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Summary  

Cell survival is modulated by a cocktail of ion channels engaging cell life and death 
decisions through controlling key cellular messages such as apoptosis and 
proliferation. Unnatural regulation of these processes results in various disorders, 
for example neurodegenerative diseases, as well as the cancers. Nowadays, these 
pathologies are affecting millions of people per year in the world. Potassium (K+) ion 
channels appear to play a potent role in such illnesses since they can control many 
cellular gates in cell physiology such as ionic homeostasis and signalling cascades. 
Amongst the K+ channels, small (SK1-3) and intermediate (SK4)  conductance Ca2+-
activated potassium ion channels have recently been shown to save cells, thereby 
protecting mitochondrial function which serves as a cell survival platform. In the case 
of other ion channels, for instance transient receptor potential melastatin 7 
(TRPM7), it is also repeatedly stated that such membrane channels shows an 
impressive and differential role in excitable and non-excitable cell survival. This 
channel also modulates ionic homeostasis of crucial ions in cellular physiology such 
as Ca2+. This study reveals that central nervous system (CNS) and breast cancer 
cells differentially express SK1-4 ion channel subtypes, and their functional 
presence is pharmacologically confirmed, however, in most cases these results 
were further clarified through small interference RNA (siRNA) method. Similarly, 
functional TRPM7 channel expression in CNS cells is also confirmed. In the CNS, 
SK1-4 channel activation rescues neurons from oxidative stress, whereas, TRPM7 
channel inhibition protects CNS cells from this hydrogen peroxide (H2O2) harmful 
effect, as well as hypoxia and apoptosis, so improving cell survival. Excitingly, SK1-
4 channels differentially exist between wild-type and Huntington’s affected mouse 
striatal cells, where diseased cells lack SK1-3 channels, key players in action 
potential activity. Interestingly, SK2 or SK3 channel subtypes are also functionally 
expressed in breast cancer cells with various phenotypes. This study established 
that these ion channels are powerful agents in a survival role, in fact controlling 
growth through cross-talk with an apoptotic avenue “intrinsic pathway”. SK2 or SK3 
channel activation enhances cell viability, while its inhibition dampens cell growth. It 
is very noteworthy that SK2 and SK3 channels are not expressed in non-tumorigenic 
breast cells.  

In brief, SK1-4 and TRPM7 molecules are clearly implicated in the survival of diverse 
cell types through an apoptotic route, indicating that these ionic regulators are 
promising targets in channelopathies related to cellular degeneration and growth. 
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1 Chapter One: General Introduction 

1.1 Neurodegeneration and cancer 

Neuronal degeneration or abnormal cell growth are related cell life or death-related 

cases which under an umbrella range of circumstances can affect cell survival and 

cell growth. In neuronal loss, several factors are touted as drivers in the progression 

of neurodegenerative diseases, for example β-amyloid (Glenner and Wong 1984) 

which impacts in Alzheimer’s pathology, while α-synuclein (Polymeropoulos et al. 

1997) accumulation results in Parkinson’s disease (Bredesen et al. 2006; Guo et al. 

2013). In abnormal cell gain “cancer”, this ocean of diseases is characterised by 

uncontrolled cell acquisition where loss of apoptosis is an accepted feature (Brown 

and Attardi 2005). These pathological states are more prevalent in recent decades. 

It has been reported, for example, that about 44 million people in the world 

experience dementia to date (Alzheimer’s disease international statistics, 2015). 

Also, the American Cancer Society has reported that nearly 1.6 million recent cases 

were diagnosed in 2013 (Litan and Langhans 2015). Indeed this condition is the 

chief cause of death nowadays worldwide. However, meaningful any progress has 

been made accepting underlying mechanisms of these pathological actions, there 

is yet no favourable outcome in the clinic.                     

1.2 Ion channels 

Ion channels in membranes have attracted considerable attention: they have been 

intensively studied over many years with the production of some beautiful data and 

the resulting field has generated several Nobel prizes (Hodgkin and Huxley 1952; 

MacKinnon 2004). They have a well-defined role in excitable cells. However they 

also exist in many varieties of non-excitable cells where they clearly hold a non-
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classical role, for example in guiding proliferation, differentiation or survival of cells 

(Pardo and Stuhmer 2014). More recently attention has turned to this non-classical 

role in excitable cells also (Dolga et al. 2013). The big questions are: which classes 

of ion channels, if any, are most relevant in this respect? Also how precisely do they 

achieve these tasks to modulate cellular function? Is it for example solely through 

their capacity to translocate ions? Just how this new role is achieved is however 

unclear. 

1.3 Potassium (K+) ion channels 

1.3.1 Overview 

There is now a substantial body of data to support the view that particularly in the 

case of potassium (K+) channels, a very diverse family of proteins, with varying 

amino acid sequences and topologies, they can modify diverse cellular functions 

(Dolga and Culmsee 2012). Over the past few decades, numerous studies have 

established that plasma membrane ion translocation is involved in cellular 

electrogenesis and electrical excitability. In addition, a number of researchers have 

shown the contribution of ion channels to basic cellular processes including tissue 

homeostasis (Lang et al. 2005; Razik and Cidlowski 2002; Schonherr 2005). Further 

studies suggest that not only cellular but also subcellular membranes play a pivotal 

role, for instance, in the initiation and progression of cell death gates, such as 

through Kca (SK) channels (Dolga et al. 2014). 

1.3.2 Introduction 

Potassium channels are K+ carrying proteins and form the largest family amongst 

ion channels, which are widely expressed in cells including both excitable and non-

excitable cells and may trigger various physiological functions. Upon activation, K+ 
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channels lower membrane excitability due to hyperpolarisation (Yuan and Chen 

2006). In neurons, it is known that K+ channels are differentially expressed at 

different cellular and subcellular sites and serve multiple tasks (Lujan 2010). Their 

role in non-excitable cells is perhaps less clear, but may be concerned here with 

growth.  

1.3.3 Classification of K+ ion channels 

Currently, five major ion classes of this type have been identified in cells: voltage-

gated (Kv) class, Ca2+-activated K+ (Kca or SK) channels, ATP-sensitive (KATP) 

channels, inwardly rectifying K+ (KIR) channels, and two-pore domain K+ (K2P) 

channels (Yuan and Chen 2006).  

1.3.4 SK potassium ion channels  

SK channels are intermediate, termed SK4 or IK channels, and small conductance 

(SK1-3) Ca2+-activated potassium channels, which are largely found throughout the 

central nervous system (CNS), as well as in glial cells. SK channels were described 

originally in red blood cells, more than 50 years ago, suggesting that these channels 

are involved in hyperpolarisation (Gardos 1958). In neurons, the SK currents were 

first identified in the mollusc (Meech 1972), followed by cat spinal motor neurons 

(Krnjevic and Lisiewicz 1972). In the 1980s, it was shown in the mammalian 

hippocampus that SK currents lead to afterhyperpolarisations (AHP)(Alger and 

Nicoll 1980). Further studies have shown that Ca2+ activated K+ channels directly 

contribute to various respects of electrolyte transport, for instance osmolarity 

regulation (Marty 1989).  

In SK channel classification, electrophysiological experiments have confirmed three 

forms of Ca2+-activated potassium channels, based on biophysical, molecular and 
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pharmacological properties, which differentially respond to elevations in cytosolic 

Ca2+. Firstly, the big-conductance K+ channels (BK) have a single-channel 

conductance of 100-200 pS and are voltage-dependent, whereas small-

conductance Ca2+-activated K+ channels (SK1-3) with conductances of 10-20 pS, 

are less voltage but more Ca2+ dependent. Last, the intermediate-conductance 

Ca2+-activated K+ channels (SK4) have a single-channel conductance of about 46 

pS: these are similar to SK channels in aspects of structure, and function, being part 

of the same gene family, and are strictly Ca2+ dependent (Adelman et al. 2012; Blatz 

and Magleby 1986; Dutta et al. 2009; Syme et al. 2000). It is becoming increasingly 

difficult to overlook the role of SK channels in ionic signalling pathways, and based 

on current knowledge SK channels may be proposed as therapeutic targets. 

1.3.4.1 Cloning, structure, and diversity 

Nowadays, the International Union of Pharmacology has placed SK and IK channels 

in one gene family, the KCNN gene, which includes Kca2.1, Kca2.2, Kca2.3 (SK1, SK2, 

and SK3 respectively) and Kca3.1 (SK4) channels (Wei et al. 2005). SK channels are 

structurally homomeric tetramers (Figure 1.1) and are highly homologous, 

consisting of four subunits (Kohler et al. 1996). The SK1, SK2, SK3 mRNAs are 

expressed in central neurons (Stocker and Pedarzani 2000), whereas the SK4 

subtype is absent (Adelman et al. 2012). In 1996, the Adelman laboratory first 

cloned SK1, SK2, SK3 channels from mammalian brain, and the SK4 subtype was 

then cloned from Chinese hamster ovary cells (Joiner et al. 1997).  

In the context of the coding region, the Kca2.1 gene has nine exons, while Kca2.2 and 

Kca2.3 have eight exons (Stocker 2004). These channels are composed of six 

serpentine transmembrane (S1-S6) domains, and cytosolic N- and C- termini, 

sharing this with voltage-gated K+ channels. In the Kv channels, the fourth segment 
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is decorated with seven positively charged amino acids, which are thought to be 

located on the face of the α-helix and act as a voltage sensor (Bezanilla 2000; 

Catterall 2010), whereas there are only three positively charged residues in the SK 

channels (Li and Aldrich 2011). The transmembrane pore in SK channels (like other 

K+ channels) contains the K+ selective signature sequence, and is located between 

S5 and S6. Despite numerous attempts have been made by researchers, the 

splicing mechanism is not fully understood (Adelman et al. 2012). 

 

 

 

 

 

Figure 1.1 The structure of SK ion channels (Adelman et al. 2012). 
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1.3.4.2 Gating of SK channels  

The SK1-4 channels show much less voltage-dependence than BK channels: 

alternatively Ca2+ gates the SK1-4 channels and is indeed essential in the gating 

mechanism (Keen et al. 1999). Such molecules are multiprotein complex channels 

and are constitutively associated with calmodulin (CaM), casein kinase 2 (CK2), and 

protein phosphatase 2A (PP2A) (Adelman et al. 2012). Calmodulin, as a Ca2+ 

sensor, is abundantly present in eukaryotic cells. Upon stimulation, CaM may initiate 

numerous cellular signalling pathways, most importantly, calmodulin can act 

through conformational changes, thus binding with other proteins, ultimately 

influencing diverse cellular functions, including ion channel modulation, synaptic 

transmission, plasticity, enzymatic activity, as well as gene expression (Zhang et al. 

2012). Notably, calmodulin is composed of two globular domains, the C- and N-lobe, 

which are separated by a flexible central linker. Each CaM lobe presents two EF 

hand sites that may be involved in Ca2+ binding. The C-lobe and the central linker of 

CaM serve mainly as the linkage part between the SK channels and CaM. In this 

complex, the N-lobe can bind Ca2+, thereby gating SK channels (Li et al. 2009). 

Furthermore, the CK2 and PP2A, which allosterically modulate SK channels, are 

known to be largely expressed in the brain, particularly in neuronal soma and 

dendrites (Allen et al. 2007). 

The pore-forming subunits alone do not generate a fully functional channel, due to 

the lack of the Ca2+-binding domain, which must therefore be associated 

constitutively with calmodulin. This can be regulated by protein kinase and 

phosphatase interactions. In fact, SK channels are modulated by two particular 

types of gating apparatus i.e. two constitutive components. In this paradigm, SK 

channels can be directly modulated by intracellular Ca2+ ions via CaM (Maylie et al. 
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2004), and are also gated by a Ca2+-independent mechanism this being dependent 

on protein kinase and phosphatase interactions. More recently, it has been reported 

that CaM itself “belongs” to SK channel intrinsically (Adelman 2015).    

Generally, calmodulin can directly initiate Ca2+ gating, thereby activating SK 

channels. On the other hand, the phosphorylation of CK2 on SK-associated CAM is 

associated with a decrease in the SK channel activity (Allen et al. 2007). On detailed 

inspection, the CaM binds to a highly conserved CaM-binding domain, and each 

channel subunit is thought to bind one CaM. During channel opening, the Ca2+ ions 

can bind to the N-lobe EF hands of CaM, and the bound CaM is then induced to 

bind with a neighbouring CaM, to generate dimerization, which may be lead to 

conformational changes through a rotary force to the pore (Bruening-Wright et al. 

2002). Importantly, CaM can be phosphorylated by casein kinase 2 and that may 

lead to a decrease in Ca2+ sensitivity of SK channels: in contrast protein 

phosphatase 2A acting on open SK channels counterbalances CK2 effects and 

results in an increase in Ca2+ sensitivity of the SK channels (Allen et al. 2007).  

Although little is known about the precise gating mechanism for SK channels, the 

mechanism above is part of the story although a key fundamental question in this 

process is under what physiological condition the Ca2+ sensitivity of SK channels 

can be modified by CK2 and PP2A. 

1.3.4.3 Calcium (Ca2+) sources for SK channel activation  

The SK channel is modulated through intracellular Ca2+ changes being elicited by 

Ca2+ from different sources (Xia et al. 1998). Obviously, SK channels are more 

reactive to activation by Ca2+ ions near the channel, so the location and sources of 

Ca2+ are influential (Adelman et al. 2012; Hirschberg et al. 1998). Within neurons, 

Ca2+ can be provided by either Ca2+ influx through voltage-gated Ca2+ channels, 
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Ca2+ entry via Ca2+-permeable ligand-gated ion channels, for instance NMDA 

receptors (Oliver et al. 2000), and released Ca2+ from intracellular origins i.e. cellular 

organelles based on inositol trisphosphate generation via G protein-coupled 

receptors and Ca2+-induced Ca2+ release, or both (Nahorski 1988). 

1.3.4.4 SK channel pharmacology  

In functional studies, it was shown that rat or mouse SK2 and SK3, and human SK1 

expression are functional and homologous plasma membrane channels (Hosseini 

et al. 2001; Monaghan et al. 2004). Conversely, expression of rat or mouse SK1 

failed to form functional channels, which may interact with the SK2 channel subtype 

(Benton et al. 2003). Although SK channels are highly similar in respect of structure, 

function and Ca2+-gating mechanism (Catacuzzeno et al. 2012), they have different 

biophysical and pharmacological properties. 

Early studies showed that SK1, SK2 and SK3 channel subtypes can be differentially 

inhibited by apamin, which is a potent neurotoxin isolated from bee venom 

(Habermann 1984). The rat SK2 exhibits most sensitivity, the rat SK3 shows an 

intermediate sensitivity, whereas the hSK1 is less sensitive to the toxin, with IC50 

values of 27 pM, 4 nM, and 196 nM respectively (Grunnet et al. 2001). In apamin 

binding assays, three different binding sites have been suggested. A first study 

revealed that two amino acids on sides of deep pore can confer apamin sensitivity 

(Ishii et al. 1997). Further study has indicated that one amino acid, which is located 

between S3 and S4 transmembrane domains, is responsible for this sensitivity 

(Nolting et al. 2007). Interestingly, recent work suggests that the effect of apamin 

depends on an allosteric mechanism rather than classically occluding the pore 

(Lamy et al. 2010). Contrary to the small conductance SK subtypes, the IK subtype 
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possesses most sensitivity to maurotoxin isolated from scorpion venom, with an IC50 

of 1 nM (Castle et al. 2003), the toxin binding to the channel pore vestibule via 

tyrosine-32 (Visan et al. 2004). 

In addition to peptide toxins, organic compounds have been found to block SK 

channels. For example, d-Tubocurarine, UCL1684, UCL1848, TRAM-34, and 

NS8593 differentially inhibit SK members (Pedarzani and Stocker 2008), and most 

recently another SK4 channel blocker (UCL6180) has been generated (Strobaek et 

al. 2013), which is more potent than TRAM-34 on SK4: these interact with 

threonine250 and valine275 at S5-P-S6 regions (Strobaek et al. 2013; Wulff et al. 

2001). Currently, several positive modifiers are available to probe SK channel 

molecules. Among these activators, EBIO was first identified in colonic epithelial 

cells, thereby activating basolateral IK (SK4) channels to enhance secretion. Many 

efforts then have been made by researchers to increase its potency and selectivity, 

subsequently introducing DC-EBIO (Singh et al. 2001) and later the NS309 

compound (Strobaek et al. 2004), which is four times more potent on the SK4 

channel subtype. Two recent SK1-3 channel activators are now available. The first 

SK-subtype selective activator (GW542573X) was more selective on the SK1 

channel than SK2 and SK3, this compound possibly interacting with serine293 on 

the deep pore gating region of SK channel protein (Hougaard et al. 2009).  The 

second SK-subtype selective opener (CyPPA) exhibits more selectivity for SK2 and 

SK3 channel subtypes in the order SK3 > SK2 >> SK1, but its pharmacological 

profile at SK1 is not well documented. 

SK channels can currently be modulated by a wide variety of modifiers based on 

their biophysical and pharmacological characteristics, and applying highly specific 
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subtype blockers or activators is vital to distinguish and assess the functional role 

for each SK subtype. 

 

 

Modulators Selectivity EC50 IC50 
Activators    

GW542573X SK1 8.2 µM  

CyPPA SK2 and SK3 5.6 and 14 µM  

NS309 SK4 ~30 nM  

Blockers    

UCL1684 SK1, 2 and 3  0.76, 0.36 and 9.5 nM 

NS8593 SK1, 2 and 3  0.42, 0.60 and 0.73 µM 

TRAM-34 SK4  55 nM 

NS6180 SK4  9 nM 

 
Table 1.1 Pharmacology of SK ion channel modulators. EC50 and IC50 values are 

shown for each SK channel subtype (Fanger et al. 2001; Fioretti et al. 2006; 

Hougaard et al. 2007; Hougaard et al. 2009; Strobaek et al. 2013; Strobaek et al. 

2006; Strobaek et al. 2004). 
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GW542573X 

4-[[[[(2-Methoxyphenyl)amino]carbonyl]oxy]methyl]-piperidinecarboxylic acid-1,1-
dimethylethyl ester 

a 

 

 

N-Cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine 

b 

 

 
6,7-Dichloro-1H-indole-2,3-dione 3-oxime 

c 

Figure 1.2 Chemical structures of the SK channel activators. a) SK1 channel 

activator b) SK2-3 channel activator c) SK4 channel activator (Hougaard et al. 2009; 

Wulff and Kohler 2013). 
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6,12,19,20,25,26-Hexahydro-5,27:13,18:21,24-trietheno-11,7-metheno-7H-

dibenzo [b,n] [1,5,12,16]tetraazacyclotricosine-5,13-diium dibromide 

 
N-[(1R)-1,2,3,4-Tetrahydro-1-naphthalenyl]-1H-benzimidazol-2-amine 

hydrochloride 

 
1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole 

 
4-[[3-(Trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one 

 

Figure 1.3 Chemical structures of SK channel inhibitors. a) SK1-3 channel blocker 

b) SK1-3 channel blocker c) SK4 channel blocker d) SK4 channel blocker (Wulff and 

Kohler 2013). 

a 

b 

d 

c 
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1.3.4.5 SK channel and intrinsic excitability  

SK channels couple intracellular Ca2+ transients and cellular membrane potential. 

Rises in cytosolic Ca2+ leads to activation of SK channels and enhances K+ ion exit, 

causing hyperpolarisation, thus reducing Ca2+ entry through other Ca2+-dependent 

channels, which eventually limits the firing frequency of action potentials, to form 

spike frequency adaptation (Barrett and Barret 1976; Madison and Nicoll 1982). This 

intrinsic property of neurons is vital to achieve a central homeostatic mechanism 

influenced by numerous internal and external stimuli that may alter neuronal 

phenotypes, and subsequently alter neuronal networks.  

Three forms of afterhyperpolarisations have been identified that have overlapping 

kinetic properties. The fast afterhyperpolarisation (fAHP) can participate in the falling 

phase of action potential and overlaps spike repolarisation, lasting 10-20 ms: BK 

channels are thought to be involved in this form of AHP (Storm 1987). The mAHP 

begins rapidly, and lasts hundreds of milliseconds. This AHP component produces 

modest changes in the shape of action potentials and is frequently mediated by SK 

channels (Zhang and Krnjevic 1987). Finally, the sAHP lasts over several seconds, 

the underlying current having an initial rising phase which decays in hundreds of 

milliseconds: its activation has recently been determined and is due to the SK4 

channel (King et al. 2015).  

Apamin (bee venom peptide) has been widely used to distinguish components of 

AHP and this in fact blocks the mAHP in the many cells tested, including spinal 

motor neurons (Zhang and Krnjevic 1987), supraoptic neurons (Bourque and Brown 

1987), vagal motoneurons (Sah and McLachlan 1992), pyramidal neurons in the 

sensory cortex (Schwindt et al. 1988), basolateral  amygdala (Power and Sah 2008), 

nucleus reticularis thalamic neurons (Avanzini et al. 1989), cholinergic nucleus 
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basalis neurons (Williams et al. 1997),  CA1 hippocampal interneurons (Zhang and 

McBain 1995), stratum radiatum (Savic et al. 2001), midbrain dopamine neurons 

(Shepard and Stump 1999), rat subthalamic neurons (Hallworth et al. 2003), 

cerebellar Purkinje neurons (Edgerton and Reinhart 2003), suprachiasmatic 

nucleus neurons (Teshima et al. 2003), striatal cholinergic neurons (Goldberg and 

Wilson 2005), mitral cells in olfactory bulb (Maher and Westbrook 2005), and finally 

paraventricular neurons (Chen and Toney 2009). 

It can be assumed that SK channels therefore underlie the mAHP but not the sAHP. 

In response to exogenous Ca2+, small conductance SK channels can be opened 

rapidly: in contrast the sAHP activates slowly. Further, it was shown that buffering 

cytosolic Ca2+ does not afford a rapid reduction in the sAHP current (Sah and 

Clements 1999). Lastly, in CA1 pyramidal neurons, the underlying current of the 

sAHP has been recorded using transgenic mice lacking small conductance SK 

channels (Bond et al. 2004). 
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1.4 TRP ion channels 

1.4.1 Overview 

Transient receptor potential (TRP) channels control plasma membrane ion 

movements, and are a super-family comprising nearly 50 genes which represents ~ 

20% of ion channels to date in the animal kingdom species. The TRP channel 

message has been found in many different cell types, embracing both excitable and 

non-excitable varieties. Emerging evidence indicates that certain TRP members can 

act as calcium release ion channels. Most TRP proteins generate active role in 

manifold biological functions such as membrane depolarisation (Eijkelkamp et al. 

2013; Gees et al. 2010). Interestingly, this class of ion channels has a unique 

intrinsic domain, namely a kinase domain, and are widely implicated in both 

biological and diseased conditions, for example TRPM7 channels contribute to 

cytosolic Ca2+ homeostasis (Mederos y Schnitzler et al. 2008), oxidative stress 

modulation (Simon et al. 2013), and anoxic cell loss (Aarts et al. 2003). Therefore, 

these molecules seem an interesting target when dealing with cancer and 

neurodegeneration as these proteins can serve as a powerful channel in the 

regulation of ions recognised as dangerous elements once deregulated in 

pathological conditions.    

1.4.2 Classification of TRP ion channels 

In the ion channel tree, TRP members form the most diverse division amongst ion 

channels (Venkatachalam and Montell 2007). The International Union of 

Pharmacology currently lists 28 TRP channel genes i.e. isoforms, and six protein 

families, which include the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), 

ankyrin (TRPA), mucolipin (TRPML) and polycystin (TRPP) channels (Clapham et 
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al. 2005). The TRPM family has eight channel members, and TRPM7 has been 

repeatedly targeted in neuroscience, cancer and other areas. Genes in this family 

are termed TRPM as the first gene was identified in a melanoma (Duncan et al. 

1998). The work described here only focused on the TRPM7 channel, addressing 

its role in neurodegeneration. 

    

 

 

 

Figure 1.4 Phylogenetic tree of TRP channels according their homology (Takahashi 

et al. 2012). 
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1.4.3 Cloning, structure and diversity 

In 1969, the first TRP gene was electrophysiologically discovered in Drosophila 

melanogaster, a mutant fly which suffered impaired vision due to disruption of 

inositol triphosphate (IP3)-dependent Ca2+ influx after phototransduction (Cosens 

and Manning 1969), and the gene was named as TRP gene. After 20 years, the 

gene was cloned (Montell and Rubin 1989; Wong et al. 1989), and in 1991, this 

gene was found to generate a functional ion channel protein (Hardie 2011). In 

mammals, Wes and his colleagues first cloned TRPC1 (Wes et al. 1995). Structural 

studies found that the TRP channel platform has six transmembrane (S1-S6) 

segments, and intracellular linked N- and C- termini, which usually assemble as 

tetramers (Fleig and Penner 2004). In the N- region, TRPMs have a longer N- 

terminus by nearly 400 amino acids compared with other classes, namely TRPC 

and TRPV families (Perraud et al. 2003). TRPM channels have variable C- terminus 

size of up to 2000 amino acids (Montell 2005), moreover, the N- domain has a 

known region of TRPM homology (Perraud et al. 2004). TRPM channels also 

differentially share protein identities, for example, the TRPM6 protein sequence 

demonstrates ~49% similarity to TRPM7 (Ullrich et al. 2005). A mutation search 

indicated, in HEK293 cells, that these TRPM members can produce multimeric 

channels (Chubanov et al. 2004). The transmembrane pore which contains “cation 

selective” signature complexes is formed between S5 and S6. It is believed that the 

channel pore presents three negatively charged amino acids (Yee et al. 2014), 

essential for its function, thereby modulating ionic conductance. TRPM7 gene is 

resident in chromosome 15, and has 39 exons. However, studies have revealed that 

this gene has nine splice variants, with four transcripts providing a protein message.  
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In the case of TRPM7, it is assumed that it can act as an ion channel and kinase 

(Runnels et al. 2001), and it has further been reported that the TRPM7 channel 

kinase can serve as a sensor of the cell and as its transducer (Clapham 2003; 

Takahashi et al. 2012). The kinase uses an amino acid segment, which starts from 

1553 to 1562, as a fundamental part of its action (Crawley and Cote 2009). Here, 

the nucleotide binding site occupies the end of this track, and this is where the 

kinase lobes may combine (Yamaguchi et al. 2001). In the relationship between 

TRPM7 and its kinase, it is not clear whether there is direct cross-talk or not (Park 

et al. 2014).  
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Figure 1.5 Transmembrane and the quaternary structure of TRP channels. The 

ankyrins may increase plasticity through the channels. The TRP box may contribute 

to channel gating. The ER retention domains may be relevant for channel 

localisation within the cell. The calmodulin IP3 receptor binding domain seems to 

facilitate channel gating (Eijkelkamp et al. 2013; Takahashi et al. 2012). 
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1.4.4 Gating of TRP channels 

TRP gating is caused by direct activation and also through signalling pathways. 

Temperature and pH changes, mechanical forces (Figure 1.6), and second 

messengers have been proposed as potential gating mechanisms, which are 

directly sensed or mediated through receptor operated pathways. In Chinese 

hamster ovary cells transfected with TRPV2 (CHO knock-in TRPV2), membrane 

tension on an elastic membrane caused TRPV2 activation and significantly 

increased [Ca2+]i (Muraki et al. 2003). In patch-clamp recording, TRPM7 channel 

activity was significantly increased in HEK293 knock-in TRPM7 cells by osmotic 

swelling and membrane expansion (Numata et al. 2007). Activation of HEK293 

knock-in TRPV channels produced by increasing hypertonic solution temperature to 

36°C, resulted in a marked rise in [Ca2+]i (Nishihara et al. 2011). Also, it has been 

accepted that TRPM7 channels are vulnerable to pH modulation since reducing the 

pH below the physiological 7.4 level lowers TRPM7 channel affinity for ions, namely 

Ca2+ and Mg2+ (Jiang et al. 2005). Subsequently, it was found that cytosolic 

acidification to a pH of 6.3 represents an IC50 block of TRPM7 channels in HEK293 

cells (Chokshi et al. 2012b). It has been proposed that G proteins play a role in the 

activation of TRP channels via second messengers. In this context, G-protein 

coupled receptors (GPCRs) may activate phospholipase C (PLC), which hydrolyses 

PIP2 to generate diacylglycerol (DAG) and IP3. DAG acts as candidate for TRP 

channel activation (Eijkelkamp et al. 2013). In Drosophila microvilli photoreceptors, 

it has been highlighted recently that PLC hydrolysis of PIP2, and resultant DAG in 

the membrane may cause physical changes and membrane expansion through light 

sensing, with ultimate activation of TRP channels (Hardie and Franze 2012). 

However these ideas are still limited and remain open to debate. 
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Figure 1.6 Possible mechanisms for TRP channel activation (Eijkelkamp et al. 

2013). 

 

1.4.5 TRPM7 biological features 

TRP channels are involved in three main physiological processes, which include 

sensory tasks, ion homeostasis, and motile functions such as muscle contraction 

(Eijkelkamp et al. 2013; Gees et al. 2010). Their prominent role in the regulation of 

Ca2+ homeostasis, but not in all subtypes, is fascinating indeed. However, although 

TRP channel biophysical characterisation is well progressed, in contrast, function is 

not well-known. Since, for example TRPM7 channels serve as the conduit for 

physiologically crucial ions in terms of membrane potential, i.e. Ca2+, of course this 

gate influences membrane voltage. The channel is constitutively active (Monteilh-

Zoller et al. 2003), conducting Ca2+ and Mg2+ inward currents at -40 mV to -80 mV 

and 105 pS has been reported for TRPM7 single channel conductance (Bae and 

Sun 2011; Runnels et al. 2001). In resting cells, physiological Mg2+ concentration 
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can restrain TRPM7 activity (Nadler et al. 2001). In contrast, for example lowering 

either [Mg2+]i or Mg.ATP (Nadler et al. 2001), cytosolic alkalinisation ~ pH= 8.4 

(Kozak et al. 2005) and cAMP (Langeslag et al. 2007) can all activate the TRPM7 

channel. TRPM members have a different signature to recognise and permit Ca2+ 

ions to flow through the channels, ranging from high permeability (TRPM3) to 

impermeability (TRPM4) channels (Gees et al. 2010). In human atrial fibroblasts, 

Ca2+ influx was markedly reduced (maximum achieved was 62%) when TRPM7 

expression was down-regulated by siRNA (Du et al. 2010). These findings clearly 

indicate that tight modulation of the TRPM7 channel is required in cell physiology 

(Bae and Sun 2013), otherwise any dysregulation results in global ionic 

concentration changes in the cell, thereby triggering ionic cell signalling that indeed 

produces diseased cells, such as those in cancer and neurodegeneration. 

Generally, in cancer cells, TRPM7 plays a necessary role for cell growth, whereas 

in other cells, such as neurons, TRPM7 inhibition improves cell survival (Yee et al. 

2014) in the face of various insults such as ischaemia (Sun et al. 2009). Intriguingly, 

a recent study has shown that TRPM7 channel knockout caused a hind leg 

paralysis, affecting neural crest advances in mouse dorsal root ganglion (Jin et al. 

2012). In addition, it has been well documented that TRPM7 as a Mg2+ channel can 

be involved in both cellular and whole body Mg2+  regulation (Ryazanova et al. 2010). 

In brief, the TRPM7 member of TRPM family regulates various important ions in the 

tissue, so that this ion channel is a big player in both physiological and pathological 

decisions. 



Chapter One 

23 
 

1.4.6 TRPM7 channel pharmacology 

To date, neither TRPM7 channel activators nor selective TRPM7 blockers are 

available. However, several chemicals have been shown to block TRPM7, for 

example 2-aminoethyl diphenylborinate (2-APB) (Chokshi et al. 2012a), but these 

are not specific. In this paradigm, researchers have found that 2-APB can also block 

other TRP members, at least TRPM2 (Togashi et al. 2008), and TRPC5 (Xu et al. 

2005). Fluorescence recording reported that 2-APB at 100 µM acidifies the cellular 

pH in single cell imaging, thus inactivating TRPM7 (Chokshi et al. 2012a). Most 

recently, Chubanov and his colleagues have documented that SK channel 

modulators can also block TRPM7 channels (Chubanov et al. 2012), for example, 

SK1-3 blocker (NS8593, 30 µM) can fully block the channel current, but this blocks 

SK1-3 channels at nanomolar ranges. This finding was surprising, but valuable, 

since the work here was designed to focus only on SK channels, using those 

modulators that have been researched by Chubanov’s group. This finding is 

mentioned and discussed further in chapter four (See chapter four, discussion).            

 

Figure 1.7 Chemical structure of 2-aminoethyl diphenylborinate (Hofer et al. 2013). 
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1.5 Cell death mechanisms  

The first type of cell loss amongst cell death mechanisms, was discovered when 

considering the morphology of cells (Kerr et al. 1972), and was named apoptosis or 

programmed cell death. Apoptosis is not the only type of cell death, but is certainly 

the most prevalent. Cell death is regulated by different processes, including 

apoptosis, necrosis, autophagy, necroptosis, oncosis, and pyroptosis (Figure 1.8) 

(Bortner and Cidlowski 2014). Basically, there are two major mechanisms that may 

induce apoptosis. Firstly, receptor-mediated apoptosis that may activate death-

inducing signalling such as caspases. Secondly, apoptotic-signalling pathways can 

also be triggered by chemicals: for example hydrogen peroxide (H2O2) leads to the 

destruction of the mitochondrion and thus releases cytochrome c into the cytosol 

(Fiers et al. 1999; Yang et al. 1997). The term apoptosis refers to pathological and 

also physiological death, an example of programmed cell death, which involves the 

activation of cascades, thus orchestrating the damaging of the cell (Friedlander 

2003). This cell death is identified by cell shrinking, involving mitochondria (Kerr et 

al. 1972). Unlike apoptosis, which is caspase-dependent, necrosis is a pathologic 

process, which is caused by external stimuli, for instance ischemia (Majno and Joris 

1995). In addition to apoptosis and necrosis, the term autophagy is a relatively new 

kind of cell death, which is an intracellular catabolic process (Martin 2010), 

surrounding and destructing subcellular organelles (Kang et al. 2011). Apoptosis is 

different from necrosis in its histological and biochemical signature (Friedlander 

2003). Also, necrosis and apoptosis are different, morphologically and 

mechanistically, from autophagy (Martin 2010). Recently, necrotic cell death has 

been linked to passive cell death, termed necroptosis, which is activated by TNFα, 

FasL, and TraiL ligands (Christofferson and Yuan 2010). Most recently, two other 
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types were added to the catalogue of the cell demise pathways. In oncosis, this 

death mechanism is thought to cause ionic imbalance which is characterised by 

cytosolic vacuole creation, and an increase in size of various organelles, namely the 

nucleus and mitochondria, as well as an enlarging of the cytoplasm, thus producing 

cell loss (Weerasinghe and Buja 2012). This can occur through cell ischaemia, for 

instance, via radiation injury. Finally, another form of programmed cell death has 

been shown to occur during inflammation in response to microbes, involving 

caspase-1 awakening (Franchi et al. 2012).  

 

 

Figure 1.8 Mechanisms of cell death (Bortner and Cidlowski 2014). 
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In apoptotic signalling two platforms are shown. Caspase members have been 

categorised, based on their mechanisms, initiators involving both caspase-8 and 

caspase-9, while caspase-3, -6, and -7 are touted as executioner caspases 

(McIlwain et al. 2013). Extrinsic avenues occur through external triggers where 

these stimuli, in the form of ligands, at the plasma membrane first bind to a death 

receptor (DR), delivering a message to death effector domain (DED) of caspase-8, 

which is a central driver in this form of apoptosis (Figure 1.9). This engages death 

domains, the adapter proteins either FAS-associated or TNFR-associated death 

domains (Varfolomeev et al. 1998; Yeh et al. 1998), abbreviated as FADD or 

TRADD respectively, thus awakening caspase-8 activity. This produces new 

caspase activities propagating caspase-3 and caspase-7. Alternatively, active 

caspase-8 can trigger an intrinsic route first via BID, where its cleavage form (tBID) 

enhances apoptosis through mitochondria (Schug et al. 2011), releasing 

cytochrome c into the cytosol. On the other hand, an intrinsic type generated by 

stressors from internal sources, is linked to mitochondria - so called “mitochondrial 

apoptosis”. Different factors induce this picture of apoptosis, such as hypoxia and 

accumulation of unfolded proteins. Mitochondrial apoptosis uses caspase-9 as 

initiator, when its interacting domain, termed a caspase recruitment domain (CARD), 

binds to its counterpart the adapter protein apoptotic protease-activating factor-1 

(APAF1) (Shiozaki et al. 2002). This and caspase-9 are present in the cytosol, but 

they require cytochrome c action, therefore the pathway can commence in response 

to stresses. Cytochrome c interacting with APAF1 results in a conformational 

change. This is followed by further conformational change (Acehan et al. 2002), 

which ultimately activates caspase-9 in a complex known as an apoptosome (Cain 

et al. 2002).         
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Figure 1.9 Extrinsic and intrinsic modes of apoptosis, mode one (McIlwain et al. 

2013).   

 

In mitochondrial apoptosis, BH3-only members, are also connected, which act as 

apoptotic initiators after cytotoxic stimulation, thereby blocking pro-survival 

effectors, namely Bcl-2 proteins (Figure 1.10). Subsequently, BAX and BAK 

effectors generate the oligomers, thus triggering the mitochondrial outer membrane 

permeability. This action causes cytochrome c formation, which can activate 

caspase-9 through APAF1, or in contrast, produces a second mitochondria-derived 

activator of caspases (SMAC), which prevents the caspase inhibitor XIAP, a short 

hand for X-linked inhibitor of apoptosis protein (Czabotar et al. 2014).          

The role of Bcl-2 protein family, such as Bcl-2 effector, is emerging in the curing of  

disease, since such a player illustrates a principal role in cell life and death 

decisions, including neurons (Anilkumar and Prehn 2014) and cancer cells (Correia 

et al. 2015). In this respect, there has been more interest in Bcl-2 in the neuronal 
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survival in Huntington’s degenerative cell loss. It was discovered that in cells 

affected with the Huntington’s phenotype that elevating Bcl-2 expression is in fact 

protective in the face of mutant Huntingtin protein (Ju et al. 2011). So, the Bcl-2 is 

currently considered a novel target in such models of diseases, as well as in the 

cancers (Sassone et al. 2013).            

 

 

Figure 1.10 Extrinsic and intrinsic modes of apoptosis, mode two (Czabotar et al. 

2014). 

 

In pathological conditions, for example neuronal “survival” and cancer “growth”, 

apoptotic determinants are widely implicated. Interestingly, ion channel roles are 

well-linked to the heart of apoptosis (Bortner and Cidlowski 2014; Burg et al. 2006). 

It is indeed very exciting that ion channels are unique targets for cancer search 
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(Kunzelmann 2005; Li and Xiong 2011; Pardo and Stuhmer 2014), since these 

molecules are very powerful not only in arresting cell growth, but also in dampening 

cancer invasion. In neurons, programmed cell death, particularly apoptotic power, 

is a major element in degeneration, as well as aging cell loss such as occurs in 

Alzheimer’s disease (Ghavami et al. 2014). 

1.6 Cellular Ca2+ in pathophysiology  

Calcium signalling is pivotal in normal cellular function with changes in intracellular 

Ca2+ being a key message or signal for cell growth, secretion, excitability, 

contraction or gene expression. However changes in intracellular Ca2+ are also very 

much at the heart of pathophysiological processes, playing a key role in cellular 

dysfunction and even death (Campbell 2014) .  

In the early 1880s, Sydney Ringer published four papers in which he described the 

key role of calcium in physiological processes. The most obvious finding to emerge 

from this study was the quantitative amount of calcium, potassium and sodium ions 

necessary to maintain the heart contraction (Miller 2004). In subsequent studies, 

this view was supported by number of researchers (Campbell 1983), and the 

competing processes of calcium efflux and influx were highlighted and linked. It has 

been shown that store filling occurs by receptor activation (Casteels and Droogmans 

1981). From the mid to late twentieth century, there has been a progressive increase 

in the number of biomedical scientific publications on calcium (Putney 2011). In 

recent years, there has been increasing curiosity in Ca2+ homeostasis, and 

interestingly, the past decade has seen continued rapid growth in the field of calcium 

research.  
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In the CNS, Ca2+ plays a central role in long-term depression and potentiation, which 

are forms of synaptic plasticity, dendritic development, synaptogenesis, membrane 

excitability, and information processing (Berridge 1998). Indeed, Ca2+ influx into a 

cell leading to an increase in local Ca2+concentration results in a number of synaptic 

alterations. Larger elevations in [Ca2+]i are cytotoxic (Mattson 2007) by either 

changing cell signalling or by damaging of cellular components through enzymes 

and free radicals. On the other hand, disruption of the proliferation-apoptosis 

balance results in abnormal cell growth and further cancer cell metastasis 

(Farfariello et al. 2015). Therefore, the role of cytosolic Ca2+ in both cancer progress 

and neurodegeneration is extremely interesting.  

Cell signalling pathways are initiated by either elevating or reducing intracellular 

Ca2+ levels, therefore each physiological and pathological phenotype is 

characterized by a specific “calcium signature”, comprising kinetics, localization, 

and amplitude (Lehen'kyi et al. 2011). Evidence shows that the resting concentration 

of cytosolic free Ca2+ lies in the range of 100 nM to 200 nM (Decuypere et al. 2011; 

Marambaud et al. 2009). Upon stimulation, it can increase to low micromole levels 

through calcium influx from the outside milieu, and also calcium efflux from internal 

stores (Marambaud et al. 2009). 

Ca2+ diffusion is limited by several mechanisms, termed homeostatic mechanisms, 

including Ca2+ buffering proteins, for instance parvalbumin, membrane pumps, and 

carriers, which influence the Ca2+ concentration gradient, triggering cellular 

signalling (Augustine et al. 2003). Clearly, diffused calcium ions can bind to Ca2+ -

binding effectors proteins and cell Ca2+-sensors, such as neurocalcin, thus 

activating physiological processes (Ames et al. 1996; Augustine et al. 2003). 
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A correct calcium homeostasis is essential to maintain cell function. For this central 

regulation, there are various factors and mechanisms such as voltage-operated, 

receptor-operated, and store-operated calcium channels, which are located at 

different cellular sites (Ghosh and Greenberg 1995). The influx of Ca2+ from the 

extracellular space can be modulated by either receptor-operated channels, such 

as NMDA receptors or voltage-operated channels (VOCs) which in turn trigger the 

release of neurotransmitters following action potentials. 

In the mammalian nervous system, glutamate is the most common neurotransmitter, 

which is particularly important in respect of memory. In the neuronal membrane, 

glutamate can bind to both metabotropic and ionotropic receptors. Interestingly, 

metabotropic receptors were shown to be involved in calcium homeostasis by 

driving Ca2+ from internal stores through GTP-binding protein-dependent pathways 

(Marambaud et al. 2009). Moreover, glutamate is transported by different plasma 

membrane transporters, which are reversible and inward under physiological 

conditions, in contrast glutamate can also be transported in the outward direction, 

termed reversed transport, for instance when intracellular [Na+] / extracellular [K+] 

increase (Szatkowski et al. 1990). It is well known that overstimulation of glutamate 

receptors is associated with neuronal toxicity. Glutamate receptors respond to 

various agonists such as hormones and growth factors. Importantly, they activate 

phospholipase-C hydrolysing phosphatidyl inositol 4,5-biphosphate (PIP2) to 

generate inositol 1,4,5 triphosphate (IP3), which acts as a second messenger 

(Figure 1.11). IP3 then acts on IP3 receptors, ultimately releasing Ca2+ from the ER 

(Zhang et al. 2011b). In addition, the IP3R can be influenced by various modulators 

such as Ca2+, ATP, CaM, and protein kinases (Foskett et al. 2007; Mikoshiba 2007).  
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It is clear that endoplasmic reticulum (ER) Ca2+ homeostasis plays a prominent role 

in controlling diverse neuronal functions. The ER intraluminal Ca2+ level is 

approximately 4 to 5 orders of magnitude higher than the surrounding milieu. 

Therefore, this concentration gradient leads to Ca2+ leaving the ER upon activation 

of receptors or channels such as IP3Rs and RyRs, which differ in conductance, 

expression profile, and regulation. On the other hand, the sarcoplasmic-

endoplasmic reticulum Ca2+ ATPase pump can accumulate Ca2+ in the SR/ER 

lumen through ATP hydrolysis (Stutzmann and Mattson 2011). In addition, the store-

operated calcium entry system is involved in the refilling of intracellular Ca2+ stores 

by a complex process, termed store-operated Ca2+ entry, which is activated by 

reducing intracellular stores in the ER (Putney 2011).  

 

 

Figure 1.11 Simplified picture of calcium signalling in cells (Bootman 2012).  
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The mitochondrion in cells is a multi-functional organelle. In addition to producing 

ATP, it plays an essential role in numerous cellular functions such as Ca2+ 

homeostasis and cell death pathways. It is generally accepted that mitochondrial 

perturbations are involved in the neurological diseases such as an interruption in 

oxygen to the brain (Zorov et al. 2007). Under normal physiological conditions, 

neurons are exposed to a baseline degree of oxidative stress from different sources. 

Elevated oxidative stress is a pathological condition leading to increased production 

of reactive oxygen species (ROS) and free radicals, thereby reacting with DNA, 

lipids and proteins, and causes cellular damage and dysfunction (Choi et al. 2009; 

Suh et al. 2008). Importantly, it has been determined that cross-link between redox 

signals and Ca2+ plays critical role in neuronal function. Furthermore, ROS can alter 

Ca2+ signalling proteins, amplitudes, and kinetics. Also, oxidation of (NO) can be 

induced by ROS and reacts with free thiol in the RyR, to generate S-nitrosothiol, 

which mediates Ca2+ release from the ER. Likewise, it has also been reported that 

ROS can activate IP3Rs. On the other hand, ROS is thought to be implicated in the 

inhibition of both the sarcoplasmic-endoplasmic reticulum Ca2+ ATPase and the 

plasma membrane Ca2+ ATPase (Foskett et al. 2007; Sutko and Airey 1996). 

In addition, the Cyclic AMP response element binding protein (CREB), is a nuclear 

transcription factor, which regulates genes important for neuronal survival (Tsokas 

et al. 2007). Interestingly, phosphorylation and activation of CREB is switched on by 

rises in intracellular Ca2+ accompanying neuronal activity. Conversely, CREB levels 

are decreased in transgenic models of Alzheimer’s disease following beta-amyloid 

treatment of neurons (Pugazhenthi et al. 2011). Further, CREB function has also 

been recently linked to expression of some subclasses of K+ channel in brain slice 

cultures (Tong et al. 2010). 
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In cell growth mechanism(s) mapping, it is clear that Ca2+ play a powerful role 

beyond cancer considerations, such as through canonical and non-canonical role of 

K+ channels (Huang and Jan 2014) in modulating membrane potential and [Ca2+]i 

signalling, thus changing cell cycle progression (Ouadid-Ahidouch and Ahidouch 

2013; Yang and Brackenbury 2013). These concepts are well reviewed in chapter 

five. Unfortunately, research efforts have not made further progress, and it is still not 

clear how Ca2+ upmodulation in cells sustains “switch on” cell growth mechanisms. 

More, “How Ca2+ oscillations, apoptosis and cell growth are linked is still a big 

question”. Thus, understanding calcium signalling rules in cancerous cells is 

currently very poor.    

Accordingly, the study of cellular mechanisms, which participate in the perturbation 

of cellular Ca2+ signalling, though not clear, are fundamental in investigating 

pathogenesis and disease mechanisms, and in recognising therapeutic targets.  

1.7 Cell models  

1.7.1 CNS cell lines 

1.7.1.1 SH-SY5Y cell model 

The human neuroblastoma line, SH-SY5Y, was established from bone marrow 

tissue in cell culture. First, it was shown that its parental line, SK-N-SH, shows 

dopamine beta-hydroxylase activity, thus expressing a neuronal phenotype (Biedler 

et al. 1978). Subsequently, it is frequently used in disease models, most commonly 

in neuroblastoma, Parkinson’s and Alzheimer’s models as disease-specific 

phenotypes. Evidence demonstrates that undifferentiated SH-SY5Y cells exhibits 

immature catecholaminergic neuronal phenotype at a biochemical level, lacking 

mature neuronal markers (Biedler et al. 1978; Gilany et al. 2008). Therefore, this 



Chapter One 

35 
 

cell type might not be an appropriate model for neurodegenerative models, such as 

Parkinson’s disease, since mature and differentiated dopaminergic neurons are 

affected in the brain through PD. Interestingly, multiple lines of research evidence 

on the SH-SY5Y cells highlight that differentiation of this model, through certain 

treatments e.g. retinoic acid, produces a more SH-SY5Y neuronal phenotype, with 

cholinergic, noradrenergic and dopaminergic properties, and alters the SH-SY5Y 

cell morphology to one similar to mature neurons (Xie et al. 2010). More recently, 

genomic mapping of SH-SY5Y cells, through sequencing the whole genome, has 

found that specific genes existing in Parkinson’s pathways, were also expressed in 

the SH-SY5Y genome (Krishna et al. 2014).               

1.7.1.2 STHdh cell model 

A cell model of Huntington’s disease was also used in this study. In this model, wild-

type mouse striatal cells (STHdh+/Hdh+), heterozygous (STHdhQ111/Hdh+), as well as 

homozygous cells (STHdhQ111/HdhQ111) were established from wild-type and 

Huntington disease (HdhQ111) knock-in embryos (Trettel et al. 2000; Wheeler et al. 

2000). This study found that a full-lengthening glutamine track in Huntington protein 

produces dominant phenotypes in mouse striatal cells. The Huntington’s disease 

collaborative research group (1993) reported that the human Huntington’s disease 

mutation shows an expanded CAG repeat that extends a poly glutamine portion to 

37 or more residues. This reveals that the trinucleotide repeat in Huntington gene is 

unstable and mutations produces different CAG repeat length. This phenomenon 

can affect HD case severity (Trettel et al. 2000) and its onset, as longer CAG repeat 

accelerates HD onset (Pouladi et al. 2013). Two HD mice models, R6/1 and R6/2, 

found that these show different CAG repeats in exon 1, 116 and 144 CAG repeats 

respectively, using the human Huntington promoter (Mangiarini et al. 1996). In HD 
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pathogenesis, studies report that full-length mutant protein actually promotes 

mutant amino-terminal fragment into amyloid (Scherzinger et al. 1997; Scherzinger 

et al. 1999). Furthermore, it is believed to date that all models that generate 

truncated N-terminal fragment shows similar symptoms, for example cognitive and 

behavioural abnormalities (Pouladi et al. 2013).  

1.7.1.3 BV-2 cell model 

Other CNS cells were also used in this study, thus addressing the role of channels 

of interest not only in neurons but also in glial cells in the brain. A murine cell line, 

BV-2, was used in the study, since it represents a valid cell model for primary 

microglia (Henn et al. 2009). BV-2 cells were originally derived from a mouse 

primary microglial cell culture (Blasi et al. 1990). The study of BV-2 properties, as 

an immune cells in CNS, has shown that these cells have phagocytic ability, 

including secretory properties for instance lysozyme, tumour necrosis factor, as well 

as interleukin 1 (Blasi et al. 1990). Such cells indeed present antimicrobial activities, 

more importantly against microorganisms that involve in CNS pathologies (Bocchini 

et al. 1992). Further study compared lipopolysaccharide-activated primary microglia 

and the BV-2 response pattern, and has indicated that their functional responses 

were highly similar, through modulating interferon gamma and NO regulation (Henn 

et al. 2009), that play an important role in neuroinflammation. 

1.7.1.4 MOG-G-UVW cell model 

Finally, the human brain astrocytoma cell line, MOG-G-UVW, was a line of interest 

because previous studies did not address the role of channels of interest in the 

seminal element “astrocytes” in the brain in the context of neuronal insults. MOG-

G-UVW cells were established from anaplastic astrocytoma of adult human brain in 
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tissue culture (Frame et al. 1984). It is surprising that growing evidences points out 

emerging roles of this CNS resident cell in neurological disorders. In this paradigm, 

it has been mentioned that these cells, for example, are involved in neuroplasticity 

(Clarke and Barres 2013). 

1.7.2 Breast cancer and non-tumorigenic cell lines 

1.7.2.1 Wild-type breast cancer cell models 

The cancer work in this study was carried out in three wild-type breast cancer cell 

lines, which include MCF-7, BT-474 and MDA-MB-231 cell lines. The reason was to 

explore whether breast cancer cells which express different phenotypes show either 

similar or different expression pattern in the context of channels of interest as well 

as their role in breast cancer cell growth, if any. MCF-7 line is the most commonly 

used cell line so far, these cells being derived from a primary culture of 734B cell 

culture from human pleural effusion which was originally isolated from a metastatic 

mammary carcinoma (Soule et al. 1973). These cells have (ER+, PR+ and HER2-) 

status (See section 5.3.1), which represent approximately 70% of breast cancer 

cases to date (Lumachi et al. 2013). Another line, BT-474, has a triple positive (ER+, 

PR+ and HER2+) expression pattern, and is less common (~15%) among breast 

cancer patients compare to MCF-7 line phenotype (Alba et al. 2014; Neve et al. 

2006). These cells were also derived from human pleural effusions from an invasive 

ductal carcinoma (Lasfargues et al. 1978). Furthermore, another breast cancer 

phenotype was also utilised in the study, namely MDA-MB-231 cells, which 

demonstrate (ER-, PR- and HER2-) phenotype i.e. triple negative status (Neve et al. 

2006). This phenotype is also less common and constitutes about 15% compare to 

(ER+, PR+, HER2-) status of MCF-7 cell line, and was derived from pleural 
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effusions(Cailleau et al. 1974). This indicates that these different cells have different 

growth signature through various mechanisms i.e. pathological features. Breast 

cancer cell lines are also classified, based on molecular characterisation, into five 

models: luminal A (MCF-7), luminal B (BT-474), HER2 (MDA-MB-453), Basal (MDA-

MB-468) and claudin-low (MDA-MB-231) (Perou et al. 1999; Perou et al. 2000). In 

breast cancer study, there is little doubt that these cell lines improved the 

understanding of breast cancer pathogenesis at the molecular level as in vitro 

models of breast cancer.  

1.7.2.2 Endocrine resistance cell models 

The work in this study also utilised endocrine resistance cell models, it is assumed 

that resistance mechanism understanding is highly complex and challenging in its 

clinical outcome. In this regard, it has been reported that about 45% of estrogen 

receptor casualties which were treated with endocrine therapy, such as tamoxifen 

and fulvestrant, will eventually relapse (Jafaar et al. 2014). This was the reason that 

endocrine MCF-7 resistance cell models, namely TamR (Knowlden et al. 2003) and 

FasR (Nicholson et al. 2005), were investigated to test whether the channels of 

interest play any role in the context of their expression and their functional activities 

(See sections 2.1 and 5.3.1). 

1.7.2.3 Non-tumorigenic epithelial cell model 

This cancer research was followed by asking whether these ion channel targets 

occur in a human breast epithelial cell line, namely MCF 10A. This line was 

generated from human fibrocystic mammary tissue (Soule et al. 1990). Such cells 

exhibit normal characteristic of breast epithelial cells, when several parameters are 

considered. For instance, MCF 10A cells lack of tumorigenicity phenotype, their 
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growth in culture can be modulated by using growth factors, and these cells can 

form a dome pattern in confluent culture (Soule et al. 1990).    
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1.8 General hypothesis and aims 

It has become clear that intracellular Ca2+ perturbations trigger cell survival and so 

are involved in several pathologies, more importantly in neurodegeneration and 

cancer. In neurons, Ca2+ overload is cytotoxic, whereas an increase in intracellular 

Ca2+ is required for abnormal cell growth, namely in cancer. Thus, SK and TRPM7 

ion channel modulation will modify “on-off” switching cell survival capabilities.   

 

In this in vitro study, the main aims are: 

1. To establish a role, if any, for SK and TRPM7 ion channels in CNS cell 

survival against neuronal insults. 

2. To establish a role, if any, for the SK ion channel in breast cancer cell 

growth. 

3. To explore whether SK and TRPM7 ion modulation is involved in any 

underlying “molecular” mechanisms such as apoptosis, causing either 

neurodegeneration or modified cell growth. 
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2 Chapter Two: General Methods and Materials 

2.1 Cell lines 

SH-SY5Y cells, a human neuroblastoma line were subcloned and isolated from a 

four year-old female. MOG-G-UVW cells, is a human brain astrocytoma line, and 

both lines were purchased from the European Collection of Cell Cultures, United 

Kingdom (UK). Mouse striatal cells, a mouse striatal cell model of Huntington’s 

disease, which include a wild type STHdh+/Hdh+, a heterozygous mutant 

STHdhQ111/Hdh+ and a homozygous mutant STHdhQ111/HdhQ111, were a gift from 

Professor Lesley Jones, Institute of Psychological Medicine and Clinical 

Neurosciences, School of Medicine, Cardiff University, UK. BV-2 cells, a primary 

mouse brain microglia line, were provided courtesy of Professor Rosario Donato, 

Department of Experimental Medicine and Biochemical Sciences, University of 

Perugia, Italy.  

Also used were MCF-7 cells (Luminal A: ER+, HER2-), and a human breast 

adenocarcinoma isolated from a 69-year old Caucasian female, a widely studied 

endocrine resistant model, being Tamoxifen-resistant (TamR) and Fulvestrant-

resistant (FasR) lines, and originally derived from primary MCF-7 cells. Other breast 

cancer cell lines of varying phenotype, namely BT-474 (Luminal B: ER+, HER2+), 

and MDA-MB-231 cells (Basal B: ER-, HER2-) were kindly provided by Tenovus 

Centre for Breast Cancer Research, School of Pharmacy and Pharmaceutical 

Sciences, Cardiff University, UK. A non-tumorigenic cell line, namely MCF 10A was 

a gift from Prof Arwyn Jones, School of Pharmacy and Pharmaceutical Sciences, 

Cardiff University, UK.     
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2.2 Culture conditions 

SH-SY5Y cells were grown in Eagles Minimum Essential Medium in a ratio 1:1 with 

F12 nutrient mixture (Sigma-Aldrich, UK), 15% (v/v) foetal bovine serum (Gibco® 

Life Technologies, United Kingdom), and 1% (v/v) non-essential amino acids 

(Sigma-Aldrich, UK). For SH-SY5Y differentiation, regular medium was 

supplemented with 10 µM retinoic acid for seven days, a commonly used protocol 

to differentiate neuroblastoma cells into a neuronal phenotype. MOG-G-UVW cells 

were cultured in Dulbecco’s Modified Eagle Medium (Gibco® Life Technologies, UK) 

in a ratio 1:1 with F10 nutrient mixture (Sigma-Aldrich, UK), and  10% (v/v) foetal 

bovine serum. Mouse striatal cells, namely the wild type STHdh+/Hdh+, the 

heterozygous mutant STHdhQ111/Hdh+ and the homozygous mutant 

STHdhQ111/HdhQ111 cells were cultured in Dulbecco’s Modified Eagle Medium, and 

10% (v/v) foetal bovine serum. Mouse microglial BV-2 cells were cultured in Roswell 

Park Memorial Institute-1640 medium containing phenol red (Gibco® Life 

Technologies, UK) and 10% (v/v) foetal bovine serum. MCF-7 cells were grown in 

Roswell Park Memorial Institute-1640 medium containing phenol red, supplemented 

with 5% (v/v) foetal bovine serum. Tamoxifen resistant and Fulvestrant resistant 

cells were exposed to 100 nM 4-hydroxytamixifen (Sigma-Aldrich, UK) and 

Fulvestrant (Sigma-Aldrich, UK) for eighteen and twenty seven months respectively, 

thereby generating a short term endocrine resistant model, and their replication 

maintained in Roswell Park Memorial Institute-1640 medium, supplemented with 

5% (v/v) charcoal-stripped foetal bovine serum (Appendix 1). BT-474 cells were 

grown in in Dulbecco’s Modified Eagle Medium, and 10% (v/v) foetal bovine serum. 

MDA-MB-231 cells were grown in Dulbecco’s Modified Eagle Medium in a ratio 1:1 
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with F12 nutrient mixture, and 10% (v/v) foetal bovine serum. MCF 10A cells were 

cultured in Dulbecco’s Modified Eagle Medium in a ratio 1:1 with F12 nutrient 

mixture, and 5% (v/v) horse serum, supplemented by 100 µl of insulin (10 mg/ml), 5 

µl of epidermal growth factor (400 µg/ml), and 50 µl of hydrocortisone 1 mg/ml, which 

were purchased from Sigma-Aldrich, UK.  

All cultures were maintained at 37°C, except BV-2 cells which were maintained at 

33°C, in a standard humid atmosphere of 5% CO2, supplemented with 2 mM (v/v) 

L-glutamine (Sigma-Aldrich, UK), and 100 IU/ml penicillin-100 µg/ml streptomycin 

(Gibco® Life Technologies, UK). 

2.3 Preparation of primary culture and subculturing  

Working with a cell culture environment requires an aseptic (closed) system. 

Therefore the laminar flow cabinet was “preconditioned” being switched on and left 

at its normal setting for 15 minutes, the work area being sprayed with ethanol 70% 

(v/v) using clean tissues before starting the culture procedure and setting up. 

Moreover, reagents necessary for the cell culture such as Dulbecco’s phosphate 

buffered saline and trypsin, were pre-warmed (37°C) in a clean water bath for 15 

minutes, which were aseptically opened in the cabinet. Cells were frozen and stored 

either in the cryo-freezer (-80°C) for short-term storage or in liquid nitrogen (-196°C) 

for long-term storage. Primary cultures were generated by transferring the frozen 

vials to the water bath and allowing them to thaw for about 5 minutes before gently 

pipetting into Eppendorf tubes: the suspension containing cells was immediately 

centrifuged at 1000 rpm for 3 minutes. The old medium was then discarded and 

cells were recovered with fresh growth medium (1 ml) by disintegrating the pellet 

and pipetting down in order to have a homogenous suspension. Cells were then 
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distributed into the culture flask (Thermo Fisher Scientific, UK), and as a result cells 

can grow leaving the quiescence state which can differ for each line of cells. Cells 

were examined on a daily basis under the microscope. Although each cell line has 

specific culture demands, the technology and procedures are similar in terms of 

subculturing for all.  Cell passaging regime at regular intervals limits the cell biomass 

in the form of monolayer culture, thereby maintaining cultures by continuous 

transferring a determined volume of each respective cell number in the confluent 

flasks. The “dilution” of cells in the new culture is typically in the range of a ratio 1:2-

1:10 as necessary, based on the goals of subculturing with optimum growing 

efficiency and the requirements of further experimental work. Moreover, the number 

of flasks required for further use, were considered in advance being based on the 

experimental design, for example the number of technical and biological replicates 

and the planned time course. For subculturing (Cell splitting), the regular medium in 

25 cm2 tissue culture flasks was aspirated and cells rinsed with Dulbecco’s 

phosphate buffered saline (1 ml), which was then sucked away using an aspiration 

pump. Adhered cells were detached in trypsin (0.5 ml) after incubation at 37°C for 

3-6 minutes. Flasks were retained and examined under the microscope to ensure 

complete cell detachment, gently tapping if necessary. Trypsin activity is 

immediately ceased by adding the normal medium (1 ml) and swirling. The solution 

was then transferred to an Eppendorf tube, which was then centrifuged at 1000 rpm 

for 3 minutes resulting in a suspended pellet: again the supernatant was discarded, 

the pellet recovered in normal medium (1 ml) and pipetted up and down to reach an 

homogenous distribution of cells. In the pre-seeding step, variations in the cell 

suspension densities were assessed using a haemocytometer in order to achieve 
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the desired culture density. An unknown cell population (in 1 ml) was added to 

normal medium (4 ml) in a universal tube and pipetted. The counting chambers and 

coverslip were sprayed with 70% ethanol (v/v) and cleaned using lens tissue. The 

suspension was mixed well and then 10 µl injected to the V-shaped area under the 

coverslip on both sides with a pipette. Cells in all squares were counted under the 

microscope thus providing values for the volumes that the cell suspension and the 

medium need to be mixed in for further experimental work such as culture 

maintenance, using the equation (Total cells counted in 10 in squares/ 10) X 104). 

 

Cell models Passage number 
CNS  

Undifferentiated SH-SY5Y 17-20 

Differentiated SH-SY5Y 17-20 

MOG-G-UVW 18-22 

BV-2 19-21 

STHdh+/Hdh+ 7-10 
STHdhQ111/Hdh+ 7-10 
STHdhQ111/HdhQ111 7-10 

Breast cancer  

MCF-7 8-12 

TamR 40-44 

FasR 100-104 

BT-474 8-11 

MDA-MB-231 6-10 

Non-tumorigenic    

MCF 10A 9-12 

 
Table 2.1 The passage numbers of the cells used in this study. 
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2.4 Gene expression assessment  

2.4.1 Qualitative gene expression assessment 

2.4.1.1 Primer design 

Forward and reverse primers in original DNA sequences were designed using the 

National Centre for Biotechnology Information online database. The Basic Local 

Alignment Search (Blast) tool compares sequences producing significant similarity. 

Primer 3 tool (Version 0.4.0) accesses predesigned primers. Sequences were 

retrieved in an Ensemble database to verify where the primers bind in the exons in 

question.   

2.4.1.2 RNA extraction 

Total RNA from cultured cells was extracted using 2.5 ml of Trizol (Ambion® Life 

Technologies, UK) spread over the entire surface of 75 cm2 culture flask (Thermo 

Fisher Scientific, UK). The cell lysate was pipetted several times to form a 

homogenous cell suspension, which was transferred into two Eppendorf tubes, and 

250 µl of chloroform (Sigma-Aldrich, UK) was added to each tube. After brief 

incubation, the mix was centrifuged at 12,000 rpm for 10 minutes at room 

temperature. The supernatant, which contains RNA, was isolated into a fresh 

Eppendorf tube.  In this, and all subsequent steps, a controlled workstation within a 

PCR hood was used.  

2.4.1.3 RNA precipitation  

After generation of the aqueous (RNA containing) phase, this was re-suspended in 

625 µl of isopropyl alcohol (Thermo Fisher Scientific, UK), thus recovering RNA. 

Following incubation at room temperature for 10 minutes, the mix was then 
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centrifuged at 12,000 rpm for 5 minutes. The resultant precipitant was eluted in 75% 

ethanol (500 µl) after which RNA samples were vortexed, and centrifuged at 12,000 

rpm for 5 minutes at room temperature. The supernatant was aspirated, and the 

pellet was incubated at room temperature for a few minutes. To rehydrate the RNA, 

25 µl of RNAse free water was added, and the samples were stored overnight at -

80°C.  

2.4.1.4 DNAse treatment 

DNAse treatment was performed to ensure the purity of the RNA samples, thereby 

eliminating contaminating genomic DNA. Samples were combined in a 500 µl tube, 

followed by RNA purification using Precision™ DNase kit (PrimerDesign, United 

Kingdom), which was treated with Precision 10x DNase reaction buffer (5 µl) and 

precision DNAse enzyme (1µl) for 10 minutes at 30°C in a DNA thermal cycler 

(Perkin-Elmer). DNAse enzyme was heat inactivated after incubation of the mix for 

5 minutes at 55°C, thus terminating reactions. RNA samples were immediately 

cooled on ice, before proceeding to the RNA quantification step. 

 

2.4.1.5 RNA quantification 

The Du 730 spectrophotometer (Beckman coulter®) was calibrated, followed by a 

50 times dilution of the samples in a cuvette using nuclease free water, and the 

amount of RNA per microliter was quantified at 540 nm. As per manual, the ratio 

index (260 nm/ 280 nm) yields the RNA amount for further assays.   

2.4.1.6 Reverse transcription 

The resultant mRNA was reverse transcribed using precision nanoScript™ Reverse 

Transcription kit (PrimerDesign, United Kingdom) to produce complementary DNA 



Chapter Two 

48 
 

(cDNA). The annealing step reaction involved 1 µg of RNA template, RT primers 1 

µl of each Oligo-dT (20 µM) and Random nonamer (40 µM), and RNAse/DNAse free 

water up to 10 µl. The mixture was incubated at 65°C for 5 minutes in a DNA thermal 

cycler, which was immediately cooled in an ice bath for optimal performance. The 

extension RT reaction was conducted using the following constituents: nanoScript 

10x buffer (2 µl), dNTP (10 mM) mix (1 µl), 2 µl of DTT (100 mM), RNAse/DNAse 

free water (4 µl), and 1 µl nanoScript enzyme (17.5 u/µl), which were added to the 

sample on an ice bath. After a pulse spin, tubes were incubated at 25°C for 5 

minutes and then at 55°C for 20 minutes. This reaction was then terminated by 

incubation at 75°C for 15 minutes. 

2.4.1.7 Polymerase chain reaction 

Polymerase chain reaction (PCR) was undertaken to investigate the presence of 

messages in all target cells, this technique using specific primers to replicate a DNA 

target. Promega PCR assay uses nuclease free water (7.43 µl), 5x Green GoTaq 

Flexi buffer (2.5 µl), 0.75 µl MgCl2 (25mM), 0.25 µl dNTP (10 mM), 0.0625 µl GoTaq 

polymerase (5 u/µl), and 0.5 µl of each primer (10 µM). The mixture was placed in 

a UNO-Thermoblock machine (Biometra) using an appropriate PCR protocol, so 

producing multiple DNA amplified segments from the isolated cDNA.  

2.4.1.8 Electrophoresis 

Following the development of DNA copies, gel electrophoresis, using an agarose 

matrix (1%) was performed to facilitate the separation of DNA populations, 

according to biomolecule sizes. Gels were cast using 700 mg agarose gel 

(Invitrogen™ Life Technologies, UK), and 70 ml Tris-acetate-EDTA (Thermo Fisher 

Scientific, UK), the mixture briefly microwaved, and stained using 0.5 µg/ml ethidium 
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bromide (BIO-RAD, UK) in a Mini-Gel tray (BIO-RAD, UK). Following 30 minutes 

incubation at room temperature, the gel was placed in an electrophoresis chamber, 

the comb removed and the wells then covered with TAE buffer (1x). The wells were 

loaded with 10 µl of DNA of interest and β-actin samples, which is ubiquitously 

expressed in eukaryotic cells. Product sizes were referenced using an 10 µl 

HyperLadder™50bp (BioLine, UK), which yields blue and yellow dyes, and to 

monitor migrating molecules through a gel, the device was set at 100 mV, 200 mA 

for up to 60 minutes. When the front dye approached the end of gel, the migration 

progress was ceased, and the resulting gel was photographed by a UV gel 

documentation system.  

2.4.2 Quantitative gene expression assessment 

A quantitative expression profiling supplementary to qualitative approach (PCR) 

was performed using the Affymetrix GeneChip® 1.0 ST array system, which 

provides data on the concordant expression of transcripts encoding genes of 

interest. Assays used RNA compiled from experimental and reference samples at 

three passage numbers, the RNA quantity was scored, and the quality was verified 

through PCR. The technique involves transcribing of RNA to cDNA, which was 

differentially labeled with fluorescence. The hybridisation involves the labeled DNA 

molecules pairing with the complementary sequence of the DNA probe to form 

double stranded DNA on the chip, on which thousands of spots were printed. The 

arrays were then scanned, the data processed, analysed, and normalised using 

GENESIFTER software, which results in a log transformed expression pattern, as 

well as a heatmap that provides a snapshot of changes in gene expression. In this 

profile, spot colours reflect simultaneous gene expression, red colour meaning the 
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target gene is up-regulated, in contrast down-regulation appears as green, and 

black signifies no cause change in expression. Experiments were conducted by the 

Tenovus Centre for Breast Cancer Research, School of Pharmacy and 

Pharmaceutical Sciences, Cardiff University, UK. 

Additional details can be found at: 

http://media.affymetrix.com/support/technical/datasheets/gene_1_0_st_datasheet.pdf 
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2.5 Protein blotting  

2.5.1 Protein extraction 

Total protein was lysed from cells cultured in six well plates: either regular or 

experimental medium was aspirated, the culture was rinsed with appropriate amount 

of ice cooled phosphate buffered saline (Sigma-Aldrich, UK), and 200 µl was 

retained in each well. After 15 minutes incubation on ice whilst maintaining constant 

rocking, adherent cells were mechanically dislodged using a plastic cell scraper 

(Thermo Fisher Scientific, UK), and the suspension was transferred into pre-cooled 

Eppendorf tubes. The lysate was fractioned by centrifuging for 5 minutes at 4°C, 

pellets recovered and cells disintegrated in a mixture of Pierce lysis IP buffer 

(Thermo Fisher Scientific, UK) and Halt™ protease inhibitor cocktail  (Thermo Fisher 

Scientific, UK) in a ratio (100:1).  The cocktail protects the proteins from uncontrolled 

losses through degradation. For this preliminary treatment, samples were incubated 

on ice for 30 minutes. Centrifugation for 15 minutes at 12,000 rpm resulted in a 

solution at the top, which carries proteins, which can then be determined.   

2.5.2 Protein quantification  

Unknown concentrations were determined using an accurate colorimetric assay 

(Thermo Fisher Scientific, UK). The bicinchoninic acid assay (BCA) uses the biuret 

reaction in which peptide bonds reduce cupric (Cu2+) to cuprous (Cu+) that chelates 

with bicinchoninic acid molecules whereby the products stain a purple colour with 

light adsorbing at 560 nm, and the absorbance correlates with the protein amount 

that can be displayed in a linear relationship. A series of different and known protein 

concentrations were required for normalisation using standard albumin (10 mg/ml). 

BCA component A and B were mixed in a ratio (7 ml: 140 µl) and then added to the 
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wells containing protein samples. The reactions were developed by incubation at 

37°C for 30 minutes, and  the absorbance was read using a LT-5000MS ELISA 

reader (Labtech). Proteins were washed in the most common sample buffer (1:1), 

Laemmli (Sigma-Aldrich, UK), which masks an inherent charge, so that proteins are 

negatively charged. Finally, proteins were aliquoted and stored at -20°C.     

2.5.3 Polyacrylamide Gel Electrophoresis (PAGE) 

The PAGE is an electrophoretic separation technique in which proteins migrate 

based on their sizes and can be detected as bands through the matrix. In principle, 

the matrix is mounted between the anode (-) and cathode (+) running buffers in the 

upper and lower chambers, respectively. The gel is porous through which negatively 

charged proteins can be forced toward the cathode (+) in the unit. As the migration 

pattern depends on molecule charge and size, large molecules are retarded in their 

mobility compared to smaller molecules. In this format, a typical matrix comprises 

two sections which vary in concentration, a running (Appendix 2) and stacking 

(Appendix 2) gel solution. Prior to casts set, the module needed for gel solidification 

was assembled using Mini-PROTEAN Tetra Cell system (BIO-RAD, UK). 

Separating gel solutions were poured into glass plates on the casting stand, topped 

with isopropyl alcohol (Thermo Fisher Scientific, UK) to achieve a glossy surface, 

and allowed to stand for 40 minutes at room temperature. When the separating gel 

set, the gel was overlaid by stacking gel, and a comb was inserted to form the wells. 

When layers were set, the module was placed in the buffer tank, and the running 

(1x) Tris-Glycine-SDS buffer (Sigma-Aldrich, UK) was poured into the chambers. 

After removing a comb, wells were uncovered and rinsed with the buffer using a 

Pasteur pipette. The lanes were loaded with the same amount of protein as 
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recommended, in order to achieve the same expression level between lanes. In all 

cases, the control well was loaded with the same amount of total protein (20 µg) as 

treated cells. Samples were run at a constant voltage and current of 120 V and 400 

mA until the coloured band reference line was reached. For all runs, the first well 

was reserved for a molecular weight marker, namely Precision Plus Protein™ 

Kaleidoscope Standards (BIO-RAD, UK): molecules in the samples are in parallel 

wells and migrate a distance according to size, which can then be determined. Once 

protein bands reached the reference line, the current was stopped in the run.   

2.5.4 Western blotting 

This technique expands the workflow that starts with the contemporary method, 

referred to as electrotransfer that permits immobilising of separated proteins on a 

membrane, in which proteins are captured at their relative positions, mirroring the 

pattern achieved by electrophoresis in the gel. This setting used a wet transfer 

system, where in response to an electrical current, proteins could then be 

transferred. The transfer sandwich uses the cassette, in which the layers start with 

a sponge followed by a filter paper, the membrane in contact with the gel, a second 

filter paper and second sponge. It is vital to ensure expulsion of air bubbles and to 

avoid creases in the construct, which compromises uniform transfer. Prior to the 

sandwich preparation, all constituents were immersed in transfer buffer. Further, the 

buffer contains methanol that activates the membrane, the degree to which leads to 

efficient binding. The sandwich was then submerged in refrigerated (1x) Tris-Glycine 

buffer in the transfer tank. As buffers would generate heat and require an ice block, 

this is therefore considered in the design. In the transfer apparatus, the stack was 

run at a constant current of 100 V and 400 mA fixed, ensuring that the membrane 
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was orientated towards the cathode (+). Once the membrane was lined with proteins 

that were originally established on the gel, which itself would complete in about 1 

hour, the current was disconnected in the stack.  

As nonspecific binding is detrimental, it is recommended to incubate the fresh 

membranes with 5% (w/v) dried skimmed milk and Tris buffered Saline with 

Tween®-20 regularly for three hours, a strategy which blocks the spaces that are 

not occupied by target molecules.  

For detection of target proteins, the membrane is incubated overnight with the 

primary antibodies diluted in 5% (w/v) dried skimmed milk and Tris buffered Saline 

with Tween®-20, a more sensitive treatment which allows the probes to bind only 

the protein in question in the whole sample isolate. Known target proteins are thus 

labelled at 4°C overnight. An additional manipulation is required, as a high 

background alters the signal to noise ratio. After three washings (15 minutes/wash), 

again using 5% (w/v) dried skimmed milk and Tris buffered Saline with Tween®-20, 

the appropriate secondary antibody (1:10000), Anti-rabbit IgG HRP-linked (#7074), 

which is affinity purified goat anti-rabbit IgG format, is directed against a first 

reporter, the primary antibody for 60 minutes, because the primary antibody itself 

does not generate a signal. After a series of washes as above, the membrane which 

carries an immune complex and has provided the horseradish peroxidase activity 

developed in Supersignal™ West Dura Chemiluminescent substrate layered by 

Amersham Hyperfilm™ ECL, enables the determination of specific protein present 

using a film cassette, which can be visualised and then quantified after 3 minutes in 

a darkroom. In most applications, reprobing the resolved membrane is required for 

identifying other targets, which can be achieved by stripping the prewashed 
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membrane with Restore™ Plus Western Blot Stripping Buffer for 8 minutes at room 

temperature.    

2.6 MTS preparation  

The cell proliferation experiments used the MTS method to assess cell viability in 

the culture in a colorimetric fashion, thereby staining viable cells present per 

population, and in principle monitoring the cytotoxicity of pharmacological probes. 

In essence, living cells have a dehydrogenase (NADPH) activity which is normally 

abundant in the mitochondria that can reduce the tetrazolium dye (MTS) to a 

formazan product, which can be quantified through an absorbance function that 

yields a picture of cell proliferation, being a surrogate for the number of healthy cells. 

Based on the Promega procedure, MTS powder reagent (42 mg) was weighed and 

added into phosphate buffered saline (21 ml) using a Corning® 50 ml tube: the 

mixture allowed to dissolve at 37°C for 15 minutes, followed by adjusting the pH 

(6.0-6.5). Then this filtered using a syringe filter, as cell culture requires an aseptic 

approach, the stock was stored at -20°C. This procedure also required an electron 

coupling reagent phenazine methosulfate (PMS) combined with MTS in a ratio 1:20 

to form an MTS-PMS mix. Again the PMS stock demands the same storage 

conditions as the MTS solution.  

2.7 Pharmacological modulation 

2.7.1 Plate preparation  

For this work, confluent flasks (80-90%) were used to harvest fresh cells, and the 

density assessed using a haemocytometer as described above. The resultant 

solution with known cell population was further diluted in the relevant medium in 
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order to achieve sufficient volume of the suspension based on the experimental 

strategies. In all cases, experiments used formatted 96-well plates, where only inner 

wells had cells so ensuring less chance to lose aseptic conditions and medium 

evaporation, particularly in long-term assays. Cells in a final volume (100 µl) were 

distributed among wells, using a multi-channel pipette for convenience and uniform 

delivery with desired densities, thereby optimising cell seeding for different 

scenarios. In CNS experiments, SH-SY5Y cells were seeded at a density of 15 X 

103, and all other cell lines were seeded at a density of 10 X 103 cells per well. Breast 

cancer cells were also pharmacologically managed, all lines being seeded at a 

density of 8 X 103 cells per well. It is essential to use the same medium for control 

“blank” wells (without cells) for each respective group, so removing the any 

background considerations in the statistical treatment. Transferred fresh cells were 

allowed to adhere and recover for 24 hours in the incubator.       

2.7.2 MTS cell proliferation assays   

The next day after cells had been maintained for 24 hours in normal conditions, test 

cells were kept either unchallenged, as respective controls, or treated with insults 

and/or ion channel modulators for the desired period. The medium was aspirated 

from the wells using a Pasteur pipette and then replaced, controls being only 

refreshed with normal medium (100 µl each), whereas other cell groups were 

challenged using normal medium (100 µl each) containing test treatments. Treating 

CNS derived cells with test compounds used a 24 hour challenge in parallel with 

both insult and ion channel modulators, as well as each probe alone. On the other 

hand, in experiments with cancer cells, these were challenged for 72 hours, 

refreshing the medium and treatment every 24 hours, and cells were observed 
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under the microscope. Three hours before each examination point to determine any 

changes, the plates were retrieved and the pre-warmed MTS-PMS (20 µl) was 

added in a ratio of 1:5 to each well using the repeating pipette, protected from light 

and further incubated for 3 hours in the incubator. Results were obtained using a 

LT-5000MS ELISA reader machine in the form of an absorbance function (490 nm) 

and the responses were then profiled.  

2.8 Gene silencing    

2.8.1 Design, source and storage   

The siRNAs wherein the double stranded RNAs, namely sense and antisense 

templates were designed to direct against genes of interest, and to bind to silence 

the target mRNA, thus identifying a unique sequence particularly in the case of the 

intended targets. However, it is important to candidate an additional cDNA template, 

thus limiting off-target results. The Eurofins Genomics database was consulted 

using the IDs of genes in the NCBI database that had been utilised previously for 

PCR. The target and control siRNAs needed for this study were commercially 

synthesized by Eurofins Genomics, diluted in appropriate buffer (50 µM each) based 

on the manufacture’s instruction, and stored at 4°C.               

2.8.2 Plate preparation 

For transfection assay with breast cancer and CNS derived cell lines, fresh cells 

were prepared from confluent flasks, as described above. Then six well plates were 

cultured, at a density of 200 X 103 cells per well in normal medium (2 ml), and 

allowed to stand for 24 hours to attain 50-60% confluence. 
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2.8.3 Transfection  

On transfection day after 24 hours, cells in cultured plates were first retrieved and 

observed under the microscope to ensure the quality of the culture. Normal medium 

was replaced twice by adding the same amount of Opti-MEM® medium, thereby 

washing cells which were then incubated for 15 minutes. The siRNA procedure was 

carried out according to the manufacturer’s instructions, accompanied by previously 

normalised and published protocol (Al Soraj et al. 2012). To deliver 50 nM siRNA 

into cells of interest per well, the following reagents with indicated concentrations 

were sequentially applied. First, the siRNA transfection medium Opti-MEM® (179 

µl) was transferred to Eppendorf tubes of the target and control siRNA , and then 

oligonucleotides (1 µl) were diluted in each tube, Also, Oligofectamine™, the 

transfection reagent, (8 µl) was diluted in Opti-MEM® medium (32 µl). Next the 

diluted oligofectamine (20 µl) was combined with the diluted siRNA solutions, an 

homogenous mix ensured, and incubated for 30 minutes. Before adding the siRNA-

oligofectamine complex, the medium in wells was replaced by Opti-MEM® medium 

(800 µl) without serum and antibiotics, and the complex (200 µl) was added onto 

specific wells of the target and control siRNA. At four hours post-transfection, wells 

were supplemented with Opti-MEM® medium containing 12% (v/v) serum, and 

further incubated for 72 hours.  

In siRNA knockdown and apoptosis experiments, medium was replaced with 

Dulbecco’s phosphate buffered saline (300 µl) per well and incubated on ice using 

a shaker for 10 minutes. Cells were then harvested into Dulbecco’s phosphate 

buffered saline by scraping, with cell suspensions from three wells subjected to the 

same condition being combined in order to obtain appropriate protein concentrations 
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per sample, which were then pelleted by centrifuging at 1000 rpm for 5 minutes at 

4°C. The supernatant was discarded and the pellet was resuspended in Pierce lysis 

IP buffer-Halt™ protease inhibitor cocktail mix (150 µl), before proceeding to protein 

quantification and immunoblotting, as described above.                        

In cell proliferation assays, cells were washed with Dulbecco’s phosphate buffered 

saline (1 ml), harvested in trypsin (300 µl) after incubation for 5 minutes, and normal 

medium (600 µl) was immediately added. Also, suspensions from three wells were 

combined to achieve sufficient cell numbers in the sample. Cells were counted, and 

seeded in 96-well plates using the growth medium. 

2.9 Cell storage 

Prolonged examining of cells with continuous subculturing runs the risk that cells 

become contaminated and lose their characteristics. In this study, cells were frozen 

in cryovials using Recovery™ Cell Culture Freezing Medium (300 X 103 cells per 

ml), yielding higher cell maintenance. The procedure covered all steps of cell 

preserving, Cryovials were first placed into a Nalgene freezing container (-1°C 

/Minute) then into a cryofreezer (-80°C), followed by their transfer to a liquid nitrogen 

container (-196°C).      

2.10 Preparation of chemicals  

The pharmacological SK modulators, GW542573X (Cat. No. 4311), CyPPA (Cat. 

No. 2953), NS309 (Cat. No. 3895), UCL1684 (Cat. No. 1310), TRAM-34 (Cat. No. 

2946), and NS6180 (Cat. No. 4864), were purchased from Tocris Bioscience, UK, 

NS8593 (Cat. No. N2538) being obtained from Sigma-Aldrich, UK. Using the online 

Tocris dilution calculator and instructions, the modulators were all dissolved in 
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dimethyl sulfoxide (Sigma-Aldrich, UK). The stock solutions of GW542573X (50 

mM), CyPPA (50 mM), NS309 (50 mM), UCL1684 (4 mM), TRAM-34 (50 mM), 

NS6180 (4 mM) and NS8593 (8 mM), were stored at (-20) in aliquots, and used 

within one month.   

In the case of the pharmacological CNS insults, hydrogen peroxide (H2O2) (Cat. No. 

H1009), cobalt (ǁ) chloride (CoCl2) (Cat. No. 232696), Escherichia Coli 

lipopolysaccharides (Cat. No. L6529), were purchased from Sigma-Aldrich, UK and 

staurosporine (Cat. No. 1285) was purchased from Tocris Bioscience, UK. Here, the 

stock solutions were made using sterile water for H2O2 (0.5 M), CoCl2 (10 mM), and 

lipopolysaccharides (1mg/ml), and were kept at 4°C. The stock solution of 

staurosporine (500 µM) was prepared using dimethyl sulfoxide and stored at -20°C.      

Other test agents, namely 4-Hydroxytamoxifen (Cat. No. L6529), Fulvestrant (Cat. 

No. 14409), and retinoic acid (Cat. No. R2625) were purchased from Sigma-Aldrich, 

UK. Former drugs were dissolved in ethanol (Thermo Fisher Scientific, UK) to reach 

a concentration of (1 mM each) and kept at 20°C. Retinoic acid (10 mM) was made 

up using dimethyl sulfoxide. 

In all cases, specific demands such as light sensitivity were covered.     

2.11 Densitometric analysis  

The autoradiography films were first scanned by an office scanner in order to semi-

quantify and translate the resultant images into values, acquiring an 8-bit scale and 

a resolution of 600 dots per inch (dpi), this step being referred to as image 

acquisition. This is followed by a second step which uses computer aided ImageJ 

software as previously pointed out (Gassmann et al. 2009). The software allows the 

rectangular selection around the relevant bands. The software further enables 
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estimation of the peak heights of specific signals, based on their size, that can be 

expressed as a relative percentage of the area (Protein band), which were 

compared with their corresponding loading controls, again derived from their 

densities, namely peak heights, of the housekeeping protein bands (GAPDH). 

Subsequently, the values provided can yield the adjusted optical density for bands 

of interest by dividing the density of each sample by the loading control. The ImageJ 

software can correct background due to default settings. This function may often 

interfere with the densitometric result, though no correction was undertaken in this 

study.    

2.12 Data analysis  

In the protein measurement step, experiments used BCA assays to determine 

unknown protein concentrations in samples (See section 2.5.2). Obtained raw data 

(absorbance) were retrieved in Excel, means were averaged and the background 

was removed. The line of best fit was drawn through the absorbance-concentration 

data (the standard curve). This generates the trendline equation which can be used 

to assess unknown protein concentrations in fresh samples. 

This study used one-way ANOVA as a statistical method. All measures for MTS 

assays and densitometric analysis were used in GraphPad Prism (Version 6.05, 

2015). This software evaluated means, as well as detecting significant outliers, if 

any, from the rest. Here, the data are presented as means ± SEM. p-values: *, **, 

***, **** denotes P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, and P ≤ 0.0001 respectively i.e. P ≤ 

0.05 was considered “significant”. Amongst post hoc tests, Dunnett’s test was used 

in all cases, with the exception of the statistical case in quantitative gene expression 

analysis, where Tukey’s test was performed.    
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3 Chapter Three: SK Ion Channel in Survival of 

Neurons and brain astrocytes  

3.1 Introduction  

SK channels are a Ca2+ responsive family of potassium channels, with four channel 

subtypes (Wei et al. 2005), namely SK1-4, which are expressed at both plasma 

membrane (Adelman et al. 2012), and more recently, channels such as SK2 

channels are also found at the mitochondrial molecular level (Dolga et al. 2013). 

SK1-3 channel subtypes mediate a small K+ ion conductance, whereas SK4 (IK) 

generates an intermediate K+ ion conductance (Adelman et al. 2012). Pathology of 

many diseases showed, in both neuronal degeneration (Mattson 2007), and 

abnormal cell growth aspects (Farfariello et al. 2015), that Ca2+ signalling plays a 

significant role. This system is well characterised in excitable cells, such as neurons 

(Higley and Sabatini 2012). Here, a calcium role is extremely critical, Ca2+ acting 

either as a survival or criminal element (Berridge 2012). Perturbed Ca2+ signalling in 

neurons is largely implicated in neurodegeneration processes (Kawamoto et al. 

2012), deregulated Ca2+ homeostasis being linked to life or death outcomes, thereby 

triggering neuronal survival, as well as cancer progression. In neurons, SK1-3 

channels are responsible for a medium after-hyperpolarisation (mAHP) function 

(Zhang and Krnjevic 1987), whereas SK4 channels underlie the slow form of the 

AHP (King et al. 2015): thus SK channel activation reduces Ca2+ influx and potential 

Ca2+ overload (Stocker et al. 2004). Their role in non-excitable cells is perhaps less 

clear, and may be concerned with cell growth through Ca2+ regulation. These 

proteins are largely expressed in central nervous system (CNS) resident cells, 

particularly in neurons. In rat CNS, three SK subtypes, namely SK1, SK2, and SK3 
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channel subtypes exist. For example, the SK1 and SK2 channels are present in the 

hippocampus region, while SK3 channels are expressed in the supraoptic nucleus 

(Stocker and Pedarzani 2000). In mouse brain, immunochemistry also determined 

the presence of SK1 and SK2 channels in the hippocampus, but the SK3 channel 

subtype is resident in other regions, such as the basal ganglia and thalamus (Sailer 

et al. 2004). Mouse dopaminergic neurons express both SK2 and SK3 channel 

subtypes (Deignan et al. 2012). It is surprising that the SK1 channel cDNA, at least 

in rat and mouse species, does not generate functional channels at the plasma 

membrane. This channel perhaps interacts with the SK2 channel subtype (Benton 

et al. 2003), although this remains unclear (D'Hoedt et al. 2004). It is important to 

highlight that SK channel expression, if any, was still not studied in astrocytes as 

CNS resident cells. It was shown that these cells are less sensitive to oxidative 

stress upmodulation than neurons, for instance H2O2-induced oxidative stress 

(Almeida et al. 2001; Dringen 2000; Wilson 1997). Most importantly, in vitro mixed 

cultures of both neurons and astrocytes improved neuronal protection against 

oxidative stress (Vargas and Johnson 2009; Wilson 1997). This indicates that 

neighbouring astrocytes in CNS strengthens neuronal defence mechanism to 

combat this stress. SK channel expression in diseased cells in aging has not been 

investigated, for example in the Huntington’s cell model. For instance, do these cells 

express SK channels, if any, and also are they differentially expressed compare to 

the wild-type. This study considers such a big question. It has been well mapped 

that exacerbated oxidative stress is extensively up-modulated in neuropathology. 

Interestingly, a recent study using both in vitro and vivo models has shown that SK2 

channel opening can markedly rescue cells from the glutamate toxicity in cerebral 

ischemia, this protection being linked to Ca2+ remodelling, through SK channel 
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action (Dolga et al. 2011). Most recently, molecular level expression of these 

channels in human dopaminergic neurons has been revealed, and that indeed 

mitochondria also express SK channels. This seminal study showed that SK2 

channel activation significantly challenged mitochondrial dysfunction by rotenone, a 

complex I inhibitor, thus improving cell survival through modifying mitochondrial 

membrane potential (Dolga et al. 2014), and therefore reveals that this organelle 

perhaps plays a critical and central role in age-related diseases (Federico et al. 

2012), for instance  Alzheimer’s disease. Indeed, understanding has recently been 

advanced, with the demonstration that increases in calcium influx through the 

plasma membrane triggers mitochondria, thereby upregulating reactive oxygen 

species production in vagal neurons (Goldberg et al. 2012).      

In summary, SK channels not only control membrane potential at the plasma 

membrane level, but also at the subcellular level. This clearly means that these 

channels modulate calcium ion oscillations in the world of neuronal cells.  
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3.2 Hypothesis and aims  

Activation of SK channels will have neuroprotective effects against H2O2-induced 

oxidative stress neuronal damage in vitro, since abnormal oxidative stress acts as 

a major contributor in the degeneration processes in neurons.     

The principal objectives are:   

1. To explore the profile of expression of SK1-4 potassium channels in a human 

neuroblastoma SH-SY5Y cell line: cell differentiation will also be undertaken. 

2. To explore the profile of expression of SK1-4 potassium channels in mouse 

striatal wild-type STHdh+/Hdh+ cells. 

3. To explore the profile of expression of SK1-4 potassium channels in mouse 

striatal Huntington’s cell models, namely heterozygous STHdhQ111/Hdh+, in 

addition to homozygous STHdhQ111/HdhQ111 cells.  

4. To explore the profile of expression of SK1-4 potassium channels in human 

astrocytoma MOG-G-UVW cells.  

5. To explore the effect of the SK channel modulation, if any, on the viability of 

these cells.   

6. To measure the LD50 effect of the insult, H2O2, on these cells.  

7. To establish a role, if any, for SK1-4 potassium channels against H2O2-

induced oxidative stress:  

a. To probe any protective effects of SK channel opening on H2O2-induced 

oxidative stress.  

b. If SK activation is protective, to specify the channel target, and reverse the 

action by simultaneously blocking the channel target, using the relevant 

channel blocker.   
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8. To explore whether any changes in apoptotic mechanisms, through SK1-4 

channel modulation and H2O2, are involved in any of the effects observed.  
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3.3 Materials and methods 

3.3.1 Cell origins and features 

The in vitro work of this study used two neuronal cell types, namely human 

neuroblastoma and mouse striatal cells. The former cell line was subcloned from 

SH-SY5, this being derived from an SH-SY clone of the SK-N-SH cells, which were 

isolated from human bone marrow neuroblastoma metastasis (Biedler et al. 1978). 

Importantly, SH-SY5Y cells were also differentiated to a neuronal phenotype. Thus, 

both undifferentiated and differentiated SH-SY5Y cells were tested. Experiments 

also used wild-type mouse striatal (ST) cells, as well as mutated Huntington gene 

knock-in counterparts. Huntington disease knock-in cells express an abnormal 

glutamine tract in their Hdh+ allele, whereas the normal tract has seven glutamines 

(Q7), as in wild-type cells, which is named STHdh+/Hdh+. Here, both forms of the 

mutant cells were considered. In heterozygous cells, only one allele was targeted, 

thereby inserting CAG repeat generation up to 111 glutamines, hence the formatting 

STHdhQ111/Hdh+. Moreover, homozygous cells have two mutant proteins, namely 

two HdhQ111 allele knock-in in striatal neurons of the mice, this is the reason for the 

abbreviation STHdhQ111/HdhQ111 cells (Trettel et al. 2000; Wheeler et al. 2000). This 

work also used MOG-G-UVW cells, a human brain astrocyte, which were derived 

from anaplastic astrocytoma, isolated from adult brain tissue (Frame et al. 1984).   

 

 

 



Chapter Three 

68 
 

3.3.2 Polymerase chain reaction 

SK channel transcripts (SK1-4) were interrogated for their messages, if present, at 

the mRNA level in these cells using RT-PCR. Experiments collected total RNA from 

the lysed cells, followed by RNA quantification for each sample, and then their 

integrity were assessed. These were reverse transcribed, thereby producing their 

cDNA. In these reactions, reverse transcriptase enzyme was used in all the 

samples, except the negative control sample, which was abbreviated as “No RT”. 

The resultant cDNA was amplified in the PCR reaction, using specific primers for 

the SK channel genes in question, and β-actin, which serves as the reference. 

Indeed, reaction conditions were optimised for each SK channel gene, as well as 

the reference, here both cycle number and the temperature being varied. 

Experiments explored the following optimum conditions, in the case of the human 

primers that were used for human cell lines in this work: denaturation at 95°C for 5 

minutes, followed by 30 cycles of incubation consisting of 95°C for 30 seconds, 55°C 

for 30 seconds, followed by an extension step at 72°C for 1 minute, as well as 72°C 

for 5 minutes of final extension step. For mouse primers the same profile was used, 

with the exception that the mouse primers were annealed at 60°C instead of 55°C. 

RT-PCR product sizes were then assessed on an 1% agarose gel in 

electrophoresis, after being visualised by UV light.  
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Gene Gene ID Human primer sequences 
 Sizes  
(bp) 

β-actin NM_001101 
F.  5’-CCCAGCCATGTACGTTGCTA-3’ 

126 
R.  5’-AGGGCATACCCCTCGTAGATG-3’ 

KCNN1 
(SK1) 

NM_002248.4 
F.  5’-TGGACACTCAGCTCACCAAG-3’ 

208 
R.  5’-TTAGCCTGGTCGTTCAGCTT-3’ 

KCNN2 
(SK2) 

AF397175.1 
F.  5’-CAAGCAAACACTTTGGTGGA-3’ 

249 
R.  5’-CCGCTCAGCATTGTAAGTGA-3’ 

KCNN3 
(SK3) 

NM_002249.5 
F. 5’-AAGCGGAGAAGCACGTTCATA-3’ 

180 R. 5’-CTGGTGGATAGCTTGGAGGAA-3’ 
KCNN4 
(SK4) 

AB128983.1 
F.  5’-GAGAGGCAGGCTGTTATTGC-3’ 

215 
R.  5’-ACGTGCTTCTCTGCCTTGTT-3’ 

 

Table 3.1 Primer sequences for human SK channel transcripts and positive control 

for the human cell types, and predicted identities. F. denotes forward primer and R. 

denotes reverse primer.   

 

Gene Gene ID Mouse primer sequences 
 Sizes  
(bp) 

β-actin NM_007393.3 
F.  5’-TGTTACCAACTGGGACGACA-3’ 

165 
R.  5’- GGGGTGTTGAAGGTCTCAAA-3’ 

KCNN1 
(SK1) 

NM_032397.2 
F.  5’-GAAGCTTGGGTGAACTGAGC-3’ 

232 
R.  5’-CCATTAAGGAATCCCCAGGT-3’ 

KCNN2 
(SK2) 

AY123778.1 
F.  5’-TCTGATTGCCAGAGTCATGC-3’ 

250 
R.  5’-CCACATTGCTCCAAGGAAGT-3’ 

KCNN3 
(SK3) 

AF357241.1 
F.  5’-ACTTCAACACCCGATTCGTC-3’ 

191 
R. 5’-GGAAAGGAACGTGATGGAGA-3’ 

KCNN4 
(SK4) 

BC010274.1 
F.  5’-AAGCACACTCGAAGGAAGGA-3’ 

215 
R.  5’-CCGTCGATTCTCTTCTCCAG-3’ 

 

Table 3.2 Primer sequences for mouse SK channel transcripts and positive control 

for the mouse cell types, and predicted identities. F. denotes forward primer and R. 

denotes reverse primer.   
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3.3.3 Western blotting 

Protein blotting experiments used cold Dulbecco’s phosphate buffered saline in 

which cells were lifted using a cell scraper. Harvested cells were then pelleted, and 

the supernatant was discarded. The full lysate was then recovered in a mixture of 

Pierce lysis IP buffer and Halt™ protease inhibitor cocktail (100:1), through 

disintegrating cell proteins, and samples were incubated on ice for 30 minutes. 

Proteins were then partitioned in the supernatant, after samples being centrifuged. 

Isolated proteins were directly transferred into fresh tubes, samples subjected to the 

BCA assay, and protein concentrations were determined.      

PAGE electrophoresis was used to separate protein molecules, which were then 

Western blotted onto membranes. This was followed by incubation of these 

membranes in a blocking solution, 5% (w/v) dried skimmed milk and Tris buffered 

Saline with Tween®-20. Blocked membranes were probed with antibodies against 

protein targets, and a loading control (See section 2.5.4). Antibodies in this work, 

and their noted dilution ratios are rabbit monoclonal anti-GAP43 (Abcam ab134075, 

1:1000), rabbit polyclonal anti-SK1 (Abcam ab66624, 1:5000), rabbit polyclonal anti-

SK2 long and short isoforms (Abcam ab85401, 1:1000), rabbit polyclonal anti-SK3 

(Abcam ab28631, 1:1000), rabbit monoclonal anti-Bcl-2 (Abcam ab32124, 1:1000), 

and mouse anti-GAPDH antibody (Sigma-Aldrich G9295,1:50,000). These were all 

diluted and incubated with the membranes overnight, for 16 hours, using the 

blocking solution, with the exception of anti-GAPDH antibody. The next day, this 

antibody was incubated against the membrane for 45 minutes, after the membrane 

was washed with Tris buffered Saline with Tween®-20. The developing signals were 

documented at the following exposure times: 3 minutes, 2 minutes, 2 minutes, 3 

minutes, 2 minutes, and 30 seconds, respectively. 
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3.3.4 SK channel pharmacology 

In MTS cell viability experiments, the effect of the insult alone, SK1-4 potassium 

channel modulators alone, and these modulators in conjunction with the insult were 

assessed in vitro after 24 hours. In the case of survival effects, if any, target 

specification was ensured by testing the effect of the relevant SK channel blocker 

along with the SK channel activator-H2O2 combination. Briefly, SK channel effects 

on proliferation were screened in target cells, where there was no action, the next 

step proceeded to challenge cells with H2O2 alone to gain LD50 values, and then 

these treatments were all combined. In these steps, overall relative viability was 

measured in MTS assays (See section 2.7.2) after the time indicated above.   
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3.4 Results 

3.4.1 SK ion channel expression and modulation in human 

neuroblastoma SH-SY5Y cells  

3.4.1.1 SK channel mRNA and protein investigation in human 

neuroblastoma SH-SY5Y cells  

In this neurosurvival work and all subsequent sections of this study, experiments 

began by interrogating the presence of channels of interest, if any, in all cell targets. 

Here, reverse transcription-polymerase chain reaction (RT-PCR) was used to 

investigate the presence of the message for SK channel members (SK1-4) in 

neuroblastoma SH-SY5Y cells. This qualitative investigation indicated the presence 

of only Kca2.1 (SK1), Kca2.3 (SK3), and Kca3.1 (SK4) channel transcripts (Subtypes) in 

both undifferentiated (Figure 3.1) and differentiated (Figure 3.2) SH-SY5Y cells.  

This work also asked whether these channels are expressed at the protein level. In 

these two cell types, however, SK4 channel protein expression was not technically 

managed to be addressed. Unfortunately, specific antibodies used here, which were 

commercially obtained, did not work. Therefore, Western blotting targeting of this 

protein did not reveal any SK4 channel expression. Blotting of other proteins, 

namely SK1 (Figure 3.3) and SK3 (Figure 3.4), showed their protein expression in 

both forms of SH-SY5Y cells. However, SK1 channel is similarly expressed at the 

protein level (Figure 3.3). Variable results were found regarding the SK3 channel 

expression, where SK3 channel is distinctly downregulated in differentiated SH-

SY5Y cells (Figure 3.4). This indicates that retinoic acid-induced SH-SY5Y cell 

differentiation apparently downregulated SK3 channel expression at the protein 

level.  

 



Chapter Three 

73 
 

 

 

 

 

Figure 3.1 SK channel mRNA investigation in undifferentiated SH-SY5Y cells. Only 

the amplicons for SK1, SK3, and SK4 channels are present and the PCR products 

are of the predicted size. β-actin serves as the normalising control. 

 

 

 

 

Figure 3.2 SK channel mRNA investigation in differentiated SH-SY5Y cells. Only 

the amplicons for SK1, SK3, and SK4 channels are present and the PCR products 

are of the predicted size. β-actin serves as the normalising control. 
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Figure 3.3 Representative immunoblot of SK1 channel subtype in SH-SY5Y cells. 

SK1 channel protein is expressed similarly in both undifferentiated and differentiated 

SH-SY5Y cells .GAPDH serves as the normalising control. 

 

 

 

 

 

 

 

Figure 3.4 Representative immunoblot of SK3 channel subtype in SH-SY5Y cells. 

SK3 channel protein expression is visibly downregulated in differentiated cells 

compared to undifferentiated SH-SY5Y cells. GAPDH serves as the normalising 

control. 
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3.4.1.2 Neuroblastoma SH-SY5Y cell differentiation   

These cells are neuroblastoma, and in this work an attempt was made to 

differentiate SH-SY5Y cells to a neuronal phenotype. In this protocol, experiments 

used retinoic acid (10 µM) in the culture for seven days to achieve the phenotype. 

The action of this acid on these cells was assessed through monitoring the 

expression of growth associated protein-43 (GAP-43), a neuronal marker, upon 

differentiation at three different time courses. Protein blotting of GAP-43 showed 

that treatment with retinoic acid for 5 days in vitro produced a pronounced 

upregulation of GAP-43 (Figure 3.5). This also established that a seven day 

exposure to retinoic acid is perhaps sufficient to achieve a neuronal phenotype 

based on GAP-43 expression observation (Figure 3.5).          

 

 

 

 

 

 

 

Figure 3.5 Representative immunoblot of growth associated protein-43 (GAP-43) in 

SH-SY5Y cells. GAP-43 protein expression is distinctly upregulated after treatment 

with retinoic acid in SH-SY5Y cells after 5 days. GAPDH serves as the normalising 

control. 
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3.4.1.3 The effect of SK channel modulators alone on human neuroblastoma 

SH-SY5Y cell viability  

3.4.1.3.1 The effect of SK channel activators alone on SH-SY5Y cell viability 

In vitro work then addressed the action of SK channel modulators, namely activators 

and blockers, alone on the viability of the cells of interest in the culture. The reason 

was to check whether these modulators alone exert any noticeable action on the 

viability, i.e. cell numbers, which can relatively be measured by MTS survival assay. 

This was necessary since these channel modulators were then screened in the 

presence of the insult of CNS cells, to test whether SK channel modulation, indeed 

activation based on the hypothesis, can rescue these cells from the degenerative 

neuronal insult. Here, it is important to note that the MTS viability assay is 

traditionally referred to as the MTS cell proliferation assay.  

In this approach, experiments first considered the effect of SK channel activators, 

since it was predicted that SK channel activation might afford protection in the face 

of cellular degeneration using hydrogen peroxide (H2O2). In SH-SY5Y cells, SK 

channel activators were chosen according to the expression pattern in cells, and 

cells were challenged for 24 hours. It was found that SH-SY5Y cells were not 

affected by SK1 (Figures 3.6 and 3.7) and SK3 (Figures 3.8 and 3.9) channel 

openers in either undifferentiated or differentiated cells after 24 hours. Bracketing 

previously obtained EC50 values, GW542573X (10-50 µM), and CyPPA (10-50 µM) 

did not significantly change SH-SY5Y cell growth. This was an encouraging result 

to advance with and to proceed this to the next step.   

It is important to mention also that the working concentrations of the vehicle dimethyl 

sulfoxide (DMSO) had no effect on cell growth (Appendix 3, Figures 7.1, 7.2 and 

7.3), and that any confounding effect was constantly considered in this study. 
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Figure 3.6 The effect of the SK1 channel activator, GW542573X, on undifferentiated 

SH-SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed 

by Dunnett’s post hoc test, n=6.  
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Figure 3.7 The effect of the SK1 channel activator, GW542573X, on differentiated 

SH-SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed 

by Dunnett’s post hoc test, n=6.  
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Figure 3.8 The effect of the SK2-3 channel activator, CyPPA, on undifferentiated 

SH-SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed 

by Dunnett’s post hoc test, n=6.  
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Figure 3.9 The effect of the SK2-3 channel activator, CyPPA, on differentiated SH-

SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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3.4.1.4 The effect of SK channel blockers alone on SH-SY5Y cell viability 

SK channel blockers, again based on SK channel expression fashion in SH-SY5Y 

cells, were tested to show whether SK1 or SK3 channel inhibition modulated cell 

growth of these cells. 

MTS viability assay showed that neither SK1 channel inhibition (Figures 3.10 and 

3.11) through UCL1684 (3-10 nM), nor SK3 channel inhibition (Figures 3.12 and 

3.13) by NS8593 (300 nM -1 µM) significantly altered the SH-SY5Y growth after 24 

hours. This is further demonstrating that not only SK1 and SK3 channel activation, 

but also SK1 and SK3 channel inhibition has no effect on SH-SY5Y cell viability after 

the time indicated.  

Thus interestingly, SH-SY5Y cells do not favour SK molecules for their normal 

growth, and SK1 and SK3 channel modulators role can now be assessed in the face 

of degenerative oxidative stress using H2O2 and the MTS assay.    
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Figure 3.10 The effect of SK1-3 channel blocker, UCL1684, on undifferentiated SH-

SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.11 The effect of SK1-3 channel blocker, UCL1684, on differentiated SH-

SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.12 The effect of SK1-3 channel blocker, NS8593, on undifferentiated SH-

SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.13 The effect of SK1-3 channel blocker, NS8593, on differentiated SH-

SY5Y cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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3.4.1.5 The dose-response curve for hydrogen peroxide in human 

neuroblastoma SH-SY5Y cells   

The effect of the insult, namely H2O2, alone was first determined on cells of interest 

to estimate the median lethal dose (LD50). For these experiments here both 

undifferentiated and differentiated SH-SY5Y cells were challenged in the presence 

of H2O2 for 24 hours. The MTS assay showed that H2O2 itself significantly decreased 

SH-SY5Y cell numbers in a dose-dependent manner in undifferentiated (Figure 

3.14) and differentiated (Figure 3.15) cells, and the LD50 was similar for H2O2 in both 

cell types i.e. 450 µM.  
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Figure 3.14 The effect of H2O2 on undifferentiated SH-SY5Y cell viability. From the 

line of best fit of the dose-response data, the LD50 was 450 µM, n= 9. 

In this figure and all subsequent plots the data are shown as means ± SEM.  
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Figure 3.15 The effect of H2O2 on differentiated SH-SY5Y cell viability. From the 

line of best fit of the dose-response data, the LD50 was 450 µM, n= 9. 
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3.4.1.6 Pharmacological modulation of SK1 and SK3 channels in human 

neuroblastoma SH-SY5Y cells 

3.4.1.6.1 Hydrogen peroxide-SK1 channel interaction  

The next question asked was whether the SK channel subtypes represent a novel 

target for modulating oxidative stress in neurons? Because SK channels are well 

characterised molecules in pharmacology, the question can be selectively 

addressed, first investigating an SK1 channel role followed by an SK3 channel 

contribution. For the pharmacological approach here and in all subsequent sections, 

previously reported (EC50)s and (IC50)s of SK channel modulators were adopted. 

Commencing with the SK1 channel argument, MTS viability assay revealed that 

GW542573X (10 µM - 40 µM) afforded significant protection (p-value<0.0001 versus 

insult) against H2O2-induced oxidative stress, which itself markedly reduced SH-

SY5Y cell numbers by near 50%, in both undifferentiated and differentiated cells 

(Figures 3.16 and 3.18, respectively).  

Intriguingly, the SK1-3 channel blocker UCL1684 (3 nM), through SK1 channel 

inhibition, in the presence of GW542573X (10 µM - 40 µM) fully abolished the 

protection achieved against H2O2 (Figures 3.17 and 3.19, respectively) in both cell 

types, this reversal ensured the specificity of channel target. These effects of SK1 

channel modulators clearly indicate that these cells have oversight of oxidative 

stress through SK1 channel modulation.    
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Figure 3.16 The effect of GW542573X, SK1 channel activation, on the survival of 

undifferentiated SH-SY5Y cells exposed to H2O2-induced oxidative stress. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n =9.  
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Figure 3.17 The effect of GW542573X, an SK1 channel activator, in the presence 

of SK1-3 blocker, UCL1684, on the survival of undifferentiated SH-SY5Y cells 

exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. One-

way ANOVA followed by Dunnett’s post hoc test, n=9. 
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Figure 3.18 The effect of GW542573X, an SK1 channel activator, on the survival of 

differentiated SH-SY5Y cells exposed to H2O2-induced oxidative stress. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n =9.  

 

0 . 0

0 . 5

1 . 0

1 . 5

R
e

la
ti

v
e

 c
e

ll
 v

ia
b

il
it

y

H 2 O 2 ( 4 5 0  M )

G W 5 4 2 5 7 3 X  (  M )

U C L 1 6 8 4  ( 3  n M )

-                +                +                +                +                +

- -               1 0              2 0              3 0              4 0

- -                +                +                +                +

 

Figure 3.19 The effect of GW542573X, an SK1 channel activator, in the presence 

of SK1-3 channel blocker, UCL1684, on the survival of differentiated SH-SY5Y cells 

exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. One-

way ANOVA followed by Dunnett’s post hoc test, n=9.  
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3.4.1.6.2 Hydrogen peroxide-SK3 channel interaction 

As shown above SK1 channel opening can rescue SH-SY5Y cells from H2O2-

induced oxidative stress. The resident SK3 channel was the next candidate to 

investigate in both undifferentiated and differentiated cells, to test also in the face of 

oxidative stress with H2O2. In MTS viability assay, the insult alone produced a 

dramatic reduction in cell numbers by near 50%, whereas SK3 channel activation, 

CyPPA (10 µM- 40 µM), significantly reversed the decrease in undifferentiated 

(Figure 3.20) and differentiated (Figure 3.23) SH-SY5Y cell numbers produced by 

H2O2. To identify the channel target, an SK1-3 blocker, UCL1684, was first used in 

the mix to test whether it can abolish the protection afforded by SK3 channel 

activation. UCL1684 (3 nM) did not abolish the protection mediated by the relevant 

SK3 activators (Appendix 3, Figure 7.4). It was then decided to raise the 

concentration of the compound to 10 nM, where it was found that UCL1684 (10 nM) 

partially reversed the action of the SK3 channel activator in undifferentiated (Figure 

3.21) and differentiated (Figure 3.24) SH-SY5Y cells. The reason that UCL1684 had 

a little action on the SK3 channel induced protection will be addressed in the 

discussion. Pharmacological experiments then probed another generic SK1-3 

channel blocker, NS8593, at the relevant concentration. NS8593 (750 nM) reversed 

the survival effect afforded by CyPPA, the relevant SK3 activator, in undifferentiated 

(Figure 3.22) and differentiated (Figure 3.25) SH-SY5Y cells. In the light of these 

data, further work largely focused on the NS8593 compound, an SK1-3 channel 

blocker, to target SK3 channel in all subsequent sections.          
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Figure 3.20 The effect of CyPPA, SK3 channel activation, on the survival of 

undifferentiated SH-SY5Y cells exposed to H2O2-induced oxidative stress. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n =9.  
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Figure 3.21 The effect of CyPPA, an SK2-3 channel activator, in the presence of 

the SK1-3 channel blocker, UCL1684, on the survival of undifferentiated SH-SY5Y 

cells exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. 

****p-value < 0.0001 versus insult, one-way ANOVA followed by Dunnett’s post hoc 

test, n =9. 
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Figure 3.22 The effect of CyPPA, an SK2-3 channel activator, in the presence of 

SK1-3 channel blocker, NS8593, on the survival of undifferentiated SH-SY5Y cells 

exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. One-

way ANOVA followed by Dunnett’s post hoc test, n=9.  
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Figure 3.23 The effect of CyPPA, SK3 channel activation, on the survival of 

differentiated SH-SY5Y cells exposed to H2O2-induced oxidative stress. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n =9.  
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Figure 3.24 The effect of CyPPA, an SK2-3 channel activator, in the presence of 

SK1-3 blocker, UCL1684, on the survival of differentiated SH-SY5Y cells exposed 

to H2O2-induced oxidative stress. Data are shown as means ± SEM. **p-value < 

0.01 versus insult, one-way ANOVA followed by Dunnett’s post hoc test, n =9.  
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Figure 3.25 The effect of CyPPA, an SK2-3 channel activator, in the presence of 

SK1-3 channel blocker, NS8593, on the survival of differentiated SH-SY5Y cells 

exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. One-

way ANOVA followed by Dunnett’s post hoc test, n=9.  
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3.4.2 SK ion channel expression and modulation in mouse model of 

Huntington’s (STHdh) striatal cells  

To further test the hypothesis, mouse striatal neurons were also used in this work, 

being attractive candidates for several reasons. Firstly, these cells were directly 

derived from primary neurons. Secondly, it has been known that striatal cells among 

CNS neurons are very sensitive to oxidative stress (Trettel et al. 2000). It was 

thought interesting to test the hypothesis not only on human cells, but also on these 

mouse cells.        

3.4.2.1 SK channel mRNA and protein investigation in mouse STHdh striatal 

cells  

Initially, RT-PCR was employed to test for the existence of SK1-4 channels, if any, 

in the target cells. This proved a fascinating adventure in the context of SK1-4 

channel expression in wild-type (STHdh+/Hdh+) and the mutant HdhQ111 knock-in 

mouse striatal cells, namely heterozygous (STHdhQ111/Hdh+) and homozygous 

(STHdhQ111/HdhQ111), a cell model of Huntington’s disease. Wild-type STHdh+/Hdh+     

cells exhibit Kca2.1 (SK1), Kca2.3 (SK3), and Kca3.1 (SK4) channel transcripts (Figure 

3.26). Mutant heterozygous (STHdhQ111/Hdh+) cells, however, express only Kca2.1 

(SK1) and Kca2.2 (SK2) channel messages (Figure 3.27). Intriguingly, mutant 

homozygous (STHdhQ111/HdhQ111) cells lacked SK2 and SK3 channels (Figure 

3.28). It is important to highlight here that it has been shown that SK1 channel cDNA 

is not functional in mouse and this will be considered in the discussion.      

At the protein level, Western blotting confirmed SK2 channel expression in mutant 

heterozygous STHdhQ111/Hdh+ cells. Here, the anti-SK2 antibody detected both long 

(SK2-L) and short (SK2-S) isoforms of the channel (Figure 3.29). Western blotting 
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also showed that the wild-type STHdh+/Hdh+ cells express SK3 channels (Figure 

3.30) at the protein level. These results mirrored the RT-PCR results in both cell 

types.  
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Figure 3.26 SK channel mRNA investigation in wild-type Hdh+/Hdh+ cells. Only the 

amplicons for SK1, SK3 and SK4 channels are present and the PCR products are 

of the predicted size. β-actin serves as the normalising control. 

 

 

 

Figure 3.27 SK channel mRNA investigation in heterozygous mutant HdhQ111/Hdh+ 

cells. Only the amplicons for SK1 and SK2 channels are present and the PCR 

products are of the predicted size. β-actin serves as the normalising control. 

 

 

 

Figure 3.28 SK channel mRNA investigation in homozygous mutant HdhQ111/ 

HdhQ111 cells. Only the amplicons for SK1 and SK4 channels are present and the 

PCR products are of the predicted size. β-actin serves as the normalising control. 
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Figure 3.29 Representative immunoblot of SK2 channel subtype in heterozygous 

mutant HdhQ111/Hdh+ cells. GAPDH serves as the normalising control. SK2 channel 

isoforms, SK2 long and SK2 short, are expressed in the cells.  

 

 

 

 

 

Figure 3.30 Representative immunoblot of SK3 channel subtype in wild-type 

Hdh+/Hdh+ cells. GAPDH serves as the normalising control. 
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3.4.2.2 The effect of SK channel modulators alone on mouse STHdh striatal 

cells  

3.4.2.2.1 The effect of SK channel activators alone on STHdh cell viability 

As above, the effect of the SK modulators were systematically approached. The 

viability of mouse striatal cells in culture was challenged in the presence of SK1-4 

channel openers alone for 24 hours, to check whether these modulators alone 

modify cell growth in these cells. The relevant SK channel activators, based on the 

expression pattern of SK1-4 channels in these cell types, were tested against cell 

growth. As seen in the case of SH-SY5Y cells, SK channel activation produced no 

significant change in mouse striatal cells growth rate. Pharmacological modification 

of the SK3 or SK4 channel using an SK2-3 activator, CyPPA (10-50 µM), and SK4 

channel opener NS309 (30-100 nM) produced no significant effect on wild-type 

Hdh+/Hdh+ cell viability of mouse striatal cells (Figures 3.31 and 3.32, respectively). 

Similarly, screening of CyPPA (10-50 µM) against heterozygous mutant 

HdhQ111/Hdh+ viability did not modify cell growth (Figure 3.33). It was not surprising 

that SK channel modulation was also ineffective on homozygous mutant 

HdhQ111/HdhQ111 cell viability (Figure 3.34) using NS309 (30-100 nM), an SK4 

channel activator. The next step was to test the effect of the SK channel blockers 

on these cells.         
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Figure 3.31 The effect of SK2-3 channel activator, CyPPA, on wild-type Hdh+/Hdh+ 

cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.32 The effect of SK4 channel activator, NS309, on wild-type Hdh+/Hdh+ 

cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.33 The effect of SK2-3 channel activator, CyPPA, on heterozygous mutant 

HdhQ111/Hdh+ cell viability. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=6.  
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Figure 3.34 The effect of SK4 channel activator, NS309, on homozygous mutant 

HdhQ111/HdhQ111 cell viability. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=6.  
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3.4.2.2.2 The effect of SK channel blockers alone on STHdh cell viability 

To determine whether SK channel blocking impacts on mouse striatal cell growth, 

the relevant SK1-4 channel blockers were also pharmacologically screened against 

STHdh cell growth. SK1-4 channel inhibition also did not affect cell growth after 24 

hours, in an MTS assay. In wild-type cells, neither SK3 channel blockade by NS8593 

(300 nM-1 µM), nor SK4 channel inhibition by the SK4 channel blockers, TRAM-34 

(50-300 nM) or NS6180 (10-50 nM), significantly affected Hdh+/Hdh+ cell numbers 

(Figures 3.35, 3.36 and 3.37, respectively). Heterozygous mutant HdhQ111/Hdh+ cells 

showed a similar lack of response to UCL1684 (3-10 nM), an SK1-3 channel blocker 

(Figure 3.38). Moreover, homozygous mutant HdhQ111/HdhQ111 cells were 

unresponsive to the SK4 channel blocking action (Figures 3.39 and 40) of TRAM-

34 (50-300 nM), and NS6180 (10-50 nM) respectively.   

These results meant that the next steps can be performed to finalise the work on 

neurons beginning with measuring the LD50 of the insult (H2O2) on these cell types.    
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Figure 3.35 The effect of SK1-3 channel blocker, NS8593, on wild-type Hdh+/Hdh+ 

cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.36 The effect of SK4 channel blocker, TRAM-34, on wild-type Hdh+/Hdh+ 

cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.37 The effect of SK4 channel blocker, NS6180, on wild-type Hdh+/Hdh+ 

cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6.  
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Figure 3.38 The effect of SK1-3 channel blocker, UCL1684, on heterozygous 

mutant HdhQ111/Hdh+ cell viability. Data are shown as means ± SEM. One-way 

ANOVA followed by Dunnett’s post hoc test, n=6.  
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Figure 3.39 The effect of SK4 channel blocker, TRAM-34, on homozygous mutant 

HdhQ111/HdhQ111 cell viability. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=6.  
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Figure 3.40 The effect of SK4 channel blocker, NS6180, on homozygous mutant 

HdhQ111/HdhQ111 cell viability. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=6. 
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3.4.2.3 The dose-response curve for hydrogen peroxide in mouse STHdh 

striatal cells  

MTS assay measured the effect of H2O2 at 24 hours, and determined from the dose-

response curve the LD50. It was clear that wild-type Hdh+/Hdh+ and mutant HdhQ111 

striatal cells, namely heterozygous HdhQ111/Hdh+ and homozygous HdhQ111/HdhQ111, 

respond similarly to H2O2-induced oxidative stress with an approximate LD50 of ~ 1 

mM (Figures 3.41, 42 and 3.43, respectively). These data show that the dominating 

Huntington’s gene in mouse striatal cells had no role in terms of responsiveness to 

oxidative stress compared to its wild-type counterpart.        

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Three 

104 
 

 

- 4 . 5 - 4 . 0 - 3 . 5 - 3 . 0 - 2 . 5 - 2 . 0

0 . 0

0 . 5

1 . 0

1 . 5

L o g  [ H 2 O 2 ]  M

R
e

la
ti

v
e

 c
e

ll
 v

ia
b

il
it

y

 

Figure 3.41 The effect of H2O2 on wild-type Hdh+/Hdh+ cell viability. From the line of 

best fit of the dose-response data, the LD50 was 1 mM, n= 9. 
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Figure 3.42 The effect of H2O2 on heterozygous mutant HdhQ111/Hdh+ cell viability. 

From the line of best fit of the dose-response data, the LD50 was 1 mM, n= 9. 
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Figure 3.43 The effect of H2O2 on homozygous mutant HdhQ111/HdhQ111 cell viability. 

From the line of best fit of the dose-response data, the LD50 was 1 mM, n= 9. 
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3.4.2.4 Pharmacological modulation of SK channels in mouse STHdh striatal 

cells  

3.4.2.4.1 Hydrogen peroxide-SK2 channel interaction 

Experiments then challenged SK channels in the presence of the oxidative stress 

insult in striatal neurons. Because it was reported that the SK1 gene does not form 

functional SK1 channel proteins, its role was not addressed in this work. As shown 

in the SK1-4 channel expression section, SK2 channel was uniquely expressed in 

heterozygous mutant HdhQ111/Hdh+ cells. Screening of this mutant cell type with an 

SK2 channel activator, CyPPA (20 µM - 40 µM), in the presence of H2O2 significantly 

(p-value<0.0001 versus insult) rescued mutant HdhQ111/Hdh+ cells (Figure 3.44). 

UCL1684 (3 nM) completely reversed (Figure 3.45) the activity of the relevant SK2 

channel activator, CyPPA, on the channel. 

Since, the SK3 channel is expressed in wild-type cells, a role for this channel is now 

explored.  
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Figure 3.44 The effect of CyPPA, SK2 channel activation, on the survival of 

heterozygous mutant HdhQ111/Hdh+ cells exposed to H2O2-induced oxidative stress. 

Data are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way 

ANOVA followed by Dunnett’s post hoc test, n =9.  
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Figure 3.45 The effect of CyPPA, an SK2-3 channel activator, in the presence of 

SK1-3 blocker, UCL1684, on the survival of heterozygous mutant HdhQ111/Hdh+ cells 

exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. One-

way ANOVA followed by Dunnett’s post hoc test, n=9.  
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3.4.2.4.2 Hydrogen peroxide-SK3 channel interaction 

Whether another SK channel member behaves similarly against oxidative stress 

was now addressed. In wild-type Hdh+/Hdh+ cells, CyPPA activation of the SK3 

channel, under conditions of H2O2-induced oxidative stress, again markedly 

challenged H2O2 (p-value<0.0001 versus insult) after 24 hours (Figure 3.46). Here, 

the protective effect of CyPPA was combined with SK3 channel inhibition using 

NS8593 (750 nM). As expected, this resulted in the abolishing of CyPPA activity 

(Figure 3.47).  

These data would indicate that SK channels are promising targets against the 

deleterious effects of oxidative stress which is often said to underlie cell demise in 

neurodegenerative diseases.       
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Figure 3.46 The effect of CyPPA, an SK2-3 channel activator, on the survival of 

wild-type Hdh+/Hdh+ cells exposed to H2O2-induced oxidative stress. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n =9.  
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Figure 3.47 The effect of CyPPA, an SK2-3 channel activator, in the presence of 

SK1-3 blocker, NS8593, on the survival of wild-type Hdh+/Hdh+ cells exposed to 

H2O2-induced oxidative stress. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=9.  
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3.4.2.4.3 Hydrogen peroxide-SK4 channel interaction 

This section concludes by asking whether the SK4 channel subtype is still a target 

for blocking oxidative stress? The IK (SK4) channel is distinctive, having its own 

biophysical and pharmacological features. The SK4 resident channel was further 

targeted in wild-type Hdh+/Hdh+ and homozygous mutant HdhQ111/HdhQ111 cells. 

Results confirmed that SK4 also favoured this category of neurosurvival. Activation 

of this ion channel by NS309 (20-40 nM) also rescued (p-value<0.0001 versus 

insult) these cells from oxidative stress (Figures 3.48 and 3.51) in wild-type 

Hdh+/Hdh+ and homozygous mutant HdhQ111/HdhQ111 cells respectively. 

Experiments then used the SK4 blockers, TRAM-34 (100 nM) and NS6180 (30 nM), 

to test whether these blockers can eliminate the protection afforded by SK4 channel 

activation. Parallel blocking of SK4 channel fully blunted the channel protective role 

of activators in wild-type Hdh+/Hdh+ (Figures 3.49 and 3.50, respectively), and 

mutant homozygous HdhQ111/HdhQ111 (Figures 3.52, and 3.53, respectively) cells.   

In summary, the data in this chapter identify the novel target (SK channels) that 

effectively modulate mechanisms of neurodegeneration, at least that caused by 

oxidative stress. 
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Figure 3.48 The effect of NS309, an SK4 channel activator, on the survival of wild-

type Hdh+/Hdh+ cells exposed to H2O2-induced oxidative stress. Data are shown as 

means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9.  
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Figure 3.49 The effect of NS309, an SK4 channel activator, in the presence of the 

SK4 channel blocker, TRAM-34, on the survival of wild-type Hdh+/Hdh+ cells 

exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. One-

way ANOVA followed by Dunnett’s post hoc test, n=9.  
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Figure 3.50 The effect of NS309, an SK4 channel activator, in the presence of the 

SK4 channel blocker, NS6180, on the survival of wild-type Hdh+/Hdh+ cells exposed 

to H2O2-induced oxidative stress. Data are shown as means ± SEM. One-way 

ANOVA followed by Dunnett’s post hoc test, n=9.  
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Figure 3.51 The effect of NS309, SK4 channel activation, on the survival of 

homozygous mutant HdhQ111/HdhQ111 cells exposed to H2O2-induced oxidative 

stress. Data are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-

way ANOVA followed by Dunnett’s post hoc test, n= 9.  
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Figure 3.52 The effect of NS309, an SK4 channel activator, in the presence of the 

SK4 channel blocker, TRAM-34, on the survival of homozygous mutant 

HdhQ111/HdhQ111 cells exposed to H2O2-induced oxidative stress. Data are shown as 

means ± SEM. One-way ANOVA followed by Dunnett’s post hoc test, n= 9.  
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Figure 3.53 The effect of NS309, an SK4 channel activator, in the presence of the 

SK4 channel blocker, NS6180, on the survival of homozygous mutant 

HdhQ111/HdhQ111 cells exposed to H2O2-induced oxidative stress. Data are shown as 

means ± SEM. One-way ANOVA followed by Dunnett’s post hoc test, n= 9.  
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3.4.3 SK ion channel expression and modulation in human brain 

astrocytoma cells 

This work also tested the hypothesis on another CNS resident cell, a human 

astrocytoma, namely the MOG-G-UVW cell. RT-PCR indicated only the presence 

of SK4 channel in MOG-G-UVW cells at the mRNA level. Activation of this channel 

by NS309 (20-40 nM) caused a marked increase (p-value<0.0001) in cell numbers 

versus LD50 of H2O2 (1 mM). Target channel specificity was also verified using SK4 

channel blockers, TRAM-34 (100 nM) and NS6180 (30 nM). Again, these blockers 

abrogated the protection afforded by SK4 channel opening. It is important to mention 

that these SK channel modulators alone did not significantly change cell viability 

(Appendix 3, Figures 7.5, 7.6, 7.7 and 7.8).   

These data show that SK1-4 channel activation, not only in neurons, but also in 

brain astrocytes, is protective against oxidative stress. This work is the first to 

identify an SK channel role in a second CNS resident cell in oxidative stress.   

This indicates that SK1-4 molecules are functionally expressed in two types of CNS 

cells, and they represent in fact a novel and impressive channel against oxidative 

stress in both brain cells.   
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3.4.4 The effect of H2O2 and/or SK3-4 channel activation on Bcl-2 

expression in wild-type mouse striatal, human neuroblastoma, 

and astrocytoma cells  

To investigate which molecular mechanism SK channel modulation adopt to 

promote survival of neurons from a toxic H2O2 effect, an apoptotic avenue was 

explored. Currently, it is known that Bcl-2 plays a powerful role in neuronal survival, 

thereby rigidly regulating the path of neuronal apoptosis (Anilkumar and Prehn 

2014). Western blotting experiments addressed this using only wild-type cell types. 

Results showed that the insult markedly diminished the pro-survival target, namely 

Bcl-2, at the protein level (Figure 3.54). These target cells express the SK3 channel 

subtype, in Hdh+/Hdh+ and SH-SY5Y cells, and the SK4 channel subtype in MOG-

G-UVW cells. Pharmacological experiments screened CyPPA, an SK2-3 activator, 

and NS309, an SK4 activator, to test whether they could reverse H2O2 action, 

through the Bcl-2 effector. SK3 and SK4 channel opening significantly (p-value<0.01 

versus insult, densitometry relative to GAPDH expression) re-established Bcl-2 

expression after 24 hours in these cells (Figure 3.54).   
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Figure 3.54 The effect H2O2 and/or SK3 or SK4 channel activation on Bcl-2 

expression in mouse wild-type striatal cells, and human neuroblastoma and 

astrocytoma cells. LD50 of H2O2 produced a significant reduction in Bcl-2 protein 

expression after 24 hours. CyPPA (30 µM) through SK3 channel activation 

expression in mouse wild-type Hdh+/Hdh+ striatal cells and human neuroblastoma 

SH-SY5Y cells, also SK4 channel activation via NS309 (30 nM) in human 

astrocytoma MOG-G-UVW cells, significantly restored Bcl-2 expression. **p-value 

< 0.01 versus insult. GAPDH serves as the normalising control. 
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3.5 Discussion  

The main findings of this work are: 

1. In human neuroblastoma cells, KCa2.1 (SK1), KCa2.3 (SK3) and KCa3.1 (SK4) 

channels are expressed in both undifferentiated and differentiated SH-SY5Y 

cells at the mRNA (SK1, SK3 and SK4) and protein level (SK1 and SK3). 

2. The SK4 channel subtype is noticeably upregulated in differentiated SH-

SY5Y cells at the mRNA level.  

3. The SK3 channel subtype is noticeably downregulated in differentiated SH-

SY5Y cells at the protein level.     

4. A neuronal marker, GAP-43, is markedly upregulated after retinoic acid 

exposure for 5 days. 

5. Pharmacological opening of SK1 and SK3 channels did not significantly 

modify cell growth after 24 hours in either undifferentiated or differentiated 

SH-SY5Y cells. 

6. Pharmacological blocking of SK1 and SK3 channels also did not significantly 

affect cell growth after 24 hours in both undifferentiated and differentiated 

SH-SY5Y cells. 

7. Both undifferentiated and differentiated SH-SY5Y cells were similarly 

sensitive to H2O2, the LD50 being 450 µM. 

8. SK1 or SK3 channel activation significantly rescued undifferentiated and 

differentiated SH-SY5Y cells from H2O2-induced oxidative stress. 

9. Coincident SK1 or SK3 channel inhibition abolished the protection afforded 

by the relevant SK channel activator against H2O2-induced oxidative stress 

in undifferentiated and differentiated SH-SY5Y cells.  
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10. In mouse striatal cells, SK channels are differentially expressed between 

the wild-type and mutant cells. Wild-type Hdh+/Hdh+ cells express KCa2.1 

(SK1), KCa2.3 (SK3) and KCa3.1 (SK4) channels at the mRNA level, and SK3 

channel protein expression was also confirmed. 

11. Heterozygous mutant HdhQ111/Hdh+ cells only favour KCa2.1 (SK1), KCa2.2 

(SK2) channel expression, and here SK2 channel protein expression was 

also confirmed. 

12. Intriguingly, homozygous mutant HdhQ111/HdhQ111 cells only showed the 

presence of KCa2.1 (SK1), KCa3.1 (SK4) channels.  

13.  Pharmacological opening of SK3 and SK4 channels in wild-type Hdh+/Hdh+ 

cells, SK2 channels in heterozygous mutant HdhQ111/Hdh+ cells, and SK4 

channels in homozygous mutant HdhQ111/HdhQ111 cells, did not significantly 

change cell growth after 24 hours.  

14. Pharmacological blocking of SK3 and SK4 channels in wild-type Hdh+/Hdh+ 

cells, SK2 channels in heterozygous mutant HdhQ111/Hdh+ cells, and SK4 

channels in homozygous mutant HdhQ111/HdhQ111 cells, also did not produce 

a significant effect on cell growth after 24 hours. 

15. These cells respond to H2O2 cytotoxic action similarly, the LD50 being nearly 

1 mM.  

16. Against H2O2-induced oxidative stress, activation of SK3 and SK4 channels 

in wild-type Hdh+/Hdh+ cells, SK2 channels in heterozygous HdhQ111/Hdh+ 

cells, and SK4 channels in homozygous HdhQ111/HdhQ111 cells, afforded  

significant protection. 

17. Coincident inhibition of SK3 and SK4 channels in wild-type Hdh+/Hdh+ cells, 

SK2 channels in heterozygous HdhQ111/Hdh+ cells, and SK4 channels in 
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homozygous HdhQ111/HdhQ111 cells, also totally reversed the protection 

demonstrated by the relevant SK channel activator against H2O2-induced 

oxidative stress. 

18.  In human brain astrocytes, RT-PCR showed only the presence of the SK4 

channel subtype. SK4 channel opening in MOG-G-UVW cells significantly 

opposed H2O2 toxic action and markedly increased cell numbers. 

19. In questioning molecular mechanisms, work here also found that H2O2-

induced oxidative stress downmodulated Bcl-2 protein expression, whereas 

either SK3 or SK4 channel opening significantly challenged Bcl-2 loss in wild-

type mouse Hdh+/Hdh+ (SK3) and human undifferentiated SH-SY5Y (SK3), 

as well as targeting the SK4 channel in human MOG-G-UVW cells.      
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The work in this chapter targeted the expression of SK channel subtypes and their 

roles in human and mouse neuronal cell types in combatting oxidative stress. The 

hypothesis of this work was proposed in order to address previous studies 

interested in the underlying mechanisms of aging-related neuronal demise, namely 

Alzheimer’s, Parkinson’s, as well as Huntington’s degenerative diseases (Fatokun 

et al. 2008). It has been proposed that the loss of normal oxidative stress 

modulation underlies neuropathology, and this proceeds to neuronal loss in the 

CNS (Lin and Beal 2006). It is not clear whether stress disturbance is a driver or is 

the consequence in the pathogenesis of neurodegenerative diseases (Andersen 

2004). However, two detrimental factors, Ca2+ excess and oxidative stress, have 

been linked and suggested to cooperate in the neuronal dying processes. It is not 

known however how abnormal mitochondrial stress is initiated in 

neurodegeneration pathogenesis (Ermak and Davies 2002). Recent work showed 

that aberrant increased calcium entry into the cytosol of vagal neurons perturbed 

mitochondrial stress (Goldberg et al. 2012). In neuronal physiology, SK1-4 

channels through control of firing rate operate as a fundamental determinant in this 

regard (Adelman et al. 2012; King et al. 2015) through Ca2+ regulation. Experiments 

here first used human neuroblastoma cells, the SH-SY5Y line, as a human cell 

model to attack this question. Three SK channel subtypes, which include SK1, SK3, 

and SK4, were found as resident channels in undifferentiated and differentiated 

cells. Retinoic acid (10 µM) for 7 days unveiled a neuronal marker, namely growth 

associated protein-43, and this was heavily expressed after 5 days exposure at the 

protein level. Recent work has revealed that this protein is required for the 

reshaping of morphology, and importantly to strengthen neuronal communication. 

In fact a lack of GAP-43 induces neuronal casualties through loss of information 
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exchange between synapses (Buizza et al. 2013). The in vitro investigation on 

neuronal cells presented here then established whether SK1-4 modulation, either 

activation or inhibition, does affect cell growth for the indicated time. In SH-SY5Y 

cell culture, neither SK1 nor SK3 channel activation by GW542573X (10-50 µM) 

and CyPPA (10-50 µM) respectively in both undifferentiated and differentiated cells 

(Figures 3.6-3.9, respectively), nor SK1 and SK3 channel inhibition by SK1-3 

channel blockers (Figures 3.10-3.13, respectively), using UCL1684 (3-10 nM) and 

NS8593 (300 nM-1 µM), significantly modified cell viability in undifferentiated and 

differentiated cells. Estimating LD50 for H2O2 on both undifferentiated and 

differentiated cells showed that the insult produced a similar cytotoxic effect on both 

cell types (Figures 3.14 and 3.15, respectively), where LD50s were 450 µM. It has 

been accepted that H2O2 diffuses through membranes in bacteria and yeast 

(Bienert et al. 2006): in fact at a toxic concentration in vitro it increased Ca2+ entry 

into the primary neurons of mouse cerebral cortex after 1 hour (Hu et al. 1998), and 

exogenous H2O2, again at toxic concentrations, also exacerbated mitochondrial 

dysfunction, thereby enhancing cellular reactive oxygen species generation 

(Richter et al. 2015). In experiments with challenged resident SK channels in the 

presence of H2O2, it was not surprising that in MTS assays it was found that SK1 

and SK3 channel opening reversed H2O2 action (P˂0.0001 versus insult), this 

resulting in SH-SY5Y cell protection (Figures 3.16, 18, 20 and 23, respectively). It 

has been previously reported that SK2 channel activation rescues hippocampal 

HT-22 cells from H2O2-induced oxidative stress through remodelling of 

mitochondrial function (Richter et al. 2015), using an SK2-3 channel activator, 

CyPPA (25 µM). Other work identified the SK1 channel subtype activator, 

GW542573X, which can actually activate SK1 channels with an EC50 of 8.2 µM, 
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being more potent at hSK1 over other channel subtypes, namely hSK2 and hSK3 

(Hougaard et al. 2009). In this study, pharmacological tools for SK1-4 channel 

modulation were utilised, namely activators and blockers, and experiments 

attempted to confirm the channel target specificity by checking whether the relevant 

blocker can reverse the protective result of SK1 and SK3 channel activation. Here, 

an SK1-3 blocker, UCL1684 (3 nM), fully abolished the protection mediated by SK1 

channel activation. However, UCL1684 (3 nM), did not affect the protection against 

H2O2 afforded by the SK3 channel activator CyPPA (Appendix 3, Figure 7.4). 

UCL1684 (10 nM) partially abrogated the protection established by the relevant 

activator in both undifferentiated and differentiated SH-SY5Y cells (Figures 3.21, 

and 24, respectively). This blocker is not thought to be as potent on the SK3 

channel. In recombinant SK1-3 gene expression, pharmacological approaches with 

electrophysiology found that the SK1 and SK2 channels are more sensitive to 

UCL1684 than SK3 channels in HEK 293 cells (SK1 and SK2), and Jurkat cells 

(SK3). These studies obtained IC50s of 0.76 nM (Strobaek et al. 2000), 0.36 nM 

(Strobaek et al. 2000), and 9.5 nM (Fanger et al. 2001), respectively. In this regard, 

another relevant SK1-3 blocker, NS8593, was screened against the SK3 channel. 

NS8593 (750 nM) entirely abolished the protective effect of CyPPA against H2O2 

oxidative stress (Figures 3.22, and 25, respectively). This was the reason that in all 

subsequent sections pharmacological experiments used NS8593 when targeting 

the SK3 channel. In hippocampal CA1 neurons, electrical recording showed that 

the non-selective SK1-3 channel blocker (NS8593), decreases SK1-3 channel 

sensitivity to Ca2+ in this rank order of potency: 0.42, 0.60, and 0.73 µM (these 

representing Kd values respectively), but demonstrating no selectivity for the SK4 

channel (Strobaek et al. 2006).   
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To understand whether SK channels are powerful targets for modulating oxidative 

stress, in CNS resident cells, this study tested the same hypothesis in mouse striatal 

cells. Curiously, the SK1-4 channel expression pattern was different between wild-

type STHdh+/Hdh+, and mutant cells, namely heterozygous STHdhQ111/Hdh+ and 

homozygous STHdhQ111/HdhQ111, and even between heterozygous and 

homozygous cells (Figures 3.26-3.28, respectively), a cell model of Huntington’s 

disease (Trettel et al. 2000). STHdh+/Hdh+ cells expressed SK1, SK3, and SK4 

channel subtypes, whereas STHdhQ111/Hdh+ only expressed SK1 and SK2 

channels, while STHdhQ111/HdhQ111 cells lacked SK2 and SK3 channels. Here, it is 

important to emphasise that SK1 channel cDNA does not provide a functional 

channel in the mouse and rat (Benton et al. 2003). This is a very attractive finding 

with STHdhQ111/HdhQ111 cells. Indeed, these striatal cells require SK channels for the 

medium AHP, and lacking this function influences neuronal excitability, and this 

proceeds to cell death. Intriguingly, it was found that huntingtin phenotype is more 

effective in homozygous than heterozygous dominant phenotype (Trettel et al. 

2000). As in the case of SH-SY5Y cells, this work first assessed the effect of SK 

channel modulators alone on mouse striatal cell growth. In wild-type STHdh+/Hdh+ 

cells, neither SK3 and SK4 channel activation, nor SK3 and SK4 inhibition, produced 

any significant effect on STHdh+/Hdh+ cell growth (Figures 3.31, 32, 35, and 36 

respectively). Similar results were found regarding the effect of the SK2-4 channel 

modulation on heterozygous, as well as homozygous cell growth. Here, the relevant 

SK channel modulators, both activators and blockers, did not produce any 

significant effect. Where the median toxic effect of the insult was estimated, dose-

response curves showed that wild-type STHdh+/Hdh+, heterozygous 

STHdhQ111/Hdh+, and homozygous STHdhQ111/HdhQ111 cells all invariably responded 
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to the H2O2, and the LD50s were 1 mM (Figures 3.41-3.43, respectively). In the MTS 

viability assay, the impact of SK2-4 channels, in order, on oxidative stress was 

addressed. SK2 channel opening by an SK2-3 activator, CyPPA (20-40 µM), 

markedly increased cell numbers (P˂0.0001 versus insult) versus insult in 

heterozygous STHdhQ111/Hdh+ cells. Parallel blocking this channel by UCL1684, an 

SK1-3 channel inhibitor, abolished the protection against oxidative stress (Figures 

3.44-3.45, respectively). Probing the next channel subtype, pharmacological 

experiments showed that SK3 channel activation though CyPPA (10-40 µM) also 

significantly (P˂0.0001 versus insult) rescued STHdh+/Hdh+ cells (Figure 3.46). 

Again, the channel inhibition by NS8593 (750 nM), an SK1-3 channel blocker, 

blunted the protection against H2O2 afforded by the relevant activator (Figure 3.47). 

The reason that both wild-type and mutant cells were used in pharmacological 

experiments, was to test whether resident SK channels, in these mutant cells for 

Huntington’s model, are still functional, and impact on oxidative stress. In this model, 

it has been found that mitochondria were extremely sensitive to changes in calcium 

entry and oxidative stress (Lim et al. 2008).  In imaging living neurons in a mouse 

model of Alzheimer’s disease, it was noticed that oxidative stress was generated in 

neurites near lesions, and it then gradually propagated into cell bodies, which 

caused caspase-dependent cell demise within 24h, while this was not observed in 

other neurons (Xie et al. 2013). Finally, SK4 activation by the SK4 channel activator, 

NS309 (20-40 nM), also afforded a significant protection (P˂0.0001 versus insult) 

against H2O2-induced oxidative stress in both cell types (Figures 3.48, and 51, 

respectively). Similarly, the SK4 channel blockers, TRAM-34 (100 nM) and NS618 

(30 nM), effectively reversed SK4 activation and protection against H2O2 oxidative 

stress (Figures 3.49, 50, 52, and 53, respectively). An interesting study has shown 
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that NS309 acts more potently on the SK4 channels, this channel being four times 

more sensitive than other SK subtypes. Hence NS309 (≥ 30 nM) significantly 

induced in a dose-dependent manner an increase in hSK4 currents (Strobaek et al. 

2004). It was also revealed that TRAM-34 distinguishes the SK4 channel from other 

SK channels (Wulff et al. 2007). In glioblastoma GL-15 cells, the SK4 protein is 

functionally expressed, and pharmacological screens showed that the IC50 values 

of clotrimazole, TRAM-34, and charybdotoxin, were 257 nM, 55 nM, and 10.3 nM 

respectively (Fioretti et al. 2006). Further electrophysiological tests in CHO cells, 

have shown that the human SK4 channel can be fully inhibited by TRAM-34, with 

an IC50 of 310 nM (John et al. 2007). In T-cells advances in channel pharmacology, 

include characterisation of a new SK4 blocker, NS6180, which is more potent at this 

channel than TRAM-34, with an IC50 of 9 nM (Strobaek et al. 2013). 

In addition to neurons, similar effects were found in human astrocytoma MOG-G-

UVW cells, however, these cells are less sensitive to oxidative stress upmodulation 

(Wilson 1997). Their cell viability was reduced by ~50% using H2O2 (1 mM), which 

served as LD50. Activation of the SK4 channel resident, the sole SK channel subtype 

(See next chapter), through NS309, also (P˂0.0001 versus insult) afforded 

significant protection against H2O2-induced oxidative stress. Here, the channel 

target blockade by the relevant SK4 blockers did completely abolish the rescuing 

effect of NS309 (Appendix 3, Figure 7.7 and 7.8). It has currently been accepted 

that Bcl-2 itself acts as leading protein among apoptotic regulators, triggering 

mitochondria, which eventually exceeds the apoptotic threshold, causing either 

cancer in case of scant upmodulation, or neurodegeneration when its 

downmodulated (Anilkumar and Prehn 2014; Czabotar et al. 2014). Importantly, Bcl-

2 dysregulation in neuronal damage has been linked with oxidative stress 
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(Anilkumar and Prehn 2014). In this paradigm, in vivo work was shown that losing 

Bcl-2 in mice induced neuronal loss by 52% (Hochman et al. 1998). Moreover, 

simultaneous Bcl-2 expression in rat hippocampus in the presence of glutamate 

toxicity in vivo significantly diminished lesion size (Wong et al. 2005). Glutamate 

toxicity reduced SK2 channel expression in the cerebellum, and its activation with 

pharmacological experiments also markedly improved cell survival (Dolga et al. 

2011). So, in the next step work here attempted to show whether SK channels 

“crosstalk” with Bcl-2 activity. Protein blotting discovered that H2O2 by itself 

produced pronounced reduction in Bcl-2 expression (Figure 3.54), and that SK3 or 

SK4 channel activation modestly (p-value<0.01) restored Bcl-2 at the protein level 

in a 24 hour challenge (Figure 3.54) in mouse wild-type striatal cells, and human 

neuroblastoma and astrocytoma cells. Moreover, CyPPA (20-40 µM) activation of 

SK3 or SK2 channels also produced significant protection (P˂0.0001 versus insult) 

against staurosporine-induced apoptosis that thought to work through Ca2+ entry 

through store-operated channels (Tojyo et al. 2013), at an LD50 dose (30 nM) in 

STHdh+/Hdh+ and STHdhQ111/Hdh+ cells respectively (Appendix 3, Figures 7.9 and 

7.10). 
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3.6 Conclusions 

The results in this chapter revealed that SK channels can engage oxidative stress 

pathway in five CNS-related cell types. Most importantly, this work now may 

galvanise an examination of the mysterious mechanisms behind SK channel 

expression and a role in cells bearing neurodegenerative phenotypes, such as the 

Huntington’s cell model. Of course healthy cells require SK1-4 channel activity to 

resist the cytotoxic stress of H2O2. Pertinently, this study delivers some mechanistic 

insight underling neurodegeneration. Homozygous STHdhQ111/HdhQ111 cells in fact 

lacked SK1-3 channel function, which explains why these cells cannot generate 

after hyperpolarisations, which is required for their physiology. Importantly, work 

here also observed that SK channel activity restores the abnormal apoptotic 

threshold through Bcl-2 regulation. These results could advance substantially an 

understanding of neurodegeneration pathogenesis, particularly the apoptotic role of 

SK channel.  
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3.7 Recommendations and future work 

This study would urgently suggest mapping SK1-3 channel expression in all aging 

related CNS degenerative diseases, considering both in vivo and in vitro models. It 

would be fascinating if an SK1 channel role would also be determined in non-human 

species. Assessment of the effect of SK channel modulation on the other apoptotic 

pathways will also provide more clarification, particularly distinguishing between 

extrinsic and intrinsic modes. Also, it would be very interesting if future research 

explores whether plasma membrane and/or mitochondrial SK channels are 

responsible for such protection in these cells. Which SK channel subtype is 

expressed in the mitochondria of these cells also urgently needs to be addressed. 

Finally, there is a question about the efficiency or effectiveness of the antibody used 

here for SK4. Future consideration therefore might be given to producing a viable 

antibody for SK4.      
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4 Chapter Four: TRPM7 Ion Channel in Survival of 

Astrocytes and Neurons 

4.1 Introduction 

The TRPM7 ion channel occupies the seventh position of the melastatin subfamily 

(TRPM) in TRP channel classification (Wu et al. 2010). The TRPM7 ion channel, 

also termed the magnesium transporter (Zhang et al. 2011a), is composed of two 

domains, namely a channel and its kinase. Therefore, this bifunctional protein is an 

uncommon molecule amongst ion channels. The channel pore is permeant to 

various cations: Ca2+ ions, Mg2+ ions, and other metals (Monteilh-Zoller et al. 2003; 

Yamaguchi et al. 2001), which are touted as important ions in diseases, leading to 

perturbation in overall “cell fitness” such as cellular survival (Mattson 2007) and 

proliferation (Roderick and Cook 2008). Other trace metals such as Zn2+ also require 

the TRPM7 channel to cross the plasma membrane and thus be regulated 

(Yamaguchi et al. 2001). It has been shown that either intracellular Mg2+ or Mg.ATP 

finely regulates TRPM7 channel activity (Demeuse et al. 2006; Nadler et al. 2001). 

The TRPM7 channel subtype seems to be expressed in all cells (Runnels et al. 

2001; Yee et al. 2014): indeed negative cell lines or types without this channel have 

not been reported so far, which is in fact very interesting, suggesting that this 

molecule is essential in all mammalian cell physiology (Yee et al. 2014). It is well 

established that for example Ca2+ and Mg2+ ions are implicated in the viability and 

growth avenues of different cell types (Chen et al. 2012; Jin et al. 2008; Mattson 

2007). Such considerations of course predict that any dysregulation in either TRPM7 

channel activity or its expression may produce ill effects through triggering disturbed 

Ca2+ and Mg2+ homeostasis in cells. Indeed, this member of TRPM channel 
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contributes to various physiological functions related to ionic homeostasis (Bae and 

Sun 2013). The TRPM7 channel seems a powerful prospective target in CNS injury. 

For instance, it was found that CA1 neurons possess the TRPM7 channel, and its 

role is critical in their survival. This study showed that lack of TRPM7 results in CA1 

neurons, resistant to ischemic cell demise, compared to wild-type cells (Sun et al. 

2009). It is still contentious that the TRPM7 kinase is a functional domain of the 

channel. By deletion of the TRPM7 channel in mice, interestingly early embryonic 

fatality was experienced in homozygous mice, while heterozygous generation 

produced only symptomatic illness (Ryazanova et al. 2010). This study reported that 

the kinase itself can actually regulate Mg2+ homeostasis at both cellular and 

organism levels. In contrast, recent research, again using mutant mice, indicated 

that kinase inactivation does not affect the overall channel function, and this protein 

acts as Mg2+ channel (Kaitsuka et al. 2014). Notably, however TRPM7 channel 

activity has been connected to cell survival, particularly in neurons. In this respect, 

an earlier study found that the TRPM7 channel in fact contributes to stroke 

pathogenesis through Ca2+ entry upregulation as well as by increasing reactive 

oxygen species in cortical neurons experiencing oxygen/glucose deprivation 

challenges (Aarts et al. 2003). This model indeed also produced mitochondrial 

dysfunction in neurons (Almeida et al. 2002), actually inducing apoptosis via 

caspase-3 awakening (Newcomb-Fernandez et al. 2001). The work in this chapter 

targeted this prospectively influential channel not only in neurons, but also in brain 

astrocytes. Importantly, the former cells were diseased neurons derived from 

homozygous Huntington’s disease mice model. In the CNS, emerging research 

points to a vital role of astrocytes in CNS structure and function (Clarke and Barres 

2013), [Ca2+]i changes for example being shown in response to neurotransmitter 
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activity (Volterra et al. 2014). Intriguingly, this major CNS cell type is involved in 

synapse elimination through upmodulation of C1q component that serves as an 

initiator player in the complement pathway (Stevens et al. 2007), thereby inducing 

microglial phagocytosis (Clarke and Barres 2013). In this fine regulation, 

understanding such cross-talk between neurons, astrocytes, as well as microglial 

cells is extremely important, deciphering mechanisms in neurodegeneration 

processes. Thus, it is important that prospective studies should aim to examine the 

activities and roles of all CNS cell types in neurodegenerative diseases.                     
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4.2 Hypothesis and aims 

It is proposed here that inhibition of TRPM7 channel will have protective effects 

against H2O2-induced oxidative stress, CoCl2-induced hypoxia, and staurosporine-

induced apoptosis in vitro, since these mechanisms underlie degeneration 

processes in CNS.     

 

The principal aims are:   

1. To explore the expression of TRPM7 channel in mouse striatal homozygous 

mutant STHdhQ111/HdhQ111 cells.  

2. To explore the expression of TRPM7 channel in human brain astrocytes, 

namely MOG-G-UVW cells. 

3. To test the effect of TRPM7 channel blocking, if any, on the viability of these 

cells in pharmacological experiments.   

4. To measure the LD50 of these insults, which include H2O2, CoCl2, and 

staurosporine on these cell types.  

5. To show a protective role, if any, for the TRPM7 channel against the cytotoxic 

nature of these insults in both cell types.  

6. To test whether channel target knock-out mimics pharmacological studies, 

using siRNA-mediated knockdown. 
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4.3 Materials and methods 

4.3.1 Cell origins and features 

The work in this chapter concentrated on CNS cell survival studies, using two CNS 

cell types, including mutant and wild-type cells. The former type was mouse striatal 

cells (STHdh+/Hdh+), which were mutated into the homozygous form of Huntington’s 

cell model (STHdhQ111/HdhQ111) that show a severe dominant phenotype (Trettel et 

al. 2000; Wheeler et al. 2000). The channel target (TRPM7) was also investigated 

in human brain astrocytoma MOG-G-UVW cells, which are derived from anaplastic 

astrocytoma (Frame et al. 1984). These cell types were described in chapter three 

(See section 3.3.1).   

4.3.2 Polymerase chain reaction 

The channel target transcripts, SK1-4 and TRPM7, were amplified in RT-PCR to 

test whether these targets are expressed at the mRNA level in these cells. First, 

extraction experiments isolated total RNA from the target cells after being lysed, and 

its concentration was then quantified in each sample. RNA purity and integrity in 

target samples were ensured. These samples were taken into the reverse 

transcription step, by generating their cDNA. In experiments that did not use the 

enzyme, reverse transcriptase, i.e. the negative control sample, this was labelled as 

No RT. The generated cDNA was then used in the PCR reaction. Specific primers 

for channel target genes, and β-actin, which serves as the reference, were used in 

these amplifications. Reaction conditions for various target genes indeed were 

validated, and in this respect, cycle number and temperature variations were 

considered. This found the following optimum profiles, for human primers: 

denaturation at 95°C for 5 minutes, followed by 30 cycles of incubation consisting 
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of 95°C for 30 seconds, 55°C for 30 seconds, followed by an extension step at 72°C 

for 1 minute, as well as 72°C for 5 minutes of final extension step. In the case of the 

mouse primers, experiments used the same PCR program, but these primers 

effectively annealed at 60°C instead of 55°C. In the final step, the amplicon sizes 

were UV visualised in electrophoresis experiments using 1% agarose gel. 

 

 

Gene Gene ID Human primer sequences 
 Sizes  
(bp) 

β-actin NM_001101 
F. 5’-CCCAGCCATGTACGTTGCTA-3’ 

126 
R. 5’-AGGGCATACCCCTCGTAGATG-3’ 

KCNN1 
(SK1) 

NM_002248.4 
F. 5’-TGGACACTCAGCTCACCAAG-3’ 

208 
R. 5’-TTAGCCTGGTCGTTCAGCTT-3’ 

KCNN2 
(SK2) 

AF397175.1 
F. 5’-CAAGCAAACACTTTGGTGGA-3’ 

249 
R. 5’-CCGCTCAGCATTGTAAGTGA-3’ 

KCNN3 
(SK3) 

NM_002249.5 
F. 5’-AAGCGGAGAAGCACGTTCATA-3’ 

180 R. 5’-CTGGTGGATAGCTTGGAGGAA-3’ 
KCNN4 
(SK4) 

AB128983.1 
F. 5’-GAGAGGCAGGCTGTTATTGC-3’ 

215 
R. 5’-ACGTGCTTCTCTGCCTTGTT-3’ 

 

Table 4.1 Primer sequences for human SK channel transcripts and positive control 

for the human cell type, and predicted identities. F. denotes forward primer and R. 

denotes reverse primer.  
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Gene Gene ID Mouse primer sequences 
 Sizes  
(bp) 

β-actin NM_007393.3 
F.  5’-TGTTACCAACTGGGACGACA-3’ 

165 
R.  5’- GGGGTGTTGAAGGTCTCAAA-3’ 

KCNN1 
(SK1) 

NM_032397.2 
F.  5’-GAAGCTTGGGTGAACTGAGC-3’ 

232 
R.  5’-CCATTAAGGAATCCCCAGGT-3’ 

KCNN2 
(SK2) 

AY123778.1 
F.  5’-TCTGATTGCCAGAGTCATGC-3’ 

250 
R.  5’-CCACATTGCTCCAAGGAAGT-3’ 

KCNN3 
(SK3) 

AF357241.1 
F.  5’-ACTTCAACACCCGATTCGTC-3’ 

191 
R. 5’-GGAAAGGAACGTGATGGAGA-3’ 

KCNN4 
(SK4) 

BC010274.1 
F.  5’-AAGCACACTCGAAGGAAGGA-3’ 

215 
R.  5’-CCGTCGATTCTCTTCTCCAG-3’ 

 

Table 4.2 Primer sequences for mouse SK channel transcripts and positive control 

for the mouse cell type, and predicted identities. F. denotes forward primer and R. 

denotes reverse primer.   

 

 

Gene Gene ID Primer sequences 
 Sizes  
(bp) 

TRPM7 
Human 

NM_017672 
F. 5’-TGCAGCAGAGCCCGATATTAT-3’ 

239 
R. 5’-CTCTATCCCATGCCAATGTAAGG-3’ 
 TRPM7 

Mouse 
NM_021450 

F. 5’-GTCAGATTTGTCAGCAACTTGTC-3’ 
139 

R. 5’-GACCATTCTTCTATTGCCTGGTT-3’ 
  

Table 4.3 Primer sequences for human and mouse TRPM7 channel transcript and 

positive control for the human and mouse cell types, and predicted identities. F. 

denotes forward primer and R. denotes reverse primer.   

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_017672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_021450
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4.3.3 Small interference RNA 

Knockdown protocol of the channel target, TRPM7, was consulted using the 

Eurofins Genomics database in order to obtain an effective target siRNA, the chosen 

candidate being top ranked with the highest percentile score, and like previous work 

this was used in knockdown experiments. Small interference RNA exploration used 

the following sequences: 

Green florescent protein (GFP) siRNA which is non-targeting siRNA, served as non-

specific control siRNA: 5'-GGCUACGUCCAGGAGCGCACC-3'. For targeting 

human TRPM7 channel gene in MOG-G-UVW cells, the siRNA sequence was 5’- 

UUAGGCAGUUCAUCUACUA-3’ in exon 26. In the case of mouse TRPM7 gene 

the sequence was 5'- UUAGGCAGUUCACCUAAUA-3' also in exon 26. These are 

sense sequences through which complementary ends were determined, defining 

binding sites. Briefly, siRNA experiments were performed using TRPM7 siRNA 

oligonucleotide, this complexing with the transfection reagent, which was 

Oligofectamine™, in Opti-MEM® medium. Knockdown experiments first obtained 

the optimum concentrations of siRNAs within the 100 nM range on cell lines 

indicated, ensuring the effectiveness of the target siRNA. 

To investigate whether siRNA-mediated downregulation of TRPM7 channel protein 

expression impacts on cell survival against cellular insults indicated, target cells 

were seeded in six-well plates at a density of 200 X 103 cells per well.  Experiments 

first ensured the optimum cell density for these cell types in six-well plates for this 

protocol. After 24 hours, seeded plates were retrieved, and first observed under the 

microscope, to ensure the quality of the culture. Experiments used 100 nM and 80 

nM to achieve successful delivery of the TRPM7 siRNAs in STHdhQ111/HdhQ111 and 

MOG-G-UVW cells respectively along with controls. After 72 hours, control and SK-
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siRNA treated cells were harvested for MTS assays. These cells were counted and 

reseeded in the regular medium using 96-well plate format at the relevant densities, 

and then incubated for 24 hours recovery. The next day, control cells and treated 

cells were challenged with the cellular insults for 24 hours using the insult (serum-

free) medium. This was followed by use of PMS-MTS mix (1:5) that in viable cells 

can be converted to formazan, thereby determining the relative cell viability.    

4.3.4 Western blotting 

In examining target protein, experiments first lifted control and treated cells in cold 

Dulbecco’s phosphate buffered saline by aid of a cell scraper. Cell suspensions 

were then directly pipetted into fresh tubes in which pellets were formed after 

centrifugation. The supernatant was discarded, and cells in the full lysate were 

disintegrated in a mixture of Pierce lysis IP buffer and Halt™ protease inhibitor 

cocktail (100:1), which was then incubated on ice for 30 minutes. This was 

accomplished by partitioning of the suspended proteins in the supernatant, again 

after centrifugation. Extracted proteins were transferred into fresh tubes, and their 

concentrations were quantified in each sample via BCA assays.       

Protein samples were then subjected to PAGE electrophoresis, thus separating 

protein molecules based on their sizes. Resultant gels were then used in Western 

blotting, commencing with the transferring step in which proteins were relocated on 

to blotting membranes, which were blocked in the blocking solution of 5% (w/v) dried 

skimmed milk and Tris buffered Saline with Tween®-20. These membranes were 

used in probing experiments to detect the target molecule, as well as loading control 

protein (See section 2.5.4). Anti-TRPM7 mouse monoclonal antibody (Abcam, 

ab85016) was applied in a dilution ratio (1:1000) in a blocking solution, this 
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normalising with a loading control, a mouse anti-GAPDH antibody (Sigma-Aldrich, 

G9295) in a ratio (1:50,000). The primary anti-TRPM7 antibody was incubated 

overnight for 16 hours, whereas the anti-GAPDH antibody was exposed for 45 

minutes. Target signals were developed after the membrane was washed with Tris 

buffered Saline with Tween®-20, and expression was recorded at the following 

exposure times: 4 minutes and 30 seconds, respectively. 

4.3.5 TRPM7 channel pharmacology  

MTS cell viability assessments addressed in the in vitro cytotoxic effect, if any, of 

the insults and the TRPM7 channel modulator, as well as any combating action over 

24 hours. The work here, unfortunately, did not confirm channel target specification 

through any pharmacological approach because selective TRPM7 channel 

modulators were not available, particularly any TRPM7 activator. Their role alone 

was first ensured in the cell viability test. Cellular insults at their LD50s were also 

introduced in conjunction with TRPM7 channel blockade, MTS assays quantifying 

relative cell viability (See chapter two, section 2.7.2).  

It is important to mention that the SK channel blockers used in the work here can 

block such channels at nanomolar concentrations, but can also block TRPM7 at 

micromolar ranges (Chubanov et al. 2012). Indeed, the SK1-3 channel blocker can 

fully block TRPM7 channel at 30 µM, for this reason pharmacological experiments 

bracketed this dose (30 µM). 
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4.4 Results 

4.4.1 TRPM7 ion channel expression in mouse model of Huntington’s 

homozygous STHdhQ111/HdhQ111 cells 

4.4.1.1 TRPM7 channel mRNA and protein investigation in STHdhQ111/HdhQ111 

cells 

The work in this section used mouse striatal cells STHdhQ111/HdhQ111 cells for 

several reasons. For example, there was no previous study addressing TRPM7 

channel expression in diseased cells such as a mouse striatal cell model of 

Huntington’s disease. Also STHdhQ111/HdhQ111 cells do not generate SK2 and SK3 

channels, and the SK1 channel subtype in mouse is not functional (Benton et al. 

2003). This avoids pharmacological argument for using SK channel modulators in 

the context of TRPM7 channel blockade.     

RT-PCR investigations found that STHdhQ111/HdhQ111 express the TRPM7 channel 

subtype of TRPM subfamily at the mRNA level, β-actin serving as the normalising 

control (Figure 4.1). This result was confirmed in Western blotting studies. This 

protein detection method used a specific antibody to recognise the channel target, 

and the expression was normalised by using GAPDH (Figure 4.2). 
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Figure 4.1 SK and TRPM7 channel mRNA in homozygous mutant HdhQ111/ HdhQ111 

cells. Only the amplicons for SK1, SK4, and TRPM7 channels are present and the 

PCR products are of the predicted size. β-actin serves as the normalising control. 

 

 

 

 

 

Figure 4.2 Representative immunoblot of TRPM7 channel subtype in homozygous 

mutant HdhQ111/ HdhQ111 cells. GAPDH serves as the normalising control. 
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4.4.1.2 The effect of pharmacological TRPM7 channel inhibition on 

STHdhQ111/HdhQ111 cell viability  

The next question was: do these modulators alone affect STHdhQ111/HdhQ111 cell 

numbers in the viability assays. This determines whether constitutive TRPM7 

channel activity modulates STHdhQ111/HdhQ111 cell proliferation. This question was 

addressed by the MTS assay using a 24 hour exposure. MTS cell viability 

quantification showed that neither NS8593 (20-40 µM), nor UCL1684 (20-40 µM), 

which are SK1-3 channel blockers, significantly modified STHdhQ111/HdhQ111 cell 

growth (Figures 4.3 and 4.4). Here, lower doses (5 and 10 µM) for both SK1-3 

blockers were also screened against STHdhQ111/HdhQ111 cell proliferation, but did 

not significantly change cell numbers compared to control (Appendix 3, Figures 7.11 

and 7.12). These results enabled work to proceed to the next step where LD50s of 

the insults were determined.     
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Figure 4.3 The effect of NS8593, TRPM7 channel inhibition, on homozygous mutant 

HdhQ111/HdhQ111 cell viability. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=6.  
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Figure 4.4 The effect of UCL1684, TRPM7 channel inhibition, on homozygous 

mutant HdhQ111/HdhQ111 cell viability. Data are shown as means ± SEM. One-way 

ANOVA followed by Dunnett’s post hoc test, n=6. 
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4.4.1.3 The dose-response curve for cellular insults in STHdhQ111/HdhQ111 

cells 

Three different cellular insults were applied to induce cell injury in 

STHdhQ111/HdhQ111 cells, namely oxidative stress, hypoxia, and a pro-apoptotic 

challenge. Their cytotoxic action was estimated in vitro through MTS cell viability 

checks at 24 hours. The target cells were differentially sensitive to these insults with 

values from nanomolar up to millimolar ranges. H2O2 “killed” 50% of 

STHdhQ111/HdhQ111 cells with an approximate LD50 of 1 mM (See chapter three, 

Figure 3.43).  The next insult (CoCl2) had an LD50 of 60 µM on this cell type (Figure 

4.5). These mutant cells were very sensitive to the apoptotic action of staurosporine, 

the MTS assay yielding 10 nM for this insult (Figure 4.6). All these LD50s were 

determined from the dose-response data.   

Following this step, work proceeded to the next stage, where TRPM7 channel 

inhibition-insult interactions were determined.  
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Figure 4.5 The effect of CoCl2 on homozygous mutant HdhQ111/HdhQ111 cell viability. 

From the line of best fit of the dose-response data, the LD50 was 60 µM, n= 9. 
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Figure 4.6 The effect of staurosporine on homozygous mutant HdhQ111/HdhQ111 cell 

viability. From the line of best fit of the dose-response data, the LD50 was 10 nM, n= 

9. 
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4.4.1.4 Pharmacological inhibition of TRPM7 channel against striatal cell 

insults in STHdhQ111/HdhQ111 cells 

The question posed here was whether TRPM7 ion channel blocking can rescue 

STHdhQ111/HdhQ111 cells from H2O2, CoCl2, and staurosporine challenges. Again, 

pharmacological treatment to answer this question was for 24 hours. Interestingly, 

TRPM7 channel blocking by NS8593 and UCL1684 can remarkably (P˂0.0001 

versus insult) reverse the decrease in STHdhQ111/HdhQ111 cell viability against the 

cytotoxic action of an LD50 dose of H2O2 (Figures 4.7 and 4.8, respectively), CoCl2 

(Figures 4.9 and 4.10, respectively), and staurosporine (Figures 4.11 and 4.12, 

respectively), these insults mimicking oxidative stress, hypoxia, and apoptosis 

respectively. Both compounds, NS8593 (20-40 µM) and UCL1684 (20-40 µM), were 

protective in all cases, although these two compounds had no protective role at 10 

µM (N.B. not true for the H2O2-NS8593 interaction, Figure 4.7). This indicates that 

these modulators are potent at >10 µM. This study did not pursue the channel 

specificity associated with the reversing the protection through TRPM7 channel 

opening because TRPM7 channel pharmacology is less advanced, and TRPM7 

channel openers are not available. 

These pharmacological results show that TRPM7 channel subtype has a crucial role 

in neuronal loss in vitro to oxidative stress, hypoxia, and apoptosis challenges, 

indicating that this channel is widely involved in cell survival mechanisms. This work 

was further progressed by TRPM7 gene silencing using the small interference RNA 

method.   
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Figure 4.7 The effect of NS8593, TRPM7 channel inhibition, on the survival of 

homozygous mutant HdhQ111/HdhQ111 cells exposed to H2O2-induced oxidative 

stress. Data are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-

way ANOVA followed by Dunnett’s post hoc test, n= 9.  
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Figure 4.8 The effect of UCL1684, TRPM7 channel inhibition, on the survival of 

homozygous mutant HdhQ111/HdhQ111 cells exposed to H2O2-induced oxidative 

stress. Data are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-

way ANOVA followed by Dunnett’s post hoc test, n= 9.  
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Figure 4.9 The effect of NS8593, TRPM7 channel inhibition, on the survival of 

homozygous mutant HdhQ111/HdhQ111 cells exposed to CoCl2-induced hypoxia. Data 

are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n= 9.  
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Figure 4.10 The effect of UCL1684, TRPM7 channel inhibition, on the survival of 

homozygous mutant HdhQ111/HdhQ111 cells exposed to CoCl2-induced hypoxia. Data 

are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n= 9.  
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Figure 4.11 The effect of NS8593, TRPM7 channel inhibition, on the survival of 

homozygous mutant HdhQ111/HdhQ111 cells exposed to staurosporine-induced 

apoptosis. Data are shown as means ± SEM. ****p-value < 0.0001 versus insult, 

one-way ANOVA followed by Dunnett’s post hoc test, n= 9.  
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Figure 4.12 The effect of UCL1684, TRPM7 channel inhibition, on the survival of 

homozygous mutant HdhQ111/HdhQ111 cells exposed to staurosporine-induced 

apoptosis. Data are shown as means ± SEM. ****p-value < 0.0001 versus insult, 

one-way ANOVA followed by Dunnett’s post hoc test, n= 9. 
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4.4.1.5 Small interference RNA-mediated modulation of TRPM7 channel 

against cellular insults in STHdhQ111/HdhQ111 cells 

To test whether lowering TRPM7 channel expression can mirror above 

pharmacological results, TRPM7 channel downregulation was performed via siRNA. 

This method used specific TRPM7-siRNA to knock-out this target in 

STHdhQ111/HdhQ111 cells after 72 hours. Its efficiency was first confirmed by Western 

blotting validation. This exploration used proteins from control cells i.e. non-treated 

cells, GFP-siRNA treated group, which expresses GFP-siRNA that serves as the 

normalising siRNA, as well as TRPM7-siRNA transfected cells, which express 

TRPM7-siRNA. Western blotting followed by densitometric analysis found that GFP-

siRNA had no significant effect on TRPM7 channel expression level compared to 

control, in contrast TRPM7-siRNA produced an immense loss (P˂0.0001 versus 

control) in TRPM7 channel protein expression (Figures 4.13 and 4.14). After this 

determination, experiments further followed whether TRPM7 channel knockdown 

impacts on STHdhQ111/HdhQ111 cell viability in the presence of H2O2, CoCl2, and 

staurosporine using the 24 hour exposure protocol. Intriguingly, the cell viability 

results revealed that this pre-treatment dramatically (P˂0.0001 versus insult) 

protected STHdhQ111/HdhQ111 cells from harm from H2O2, CoCl2, and staurosporine. 

Cells lacking TRPM7 channels are more resistant to these toxic effects, namely 

oxidative stress, hypoxia, as well as apoptotic induction (Figures 4.15, 4.16 and 

4.17), which by themselves caused a vast decrease in normal STHdhQ111/HdhQ111 

cell numbers. Cells receiving GFP-siRNA were similarly sensitive as control cells 

(Figures 4.15, 4.16 and 4.17) to all insults.  

These data clearly demonstrate that not only TRPM7 channel blockade, but also its 

downregulation is neuroprotective in these diseased cells.     
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Figure 4.13 Representative immunoblot of TRPM7 channel in homozygous mutant 

HdhQ111/ HdhQ111 cells transfected with specific TRPM7-siRNA. TRPM7 channel 

protein expression is markedly downregulated compared to control. GAPDH serves 

as the normalising control. 

 

C o n t r o l  G F P T R P M 7  s i R N A

0 . 0

0 . 5

1 . 0

1 . 5

T R P M 7  c h a n n e l  p r o t e i n  e x p r e s s i o n

R
e

la
ti

v
e

 d
e

n
s

it
y

 t
o

 G
A

P
D

H

* * * *

 

Figure 4.14 Densitometric measurement of TRPM7 channel in homozygous mutant 

HdhQ111/ HdhQ111 cells transfected with specific TRPM7-siRNA. Data are shown as 

means ± SEM. ****p-value < 0.0001 versus control, one-way ANOVA followed by 

Dunnett’s post hoc test, n =3. 
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Figure 4.15 The effect of siRNA-mediated knockdown of TRPM7 channel on the 

survival of homozygous mutant HdhQ111/HdhQ111 cells exposed to H2O2-induced 

oxidative stress. Data are shown as means ± SEM. ****p-value < 0.0001 versus 

insult, one-way ANOVA followed by Dunnett’s post hoc test, n= 9.  
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Figure 4.16 The effect of siRNA-mediated knockdown of TRPM7 channel on the 

survival of homozygous mutant HdhQ111/HdhQ111 cells exposed to CoCl2-induced 

hypoxia. Data are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-

way ANOVA followed by Dunnett’s post hoc test, n= 9. 
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Figure 4.17 The effect of siRNA-mediated knockdown of TRPM7 channel on the 

survival of homozygous mutant HdhQ111/HdhQ111 cells exposed to staurosporine-

induced apoptosis. Data are shown as means ± SEM. ****p-value < 0.0001 versus 

insult, one-way ANOVA followed by Dunnett’s post hoc test, n= 9. 
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4.4.2 TRPM7 ion channel expression in human astrocytoma MOG-G-

UVW cells  

4.4.2.1 TRPM7 channel mRNA and protein investigation in MOG-G-UVW 

cells  

In the second part of this work, experiments tested the same hypothesis using 

another CNS derived cell type, a human brain astrocytoma. Similar questions and 

aims were addressed as shown in part one of this work. Wild-type MOG-G-UVW 

cells are less frequently used in research activities compare to other cell lines used 

in neuroscience to date. RT-PCR first investigated the TRPM7 channel message in 

MOG-G-UVW cells at the mRNA level (Figure 4.19). This was further examined by 

Western blotting to test whether the gene target also formed the channel protein. It 

was found that these channels are also expressed at the protein level (Figure 4.20). 

It is important to emphasise again that this cell line only has the SK4 subtype of SK 

channel (Figure 4.18), so helping to avert target confusion since this study used two 

SK1-3 channel blockers, in the micromolar range to produce TRPM7 channel 

blockade.        
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Figure 4.18 SK channel mRNA investigation in MOG-G-UVW cells. Only the 

amplicon for SK4 channel is present and the PCR products are of the predicted size. 

β-actin serves as the normalising control. 

 

 

Figure 4.19 TRPM7 channel mRNA investigation in MOG-G-UVW cells. The 

amplicon for TRPM7 channel is present and the PCR products are of the predicted 

size. β-actin serves as the normalising control. 

 

 

 

Figure 4.20 Representative immunoblot of TRPM7 channel subtype in MOG-G-

UVW cells. GAPDH serves as the normalising control. 
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4.4.2.2 The effect of pharmacological TRPM7 channel inhibition on MOG-G-

UVW cell viability  

The pharmacological approach first assessed the effect TRPM7 channel blocking 

alone on MOG-G-UVW cell viability over 24 hours. In the MTS assay, SK1-3 channel 

blockers NS8593 (20-40 µM) and UCL1684 (20-40 µM) were tested on the 

proliferation of MOG-G-UVW cells (Figures 4.21 and 4.22, respectively). This 

screening did not significantly affect MOG-G-UVW cell numbers compared to control 

for the time indicated. This shows that these cells do not adopt constitutive TRPM7 

channel activity for their proliferation. In this respect, experiments also considered 

the effect of lower doses of NS8593 (5 and 10 µM) and UCL1684 (5 and 10 µM): 

these concentrations were also inactive on MOG-G-UVW cell viability (Appendix 3, 

Figures 7.13 and 7.14).    

These data encouraged this work to be progressed to the next stage, as these 

compounds did not modulate normal cell growth in MOG-G-UVW cells.    
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Figure 4.21 The effect of NS8593, TRPM7 channel inhibition, on MOG-G-UVW cell 

viability. Data are shown as means ± SEM. One-way ANOVA followed by Dunnett’s 

post hoc test, n=6.  
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Figure 4.22 The effect of UCL1684, TRPM7 channel inhibition, on MOG-G-UVW 

cell viability. Data are shown as means ± SEM. One-way ANOVA followed by 

Dunnett’s post hoc test, n=6. 
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4.4.2.3 The dose-response curve for cellular insults in MOG-G-UVW cells 

Again in vitro pharmacological experiments determined the LD50s of cellular insults 

by the aid of dose-response measures, using H2O2, CoCl2, and staurosporine to 

induce oxidative stress, hypoxia, and apoptosis respectively. These agents 

challenged cell viability and MTS assays estimated different LD50s of the insults 

against MOG-G-UVW cell viability. MOG-G-UVW cells were less sensitive to H2O2 

with an LD50 1 mM (Figure 4.23), while these cells showed a moderate sensitivity to 

CoCl2 with an LD50 32 µM (Figure 4.24), and they were more sensitive to 

staurosporine toxic effect with an LD50 of 50 nM (Figure 4.25).  
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Figure 4.23 The effect of H2O2 on MOG-G-UVW cell viability. From the line of best 

fit of the dose-response data, the LD50 was 1 mM, n= 9. 
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Figure 4.24 The effect of CoCl2 on MOG-G-UVW cell viability. From the line of best 

fit of the dose-response data, the LD50 was 32 µM, n= 9. 
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Figure 4.25 The effect of staurosporine on MOG-G-UVW cell viability. From the line 

of best fit of the dose-response data, the LD50 was 50 nM, n= 9. 
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4.4.2.4 Pharmacological inhibition of TRPM7 channel against cellular insults 

in MOG-G-UVW cells  

The next series of experiments checked whether TRPM7 channel inhibition 

promotes cell survival in the face of various cell death mechanisms, namely H2O2, 

CoCl2, and staurosporine insults. This established that NS8593 (20-40 µM) and 

UCL1684 (20-40 µM), SK1-3 channel blockers, by blocking TRPM7 significantly 

protected (P˂0.0001 versus insult) cells against oxidative stress (Figures 4.26 and 

4.27, respectively), hypoxia (Figures 4.28 and 4.29, respectively), and apoptosis 

(Figure 4.30 and 4.31, respectively). As expected, these modulators did not always 

have a protective role at 10 µM, where NS8593 did not oppose CoCl2 and 

staurosporine induced effects (Figures 4.28 and 4.30, respectively). These data 

were encouraging, and the question was further pursued in siRNA experiments.    
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Figure 4.26 The effect of NS8593, TRPM7 channel inhibition, on the survival of 

MOG-G-UVW cells exposed to H2O2-induced oxidative stress. Data are shown as 

means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9.  
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Figure 4.27 The effect of UCL1684, TRPM7 channel inhibition, on the survival of 

MOG-G-UVW cells exposed to H2O2-induced oxidative stress. Data are shown as 

means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9. 
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Figure 4.28 The effect of NS8593, TRPM7 channel inhibition, on the survival of 

MOG-G-UVW cells exposed to CoCl2-induced hypoxia. Data are shown as means 

± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by Dunnett’s 

post hoc test, n= 9. 
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Figure 4.29 The effect of UCL1684, TRPM7 channel inhibition, on the survival of 

MOG-G-UVW cells exposed to CoCl2-induced hypoxia. Data are shown as means 

± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by Dunnett’s 

post hoc test, n= 9. 
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Figure 4.30 The effect of NS8593, TRPM7 channel inhibition, on the survival of 

MOG-G-UVW cells exposed to staurosporine-induced apoptosis. Data are shown 

as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9. 
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Figure 4.31 The effect of UCL1684, TRPM7 channel inhibition, on the survival of 

MOG-G-UVW cells exposed to staurosporine-induced apoptosis. Data are shown 

as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9. 

 



Chapter Four 

165 
 

4.4.2.5 Small interference RNA-mediated modulation of TRPM7 channel 

against cellular insults in MOG-G-UVW cells  

Small interference RNA experiments then tested whether TRPM7 channel 

knockdown can result in MOG-G-UVW cells resistant against death insults delivered 

through different mechanisms. These experiments used specific human TRPM7-

siRNA to dampen TRPM7 channel expression in MOG-G-UVW cells. Western 

blotting results indicated that TRPM7 expression in GFP-treated cells was entirely 

normal (Figures 4.32 and 4.33). Importantly, densitometric analysis also showed 

that TRPM7-siRNA caused a marked reduction (P˂0.0001 versus control) in 

TRPM7 channel protein expression (Figures 4.32 and 4.33) 72 hours post-

transfection. In the cell viability monitoring 24 hours after transfection, MTS results 

from knockdown of TRPM7 channels mirrored the pharmacological results. MOG-

G-UVW deficient of TRPM7 channels were in fact significantly more viable 

(P˂0.0001 versus insult) in the face of H2O2-induced oxidative stress (Figure 4.34), 

CoCl2-induced hypoxia (Figure 4.35), and staurosporine-induced apoptosis (Figure 

4.36) than normal cells.    

The data in this chapter are very compelling, TRPM7 channel inhibition in the face 

of three important models of cell death plays a central role in combating these three 

stressors, namely H2O2-induced oxidative stress, CoCl2-induced hypoxia, and 

staurosporine-induced apoptosis. This indicates that this channel has a big role in 

survival of these CNS resident cells, i.e. both normal brain astrocytes, and the 

mouse cell model of Huntington’s disease.       
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Figure 4.32 Representative immunoblot of TRPM7 channel in MOG-G-UVW cells 

transfected with specific TRPM7-siRNA. TRPM7 channel protein expression is 

considerably downregulated compared to control. GAPDH serves as the 

normalising control. 
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Figure 4.33 Densitometric measurement of TRPM7 channel in MOG-G-UVW cells 

transfected with specific TRPM7-siRNA. Data are shown as means ± SEM. ****p-

value < 0.0001 versus control, one-way ANOVA followed by Dunnett’s post hoc test, 

n =3. 
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Figure 4.34 The effect of siRNA-mediated knockdown of TRPM7 channel on the 

survival of MOG-G-UVW cells exposed to H2O2-induced oxidative stress. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n= 9.  

 

 

* * * *

0 . 0

0 . 5

1 . 0

1 . 5

R
e

la
ti

v
e

 c
e

ll
 v

ia
b

il
it

y

C o n t r o l

N o n - t r a n s f e c t e d

G F P  s i R N A

T R P M 7  s i R N A

C o C l 2 ( 3 2  M ) -                  +                 +                 +

 

Figure 4.35 The effect of siRNA-mediated knockdown of TRPM7 channel on the 

survival of MOG-G-UVW cells exposed to CoCl2-induced hypoxia. Data are shown 

as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9.  
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Figure 4.36 The effect of siRNA-mediated knockdown of TRPM7 channel on the 

survival of MOG-G-UVW cells exposed to staurosporine-induced apoptosis. Data 

are shown as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA 

followed by Dunnett’s post hoc test, n= 9.  
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4.5 Discussion 

The principal findings of this work are: 

1. In STHdhQ111/HdhQ111 cells, a mouse homozygous cell model of 

Huntington’s disease, it was found that TRPM7 channels are expressed at 

both mRNA and protein levels in RT-PCR and Western blotting experiments. 

2. Pharmacological screening indicated that TRPM7 channel blockade in 

STHdhQ111/HdhQ111 cells did not significantly modify the cell proliferation rate, 

indicating that this channel does not inhibit constitutive growth. 

3. MTS cell viability assays also found that these cells were more sensitive to 

staurosporine-induced apoptosis than CoCl2 and H2O2. 

4. Pharmacological blocking of TRPM7 afforded significant protection against 

cell death mechanisms, namely staurosporine-induced apoptosis, CoCl2-

induced hypoxia, and H2O2-induced oxidative stress. 

5. Intriguingly, pharmacological results were well supported by the channel 

target knockdown in siRNA experiments. This revealed that TRPM7 channel 

knock-out also significantly protected STHdhQ111/HdhQ111 against all insults 

indicated. 

6. In MOG-G-UVW cells, a human brain astrocyte, RT-PCR and Western 

blotting investigations determined the presence of TRPM7 channels at both 

mRNA and protein levels respectively.  

7. MTS assays showed that TRPM7 channel blocking had no effect on MOG-

G-UVW proliferation, again indicating no impact of these channels on normal 

growth.  

8. These cells were also more sensitive to staurosporine than other insults. 
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9. TRPM7 channel blockade in the presence of staurosporine-induced 

apoptosis, CoCl2-induced hypoxia, and H2O2-induced oxidative stress, was 

also markedly protective, compared to the insult alone. 

10. TRPM7 siRNA-mediated knock-out in MOG-G-UVW cells reflected the 

pharmacological TRPM7 channel results. Downregulation produced MOG-

G-UVW cells more resistant against all the insults above.             
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The main focus of this work was to determine whether the TRPM7 channel promises 

to be a neuroprotectant molecule in human brain astrocytes and a mouse 

homozygous cell model of Huntington’s disease against dysfunction mediated by 

staurosporine-induced apoptosis, CoCl2-induced hypoxia, and H2O2-induced 

oxidative stress. There is a growing bank of knowledge that indicates that the 

TRPM7 channel is an impressive target in both neurodegeneration (Park et al. 2014) 

and the cancers (Deliot and Constantin 2015; Guilbert et al. 2009). Expression 

experiments of this present study first showed that the channel of interest is 

expressed in STHdhQ111/HdhQ111 and MOG-G-UVW cells (Figures 4.1-4.2 and 4.19-

20, respectively) using RT-PCR and Western blotting methods. A later step checked 

whether the channel protein is functionally generated. This began with 

pharmacological probing in MTS cell viability assays. It is important to stress  that 

the pharmacological approach used SK1-3 channel modulators for TRPM7 channel 

modulation, since it was recently shown that SK channel modulators can also block 

the TRPM7 ion channel at micromolar concentrations (see Figure 4.37), as in 

electrophysiological experiments NS8593 (30 µM) fully inhibited the TRPM7 

channel current (Chubanov et al. 2012). SK1-3 blockers used in this work block the 

SK1-3 channels at nanomolar ranges, bypassing profile overlapping. Importantly, 

STHdhQ111/HdhQ111 cells expressed no SK2-3 channels (Figure 4.1), and the SK1 

channel cDNA does not form a functional ion channel (Benton et al. 2003; D'Hoedt 

et al. 2004). In MOG-G-UVW cells, no SK1-3 channel transcripts were present at 

the mRNA level (Figure 4.18). Experiments screened the TRPM7 channel, 

bracketing the 30 µM dose as this concentration is more potent on channel activity 

(Chubanov et al. 2012). First, the effect of the modulators alone, namely NS8593 
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and UCL1684 was tested in the viability assays at 24 hours: here no significant 

effect on the cell numbers was found (Figures 4.3, 4.4 and 4.21, 4.22, respectively).  

 

 

Figure 4.37 TRPM7 channel blocking by the SK channel modulators. NS8593 (30 

µM) can fully block TRPM7 channel current. Other SK channel modulators can also 

significantly block the channel target as indicated (Chubanov et al. 2012).   

 

In the next phase, LD50s of the insults were determined from the dose-response 

curves (Figures 3.43, 4.5, 4.6 and 4.23. 4.24, 4.25 respectively). In this regard, it 

has been documented that exogenous hydrogen peroxide (H2O2) can reach the 

cytosol by crossing the plasma membrane (Bienert et al. 2006; Fatokun et al. 2008). 

This stressor can react with active metals, particularly copper and iron, thus 

producing highly reactive cytotoxic radicals such as hydroxyl radicals (Bourassa and 

Miller 2012), which cause detrimental cell injury. Intriguingly, TRPM7 channel 

blocking (P˂0.0001 versus insult) reversed the cytotoxic effect of H2O2 in 

STHdhQ111/HdhQ111 and MOG-G-UVW cells. In this challenge and all subsequent 

challenges in this work the modulators, NS8593 and UCL1684, were protective at 
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(20-40 µM) in the presence of all insults indicated, but in some cases 10 µM of  

blockers did not significantly challenge the insults used (Figures 4.7-4.8 and 4.26-

4.27, respectively). Nowadays, the involvement of TRPM7 channels in ischaemic 

conditions and cellular ROS regulation is accepted. Studies report that H2O2 caused 

TRPM7 activation and this elevated [Ca2+]i (Coombes et al. 2011). In a detailed 

investigation of oxidative stress in Parkinson’s disease (PD), interestingly, PD 

lesions, through α-Synuclein, exacerbated the physiological stress via mitochondria. 

This possible stress elevation is physiologically generated because it can be 

eliminated through inhibition of voltage dependent L-type calcium channels 

(Dryanovski et al. 2013). Silencing of TRPM7 channel gene in STHdhQ111/HdhQ111 

and MOG-G-UVW cells mimicked the pharmacological picture (Figures 4.15 and 

4.34, respectively), affording a profound increase (P˂0.0001 versus control) in cell 

viability. In aerobic organisms, oxygen (O2) is required for normal tissue wellbeing, 

and hypoxia-inducible transcription factor 1 (HIF-1) plays a critical role that can be 

activated by CoCl2 (Caltana et al. 2009). In Hep3B cells, real hypoxia mediates 

transcription in a mitochondrial-dependent manner, causing an increase in ROS, but 

CoCl2 can induce transcription via ROS generation in a mitochondrial-independent 

pattern (Chandel et al. 1998). MTS viability assessments showed that TRPM7 

channel blocking also significantly dampened (P˂0.0001 versus insult) the harmful 

delivery of CoCl2 in STHdhQ111/HdhQ111 and MOG-G-UVW cells (Figures 4.9-4.10 

and 4.28-4.29, respectively). Again, siRNA-mediated elimination of the TRPM7 

channel made STHdhQ111/HdhQ111 and MOG-G-UVW cells less vulnerable 

(P˂0.0001 versus control) to the CoCl2 hypoxia-mimetic effect (Figures 4.16 and 

4.35, respectively). It has been revealed that knockdown of TRPM7 channels in 

hippocampal neurons, significantly attenuated an increase in intracellular [Mg2+]i 
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caused by anoxia (Zhang et al. 2011a). Moreover, TRPM7 dampening also 

improved ischaemia-induced long term potentiation and memory tasks (Sun et al. 

2009). It is accepted that staurosporine creates apoptosis via PKC inhibition, but it 

is not selective. It may also inhibit other kinases such as tyrosine kinase (Ruegg and 

Burgess 1989), and more recently, staurosporine has been linked to store-operated 

Ca2+ entry (SOCE). Single cell imaging in staurosporine-induced cells shows that 

this entry remained activated after Ca2+ replenishment (Tojyo et al. 2013). Screening 

TRPM7 channel activity against staurosporine-induced apoptosis, showed that its 

inhibition markedly saved (P˂0.0001 versus insult) STHdhQ111/HdhQ111 and MOG-

G-UVW cells from apoptosis (Figures 4.11-4.12 and 4.30-4.31, respectively). 

Invariably, TRPM7 abolishment through siRNA also showed an increase (P˂0.0001 

versus control) in cell viability level (Figures 4.17 and 4.36, respectively). TRPM7 

channel seems therefore a powerful target in neurodegeneration, being also linked 

to apoptosis, since it has been shown that TRPM7 knockdown increases fibroblast 

resistance to apoptotic stimuli through lowering ROS levels in a Mg2+-dependent 

manner (Chen et al. 2012).  

Excitatory neurotransmission has been recently linked to microglial activation, 

revealing that activated microglial cells release ATP, that can be amplified by 

astrocytes and binds to purinergic receptors (P2Y1R) on astrocytes, and ultimately 

this stimulation increases excitatory postsynaptic currents through a glutamate 

receptor-dependent pathway (Pascual et al. 2012). Interestingly, experiments here 

found that LPS-induced microglia caused remarkable upregulation of the TRPM7 

channel expression in these cells (Appendix 3, Figure 7.15). MTS viability assays 

determined that this phenotype killed microglia in cultures, a fascinating result, 

requiring a detailed examination.   
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4.6 Conclusions  

The data from this in vitro work showed that the TRPM7 channel is present in mouse 

homozygous mutant STHdhQ111/HdhQ111 and human brain wild-type MOG-G-UVW 

cells. This ion channel plays a big role in their survival in the face of various cell 

death mechanisms. It is fascinating that this channel rescues cells from oxidative 

stress, hypoxia, as well as apoptosis. Not only modulation of its activity, but also 

lowering of channel numbers improves cell viability in these abnormal conditions. 

This is the first study to question TRPM7 channel expression and any role in 

diseased mutant cells of this neurodegenerative model, namely STHdhQ111/HdhQ111. 

These data illustrate that TRPM7 gene generates a functional channel in these cells, 

and this channel represents a robust target for neuroprotection.          
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4.7 Recommendations and future work 

TRPM7 channel pharmacology is not well advanced. Thus, advances in this area to 

develop selective modulators will be very important. Mapping TRPM7 expression 

and its significance in other cells, particularly in cell models of neurodegenerative 

diseases would also provide further understanding in this field. Future investigations 

that can determine further knowledge about TRPM7 role in vivo will shed significant 

progress regarding this protein. Another task will be the elucidation of the channel 

regulatory mechanisms, including the importance of the channel kinase.  
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5 Chapter Five: SK Ion Channel in Death of Breast 

Cancer Cells  

5.1 Introduction 

SK potassium ion channels, namely small conductance (SK1-3) and a closely allied 

intermediate conductance (SK4) calcium-activated K+ channel (Adelman et al. 2012; 

Kohler et al. 1996), significantly shape the symphony of Ca2+ signaling at both 

cellular (Xia et al. 1998) and molecular (Dolga et al. 2013) levels, thereby governing 

the myriad of cellular activities in the biology of excitable, and non-excitable cells. In 

such biology, SK ion channels possess a definite canonical role, which facilitates K+ 

efflux and produces an hyperpolarisation (Alger and Nicoll 1980), thus reducing Ca2+ 

influx and potential Ca2+ overload. Activation alters firing patterns and memory, 

although the precise links between cellular events and higher order functions such 

as memory are not well defined. SK channels also regulate calcium flux in the later 

biology in the form of non-canonical roles (Pardo and Stuhmer 2014). This role 

offers compelling oncological relevance in the delineation of cancer hallmarks, 

judging from frequently highlighted outcomes of studies (Huang and Jan 2014) with 

the theme of Ca2+ levels in cancer featuring and supporting the notion that these SK 

molecules are notoriously implicated in the cancer phenotype. Indeed, this has 

increased the interest in cancer, as calcium affects physiological processes at 

different levels (Roderick and Cook 2008), driving cancer progression, migration, as 

well as mediating metastasis (Azimi et al. 2014). In this respect, it is not surprising 

that triple negative breast cancer cells, MDA-MB-435, require KCa2.3 (SK3) channels 

for cell migration by regulating calcium fluxes and membrane potential (Potier et al. 

2006). In vivo profiling of  the KCa3.1 (SK4) blocker, TRAM-34, on the infiltrative 
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behavior of glioblastoma multiforme, further improved the understanding of the SK 

channel role in this scenario, whereby blocking of the resident SK4 channels in 

malignant glioblastoma multiforme curbs diffusing of malignant cells, and in fact 

reduces the resultant astrocytosis (D'Alessandro et al. 2013). In vitro experiments 

also indicate that SK4 inhibition exclusively disrupts the crosstalk between tumours 

and neighboring resident cells, reactive astrocytes and microglia, in the brain. 

Recent work strengthens this notion, and points to astrocytes underlying life 

decisions of tumour cells, favouring their growth (Biasoli et al. 2014). In the gating 

of the SK class of K+ ion channels, these proteins do not provide an inherent domain 

for Ca2+ binding, instead they use a modular protein, termed calmodulin (CaM), to 

chelate Ca2+ ions (Maylie et al. 2004). More recently it has been shown that CaM 

exists as an intrinsic partner in the SK channel complex (Adelman 2015). Moreover, 

the channel activity is tightly regulated by a bound casein kinase 2 (CK2) and protein 

phosphatase 2A (PP2A) (Allen et al. 2007), but their role on other cell functions, 

such as proliferation, remains to be addressed. Novel mechanisms, in the adult 

human, orchestrate highly programmed pathways through which approximately 60 

billion cells (Diaz et al. 2005; Reed 2008), undergo daily cell division, thus keeping 

normal tissue homeostasis throughout. Disappointingly, in certain cancers cells 

escape from programmed cell death, destabilising physiological cell death, which is 

literally defection. The central question to be addressed is how cancer cells resist 

death choices? This facet of their physiology, considering a central for K+ ion 

channels, is well reviewed by Huang and Jan (2014). This paper concludes there 

are four mechanisms. First, changes in cell membrane potential (Vm) throughout 

the cell cycle seems informative (Yang and Brackenbury 2013). For example, 

proliferating cancer and stem cells are more depolarized (-20 to -40 mV) than other 
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cells, namely neurons and cardiomyocytes, which hold their membrane potential at 

-60 to -80 mV. Moreover, cells throughout the cell cycle in fact have a depolarized 

Vm in the G2/M transition. K+ ion channels have another traditional role, regulating 

cellular proliferation through cell volume control. It has been shown that during the 

cell cycle the EAG2 voltage-gated K+ channels sit in different positions, moving from 

inside the cell to the plasma membrane where they serve as a checkpoint before 

mitotic entry at G2/M phase (Huang et al. 2012). An additional notion is that K+ ion 

channel induced membrane hyperpolarisation facilitates Ca2+  entry  through TRP 

ion channels (Wulff and Kohler 2013), thereby increasing [Ca2+]i , which positively 

triggers cell proliferation (Huang and Jan 2014). In addition to these canonical roles, 

it is worth highlighting their emerging roles as non-conducting channels. Indeed, it 

has been reported that when a nonconducting mutant, Kv1.3 channel, is expressed 

in HEK cells, and these cells do not lose growth capacities (Cidad et al. 2012). 

In the light of this last idea, this study will address the non-canonical role of SK 

potassium ion channels in the context of breast cancer biology, particularly cell 

proliferation, as well as questioning a putative mechanism that links these ion 

channels to the signalling cascades. The International Agency for Research on 

Cancer currently reported that the global burden through this type of cancer in 

females reaches approximately 22.9% as an invasive cancer. 
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5.2 Hypothesis and aims  

That SK ion channel activity promotes proliferation in breast cancer lines, and hence 

SK channel blockade may inhibit cancer cell growth. 

 

The principal objectives are:   

1. To determine the profile of expression of SK1-4 channels in five breast 

cancer cell lines. 

2. To establish a role, if any, for SK channels using siRNA-mediated 

knockdown. 

3. To probe any cytotoxic effects of SK channel blockade on breast cancer cell 

lines using selective small molecule blockers of SK channels. 

4. To test whether changes in apoptotic mechanisms are involved in any of the 

effects observed.  
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5.3 Materials and methods 

5.3.1 Cell origins and features 

This in vitro study accessed a panel of widely studied breast cancer cell lines, which 

express various biological and pathological features, as well as endocrine 

responsiveness as summarised below: 

 

Cell type Type/Drug 
Gene 

cluster 
ER 

status 
 

PR 
status 

HER2 
status 

Source and  
Tumour type 

MCF-7  Wild Luminal + + - PE, IDC 

TamR Tamoxifen  
 

     

FasR Fulvestrant      

BT-474 Wild Luminal + + + P Br., IDC 

MDA-MB-231 Wild Basal B - - - PE, AC 

 

Table 5.1 Biological features of breast cancer cell lines indicated (Knowlden et al. 

2005; Knowlden et al. 2003; Neve et al. 2006). PE denotes pleural effusion, P. Br. 

denotes primary breast, IDC denotes invasive ductal carcinoma, and AC denotes 

adenocarcinoma.  

The target cells were maintained in their culture using established growth medium 

and methodologies (See chapter two).  

5.3.2  Polymerase chain reaction 

The mRNA messages were investigated for all SK family members of K+ channels 

in the target cells. Total RNA was lysed and quantified, its purity and its integrity 

ensured. The cDNA samples were then synthesized using predesigned primer 

sequences for the transcripts of SK channel and β-actin which was the necessary 

reference (See table 5.2). For the negative control, the reaction excluded reverse 

transcriptase activity, which was referred to as No RT.  The target DNA sequences 

were amplified, conditions being optimised for the PCR reactions of each pair of 

primers, by varying the temperatures. After the identification of the optimum 
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conditions for the cell lines, this profile was used in all reactions (PCR). First, 

denaturation at 95°C for 5 minutes, followed by 30 cycles of incubation consisting 

of  95°C for 30 seconds, 55°C for 30 seconds, followed by an extension step at 72°C 

for 1 minute, and final extension step (72°C for 5 minutes). RT-PCR products were 

stained and then visualised by UV light after being run on an 1% agarose gel 

electrophoresis.     

 

Gene Gene ID Primer sequences 
 Sizes  
(bp) 

β-actin NM_001101 
F.  5’-CCCAGCCATGTACGTTGCTA-3’ 

126 
R.  5’-AGGGCATACCCCTCGTAGATG-3’ 

KCNN1 
(SK1) 

NM_002248.4 
F.  5’-TGGACACTCAGCTCACCAAG-3’ 

208 
R.  5’-TTAGCCTGGTCGTTCAGCTT-3’ 

KCNN2 
(SK2) 

AF397175.1 
F.  5’-CAAGCAAACACTTTGGTGGA-3’ 

249 
R.  5’-CCGCTCAGCATTGTAAGTGA-3’ 

KCNN3 
(SK3) 

NM_002249.5 
F. 5’-AAGCGGAGAAGCACGTTCATA-3’ 

180 R. 5’-CTGGTGGATAGCTTGGAGGAA-3’ 
KCNN4 
(SK4) 

AB128983.1 
F.  5’-GAGAGGCAGGCTGTTATTGC-3’ 

215 
R.  5’-ACGTGCTTCTCTGCCTTGTT-3’ 

 

Table 5.2 Primer sequences for both human SK channel transcripts and the positive 

control for the human cell lines, and predicted identities. F. denotes forward primer 

and R. denotes reverse primer.   

 

In the MCF-7 cell lineage, changes in gene quantity across cell types were analysed, 

samples from MCF-7 sensitive cells being compared with MCF-7 endocrine 

resistant cells, which include TamR and FasR cells, to identify whether SK channel 

transcripts were differentially regulated in endocrine resistant cells, by consulting 

the Affymetrix microarray database.   
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5.3.3 Small interference RNA  

In order to render an effective knockdown of the channel of interest the Eurofins 

Genomics database was consulted, to choose the most effective candidate, i.e. one 

that gained the top rank and highest percentile score based on previous work. 

Experiments used the following sequences: 

For non-targeting siRNA, namely green florescent protein (GFP), which serves as 

non-specific control siRNA: 5'-GGCUACGUCCAGGAGCGCACC-3'. For targeting 

siRNA, SK2 target sequence:  5’-GCAUUGGAGCACUUAAUAA-3’ in exon 1, and 

SK3 specific sequence: 5'-UUGUUGUUAUGGUGAUAGA-3' in exon 3. These were 

the sequences for the sense in which complementary ends were defined, thereby 

restricting the sites.               

The specific SK siRNA oligonucleotides were complexed with Oligofectamine™ 

transfection reagent in Opti-MEM® medium. Experiments first monitored the effect 

of variable concentrations of siRNAs up to 100 nM on the cell lines, optimising the 

effectiveness of the siRNA transfection.  

For studies of siRNA-mediated changes in cellular proliferation and apoptosis, the 

proliferating cells were seeded a density of 200 X 103 cells per well using six-well 

plates. After 24 hours, siRNA experiments were conducted using 50 nM and 75 nM 

to deliver the SK2 and SK3 siRNAs respectively along with controls. After 72 hours, 

MTS assays were carried out on both control and SK-siRNA treated cells, to test 

whether SK2-3 gene knockdown impacts on the growth of the cells at one time-

point. Cells expressing SK-siRNA along with the controls, were counted, re-plated 

in 96-well plates and allowed to grow in the regular (siRNA-free) medium, and the 

medium refreshed every 24 hours. After this expansion, the assay was 

accomplished by applying the PMS-MTS mix (1:5), thus producing formazan by 
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functional cells. Cells, non-transfected cells (control), control siRNA (GFP), and SK-

siRNA treated, were also examined to uncover the possible mechanisms, if any, 

which tip the balance between cell growth (Anti-apoptotic proteins) and cell death 

(Pro-apoptotic proteins), using western blotting. This step was performed 72 hours 

post-transfection.      

5.3.4 Western blotting 

Cells were lifted and harvested in cold Dulbecco’s phosphate buffered saline by aid 

of the cell scraper. Next, the pellet was formed, cells (full lysate) were disintegrated 

in a mixture of Pierce lysis IP buffer and Halt™ protease inhibitor cocktail (100:1), 

and suspended proteins were left for 30 minutes. After centrifugation, the 

supernatants that carry proteins, were pipetted into fresh tubes. Protein 

concentrations were then measured in the BCA assays. PAGE electrophoresis and 

Immunoblotting used the standard procedure (See chapter two). Following the 

electrophoresis step, westerns (proteins) were blotted onto membranes, and 

incubated in a blocking solution, 5% (w/v) dried skimmed milk and Tris buffered 

Saline with Tween®-20, and were then probed with a variety of specific or loading 

control antibodies: the noted suppliers’ dilution ratios are rabbit polyclonal anti-SK2 

long and short isoforms (Abcam ab85401, 1:1000), rabbit polyclonal anti-SK3 

(Abcam ab28631, 1:1000), rabbit monoclonal anti-Bcl-2 (Abcam ab32124, 1:1000), 

rabbit monoclonal anti-Caspase-7 full length and cleaved forms (Cell Signalling 

Technology #9492, 1:1000), rabbit polyclonal anti- cleaved caspase-9 (Cell 

Signalling Technology #Asp315, 1:1000), and mouse anti-GAPDH (Sigma-Aldrich 

G9295,1:50,000). These were all diluted in the blocking solution. All antibodies, with 

the exception of anti-GAPDH mouse monoclonal antibody, were incubated 
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overnight for 16 hours. The following day, membranes were incubated with anti-

GAPDH mouse monoclonal antibody after being washed with Tris buffered Saline 

with Tween®-20. Signals were developed and the exposure times were: 2 minutes, 

3 minutes, 2 minutes, 2 minutes, 2 minutes and 30 seconds, for the detection, 

respectively. The resulting bands (signals) were analysed by densitometry.  

5.3.5 SK channel pharmacology  

Pharmacological probing of proliferating cells was also employed to examine any 

changes in the proliferative capacity of the cells in response to the challenge or 

stimulation with SK channel modulators, namely blockers and activators. After 

seventy two hours, the levels of cell viability were determined. 
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5.4 Results 

5.4.1 SK channel expression and modulation in wild-type and 

endocrine resistant MCF-7 cells 

5.4.1.1 SK channel mRNA investigation and analysis  

In this section RT-PCR was used to investigate the presence of SK channel mRNA 

message in the MCF-7 (ER+, PR+, HER2-) adenocarcinoma cell line. This indicated 

that only Kca2.2 (SK2) and Kca3.1 (SK4) channel transcripts were present at the mRNA 

level (Figure 5.1). These cells can become less sensitive, thus eventually 

developing resistance to endocrine therapy, namely Tamoxifen and Fulvestrant. In 

order to test a putative mechanism of resistance, both Tamoxifen-resistant (TamR) 

and Fulvestrant-resistant (FasR) cell models, were also questioned as to the 

existence of the message for SK channel transcripts. Similar results were found 

regarding the presence of SK2 and SK4 channel mRNA in both TamR (Figure 5.2) 

and FasR (Figure 5.3) cells by RT-PCR. Such qualitative measures of SK channel 

transcripts (SK1-4) in these models compared to that of wild-type MCF-7 cells were 

further probed by consulting microarray. There was consistent expression of the SK 

subtypes in these cell lines, and only FasR cells express significantly increased SK4 

channels (p-value < 0.01 versus control) compared to MCF-7 cells (Figure 5.4).  
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Figure 5.1 SK channel mRNA investigation in wild-type MCF-7 cells. Only the 

amplicons for SK2 and SK4 channels are present and the PCR products are of the 

predicted size. β-actin serves as the normalising control. 

 

 

Figure 5.2 SK channel mRNA investigation in endocrine resistant TamR cells. Only 

the amplicons for SK2 and SK4 channels are present and the PCR products are of 

the predicted size. β-actin serves as the normalising control. 

 

 

Figure 5.3 SK channel mRNA investigation in endocrine resistant FasR cells. Only 

the amplicons for SK2 and SK4 channels are present and the PCR products are of 

the predicted size. β-actin serves as the normalising control. 
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Figure 5.4 Microarray analysis of SK channel transcripts in the MCF-7 cell lineage. 

a) SK1 gene expression b) SK2 gene expression c) SK3 gene expression d) SK4 

gene expression e) Heatmap of SK1-4 gene expression in the indicated cell types. 

Black boxes denote no change in gene expression. Green boxes denote 

downregulation. Red boxes denote upregulation. Gene expression intensities are 

presented in log2 form. FasR cells express significantly higher SK4 channel 

expression upon fulvestrant treatment for 27 months, compared to MCF-7 cells, **p-

value < 0.01 versus control, one-way ANOVA followed by Tukey’s post hoc test, n 

= 3.  

MCF-7 FasR TamR 
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5.4.1.2 SK2 channel protein expression in wild-type MCF-7 cells 

The SK2 mRNA message was expressed across the MCF-7 cell lineage (See 

figures 5.1-5.4), thus cellular expression of SK2 channel was next assessed at the 

protein level by Western blotting. Because this channel has not been questioned 

and catalogued in cancer biology, this led to increased interest that it was a channel 

target. Here, however, it was shown pharmacologically that SK4 inhibition did not 

significantly (Figure 5.13) block cell growth. In these three cell lines, Western blots 

revealed two isoforms of the SK2 channel at the protein level (Figure 5.5), variant A 

that exhibits a long form of SK2, variant B containing a shorter N-terminal extension. 

Thus, they co-exist in the same tissue and are capable of generating a 

heteromultimeric channel, functioning in concert (Allen et al. 2011a). SK2 channel 

expression was noticeably higher in MCF-7 cells than resistant cell lines, TamR and 

FasR, which was consistent with the microarray analysis (see Figure 5.4).  

 

 

 

 

 

 

Figure 5.5 Immunoblot of SK2 channel subtype in the MCF-7 cell lineage. In TamR 

and FasR cells, SK2 channel protein expression is modestly downregulated. 

GAPDH serves as the normalising control. 
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5.4.1.3 siRNA-mediated modulation of SK2 channel in MCF-7 cells  

Whether SK2 channel gene modulation impacts on MCF-7 cell viability was now 

tested. Following small interference RNA induction, Western blotting used samples 

from the following groups: control MCF-7 cells, which were only grown in normal 

medium, GFP-siRNA treated cells, which were transfected with GFP-siRNA that 

serves as the normalising siRNA, as well as SK2-siRNA treated cells, which were 

transfected with 50 nM of total siRNA. As the target gene express two isoforms, both 

proteins were detected in MCF-7 cells at the protein level (Figures 5.6) using a 

specific anti-SK2 antibody that itself detects both forms. Here, it is important to note 

that the siRNA can target both isoforms, having the same potential siRNA optimal 

binding site in a conserved region. Results showed that siRNA produced a near 45% 

(P˂0.001 versus control, densitometry relative to GAPDH expression) reduction in 

SK2-L proteins (Figures 5.6 and 5.7). It also achieved knockdown SK2-S channel 

proteins by a similar amount (Figure 5.6), despite no noticeable change in GFP-

siRNA treated cells (Figure 5.6), compared to control. 

To characterise the effect of SK2 channel knockdown on MCF-7 cell viability an 

MTS assay was used to determine relative viable cell numbers in the various groups 

after an additional 72 hours post-transfection in the normal culture condition. SK2 

knockdown dramatically reduced (P˂0.0001 versus control) MCF-7 cell viability 

(Figure 5.8), repressing cell growth. Conversely, GFP-siRNA treated cell numbers 

were entirely normal, indicating that transfection per se did not induce obvious 

cytotoxic effects to the cells. Intriguingly, the results also indicate that removal of 

siRNA effect from the culture, did not allow recovery of the cell growth confirming 

that the effect is irreversible.  
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Figure 5.6 Representative immunoblot of SK2 channel in wild-type MCF-7 cells 

transfected with specific SK2-siRNA. SK2 channel protein expression is noticeably 

downregulated compared to control. GAPDH serves as the normalising control. 
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Figure 5.7 Densitometric measurement of SK2-long isoform (SK2-L) channel in 

wild-type MCF-7 cells transfected with specific SK2-siRNA. Data are shown as 

means ± SEM. ***p-value < 0.001 versus control, one-way ANOVA followed by 

Dunnett’s post hoc test, n =3.  
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Figure 5.8 The effect of siRNA-mediated knockdown of the SK2 channel on MCF-

7 cell viability. Data are shown as means ± SEM. ****p-value < 0.0001 versus 

control, one-way ANOVA followed by Dunnett’s post hoc test, n =9.  
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5.4.1.4 The effect of siRNA-mediated knockdown of SK2 channel on 

apoptosis in MCF-7 cells  

Cells lacking SK2 channels have in fact low viability. A key question indeed is how 

then SK channel reduction contributes to cell loss? These channels have been 

implicated in apoptosis, which is arrested in cancer biology. This study addresses 

this question, thereby focusing on this pathway of cell death.  

In Western blotting, direct targeting of SK2 channel by siRNA revealed that these 

channels were involved in regulating apoptosis. Knockdown of these proteins, not 

only caused a substantial loss (P˂0.0001 versus control) of Bcl-2 expression by 

90% (Figures 5.9 and 5.10), but also coincided with a marked increase of (P˂0.0001 

versus control) full length Caspase-7 by 370% (Figures 5.11 and 5.12), a member 

of the effector caspases. This antibody can detect both forms of the enzyme, and 

importantly Western blotting detected no cleaved (activated) form of caspase-7 

(Figures 5.11) until SK2-siRNA treatment, and as expected there was no change in 

the controls. Conversely, control siRNA had no effect on Bcl-2 and caspase-7 

activity. These results clearly show a negative correlation between SK2 channel and 

the apoptotic pathway through unbalancing, at least, these apoptotic markers, Bcl-

2 and caspase-7. Indeed, SK2 channel inhibition by siRNA in these cells would 

augment apoptotic cell loss and thus hinder growth rate. This insightful crosstalk 

uncovers an event in the context of apoptosis biology, where Bcl-2 and caspase-7 

are SK channel-dependent effectors, a result which is a first in this study. Therefore, 

SK2-dependent cell loss is associated with apoptosis or decreased cell viability.    
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Figure 5.9 Representative immunoblot of anti-apoptotic Bcl-2 protein in wild-type 

MCF-7 cells transfected with specific SK2-siRNA. Bcl-2 expression is noticeably 

downregulated compared to control. GAPDH serves as the normalising control. 
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Figure 5.10 Densitometric measurement of anti-apoptotic Bcl-2 protein in wild-type 

MCF-7 cells transfected with specific SK2-siRNA. Data are shown as means ± SEM. 

****p-value < 0.0001 versus control, one-way ANOVA followed by Dunnett’s post 

hoc test, n =3.  
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Figure 5.11 Representative immunoblot of pro-apoptotic caspase-7 protein in wild-

type MCF-7 cells transfected with specific SK2-siRNA. Caspase-7 protein 

expression is noticeably upregulated compared to control. GAPDH serves as the 

normalising control. 
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Figure 5.12 Densitometric measurement of full length (FL) pro-apoptotic caspase-

7 protein in wild-type MCF-7 cells transfected with specific SK2-siRNA. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus control, one-way ANOVA 

followed by Dunnett’s post hoc test, n =3.  
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5.4.1.5 Pharmacological modulation of SK2 channel in the MCF-7 lineage  

Given that these molecules are functionally expressed in MCF-7 and endocrine 

resistant cells, the next question was whether SK channel blockade drives cell loss 

or activation saves cells. SK channel modulators were dissolved in dimethyl 

sulfoxide following the supplier’s instruction (See chapter two). There was no effect 

of working concentrations of the vehicle on relative cell numbers (Appendix 3, 

Figures 7.16, 7.17 and 7.18) over the period cell proliferation measured. In the SK 

channel blocking experiments, modulators were screened at multiple doses in 

increasing concentrations, considering the half maximal inhibitory concentrations 

(IC50)s, which were previously obtained, thereby generating dose-response curves. 

For SK activation experiments, three concentrations only were applied, and results 

are shown in the form of bar charts. SK channels modulators have currently been 

identified with known specificities. Pharmacological experiments were carried out in 

MCF-7 cells targeting both SK2 and SK4 channels. The SK1-3 blocker, UCL1684, 

caused a dose-dependent decrease (IC50= 6.2 nM) in MCF-7 cell numbers after 72 

hours (Figure 5.13).  

With regard to specificity of the target and whether the opposite effect can be 

obtained, cells were also exposed to the SK2-3 channel activator, CyPPA (10-30 

µM), the latter appreciably enhancing cell growth (P˂0.0001 versus control) by 

160% (Figure 5.14). Over the same time course, inhibition of SK4 channels by 

NS6180, a new SK4 channel blocker, showed only a minor loss in MCF-7 cells 

(Figure 5.13). This was the reason this study did not attempt to examine this 

channel, SK4, in other cell types. Intriguingly, resistant TamR and FasR cells were 

also sensitive to the SK1-3 channel blocker, UCL1684, with IC50 values of 5.6 nM 

(Figure 5.15) and 3.5 nM (Figure 5.16), respectively.     
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Figure 5.13 The effect of SK1-3 channel blocker, UCL1684, and SK4 channel 

blocker, NS6180, on MCF7 cell viability. From the line of best fit of the dose-

response data, the IC50 was 6.2 nM, curve, n= 9. 
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Figure 5.14 The effect of SK2-3 activator, CyPPA, on MCF-7 cell viability. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus control, one-way ANOVA 

followed by Dunnett’s post hoc test, n =9.  
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Figure 5.15 The effect of SK1-3 channel blocker, UCL1684, on TamR cell viability. 

From the line of best fit of the dose-response data, the IC50 was 5.6 nM, n= 9. 
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Figure 5.16 The effect of SK1-3 channel blocker, UCL1684, on FasR cell viability. 

From the line of best fit of the dose-response data, the IC50 was 3.5 nM, n= 9. 
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5.4.2 SK channel expression and modulation in BT-474 cells 

5.4.2.1 SK channel mRNA investigation   

To determine cell specificity the expression pattern of SK channels in other breast 

cancer cell lines was checked, and the question asked: are the subtypes of any SK 

channels still a target for blocking cell growth? To address this question, BT-474 

cells (ER+, PR+, HER2+) were further examined. RT-PCR investigation for all 

transcripts, SK1-4, in BT-474 cells revealed only the presence of SK2 and SK4 

channel messages (Figure 5.17) in a similar fashion to that of MCF-7 cells. No gene 

microarray data for the quantitative assessment of expressed channels was 

followed up.       

 

 

 

 
Figure 5.17 SK channel mRNA investigation in wild-type BT-474 cells. Only the 

amplicons for SK2 and SK4 channels are present and the PCR products are of the 

predicted size. β-actin serves as the normalising control. 
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5.4.2.2 SK2 channel protein expression and siRNA-mediated modulation of 

SK2 channel in BT-474 cells  

As expected, immunoblots of control BT-474 cells found that SK2 channel was also 

expressed at the protein level (Figure 5.18), which was expressing both SK2-L and 

SK2-S isoforms, as shown using the specific anti-SK2 antibody.  

In siRNA-mediated experiments, 50 nM of total siRNA was used. This produced a 

profound reduction of near 85% (P˂0.0001 versus control) in SK2-L channel 

proteins (Figures 5.18 and 5.19) after SK2 gene silencing for 72 hours. 

Coincidentally, the siRNA effectively reduced SK2-S channel expression (Figure 

5.18) to a level in which proteins barely remained, indicating that BT-474 cells 

probably have lower normal expression of SK2 channels than MCF-7 cells. 

Immunoblots of the siRNA control cells, which were GFP-siRNA treated, showed no 

significant changes compared to control.  

To assess viability of the cell lines after siRNA, MTS assay was employed and 

showed that BT-474 cells were strikingly sensitive (P˂0.0001 versus control) to the 

same concentration of SK2-siRNA, ~29% of cells remaining normal (Figure 5.20) 

compared with MCF-7 cells, where approximately 39% of cells were normal after 

siRNA. GFP-siRNA treated cells remained unaffected (Figure 5.20) compared to 

control. Again, these results show that this molecule, SK2, is a strong candidate for 

cell growth repressing another breast cancer BT-474 cell line. 
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Figure 5.18 Representative immunoblot of SK2 channel in wild-type BT-474 cells 

transfected with specific SK2-siRNA. SK2 channel protein expression is noticeably 

downregulated compared to control. GAPDH serves as the normalising control. 
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Figure 5.19 Densitometric measurement of SK2-long (SK2-L) isoform channel in 

wild-type BT-474 cells transfected with specific SK2-siRNA. Data are shown as 

means ± SEM. ****p-value < 0.0001 versus control, one-way ANOVA followed by 

Dunnett’s post hoc test, n =3.  
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Figure 5.20 The effect of siRNA-mediated knockdown of SK2 channel on BT-474 

cell viability. Data are shown as means ± SEM. ****p-value < 0.0001 versus control, 

one-way ANOVA followed by Dunnett’s post hoc test, n =9.  
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5.4.2.3 The effect of siRNA-mediated knockdown of SK2 channel on 

apoptosis in BT-474 cells   

The molecular mechanism by which SK2 channels arrest cell growth activity is 

currently unknown. SK2 channel might regulate apoptosis in this cell line and to 

address this question, Western blotting was undertaken to monitor the activity of 

Bcl-2 and caspase-7 expression, as apoptotic markers after SK2 channel 

knockdown by siRNA for 72 hours. This treatment produced marked changes in 

apoptotic markers. Intriguingly, Bcl-2 expression was downregulated (P˂0.0001 

versus control) by almost 90% (Figures 5.21 and 5.22), whereas a strong increase 

(P˂0.0001 versus control) in full length caspase-7 expression by near 470% 

(Figures 5.23 and 5.24), was revealed. Therefore, this result was consistent with 

detection of cleaved caspase-7 in SK2-siRNA treated cells (Figure 5.23). Control 

siRNA cells showed a slight decrease in protein expression, but Bcl-2 and caspase-

7 activity was not significantly affected.   

With regard to the effect of siRNA-mediated modulation on cell viability and 

apoptotic markers, results from MCF-7 and BT-474 cell lines were broadly 

consistent, so strengthening the main hypothesis. A minor exception was that BT-

474 cells were more sensitive to the siRNA used than MCF-7 cells, as is explained 

in (5.4.2.2 section). 
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Figure 5.21 Representative immunoblot of anti-apoptotic Bcl-2 protein in wild-type 

BT-474 cells transfected with specific SK2-siRNA. Bcl-2 protein expression is 

noticeably downregulated compared to control. GAPDH serves as the normalising 

control. 
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Figure 5.22 Densitometric measurement of anti-apoptotic Bcl-2 protein in wild-type 

BT-474 cells transfected with specific SK2-siRNA. Data are shown as means ± 

SEM. ****p-value < 0.0001 versus control, one-way ANOVA followed by Dunnett’s 

post hoc test, n =3.  
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Figure 5.23 Representative immunoblot of pro-apoptotic caspase-7 protein in wild-

type BT-474 cells transfected with specific SK2-siRNA. Caspase-7 protein 

expression is noticeably upregulated compared to control. GAPDH serves as the 

normalising control. 
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Figure 5.24 Densitometric measurement of full length (FL) pro-apoptotic caspase-

7 protein in wild-type BT-474 cells transfected with specific SK2-siRNA. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus control, one-way ANOVA 

followed by Dunnett’s post hoc test, n =3.  



Chapter Five 

206 
 

5.4.2.4 Pharmacological modulation of SK2 channel in BT-474 cells 

The BT-474 cell line was also questioned in respect of pharmacology, to determine 

whether pharmacological modulation of the subtype, SK2, of SK potassium ion 

channels can mirror siRNA results in terms of viability. The MTS assay showed that 

inhibition of SK2 channel in BT-474 cells caused vast cell loss with an IC50= 3.7 nM 

over 72 hours (Figure 5.25). On the other hand, the SK2-3 activator, CyPPA (10-30 

µM), markedly (P˂0.0001 versus control) stimulated growth of BT-474 cells by near 

160% (Figure 5.26), in a dose-dependent manner.  

The viability tests revealed also no major differences in respect of SK2 channel 

pharmacology between MCF-7 and BT-474 cells, thus indicating that these cells 

were sensitive to SK2 channel modulation in a similar pattern.  

The next question is:  

Do breast cancer cells express only the subtype SK2 and SK4 of SK channels? To 

answer this question, this study was expanded, using another phenotype of breast 

cancer, MDA-MB-231, which is a triple negative (ER-, PR-, HER2-) cell line.  
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Figure 5.25 The effect of SK1-3 channel blocker, UCL1684, on BT-474 cell viability. 

From the line of best fit of the dose-response data, the IC50 was 3.7 nM, n= 9. 
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Figure 5.26 The effect of SK2-3 activator, CyPPA, on BT-474 cell viability. Data are 

shown as means ± SEM. ****p-value < 0.0001 versus control, one-way ANOVA 

followed by Dunnett’s post hoc test, n =9.  
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5.4.3 SK channel expression and modulation in MDA-MB-231 cells 

5.4.3.1 SK channel mRNA investigation   

To further test the hypothesis, the MDA-MB-231 cell line was also examined. These 

cells provided different and interesting insights regarding the expression pattern of 

the SK subtypes. RT-PCR determined that this cell line possesses KCa2.3 (SK3) 

channel rather than KCa2.2 (SK2) channel, as well as the SK4 subtype (Figure 5.27). 

Therefore, a new candidate, the SK3 channel, was examined in this cell line, using 

the same techniques. 

 

 

 

 
Figure 5.27 SK channel mRNA investigation in wild-type MDA-MB-231 cells. Only 

the amplicons for SK3 and SK4 channels are present and the PCR products are of 

the predicted size. β-actin serves as the normalising control. 
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5.4.3.2 SK3 channel protein expression and siRNA-mediated modulation of 

SK3 channel in MDA-MB-231 cells  

Following a systematic study, Western blotting of lysates from control MDA-MB-231 

cells showed that SK3 proteins were also expressed at the protein level (Figure 

5.28) using a specific anti-SK3 antibody, this being consistent with the RT-PCR 

result. Silencing of the SK3 gene with specific-SK3 siRNA (75 nM) resulted in a 

significant (P˂0.0001 versus control) reduction of the SK3 channel protein 

expression by 50% in siRNA (Figure 5.28 and 5.29). Conversely, GFP-siRNA had 

no significant effect on the expression level of the SK3 channel proteins compared 

to control (Figure 5.28 and 5.29). MDA-MB-231 cell viability changes were 

monitored by MTS assay, over 72 hours. Cells lacking SK3 channels showed a 

significant (P˂0.0001 versus control) loss of MDA-MB-231 cells by near 60% (Figure 

5.30), whereas cells in the GFP-siRNA treated group remained viable (Figure 5.30). 

In summary, siRNA results show that for the cell lines used namely MCF-7 (ER+, 

PR+, HER2-), BT-474 (ER+, PR+, HER2+), as well as MDA-MB-231 (ER-, PR-, HER2-

) cells these possess SK channel-dependent cell growth, irrespective of the subtype 

through either SK2 or SK3 channel targeting.  
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Figure 5.28 Representative immunoblot of SK3 channel in wild-type MDA-MB-231 

cells transfected with specific SK3-siRNA. SK3 channel protein expression is 

noticeably downregulated compared to control. GAPDH serves as the normalising 

control. 
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Figure 5.29 Densitometric measurement of SK3 channel in wild-type MDA-MB-231 

cells transfected with specific SK3-siRNA. Data are shown as means ± SEM. ****p-

value < 0.0001 versus control, one-way ANOVA followed by Dunnett’s post hoc test, 

n =3.  
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Figure 5.30 The effect of siRNA-mediated knockdown of SK3 channel on MDA-MB-

231 cell viability. Data are shown as means ± SEM. ****p-value < 0.0001 versus 

control, one-way ANOVA followed by Dunnett’s post hoc test, n =9.  
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5.4.3.3 The effect of siRNA-mediated knockdown of SK3 channel on 

apoptosis in MDA-MB-231 cells 

Since, SK2 channels use Bcl-2 and caspase-7 to regulate cell growth in the cell lines 

tested so far, the link of the SK3 channel to apoptosis was tested using the same 

apoptotic markers, namely Bcl-2 and caspase-7. In Western blotting experiments, 

application of SK3-siRNA for 72 hours produced a vast (P˂0.0001 versus control) 

decrease in Bcl-2 protein expression by up to 90% (Figures 5.31 and 5.32), but no 

significant difference between control and GFP-siRNA groups was observed 

(Figures 5.31 and 5.32). The siRNA results show that full length caspase-7 

increases by 370% (P˂0.0001 versus control) following SK3 channel inhibition. 

Western blotting showed no cleaved caspase-7 expression until SK3-siRNA 

treatment (Figures 5.33 and 5.34). Moreover, controls demonstrate a minor, but not 

significant, difference in full length caspase-7 expression (Figures 5.33 and 5.34). 

 These data are internally consistent amongst MCF-7 (ER+, PR+, HER2-), BT-474 

(ER+, PR+, HER2+), as well as MDA-MB-231 (ER-, PR-, HER2-) cell lines in respect 

of apoptotic induction by SK2 and SK3 subtypes. 
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Figure 5.31 Representative immunoblot of anti-apoptotic Bcl-2 protein in wild-type 

MDA-MB-231 cells transfected with specific SK3-siRNA. Bcl-2 protein expression is 

noticeably downregulated compared to control. GAPDH serves as the normalising 

control. 
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Figure 5.32 Densitometric measurement of anti-apoptotic Bcl-2 protein in wild-type 

MDA-MB-231 cells transfected with specific SK3-siRNA. Data are shown as means 

± SEM. ****p-value < 0.0001 versus control, one-way ANOVA followed by Dunnett’s 

post hoc test, n =3.  
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Figure 5.33 Representative immunoblot of pro-apoptotic caspase-7 protein in wild-

type MDA-MB-231 cells transfected with specific SK3-siRNA. Caspase-7 protein 

expression is noticeably upregulated compared to control. GAPDH serves as the 

normalising control. 
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Figure 5.34 Densitometric measurement of full length (FL) pro-apoptotic caspase-

7 protein in wild-type MDA-MB-231 cells transfected with specific SK3-siRNA. Data 

are shown as means ± SEM. ****p-value < 0.0001 versus control, one-way ANOVA 

followed by Dunnett’s post hoc test, n =3.  
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5.4.3.4 Pharmacological modulation of SK3 channel in MDA-MB-231 cells 

As seen above in MCF-7 (ER+, PR+, HER2-) and  BT-474 (ER+, PR+, HER2+) cells 

SK2 channel inhibition by the SK1-3 blocker, UCL1684, led to cell growth 

suppression. The anti-proliferative effects of two SK small molecule inhibitors, which 

include UCL1684 and NS8593, were tested in the viability MTS assays using MDA-

MB-231 cells and the same time course. Screening of UCL1684 against MDA-MB-

231 cells, negatively affected cell growth (IC50= 5.9 nM) over 72 hours (Figure 5.35), 

mimicking the siRNA result. To check for SK3 channel specificity, another generic 

SK1-3 blocker, NS8593, was tested. This different blocker produced the same result 

on cell viability with an IC50 of 814 nM in MDA-MB-231 cells (Figure 5.36). Opening 

of SK3 channels by CyPPA (10-30 µM) caused an increase (P˂0.0001 versus 

control) in cell numbers to 160% (Figure 5.37), further demonstration that the anti-

proliferative effect is indeed specific to the SK3 channel. 
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Figure 5.35 The effect of SK1-3 channel blocker, UCL1684, on MDA-MB-231 cell 

viability. From the line of best fit of the dose-response data, the IC50 was 5.9 nM, n= 

9. 
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Figure 5.36 The effect of SK1-3 channel blocker, NS8593, on MDA-MB-231 cell 

viability. From the line of best fit of the dose-response data, the IC50 was 8.1 nM, n= 

9. 
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Figure 5.37 The effect of the SK2-3 activator, CyPPA, on MDA-MB-231 cell viability. 

Data are shown as means ± SEM. ****p-value < 0.0001 versus control, one-way 

ANOVA followed by Dunnett’s post hoc test, n =9.  
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5.5 Discussion 

The main findings of this study are: 

1. KCa2.2 (SK2) and KCa3.1 (SK4) channels are expressed in four widely used 

breast cancer cell lines, which include wild-type, MCF-7 and BT-474, and 

endocrine resistant, TamR and FasR, cell types.  

2. KCa2.3 (SK3) and KCa3.1 (SK4) channels are expressed in another commonly 

used, triple negative cell line, namely MDA-MB-231 cells.  

3. Pharmacological inhibition of SK2 ion channels in MCF-7, BT-474, as well as 

endocrine resistant cells, TamR and FasR, significantly blocked cell growth 

with drugs in the low nanomolar range.    

4. Pharmacological inhibition of SK3 ion channels in MDA-MB-231cells also 

significantly blocked cell growth.  

5. In contrast, activation of SK2 and SK3 channels in all wild-type lines used, 

staves off cell loss and markedly enhanced cell growth. 

6. Small interference RNA-mediated knockdown of SK2 ion channels in MCF-7 

and BT-474 cells significantly arrested cell growth.  

7. Small interference RNA-mediated knockdown of SK3 ion channels in MDA-

MB-231 cells also significantly arrested cell growth.  

8. Intriguingly, siRNA-mediated knockdown of SK2 and SK3 channels in the cell 

lines indicated produced a considerable downregulation of the anti-apoptotic 

protein Bcl-2, and a corresponding upregulation of the activated form of 

caspase-7 of effector caspases.  

9. In addition, siRNA-mediated knockdown of SK2 and SK3 channels also 

markedly increased caspase-9 protein expression, but not caspase-8, 
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indicating that these SK channels cross-talk with an intrinsic pathway of 

apoptosis. 
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To begin this discussion and to give some SK channel background, this potassium 

channel was first found in red blood cells, as well as excitable cells such as neurons, 

where they are involved laterally in hyperpolarisation (Alger and Nicoll 1980; Gardos 

1958). Since this work, similar studies raised the possibility that these molecules are 

also involved in other cellular functions where they regulate ion flux, K+ and Ca2+ 

(indirectly), at cellular levels, which can trigger intracellular signaling (Kaczmarek 

2006). Thus it was extremely hard to limit their role to “one way pathway”. Returning 

to the CNS system, SK1-4 channels are differentially distributed in the brain, SK1-3 

subtypes being principally and largely expressed in central neurons (Sailer et al. 

2004), but not the SK4 subtype (Adelman et al. 2012). In brain tissue, the SK2-long 

isoform controls the excitatory postsynaptic potential, which is, of course, an 

important component in synaptic signaling, plasticity, as well as learning (Allen et al. 

2011a). 

Intriguingly, in this study it was found that some neurons not only express SK1-3 

channel subtypes, but also the SK4 subtype at the mRNA level, for instance in the 

case of wild-type mouse striatal STHdh+/Hdh+ cells (See chapter three). This 

investigation also showed that other CNS resident cells, namely astrocytic and 

microglial cells, express in fact only SK4 channel (See chapters three and four).  

Work in chapter three showed that SK1-4 channel subtype activation in cells of CNS 

origin cells, namely neurons and astrocytes, had no effect on cell viability after 24 

hours, but importantly reversed any reduction in the viability caused by neuronal 

insults. Use of the relevant channel inhibitor abolished the protection afforded by SK 

channel activation. Here, it is important to highlight that in contrast to cancer cells, 

the relevant SK blockers and activators used had no effect on the “normal” viability 

of the CNS cells (See chapter three). 
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The cancer work here was carried out in four breast cancer cell lines, which include 

wild-type, MCF-7and BT-474, and endocrine resistant, namely TamR and FasR 

cells, and it was found that these cells have a consistent SK subtype expression 

pattern, expressing SK2 and SK4 channel subtypes, while another widely used cell 

line, MDA-MB-231, lacks SK2 channel subtype cell but also expresses the SK3 

subtype alongside SK4. This cell line is triple negative (ER-, PR-, HER2-), while the 

MCF-7 line has (ER+, PR+, HER2-) status, and BT-474 cell has triple positive status 

(Neve et al. 2006). It is really intriguing that in non-tumorigenic cells, MCF 10A cells, 

results here have found that these do not express SK1, SK2, and SK3 channels 

(Appendix 3, Figures 7.19 and 7.20).    

The hypothesis in the cancer work in this study was proposed to link the previous 

findings mentioned above. In this regard it is interesting to note that SK2 channel 

subtype activation significantly reduces neuronal cell death caused by ischemia, by 

lowering Ca2+ entry in mouse hippocampal CA1 pyramidal neurons (Allen et al. 

2011b). It is clear that this element, in numerous pathological conditions, behaves 

as “criminal ion” when fluctuations are deregulated, thus triggering numerous 

cellular processes. Significantly, it is well documented that Ca2+ drives cancerous 

processes, especially proliferation, apoptosis, as well as cell cycle progression 

(Farfariello et al. 2015; Prevarskaya et al. 2010).  

The work presented here was limited to small (SK1-3) and intermediate (SK4) 

conductance calcium activated K+ channels. There were several reasons for 

eliminating the big (BK) conductance calcium activated K+ channels. First, these 

channels are less sensitive to Ca2+ than SK channels (Latorre and Brauchi 2006). 

In this respect, it is accepted that SK1-4 channel subtypes are comparably sensitive 

to Ca2+ fluctuations (Latorre and Brauchi 2006), this being the sole activator (Xia et 
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al. 1998). Importantly, it is curious that only few published works have questioned 

the role of SK1-3 channels in breast cancer (Potier et al. 2006), rather than SK4 and 

BK channels (Girault et al. 2012).  

SK channel pharmacology to date is well advanced (Wulff and Kohler 2013). Here, 

experiments examined the cytotoxic effect, if any, of SK1-4 channel modulation on 

the cell lines indicated. Pharmacological experiments first approached the question 

of the SK4 channel subtype in MCF-7 cells, using the up to date SK4 blocker, 

NS6180 (5-100 nM), which seems more potent (IC50= 9 nM) on the SK4 channel 

(Strobaek et al. 2013). The MTS viability assay showed that the SK4 blocker did not 

significantly block MCF-7 cell growth (Figure 5.13). TRAM-34 a former SK4 channel 

blocker at low micromolar concentrations actually enhances cell growth capacity in 

MCF-7 cells, by stimulating estrogen receptors, not through SK4 channel blockade 

(Roy et al. 2010). Both TRAM-34 and NS6180, at concentrations more than 1 µM, 

in fact cause off-target confusion, for example NS6180 blocks other ion channels 

such as Kv1.3 (Strobaek et al. 2013).   

The next candidate, the resident SK2 channel was then challenged. Knock down 

experiments, using siRNA in MCF-7 and BT-474 cells showed that SK2 channel 

loss produced a marked reduction in the viability of the indicated cells (Figures 5.8, 

and 5.20), respectively. Similar outcomes were obtained in MDA-MB-231 cells, once 

again reducing SK3 channels curtailed cell growth (Figure 5.30), despite only a 

partial but significant lack of these channels at the protein level after siRNA 

treatment (Figure 5.28).  

This work here now attempted to bring to light the underlying mechanism by which 

SK2-3 channels discourage cell growth. It should be noted that SK channels are 

critically expressed at a mitochondrial level (Dolga et al. 2014), and are implicated 
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as oncological targets (Leanza et al. 2014). Intriguingly, the protein analysis 

conducted here showed that knockdown of SK2 and SK3 channel subtypes resulted 

in a reduction of the anti-apoptotic Bcl-2 protein, and in contrast amplification of the 

activated caspase-7 form. This is an exciting breakthrough for cancer biology 

underlying that SK channels-related cell death can be achieved through  apoptosis, 

and as a corollary reduced apoptosis is important in the initiation of cancer, see for 

example (Llambi and Green 2011). Bcl-2 regulates the mitochondrial outer 

membrane permeability, which controls the liberation and localisation of pro-

apoptotic factors in the cytoplasm, thus committing cells to a death decision (Bender 

and Martinou 2013): hence it plays a pivotal role in creating either death or life 

decisions. Accordingly, results presented here clearly signify that SK2-3 channel 

blockade is offering a pro-apoptotic signal in these breast cancer cells. 

To recapitulate the siRNA-mediated effect using pharmacology, the relevant SK2 

and SK3 channel modulators were screened against the viability of cell lines, 

including resistant cells. Invariably, SK2 and SK3 channel inhibition markedly 

abated cell growth, mimicking the siRNA results. Against the MCF-7 lineage, namely 

MCF-7, TamR and FasR cells, the SK1-3 blocker, UCL1684, reduced cell number 

in a dose-dependent manner with an IC50 6.2, 5.6 and 3.5 nM respectively  (Figures 

5.13, 5.15, and 5.16). In this respect, it was found that UCL1684 blocks SK1-3 

channels in the low nanomolar range (IC50 3-6 nM): for example in rat chromaffin 

cells (Campos Rosa et al. 2000; Dunn 1999). Similarly, the blocker was active 

against both BT-474 (Figure 5.25), and MDA-MB-231 (Figure 5.35) cell growth. In 

the case of the latter cell line, experiments also used another generic SK1-3 blocker, 

NS8593, which produced a similar response (Figure 5.36). The IC50 in MDA-MB-231 
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cells was 814 nM compared with the Kd of 0.73 µM for the channel modulator in 

hippocampal CA1 neurons (Strobaek et al. 2006).  

Previous work has reported that the growth of MCF-7 cells is not responsive to 

apamin, which is also a SK1-3 channel blocker. In this study apamin (100 nM)  does 

not modulate the viability of MDA-MB-435 cells after 24 hours (Potier et al. 2006) 

This raises a question: why the sensitivity to small molecule inhibitors, namely 

UCL1684 and NS8593, but not apamin? This can perhaps be explained by the 

following: firstly, this study challenged cells over 72 hours, and this protocol is 

currently accepted generally in cancer work. Secondly, apamin is a peptide with no 

capacity to cross the cell membrane (Douda et al. 2015), so losing the prospect of 

targeting subcellular SK channels in the mitochondrial membrane. Thirdly, 

melanoma cells express higher level of SK2 channels under hypoxic than normoxic 

conditions, and they only respond to apamin in the former condition. Thus, levels of 

expression of SK2 channels dictates their response to pharmacological stimuli 

(Tajima et al. 2006). The results described in this chapter provide a rationale for 

effects observed. The conclusion is that cancer cells are ‘high-jacking’ SK2-3 

channels to drive life decisions by resisting apoptosis, at least, through Bcl-2 

regulation. This is further clarified by the finding that the relevant channel activator, 

CyPPA, which modulates SK2-3 by increasing the responsiveness of these 

channels to Ca2+ increments, increased cell growth in wild-type cell lines used in this 

cancer work after 72 hours. SK2 and SK3 channels respond to the modulator, 

CyPPA, with an EC50 14 µM and 5.6 µM respectively in HEK293 cells (Hougaard et 

al. 2007). The concentrations used here bracketed these values. The findings of this 

work perfectly fit our hypothesis that these SK proteins are responsible for cellular 

life and death decisions.  
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5.6 Conclusions 

The central big question in tumorigenesis is: Can we discover the biological 

processes and targets that deregulate cell growth and encourage tumorigenesis? 

The work presented in this chapter identified two SK potassium channels that can 

effectively modulate cell growth through apoptosis. Knockdown of these targets was 

potently cytotoxic, and was relevant to cell lines used, their being little difference in 

responsiveness. These results were confirmed in pharmacological experiments 

employing MTS cell viability, where it was shown that small molecule inhibitors of 

SK2 and SK3 channels can mirror siRNA results. The experiments here generated 

(IC50)s identical to published values for these SK blockers on their channel targets. 

Consolidating the pharmacological approach, activation of SK2 and SK3 channels, 

in contrast, further increased cell numbers. Results also showed that reductions of 

SK2 and SK3 channels in these breast cancer cell lines trigger apoptotic signals, 

through “off switch” of Bcl-2 and “on switch” of caspase-7 and caspase-9, including 

the activated form of the caspase. This study updates therefore the catalogue of 

oncological targets, to include the SK potassium channel family. These results 

provides healthy and robust evidence that these channels represent an attractive 

target controlling cell growth through a specific mechanism, thereby deregulating 

the balance in apoptosis. Thus, this study clearly highlights an SK role as players in 

the concept of tumorigenesis and in the hallmarks of cancer. 
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5.7 Recommendations and future work 

This work used primary and resistant breast cancer cells in an in vitro study, 

although, it would be interesting to screen for an SK2-3 role against cell growth in in 

vivo. The argument can be strengthened if SK channel contributions are 

interrogated by the aid of clinicians. Further, it would be advantageous if an SK role 

can be pathologically mapped during the stages of cell cycle and tumour 

progression, not only in breast cancer but also in other cancer types. If researchers 

would examine an SK channel contribution in cancer stem cells, this may also help. 

But for these developments, tools, such as immunohistochemical tests, for 

examining SK channel expression in normal and cancer tissues need to be 

improved.  

In this study several questions remained to be addressed. For example, examining 

Bcl-2 and caspase-7 expression after pharmacological treatment of these cells. This 

outcome needs to be measured using others techniques such as a Tunnel assay. It 

would be interesting if both proliferation and the journey through the cell cycle could 

also be investigated with an SK channel role in mind.  
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6 Chapter Six General Discussion 

6.1 The major findings of this study: 

 In normal and diseased CNS cell types (Chapter three), SK class of K+ 

channels are broadly present. 

 In Huntington’s affected neurons, SK1-4 channels are differentially 

expressed among dominant phenotypes and wild-type cells. 

 It is alluring that severely affected neurons, STHdhQ111/HdhQ111 cells, lacked 

SK1-3 channel activities.  

 SK channel activation improves CNS cell survival experiencing oxidative 

stress induced cell injury. 

 Such channel activation also restores Bcl-2 proteins which were 

downregulated throughout oxidative stress. 

 

 In breast cancer cells (Chapter five), SK channels are also variably present 

in cells with various phenotypes. 

 SK1-3 channels are in fact absent in breast non-tumorigenic MCF 10A cells. 

 SK2-3 channel blocking or downregulation is potently cytotoxic against 

breast cancer “constitutive” cell growth. 

 Inhibition of these channels strongly reduces survival through Bcl-2, 

caspase-7, and caspase-9 factors.  

 

 In brain astrocytes and Huntington’s affected neurons (Chapter four), the 

TRPM7 channel member of TRP channels is present. 
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 TRPM7 channel blocking or downregulation improved cell survival against 

oxidative stress, hypoxia, as well as apoptosis in these cells.       
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6.2 SK channel role in cell survival 

Membrane molecules which facilitate ion translocation, particularly ion channels that 

when opened, drive the membrane potential of the cell, result in the respective 

equilibrium potential of the permeant ion being achieved, which is crucial for normal 

cell wellbeing. It is previously accepted that these proteins are implicated in various 

diseases, controlling key ionic movements (Dolga and Culmsee 2012; Huber 2013). 

Indeed, such ion channels are implicated in abnormal cell growth and degeneration, 

which are mechanisms inducing cancers and neurodegenerative illness. Amongst 

ion channels, K+ channels comprise nearly 50% (Wulff et al. 2009): ion channels in 

the human genome comprise ~ 1.5% (Huang and Jan 2014). In cellular physiology, 

though K+ channel opening, cell membranes hyperpolarise, and gating Na+ or Ca2+ 

channels shifts the membrane potential, in a depolarising direction. In excitable 

cells, it is well-known that their role (e.g. in nerve or muscle cells) is to modulate the 

excitable state, namely action potential firing patterns (Yuan and Chen 2006). In 

non-excitable cells, there are burgeoning data to support the view that, K+ ion 

channels have emerging non-conducting roles, i.e. modifying other cellular features, 

relating to cancer progression, such as proliferation (Pardo and Stuhmer 2014). 

Because of the role that the Ca2+ activated K+ channel family of K+ channels has in 

regulating cytosolic Ca2+, it is to be expected that these molecules are necessary in 

taking cell death or life decisions. This thesis concentrated on SK channel 

characterisation in normal CNS cells, also diseased CNS and breast cells since their 

role there was not previously well-studied. Therefore, the central question here was: 

Are the subtypes of the SK class of K+ ion channels likely to be impressive targets 

for blocking neurodegeneration and cancer cell growth? Such an important question 

was addressed using thirteen diverse cell types.  
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This study used in vitro systems, cells being grown in optimum conditions. RT-PCR 

and Western blotting tools were deployed for examining the channel targets, 

assessing their mRNA and protein expression. This was followed by further asking 

whether these proteins are functionally occurring, this question being addressed 

with the aid of pharmacological and small interference RNA experiments, in concert 

with survival experiments in MTS assays. Experiments also used Western blotting 

checks to decipher underling mechanisms in crosstalk with these ion channels. In 

certain cases, microarray Affymetrix analysed the quantitative expression of target 

genes.   

This study first identified that SK1-4 channels are ubiquitous in several CNS resident 

cells, and excitingly, are differentially expressed between Huntington’s mutant cells 

and wild-type cells. These channels have been shown to generate 

afterhyperpolarisations (Sah and Faber 2002) with medium duration, and are very 

responsive to cytosolic Ca2+ alterations (Park 1994). In this context it is not 

surprising that  Ca2+ dysregulation is really a major player in Alzheimer’s 

pathogenesis (LaFerla 2002). Pharmacological screening has shown that these 

channels contribute in oxidative stress, where SK channel activation rescued brain 

astrocytes and neurones from oxidative stress induced through toxic doses of H2O2. 

However, mouse homozygous mutant STHdhQ111/HdhQ111 cells lacked functional 

SK1-3 channels, but expressed SK2 channels in heterozygous STHdhQ111/Hdh+ 

which are functional, and activation markedly challenged oxidative stress. SK 

molecules are resident channels in different zones of the brain: for example SK1 

and SK2 channels are densely present in hippocampus and neocortex (Sailer et al. 

2002). Broadly speaking, it is accepted that these channels are implicated in 

neuronal physiology regulating various functions, but in a feedback mode shaping 
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neuronal activity, including synaptic transmission (Fiorillo and Williams 1998) and 

dendritic integration (Sailer et al. 2002). Intriguingly, recent studies have discovered 

K+ channels at a subcellular level (Trimmer 2015): for example human dopaminergic 

neurons possess mitochondrial SK2 channels, and this channel showed a 

neuroprotective outcome, its activation restoring mitochondrial wellbeing (Dolga et 

al. 2014).  

The study presented here showed H2O2-induced oxidative stress crosstalk with Bcl-

2, which has a fundamental role in the intrinsic route of apoptosis, indeed the H2O2 

stressor caused a vast reduction in Bcl-2 protein expression in both neurons and 

astrocytes (See chapter three). This effect was reversed by SK channel opening in 

pharmacological experiments in these cells. Previous work was shown that Bcl-2 

expression has a negative impact on the reactive oxygen species balance in cells, 

this treatment rescuing GT1-7 neurons from ROS injury effect (Kane et al. 1993). Of 

course, apoptosis thinking is also of big interest in the cancer field, since cancer 

progression through lack of apoptosis is a leading factor in oncogenesis (Llambi and 

Green 2011). Nowadays, researchers have also highlighted an emerging target 

“mitochondrial ion channels” for cancer cure (Leanza et al. 2014). In this thesis, RT-

PCR and Western blotting showed that SK1-4 channels are not only expressed in 

CNS cells, but also that breast cancer cells favoured these molecules. SK2 and SK3 

channel subtypes being found at both the mRNA and protein levels, although 

unfortunately Western blotting did not show SK4 protein expression. Thus, the work 

here focused on SK2 and SK3 channel subtypes and whether they are functional 

proteins. It is additionally interesting that the work here discovered that in non-

tumorigenic breast cells, MCF 10A, there are no SK1, SK2, and SK3 channel types. 

As highlighted above, these ion channels contribute in Ca2+-related features of 



Chapter Six 

232 
 

“pathophysiology”, numerous studies showing that tumours in fact require more 

Ca2+ ions for their progress (Panner et al. 2005). This was the reason that SK 

channels were targeted in pharmacological and gene modulation experiments. In all 

the cell types used, SK2 or SK3 channel blocking significantly reduced breast 

cancer cell numbers. In contrast, opening of these channels markedly increased cell 

numbers in MTS viability assays. Not only SK2-3 channel activity dampening, but 

also SK2 or SK3 channel downregulation similarly produced a notable decrease in 

the cell viability. Linking this effect to life/death gates, experiments found that SK2 

or SK3 channel inhibition in fact profoundly dampened Bcl-2 expression, whereas 

greatly upregulated caspase-7 and caspase-9 protein expression (See chapter five). 

This is a non-canonical role for these channels. A corollary of this is that the target 

domains which trigger intracellular machinery (e.g. Bcl-2) need not reside in the 

transmembrane region, but may form part of intracellular domains. This is 

compelling finding and is the first study to show that SK2 and SK3 channels control 

this avenue in cell viability, thereby potently triggering cancer cell growth. More 

recently, it has been highlighted that the Bcl-2 protein is really an emerging target in 

both neurodegeneration and cancer pathogenesis (Czabotar et al. 2014). In this 

sense, SK channels act as a promising target in both fields, and this study confirmed 

this window of opportunity.  

 

 

 

 



Chapter Six 

233 
 

6.3 TRPM7 channel role in CNS cell survival   

In chapter four, the second channel candidate considered was TRPM7 of the TRPM 

channel family. Challenges for current neurodegeneration treatment are that other 

channelopathies (rather than SK dysfunction) such as TRPM7 deregulation occur. 

Therefore, the proposed study also aimed at identifying a TRPM family member, 

namely TRPM7, a potentially new target which may sidestep such a problem. The 

proposal is that modulation of one type of membrane protein, the so called TRPM7 

channel is a potential strategy in developing a new generation of anti-degenerative 

effects against oxidative stress, hypoxia, as well as apoptosis. The work addressed 

therefore the key question “Is this particular channel a good target for blocking 

neuronal death?”  

In physiology, TRPM7 has expanding cellular functions, from embryonic 

development to cell proliferation, and this extends to cell survival aspects (Yee et al. 

2014), these roles being observed in different cell types, both excitable and non-

excitable versions. It is clear that this channel allows various ions to cross the 

membrane, for instance Ca2+ and Mg2+ (Schmitz et al. 2003). Presumably, this 

channel is involved in pathologies where these ions play a decisive role in underlying 

mechanisms causing neuronal loss. The work here used mouse homozygous 

mutant STHdhQ111/HdhQ111 and MOG-G-UVW cells to test whether targeting this 

channel can improve cell survival against oxidative stress, hypoxia and apoptosis. 

TRPM7 presence was first determined through RT-PCR and Western blotting 

methods. These tools indicated that the TRPM7 channel is expressed at both the 

mRNA and protein levels. It was hypothesised here that either TRPM7 blocking or 

TRPM7 channel expression reduction through siRNA would rescue these cells from 

the toxic action of these insults above. MTS viability experiments showed that 
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indeed TRPM7 channel blocking significantly saved these cells from oxidative 

stress, hypoxia and apoptosis. Similar results were achieved via siRNA-mediated 

experiments. The channel knock-out afforded significant protection then against 

mechanisms which of course activate cell death. It is very interesting that one 

molecule challenges three different cell demise mechanisms, namely oxidative 

stress, hypoxia and apoptosis, and the underlying mechanism(s) behind this 

powerful role of TRPM7 needs to be elucidated. It has been reported that the 

TRPM7 channel can improve neuronal cell survival not only against oxidative stress, 

but also by eliminating excitotoxicity (Aarts and Tymianski 2005).   
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Ion channels such as the SK or TRP family are differentially expressed in tissues 

and even within tissues (Pardo and Stuhmer 2014). For example, in the cancer work 

presented here some cell lines expressed SK2 and SK4 (MCF-7) and others SK3 

and SK4 (MDA-MB-231) channels, and “normal” non-tumorigenic breast epithelial 

cells did not express SK1, SK2 and SK3 channels.  Perhaps the differences in SK 

channel expression are in part responsible for the different growth rates i.e. 

cancerous versus non-tumorigenic cells. This could be investigated systematically 

in future work. The work with neuronal cells showed similarly that differences exist. 

Hence human SH-SY5Y cells express SK1 and SK3 channels and mouse 

Huntington’s cells, which express mutant Huntington protein (Trettel et al. 2000), 

express either SK1, SK3, SK4 (Wild-type, Hdh+/Hdh+), SK1 and SK2 (Heterozygous, 

STHdhQ111/Hdh+) or  SK1 and SK4 (Homozygous, STHdhQ111/HdhQ111). Further, SK1 

channels are not functional in the mouse (Benton et al. 2003), but are in the human 

(Shah and Haylett 2000). In this regard future work could use a human Huntington’s 

model in order that such differences do not impact on interpretations. In astrocytes 

(MOG-G-UVW) and microglia (BV-2) only SK4 channels are expressed at an RNA 

level, although whether the SK4 channel is expressed at the protein level or not 

remains to be established. To begin to answer this question the antibody used here 

needs to be checked against a positive SK4 control to determine the effectiveness, 

or otherwise. Also single channel electrophysiology, along with pharmacology, could 

be deployed to determine the existence of SK4 channel. In addition, SK channels 

are also expressed in non-excitable cells, such as T-lymphocytes (Strobaek et al. 

2013). This presents both opportunities and challenges for therapeutic strategies. 

Since most SK channel modulators were not water soluble penetration into the brain 
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across the blood-brain barrier, i.e. delivery to a CNS target, should in principle be 

less of a problem. Based on tissue expression described here the preferred targets 

in cancer cells would be SK2, SK4 (MCF-7) and SK3, SK4 (MDA-MB-231), in human 

neurons SK1, SK3 (SH-SY5Y), and in mouse neurons SK2 (STHdhQ111/Hdh+) and 

SK4 (STHdhQ111/HdhQ111). Consistent with this is that CyPPA (25 µM), an SK2-3 

activator, markedly improved in vitro rat hippocampal cell viability against glutamate-

induced mitochondrial dysfunction (Dolga et al. 2013) through SK2 channel 

modulation (See also in vivo work below). Three other important points are worth 

making. Firstly, the cancer work shows that knocking out one of the SK targets, and 

only one, is adequate to blunt growth indicating that in this case at least 

“compensation” by the remaining SK channel (SK4) is not suffice. Secondly, SK 

channel activation in CNS cell lines does not impact on constitutive growth, whereas 

that is not the case in cancer cells.  This offers the prospect of selective targeting of 

activity against cancer cells when CNS cells are not “stressed” and also poses a 

question. What renders the SK channel susceptible to modulation only in the face 

of a stress such as hypoxia etc? How does that insult bring about that change?  

Thirdly, attention needs to be paid to concentrations since in all instances the effects 

of the modulators were biphasic, protecting at low, and affording less protection at 

a higher concentration (See e.g. Fig 3.18).   

All of the work presented here was carried out on in vitro cell systems and it remains 

to be seen how any of the effects reported here translate to the in vivo situation. 

There are precedents for this proposed strategy however in other clinical settings.  

An in vivo rat study showed that CyPPA (5 mg/kg) prevents psychiatric symptoms 

occurring through amygdala hyperactivity (Atchley et al. 2012). In addition, the SK4 

channel opener, NS309, seems to modulate hippocampal pyramidal firing 
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properties, which are related to neuronal hyperexcitability (Pedarzani et al. 2005), 

for example ataxia. In inflammatory bowel disease, in vivo rat studies showed that 

the IK (SK4) blocker, NS6180 (10 mg/kg), significantly improved inflammatory bowel 

disease outcome. Furthermore, SK channels are also implicated in heart disorders, 

and it has been reported that in vivo SK2 channel subtype inhibition by NS8593 (5 

mg/kg) in the horse demonstrated a clear antiarrhythmic property (Haugaard et al. 

2015). In the context of cancer work, future experiments should examine the 

prospective activity of the SK modulators we have tested against tumours in one of 

the many transgenic or knockout mouse models of breast cancer available, taking 

the argument one step closer to a drug design strategy.  

In the case of the TRP channel work described in chapter four, TRPM7 was 

expressed in both cell lines (STHdhQ111/HdhQ111 and MOG-G-UVW) tested. For the 

pharmacology, selective modulators were unfortunately not available, hence the 

reason that this study used SK channel modulators to probe TRPM7 channel 

(Chubanov et al. 2012). TRPM7 ion channel modulators have been previously 

tested in different disease models of cancer and neurodegeneration. For example, 

in the brain, In vivo studies with mice showed that carvacrol (10 mg/kg) markedly 

reversed neuronal injury and behavioural abnormalities in a neonatal hypoxia-

ischemia model (Chen et al. 2015a). Also it has been found that TRPM7 channel 

inhibition in vitro by carvacrol (500 µM) actually dampened human glioblastoma cell 

properties, namely proliferation, migration and invasion (Chen et al. 2015b). Here 

we described that TRPM7 channel blocking (Over a narrow concentration range) 

also produced cells more resistant to cellular stressors, namely neuronal insults, 

making it an attractive target to focus on therapeutically. Perhaps future work should 

confirm that these blockers showed better protection against oxidative stress c.f. 
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hypoxia and apoptosis. Once again more importantly, and intriguingly, the blockers 

did not affect the constitutive growth of the cells tested, raising the same question 

about how the insult or the consequences of it modulate TRPM7 properties.   

A final consideration for future work is what is happening to intracellular Ca2+ in 

response to SK channel or TRPM7 blockade or SK channel activation? Any changes 

which must surely be important for cell growth or survival could be measured using 

cell imaging with either fluorescent (e.g. FURA-2) or bioluminescent indicators. 

 

In conclusion, these molecules regulate ionic homeostasis, and when dysregulated 

alter life and death decisions that cells make. It is worth espousing that SK and 

TRPM7 channels act as channels of life or death. The wider implications are that 

the results here add weight to an emerging view that these channels have 

fundamental unsuspected non-canonical roles in the cancers, roles which are also 

highly relevant to degenerative diseases in the brain. 
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7 Appendix  

 

1. Charcoal stripped foetal bovine serum protocol 

This serum was used in endocrine resistant cell cultures. To treat 100 ml of foetal 

bovine serum the following protocol was used. First, the pH in normal foetal bovine 

serum was adjusted to 4.2 using HCl (5 M), and then allowed to equilibrate at 4 °C. 

A solution of: 18 ml distilled water, 2 gram activated charcoal, and 0.01 gram dextran 

T70 was mixed, this being stirred for one hour. From this solution, 5 ml was added 

into each 100 ml of foetal bovine serum (pH= 4.2), and gently agitated overnight at 

4 °C in the dark, using a stirrer for at least 16 hours. The following day, the charcoal 

was removed after centrifugation at 12,000 g for 40 minutes, and the supernatant 

filtered in Whatman filter paper, at least 4 times. Finally, the resultant pH was 

readjusted to 7.2 using NaOH (5 M) before being filtered through a syringe filter (0.2 

µm). 

 

2. Protocols for running and stacking gels in Western blotting 

Ingredients  Running gel Stacking gel  

Double distilled water 10.4 ml 6.4 ml 

ProtoGel (30%) 6 ml 1.7 ml 

Trisaminomethane (1.5 M) 5.7 ml - 

Trisaminomethane (1 M) - 1.25 ml 

Sodium dodecyl sulphate (10%) 0.23 ml 0.1 ml 

Ammonium persulfate (10%) 0.23 ml 0.1 ml 

Tetramethylethylenediamine 0.014 ml 0.01 ml 
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3. Results 
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7.1 The effect of the drug vehicle, DMSO, on undifferentiated SH-SY5Y cell viability. 

Data are shown as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc 

test, n=6. 
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7.2 The effect of the drug vehicle, DMSO, on wild-type Hdh+/Hdh+ cell viability. Data 

are shown as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc test, 

n=6. 
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7.3 The effect of the drug vehicle, DMSO, on MOG-G-UVW cell viability. Data are 

shown as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc test, n=6. 
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7.4 The effect of CyPPA, an SK2-3 channel activator, in the presence of the SK1-3 

channel blocker, UCL1684, on the survival of undifferentiated SH-SY5Y cells 

exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. ****p-

value < 0.0001 versus insult, one-way ANOVA followed by Dunnett’s post hoc test, 

n =9. 
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7.5 The effect of the SK4 channel activator, NS309, on MOG-G-UVW cell viability. 

Data are shown as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc 

test, n=6. 
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7.6 The effect of the SK4 channel blocker, TRAM-34, on MOG-G-UVW cell viability. 

Data are shown as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc 

test, n=6. 
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7.7 The effect of NS309, SK4 channel activation, on the survival of MOG-G-UVW 

cells exposed to H2O2-induced oxidative stress. Data are shown as means ± SEM. 

****p-value < 0.0001 versus insult, one-way ANOVA followed by Dunnett’s post hoc 

test, n =9.  
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7.8 The effect of NS309, an SK4 channel activator, in the presence of the SK4 

channel blocker, TRAM-34, on the survival of MOG-G-UVW cells exposed to H2O2-

induced oxidative stress. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n =9. 
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7.9 The effect of CyPPA, SK3 channel activation, on the survival of wild-type 

Hdh+/Hdh+ cells exposed to staurosporine-induced apoptosis. Data are shown as 

means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9. 
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7.10 The effect of CyPPA, SK2 channel activation, on the survival of heterozygous 

HdhQ111/Hdh+ cells exposed to staurosporine-induced apoptosis. Data are shown 

as means ± SEM. ****p-value < 0.0001 versus insult, one-way ANOVA followed by 

Dunnett’s post hoc test, n= 9. 
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7.11 The effect of SK1-3 ion channel blocker, UCL1684, on homozygous mutant 

HdhQ111/HdhQ111 cell viability. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=6.  
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7.12 The effect of SK1-3 ion channel blocker, NS8593, on homozygous mutant 

HdhQ111/HdhQ111 cell viability. Data are shown as means ± SEM. One-way ANOVA 

followed by Dunnett’s post hoc test, n=6.  
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7.13 The effect of SK1-3 ion channel blocker, UCL1684, on MOG-G-UVW cell 

viability. Data are shown as means ± SEM. One-way ANOVA followed by Dunnett’s 

post hoc test, n=6.  
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7.14 The effect of SK1-3 ion channel blocker, NS8593, on MOG-G-UVW cell 

viability. Data are shown as means ± SEM. One-way ANOVA followed by Dunnett’s 

post hoc test, n=6.  
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7.15 Representative immunoblot of TRPM7 channel in BV-2 cells. TRPM7 protein 

expression is distinctly upregulated after treatment with lipopolysaccharides (20 

ng/ml) after 24 hours. GAPDH serves as the normalising control. 
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7.16 The effect of the drug vehicle, DMSO, on MCF-7 cell viability. Data are shown 

as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc test, n=6. 
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7.17 The effect of the drug vehicle, DMSO, on BT-474 cell viability. Data are shown 

as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc test, n=6. 
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7.18 The effect of the drug vehicle, DMSO, on MDA-MB-231 cell viability. Data are 

shown as means ± SEM. One-way ANOVA followed by Dunnett’s post hoc test, n=6. 
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7.19 SK ion channel mRNA investigation in MCF 10A cells. Only the amplicons for 

SK4 channel is present and the PCR products are of the predicted size. β-actin 

serves as the normalising control. 

 

 

 

 

 

 

 

7.20 Representative immunoblot of SK1-3 ion channel expression. SK1, SK2-L and 

SK3 ion channels are not expressed at the protein level in MCF 10A cells. GAPDH 

serves as the normalising control. 
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7.21 Representative immunoblot of cleaved caspase-8 and -9 protein in wild-type 

breast cancer cells transfected with specific SK2 (MCF-7 and BT-474) or SK3 

(MDA-MB-231) siRNA. GAPDH serves as the normalising control. 

 

 

 

 

Cleaved caspase-9 

Cleaved caspase-9 

Cleaved caspase-9 

Cleaved caspase-8 

Cleaved caspase-8 

Cleaved caspase-8 

35 kDa 

10 kDa 

35 kDa 

10 kDa 

35 kDa 

10 kDa 

C
o
n
tr

o
l 

G
FP

 s
iR

N
A

 

S
K

 s
iR

N
A

 

MCF-7 

BT-474 

MDA-MB-231 

GAPDH 37 kDa 



 

251 
 

8 References  

(1993). A novel gene containing a trinucleotide repeat that is expanded 
and unstable on Huntington's disease chromosomes. The Huntington's 
Disease Collaborative Research Group. Cell 72:971-983. 
 
Aarts, M., Iihara, K., Wei, W. L., Xiong, Z. G., Arundine, M., Cerwinski, 
W., MacDonald, J. F. et al. (2003). A key role for TRPM7 channels in 
anoxic neuronal death. Cell 115:863-877. 
 
Aarts, M. M. and Tymianski, M. (2005). TRPMs and neuronal cell death. 
Pflugers Arch 451:243-249. 
 
Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X. and Akey, 
C. W. (2002). Three-dimensional structure of the apoptosome: 
implications for assembly, procaspase-9 binding, and activation. Mol 
Cell 9:423-432. 
 
Adelman, J. P. (2015). SK Channels and Calmodulin. Channels (Austin) 
0. 
 
Adelman, J. P., Maylie, J. and Sah, P. (2012). Small-conductance Ca2+-
activated K+ channels: form and function. Annu Rev Physiol 74:245-
269. 
 
Al Soraj, M., He, L., Peynshaert, K., Cousaert, J., Vercauteren, D., 
Braeckmans, K., De Smedt, S. C. et al. (2012). siRNA and 
pharmacological inhibition of endocytic pathways to characterize the 
differential role of macropinocytosis and the actin cytoskeleton on 
cellular uptake of dextran and cationic cell penetrating peptides 
octaarginine (R8) and HIV-Tat. J Control Release 161:132-141. 
 
Alba, E., Albanell, J., de la Haba, J., Barnadas, A., Calvo, L., Sanchez-
Rovira, P., Ramos, M. et al. (2014). Trastuzumab or lapatinib with 
standard chemotherapy for HER2-positive breast cancer: results from 
the GEICAM/2006-14 trial. Br J Cancer 110:1139-1147. 
 
Alger, B. E. and Nicoll, R. A. (1980). Epileptiform burst 
afterhyperolarization: calcium-dependent potassium potential in 
hippocampal CA1 pyramidal cells. Science 210:1122-1124. 
 



 

252 
 

Allen, D., Bond, C. T., Lujan, R., Ballesteros-Merino, C., Lin, M. T., 
Wang, K., Klett, N. et al. (2011a). The SK2-long isoform directs synaptic 
localization and function of SK2-containing channels. Nat Neurosci 
14:744-749. 
 
Allen, D., Fakler, B., Maylie, J. and Adelman, J. P. (2007). Organization 
and regulation of small conductance Ca2+-activated K+ channel 
multiprotein complexes. J Neurosci 27:2369-2376. 
 
Allen, D., Nakayama, S., Kuroiwa, M., Nakano, T., Palmateer, J., 
Kosaka, Y., Ballesteros, C. et al. (2011b). SK2 channels are 
neuroprotective for ischemia-induced neuronal cell death. J Cereb 
Blood Flow Metab 31:2302-2312. 
 
Almeida, A., Almeida, J., Bolanos, J. P. and Moncada, S. (2001). 
Different responses of astrocytes and neurons to nitric oxide: the role of 
glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci 
U S A 98:15294-15299. 
 
Almeida, A., Delgado-Esteban, M., Bolanos, J. P. and Medina, J. M. 
(2002). Oxygen and glucose deprivation induces mitochondrial 
dysfunction and oxidative stress in neurones but not in astrocytes in 
primary culture. J Neurochem 81:207-217. 
 
Ames, J. B., Tanaka, T., Stryer, L. and Ikura, M. (1996). Portrait of a 
myristoyl switch protein. Curr Opin Struct Biol 6:432-438. 
 
Andersen, J. K. (2004). Oxidative stress in neurodegeneration: cause or 
consequence? Nat Med 10 Suppl:S18-25. 
 
Anilkumar, U. and Prehn, J. H. (2014). Anti-apoptotic BCL-2 family 
proteins in acute neural injury. Front Cell Neurosci 8:281. 
 
Atchley, D., Hankosky, E. R., Gasparotto, K. and Rosenkranz, J. A. 
(2012). Pharmacological enhancement of calcium-activated potassium 
channel function reduces the effects of repeated stress on fear memory. 
Behav Brain Res 232:37-43. 
 
Augustine, G. J., Santamaria, F. and Tanaka, K. (2003). Local calcium 
signaling in neurons. Neuron 40:331-346. 
 



 

253 
 

Avanzini, G., de Curtis, M., Panzica, F. and Spreafico, R. (1989). 
Intrinsic properties of nucleus reticularis thalami neurones of the rat 
studied in vitro. J Physiol 416:111-122. 
 
Azimi, I., Roberts-Thomson, S. J. and Monteith, G. R. (2014). Calcium 
influx pathways in breast cancer: opportunities for pharmacological 
intervention. Br J Pharmacol 171:945-960. 
 
Bae, C. Y. and Sun, H. S. (2011). TRPM7 in cerebral ischemia and 
potential target for drug development in stroke. Acta Pharmacol Sin 
32:725-733. 
 
Bae, C. Y. and Sun, H. S. (2013). Current understanding of TRPM7 
pharmacology and drug development for stroke. Acta Pharmacol Sin 
34:10-16. 
 
Barrett, E. F. and Barret, J. N. (1976). Separation of two voltage-
sensitive potassium currents, and demonstration of a tetrodotoxin-
resistant calcium current in frog motoneurones. J Physiol 255:737-774. 
 
Bender, T. and Martinou, J. C. (2013). Where killers meet--
permeabilization of the outer mitochondrial membrane during apoptosis. 
Cold Spring Harb Perspect Biol 5:a011106. 
 
Benton, D. C., Monaghan, A. S., Hosseini, R., Bahia, P. K., Haylett, D. 
G. and Moss, G. W. (2003). Small conductance Ca2+-activated K+ 
channels formed by the expression of rat SK1 and SK2 genes in HEK 
293 cells. J Physiol 553:13-19. 
 
Berridge, M. J. (1998). Neuronal calcium signaling. Neuron 21:13-26. 
 
Berridge, M. J. (2012). Calcium signalling remodelling and disease. 
Biochem Soc Trans 40:297-309. 
 
Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion 
channels. Physiol Rev 80:555-592. 
 
Biasoli, D., Sobrinho, M. F., da Fonseca, A. C., de Matos, D. G., Romao, 
L., de Moraes Maciel, R., Rehen, S. K. et al. (2014). Glioblastoma cells 
inhibit astrocytic p53-expression favoring cancer malignancy. 
Oncogenesis 3:e123. 
 



 

254 
 

Biedler, J. L., Roffler-Tarlov, S., Schachner, M. and Freedman, L. S. 
(1978). Multiple neurotransmitter synthesis by human neuroblastoma 
cell lines and clones. Cancer Res 38:3751-3757. 
 
Bienert, G. P., Schjoerring, J. K. and Jahn, T. P. (2006). Membrane 
transport of hydrogen peroxide. Biochim Biophys Acta 1758:994-1003. 
 
Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R. and Bistoni, F. (1990). 
Immortalization of murine microglial cells by a v-raf/v-myc carrying 
retrovirus. J Neuroimmunol 27:229-237. 
 
Blatz, A. L. and Magleby, K. L. (1986). Single apamin-blocked Ca-
activated K+ channels of small conductance in cultured rat skeletal 
muscle. Nature 323:718-720. 
 
Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P. and 
Kettenmann, H. (1992). An immortalized cell line expresses properties 
of activated microglial cells. J Neurosci Res 31:616-621. 
 
Bond, C. T., Herson, P. S., Strassmaier, T., Hammond, R., Stackman, 
R., Maylie, J. and Adelman, J. P. (2004). Small conductance Ca2+-
activated K+ channel knock-out mice reveal the identity of calcium-
dependent afterhyperpolarization currents. J Neurosci 24:5301-5306. 
 
Bootman, M. D. (2012). Calcium signaling. Cold Spring Harb Perspect 
Biol 4:a011171. 
 
Bortner, C. D. and Cidlowski, J. A. (2014). Ion channels and apoptosis 
in cancer. Philos Trans R Soc Lond B Biol Sci 369:20130104. 
 
Bourassa, M. W. and Miller, L. M. (2012). Metal imaging in 
neurodegenerative diseases. Metallomics 4:721-738. 
 
Bourque, C. W. and Brown, D. A. (1987). Apamin and d-tubocurarine 
block the afterhyperpolarization of rat supraoptic neurosecretory 
neurons. Neurosci Lett 82:185-190. 
 
Bredesen, D. E., Rao, R. V. and Mehlen, P. (2006). Cell death in the 
nervous system. Nature 443:796-802. 
 
Brown, J. M. and Attardi, L. D. (2005). The role of apoptosis in cancer 
development and treatment response. Nat Rev Cancer 5:231-237. 



 

255 
 

 
Bruening-Wright, A., Schumacher, M. A., Adelman, J. P. and Maylie, J. 
(2002). Localization of the activation gate for small conductance Ca2+-
activated K+ channels. J Neurosci 22:6499-6506. 
 
Buizza, L., Prandelli, C., Bonini, S. A., Delbarba, A., Cenini, G., Lanni, 
C., Buoso, E. et al. (2013). Conformational altered p53 affects neuronal 
function: relevance for the response to toxic insult and growth-
associated protein 43 expression. Cell Death Dis 4:e484. 
 
Burg, E. D., Remillard, C. V. and Yuan, J. X. (2006). K+ channels in 
apoptosis. J Membr Biol 209:3-20. 
 
Cailleau, R., Young, R., Olive, M. and Reeves, W. J., Jr. (1974). Breast 
tumor cell lines from pleural effusions. J Natl Cancer Inst 53:661-674. 
 
Cain, K., Bratton, S. B. and Cohen, G. M. (2002). The Apaf-1 
apoptosome: a large caspase-activating complex. Biochimie 84:203-
214. 
 
Caltana, L., Merelli, A., Lazarowski, A. and Brusco, A. (2009). Neuronal 
and glial alterations due to focal cortical hypoxia induced by direct cobalt 
chloride (CoCl2) brain injection. Neurotox Res 15:348-358. 
 
Campbell, A. K. (2014). Intracellular Calcium. Wiley. 
 
Campos Rosa, J., Galanakis, D., Piergentili, A., Bhandari, K., Ganellin, 
C. R., Dunn, P. M. and Jenkinson, D. H. (2000). Synthesis, molecular 
modeling, and pharmacological testing of bis-quinolinium cyclophanes: 
potent, non-peptidic blockers of the apamin-sensitive Ca(2+)-activated 
K(+) channel. J Med Chem 43:420-431. 
 
Casteels, R. and Droogmans, G. (1981). Exchange characteristics of 
the noradrenaline-sensitive calcium store in vascular smooth muscle 
cells or rabbit ear artery. J Physiol 317:263-279. 
 
Castle, N. A., London, D. O., Creech, C., Fajloun, Z., Stocker, J. W. and 
Sabatier, J. M. (2003). Maurotoxin: a potent inhibitor of intermediate 
conductance Ca2+-activated potassium channels. Mol Pharmacol 
63:409-418. 
 



 

256 
 

Catacuzzeno, L., Fioretti, B. and Franciolini, F. (2012). Expression and 
Role of the Intermediate-Conductance Calcium-Activated Potassium 
Channel KCa3.1 in Glioblastoma. J Signal Transduct 2012:421564. 
 
Catterall, W. A. (2010). Ion channel voltage sensors: structure, function, 
and pathophysiology. Neuron 67:915-928. 
 
Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. 
C. and Schumacker, P. T. (1998). Mitochondrial reactive oxygen 
species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 
95:11715-11720. 
 
Chen, H. C., Su, L. T., Gonzalez-Pagan, O., Overton, J. D. and Runnels, 
L. W. (2012). A key role for Mg(2+) in TRPM7's control of ROS levels 
during cell stress. Biochem J 445:441-448. 
 
Chen, Q. H. and Toney, G. M. (2009). Excitability of paraventricular 
nucleus neurones that project to the rostral ventrolateral medulla is 
regulated by small-conductance Ca2+-activated K+ channels. J Physiol 
587:4235-4247. 
 
Chen, W., Xu, B., Xiao, A., Liu, L., Fang, X., Liu, R., Turlova, E. et al. 
(2015a). TRPM7 inhibitor carvacrol protects brain from neonatal 
hypoxic-ischemic injury. Mol Brain 8:11. 
 
Chen, W. L., Barszczyk, A., Turlova, E., Deurloo, M., Liu, B., Yang, B. 
B., Rutka, J. T. et al. (2015b). Inhibition of TRPM7 by carvacrol 
suppresses glioblastoma cell proliferation, migration and invasion. 
Oncotarget 6:16321-16340. 
 
Choi, K., Kim, J., Kim, G. W. and Choi, C. (2009). Oxidative stress-
induced necrotic cell death via mitochondira-dependent burst of reactive 
oxygen species. Curr Neurovasc Res 6:213-222. 
 
Chokshi, R., Fruasaha, P. and Kozak, J. A. (2012a). 2-aminoethyl 
diphenyl borinate (2-APB) inhibits TRPM7 channels through an 
intracellular acidification mechanism. Channels (Austin) 6:362-369. 
 
Chokshi, R., Matsushita, M. and Kozak, J. A. (2012b). Detailed 
examination of Mg2+ and pH sensitivity of human TRPM7 channels. Am 
J Physiol Cell Physiol 302:C1004-1011. 
 



 

257 
 

Christofferson, D. E. and Yuan, J. (2010). Necroptosis as an alternative 
form of programmed cell death. Curr Opin Cell Biol 22:263-268. 
 
Chubanov, V., Mederos y Schnitzler, M., Meissner, M., Schafer, S., 
Abstiens, K., Hofmann, T. and Gudermann, T. (2012). Natural and 
synthetic modulators of SK (K(ca)2) potassium channels inhibit 
magnesium-dependent activity of the kinase-coupled cation channel 
TRPM7. Br J Pharmacol 166:1357-1376. 
 
Chubanov, V., Waldegger, S., Mederos y Schnitzler, M., Vitzthum, H., 
Sassen, M. C., Seyberth, H. W., Konrad, M. et al. (2004). Disruption of 
TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene 
causes hypomagnesemia with secondary hypocalcemia. Proc Natl 
Acad Sci U S A 101:2894-2899. 
 
Cidad, P., Jimenez-Perez, L., Garcia-Arribas, D., Miguel-Velado, E., 
Tajada, S., Ruiz-McDavitt, C., Lopez-Lopez, J. R. et al. (2012). Kv1.3 
channels can modulate cell proliferation during phenotypic switch by an 
ion-flux independent mechanism. Arterioscler Thromb Vasc Biol 
32:1299-1307. 
 
Clapham, D. E. (2003). TRP channels as cellular sensors. Nature 
426:517-524. 
 
Clapham, D. E., Julius, D., Montell, C. and Schultz, G. (2005). 
International Union of Pharmacology. XLIX. Nomenclature and 
structure-function relationships of transient receptor potential channels. 
Pharmacol Rev 57:427-450. 
 
Clarke, L. E. and Barres, B. A. (2013). Emerging roles of astrocytes in 
neural circuit development. Nat Rev Neurosci 14:311-321. 
 
Coombes, E., Jiang, J., Chu, X. P., Inoue, K., Seeds, J., Branigan, D., 
Simon, R. P. et al. (2011). Pathophysiologically relevant levels of 
hydrogen peroxide induce glutamate-independent neurodegeneration 
that involves activation of transient receptor potential melastatin 7 
channels. Antioxid Redox Signal 14:1815-1827. 
 
Correia, C., Lee, S. H., Meng, X. W., Vincelette, N. D., Knorr, K. L., Ding, 
H., Nowakowski, G. S. et al. (2015). Emerging understanding of Bcl-2 
biology: Implications for neoplastic progression and treatment. Biochim 
Biophys Acta 1853:1658-1671. 



 

258 
 

 
Cosens, D. J. and Manning, A. (1969). Abnormal electroretinogram from 
a Drosophila mutant. Nature 224:285-287. 
 
Crawley, S. W. and Cote, G. P. (2009). Identification of dimer 
interactions required for the catalytic activity of the TRPM7 alpha-kinase 
domain. Biochem J 420:115-122. 
 
Czabotar, P. E., Lessene, G., Strasser, A. and Adams, J. M. (2014). 
Control of apoptosis by the BCL-2 protein family: implications for 
physiology and therapy. Nat Rev Mol Cell Biol 15:49-63. 
 
D'Alessandro, G., Catalano, M., Sciaccaluga, M., Chece, G., Cipriani, 
R., Rosito, M., Grimaldi, A. et al. (2013). KCa3.1 channels are involved 
in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4:e773. 
 
D'Hoedt, D., Hirzel, K., Pedarzani, P. and Stocker, M. (2004). Domain 
analysis of the calcium-activated potassium channel SK1 from rat brain. 
Functional expression and toxin sensitivity. J Biol Chem 279:12088-
12092. 
 
Decuypere, J. P., Monaco, G., Missiaen, L., De Smedt, H., Parys, J. B. 
and Bultynck, G. (2011). IP(3) Receptors, Mitochondria, and Ca 
Signaling: Implications for Aging. J Aging Res 2011:920178. 
 
Deignan, J., Lujan, R., Bond, C., Riegel, A., Watanabe, M., Williams, J. 
T., Maylie, J. et al. (2012). SK2 and SK3 expression differentially affect 
firing frequency and precision in dopamine neurons. Neuroscience 
217:67-76. 
 
Deliot, N. and Constantin, B. (2015). Plasma membrane calcium 
channels in cancer: Alterations and consequences for cell proliferation 
and migration. Biochim Biophys Acta. 
 
Demeuse, P., Penner, R. and Fleig, A. (2006). TRPM7 channel is 
regulated by magnesium nucleotides via its kinase domain. J Gen 
Physiol 127:421-434. 
 
Diaz, L. F., Chiong, M., Quest, A. F., Lavandero, S. and Stutzin, A. 
(2005). Mechanisms of cell death: molecular insights and therapeutic 
perspectives. Cell Death Differ 12:1449-1456. 
 



 

259 
 

Dolga, A. M. and Culmsee, C. (2012). Protective Roles for Potassium 
SK/K(Ca)2 Channels in Microglia and Neurons. Front Pharmacol 3:196. 
 
Dolga, A. M., de Andrade, A., Meissner, L., Knaus, H. G., Hollerhage, 
M., Christophersen, P., Zischka, H. et al. (2014). Subcellular expression 
and neuroprotective effects of SK channels in human dopaminergic 
neurons. Cell Death Dis 5:e999. 
 
Dolga, A. M., Netter, M. F., Perocchi, F., Doti, N., Meissner, L., Tobaben, 
S., Grohm, J. et al. (2013). Mitochondrial small conductance SK2 
channels prevent glutamate-induced oxytosis and mitochondrial 
dysfunction. J Biol Chem 288:10792-10804. 
 
Dolga, A. M., Terpolilli, N., Kepura, F., Nijholt, I. M., Knaus, H. G., D'Orsi, 
B., Prehn, J. H. et al. (2011). KCa2 channels activation prevents [Ca2+]i 
deregulation and reduces neuronal death following glutamate toxicity 
and cerebral ischemia. Cell Death Dis 2:e147. 
 
Douda, D. N., Khan, M. A., Grasemann, H. and Palaniyar, N. (2015). 
SK3 channel and mitochondrial ROS mediate NADPH oxidase-
independent NETosis induced by calcium influx. Proc Natl Acad Sci U 
S A 112:2817-2822. 
 
Dringen, R. (2000). Metabolism and functions of glutathione in brain. 
Prog Neurobiol 62:649-671. 
 
Dryanovski, D. I., Guzman, J. N., Xie, Z., Galteri, D. J., Volpicelli-Daley, 
L. A., Lee, V. M., Miller, R. J. et al. (2013). Calcium entry and alpha-
synuclein inclusions elevate dendritic mitochondrial oxidant stress in 
dopaminergic neurons. J Neurosci 33:10154-10164. 
 
Du, J., Xie, J., Zhang, Z., Tsujikawa, H., Fusco, D., Silverman, D., Liang, 
B. et al. (2010). TRPM7-mediated Ca2+ signals confer fibrogenesis in 
human atrial fibrillation. Circ Res 106:992-1003. 
 
Duncan, L. M., Deeds, J., Hunter, J., Shao, J., Holmgren, L. M., Woolf, 
E. A., Tepper, R. I. et al. (1998). Down-regulation of the novel gene 
melastatin correlates with potential for melanoma metastasis. Cancer 
Res 58:1515-1520. 
 



 

260 
 

Dunn, P. M. (1999). UCL 1684: a potent blocker of Ca2+ -activated K+ 
channels in rat adrenal chromaffin cells in culture. Eur J Pharmacol 
368:119-123. 
 
Dutta, A. K., Khimji, A. K., Sathe, M., Kresge, C., Parameswara, V., 
Esser, V., Rockey, D. C. et al. (2009). Identification and functional 
characterization of the intermediate-conductance Ca(2+)-activated K(+) 
channel (IK-1) in biliary epithelium. Am J Physiol Gastrointest Liver 
Physiol 297:G1009-1018. 
 
Edgerton, J. R. and Reinhart, P. H. (2003). Distinct contributions of small 
and large conductance Ca2+-activated K+ channels to rat Purkinje 
neuron function. J Physiol 548:53-69. 
 
Eijkelkamp, N., Quick, K. and Wood, J. N. (2013). Transient receptor 
potential channels and mechanosensation. Annu Rev Neurosci 36:519-
546. 
 
Ermak, G. and Davies, K. J. (2002). Calcium and oxidative stress: from 
cell signaling to cell death. Mol Immunol 38:713-721. 
 
Fanger, C. M., Rauer, H., Neben, A. L., Miller, M. J., Rauer, H., Wulff, 
H., Rosa, J. C. et al. (2001). Calcium-activated potassium channels 
sustain calcium signaling in T lymphocytes. Selective blockers and 
manipulated channel expression levels. J Biol Chem 276:12249-12256. 
 
Farfariello, V., Iamshanova, O., Germain, E., Fliniaux, I. and 
Prevarskaya, N. (2015). Calcium homeostasis in cancer: A focus on 
senescence. Biochim Biophys Acta. 
 
Fatokun, A. A., Stone, T. W. and Smith, R. A. (2008). Oxidative stress 
in neurodegeneration and available means of protection. Front Biosci 
13:3288-3311. 
 
Federico, A., Cardaioli, E., Da Pozzo, P., Formichi, P., Gallus, G. N. and 
Radi, E. (2012). Mitochondria, oxidative stress and neurodegeneration. 
J Neurol Sci 322:254-262. 
 
Fiers, W., Beyaert, R., Declercq, W. and Vandenabeele, P. (1999). More 
than one way to die: apoptosis, necrosis and reactive oxygen damage. 
Oncogene 18:7719-7730. 
 



 

261 
 

Fioretti, B., Castigli, E., Micheli, M. R., Bova, R., Sciaccaluga, M., 
Harper, A., Franciolini, F. et al. (2006). Expression and modulation of 
the intermediate- conductance Ca2+-activated K+ channel in 
glioblastoma GL-15 cells. Cell Physiol Biochem 18:47-56. 
 
Fiorillo, C. D. and Williams, J. T. (1998). Glutamate mediates an 
inhibitory postsynaptic potential in dopamine neurons. Nature 394:78-
82. 
 
Fleig, A. and Penner, R. (2004). The TRPM ion channel subfamily: 
molecular, biophysical and functional features. Trends Pharmacol Sci 
25:633-639. 
 
Foskett, J. K., White, C., Cheung, K. H. and Mak, D. O. (2007). Inositol 
trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593-
658. 
 
Frame, M. C., Freshney, R. I., Vaughan, P. F., Graham, D. I. and Shaw, 
R. (1984). Interrelationship between differentiation and malignancy-
associated properties in glioma. Br J Cancer 49:269-280. 
 
Franchi, L., Munoz-Planillo, R. and Nunez, G. (2012). Sensing and 
reacting to microbes through the inflammasomes. Nat Immunol 13:325-
332. 
 
Friedlander, R. M. (2003). Apoptosis and caspases in 
neurodegenerative diseases. N Engl J Med 348:1365-1375. 
 
Gardos, G. (1958). The function of calcium in the potassium 
permeability of human erythrocytes. Biochim Biophys Acta 30:653-654. 
 
Gassmann, M., Grenacher, B., Rohde, B. and Vogel, J. (2009). 
Quantifying Western blots: pitfalls of densitometry. Electrophoresis 
30:1845-1855. 
 
Gees, M., Colsoul, B. and Nilius, B. (2010). The role of transient receptor 
potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect 
Biol 2:a003962. 
 
Ghavami, S., Shojaei, S., Yeganeh, B., Ande, S. R., Jangamreddy, J. 
R., Mehrpour, M., Christoffersson, J. et al. (2014). Autophagy and 



 

262 
 

apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 
112:24-49. 
 
Ghosh, A. and Greenberg, M. E. (1995). Calcium signaling in neurons: 
molecular mechanisms and cellular consequences. Science 268:239-
247. 
 
Gilany, K., Van Elzen, R., Mous, K., Coen, E., Van Dongen, W., 
Vandamme, S., Gevaert, K. et al. (2008). The proteome of the human 
neuroblastoma cell line SH-SY5Y: an enlarged proteome. Biochim 
Biophys Acta 1784:983-985. 
 
Girault, A., Haelters, J. P., Potier-Cartereau, M., Chantome, A., Jaffres, 
P. A., Bougnoux, P., Joulin, V. et al. (2012). Targeting SKCa channels 
in cancer: potential new therapeutic approaches. Curr Med Chem 
19:697-713. 
 
Glenner, G. G. and Wong, C. W. (1984). Alzheimer's disease: initial 
report of the purification and characterization of a novel cerebrovascular 
amyloid protein. Biochem Biophys Res Commun 120:885-890. 
 
Goldberg, J. A., Guzman, J. N., Estep, C. M., Ilijic, E., Kondapalli, J., 
Sanchez-Padilla, J. and Surmeier, D. J. (2012). Calcium entry induces 
mitochondrial oxidant stress in vagal neurons at risk in Parkinson's 
disease. Nat Neurosci 15:1414-1421. 
 
Goldberg, J. A. and Wilson, C. J. (2005). Control of spontaneous firing 
patterns by the selective coupling of calcium currents to calcium-
activated potassium currents in striatal cholinergic interneurons. J 
Neurosci 25:10230-10238. 
 
Grunnet, M., Jensen, B. S., Olesen, S. P. and Klaerke, D. A. (2001). 
Apamin interacts with all subtypes of cloned small-conductance Ca2+-
activated K+ channels. Pflugers Arch 441:544-550. 
 
Guilbert, A., Gautier, M., Dhennin-Duthille, I., Haren, N., Sevestre, H. 
and Ouadid-Ahidouch, H. (2009). Evidence that TRPM7 is required for 
breast cancer cell proliferation. Am J Physiol Cell Physiol 297:C493-
502. 
 



 

263 
 

Guo, J. L., Covell, D. J., Daniels, J. P., Iba, M., Stieber, A., Zhang, B., 
Riddle, D. M. et al. (2013). Distinct alpha-synuclein strains differentially 
promote tau inclusions in neurons. Cell 154:103-117. 
 
Habermann, E. (1984). Apamin. Pharmacol Ther 25:255-270. 
 
Hallworth, N. E., Wilson, C. J. and Bevan, M. D. (2003). Apamin-
sensitive small conductance calcium-activated potassium channels, 
through their selective coupling to voltage-gated calcium channels, are 
critical determinants of the precision, pace, and pattern of action 
potential generation in rat subthalamic nucleus neurons in vitro. J 
Neurosci 23:7525-7542. 
 
Hardie, R. C. (2011). A brief history of trp: commentary and personal 
perspective. Pflugers Arch 461:493-498. 
 
Hardie, R. C. and Franze, K. (2012). Photomechanical responses in 
Drosophila photoreceptors. Science 338:260-263. 
 
Haugaard, M. M., Hesselkilde, E. Z., Pehrson, S., Carstensen, H., 
Flethoj, M., Praestegaard, K. F., Sorensen, U. S. et al. (2015). 
Pharmacologic inhibition of small-conductance calcium-activated 
potassium (SK) channels by NS8593 reveals atrial antiarrhythmic 
potential in horses. Heart Rhythm 12:825-835. 
 
Henn, A., Lund, S., Hedtjarn, M., Schrattenholz, A., Porzgen, P. and 
Leist, M. (2009). The suitability of BV2 cells as alternative model system 
for primary microglia cultures or for animal experiments examining brain 
inflammation. Altex 26:83-94. 
 
Higley, M. J. and Sabatini, B. L. (2012). Calcium signaling in dendritic 
spines. Cold Spring Harb Perspect Biol 4:a005686. 
 
Hirschberg, B., Maylie, J., Adelman, J. P. and Marrion, N. V. (1998). 
Gating of recombinant small-conductance Ca-activated K+ channels by 
calcium. J Gen Physiol 111:565-581. 
 
Hochman, A., Sternin, H., Gorodin, S., Korsmeyer, S., Ziv, I., Melamed, 
E. and Offen, D. (1998). Enhanced oxidative stress and altered 
antioxidants in brains of Bcl-2-deficient mice. J Neurochem 71:741-748. 
 



 

264 
 

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of 
membrane current and its application to conduction and excitation in 
nerve. J Physiol 117:500-544. 
 
Hofer, A., Kovacs, G., Zappatini, A., Leuenberger, M., Hediger, M. A. 
and Lochner, M. (2013). Design, synthesis and pharmacological 
characterization of analogs of 2-aminoethyl diphenylborinate (2-APB), a 
known store-operated calcium channel blocker, for inhibition of TRPV6-
mediated calcium transport. Bioorg Med Chem 21:3202-3213. 
 
Hosseini, R., Benton, D. C., Dunn, P. M., Jenkinson, D. H. and Moss, 
G. W. (2001). SK3 is an important component of K(+) channels 
mediating the afterhyperpolarization in cultured rat SCG neurones. J 
Physiol 535:323-334. 
 
Hougaard, C., Eriksen, B. L., Jorgensen, S., Johansen, T. H., Dyhring, 
T., Madsen, L. S., Strobaek, D. et al. (2007). Selective positive 
modulation of the SK3 and SK2 subtypes of small conductance Ca2+-
activated K+ channels. Br J Pharmacol 151:655-665. 
 
Hougaard, C., Jensen, M. L., Dale, T. J., Miller, D. D., Davies, D. J., 
Eriksen, B. L., Strobaek, D. et al. (2009). Selective activation of the SK1 
subtype of human small-conductance Ca2+-activated K+ channels by 
4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid 
tert-butyl ester (GW542573X) is dependent on serine 293 in the S5 
segment. Mol Pharmacol 76:569-578. 
 
Hu, Q., Corda, S., Zweier, J. L., Capogrossi, M. C. and Ziegelstein, R. 
C. (1998). Hydrogen peroxide induces intracellular calcium oscillations 
in human aortic endothelial cells. Circulation 97:268-275. 
 
Huang, X., Dubuc, A. M., Hashizume, R., Berg, J., He, Y., Wang, J., 
Chiang, C. et al. (2012). Voltage-gated potassium channel EAG2 
controls mitotic entry and tumor growth in medulloblastoma via 
regulating cell volume dynamics. Genes Dev 26:1780-1796. 
 
Huang, X. and Jan, L. Y. (2014). Targeting potassium channels in 
cancer. J Cell Biol 206:151-162. 
 
Huber, S. M. (2013). Oncochannels. Cell Calcium 53:241-255. 
 



 

265 
 

Ishii, T. M., Maylie, J. and Adelman, J. P. (1997). Determinants of 
apamin and d-tubocurarine block in SK potassium channels. J Biol 
Chem 272:23195-23200. 
 
Jafaar, Z. M., Litchfield, L. M., Ivanova, M. M., Radde, B. N., Al-Rayyan, 
N. and Klinge, C. M. (2014). beta-D-glucan inhibits endocrine-resistant 
breast cancer cell proliferation and alters gene expression. Int J Oncol 
44:1365-1375. 
 
Jiang, J., Li, M. and Yue, L. (2005). Potentiation of TRPM7 inward 
currents by protons. J Gen Physiol 126:137-150. 
 
Jin, J., Desai, B. N., Navarro, B., Donovan, A., Andrews, N. C. and 
Clapham, D. E. (2008). Deletion of Trpm7 disrupts embryonic 
development and thymopoiesis without altering Mg2+ homeostasis. 
Science 322:756-760. 
 
Jin, J., Wu, L. J., Jun, J., Cheng, X., Xu, H., Andrews, N. C. and 
Clapham, D. E. (2012). The channel kinase, TRPM7, is required for 
early embryonic development. Proc Natl Acad Sci U S A 109:E225-233. 
 
John, V. H., Dale, T. J., Hollands, E. C., Chen, M. X., Partington, L., 
Downie, D. L., Meadows, H. J. et al. (2007). Novel 384-well population 
patch clamp electrophysiology assays for Ca2+-activated K+ channels. 
J Biomol Screen 12:50-60. 
 
Joiner, W. J., Wang, L. Y., Tang, M. D. and Kaczmarek, L. K. (1997). 
hSK4, a member of a novel subfamily of calcium-activated potassium 
channels. Proc Natl Acad Sci U S A 94:11013-11018. 
 
Ju, T. C., Chen, H. M., Lin, J. T., Chang, C. P., Chang, W. C., Kang, J. 
J., Sun, C. P. et al. (2011). Nuclear translocation of AMPK-alpha1 
potentiates striatal neurodegeneration in Huntington's disease. J Cell 
Biol 194:209-227. 
 
Kaczmarek, L. K. (2006). Non-conducting functions of voltage-gated ion 
channels. Nat Rev Neurosci 7:761-771. 
 
Kaitsuka, T., Katagiri, C., Beesetty, P., Nakamura, K., Hourani, S., 
Tomizawa, K., Kozak, J. A. et al. (2014). Inactivation of TRPM7 kinase 
activity does not impair its channel function in mice. Sci Rep 4:5718. 
 



 

266 
 

Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, 
J. S., Ord, T. et al. (1993). Bcl-2 inhibition of neural death: decreased 
generation of reactive oxygen species. Science 262:1274-1277. 
 
Kang, R., Zeh, H. J., Lotze, M. T. and Tang, D. (2011). The Beclin 1 
network regulates autophagy and apoptosis. Cell Death Differ 18:571-
580. 
 
Kawamoto, E. M., Vivar, C. and Camandola, S. (2012). Physiology and 
pathology of calcium signaling in the brain. Front Pharmacol 3:61. 
 
Keen, J. E., Khawaled, R., Farrens, D. L., Neelands, T., Rivard, A., 
Bond, C. T., Janowsky, A. et al. (1999). Domains responsible for 
constitutive and Ca(2+)-dependent interactions between calmodulin 
and small conductance Ca(2+)-activated potassium channels. J 
Neurosci 19:8830-8838. 
 
Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972). Apoptosis: a basic 
biological phenomenon with wide-ranging implications in tissue kinetics. 
Br J Cancer 26:239-257. 
 
King, B., Rizwan, A. P., Asmara, H., Heath, N. C., Engbers, J. D., 
Dykstra, S., Bartoletti, T. M. et al. (2015). IKCa Channels Are a Critical 
Determinant of the Slow AHP in CA1 Pyramidal Neurons. Cell Rep. 
 
Knowlden, J. M., Hutcheson, I. R., Barrow, D., Gee, J. M. and Nicholson, 
R. I. (2005). Insulin-like growth factor-I receptor signaling in tamoxifen-
resistant breast cancer: a supporting role to the epidermal growth factor 
receptor. Endocrinology 146:4609-4618. 
 
Knowlden, J. M., Hutcheson, I. R., Jones, H. E., Madden, T., Gee, J. M., 
Harper, M. E., Barrow, D. et al. (2003). Elevated levels of epidermal 
growth factor receptor/c-erbB2 heterodimers mediate an autocrine 
growth regulatory pathway in tamoxifen-resistant MCF-7 cells. 
Endocrinology 144:1032-1044. 
 
Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., 
Maylie, J. and Adelman, J. P. (1996). Small-conductance, calcium-
activated potassium channels from mammalian brain. Science 
273:1709-1714. 
 



 

267 
 

Kozak, J. A., Matsushita, M., Nairn, A. C. and Cahalan, M. D. (2005). 
Charge screening by internal pH and polyvalent cations as a mechanism 
for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen 
Physiol 126:499-514. 
 
Krishna, A., Biryukov, M., Trefois, C., Antony, P. M., Hussong, R., Lin, 
J., Heinaniemi, M. et al. (2014). Systems genomics evaluation of the 
SH-SY5Y neuroblastoma cell line as a model for Parkinson's disease. 
BMC Genomics 15:1154. 
 
Krnjevic, K. and Lisiewicz, A. (1972). Injections of calcium ions into 
spinal motoneurones. J Physiol 225:363-390. 
 
Kunzelmann, K. (2005). Ion channels and cancer. J Membr Biol 
205:159-173. 
 
LaFerla, F. M. (2002). Calcium dyshomeostasis and intracellular 
signalling in Alzheimer's disease. Nat Rev Neurosci 3:862-872. 
 
Lamy, C., Goodchild, S. J., Weatherall, K. L., Jane, D. E., Liegeois, J. 
F., Seutin, V. and Marrion, N. V. (2010). Allosteric block of KCa2 
channels by apamin. J Biol Chem 285:27067-27077. 
 
Lang, F., Foller, M., Lang, K. S., Lang, P. A., Ritter, M., Gulbins, E., 
Vereninov, A. et al. (2005). Ion channels in cell proliferation and 
apoptotic cell death. J Membr Biol 205:147-157. 
 
Langeslag, M., Clark, K., Moolenaar, W. H., van Leeuwen, F. N. and 
Jalink, K. (2007). Activation of TRPM7 channels by phospholipase C-
coupled receptor agonists. J Biol Chem 282:232-239. 
 
Lasfargues, E. Y., Coutinho, W. G. and Redfield, E. S. (1978). Isolation 
of two human tumor epithelial cell lines from solid breast carcinomas. J 
Natl Cancer Inst 61:967-978. 
 
Latorre, R. and Brauchi, S. (2006). Large conductance Ca2+-activated 
K+ (BK) channel: activation by Ca2+ and voltage. Biol Res 39:385-401. 
 
Leanza, L., Zoratti, M., Gulbins, E. and Szabo, I. (2014). Mitochondrial 
ion channels as oncological targets. Oncogene 33:5569-5581. 
 



 

268 
 

Lehen'kyi, V., Shapovalov, G., Skryma, R. and Prevarskaya, N. (2011). 
Ion channnels and transporters in cancer. 5. Ion channels in control of 
cancer and cell apoptosis. Am J Physiol Cell Physiol 301:C1281-1289. 
 
Li, M. and Xiong, Z. G. (2011). Ion channels as targets for cancer 
therapy. Int J Physiol Pathophysiol Pharmacol 3:156-166. 
 
Li, W. and Aldrich, R. W. (2011). Electrostatic influences of charged 
inner pore residues on the conductance and gating of small 
conductance Ca2+ activated K+ channels. Proc Natl Acad Sci U S A 
108:5946-5953. 
 
Li, W., Halling, D. B., Hall, A. W. and Aldrich, R. W. (2009). EF hands at 
the N-lobe of calmodulin are required for both SK channel gating and 
stable SK-calmodulin interaction. J Gen Physiol 134:281-293. 
 
Lim, D., Fedrizzi, L., Tartari, M., Zuccato, C., Cattaneo, E., Brini, M. and 
Carafoli, E. (2008). Calcium homeostasis and mitochondrial dysfunction 
in striatal neurons of Huntington disease. J Biol Chem 283:5780-5789. 
 
Lin, M. T. and Beal, M. F. (2006). Mitochondrial dysfunction and 
oxidative stress in neurodegenerative diseases. Nature 443:787-795. 
 
Litan, A. and Langhans, S. A. (2015). Cancer as a channelopathy: ion 
channels and pumps in tumor development and progression. Front Cell 
Neurosci 9:86. 
 
Llambi, F. and Green, D. R. (2011). Apoptosis and oncogenesis: give 
and take in the BCL-2 family. Curr Opin Genet Dev 21:12-20. 
 
Lujan, R. (2010). Organisation of potassium channels on the neuronal 
surface. J Chem Neuroanat 40:1-20. 
 
Lumachi, F., Brunello, A., Maruzzo, M., Basso, U. and Basso, S. M. 
(2013). Treatment of estrogen receptor-positive breast cancer. Curr 
Med Chem 20:596-604. 
 
MacKinnon, R. (2004). Potassium channels and the atomic basis of 
selective ion conduction (Nobel Lecture). Angew Chem Int Ed Engl 
43:4265-4277. 
 



 

269 
 

Madison, D. V. and Nicoll, R. A. (1982). Noradrenaline blocks 
accommodation of pyramidal cell discharge in the hippocampus. Nature 
299:636-638. 
 
Maher, B. J. and Westbrook, G. L. (2005). SK channel regulation of 
dendritic excitability and dendrodendritic inhibition in the olfactory bulb. 
J Neurophysiol 94:3743-3750. 
 
Majno, G. and Joris, I. (1995). Apoptosis, oncosis, and necrosis. An 
overview of cell death. Am J Pathol 146:3-15. 
 
Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., 
Hetherington, C., Lawton, M. et al. (1996). Exon 1 of the HD gene with 
an expanded CAG repeat is sufficient to cause a progressive 
neurological phenotype in transgenic mice. Cell 87:493-506. 
 
Marambaud, P., Dreses-Werringloer, U. and Vingtdeux, V. (2009). 
Calcium signaling in neurodegeneration. Mol Neurodegener 4:20. 
 
Martin, L. J. (2010). Mitochondrial and Cell Death Mechanisms in 
Neurodegenerative Diseases. Pharmaceuticals (Basel) 3:839-915. 
 
Marty, A. (1989). The physiological role of calcium-dependent channels. 
Trends Neurosci 12:420-424. 
 
Mattson, M. P. (2007). Calcium and neurodegeneration. Aging Cell 
6:337-350. 
 
Maylie, J., Bond, C. T., Herson, P. S., Lee, W. S. and Adelman, J. P. 
(2004). Small conductance Ca2+-activated K+ channels and 
calmodulin. J Physiol 554:255-261. 
 
McIlwain, D. R., Berger, T. and Mak, T. W. (2013). Caspase functions 
in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656. 
 
Mederos y Schnitzler, M., Waring, J., Gudermann, T. and Chubanov, V. 
(2008). Evolutionary determinants of divergent calcium selectivity of 
TRPM channels. FASEB J 22:1540-1551. 
 
Meech, R. W. (1972). Intracellular calcium injection causes increased 
potassium conductance in Aplysia nerve cells. Comp Biochem Physiol 
A Comp Physiol 42:493-499. 



 

270 
 

 
Mikoshiba, K. (2007). IP3 receptor/Ca2+ channel: from discovery to new 
signaling concepts. J Neurochem 102:1426-1446. 
 
Miller, D. J. (2004). Sydney Ringer; physiological saline, calcium and 
the contraction of the heart. J Physiol 555:585-587. 
 
Monaghan, A. S., Benton, D. C., Bahia, P. K., Hosseini, R., Shah, Y. A., 
Haylett, D. G. and Moss, G. W. (2004). The SK3 subunit of small 
conductance Ca2+-activated K+ channels interacts with both SK1 and 
SK2 subunits in a heterologous expression system. J Biol Chem 
279:1003-1009. 
 
Monteilh-Zoller, M. K., Hermosura, M. C., Nadler, M. J., Scharenberg, 
A. M., Penner, R. and Fleig, A. (2003). TRPM7 provides an ion channel 
mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49-
60. 
 
Montell, C. (2005). The TRP superfamily of cation channels. Sci STKE 
2005:re3. 
 
Montell, C. and Rubin, G. M. (1989). Molecular characterization of the 
Drosophila trp locus: a putative integral membrane protein required for 
phototransduction. Neuron 2:1313-1323. 
 
Muraki, K., Iwata, Y., Katanosaka, Y., Ito, T., Ohya, S., Shigekawa, M. 
and Imaizumi, Y. (2003). TRPV2 is a component of osmotically sensitive 
cation channels in murine aortic myocytes. Circ Res 93:829-838. 
 
Nadler, M. J., Hermosura, M. C., Inabe, K., Perraud, A. L., Zhu, Q., 
Stokes, A. J., Kurosaki, T. et al. (2001). LTRPC7 is a Mg.ATP-regulated 
divalent cation channel required for cell viability. Nature 411:590-595. 
 
Nahorski, S. R. (1988). Inositol polyphosphates and neuronal calcium 
homeostasis. Trends Neurosci 11:444-448. 
 
Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., 
Clark, L. et al. (2006). A collection of breast cancer cell lines for the 
study of functionally distinct cancer subtypes. Cancer Cell 10:515-527. 
 
Newcomb-Fernandez, J. K., Zhao, X., Pike, B. R., Wang, K. K., Kampfl, 
A., Beer, R., DeFord, S. M. et al. (2001). Concurrent assessment of 



 

271 
 

calpain and caspase-3 activation after oxygen-glucose deprivation in 
primary septo-hippocampal cultures. J Cereb Blood Flow Metab 
21:1281-1294. 
 
Nicholson, R. I., Hutcheson, I. R., Hiscox, S. E., Knowlden, J. M., Giles, 
M., Barrow, D. and Gee, J. M. (2005). Growth factor signalling and 
resistance to selective oestrogen receptor modulators and pure anti-
oestrogens: the use of anti-growth factor therapies to treat or delay 
endocrine resistance in breast cancer. Endocr Relat Cancer 12 Suppl 
1:S29-36. 
 
Nishihara, E., Hiyama, T. Y. and Noda, M. (2011). Osmosensitivity of 
transient receptor potential vanilloid 1 is synergistically enhanced by 
distinct activating stimuli such as temperature and protons. PLoS One 
6:e22246. 
 
Nolting, A., Ferraro, T., D'Hoedt, D. and Stocker, M. (2007). An amino 
acid outside the pore region influences apamin sensitivity in small 
conductance Ca2+-activated K+ channels. J Biol Chem 282:3478-3486. 
 
Numata, T., Shimizu, T. and Okada, Y. (2007). Direct mechano-stress 
sensitivity of TRPM7 channel. Cell Physiol Biochem 19:1-8. 
 
Oliver, D., Klocker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J. P. 
and Fakler, B. (2000). Gating of Ca2+-activated K+ channels controls 
fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 
26:595-601. 
 
Ouadid-Ahidouch, H. and Ahidouch, A. (2013). K(+) channels and cell 
cycle progression in tumor cells. Front Physiol 4:220. 
 
Panner, A., Cribbs, L. L., Zainelli, G. M., Origitano, T. C., Singh, S. and 
Wurster, R. D. (2005). Variation of T-type calcium channel protein 
expression affects cell division of cultured tumor cells. Cell Calcium 
37:105-119. 
 
Pardo, L. A. and Stuhmer, W. (2014). The roles of K(+) channels in 
cancer. Nat Rev Cancer 14:39-48. 
 
Park, H. S., Hong, C., Kim, B. J. and So, I. (2014). The Pathophysiologic 
Roles of TRPM7 Channel. Korean J Physiol Pharmacol 18:15-23. 
 



 

272 
 

Park, Y. B. (1994). Ion selectivity and gating of small conductance 
Ca(2+)-activated K+ channels in cultured rat adrenal chromaffin cells. J 
Physiol 481 ( Pt 3):555-570. 
 
Pascual, O., Ben Achour, S., Rostaing, P., Triller, A. and Bessis, A. 
(2012). Microglia activation triggers astrocyte-mediated modulation of 
excitatory neurotransmission. Proc Natl Acad Sci U S A 109:E197-205. 
 
Pedarzani, P., McCutcheon, J. E., Rogge, G., Jensen, B. S., 
Christophersen, P., Hougaard, C., Strobaek, D. et al. (2005). Specific 
enhancement of SK channel activity selectively potentiates the 
afterhyperpolarizing current I(AHP) and modulates the firing properties 
of hippocampal pyramidal neurons. J Biol Chem 280:41404-41411. 
 
Pedarzani, P. and Stocker, M. (2008). Molecular and cellular basis of 
small--and intermediate-conductance, calcium-activated potassium 
channel function in the brain. Cell Mol Life Sci 65:3196-3217. 
 
Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., 
Ross, D. T., Pergamenschikov, A. et al. (1999). Distinctive gene 
expression patterns in human mammary epithelial cells and breast 
cancers. Proc Natl Acad Sci U S A 96:9212-9217. 
 
Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., 
Rees, C. A., Pollack, J. R. et al. (2000). Molecular portraits of human 
breast tumours. Nature 406:747-752. 
 
Perraud, A. L., Knowles, H. M. and Schmitz, C. (2004). Novel aspects 
of signaling and ion-homeostasis regulation in immunocytes. The TRPM 
ion channels and their potential role in modulating the immune 
response. Mol Immunol 41:657-673. 
 
Perraud, A. L., Schmitz, C. and Scharenberg, A. M. (2003). TRPM2 
Ca2+ permeable cation channels: from gene to biological function. Cell 
Calcium 33:519-531. 
 
Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., 
Dutra, A., Pike, B. et al. (1997). Mutation in the alpha-synuclein gene 
identified in families with Parkinson's disease. Science 276:2045-2047. 
 



 

273 
 

Potier, M., Joulin, V., Roger, S., Besson, P., Jourdan, M. L., Leguennec, 
J. Y., Bougnoux, P. et al. (2006). Identification of SK3 channel as a new 
mediator of breast cancer cell migration. Mol Cancer Ther 5:2946-2953. 
 
Pouladi, M. A., Morton, A. J. and Hayden, M. R. (2013). Choosing an 
animal model for the study of Huntington's disease. Nat Rev Neurosci 
14:708-721. 
 
Power, J. M. and Sah, P. (2008). Competition between calcium-
activated K+ channels determines cholinergic action on firing properties 
of basolateral amygdala projection neurons. J Neurosci 28:3209-3220. 
 
Prevarskaya, N., Skryma, R. and Shuba, Y. (2010). Ion channels and 
the hallmarks of cancer. Trends Mol Med 16:107-121. 
 
Pugazhenthi, S., Wang, M., Pham, S., Sze, C. I. and Eckman, C. B. 
(2011). Downregulation of CREB expression in Alzheimer's brain and in 
Abeta-treated rat hippocampal neurons. Mol Neurodegener 6:60. 
 
Putney, J. W. (2011). The physiological function of store-operated 
calcium entry. Neurochem Res 36:1157-1165. 
 
Razik, M. A. and Cidlowski, J. A. (2002). Molecular interplay between 
ion channels and the regulation of apoptosis. Biol Res 35:203-207. 
 
Reed, J. C. (2008). Bcl-2-family proteins and hematologic malignancies: 
history and future prospects. Blood 111:3322-3330. 
 
Richter, M., Nickel, C., Apel, L., Kaas, A., Dodel, R., Culmsee, C. and 
Dolga, A. M. (2015). SK channel activation modulates mitochondrial 
respiration and attenuates neuronal HT-22 cell damage induced by 
H2O2. Neurochem Int 81:63-75. 
 
Roderick, H. L. and Cook, S. J. (2008). Ca2+ signalling checkpoints in 
cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat 
Rev Cancer 8:361-375. 
 
Roy, J. W., Cowley, E. A., Blay, J. and Linsdell, P. (2010). The 
intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-
34 stimulates proliferation of breast cancer cells via activation of 
oestrogen receptors. Br J Pharmacol 159:650-658. 
 



 

274 
 

Ruegg, U. T. and Burgess, G. M. (1989). Staurosporine, K-252 and 
UCN-01: potent but nonspecific inhibitors of protein kinases. Trends 
Pharmacol Sci 10:218-220. 
 
Runnels, L. W., Yue, L. and Clapham, D. E. (2001). TRP-PLIK, a 
bifunctional protein with kinase and ion channel activities. Science 
291:1043-1047. 
 
Ryazanova, L. V., Rondon, L. J., Zierler, S., Hu, Z., Galli, J., Yamaguchi, 
T. P., Mazur, A. et al. (2010). TRPM7 is essential for Mg(2+) 
homeostasis in mammals. Nat Commun 1:109. 
 
Sah, P. and Clements, J. D. (1999). Photolytic manipulation of [Ca2+]i 
reveals slow kinetics of potassium channels underlying the 
afterhyperpolarization in hippocampal pyramidal neurons. J Neurosci 
19:3657-3664. 
 
Sah, P. and Faber, E. S. (2002). Channels underlying neuronal calcium-
activated potassium currents. Prog Neurobiol 66:345-353. 
 
Sah, P. and McLachlan, E. M. (1992). Potassium currents contributing 
to action potential repolarization and the afterhyperpolarization in rat 
vagal motoneurons. J Neurophysiol 68:1834-1841. 
 
Sailer, C. A., Hu, H., Kaufmann, W. A., Trieb, M., Schwarzer, C., Storm, 
J. F. and Knaus, H. G. (2002). Regional differences in distribution and 
functional expression of small-conductance Ca2+-activated K+ 
channels in rat brain. J Neurosci 22:9698-9707. 
 
Sailer, C. A., Kaufmann, W. A., Marksteiner, J. and Knaus, H. G. (2004). 
Comparative immunohistochemical distribution of three small-
conductance Ca2+-activated potassium channel subunits, SK1, SK2, 
and SK3 in mouse brain. Mol Cell Neurosci 26:458-469. 
 
Sassone, J., Maraschi, A., Sassone, F., Silani, V. and Ciammola, A. 
(2013). Defining the role of the Bcl-2 family proteins in Huntington's 
disease. Cell Death Dis 4:e772. 
 
Savic, N., Pedarzani, P. and Sciancalepore, M. (2001). Medium 
afterhyperpolarization and firing pattern modulation in interneurons of 
stratum radiatum in the CA3 hippocampal region. J Neurophysiol 
85:1986-1997. 



 

275 
 

 
Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., 
Hasenbank, R., Bates, G. P. et al. (1997). Huntingtin-encoded 
polyglutamine expansions form amyloid-like protein aggregates in vitro 
and in vivo. Cell 90:549-558. 
 
Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., 
Hasenbank, R., Bates, G. P. et al. (1999). Self-assembly of 
polyglutamine-containing huntingtin fragments into amyloid-like fibrils: 
implications for Huntington's disease pathology. Proc Natl Acad Sci U S 
A 96:4604-4609. 
 
Schmitz, C., Perraud, A. L., Johnson, C. O., Inabe, K., Smith, M. K., 
Penner, R., Kurosaki, T. et al. (2003). Regulation of vertebrate cellular 
Mg2+ homeostasis by TRPM7. Cell 114:191-200. 
 
Schonherr, R. (2005). Clinical relevance of ion channels for diagnosis 
and therapy of cancer. J Membr Biol 205:175-184. 
 
Schug, Z. T., Gonzalvez, F., Houtkooper, R. H., Vaz, F. M. and Gottlieb, 
E. (2011). BID is cleaved by caspase-8 within a native complex on the 
mitochondrial membrane. Cell Death Differ 18:538-548. 
 
Schwindt, P. C., Spain, W. J., Foehring, R. C., Chubb, M. C. and Crill, 
W. E. (1988). Slow conductances in neurons from cat sensorimotor 
cortex in vitro and their role in slow excitability changes. J Neurophysiol 
59:450-467. 
 
Shah, M. and Haylett, D. G. (2000). The pharmacology of hSK1 Ca2+-
activated K+ channels expressed in mammalian cell lines. Br J 
Pharmacol 129:627-630. 
 
Shepard, P. D. and Stump, D. (1999). Nifedipine blocks apamin-induced 
bursting activity in nigral dopamine-containing neurons. Brain Res 
817:104-109. 
 
Shiozaki, E. N., Chai, J. and Shi, Y. (2002). Oligomerization and 
activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci 
U S A 99:4197-4202. 
 



 

276 
 

Simon, F., Varela, D. and Cabello-Verrugio, C. (2013). Oxidative stress-
modulated TRPM ion channels in cell dysfunction and pathological 
conditions in humans. Cell Signal 25:1614-1624. 
 
Singh, S., Syme, C. A., Singh, A. K., Devor, D. C. and Bridges, R. J. 
(2001). Benzimidazolone activators of chloride secretion: potential 
therapeutics for cystic fibrosis and chronic obstructive pulmonary 
disease. J Pharmacol Exp Ther 296:600-611. 
 
Soule, H. D., Maloney, T. M., Wolman, S. R., Peterson, W. D., Jr., 
Brenz, R., McGrath, C. M., Russo, J. et al. (1990). Isolation and 
characterization of a spontaneously immortalized human breast 
epithelial cell line, MCF-10. Cancer Res 50:6075-6086. 
 
Soule, H. D., Vazguez, J., Long, A., Albert, S. and Brennan, M. (1973). 
A human cell line from a pleural effusion derived from a breast 
carcinoma. J Natl Cancer Inst 51:1409-1416. 
 
Stevens, B., Allen, N. J., Vazquez, L. E., Howell, G. R., Christopherson, 
K. S., Nouri, N., Micheva, K. D. et al. (2007). The classical complement 
cascade mediates CNS synapse elimination. Cell 131:1164-1178. 
 
Stocker, M. (2004). Ca(2+)-activated K+ channels: molecular 
determinants and function of the SK family. Nat Rev Neurosci 5:758-
770. 
 
Stocker, M., Hirzel, K., D'Hoedt, D. and Pedarzani, P. (2004). Matching 
molecules to function: neuronal Ca2+-activated K+ channels and 
afterhyperpolarizations. Toxicon 43:933-949. 
 
Stocker, M. and Pedarzani, P. (2000). Differential distribution of three 
Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the 
adult rat central nervous system. Mol Cell Neurosci 15:476-493. 
 
Storm, J. F. (1987). Action potential repolarization and a fast after-
hyperpolarization in rat hippocampal pyramidal cells. J Physiol 385:733-
759. 
 
Strobaek, D., Brown, D. T., Jenkins, D. P., Chen, Y. J., Coleman, N., 
Ando, Y., Chiu, P. et al. (2013). NS6180, a new K(Ca) 3.1 channel 
inhibitor prevents T-cell activation and inflammation in a rat model of 
inflammatory bowel disease. Br J Pharmacol 168:432-444. 



 

277 
 

 
Strobaek, D., Hougaard, C., Johansen, T. H., Sorensen, U. S., Nielsen, 
E. O., Nielsen, K. S., Taylor, R. D. et al. (2006). Inhibitory gating 
modulation of small conductance Ca2+-activated K+ channels by the 
synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-
naphtylamine (NS8593) reduces afterhyperpolarizing current in 
hippocampal CA1 neurons. Mol Pharmacol 70:1771-1782. 
 
Strobaek, D., Jorgensen, T. D., Christophersen, P., Ahring, P. K. and 
Olesen, S. P. (2000). Pharmacological characterization of small-
conductance Ca(2+)-activated K(+) channels stably expressed in HEK 
293 cells. Br J Pharmacol 129:991-999. 
 
Strobaek, D., Teuber, L., Jorgensen, T. D., Ahring, P. K., Kjaer, K., 
Hansen, R. S., Olesen, S. P. et al. (2004). Activation of human IK and 
SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-
dione 3-oxime). Biochim Biophys Acta 1665:1-5. 
 
Stutzmann, G. E. and Mattson, M. P. (2011). Endoplasmic reticulum 
Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 
63:700-727. 
 
Suh, S. W., Shin, B. S., Ma, H., Van Hoecke, M., Brennan, A. M., Yenari, 
M. A. and Swanson, R. A. (2008). Glucose and NADPH oxidase drive 
neuronal superoxide formation in stroke. Ann Neurol 64:654-663. 
 
Sun, H. S., Jackson, M. F., Martin, L. J., Jansen, K., Teves, L., Cui, H., 
Kiyonaka, S. et al. (2009). Suppression of hippocampal TRPM7 protein 
prevents delayed neuronal death in brain ischemia. Nat Neurosci 
12:1300-1307. 
 
Sutko, J. L. and Airey, J. A. (1996). Ryanodine receptor Ca2+ release 
channels: does diversity in form equal diversity in function? Physiol Rev 
76:1027-1071. 
 
Syme, C. A., Gerlach, A. C., Singh, A. K. and Devor, D. C. (2000). 
Pharmacological activation of cloned intermediate- and small-
conductance Ca(2+)-activated K(+) channels. Am J Physiol Cell Physiol 
278:C570-581. 
 



 

278 
 

Szatkowski, M., Barbour, B. and Attwell, D. (1990). Non-vesicular 
release of glutamate from glial cells by reversed electrogenic glutamate 
uptake. Nature 348:443-446. 
 
Tajima, N., Schonherr, K., Niedling, S., Kaatz, M., Kanno, H., 
Schonherr, R. and Heinemann, S. H. (2006). Ca2+-activated K+ 
channels in human melanoma cells are up-regulated by hypoxia 
involving hypoxia-inducible factor-1alpha and the von Hippel-Lindau 
protein. J Physiol 571:349-359. 
 
Takahashi, N., Kozai, D. and Mori, Y. (2012). TRP channels: sensors 
and transducers of gasotransmitter signals. Front Physiol 3:324. 
 
Teshima, K., Kim, S. H. and Allen, C. N. (2003). Characterization of an 
apamin-sensitive potassium current in suprachiasmatic nucleus 
neurons. Neuroscience 120:65-73. 
 
Togashi, K., Inada, H. and Tominaga, M. (2008). Inhibition of the 
transient receptor potential cation channel TRPM2 by 2-
aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153:1324-1330. 
 
Tojyo, Y., Morita, T., Nezu, A. and Tanimura, A. (2013). Staurosporine 
maintains the activation of store-operated Ca(2)(+) entry even after the 
refilling of Ca(2)(+) stores. Cell Calcium 53:349-356. 
 
Tong, H., Steinert, J. R., Robinson, S. W., Chernova, T., Read, D. J., 
Oliver, D. L. and Forsythe, I. D. (2010). Regulation of Kv channel 
expression and neuronal excitability in rat medial nucleus of the 
trapezoid body maintained in organotypic culture. J Physiol 588:1451-
1468. 
 
Trettel, F., Rigamonti, D., Hilditch-Maguire, P., Wheeler, V. C., Sharp, 
A. H., Persichetti, F., Cattaneo, E. et al. (2000). Dominant phenotypes 
produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol 
Genet 9:2799-2809. 
 
Trimmer, J. S. (2015). Subcellular localization of K+ channels in 
mammalian brain neurons: remarkable precision in the midst of 
extraordinary complexity. Neuron 85:238-256. 
 
Tsokas, P., Ma, T., Iyengar, R., Landau, E. M. and Blitzer, R. D. (2007). 
Mitogen-activated protein kinase upregulates the dendritic translation 



 

279 
 

machinery in long-term potentiation by controlling the mammalian target 
of rapamycin pathway. J Neurosci 27:5885-5894. 
 
Ullrich, N. D., Voets, T., Prenen, J., Vennekens, R., Talavera, K., 
Droogmans, G. and Nilius, B. (2005). Comparison of functional 
properties of the Ca2+-activated cation channels TRPM4 and TRPM5 
from mice. Cell Calcium 37:267-278. 
 
Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., 
Beckmann, J. S., Mett, I. L., Rebrikov, D. et al. (1998). Targeted 
disruption of the mouse Caspase 8 gene ablates cell death induction by 
the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. 
Immunity 9:267-276. 
 
Vargas, M. R. and Johnson, J. A. (2009). The Nrf2-ARE cytoprotective 
pathway in astrocytes. Expert Rev Mol Med 11:e17. 
 
Venkatachalam, K. and Montell, C. (2007). TRP channels. Annu Rev 
Biochem 76:387-417. 
 
Visan, V., Fajloun, Z., Sabatier, J. M. and Grissmer, S. (2004). Mapping 
of maurotoxin binding sites on hKv1.2, hKv1.3, and hIKCa1 channels. 
Mol Pharmacol 66:1103-1112. 
 
Volterra, A., Liaudet, N. and Savtchouk, I. (2014). Astrocyte Ca(2)(+) 
signalling: an unexpected complexity. Nat Rev Neurosci 15:327-335. 
 
Weerasinghe, P. and Buja, L. M. (2012). Oncosis: an important non-
apoptotic mode of cell death. Exp Mol Pathol 93:302-308. 
 
Wei, A. D., Gutman, G. A., Aldrich, R., Chandy, K. G., Grissmer, S. and 
Wulff, H. (2005). International Union of Pharmacology. LII. 
Nomenclature and molecular relationships of calcium-activated 
potassium channels. Pharmacol Rev 57:463-472. 
 
Wes, P. D., Chevesich, J., Jeromin, A., Rosenberg, C., Stetten, G. and 
Montell, C. (1995). TRPC1, a human homolog of a Drosophila store-
operated channel. Proc Natl Acad Sci U S A 92:9652-9656. 
 
Wheeler, V. C., White, J. K., Gutekunst, C. A., Vrbanac, V., Weaver, M., 
Li, X. J., Li, S. H. et al. (2000). Long glutamine tracts cause nuclear 
localization of a novel form of huntingtin in medium spiny striatal 



 

280 
 

neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 
9:503-513. 
 
Williams, S., Serafin, M., Muhlethaler, M. and Bernheim, L. (1997). 
Distinct contributions of high- and low-voltage-activated calcium 
currents to afterhyperpolarizations in cholinergic nucleus basalis 
neurons of the guinea pig. J Neurosci 17:7307-7315. 
 
Wilson, J. X. (1997). Antioxidant defense of the brain: a role for 
astrocytes. Can J Physiol Pharmacol 75:1149-1163. 
 
Wong, F., Schaefer, E. L., Roop, B. C., LaMendola, J. N., Johnson-
Seaton, D. and Shao, D. (1989). Proper function of the Drosophila trp 
gene product during pupal development is important for normal visual 
transduction in the adult. Neuron 3:81-94. 
 
Wong, L. F., Ralph, G. S., Walmsley, L. E., Bienemann, A. S., Parham, 
S., Kingsman, S. M., Uney, J. B. et al. (2005). Lentiviral-mediated 
delivery of Bcl-2 or GDNF protects against excitotoxicity in the rat 
hippocampus. Mol Ther 11:89-95. 
 
Wu, L. J., Sweet, T. B. and Clapham, D. E. (2010). International Union 
of Basic and Clinical Pharmacology. LXXVI. Current progress in the 
mammalian TRP ion channel family. Pharmacol Rev 62:381-404. 
 
Wulff, H., Castle, N. A. and Pardo, L. A. (2009). Voltage-gated 
potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982-
1001. 
 
Wulff, H., Gutman, G. A., Cahalan, M. D. and Chandy, K. G. (2001). 
Delineation of the clotrimazole/TRAM-34 binding site on the 
intermediate conductance calcium-activated potassium channel, IKCa1. 
J Biol Chem 276:32040-32045. 
 
Wulff, H. and Kohler, R. (2013). Endothelial small-conductance and 
intermediate-conductance KCa channels: an update on their 
pharmacology and usefulness as cardiovascular targets. J Cardiovasc 
Pharmacol 61:102-112. 
 
Wulff, H., Kolski-Andreaco, A., Sankaranarayanan, A., Sabatier, J. M. 
and Shakkottai, V. (2007). Modulators of small- and intermediate-



 

281 
 

conductance calcium-activated potassium channels and their 
therapeutic indications. Curr Med Chem 14:1437-1457. 
 
Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, 
J. E., Ishii, T. et al. (1998). Mechanism of calcium gating in small-
conductance calcium-activated potassium channels. Nature 395:503-
507. 
 
Xie, H., Hou, S., Jiang, J., Sekutowicz, M., Kelly, J. and Bacskai, B. J. 
(2013). Rapid cell death is preceded by amyloid plaque-mediated 
oxidative stress. Proc Natl Acad Sci U S A 110:7904-7909. 
 
Xie, H. R., Hu, L. S. and Li, G. Y. (2010). SH-SY5Y human 
neuroblastoma cell line: in vitro cell model of dopaminergic neurons in 
Parkinson's disease. Chin Med J (Engl) 123:1086-1092. 
 
Xu, S. Z., Zeng, F., Boulay, G., Grimm, C., Harteneck, C. and Beech, D. 
J. (2005). Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: 
a differential, extracellular and voltage-dependent effect. Br J 
Pharmacol 145:405-414. 
 
Yamaguchi, H., Matsushita, M., Nairn, A. C. and Kuriyan, J. (2001). 
Crystal structure of the atypical protein kinase domain of a TRP channel 
with phosphotransferase activity. Mol Cell 7:1047-1057. 
 
Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. 
I. et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome 
c from mitochondria blocked. Science 275:1129-1132. 
 
Yang, M. and Brackenbury, W. J. (2013). Membrane potential and 
cancer progression. Front Physiol 4:185. 
 
Yee, N. S., Kazi, A. A. and Yee, R. K. (2014). Cellular and 
Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in 
Cancer. Cells 3:751-777. 
 
Yeh, W. C., de la Pompa, J. L., McCurrach, M. E., Shu, H. B., Elia, A. 
J., Shahinian, A., Ng, M. et al. (1998). FADD: essential for embryo 
development and signaling from some, but not all, inducers of apoptosis. 
Science 279:1954-1958. 
 



 

282 
 

Yuan, L. L. and Chen, X. (2006). Diversity of potassium channels in 
neuronal dendrites. Prog Neurobiol 78:374-389. 
 
Zhang, J., Zhao, F., Zhao, Y., Wang, J., Pei, L., Sun, N. and Shi, J. 
(2011a). Hypoxia induces an increase in intracellular magnesium via 
transient receptor potential melastatin 7 (TRPM7) channels in rat 
hippocampal neurons in vitro. J Biol Chem 286:20194-20207. 
 
Zhang, L. and Krnjevic, K. (1987). Apamin depresses selectively the 
after-hyperpolarization of cat spinal motoneurons. Neurosci Lett 74:58-
62. 
 
Zhang, L. and McBain, C. J. (1995). Potassium conductances 
underlying repolarization and after-hyperpolarization in rat CA1 
hippocampal interneurones. J Physiol 488 ( Pt 3):661-672. 
 
Zhang, M., Abrams, C., Wang, L., Gizzi, A., He, L., Lin, R., Chen, Y. et 
al. (2012). Structural basis for calmodulin as a dynamic calcium sensor. 
Structure 20:911-923. 
 
Zhang, S., Fritz, N., Ibarra, C. and Uhlen, P. (2011b). Inositol 1,4,5-
trisphosphate receptor subtype-specific regulation of calcium 
oscillations. Neurochem Res 36:1175-1185. 
 
Zorov, D. B., Isaev, N. K., Plotnikov, E. Y., Zorova, L. D., Stelmashook, 
E. V., Vasileva, A. K., Arkhangelskaya, A. A. et al. (2007). The 
mitochondrion as janus bifrons. Biochemistry (Mosc) 72:1115-1126. 
 

 


