schizophrenia cases, 1,377 controls, and a total of 654,271

SNPs with a genomic inflation factor l= 1.04.

The International Schizophrenia Consortium (ISC) samples

were collected from eight study sites in Europe and the US [2].

The samples were genotyped using Affymetrix Genome-Wide

Human SNP 5.0 and 6.0 arrays, and this data was initially

analyzed by ISC [2]. A total of 3,322 patients with schizophrenia,

3,587 normal controls of European ancestry, and 739,995 SNPs

were included in our analysis. To account for potential population

structure caused by collection sites, we used the Cochran-Mantel-

Haenszel test for a single marker association test, following the

original report [2].

The Molecular Genetics of Schizophrenia (MGS) - nonGAIN

dataset (denoted as ‘‘nonGAIN’’ hereafter) was genotyped in the

same laboratory as GAIN, but in different phases. Access to this

dataset was approved by dbGaP (DAC request #4533-3). Similar

QC and PCA as described for GAIN were performed. This

process retained 1,068 cases and 1,268 controls, all of which are of

European ancestry, and 623,059 SNPs for subsequent analysis.

Fifteen significant PCs with the Tracy-Widom test P value,0.05

were used as covariates for logistic regression (additive model)

using PLINK, with l= 1.04.

We mapped SNPs to human protein-coding genes downloaded

from NCBI ftp site (Build 36). A SNP was assigned to a gene if it

was located within or 20 kb upstream/downstream of the gene

[30]. Each gene was assigned a gene-wise P value using the P value

of the gene’s most significant SNP. A total of 19,739 genes were

successfully mapped in the GAIN dataset and 19,910 in the ISC

dataset.

Human protein-protein interaction (PPI) network
A comprehensive human PPI network was downloaded from

the Protein Interaction Network Analysis (PINA) platform [31]

(March 4, 2010), which collects and annotates data from six public

PPI databases (MINT, IntAct, DIP, BioGRID, HPRD, and

MIPS/MPact). To ensure the reliability of the network, we only

kept those interactions having experimental evidence and both

interactors are human proteins. Our working network included a

total of 10,377 nodes (genes) and 50,109 interactions. Only

common genes that were represented in both GWAS and PPI

datasets were retained for subsequent analysis.

Dense module search analysis
We applied our recently developed dense module search (DMS)

algorithm [14] with substantial improvement to these schizophre-

nia GWAS datasets. Details of the DMS algorithm are provided in

reference [14]. Briefly, DMS works with a node-weighted PPI

network and searches for a best module for each node in a score-

guided fashion. A quantitative description of the network includes

each node weighted by z~W{1(1{P), where W{1 is the inverse

normal cumulative density function and P is the P value

representing the association signal in the gene region (which we

called the gene-wise P value) from the GWAS dataset. Each

module is scored by Zm~
P

zi=
ffiffiffi
k
p

, where k is the number of

nodes (genes) in the module.

Given a single GWAS dataset, we first overlay gene-wise P

values to the PPI network to generate a GWAS P value-weighted

working network. We then took each of the nodes in the network

as a seed gene, and searched for a best scored module for it. In

each case, starting with the seed ‘module’ formed by the seed

node, the DMS algorithm searches for the node with the highest

score in the neighborhood within a distance d (d = 2) to the seed

module. Then, the module is expanded by adding the highest-

scored node if Zm+1.Zm6(1+r), where Zm+1 is the new module

score after adding the node, Zm is the original module score and r is

a pre-defined rate. We set r to be 0.1 in this study. This module

expansion process iterates until none of the neighborhood nodes

can satisfy the function Zm+1.Zm6(1+r). Because this module

construction process was conducted taking each node in the

network as the seed gene, several thousands of modules are

expected corresponding to the thousands of nodes.

Module assessment
We provided three procedures to assess the significance of the

identified modules, each of which aims to build null distributions

for different hypotheses.

First, to perform significance test of the identified modules, we

calculated P values based on module scores (Zm) for each module

by empirically estimating the null distribution [26]. According to

Efron et al. (2010), the null distribution is a normal distribution

with mean d and standard deviation s, both of which can be

empirically estimated using the R package locfdr. Specifically,
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module scores were first median-centered by subtracting the

median value of Zm from each of them, followed by estimation of

the parameters of d and s for the empirical null distribution using

locfdr. The standardized module scores (ZS) were then calculated

and converted to P values, P(Zm) = 1-W(ZS), where W is the normal

cumulative density function.

Second, to determine whether the module score is higher than

expected by chance, a standard way is to randomly select the same

number of genes in a module, i.e., resample genes in the network

regardless of the interactions, and compare the module score in

the random gene set with the score in the real case. Specifically to

alleviate the biases in GWAS data (e.g., gene length or SNP

density) or the network data (e.g., high-degree nodes), we

incorporated weighted resampling which intentionally matches

the pattern of biases in each resample to resemble the real case.

The gene length bias and the SNP density bias are commonly

noticed in GWAS datasets, especially when using the most

significant SNP to represent genes [30]. This is because when

mapping SNPs to genes, longer genes tend to have more SNPs and

in turn have higher chance to be significant. These two types of

biases are closely correlated but differ in cases due to different

genotyping platforms. For both biases, we first estimate a weight

for each gene based on the specific character to be adjusted, and

then performed weighted resampling to ensure each of the

resample has the similar pattern in term of the adjusted character.

This weighted resampling procedure ensures that genes could be

selected in a similar pattern of gene length or SNP density as in the

real GWAS data. Therefore, the empirical P values for each

module built on the bias-matched permutation data could be

adjusted by gene length (PGL) or the number of SNPs per gene

(PnSNPs). A detailed description of this function can be found in

previous work [23].

Another type of bias was that, in the PPI network, nodes with

many interactors (high degree) are more likely to be recruited in

module expansion steps. We thus categorized all the nodes in the

working PPI network into four categories by their degree values

(degree range 0–22, 22–24, 24–26, and .26) (Figure S1). For each

module, a topologically matched random module was generated

by randomly sampling the same number of nodes in each of the

four node bins. An empirical P value is computed by Ptopo~

PrfZm(p)§Zmg~
#of resamplesfZm(p)§Zmgz1

total #of resamplesz1
, where

Zm(p) is the score of the random module for the pth resample,

and Zm is the observed module score.

Third, to assess the disease association of the modules, we

performed permutation test by shuffling case/control labels in the

GWAS datasets. We generated 1,000 permutation datasets using

the genotyping data, and computed module scores in each

permutation dataset in the same way as for the real case. An

empirical P value for each module was computed according to

Pemp~PrfZm(permutation)§Zmg, where Zm(permutation) is the

module score in the permutation data.

A combinatorial set of criteria was defined to select modules: (1)

P(Zm),0.05; (2) PGL,0.05, PnSNPs,0.05, and Ptopo,0.05; and (3)

Pemp,0.05. This set of combinatorial criteria is applied whenever

one GWAS dataset is used to identify, assess and select modules.

When there is an additional GWAS dataset available for

evaluation, we included two additional criteria: (1) P(Zm(eval)),0.05

and/or (2) Pemp(eval),0.05.

Meta-analysis
Meta-analysis of module genes was conducted using three major

GWAS datasets: ISC, GAIN, and nonGAIN. A quality control

step was performed before the meta-analysis to detect whether

there is duplication or cryptic relatedness among the samples in

the three GWAS datasets. Pairwise IBS was computed using an

unrelated list of markers (generated through the option ‘‘–indep-

pairwise 50 5 0.2’’ in PLINK [32]). No pair was observed with an

IBD.0.185, a cutoff value that is halfway between the expected

IBD for third- and second-degree relatives. We performed inverse-

variance weighted meta-analysis based on the fixed-effects model

using the tool meta (http://www.stats.ox.ac.uk/,jsliu/meta.html).

This method combines study-specific beta values under the fixed-

effects model using the inverse of the corresponding standard

errors as weights. Between-study heterogeneity was tested based

on I2 and Q statistics. SNPs with evidence of heterogeneity were

removed.

The three GWAS datasets were genotyped on the same

platform; thus, we performed meta-analysis directly on the

genotyped SNPs without imputation. Genomic control within

each study was conducted in the meta-analysis using the lambda

value to adjust the study-specific standard error (SE).

Functional enrichment tests
We performed pathway enrichment analysis by the IPA system

(http://www.ingenuity.com) and also using canonical pathways

from the KEGG database [9] by the hypergeometric test. The

KEGG pathway annotations were downloaded in March 2011,

containing 201 pathways with size $10 and #250. For each gene

set collection, the results by the hypergeometric test were adjusted

by the Bonferroni method for multiple testing correction. To

further assess the significance of the identified gene sets, we

performed empirical assessment of the significance by resampling

1000 times from the network genes, with each resample containing

a random set of 205 genes. For a gene set S, we recorded the

number of resamples in which the gene set was significant and

computed an empirical P value by Pemp~#resamples
fS is significantg=total#resamples.

Supporting Information

Figure S1 Degree distribution of GAIN GWAS-weighted (top)

and ISC GWAS-weighted (bottom) networks. Each node in the

network was assigned to a degree bin based on its -log2(degree)

value.

(PDF)

Figure S2 Module size distribution of GAIN GWAS-weighted

(top) and ISC GWAS-weighted (bottom) networks.

(PDF)

Figure S3 Protein-protein interaction network consisting of

module genes for schizophrenia.

(PDF)

Table S1 Functional enrichment results using KEGG pathways

for module genes.

(DOCX)
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