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Summary

Hospitals in the UK are increasingly having to cancel a large proportion of elective

operations due to the unavailability of beds on hospital wards for post-operative re-

covery. The availability of post-operative beds is therefore critical to the scheduling

of surgical procedures and the throughput of patients in a hospital. The focus of

this research is to investigate, via data-driven modelling, systematic reasons for the

unavailability of beds and to demonstrate how the Master Surgery Schedule (MSS)

can be constructed using Operational Research techniques to minimise the number

of cancellations of elective operations.

Statistical analysis of data provided by the University Hospital of Wales, Cardiff

was performed, providing information on patient demand and length of stay distri-

butions. A two-stage modelling process was developed to construct and simulate an

MSS that minimises the number of cancellations. The first stage involves a novel

set partitioning based optimisation model that incorporates operating room and bed

constraints. The second stage simulates the resulting optimal schedule to provide

measures on how well the schedule would perform if implemented. The results from

this two-stage model provide insights into when best to schedule surgical specialties

and how best the beds are distributed between wards.

Two optimisation under uncertainty techniques are then employed to incorporate

the uncertainty associated with the bed requirements into the optimisation process.

A robust optimisation (RO) approach that uses protection functions in each bed con-

straint is developed. Investigations into varying levels of protection are performed

in order to gain insight into the so called ‘price of robustness’. Results show that

MSSs that are constructed from protecting more of the uncertainty result in fewer

cancellations and a smaller probability of requiring more beds than are available.

The deterministic optimisation model is then extended to become a scenario-based

optimisation model in which more scenarios of bed requirement are incorporated

into a single optimisation model. Results show that as more scenarios are included,

a more robust schedule is generated and fewer cancellations are expected.

Results from the different approaches are compared to assess the benefits of using

RO techniques. Future research directions following from this work are discussed,

including the construction of the MSS based on sub-specialties and investigation of

different working practices within the case study hospital.
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Chapter 1

Introduction

Operating theatre scheduling is widely accepted to be a very complex process due to

the demand for hospital resources and the impact it has on the running of the entire

hospital. This thesis investigates the problems associated with operating theatre

scheduling, and investigates optimisation methods that tackle these problems, with

the aim of reducing the number of cancellations of elective operations. A novel

approach to the scheduling process that incorporates the demand on downstream

hospital resources, specifically post-operative beds, is developed and investigated.

This chapter introduces the background and associated challenges involved

with the scheduling of operating theatres. The research aims are presented, with an

overview of the structure of the thesis given to set out how these aims will be met.

1.1 Motivation

1.1.1 Operating Theatre Scheduling

The operating theatre department has been described as one of the major areas

within a hospital with respect to its running costs and impact on other departments

in the hospital. Indeed, it is said to be ‘the engine that drives the hospital’ [20].

Surgical suites have very high costs associated with their function, with staff

costs forming the majority of the running costs [111]. Operating theatres have

also been found to be the source of almost 70% of hospital admissions [17], with

surgical patients providing a significant proportion of the demand on other hospital

departments, both before and after surgery [112]. Having such an impact on other

hospital resources requires careful planning in order to ensure the smooth running

of the hospital within tight resource and budgetary constraints.

1
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Operating theatres are dedicated to the provision of surgery for a number of

surgical specialties, where operations are carried out in the theatres in blocks of

time that are allocated to a specific specialty. The schedule that specifies these

allocations is known as the Master Surgery Schedule (MSS), and is often a weekly

timetable that varies very little from week to week. Surgery takes place on two types

of patients: emergency and elective patients. Emergency patients are unplanned

patients who require surgery as soon as possible, whereas elective patients are

planned in advance and can be categorised into day cases and inpatients. Only

inpatients require a stay in a hospital ward bed for post-operative recovery, whereas

day cases leave hospital on the day of surgery and recover at home. Clearly,

inpatients require the use of more hospital resources, and so more planning for

this type of surgery is required. This research is focused on the scheduling of

elective inpatients, with the impact of emergency patients on hospital resources

being accounted for in the scheduling process. Schedules for the day case operating

theatres could also be readily accommodated into the methods presented in this

thesis, however due to the absence of post-operative bed requirements for day

cases, these schedules are considered more trivial to construct in comparison with

inpatient MSSs.

1.1.2 Associated Problems

There are a number of problems that have been identified with the scheduling of

operating theatres, as identified in government publications and from discussions

with hospital staff. A major factor to consider when scheduling operations is the

availability of resources required for an operation to take place. An operation

requires vital equipment, a variety of consumables, and a range of staff to be

present, including surgeons, anaesthetists, nurses and technicians.

As well as ensuring the availability of resources for operations, the arrival of

emergency patients also needs to be recognised. Emergency patients require

treatment much more urgently than elective patients, so have priority for the use

of operating theatres, often resulting in the cancellation of elective operations.

Although it is not known with certainty when emergency patients may arrive,

certain measures can be taken in order to minimise the adverse knock-on affects for

elective patients. Such measures include having a dedicated operating theatre for

emergency patients, thus allowing elective operations to continue in other operating

theatres [93], and to consider the number of beds on wards that may be required

by emergency patients, rather than being available for elective patients.
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Both the unavailability of hospital resources and the occurrence of emergency

patients can result in the cancellation of elective inpatient operations. This is

the main problem that the case study hospital would like to address through this

research: to mimimise the number of cancellations of elective surgery through

careful scheduling of the operating theatres. Cancellations can upset the flow

of patients through the hospital and negatively affect the quality of the patient

experience – a key target set by the Welsh government [158]. A recent audit of

the operating theatre services in Cardiff and Vale University Health Board (CaV

UHB) reported that ‘cancellations due to lack of beds was identified as a common

problem’ [157]. Recovery facilities in the hospital, such as high dependency beds

and the surgical wards, were found to cause ‘bottlenecks’ in the system, particularly

for accessing the Critical Care Unit (CCU).

One recommendation from the Welsh Audit Office report, particularly rele-

vant to this research, is the need for ‘modelling bed capacity against service

reconfiguration to ensure bed availability does not cause cancellations’ [157]. Other

UK and Welsh Government targets aim to ensure the operating theatres are utilised

fully in order to be cost effective, meet waiting time targets and create a more

positive patient experience [158].

1.2 Research Objectives

As outlined above, this research is primarily concerned with the investigation of

the construction of the MSS for operating theatres and its impact on the demand

for beds on hospital wards. Analysis of data provided by CaV UHB concerning

the University Hospital of Wales (UHW), Cardiff, will help explore the relationship

between the operating theatres and beds on wards, as well as informing models to

be developed.

The research will employ statistical and operational research techniques to

provide a framework for the tactical level of hospital planning, in which an MSS can

be constructed that is robust to the uncertainty associated with the post-operative

bed requirements of surgical patients. It is also intended that the developed

scheduling approaches will reduce the number of cancellations of elective surgery,

which is currently such an important problem across the National Health Service

(NHS) in the UK.
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The research presented here is applicable to any hospital in which elective

inpatient surgery is performed, however, the results relate specifically to the case

study hospital. The insights gained and methodologies developed could be extended

to any hospital in Wales, or indeed any similar surgical services in the UK or the

world, due to the generic nature of the model formulations.

The aims of this research can be summarised by the following objectives:

� Investigate the relationship between the MSS and the resultant bed demand

on surgical wards.

� Understand the factors, if any, that affect why cancellations of elective oper-

ations occur, and identify whether they occur more frequently on particular

wards.

� Develop optimisation models to construct an MSS that satisfy constraints on

both the operating theatres and bed availability on wards.

� Evaluate robust optimisation techniques for the construction of the MSS that

incorporate the uncertainty associated with post-operative bed requirements.

1.3 Thesis Overview

This thesis aims to address the research objectives outlined above, and is structured

such that the background to the problem is introduced and discussed in relation

to the case study hospital in the first three chapters. The research into the

development of the scheduling models, including their verification and validation, is

then covered in the next five chapters, with final conclusions and recommendations

for future research being presented in Chapter 9.

A more detailed summary of the remainder of the thesis is as follows:

� Chapter 2 provides a review of the literature on operating theatre scheduling.

Key publications in the field are reviewed, and an overview of techniques used

in previous studies is presented;

� Chapter 3 describes the case study hospital and its current process of schedul-

ing operations. Relevant data is analysed to provide context to the problem

and for inputs of the models to be developed;

� Chapter 4 introduces a deterministic model for the construction of the MSS.

A literature review of the set partitioning optimisation problem is provided
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in order to demonstrate how the method can be applied to this scheduling

problem;

� Chapter 5 evaluates the deterministic scheduling model when applied to the

case study hospital. A variety of ‘what-if’ scenarios are used to investigate the

effect of changing parameters within the model;

� Chapter 6 presents the research area of optimisation under uncertainty. A

literature review is used to introduce methods that can be used to incorpo-

rate uncertainty associated with the post-operative bed requirements within

optimisation models. Two techniques have been identified that have potential

in this scheduling application – robust counterpart optimisation and scenario-

based optimisation;

� Chapter 7 develops a robust counterpart optimisation model for the construc-

tion of the MSS. This approach is considered to be particularly attractive

for hospital decision makers due to the ability to specify their preferences for

protecting the MSS from uncertainty in the bed requirements;

� Chapter 8 extends the deterministic model developed in Chapter 4 into a

scenario-based optimisation model. This is an alternative, data-driven method

to incorporating uncertainty into the optimisation process. A number of exper-

iments are performed to assess the effectiveness of the model and a comparison

is drawn with the robust counterpart optimisation model;

� Chapter 9 draws together the conclusions of this research, evaluates the effec-

tiveness of the models, and suggests possible directions for future research.



Chapter 2

Operating Theatre Scheduling

Literature Review

This chapter provides a review of the academic literature on the scheduling of op-

erating theatres via the use of operational research techniques. An overview of the

variety of techniques employed for each stage of the scheduling process is given to

provide perspective. The need for further research into operating theatre scheduling,

as highlighted in the literature reviewed, is also described.

2.1 Introduction to Operating Theatre Schedul-

ing

The issue of operating theatre planning and scheduling has been, and remains, an

active area of academic research. Magerlein and Martin [112] published the first

extensive review paper on operating theatre scheduling in 1978. More recently

Cardoen et al. [48] and Guerriero and Guido [90] have published reviews on this

topic. The review by Cardoen et al. classifies papers into a diverse range and well

defined areas of research.

Many NHS driven initiatives have been introduced over the years that focus

on the smooth running of the operating theatres in hospitals. For example,

The Productive Operating Theatre programme [127] focused on changes and

improvements that can be made to ensure value and efficiency of the operating

theatres, staff performance, and safety and reliability of patient care.

Cardoen et al. [48] define operating theatre planning to be concerned with

the supply and demand (i.e. capacity decisions) of the surgery department, and

6
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operating theatre scheduling to be the construction of a timetable that specifies the

ordering and allotted times for surgeries.

Operating theatre planning and scheduling is an interesting and challenging

problem due to the large number of variable factors that can affect operations. The

main uncertainties related to scheduling operations, according to Van Oostrum et

al. [154], are the stochastic duration of surgical procedures, personnel availability,

the no-show of patients and the occurrence of emergency surgical procedures.

Gerchak et al. [87] found that the durations of elective surgeries vary according to

the complexity of the surgical procedures and the surgeons themselves.

In addition to improving the efficiency of hospital resources, the improved

scheduling of operating theatres also aims to provide patients with a better quality

of care. Archer and Macario [9] discuss the ever increasing pressure on hospitals

to deliver quality care at low cost. They suggest which areas need to be improved

concerning the operating theatre, and note that improving scheduling efficiency is

a positive way forward in tackling these quality and efficiency problems.

Strum et al. [146] discuss how operating theatre efficiency is related to its

utilisation, and suggest strategies on how to increase the utilisation. Santibanez et

al. [140] discuss possible benefits of a systematic approach to surgery scheduling.

These include:

� Increased efficiency of the operating theatre;

� Increased patient throughput of the operating theatre;

� Lower wait times for both patients and hospital staff.

2.2 Stages of Operating Theatre Scheduling

A number of different stages in the scheduling of operating theatres have been

identified in the literature. Blake and Carter [38] present a conceptual framework

for operating theatre scheduling that is split into three levels of decision making:

strategic, tactical and operational. Strategic level planning involves long term

decisions, typically performed annually. Tactical level decisions relate to a medium

term, quarterly planning horizon, whereas the operational planning level involves

day-to-day decisions on the running of the operating theatres. Actual, known

patients are considered at the operational level, whereas tactical and strategic
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level planning deals with expected patients. Cardoen et al. [48] comment that

the boundaries between these levels are hard to define, and authors of other

publications in the field do not tend to use consistent definitions.

The strategic, tactical and operational levels of operating theatre scheduling

have been identified in the literature as case mix planning, the construction of the

MSS, and elective patient scheduling respectively [19, 49]. Decisions made at each

stage form a hierarchy for operating theatre scheduling, meaning that the outputs

of a higher stage can be used as inputs to inform the next lower stage. The stages

of operating theatre scheduling are shown in Figure 2.1, and discussed further in

the following sections.

Figure 2.1: Stages of Operating Theatre Scheduling

2.2.1 Case Mix Planning

Case mix planning is performed at the highest level of operating theatre planning,

and is used for strategic purposes. Senior management are interested at this stage

of planning since decisions on committing resources such as money, staff and theatre

time are made. Case mix planning is usually done on an annual basis [140].

During this phase of operating theatre planning, available operating theatre

time is divided and assigned to surgeons or specialties. This assignment can

be based on different criteria [148], for example, total cases per allocated block

(historical utilisation), hospital costs and gains per allocated block (financial

criteria), and demand for services (waiting list).

Some surgeons find it hard to reconcile the needs of their own specialty and
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other specialties, as to how operating theatre time is split between the specialties

[140]. An objective of case mix planning is to divide this time as fairly as possible

between the specialties. There are, however, factors that affect the proportions

of time for each specialty. The waiting times of patients for surgery are a main

concern for hospitals so that patient quality of care is maintained. Equity among

specialties is desirable [37], and the maximisation of operating theatre utilisation is

also sought for financial benefits [63].

Dexter et al. [62] have considered financial criteria and uncertainty of the

future workload to determine initial operating theatre allocations for surgical

sub-specialties using linear programming. They found that this stage of planning

can be performed up to one year in advance in order for management to make

strategic decisions. By estimating lower and upper limits on future demand, the

authors also showed that the initial allocation of operating theatre time can be

performed with only this partial information available.

Trade-offs between cost, throughput of patients and clinical necessity were

used by Blake and Carter [39] to determine the case mix of patients within a hospi-

tal. Bed availability is considered as a constraint in their linear goal programming

approach and their model has been implemented successfully in a large teaching

hospital in Canada.

Adan and Vissers [5] formulate a mixed integer programming (MIP) model

that identifies the number and mix of patients that must be admitted into a hospi-

tal in order to gain the target utilisation of important resources, e.g. the operating

theatre or intensive care unit. They consider both inpatients and outpatients,

where outpatients are considered as inpatients with a length of stay (LoS) of one day.

Time series analysis has been used to forecast the total number of hours of

elective surgery required in the future in order to allocate operating theatre time to

each specialty. Dexter et al. [64] found that using the average of the most recent

year’s total hours of elective surgeries is a valid way of forecasting the future usage

of operating theatre time.

2.2.2 Master Surgery Schedule

The tactical level of operating theatre scheduling involves the construction of an

MSS. At this stage the number and type of operating theatres are defined, the
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hours of operating theatre time available is stated and the specialty that has

priority in each operating theatre is given [36]. The MSS is a cyclic timetable

that usually has a cycle time of one week, requiring that only the surgical pro-

cedures of a certain type are scheduled and not the specific procedures of actual

patients [154]. Deviations from this cyclic timetable are discouraged by the hospital.

Since this level of planning is the main focus of this research, a more thor-

ough discussion of previous techniques and models used for the construction of the

MSS in the literature is given in Section 2.3.

2.2.3 Elective Patient Scheduling

Given a particular MSS, the final stage of operating theatre scheduling is to schedule

individual patients for their surgeries. This is at the detailed, operational level of

planning and is often performed on a daily basis. For each operating theatre avail-

able to a specialty, the patients for that day are scheduled such that various criteria

are met [48]. These criteria may relate to the surgeons’ preferences (e.g. order of

surgeries for clinical reasons), resource availability, maximisation of throughput,

efficiency and utilisation of the operating theatre, and minimisation of staff overtime.

Magerlein and Martin [112] define the dichotomy of advance and allocation

scheduling. Advance scheduling is when a surgery date is fixed for a specific patient

in the future, whereas allocation scheduling sequences a number of surgical cases

for a given day by determining the operating theatre and start time of the proce-

dure, assuming that the corresponding patients are ready for surgery in the hospital.

The reviewed literature can be split into two themes: the construction of a

schedule for elective patients, and the improvement of existing schedules. These

areas are discussed in more detail in the following sections.

Construction of Schedules

Guinet and Chaabane [91] propose that the scheduling of elective patients

should be done in two steps. First they assign patients to operating theatres over

the planning horizon, and then each operating theatre is scheduled individually.

The surgeries in an individual operating theatre are scheduled in such a way that

human and material resources are considered, as well as patient hospitalisation

date and a surgery deadline, in order to maximise patient satisfaction and resource
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efficiency. The authors describe a primal-dual heuristic to solve the assignment

problem.

A two-step approach for operating theatre scheduling is also used by Jebali

et al. [96] to determine the schedule for the next operating day. In the first step,

surgical operations are assigned operating theatres with the aim of minimising

overtime, undertime and patient waiting time using a mixed integer program.

The second step then sequences the operations that have been assigned to each

operating theatre in the previous step using a MIP model which sequences the

operations to minimise overtime, and by considering the recovery room beds as a

bottleneck resource.

Saadouli et al. [139] incorporate the stochastic nature of surgery durations

and the availability of post-operative beds for an orthopaedic specialty when gen-

erating a schedule for elective patients. An additive slack is given to the duration

of each surgery, and a knapsack model is applied to generate daily schedules that

maximise operating theatre utilisation. Discrete event simulation is then employed

to evaluate the resulting schedules.

Another uncertain aspect associated with the scheduling of operations is the

occurrence of emergency patients. Lamiri et al. [101] use a stochastic MIP model

to generate a schedule for elective patients, whilst incorporating the possibility of

emergency patients occurring over the planning horizon. Experimental results show

that running costs can be significantly reduced by using a stochastic model where

uncertainty related to emergency surgery is explicitly considered.

Van Houdenhoven et al. [152] evaluate several scenarios in which a bin-packing

algorithm is used to optimise the operating theatre case schedule. The planned

slack within the schedule is minimised by making use of the portfolio effect for

multiple operations with similar variation of duration. Based on data from a large

teaching hospital, it was found that this approach could yield a 4.5% increase in

operating theatre utilisation.

It has been shown by Dexter et al. [66] that by building planned slack into

an operating theatre schedule, the likelihood of operations starting at their

scheduled start times can increase. They show that this can be done by calculating

the upper prediction bound for the duration of the cases performed later on in the

day.
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Improving Schedules

As discussed above, there are a number of ways in which operating theatre

schedules can be constructed, however, there are also papers in the literature that

show that the schedules can be further improved.

Dexter et al. [65] evaluate ten scheduling algorithms that can be used to

schedule additional add-on elective cases to the operating theatre schedule. This

daily process happens once the operating theatre schedules have been submitted

and approved for the next day. Using simulation, the approach was found to

increase operating theatre utilisation by performing more operations in the ‘open

time’ of the operating theatre schedules.

Gerchak et al. [87] have also considered how to schedule add-on elective

cases to the operating theatre schedule. Stochastic dynamic programming was

used to determine how many of the additional requests for add-on cases should

be accepted, when the operating theatre capacity is uncertain (due to variable

operation duration and unscheduled emergency cases).

2.2.4 All Three Stages

While most publications reviewed are concerned with only one stage of the operating

theatre scheduling process, Testi et al. [148] have developed a hierarchical modelling

approach to operating theatre scheduling. Their three-phase model integrates all

stages discussed above into one model that has been implemented in a surgical

department in Genova. The first, case-mix planning phase (referred to by the authors

as session planning) is solved using a bin-packing algorithm that distributes available

operating theatre time over the surgical specialties. The MSS is then constructed

using an integer programming model in which an operating theatre is assigned an

amount of time to each surgical specialty. Finally, discrete event simulation is used

to model a variety of different sequencing rules for booking inpatients for specific

dates, rooms and times. This elective patient scheduling model also considers the

downstream ward capacity. A key finding from this research was the consequential

reorganisation of the recovery beds into short and long stay areas. This was found to

increase the utilisation of the operating theatres and increase throughput of patients.
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2.3 Construction of the Master Surgery Schedule

Many factors need to be considered in the creation of an MSS, including the

compatibility between operating theatres and the specialties working in them (i.e.

ensuring that the correct equipment is in the appropriate operating theatre), the

availability of surgeons and whether there are enough post-operative resources, for

example critical care beds [140].

A large amount of research has been carried out relating to the construction

of the MSS as will be discussed below; however, van Oostrum et al. [153] comment

that the impact of this research is very limited in practice. In their paper, the

authors discuss the potential problems that might arise when implementing an

MSS both for the researcher and healthcare organisation. In relation to these

implementation problems, Belien et al. [20] have developed a software package that

represents visually the impact of different MSSs on various resources throughout

the hospital.

Studies in the literature use different performance measures in order to de-

termine the effectiveness of the operating theatre scheduling procedures. Common

performance measures, as categorised by Cardoen et al. [48], include waiting

time, patient throughput, operating theatre utilisation, resource levelling, patient

deferrals, financial measures and surgeon preferences. These performance measures

are discussed in Table 2.1.

Performance

Measure

Aim Examples

Waiting time To decrease waiting

times for patients and

surgeons.

Wullink et al. [161] use discrete event

simulation to minimise patient waiting

times for emergency surgeries.

Denton et al. [58] propose stochastic

optimisation models to find sequenc-

ing rules that minimise surgeon waiting

times.
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Patient through-

put

To increase the

number of patients

treated.

Van Berkel and Blake [155], using dis-

crete event simulation, showed that by

changing the bed capacity in wards

and the amount of operating theatre

time available, the throughput of pa-

tients increased which also caused wait-

ing times to decrease.

Operating the-

atre utilisation

To keep the operating

theatre running at a

desired level of utilisa-

tion.

Tyler et al. [151] use simulation to de-

termine the best utilisation of an oper-

ating theatre. They find that a utilisa-

tion of 85 – 95% allows for uncertainty

of operation durations and start times.

An in-depth discussion on the pros and

cons of over-/under-utilisation is given

in van Houdenhoven et al. [152].

Resource level-

ling

To have smooth use of

hospital resources, i.e.

no peaks in demand.

Marcon and Dexter [114] consider the

levelling of resources in the post anaes-

thesia care unit and recovery area, as

well as within the operating theatre.

Patient deferrals To minimise the num-

ber of patients who

are deferred or decline

treatment.

Kim and Horowitz [98] study how the

number of cancelled surgeries can be

reduced by considering the need for

post-operative admission to the CCU

within the operating theatre schedule.

A simulation model is used to model

the many pathways of patients to the

CCU.
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Financial mea-

sures

To minimise operating

theatre costs.

This performance measure is particu-

larly popular in research that relates

to American hospitals. Cardoen et al.

[48] believe more research should be

done on this as any cost savings can be

invested back into solving any of the

other problems above.

Dexter et al. [60] present a case study

that looks at the effect on profit mar-

gins when throughput increased, while

Dexter et al. [61] also considered

the uncertainty in the surgeons’ future

workloads.

Table 2.1: Common performance measures

A small number of papers in the literature consider the MSS for only one surgical

team or only one operating theatre. Vissers et al. [156] use MIP to construct a

master timetable for the cardiothoracic surgery department with a four week cycle

time. A number of resources such as nursing staff and intensive care beds are

considered as constraints in the model.

The majority of papers in the literature concern the construction of the MSS

for multiple surgical specialties needing to be assigned to multiple operating

theatres. A variety of modelling approaches have been used, however, from the

literature review carried out by Cardoen et al. [48], it was found that the most

common technique used for operating theatre planning and scheduling is mathe-

matical programming. In particular, MIP was found to be the most commonly

used approach. Here we provide a discussion on a selection of papers to illustrate

how mathematical programming techniques have been used to construct the MSS.

MIP is used by Blake et al. [36, 37] to produce a schedule that minimises

the shortfall between the target and actual assignment of operating theatre time

for each surgical group. Their scheduling model has been implemented and used

by Mount Sinai hospital in Toronto, Canada. Van Oostrum et al. [154] also use an

MIP model to construct an MSS that uses a column generation technique to find a

solution. The stochastic nature of the duration of surgical procedures is considered,

and planned slack is built into the timetable in order to account for this. Their
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MIP model aims to maximise the operating theatre utilisation as well as levelling

the subsequent hospital bed requirements. Adan et al. [4] also formulate an MIP

model that follows a goal programming approach in order to create an MSS that

allows reservation of some operating theatre capacity for emergency patients.

Kuo et al. [100] use integer programming to allocate operating theatre time

to multiple operating theatres in order to maximise surgeon revenue in American

hospitals; the results of which indicate a 15% increase in revenue. This research,

however, relied upon the assumption that there was not a shortage of intensive care

beds or nursing staff.

A number of MIP and quadratic programming models for constructing the

MSS were proposed by Belien and Demeulemeester [19]. They evaluate these

methods by considering the resulting bed occupancy after surgeries, with the aim to

level the demand as much as possible. They build a model that minimises the total

expected bed shortage with constraints on the demand for operating theatre blocks

for each surgical group and on the capacity of the number of available operating

theatre blocks each day. Belien et al. [21] subsequently discuss a decision support

system for the implementation of these models in a large hospital. They find that

the different models provide slightly different schedules, but that it is up to the

hospital managers to choose the ‘best’ schedule.

Less common modelling approaches have also been used to construct an MSS, such

as Vanberkel et al. [155] who used a queuing theory approach to build the MSS

in such a way that demand on downstream hospital departments is predicted and

taken account of in the MSS. Strum et al. [146] use a minimal cost analysis model

to assist with optimising subspecialty operating theatre block time allotments.

Their model uses estimates of the costs of under- and over- utilisation of operating

theatres in order to allocate operating theatre time to surgical subspecialties at

minimum cost.

Note that most of the literature reviewed is concerned with finding the MSS

for surgery within one hospital. Santibanez et al. [140] consider the more complex

problem of allocating operating theatre time to specialties across multiple hospitals.

An MIP model is formulated to construct the MSS with two objectives: to reduce

the variability in bed utilisation (achieved by minimising the maximum daily bed

utilisation), and to maximise the throughput and mix of patients.
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2.4 Future Research Opportunities

There are many aspects of operating theatre scheduling that have yet to be

considered or expanded upon in the literature, as discussed in the review paper of

May et al. [117]. The most relevant include the need to consider the affect of the

MSS on other hospital resources, and to take account of the stochastic nature of

the length operations and the post-operative LoS.

In order for more factors to be considered in the modelling process, San-

tibanez et al. [140] suggest that the characteristics of individual surgeons could be

included in the model. Since each surgeon performs a different mix of procedures,

input of specific demand would create a more hospital specific model. Cardoen et

al. [48] believe this would have a larger success rate when scheduling is performed

at the surgeon level and not the patient level.

Cardoen et al. [48] recommend that global performance within a hospital

could be improved by incorporating other hospital facilities in the scheduling pro-

cess. Since the operating theatre suite is a main driver of demand in the hospital,

the consideration of upstream and/or downstream departments is important. These

facilities do not have to be limited to within one hospital.

It is also recommended by Lamiri et al. [101] that more research should be

carried out when the stochastic nature of the operating theatre is taken into

account, both for the arrival of emergency patients and the duration of surgical

procedures. The uncertainty that relates to the availability of resources should also

be considered [121, 130].

2.5 Summary

This chapter has provided a preliminary review of the literature that is relevant

to the scheduling of operating theatres. A particular focus on the tactical planning

stage involving the construction of the MSS has been given. A variety of operational

research techniques have been employed for each stage of the scheduling process,

however, it is clear that MIP has been most commonly used. Gaps in the existing

literature concern the inclusion of up- and down-stream hospital resources, and the

consideration of the stochastic nature of operations. The research presented in the

subsequent chapters aims to address these issues.



Chapter 3

Description of the Case Study

Hospital

This chapter introduces the case study hospital used in this research. In particular,

current working practices are described and relevant data analysis is presented.

Extensive data analyses relating to theatre and ward activity in the hospital is

carried out to provide context and to derive inputs for the developed models.

3.1 The Case Study Hospital: University Hospi-

tal of Wales, Cardiff

The case study hospital for this research is UHW, Cardiff. It is the largest hospital

within the CaV UHB, and is indeed the largest hospital in Wales. CaV UHB is

a teaching health board that has strong links with universities in South Wales, in

particular with the School of Medicine, Cardiff University. The health board serves

a population of around 500,000 people in Cardiff and the surrounding region of the

Vale of Glamorgan.

UHW is the largest hospital in CaV UHB, with an average of 987 beds available

for use in the year 2012/13 and an average 88.0% occupancy rate according

to figures published by the Welsh Government [1]. It has five tertiary referral

centres that offer highly specialist services for cardiothoracic surgery, neurosurgery,

transplant surgery, critical care and haematology. Inpatient and day-case surgery

is performed in UHW in two locations: inpatient operations in the larger, main

theatres and day-case operations in the Short Stay Surgical Unit (SSSU). The

SSSU has a dedicated ward for day-case surgical patients, whereas inpatients who

have operations in the main theatres stay in beds on one of the surgical wards in

18
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UHW. Inpatient operations are performed in the SSSU on very few occasions, so

the impact of this on the main theatres is assumed to be negligible and is therefore

not included for purposes of the modelling.

There are 18 surgical specialties that use the main theatres in UHW. A suite

of 14 operating theatres is available for use by these specialties, however, some

specialties require specialist equipment that is only available in particular theatres.

The theatres are utilised by the specialties according to the MSS; the current MSS

that is used in UHW for the main theatres is shown in Figure 3.1.

Figure 3.1: The current MSS used for the main theatres in UHW

As can be seen in Figure 3.1, specialties are assigned to theatres in whole or half-day

sessions in which the specified specialty has sole use of the theatre. Morning sessions

run from 8.30am to 12.30pm, and afternoon sessions from 1.30pm to 5pm. The

construction or monitoring of the MSS is not currently undertaken by any one

person within UHW. Senior managers monitor the balance between demand (the

number of operations required from emergencies and the elective waiting lists) and

activity (the number of operations performed) in the operating theatres and make

adjustments to the MSS when required. For example, extra sessions may be given

to a specialty that has a particularly long waiting list in order to treat patients and

reduce the waiting list. These extra sessions are taken from other specialties that

could temporarily cope with a reduced operating theatre time.

Within a week of surgery, elective surgical inpatients are required to attend

an appointment in the SSSU outpatient clinic for a pre-operative assessment to

determine whether they are medically fit for their planned operation. Some patients

are then admitted to a bed in hospital before their elective surgery in order for

doctors to monitor them and perform pre-operative tests. Patients who do not

require this supervision before an operation can arrive at the hospital on the day
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of surgery through what is known as the Theatre Admissions Lounge (TAL), thus

avoiding the need for a bed before surgery. Just before the scheduled start time for

surgery the patient is brought from the ward or TAL to the suite of main operating

theatres. Each operating theatre has an adjacent anaesthetic room in which the

patient is anaesthetised whilst the theatre is being cleaned and prepared for surgery.

Once the operation is complete, the patient is moved to the recovery ward in the

operating theatre area where they are closely monitored until the patient is ready

to continue their post-operative recovery on one of the surgical wards. Patients

who were in a bed before surgery will go back to the same bed after surgery. In

some cases, patients will need to recover from surgery in the CCU where they will

receive the highest level of care.

Numerous resources are required for operations, including specialist equip-

ment and staff. If these resources are not available, then operations can be

cancelled. Medical staff that are required in surgery include the consultant surgeon

who will either perform the surgery, or oversee a trainee surgeon, an anaesthestist

(two are required for paediatric surgery), and scrub nurses. For a given MSS,

these members of staff will be scheduled by their own department in order that

the required numbers of each skill-set is present for each surgery. For example,

the anaesthetic department schedules the anaesthetists approximately a week in

advance of surgery.

Elective inpatient operations are currently scheduled by the consultant sur-

geons working together with their secretaries. Around three weeks prior to the

date of surgery, the secretary generates a list of patients that should be operated

on during the session. This is often based on how urgent the patient requires

surgery due to their medical needs, and how close the patients are to breaching

the Referral to Treatment (RTT) time. The RTT time is the time from when a

patient is referred to an outpatient clinic in UHW from a GP, to when they have

surgery. The current targets in Wales are a maximum RTT time of 26 weeks for

at least 95% of patients, and for those who are not treated within 26 weeks to be

treated within 36 weeks from referral [159]. As of January 2015, CaV UHB was the

worst performing health board in Wales in terms of the RTT targets, with 81.7%

of patients waiting less than 26 weeks for treatment and 93.1% of patients waiting

less than 36 weeks [124].

Once the specific patients are chosen for surgery, the consultant surgeon then

decides the order of patients on which to operate. This is based on his experience
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of past operations, the expected duration of surgeries and equipment availability.

For example, paediatric surgery is performed on the youngest to oldest children,

since younger patients are more likely to have adverse reactions to the anaesthetic

or complications in surgery.

On the day before surgery, representatives of each surgical specialty attend

bed management meetings in which the number of beds that are available in the

hospital is discussed. During this meeting, each specialty puts forward how many

beds they require for their planned elective surgeries the next day. Depending on

the current capacity of UHW, either all patients are confirmed for surgery, or some

or all of the elective surgery has to be cancelled due to a lack of beds on the wards.

The ideal level of bed capacity that the managers of UHW prefer to run at is 85%,

but in recent years it has experienced very high levels of 95–98% during winter

months.

Depending on the outcome of the bed management meeting, the final lists of

elective patients are signed off by the consultant surgeon and are submitted to the

theatre directorate by 3pm the day before surgery. These theatre lists are then

distributed to other departments in the hospital, e.g. blood bank, x-ray and the

wards, to ensure that resources and equipment are available at the required times.

If some elective operations had to be cancelled as a result of a lack of beds

available, the consultant surgeon decides which surgeries will be cancelled. Patients

that can wait longer for surgery, based on medical reasons, even if they are close

to breaching their RTT target, are cancelled to enable the more medically urgent

operations to be carried out. In extreme cases, if a surgery is considered very

urgent, the surgery will go ahead and the patient will be put in a bed on a ward

that is not their specialty’s designated ward. This is known as ‘outlying’ on another

ward and is discouraged as it prevents patients from the other ward being able to

be brought in for their surgery.

3.2 Data Provided by UHW

Data relating to both the operating theatres and patient stays on wards in UHW

were provided by the data team in the Surgical Support Services directorate of CaV

UHB. Two main datasets were provided, with additional datasets supplementing

analyses when required. The data provided by CaV UHB includes records for ev-

ery operation carried out in the health board from 1st April 2009 to 31st March 2013.
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Data on operating theatre activity was extracted from the TheatreMan database

that is used in CaV UHB. TheatreMan is a software package that is available on

desktop computers in each operating theatre allowing staff to record aspects of

every surgical procedure performed in real-time, such as patient information, staff

present in the operating theatre, and start and end times of surgical procedures [150].

Data relating to patient information and LoS was captured in a separate

database and covers the same period from 1st April 2009 to 31st March 2013.

Initial data manipulation and processing was required to merge these two datasets

into one, master dataset. The datasets were merged using the SAS statistical

software package [142], based on a unique patient identifier assigned to each patient

in the health board. The master dataset therefore resulted in data on patient

information, operating theatre activity and LoS for each patient in UHW for this

time period. Subsequent data analysis reported in this chapter is performed on the

master dataset.

3.2.1 Data Validation

In order to ensure that the subsequent analysis is performed on clean and accurate

data, a number of validation checks were made on the data. Much of the information

captured in the TheatreMan database is entered by medical staff in the operating

theatre as the operation is being performed. Having to enter the data in such a

stressful environment can cause difficulties in ensuring that accurate and complete

data is recorded. As such, one validation check performed was whether the timings

of surgery, for example, when anaesthetic was administered, surgery start time and

surgery end time, were in chronological order. This was an easy test to perform

via inspection of the data, however, it was not clear how to determine the true

values of data that were not in chronological order, since no-one would be able to

remember the exact timings of a past surgery. If theatre activity was found not

to be recorded in the correct order, the difference between the first and last time

recorded in TheatreMan is assumed to be the duration of surgery from when a pa-

tient enters the anaesthetic room to when the patient is moved to the recovery suite.

Merging the two datasets based on the unique patient identifier sometimes

resulted in a mis-match of hospital stays and operation dates if a patient had more

than one operation during the period for which we have data. These erroneous

records were removed from the master dataset if the operation date did not lie
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between the start and end date of an episode in hospital.

From inspection of the data, there were found to be some outliers in the op-

eration duration and LoS records. For example, several operations were recorded

as taking less than 10 minutes, and a patient in the ENT specialty was recorded

as being in the hospital for 211 days. Hospital staff were consulted in order to

establish whether these types of values were errors in the data, or whether they

were indeed possible. All records that were considered erroneous were removed.

3.2.2 Determining Specialties from TheatreMan Data

Surgical patients in UHW are assigned to a surgical specialty, depending on the

care required. This is recorded in both the TheatreMan database and the patient

information database, however, some discrepancies occur between the two datasets.

For the purpose of this study, the surgical specialty specified in the TheatreMan

database has been taken to be the surgical specialty in the master dataset, following

discussion with hospital staff.

On inspection of the master dataset, it was found that the list of surgical

specialties did not entirely match the list of surgical specialties that are named in

the UHW MSS (Figure 3.1). In order to assign specialties that match those in the

MSS to records in the master dataset, a number of criteria were defined on the

specialties named in the TheatreMan dataset. Otherwise it was assumed that the

field ‘Actual Procedure Specialty’ in the TheatreMan dataset was the correct MSS

specialty. These criteria were defined with assistance from managerial staff in UHW

and are based on factors such as the age of the patient, the theatre in which the

surgery was performed, and the OPCS-4 code of the surgical procedure. OPCS-4

codes are set by the Office of Population and Censuses and Surveys to classify

surgical interventions and procedures [2]. Each code consists of four characters,

with the first character a letter, followed by three numbers. Criteria used for

the classification of MSS surgical specialties to records in the master dataset are

summarised in Table 3.1.
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Specialty Criteria used

CEPOD If operation was performed in the emergency

theatre, or if the patient was assigned to any

of the emergency surgery sessions.

Oral If ‘Actual Procedure Specialty’ = ‘Oral surgery’

or ‘Maxillio-facial surgery’.

Scoliosis If ‘Actual Procedure Specialty’ = ‘Trauma’

AND the patient is 16 years old or younger.

Vascular If the OPCS-4 code starts with an L.

All other specialties ‘Actual Procedure Specialty’ field.

Table 3.1: Criteria used to assign MSS specialties to data

3.3 Demand for Surgeries in UHW

3.3.1 Number of Operations Performed in UHW

Figure 3.2 shows the number of operations carried out in the main theatres and the

SSSU in UHW. The TheatreMan database was introduced to the SSSU in 2011, so

there is only complete data for the last two years of the data collection period. For

the final two years, it can be seen that the majority of operations are performed in the

SSSU. The less complex operations performed in the SSSU take less time than the

more complex surgeries in main theatres, hence more operations can be performed

per year in the SSSU. The number of operations performed in both locations has

remained steady from year to year, with an average of 11,657 operations per year

carried out in the main theatres.
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Figure 3.2: Number of operations performed in UHW in 2012/13

Data from the year 2012/13 for the main theatres will be analysed in all subsequent

sections because 2012/13 is the most recent data and is considered the most complete

and accurate data. Staff in UHW have described how, in times of high capacity on

the wards, surgical patients who receive treatment in the main theatres are put

in beds on the ward that is dedicated for the SSSU. This is not desirable since

it results in the day-case surgeries being cancelled in order to accommodate the

inpatients for post-operative recovery, and so is avoided if possible. The SSSU ward

is not included in the data analysis or model, since it should not be relied upon

for planning purposes and it is intended that the two theatre resources should be

managed separately.

3.3.2 Elective and Emergency Operations

The total number of operations performed in the main theatres in UHW in 2012/13

is shown in Figure 3.3.
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Figure 3.3: Number of operations performed in the main theatres in UHW in
2012/13

As can be seen in Figure 3.3, the CEPOD specialty performed the most operations

in the year 2012/13. The CEPOD theatre is reserved for emergency surgery and is

treated as a specialty for the construction of the MSS. Patients who are treated in

the CEPOD theatre, however, belong to specific specialties that are aligned to their

surgical procedure. A more detailed discussion and analysis of the CEPOD theatre

and specialty is given in Section 3.3.4. The specialty that has the second highest

number of operations is the Trauma specialty, which also carries out operations

of an urgent nature. The Ophthalmology specialty performed the least amount

of operations in the year 2012/13, which is not surprising since it only has one

whole-day session per week in the current MSS used in UHW (Figure 3.1).

Surgery is classified in relation to the urgency of the surgery required. Elec-

tive surgery is performed to correct a non-life-threatening condition, and is planned

or booked in advance of routine admission to hospital by request from a doctor

or patient. Unplanned surgeries of a more urgent nature are classified as either

‘urgent’ or ‘emergency’. Urgent surgery can wait until the patient is medically

stable, but should generally be done within 48 hours of the patient being admitted

to hospital. Emergency surgery is of the highest priority, which must be performed

without delay to save life, limb, or functional capacity. In 2012/13, 72.7% of

operations carried out in the main theatres were planned, elective operations,

with the remainder being urgent or emergency operations. Figure 3.4 shows the
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percentages of operations that were classed as planned or emergencies for each

specialty in 2012/13.

Figure 3.4: Percentage of planned and emergency operations in 2012/13

As can be seen in Figure 3.4, the CEPOD specialty has the highest proportion

of emergency operations. The Vascular specialty also has a high proportion of

emergency patients due to the urgent nature of the surgical procedures performed

by this specialty.

Emergency patients in the CEPOD specialty are put onto one of three emer-

gency lists, each of varying degree of urgency, that acts as a waiting list for

emergency surgery. Emergency operations are recorded in the TheatreMan software

as either the physical theatre in which the opeartions were performed, or which

emergency list the patient was on. It is not possible to know from the data in which

theatre the patients on the emergency lists had their operation, however, staff in

UHW have advised that they are most likely to be carried out in the emergency

CEPOD theatre. Over 95% of emergency operations in 2012/13 were recorded as

being carried out in the CEPOD theatre, or were on one of the emergency lists. It

was also found from the data that in 2012/13, 45% of emergency operations took

place within the normal working hours of the operating theatres. The rest of the

emergency operations took place either in extended sessions at the end of the day,

or in additional sessions, for example on the weekend or at night.
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3.3.3 Number of Operations per Session

The operating theatres have been identified as a driver of demand for many other

hospital departments and resources, such as scanning machines and beds on the

wards [48]. Particularly relevant to this research is the fact that every inpatient

who has an operation requires a bed on a ward. Therefore, it is of interest to

investigate how many operations take place in a session for each specialty, in order

to determine the scale of demand for beds.

Figure 3.5 shows the distributions of the number of operations per session

carried out in 2012/13 for each specialty. As expected, specialties that generally

involve more complex, and hence longer operations have fewer operations per

session than other specialties that perform less complex operations. For example,

more Ophthalmology operations are able to be performed in an operating session

than Cardiac operations.

Figure 3.5: Number of observed operations per session in 2012/13

The above analysis of the observed number of operations per session is useful to

examine what has happened in the past, however, the number of operations per

session used in the model should be independent of any past circumstances that may

have affected the number of operations per session. The number of operations per

session can be affected by a number of reasons, including the long duration of some

surgical procedures causing early starts and/or late finishes, thereby effectively

lengthening the session time allocated to a specialty. By using the observed number



Chapter 3 Description of the Case Study Hospital 29

of operations per session from past data, these problems are inherent in the data.

Therefore, it is best not to use the observed number of operations per session from

past data for planning purposes.

A method that is independent of these inherent problems in the data is to

calculate the number of operations that is possible to perform during a session,

given the length of time surgical procedures take. The total time for a patient

to occupy an operating theatre is defined to be from the time a patient enters

the anaesthetic room until the patient is moved to the recovery suite, and the

operating theatre has been prepared for the next patient. The time between a

patient being administered anaesthetic to when they leave the operating theatre

for recovery is known from the TheatreMan dataset. Two additional lengths of

time are required in order to calculate the total time a theatre is occupied by a

patient; the time between the patient arriving in the anaesthetic room to when

the anaesthesia is administered, and the turnaround time between patients, during

which the operating theatre is cleaned and prepared for the next patient. Both of

which are not recorded in the TheatreMan dataset.

Following discussions with operating theatre staff, it was agreed that the

time taken in the anaesthetic room before the patient is anaesthetised is roughly 10

minutes for each patient. This time can vary depending on the medical needs of the

patient, how anxious the patient is, and whether the anaesthetic team are ready to

anaesthetise. It will be assumed here that every patient will spend 10 minutes in

the anaesthetic room before the anaesthetic is administered.

As part of an audit of the operating theatres in UHW carried out in 2013

[157], it was reported that the time between patients, the turnaround time, ranges

between 11 and 27 minutes, with an average of 22 minutes across all specialties.

Since data regarding turnaround time is not recorded in the TheatreMan dataset,

it will be assumed that a turnaround time of 22 minutes is associated with each

operation. The total time that is associated with each patient in theatre is therefore

the sum of the time in the anaesthetic room, the time for the surgical procedure,

and the turnaround time.

The number of operations per session is calculated in the following way:

Number of operations per session =
Session duration

Total duration in theatre per patient



Chapter 3 Description of the Case Study Hospital 30

It is assumed that specialties either have half-day (3.5 hours = 210 minutes) or

whole-day (7 hours = 420 minutes) sessions, as specified in the current MSS used

in UHW (Figure 3.1). The calculations for the number of operations per session for

each specialty, based on the procedure lengths from the observed data from 2012/13,

are summarised in Table 3.2. The average procedure duration used in the calculation

was found from both emergency and elective surgeries.

Specialty

Average

procedure

duration

(mins)

Total time

in theatre

(mins)

Session

duration

(mins)

Calculated

number of

operations

per session

Cardiac 331.6 363.6 420 1.2

CEPOD 119.6 151.6 420 2.8

Colorectal 203.1 235.1 210 0.9

ENT 123.6 155.6 210 1.4

General 168.2 200.2 420 2.1

Liver 253.2 285.2 420 1.5

Neurosurgery 184.4 216.4 420 1.9

Ophthalmology 70.6 102.6 210 2.1

Oral 197.1 229.1 210 0.9

Paeds ENT 68.2 100.2 210 2.1

Paeds General 119.6 151.6 210 1.4

Paeds Trauma 90.4 122.4 210 1.7

Renal 172.2 204.2 420 2.1

Scoliosis 90.8 122.8 420 3.4

Thoracic 182.7 214.7 210 1.0

Trauma 109.1 141.1 420 3.0

Urology 160.2 192.2 420 2.2

Vascular 142.8 174.8 210 1.2

Table 3.2: Calculated number of operations per session

Values from Table 3.2 suggest that the specialties that perform operations of a more

urgent nature, namely CEPOD and Trauma, are able to perform the most number of

operations per session, given the typical length of their surgical procedures. This is

in agreement with the observed number of operations per session from the 2012/13

data in Figure 3.5. A comparison of the calculated number of operations with

the observed number is shown in Figure 3.6. The calculations suggest that more

operations can be performed per session for the Scoliosis specialty than were observed



Chapter 3 Description of the Case Study Hospital 31

for 2012/13. Figure 3.5 shows that the Ophthalmology and Paediatric General

specialties performed a high number of operations per session in 2012/13, however,

this is not suggested by the results of the calculations. Higher observed numbers of

operations per session could be a result of session overruns, causing more time to

be used in the session than was allocated in the MSS. It is not possible to confirm

this from the data available, however, discussions with hospital staff have described

that sessions often overrun.

Figure 3.6: Number of observed and calculated operations per session in 2012/13

3.3.4 Theatres Used by Specialties

The main theatre suite in UHW comprises 14 operating theatres that are located

along one corridor, allowing for a centralised point of contact for surgical staff and

equipment. The theatres are numbered 0 to 14, however, the number 13 is omitted

due to the superstitious connotations with the number. There are a number of

dedicated theatres that certain specialties have sole use of which is reflected in the

MSS (Figure 3.1). These theatres are:

� Theatre 0: Trauma

� Theatre 5: CEPOD

� Theatre 9: Thoracic

� Theatres 10 and 11: Cardiac

� Theatres 12 and 14: Neurosurgery
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The remaining theatres can, in theory, be used by any other specialty for elective

operations, however due to access to specialist equipment, similar specialties tend

to prefer to be allocated to operating theatres so that they are in the same or

adjacent theatres.

Of the 14 main theatres, only one theatre (Theatre 5) is used solely for emergency

cases and is referred to as the CEPOD theatre. This theatre was first introduced

after the 1990 review of the peri-operative care of surgical patients by the National

Confidential Enquiry into Patient Outcome and Death (NCEPOD) [125]. The

CEPOD theatre is a dedicated, staffed emergency operating theatre available 24

hours/day, 7 days/week. No elective patients are scheduled to have operations

in the CEPOD theatre, however, if the need for an elective operation becomes

more urgent whilst the patient is in hospital, then the patient may be put on the

emergency list to have surgery sooner than planned.

The number and corresponding cumulative percentage of operations that were

performed in the CEPOD theatre by each specialty in the year 2012/13 is given

in Table 3.3. It can be seen that eight specialties account for over 90% of the

operations carried out in this theatre. The remaining specialties use the emergency

theatre very rarely.
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Specialty
Number of operations

in the CEPOD theatre

Percentage of

patients

Cumulative

percentage

General 1143 38.8 38.8

Neurosurgery 407 13.8 52.6

Paeds General 317 10.8 63.4

Oral 212 7.2 70.5

Vascular 212 7.2 77.7

Paeds Trauma 157 5.3 83.1

Trauma 123 4.2 87.2

ENT 91 3.1 90.3

Renal 72 2.4 92.8

Urology 52 1.8 94.5

Colorectal 43 1.5 96.0

Cardiac 33 1.1 97.1

Paeds ENT 24 0.8 97.9

Scoliosis 24 0.8 98.7

Ophthalmology 18 0.6 99.4

Liver 16 0.5 99.9

Thoracic 3 0.1 100.0

Total = 2947

Table 3.3: Specialties that used the CEPOD theatre in 2012/13

Figure 3.7 shows the proportion of operations for each specialty that took place

in each theatre for the year 2012/13. Recall from Section 3.3.2 that emergency

operations are recorded on emergency theatre list (EM1, EM2 or EM3), not the

physical theatre in which surgery took place. Shaded in blue are the theatres in

which at least 90% of the operations took place for each specialty. The boxes with

a red border indicate which theatre each specialty is actually assigned to in the

current UHW MSS.
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Figure 3.7: Theatres used by each specialty in 2012/13

As can be seen in Figure 3.7, most specialties have used more than one theatre in

2012/13, i.e. there is not a one-to-one mapping of specialty to theatre. The majority

of operations for most specialties were performed in the theatre(s) allocated to them

in the MSS. Specialties that do not follow this trend include:

� Colorectal – The majority of Colorectal operations were performed in Theatre

8, rather than Theatre 7. Colorectal is very closely related to the General

surgical specialty that was mainly assigned to Theatre 8 in the current UHW

MSS.

� Liver – The majority of Liver operations were carried out in Theatre 7, rather

than Theatre 8. Liver is closely related to the Colorectal specialty that was

assigned to Theatre 7 in the MSS.

� Renal – Not many operations have been performed in Theatre 8, perhaps due

to nature of transplant surgery and the availability of organs may not have

coincided with the scheduled time in Theatre 9.

� The majority of Scoliosis operations were carried out in the Trauma theatre

(Theatre 0). Scoliosis is a paediatric sub-specialty of Trauma.



Chapter 3 Description of the Case Study Hospital 35

� Due to the urgent nature of Vascular operations, patients are often put on the

emergency lists and most likely performed in the CEPOD theatre (Theatre 5).

3.4 Surgical Wards in UHW

3.4.1 Wards Used by Specialties

There are 17 physical wards in UHW that are used by surgical specialties. Some

specialties are assigned to multiple wards, so for simplicity in the data analysis

and model, these wards will be collated to form ‘combined’ wards. The combined

wards that will be analysed and used in the model are listed in Table 3.4, and the

specialties that are assigned to each ward are specified.

Ward
Number

of beds
Specialties using each ward

Paediatric 28 Paeds ENT, Paeds General, Paeds Trauma

ENT/Oral 19 ENT, Opthalmology, Oral

Vascular 38 Vascular

Trauma 83 Trauma

Renal 20 Renal

General/Liver 76 General, Liver

Urology 19 Urology

Colorectal 20 Colorectal

Cardiothoracic 50 Cardiac, Thoracic

Neurosurgery 53 Neurosurgery

Critical Care 27 General, Neurosurgery, Trauma, Vascular

Table 3.4: Surgical wards used in data analysis

The CCU, where patients receive specialist care, is also analysed and included in the

model. More analysis for the CCU is given in Section 3.4.2. Other high dependency

wards that are specialty specific, such as the Neurosurgery High Dependency Unit

and the Cardiac Intensive Care Unit, are incorporated into the Neurosurgery and

Cardiothoracic combined wards respectively. This is because these high dependency

wards are managed by the specialties themselves.
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The proportion of patients that were in each of the combined wards in 2012/13 is

given in Figure 3.8. The wards in which at least 80% of the patients from each

specialty were in in 2012/13 are shaded in blue. The wards with a red border refer

to the wards that each specialty has been assigned to.

Figure 3.8: Proportions of patients on each ward in 2012/13

It can be seen from Figure 3.8 the for the majority of specialties, patients are on

a ward that is related to their specialty. There are some exceptions, including the

ENT and Oral specialties for which some of their patients were on the General/Liver

or Urology wards in 2012/13. All of the patients in the Ophthalmology specialty,

for which we have data, are sent to the Paediatric ward. From discussions with

hospital staff, this was explained by the fact that the majority of adult patients are

able to leave hospital on the same day after an ophthalmic operation, and hence

have a LoS of zero days. Children are often admitted after an opthalmic operation

in order to monitor them over night, and so must be sent to the Paediatric ward.

Around 10% of the children from the Paediatric ENT and Trauma specialties were

recorded as being on the adult General/Liver ward. It is unclear why this occurred,

since there is a strict rule that child patients must be on the Paediatric ward.

The Trauma, Urology and Vascular specialties also have patients outlying on the

General/Liver ward.
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The data obtained from UHW refers to the first destination of each patient

after surgery. It does not include any subsequent ward that a patient may have

been moved to during their post-operative care. This may explain why there

appears to be some patients that were outlying on wards that were not assigned to

their surgical specialty.

Overall, the issue of outlying patients on a different specialty’s ward can be

seen from the data to have occurred quite often in 2012/13. In particular, there

were a lot of outliers on the General/Liver ward. This illustrates the high demand

for beds in UHW as reported in the media and explained by hospital staff. It is

hospital policy that a bed on a ward is never left empty if demand for a bed exists

and should be used by a patient if medically safe. The problem of outlying patients

is also a reinforcing issue, since if beds are taken on a specialty’s ward by outlying

patients, then the patients who should be on this ward will be forced to outlie

on another ward, hence exacerbating the situation. It is also possible for patients

to move beds if a space on their specialty’s ward becomes available for them to

continue their post-operative recovery on the correct ward, however, this was not

captured in the data available.

3.4.2 Critical Care Unit

The CCU is available to every medical and surgical specialty when a patient

requires the very highest level of care. Patients are often cared for on a one-to-one

basis with nurses and specialist life-saving equipment, resulting in very high

running costs for this ward. There are 27 beds in the CCU and are given as

a priority to emergency patients over elective surgical patients. Patients in the

CCU are categorised into two levels based on the level of care they require:

level 3 patients require the most care and are intubated, whereas level 2 pa-

tients are not intubated. There are typically 17 beds available for level 3 and 10

for level 2, however, the number of beds for each level can be altered for the demand.

A separate dataset was provided by UHW on the activity of surgical pa-

tients in the CCU. The number of CCU admissions from surgical specialties in

2012/13 is given in Table 3.5.
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Specialty
Number of CCU

admissions

Cumulative

percentage

General 327 62.9

Neurosurgery 80 78.3

Oral 34 84.8

Urology 30 90.6

Vascular 20 94.4

Trauma 18 97.9

Cardiothoracic 6 99.0

ENT 4 99.8

Ophthalmology 1 100.0

Total = 520

Table 3.5: Number surgical admissions to the CCU in 2012/13

Only six specialties account for over 95% of the CCU admissions from surgical

specialties, with General surgery accounting for the majority of the admissions in

2012/13. The daily bed count of surgical patients in the CCU throughout 2012/13

is shown in Figure 3.9. The bed count fluctuates around a mean of 7.1 throughout

the year. Surgical patients accounted for between 7.4% and 48.1% of the admissions

to the CCU on any one day in 2013.

Figure 3.9: Daily bed count of surgical admissions in the CCU in 2012/13
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The LoS of patients in the CCU in 2012/13 is shown in Figure 3.10. The data

exhibits typical characteristics of LoS distributions, being skewed to the right with

the majority of patients having a shorter LoS and a few patients having a very

long LoS. CCU beds experience a very high demand from both medical and surgical

specialties for their most ill patients, so as soon as a patient is well enough to leave

the CCU, they will be sent to their specialty’s ward to continue their recovery. This

explains why the majority of patients are in the CCU for up to two days. The

mortality rate for the CCU in 2012/13 was 10%.

Figure 3.10: Length of stay in the CCU in 2012/13

3.5 Length of Stay Data Analysis

Between a patient’s admission to and discharge from hospital, there are many periods

of time that are of interest to this study. A hospital spell is defined to be between

each admission to and discharge from hospital. A spell may be spilt into one or more

episode; an episode is the time spent under a particular specialty in the hospital.

This can either be a medical or surgical specialty. The episode of interest in this

study is the episode when patients are assigned to a surgical specialty and have an

operation. This surgical episode can be split into two defined time periods; ‘pre-op’

is the time spent under a surgical specialty before the operation has taken place,

and ‘post-op’ is the time spent under the same surgical specialty after the operation.

These periods of time are represented in Figure 3.11, and calculated in the master

dataset as fractions of days, then rounded to the nearest whole day.
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Figure 3.11: Spells and episodes in hospital

Patient LoS can be used in analysis for both strategic and operational purposes

within the hospital. The most common statistic that is reported on LoS is the

average LoS, however, due to the high variability of LoS data, this perhaps is not

the best estimate. LoS distributions can vary across different patient demographics

and the environment in which the patient is treated, and will be discussed in more

detail in the following sections.

3.5.1 Pre-Operative Length of Stay

Distributions of the pre-operative LoS for each surgical specialty in 2012/13 are

shown as box and and whisker plots in Figure 3.12.

Figure 3.12: Pre-operative length of stay for all specialties in 2012/13

The pre-operative LoS varies between specialties, with the majority of specialties

having pre-operative LoSs of less than 6 days in 2012/13. Patients had a pre-

operative LoS longer than 6 days in three specialties: Cardiac, General and Vascular
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surgery. All specialties had a median pre-operative LoS of 1 day, except for the CE-

POD, Paediatric Trauma and Scoliosis specialties that had a median pre-operative

LoS of zero days, i.e. they were admitted to hospital on the day of surgery.

3.5.2 Post-Operative Length of Stay

Distributions of the post-operative LoS for each surgical specialty in 2012/13 are

shown as box and whisker plots in Figure 3.13.

Figure 3.13: Post-operative length of stay for all specialties in 2012/13

As can be seen from Figure 3.13, the post-operative LoS differs greatly between

specialties. Extreme outliers have been removed from the data as described in

Section 3.2.1, however, it is still evident that large values of LoS that are a long way

away from the majority of the data exists in the dataset. The post-operative LoS

distributions for all specialties show the typical characteristic of LoS distributions

of being skewed to the right, as indicated by the large ‘whiskers’ to the right of the

interquartile range boxes.

Cardiac, Trauma, and Vascular specialties all have the highest average post-

operative LoS, whereas Ophthalmology, Paediatric ENT and Paediatric Trauma all

have the lowest post-operative LoS. It is interesting to note that in the majority of

cases, the Paediatric specialties have a shorter post-operative LoS than their adult

counterparts.
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In order to correctly model the post-operative LoS of patients, it may be ap-

propriate to fit statistical distributions to the data. LoS distributions are typically

skewed to the right with a long tail towards high values of LoS, and there are often

outliers in the data that are vastly higher than the majority of LoS values [104].

Lognormal, Weibull and Gamma distributions are commonly fitted to LoS data.

The software package Stat::Fit [85] was used to find any statistical distribution

that would be suitable to represent the post-operative LoS data. For each surgical

specialty, the Anderson-Darling and Kolmogorov-Smirnov goodness of fit tests were

performed to test whether any of the Lognormal, Weibull or Gamma distributions

could be fitted to the empirical data. For all surgical specialties, the null hypothesis

of each goodness of fit test was rejected at the 5% significance level. Thus it can

be concluded that the post-operative LoS data cannot be modelled by using one of

these distributions typically used for LoS.

As discovered in Section 3.4.1, not all patients are in a bed on the assigned

ward for their specialty. It was reported in [12] that being on a ward that is not

the intended specialty ward may ‘adversely affect’ LoS and quality of care. It is of

interest to see whether being on a ward that is not their assigned ward in UHW

affected the post-operative LoS. For the sake of this investigation, the intended

wards for the specialty will be called the ‘correct’ wards, and the other wards that

patients are on will be called the ‘wrong’ wards. Both the Kolmogorov-Smirnov

and Sharipo-Wilk tests concluded that the LoS data on either the correct or wrong

wards were not Normally distributed at the 5% significance level. A series of

Mann-Whitney tests were therefore used to compare the post-operative LoS on the

correct and wrong wards for all specialties. Conclusions of these tests at the overall

5% significance level are given in Table 3.6.
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Median post-op LoS (days)

Specialty p-value Conclusion Correct ward Wrong ward

Cardiac 0.253 No difference in LoS - -

Colorectal 0.640 No difference in LoS - -

ENT 0.058 No difference in LoS - -

General 0.004 No difference in LoS - -

Liver 0.097 No difference in LoS - -

Neurosurgery 0.054 No difference in LoS - -

Ophthalmology 0.745 No difference in LoS - -

Oral 0.088 No difference in LoS - -

Paeds ENT 0.398 No difference in LoS - -

Paeds General 0.111 No difference in LoS - -

Paeds Trauma <0.0005 Different LoS 0 2

Renal <0.0005 Different LoS 5 2

Scoliosis 0.227 No difference in LoS - -

Thoracic 0.122 No difference in LoS - -

Trauma <0.0005 Different LoS 7 1

Urology 0.019 No difference in LoS - -

Vascular 0.345 No difference in LoS - -

Table 3.6: Tests for differences in post-operative length of stay in different wards
for each specialty

The results of the Mann-Whitney tests indicate that, for most specialties, the median

post-operative LoS is the same whether the patients are on a correct or wrong ward.

The specialties for which the tests were not able to conclude that the median LoS

is the same on both types of ward are Paediatric Trauma, Renal and Trauma. It is

not consistent among these specialties that the LoS is longer on the wrong ward.

3.6 Problems Experienced in UHW

3.6.1 Cancellations

Patients are entered into the TheatreMan database when their operation has been

booked and assigned to an operating theatre session. According to administrators

who book patients for operations, patients are added to theatre lists typically one

day before surgery. This booking of an operation is different to when a patient

receives a letter from the hospital advising them of their surgery date. Therefore

the data available in TheatreMan is only truly representative of the patients who
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have already entered hospital prior to their operation. If an operation is cancelled a

month or a week prior to the date of surgery, then that information is not captured

in the TheatreMan database.

In the year 2012/13, just over 18% of operations were cancelled after being

assigned to an operating theatre session; this corresponds to over 2500 operations.

Figure 3.14 shows the number of operations that were performed and cancelled for

each specialty in 2012/13. It can be seen in Figure 3.14 that the Trauma specialty

has the highest number of cancellations, however, this is not surprising due to the

urgent nature of the procedures for this specialty. It is quite common for Trauma

operations to be cancelled when a more urgent patient arrives in hospital who

requires surgery sooner than the scheduled patients. It was not possible to find

from the data whether cancelled operations were rescheduled and performed at a

later date.

Figure 3.14: Number of performed and cancelled operations in UHW in 2012/13

In the year 2012/13, only 2.9% of the operations that were cancelled after being

scheduled onto a theatre list were cancelled before the day of surgery, whereas

93.4% were cancelled on the day of surgery. The remaining 3.7% of cancelled

surgeries were recorded as being cancelled after the day of surgery. It is assumed

that these operations were indeed cancelled and did not take place when scheduled,

but were recorded as cancelled at a later date after a delay by the admin staff. It is

therefore not known exactly when it was decided to cancel these operations.
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There are three broad categories of reasons why operations may be cancelled, as

identified by the NHS: hospital non-clinical, hospital clinical and patient reasons

[128]. Cancellation data available for the year 2012/13 contains 22 distinct

reasons as to why operations were cancelled and has been re-classified into the

three categories as defined by the NHS. In 2012/13, 54.2% of all cancellations

were attributable to hospital non-clinical reasons, such as equipment and staff

availability, list overrun, and unavailable beds, 26.3% of cancellations were due to

hospital clinical reasons, such as the operation became unnecessary or the patient

was deemed unfit for surgery, and 19.5% of cancellations were due to patient

reasons, such as the patient did not arrive on time for surgery.

A detailed summary of the reasons operations were cancelled in 2012/13 for

each specialty is given in Table 3.7. The proportion of non-clinical cancellations

that were attributable to a lack of bed availability on the wards is also reported,

and the specialties that have a majority of the non-hospital cancellations caused by

a lack of beds are highlighted in red. Unfortunately, there were no data available

for the cancellations in the Scoliosis and Vascular specialties.
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Specialty

Percentage of cancellation types Percentage of non-

clinical cancelled due

to no beds

Hospital

non-clinical

Hospital

clinical

Patient

reasons

Cardiac 56.0 26.1 17.9 26.7

CEPOD 17.4 65.2 17.4 0.0

Colorectal 72.5 23.5 3.9 73.0

ENT 49.5 27.6 22.9 71.2

General 63.5 25.2 11.2 64.1

Liver 71.4 19.0 9.5 23.3

Neurosurgery 63.2 18.1 18.7 70.5

Ophthalmology 31.8 40.9 27.3 100.0

Oral 60.6 19.7 19.7 77.5

Paeds ENT 53.5 23.3 23.3 87.0

Paeds General 22.2 53.3 24.4 40.0

Paeds Trauma 66.1 22.0 11.9 79.5

Renal 61.4 26.3 12.3 88.6

Scoliosis - - - -

Thoracic 57.9 28.1 14.0 18.2

Trauma 41.6 29.0 29.5 14.6

Urology 70.4 21.1 8.5 73.2

Vascular - - - -

Table 3.7: Reasons for cancelled operations in UHW in 2012/13

The high percentage of non-clinical cancellations that were due to a lack of beds

can perhaps be explained by the fact that some specialties share wards with other

specialties. The Colorectal, General and Urology specialties are all allowed to admit

patients onto each others wards, ENT, Oral and Ophthalmology specialties share

the same ward, and all of the paediatric specialties send their patients to the specific

Paediatric ward.

3.6.2 Outliers on Wards

Figure 3.15 shows the percentages of patients that were in a bed on the assigned ward

for their specialty, or related or unrelated wards in 2012/13. For example, patients

in the Cardiac specialty should be on the Cardiac ward, however, if there are no

beds available on this ward they may be put on related wards such as the Cardiology

or Thoracic surgery wards, since these wards will have the correct equipment and

nursing staff with the required skills for Cardiac surgery patients.
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Figure 3.15: Percentage of surgical patients on the assigned or related wards in
UHW in 2012/13

As can be seen in Figure 3.15, patients are on the assigned specialty ward(s) for the

majority of the surgical specialties. General and Oral surgery are the two exceptions.

If patients are not on the assigned ward for their specialty, then it would appear

from the data that the patients are on an unrelated ward to their specialty for

the majority of specialties. This is concerning due to the issues raised in an audit

report [12] that may result from patients not being treated on their specialty’s ward.

Specialties for which the majority of patients are on a related ward include Cardiac

and Neurosurgery. This is as expected due to the highly specialised equipment and

nursing skills required for these two specialties.

3.7 Summary

This chapter has been used to introduce the case study hospital and to investigate

data provided by CaV UHB relating to the operating theatres and surgical

inpatient wards in UHW, Cardiff. The analysis was performed in order to gain an

understanding of how the operating theatres are currently utilised by the surgical

specialties, and the post-operative demand for beds on the wards.

The data was provided as two separate datasets, so initial processing of the

data, as described in Section 3.2, was required in order for the whole patient

pathway from admission, through the operating theatre, to discharge could be
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captured and analysed. Outliers were removed where appropriate, however, it is

clear from the above analysis that great variation in the data exists. In particular,

the duration of operations and post-operative LoS exhibit great variation with

respect to specialty.

The demand for operations in UHW was analysed in Section 3.3, with par-

ticular emphasis on the analysis of the occurrence of emergency surgical patients,

how the operating theatres are utilised by the specialties, and how many patients

are operated on in a typical operating theatre session. The latter two aspects can

be used to construct scheduling rules and the demand for operations as inputs to

any subsequently developed models.

The subsequent demand for beds on the surgical wards was then analysed in

Section 3.4, with additional analysis on pre- and post-operative LoS for each

specialty provided in Section 3.5. The post-operative LoS was not found to differ

significantly for most specialties depending on whether patients were on their

specialty’s assigned ward, or a similar specialty’s ward. The CCU was found to

experience high demand from surgical patients, especially from the General surgery

specialty. However, the majority of patients stay in the CCU for a maximum of

two days, possibly alleviating an accumulative demand for beds.

Finally, following discussions with hospital managers, problems that are cur-

rently experienced in the hospital that are associated with the operating theatres

are investigated in Section 3.6. A high proportion (18%) of scheduled operations

were found to have been cancelled within two days of the operation date. This is

clearly undesirable for both hospital planning purposes and for the quality of care

of patients. Particularly relevant to this research, is the fact that over half of these

cancelled operations were cancelled due to a lack of beds available on the wards for

post-operative recovery. A contributing factor to a lack of beds available on wards,

was found to be the existence of outlying patients – patients who are not on the

correct ward for their specialty.

Insights gained from the data analysis presented in this chapter will be used

to inform the modelling approaches developed in subsequent chapters. The aim

of these subsequent chapters is to address the problems of cancelled operations

and outlying patients, together with the research aims outlined in Chapter 1,

through the construction of operating theatre schedules using operational research

techniques.



Chapter 4

Deterministic Optimisation of the

MSS

This chapter discusses the development of a set partitioning based optimisation

model for the construction of the MSS. A brief review of the literature on the set

partitioning problem is given. The proposed model, which includes constraints for

both the operating theatres and bed demand, is then developed and validated.

4.1 The Set Partitioning Problem: an Overview

The set partitioning problem (SPP) can be formulated as a binary integer program-

ming optimisation model that determines how items in a set can be partitioned

into smaller subsets such that all items in the larger set are contained in exactly

one subset. This model has been used successfully for the modelling of scheduling

and rostering problems [138], and also vehicle routing problems [15]. In general,

the SPP is NP-hard, however, in some cases exact approaches can be used to deter-

mine globally optimal solutions [116]. Indeed, with the increasing speed of computer

hardware, larger problem instances containing hundreds of millions of variables and

hundreds of constraints can sometimes be solved using exact methods [135].

4.1.1 Set Partitioning Problem Formulation

The SPP model stems from a set theoretical approach, so the initial set theory prob-

lem is introduced. Let M = {1, ...,m} contain elements that need to be partitioned,

let S = {S1, S2, ..., Sn} for Sj ⊆M contain n subsets of M , and let P ⊆ {1, ..., n}.

49
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The set P defines a partition of M if and only if

i) ⋃
j∈P

Sj = M

i.e. the union of all subsets in partition P form the original set M .

ii)

Sj ∩ Sk = ∅ ∀ j, k ∈ P, j 6= k

i.e. each element of M occurs in exactly one subset Sj of M .

Let cj be the cost associated with subset Sj, and let
∑
j∈P

cj be the cost of the partition

P . The SPP can be defined as finding the minimum cost partition, P ∗, of M, given

S. Balas and Padberg [13] give a general definition of the SPP as follows:

“Given a finite set M, a constraint set defining a family F of ‘acceptable’ subsets of

M, and a cost associated with each member of F; find a minimum-cost collection of

members of F which is a partition of M.”

The mathematical formulation of the SPP model will now be introduced. In an SPP

model, there are m elements that need to be partitioned, and n possible subsets of

M = {1, ...,m}. Let the matrix A = (aij) be defined as

aij =

{
1 if element i is included in subset Sj ∀ i = 1, . . . ,m, j = 1, . . . , n

0 otherwise.

The decision variables, xj, j = 1, . . . , n, for the SPP are defined as

xj =

{
1 if subset Sj is selected ∀ j = 1, . . . , n

0 otherwise

with each decision variable having an associated cost cj.

The SPP is thus the problem of choosing subsets at minimal cost, such that

all elements of the original set are partitioned into exactly one subset. The

mathematical formulation is as follows:

min
n∑
j=1

cjxj (4.1)

s.t.
n∑
j=1

aijxj = 1 ∀ i = 1, ...,m (4.2)

xj ∈ {0, 1} ∀ j = 1, ..., n (4.3)
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In corresponding matrix notation, the formulation of the SPP is:

min cTx

s.t. Ax = e

x ∈ {0, 1}n
(4.4)

where A is an m× n matrix of zeros and ones, c is an arbitrary vector of costs, and

e = (1, 1, 1, ..., 1)T is an m-vector. The rows of the matrix A are associated with

elements of the set M = {1, ...,m} to be partitioned. Each column of A therefore

represents each subset, Sj, of M , for j = 1, ..., n. The jth column of A, aj, has

elements

aij =

{
1 if column j covers row i i.e. if subset Sj contains element i ∈M
0 otherwise.

The binary decision variables, xj, j = 1, . . . , n, can also be thought of as the prob-

ability that the jth column is included in a solution [80]. This can be particularly

relevant when interpreting the linear programming relaxation solution to this integer

programming problem.

4.1.2 Problems Related to the SPP

There are two other optimisation problems that are closely related to the SPP and

are also NP-hard [83]: the set covering and set packing problems. The set covering

problem is defined as choosing subsets at minimal cost, such that all elements of the

original set appear in at least one subset. The mathematical formulation of the set

covering problem is:

min
n∑
j=1

cjxj (4.5)

s.t.
n∑
j=1

aijxj ≥ 1 ∀ i = 1, . . . ,m (4.6)

xj ∈ {0, 1} ∀ j = 1, . . . , n (4.7)

The set packing problem is defined as choosing the maximum number of subsets, such

that each subset is disjoint (i.e. no two subsets share an element). The mathematical
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formulation of the set packing problem is:

max
n∑
j=1

cjxj (4.8)

s.t.
n∑
j=1

aijxj ≤ 1 ∀ i = 1, . . . ,m (4.9)

xj ∈ {0, 1} ∀ j = 1, . . . , n (4.10)

In both models, aij, cj and xj, for i = 1, . . . ,m and j = 1, . . . , n, have the same

definition as in the SPP formulation in Model 4.4.

It can be seen that the three models differ in the constraints 4.2, 4.6 and

4.9, and that set packing is a maximisation problem whereas the other two models

are minimisation problems.

Set packing is a special case of set partitioning since it is more tightly con-

strained than the set partitioning model. This corresponds to the first set

partitioning condition being relaxed, i.e. not all elements in M have to be contained

in the subsets Sj in the partition P . The set covering model corresponds to the

second set partitioning condition being relaxed, i.e. elements of M can be in more

than one subsets Sj in the partition P .

There are some models in the literature that deviate from the pure SPP for-

mulation given in Model 4.4. These generalised SPP models are often found in crew

rostering applications [135] where the right-hand-side vector, e, need not be a unit

vector, and some constraints need not be equalities. It has been shown that there

are benefits to constraints of this type in relation to finding integer basic feasible

solutions in the linear programming relaxation of the SPP model [137].

4.1.3 Variable Generation

As we have seen, the decision variables in the SPP model are binary and indicate

whether or not the corresponding subsets are included in the solution. There

can often be hundreds of thousands of variables in an SPP model due to the

combinatorial nature of the subsets. If all possible combinations of subsets are

considered, the number of variables in the model could reach into the billions [94].

The number of decision variables also corresponds to the number of columns in the

A matrix, and is hence referred to as column, variable or matrix generation in the

literature. One great advantage of formulating scheduling problems as an SPP is
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that complex scheduling rules can be implicitly built into the process of generating

the various subsets, thereby reducing the number that need to be considered. For

example, over 30 rules and conditions regarding desirable flight crew rosters were

followed when generating feasible crew schedules [135].

There exist many techniques in the literature for generation of the subsets.

Traditionally, there are two general approaches [94]. These are enumeration, in

which all subsets are considered, and column generation, which is an iterative

process of generating some feasible subsets and solving the associated SPP model.

Enumeration

Enumeration is the technique of systematically generating all possible combinations

of subsets of a larger set. An enumeration process can be used to generate all

feasible subsets for the SPP, whilst taking into account certain rules that prevent

some (undesirable) subsets from being generated.

The rows of the A matrix need to be partitioned into subsets in the SPP,

and hence a large number of subsets can be generated. Marsten [115] showed that

there are advantages to be gained by using enumeration in an algorithm for solving

SPPs, namely the realisation of optimal solutions. Once an optimal solution has

been found, selective exploration of the enumeration tree may then be used to

obtain a collection of near optimal integer solutions. This could be desirable if

computation times are limited or if the decision maker requires a selection of ‘good’

solutions to choose from. Geoffrion [86] discusses the advantages of excluding

certain solutions in the enumeration tree from further consideration. Implicit

enumeration techniques are also discussed by Michaud [119].

Application specific algorithms have been used to enumerate all feasible sub-

sets. An enumeration algorithm is demonstrated with a simple numerical example

by Garfinkel and Nemhauser [84]. Ryan [135] describes an enumeration process

used to generate all possible lines of work for an airline crew schedule. A skeleton

line of work is first constructed for each crew member in turn, then all feasible legal

and desirable sequences of trips are added to the skeleton, obeying implicit rules

and conditions, until no further additions are possible. Enumeration is also used to

generate all feasible train routes by Lusby et al. [110].
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Column Generation

Column generation is an iterative process of choosing a subset of rows, the genera-

tion of feasible columns for these rows, and the corresponding optimal solution of

these set partitioning subproblems. The process repeats until the solution to recent

subproblems has not improved the cost function value. In column generation, the

original SPP to be optimised is known as the master problem, but not all columns

in the A matrix may be known explicitly, so is restricted to form the restricted

master problem to contain fewer columns.

Wilhelm [160] gives a review of column generation techniques used in integer

programming, and Hoffman and Padbeg [94] discuss column generation for feasible

aircrew schedules. An alternative technique used in column generation for the A

matrix uses graph theory to generate columns based on shortest path calculations

[103].

Preprocessing

Preprocessing of the data for an SPP is often used to make the optimisation easier

and quicker to perform and is used particularly for large problem instances, as

discussed by Chu and Beasley [53]. Often called ‘reduction’, rows and/or columns

of the A matrix are deleted in order to reduce its dimensions. This corresponds to

deleting constraints and variables respectively in the model. Ryan [135] shows how

the number of variables can be reduced using filtering techniques, and an approach

that reduces the number of variables whilst minimising the potential for fractional

solutions is given by Ryan and Falkner [137].

4.1.4 Cost of Variables

The cost vector c that is used as the coefficient in the objective function in the

SPP model must be chosen to reflect the relative ‘cost’ of each subset Sj. There

is no common measure which is used to determine the costs of the subsets in a

set partitioning optimisation model since it is application dependent. For example,

the costs used for a vehicle routing application could be the distance of each route

[138], while the costs used in airline crew rostering might reflect the interests of both

management in terms of minimising the number of crews needed, and crew members

in terms of their time off between long trips [135].
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4.1.5 Solution Methods

Depending on the application, exact methods or heuristics can be used to solve

SPPs. Branch-and-bound and branch-and-cut algorithms can be used to find

optimal solutions, and a variety of heuristics, including tabu search and genetic

algorithms, are used to find sufficiently good solutions. It has also been reported

that integer programming is a method that is likely to provide integer solutions

quickly, as long as the SPPs to be solved are small [116]. Gershkoff [88] shows that

solving many small subproblems to optimality can be more successful in finding

integer solutions than solving a single large SPP.

The branch-and-bound algorithm uses systematic enumeration and a struc-

tured search of the space of all feasible solutions. The problem is first solved

without the integer constraint on the decision variables, then large subsets of

the solution space are discarded by using upper or lower bounds of the objective

function. The technique is used in discrete and combinatorial optimisation problems

[102], and was first used in the solution of SPPs by Marsten [115] whose algorithm

used linear programming to calculate the lower bounds. Albers [7] and Ryan

[135] have also used the branch-and-bound approach, and have demonstrated

the technique on large problem instances of thousands of variables and hundreds

of constraints. Lagrangian relaxation is used to provide the bounds in their case [79].

The branch-and-cut algorithm is a hybrid of the branch-and-bound algorithm

and cutting plane methods. Once a non-integer optimal solution has been found,

a cutting plane algorithm is used to find additional constraints for the linear

program; the branch-and-bound algorithm is then employed. Balas and Padberg

[13] discuss a variety of branch-and-cut based algorithms for the SPP. Branch-

and-cut algorithms have been used as solution techniques when set partitioning

has been applied to airline crew scheduling [94] and the vehicle routing problem [14].

As discussed, there are many examples in the literature where algorithms are

used to solve the SPP to optimality, despite the problem being NP-hard in

general. Conversely, in many real-life situations there is no need to achieve the

optimal solution, for example in air crew scheduling, where just a ‘good’ solution

is required. For these situations, heuristics that find sufficiently good solutions in

a short amount of time have been developed. Heuristics are also used to obtain

approximate solutions when set partitioning models are considered too large to

solve exactly. Ryan and Falkner [137] have imposed additional structure on the

set partitioning model in order to find good solutions quickly. Linderoth et al.



Chapter 4 Deterministic Optimisation of the MSS 56

[107] also developed a heuristic for solving large SPPs applied to crew scheduling

and vehicle routing problems, and exploit the power of parallelism to obtain good

solutions. Lee et al. [105] used a heuristic approach with tabu search when applying

the SPP to the vehicle fleet mix problem.

In recent literature, evolutionary algorithms have been used for the solution

of the SPP. Levine’s algorithm [106], based on parallel subproblems of the main

SPP, was able to regularly find the optimal integer solution to problems with a few

thousand variables. Chu and Beasley [53] present a genetic algorithm that takes

a large number of set partitioning constraints into consideration. Their heuristic

includes separate fitness and ‘unfitness’ scores and is able to be generalised and

applied to any highly constrained problem. Optimal or near-optimal solutions are

reported to be found very quickly using this heuristic.

4.1.6 Applications of the SPP

As mentioned, a major area where set partitioning is used is airline crew scheduling,

where exactly one flight crew must be assigned to each flight [147]. Personnel costs

are the largest cost faced by airlines, so it is important to schedule the flight crews

appropriately. This application is popular in the literature as the problem instances

are very large, often with thousands of variables and hundreds of constraints. There

are two stages to solving the crew scheduling optimisation problem: the generation

of feasible tours of duties (that form the subsets), and the optimisation of the SPP

[94]. A column of the A matrix is created for every feasible tour of duty for each

crew and an associated cost is then assigned. An optimal schedule is then selected

so that every flight is assigned a crew, whilst the cost is minimised.

The vehicle routing problem has also been a popular area of SPPs in the lit-

erature. Balinski and Quant [15] first proposed a set partitioning formulation of the

vehicle routing problem as an alternative to previous methods which used heuristics

to find an approximate solution. In the SPP model, each column of the A matrix

represents a feasible route for each vehicle with an associated cost. Again, this

application has very large problem instances depending on the number of vehicles

and number of nodes to visit. Foster and Ryan [80] have developed an SPP model

for an extended vehicle routing problem that incorporates restrictions on work load

and coverage, reflecting real world situations. A different application of an SPP

model for the vehicle routing problem by Lee [105] incorporates tabu search to find

the capacity mix and routes for a fleet of vehicles.
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A more recent use of a set partitioning model is concerned with the routing

of trains through a railway junction. Lusby et al. [110] apply the method to obtain

train schedules that are needed quickly at various times of the day due to the

dynamic nature of the problem. A branch-and-price solution approach is then used

to obtain good solutions which have been tested with data from a major German

railway company. In another railway application, Rezanova and Ryan [133] use an

SPP model to re-schedule train driver duties if a disruption to the timetable occurs.

By using a branch-and-bound approach, it is reported that integer solutions are

found within seconds.

Another application of the SPP model is the division of students in a class

into several smaller groups that provides a good representation of the overall

classroom population. Desrosiers et al. [59] use an enumeration of all possible

groups and an SPP model in order to balance the attributes among the groups.

Applications of the SPP in Healthcare

Set partitioning methods have also been applied to a wide range of healthcare

related problems. Fei et al. [78] have used a SPP model to assign elective surgical

patients to operating theatre slots, taking into consideration constraints relating to

operating theatre and surgeon availability. However, emergency surgical cases are

not taken into account in this study. In their set partitioning model, a subset of

feasible plans is selected in order to minimise the cost of scheduling the individual

patients. Here, a plan represents an assignment of surgical cases to an operating

theatre, and the cost reflects the number of unused or overtime hours of the

corresponding operating theatres. A column generation based heuristic is then

employed to solve the problem.

Set partitioning has also been used to schedule anesthesiologists for surgery,

based on the matching of skills with specific tasks [73]. Here, special consideration

is given to the generation of the set of possible tasks for each anesthesiologist, and

the corresponding cost which reflects the relative desirability of the tasks. One

practical benefit of scheduling in this way, as identified in the paper, is the reduction

of time spent by physicians in the hospital on scheduling the anesthesiologists.

Milburn and Hall [120] have used the SPP as an alternative approach to lo-

cation analysis for home-health district nursing. This problem concerns the

allocation of district nurse subunits to district centers such that each subunit must



Chapter 4 Deterministic Optimisation of the MSS 58

be allocated to exactly one district. According to Milburn and Hall, an advantage

of using the SPP framework over location analysis is that the SPP model does not

require a fixed set of district centers. By considering every possible combination

of subunits that could form a district center, variable sizes of district centers are

allowed.

Finally, a decision support system has been developed by researchers in Swe-

den to aid the allocation of patient visits to care providers [75]. The system uses an

SPP model to evaluate all feasible schedules of timetables of visits for the carers.

The system has been implemented in several home care organisations in Sweden

and it has been reported that considerable amounts of time have been saved on

the daily planning time, and that the quality of the timetables produced has been

improved.

As illustrated with the above examples, SPP models have been used in a

wide variety of healthcare research; however, it is not apparent that a set par-

titioning approach has been used to construct an MSS with relation to the bed

constraints prior to this research.

4.2 Set Partitioning Based Optimisation Model

for the Construction of the MSS

A set partitioning optimisation model is adopted here for the construction of the

MSS because of its scope to include constraints on the operating theatres and post-

operative bed requirements. The ability to generate and limit the number of can-

didate schedules as inputs into the optimisation model can also help to reduce the

size of the problem.

4.2.1 Development of the Proposed Model

The proposed model for the construction of the MSS is based on an SPP model and

is outlined below. The aim of the model is to select a subset of possible ‘plans’ for

each surgical specialty subject to a number of constraints. A plan for a specialty

defines which operating theatre the specialty has use of on which day of the week

and during which session, a.m. or p.m. Plans also reflect a specialty’s preferences

of theatres and days through the use of scheduling rules. The solution to the model

will provide one plan for each specialty which, when put together, will form the

optimal MSS.
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Recall from Section 4.1.1 that the basic SPP model is:

min z = cTx

s.t. Ax = e (4.11)

x ∈ {0, 1}n

The constraints specified in the A matrix above can be interpreted as choosing

the optimal partition of subsets of operating theatre sessions. The basic proposed

set partitioning based model for the construction of the MSS, that also takes into

account post-operative bed constraints, takes the following form:

min z = cTx (4.12)

s.t. Ax = e (4.13)

Bx ≤ d (4.14)

x ∈ {0, 1}n (4.15)

There are now two sets of constraints: one set for the operating theatre sessions

(4.13) and the other for the post-operative bed constraints (4.14). The additional

bed constraints ensure that there are not more beds required than available on

each ward on each day. The addition of these bed constraints results in a deviation

from the pure SPP formulation as shown in Model 4.11. As discussed in Section

4.1.2, this often occurs in practice when applying this optimisation method to

real world applications, however, the characteristics of the SPP can still be exploited.

In the model, xj, for j = 1, . . . , n, are binary decision variables that indicate

whether or not plan j is selected in the final solution, and c is a vector giving the

cost of each plan. Together they form the total ‘cost’ of the chosen plans, which we

seek to minimise. The objective function and cost associated with each plan will

discussed in Section 4.2.2.

A is an m × n binary matrix where the columns represent possible plans for

each surgical specialty. The generation of the A matrix will be discussed in

Section 4.2.3. The first s rows of A represent generalised upper bound (GUB)

constraints that relate each plan to a specific specialty. These GUB constraints

specify that only one plan can be chosen for each specialty. The remaining rows of

A represent constraints for each operating theatre session and consist of elements

to be partitioned. An operating theatre session is characterised by the theatre, day
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and whether it takes place in the morning or afternoon. The constraints ensure

that only one specialty is allocated to an operating theatre session in the optimal

MSS. The A matrix has elements:

aij =

{
1 if operating theatre session i is used in plan j

0 otherwise

for i = 1, . . .m and j = 1, . . . , n.

The right-hand side values of the constraints associated with the A matrix

are given in the m-vector e = (1, 1, 1, . . . , 1)T . This indicates that only one plan

must be selected in the solution for each specialty (the GUB constraints), and that

only one specialty can occupy an operating theatre session at any one time (the

operating theatre constraints).

The entries of the B matrix are determined from the plans in the A matrix

and represent the number of surgical inpatients who require beds for each plan on

each ward on each day. The bed requirements consists of patients in beds for pre-

and post-operative care; the generation of the B matrix will be discussed in Section

4.2.3. The elements of B are:

b
(l)
kj = number of beds required on ward k on day l for plan j

for k = 1, . . . , p, j = 1, . . . , n and l = 1, . . . , q.

Bed constraints are constructed so that the number of beds required on each

ward on each day must be less than or equal to the number of beds available. The

right-hand side values of these constraints are in the vector d and represent:

d
(l)
k = number of beds available on ward k on day l

for k = 1, . . . , p and l = 1, . . . , q.

Any optimisation software using a Simplex-based algorithm will intrinsically

convert inequality constraints into equality constraints via the use of slack variables

[54]. Using this idea, the bed constraints in the MSS SPP model will be converted

into equality constraints through the use of slack and surplus decision variables

[136]. The bed constraints will be treated as elastic in order to keep track of the

difference between the available and required beds on each ward. The inclusion of
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slack and surplus variables will also allow for the ‘sharing’ of beds between different

wards within the model.

In this context, slack variables in a bed constraint can be thought of as the

number of unused or empty beds on a certain ward on a certain day. If there are

fewer beds required than available on a ward, i.e. b
(l)
kj < d

(l)
k , then there is some

slack in the system, comprising of d
(l)
k − b

(l)
kj empty beds. Accordingly, the surplus

variables can be thought of as the number of additional beds required on a ward in

order to meet the patient bed requirements. This would occur when there are more

patients who require a bed on a ward than there are physical beds on the ward, i.e.

b
(l)
kj > d

(l)
k . The surplus for this ward is therefore b

(l)
kj −d

(l)
k additionally required beds.

It is known from discussions with managers in UHW that not all wards can

share beds with other wards. In order to control the transference of beds between

wards, or equivalently which slack and/or surplus variables can be used in the bed

constraints, a matrix is used to define allowable transitions of patients between

wards. This transition matrix, W , is a square p× p matrix of zeros and ones. W is

not necessarily symmetric, since a ward does not have to reciprocate the sharing of

beds with another ward. W is informed from knowledge obtained from the hospital

on which wards each specialty can use, and so W is assumed to be constant for

each day l. The elements of W are:

wkv =

{
1 if patients meant to be on ward k are able to use beds on ward v

0 otherwise

for k = 1, . . . , p and v = 1, . . . , p.

In order to be able to determine how many beds are transferred between

each ward, consider a (p × p) × q matrix Z(l) whose elements, z
(l)
kv , are slack and

surplus decision variables that specify how many beds are moved from ward k to

ward v on day l. It is important to note that the W matrix concerns the allowable

transitions of patients between wards (which is what would happen in reality:

patients would be moved to an empty bed on a different ward), but the Z(l) matrix

concerns the number of beds that are ‘moved’ between wards in the model. Of

course, in reality the patients would be moved and not the beds, but the notion of

beds being moved must be used in the model because the bed constraints concern

beds, not patients. This correspondence between the W and Z(l) matrices is shown

in Figure 4.1.
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Figure 4.1: Correspondence between the W and Z(l) matrices

Each element of row k of Z(l), z
(l)
kv ∀ v, represents the number of empty beds on

ward k on day l that are ‘given’ to ward v. Following from the definition of the slack

variables for this application, the sum of the elements of row k of Z(l) represents

the number of empty beds on ward k on day l.

Each element of column k of Z(l), z
(l)
vk ∀ v, represents the number of addi-

tional beds used by ward k on ward v on day l. Similarly, following from the

definition of the surplus variables for this application, the sum of the elements of

column k of Z(l) represents the number of extra beds required by ward k on day l.

Combining elements in W and Z(l) gives the total allowable slack and surplus for

each ward as follows:

i) The total number of empty beds (slack) on ward k on day l is:

p∑
v=1

wvkz
(l)
kv ∀ k = 1, . . . , p, l = 1, . . . , q

i.e. the sum product of column k of W and row k of Z(l).

ii) The total number of additionally required beds (surplus) on ward k on day l

is:
p∑
v=1

wkvz
(l)
vk ∀ k = 1, . . . , p, l = 1, . . . , q

i.e. the sum product of row k of W and column k of Z(l).

Hence, the bed constraints for each ward on each day (constraint 4.14) can be
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formulated as:

n∑
j=1

b
(l)
kjxj −

p∑
v=1

wkvz
(l)
vk +

p∑
v=1

wvkz
(l)
kv = d

(l)
k ∀ k = 1, . . . , p, l = 1, . . . , q (4.16)

Now that slack and surplus decision variables are included in the model, an ad-

ditional constraint is needed to ensure that the number of extra beds should not

exceed the number of empty beds across all wards on each day. This is achieved by

enforcing that the sum of the surplus variables across all wards on each day does

not exceed the sum of the slack variables across all wards on each day. This also

prevents the total number of beds in the hospital from being exceeded. The daily

constraint for the slacks and surpluses for each ward is:

p∑
k=1

p∑
v=1

wkvz
(l)
vk ≤

p∑
k=1

p∑
v=1

wvkz
(l)
kv ∀ l = 1, . . . , q (4.17)

From discussions with hospital managers in UHW, it is apparent that some

specialties do not want their beds to be used by any other specialty. An occurrence

of a patient from a different specialty using a bed on a ward is known as having

‘outliers’ on the ward, and can be seen as exacerbating the problem of a shortage

of beds when demand is high. Specialties may not want outliers on their ward(s)

due to clinical reasons (it may be medically unsafe to have patients of a specialty

on a different ward), or it might be the case that they want to ‘reserve’ their own

beds in case of an influx of emergency patients. Both are valid reasons, so the bed

constraints will be modified to incorporate the ability to ‘reserve’ beds on wards if

required.

Allowable movements of patients between wards are declared in the transi-

tion matrix, W ; however, it is not possible in the present formulation to state

the fact that empty beds on a ward should not be shared with another ward. To

illustrate this, let there be f empty beds on ward k, i.e. the sum of slack variables

for ward k is f :
p∑
v=1

wvkz
(l)
kv = f for ward k.

However, if ward k does not allow any other ward to use its empty beds, i.e. does

not allow any surpluses from other wards to fill its slacks, then in the current W

matrix, wvk = 0 ∀ v = 1, ..., p for ward k would have to be specified. This would

then imply

p∑
v=1

wvkz
(l)
kv = 0 for ward k. Evidently this causes a conflict between the
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desire to reserve beds, and the current formulation of the bed constraints.

The suggested solution is to introduce the notion of a conceptual ‘dummy

ward’ that would act as a holding place for reserved beds in the model. Empty

beds need to be shared with a ward in the model, hence wards that do not want

to give their empty beds to other real wards should send the beds to the dummy

ward. In the model, this is achieved by giving the slacks from the real ward to the

surplus of the dummy ward.

The dummy ward needs to be included in both the W and Z(l) matrices.

As before, there are p real wards, for which the W matrix states between which

wards patients may be moved, and the Z(l) matrix states how many beds are

transferred between those wards. The dummy ward acts by taking the slack from

real wards that do not want patients from other specialties in their beds. This

corresponds to having an extra row in the W matrix, and an extra column in the

Z(l) matrix.

Let the wards be denoted as k = 1, . . . , p + 1 and v = 1, . . . , p + 1, and let

wards 1, . . . , p be the real wards and let ward p + 1 be the dummy ward. If ward

k does not want any other ward to use its empty beds, then ward k should give

its empty beds to the dummy ward. This corresponds to allowing only patients to

move from the dummy ward to the real ward k (and no patients from any other

real ward), i.e.

wkv =


0 ∀ v = 1, ..., p and for any ward k ∈ 1, . . . , p, that does not want

to share its beds with any other ward,

1 for ward v = p+ 1 and for any ward k ∈ 1, . . . , p.

For the Z(l) matrix, this corresponds to ‘giving’ empty beds on ward k only to ward

p+ 1 (and not to any other real ward). i.e.

z
(l)
kv =


0 ∀ v = 1, ..., p and for any ward k ∈ 1, . . . , p, that does not want

to share its beds with any other ward,

> 0 for ward v = p+ 1 and for any ward k ∈ 1, . . . , p.

The bed constraint (4.16) needs to be re-written in order to account for the dummy

ward, as the total slack and surplus for each ward on each day now need to include

the dummy ward. The surplus (the number of additional beds required on ward k
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on day l), can now be expressed as follows:

Surplus =

p∑
v=1

wkvz
(l)
vk ∀ k = 1, . . . , p, l = 1, . . . , q

For the surpluses, v corresponds to the column number of W and the row number

of Z(l). When a dummy ward is used, there remain p rows in the W matrix and

p columns in the Z(l) matrix. Hence the values of v go from 1 to p. Also for the

surpluses, k corresponds to the row number of W and the column number of Z(l).

In the case that a dummy ward is used, there are now p + 1 columns in W and

p + 1 rows in Z(l); however, because the dummy ward never receives real patients

from real wards, no surpluses are ever given to the dummy ward from real wards.

Therefore the values of k go from 1 to p (not p+ 1).

The slack (number of empty beds on ward k on day l), can now be expressed as

follows:

Slack =

p+1∑
v=1

wvkz
(l)
kv ∀ k = 1, . . . , p, l = 1, . . . , q

For the slacks, v corresponds to the row number of W and the column number of

Z(l). When a dummy ward in used, there are p+ 1 rows in the W matrix and p+ 1

columns in the Z(l) matrix. Hence the values of v go from 1 to p + 1. Also for

the slacks, k corresponds to the column number of W and the row number of Z(l).

In the case that a dummy ward is used, there remain p columns inW and rows in Z(l).

Constraint 4.17 is also altered with the new expressions of the slacks and

surpluses. The formulation of the set partitioning based model for the construction
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of the MSS is therefore given in Model 4.18:

min
n∑
j=1

cjxj (4.18a)

s.t.
n∑
j=1

aijxj = 1 ∀ i = 1, ..., s (4.18b)

n∑
j=1

aijxj ≤ 1 ∀ i = s+ 1, ...,m (4.18c)

n∑
j=1

b
(l)
kjxj −

p∑
v=1

wkvz
(l)
vk +

p+1∑
v=1

wvkz
(l)
kv = d

(l)
k ∀ k = 1, ..., p, l = 1, ..., q (4.18d)

p∑
k=1

p∑
v=1

wkvz
(l)
vk ≤

p∑
k=1

p+1∑
v=1

wvkz
(l)
kv ∀ l = 1, ..., q (4.18e)

xj ∈ {0, 1} ∀ j = 1, ..., n

z
(l)
kv ≥ 0 and integer ∀ k = 1, ..., p, v = 1, ..., p+ 1,

l = 1, ..., q

The objective (4.18a) is to minimise the ‘cost’ of using each plan. Equality

constraints in (4.18b) represent the GUB constraints: only one plan must be

chosen for each specialty. Constraints for the use of each operating theatre session

(4.18c) specify that only one specialty can use each operating theatre during each

session. Bed constraints (4.18d) for each ward on each day ensure that if more beds

are required than physically available on a ward, then sharing of beds is allowed

between wards through the use of slack and surplus variables. Constraint 4.18e is

required in order to ensure that the overall total number of beds is not exceeded

on each day of the planning horizon. The decision variables xj are binary, and the

slack and surplus decision variables, z
(l)
kv , must be non-negative integers.

A summary of the notation used in Model 4.18 is given in Table 4.1:
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Notation Indicies Definition

cj j = 1, . . . , n Cost of plan j.

aij i = 1, . . . , s

j = 1, . . . , n

Indicates if plan j refers to specialty i.

aij i = s+ 1, . . . ,m

j = 1, . . . , n

Indicates if specialty is scheduled in

operating theatre session i in plan j.

b
(l)
kj k = 1, . . . , p

l = 1, . . . , q

j = 1, . . . , n

Bed requirement in ward k on day l for plan j.

wkv k = 1, . . . , p

v = 1, . . . , p+ 1

Indicates if bed sharing is allowed between

wards k and v.

d
(l)
k k = 1, . . . , p

l = 1, . . . , q

Number of beds available on ward k on day l.

xj j = 1, . . . , n Decision variable: plan j is chosen or not.

z
(l)
kv k = 1, . . . , p

v = 1, . . . , p+ 1

l = 1, . . . , q

Decision variable: number of beds transferred

between wards k and v on day l.

Table 4.1: Notation used in MSS optimisation model

4.2.2 Objective Function

In this section, a number of candidate objective functions will be discussed in

order to choose the most suitable objective function for Model 4.18. The objective

function needs to align with the aims of the hospital for constructing an MSS and

easily distinguish between good and bad plans.

The first, and possibly simplest, candidate objective function is a monetary

cost applied to each of the possible plans. This cost could reflect the cost per

session of assigning each specialty to each operating theatre, and the cost of having

a patient in a bed per day. The minimisation of the cost of running the operating

theatres and patient recovery on the wards is certainly desirable for the hospital

management, however, there are many other factors that affect the monetary cost

of scheduling surgeries. The main variation in costs would come from the operating

theatre aspect of this objective function, since the cost per bed per day of patients

in the wards will only be affected by the duration of their LoS. The hospital

managers in UHW have expressed the opinion that the operating theatres are not

the restrictive resource in the problem they are experiencing. Therefore it does not

seem appropriate to construct the MSS based on the cost of assigning specialties
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to the operating theatre sessions. It was not deemed suitable to continue with a

monetary objective function due to the many other factors that would need to be

accounted for and the difficulty in obtaining the required data from the hospital.

It is desirable to construct an MSS that satisfies the rules and preferences of

everyone involved with conducting surgery. Preferences are often thought of as

soft constraints that are desirable to satisfy, but not absolutely necessary to satisfy

for a feasible solution. Hard scheduling rules, such as which operating theatre

each specialty can use and which day of the week any specialty should or should

not operate on, are specified by directorate and hospital managers and are built

into the plans that make the A matrix (discussed in Section 4.2). The ability to

build these rules implicitly into the generation of the subsets is an advantage of

formulating this scheduling problem as an SPP [135]. However, there may also be

other soft scheduling rules, or preferences, that could be reflected in the objective

function by assigning lower values of ‘cost’ to a preferred plan. Therefore, when

the objective function is minimised, the most preferable plans with lower ‘cost’

values will be chosen with respect to the operating theatre and bed constraints.

However, there would be difficulty in discerning this preference information

from stakeholders in the hospital. Experience gained through liaison with staff

in the hospital suggests that different stakeholders have different preferences,

e.g. the directorate managers might give their preferences based on data, which

might be different to the preferences given by surgeons who might base theirs on

their experience of working in the operating theatres. This approach was also

deemed inappropriate because it was predicted that conflicting preferences would be

collected from various hospital staff, and it was unclear how to resolve these conflicts.

The first two candidate objective functions discussed above are based on in-

formation that would need to be acquired from the hospital. If either of these were

chosen, the data for the objective functions would have to be altered if the model

was applied to a different hospital. This is perfectly valid, since the resulting MSS

will be very specific to the particular hospital; however, it is not considered the best

choice here where we are seeking to illustrate the flexibility of a generic scheduling

model. Hence, the subsequent candidate objective functions use information

from within the optimisation model to determine the ‘costs’ of each plan. The

optimisation model allows for the sharing of beds between wards which could be

particularly useful in reality when demand for beds on a ward becomes acute.

However, it could also be argued that sharing beds, or in reality moving patients

onto different wards, is not a desirable practice to encourage in the hospital. This
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could be because there may not be the correct equipment or skilled nurses on the

different ward. Therefore, the next candidate objective function penalises any

sharing of beds between wards. This approach bears similarities with that of Bard

and Purnomo [18] for meeting the scheduling preference of nurses. The sharing of

beds will still be allowed through the use of the slack and surplus variables, though

it will be discouraged by the imposed penalties. The total surplus, or additionally

required beds, is summed over all wards and all days. It may be the case that it

is more undesirable for some wards to require additional beds than other wards.

Therefore a penalty, say fk, will be specified for ward k in the objective function,

for all wards k = 1, . . . , p. The objective function would therefore take the form:

min

q∑
l=1

p∑
k=1

fk

p∑
v=1

wkvz
(l)
vk

Although this objective function minimises the amount of patients being moved to

different wards in the model, after discussions with hospital management it was

decided that this objective function did not quite align with the hospitals primary

aim of reducing the number of cancelled patients. If it is medically safe for a

patient to be put onto a different ward, then surgeons do this in order to free up

bed space for more patients and thereby reduce the waiting list. There also still

remains the capability within the model to eradicate any bed sharing, by setting

the corresponding elements of the W matrix to zero.

Another of the hospital’s primary objectives is to increase the number of pa-

tients moving through the system in order to reduce the waiting lists for elective

surgery. This can be thought of as equivalently reducing the amount of unmet

demand as a proportion of the total demand over the planning horizon. The

amount of unmet demand can be considered as the difference between the demand

and activity performed over a specified planning horizon for all surgical specialties.

Unfortunately, this cannot be calculated because the developed model optimises

the MSS based on the desired activity (the B matrix consists of required beds for

all planned patients). Therefore, a fixed amount of patient demand will be seen in

the model, so the difference in demand and activity will always be constant, and so

cannot be used as an objective function.

Single objective functions have been discussed thus far, however a multiob-

jective function could be used in this setting. Zhang et al. [162], for example, use

an objective function that consists of five different cost and penalty terms. They

consider the delay in meeting surgery demand and unmet demand for inpatient



Chapter 4 Deterministic Optimisation of the MSS 70

and outpatient surgery, and penalise any undersupply of operating theatre hours

to each specialty. A multiobjective function that uses any of these aspects could be

appropriate, however, it will not be used here.

The objective function that is believed to be the most appropriate and con-

sistent with one of the hospital’s primary objectives is based on the idea of reducing

the amount of unused bed days in order to make best use of the existing capacity

on the wards. According to the OECD [129], a bed day is defined to be ‘a day

during which a person is confined to a bed and in which the patient stays overnight

in a hospital’. This is a commonly used measure that is reported and used by

hospital managers for the management of patients and hospital wards.

The number of bed days used on a ward on one day is the sum of the re-

quired beds over all the chosen plans for the optimal schedule, i.e.
n∑
j=1

b
(l)
kjxj.

Perhaps most important to the hospital management, is the utilisation of the beds

on the wards. There is a fixed cost associated with running a ward, which includes

such costs as equipment, nurses, building overheads, cleaners and even catering for

patient’s meals. Therefore, because these costs are fixed, hospital management are

keen for these wards to be utilised as fully as possible. This can be thought of as

maximising the number of patients on the wards at any one time. Equivalently, it

can be thought of as minimising the number of empty beds on the wards at any one

time. If the number of empty beds are kept to a minimum, the overhead costs for

running the wards will be reduced when considering the cost per bed per patient.

The number of empty beds on a ward can be expressed as the difference between the

number of beds on the ward, and the beds required by inpatients, i.e. d
(l)
k −

n∑
j=1

b
(l)
kjxj.

The measure of unused bed days will be used in the objective function since

the objective will need to be minimised, which is consistent with the traditional

SPP formulation. If the number of unused bed days is minimised, the notion of

maximising the throughput of patients can then also be investigated – if there

are more unused bed days on a ward, then this would imply that the throughput

of patients could be increased in order to use these empty beds. This could be

achieved by increasing the number of patients operated on, assuming that their

LoSs follow similar distributions as at present.

Since the whole system of hospital beds is being considered in the model, it

is of interest to include the unused bed days used on all wards on all days of the
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planning horizon. Hence the number of unused bed days is summed over all wards

and days, i.e.

p∑
k=1

q∑
l=1

(d
(l)
k −

n∑
j=1

b
(l)
kjxj). Therefore, the chosen objective function for

the optimisation model to construct an MSS is:

min

p∑
k=1

q∑
l=1

(d
(l)
k −

n∑
j=1

b
(l)
kjxj)

On occasions when the chosen plans in the optimal solution result in more beds

being required than available for a particular ward on a particular day, i.e.
n∑
j=1

b
(l)
kjxj > d

(l)
k , this will result in a negative term in the overall summation for the

objective function. This will help to reduce the objective function value, which is in

line with the minimisation objective. However, this could be seen to be artificially

reducing the objective function value, because it seems counterintuitive to get

benefit (a lower objective value) from requiring more beds than available. This is

allowable, however, since if a feasible solution is able to be found, then it must be

the case that beds are being shared between wards via the slacks and surpluses. If

this is undesirable, then this can easily be prevented by disallowing the sharing of

beds by altering the W matrix. Hence a negative term in the objective function

summation is not invalid.

From discussions with staff at UHW, the minimisation of the unused bed

days seems to be consistent with the hospital’s own objectives of utilising expensive

resources: the beds on wards. This objective can also be used as part of the

hospital’s capacity planning strategy, since plans that bring the greatest throughput

of patients will be selected during the optimisation. If the optimal MSS has spare

capacity, i.e. empty beds on the wards, then there could be scope for increasing

the number of patients brought in for surgery, if other constraints on the operating

theatres would allow (e.g. enough operating theatre time for more operations).

4.2.3 Operating Theatre Constraints

As described previously in Section 4.2.1, the A matrix is an m × n binary matrix

whose columns represent different possible plans for each surgical specialty. The

first s rows of A represent GUB constraints enforcing that exactly one plan must be

selected for each specialty in the optimisation. The remaining rows then represent

constraints for each operating theatre session; only one specialty is allowed to be

allocated to an operating theatre session in the optimal MSS. The structure of the

A matrix is illustrated in Figure 4.2.
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Figure 4.2: Illustrative diagram of the A matrix

The rows that correspond to the GUB constraints (indicated in yellow in Figure

4.2) are automatically filled in when each plan is generated. The remainder of this

section describes how the rows that correspond to the operating theatre constraints

are generated.
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Enumeration in used to generate all possible plans for each specialty since this

technique has been shown in the literature to be very effective. An approach similar

to Ryan [135] is adopted here to enumerate the plans for each specialty. A skeleton

plan is first generated for each specialty that fixes in the plan any zeros or ones

to indicate that a specialty must be or must not be scheduled in certain operating

theatre sessions respectively. Then using the skeleton plan, all combinations of plans

are added to the A matrix until no further additions are possible. This process

is repeated for each specialty, resulting in the A matrix being constructed in the

following way as described in Algorithm 1.

Algorithm 1 Generation of the A Matrix

for each specialty i do

Make the skeleton plan for specialty i (Algorithm 2)

Generate all plans for specialty i via enumeration (Algorithm 3)

Append block of plans for specialty i onto A matrix

end for

A skeleton plan is constructed for each specialty using rules and preferences for

defining which operating theatre or day of the week is allowed or preferred. The

skeleton plan is an initial column of the A matrix for a particular specialty that con-

sists of three different numbers: ‘0’ denotes that the specialty must not be allocated

to that operating theatre session, ‘1’ denotes that the specialty must be allocated

to that operating theatre session, and ‘-1’ denotes that fact that the specialty could

be allocated to that operating theatre session, i.e. it is a temporary value that

will be replaced by the value ‘0’ or ‘1’ in the final A matrix. The skeleton plan is

constructed according to Algorithm 2.

Algorithm 2 Construction of the skeleton plan for specialty i

Input scheduling rules

for each session j do

if specialty i is not to be scheduled in session j then

skeletonP lan[j] = 0

else if specialty i is to be scheduled in session j then

skeletonP lan[j] = 1

else

skeletonP lan[j] = −1

end if

end for

Append skeletonP lan to the A matrix
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The enumeration of every possible plan for one specialty starts with the skeleton

plan and is achieved by passing through each element in turn, and deciding whether

or not to change a ‘-1’ entry into a ‘0’ or ‘1’. If there are already the required number

of operating theatre sessions, then all subsequent ‘-1’ entries are changed to ‘0’s. If

there are still operating theatre sessions to allocate, then the entry in the current

column will be changed to ‘0’ and a copy of the column will be taken and appended

to the A matrix for later use. At each decision point, the number of operation room

sessions that have already been allocated in the plan is checked against the required

number of operating theatre sessions for that specialty. As the plans are generated,

the algorithm pairs the allocated operating theatre sessions so that, if a specialty has

been allocated to a morning session, then it will also be allocated to an afternoon

session if more sessions are required. This reflects the hospital’s preference that

specialties have whole day sessions rather than half day sessions. All ‘-1’ entries

will be changed in one plan before the algorithm moves onto the next plan. The

enumeration algorithm performed is described in Algorithm 3.
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Algorithm 3 Enumeration of all plans for a specialty

for each column j do

for each session i do

if aij = −1 then

if Number of 1’s in column j of the A Matrix = the required number of

sessions then

aij = 0

else if (Number of 1’s in column j of the A Matrix < the required number

of sessions) ∩ (Number of remaining 1’s < Number of -1’s in column j)

then

aij = 0

copyCol = a copy of column j of the A Matrix

copyCol(i) = 1

Append copyCol onto the RHS of the A Matrix

numCols = numCols + 1

else if Number of 1’s in column j of the A Matrix < the required number

of sessions ∩ (Number of remaining 1’s = Number of -1’s in column j)

then

aij = 1

end if

end if

end for

end for

Since all desirable plans for each specialty are being enumerated, it is of interest to

estimate the size of the A matrix, or equivalently the number of decision variables

that will be required. SPPs can be very large as reported in [135], so it is of

interest to see how the size of typical instances of this application problem compare.

The number of plans for each specialty is the same as the number of distinct

combinations of zeros and ones in each column.

For each specialty i, let

xi = number of operating theatre sessions available to specialty i

yi = number of operating theatre sessions required by specialty i

The enumeration algorithm groups the sessions in which a specialty is scheduled

into whole day sessions where possible. Moving from using half day sessions to

whole day sessions, the number of operating theatre sessions available to specialties
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is halved. The number of operating theatre sessions available to specialty i is thus
xi/2.

If yi is even, then the number of plans for specialty i is xi/2Cyi/2, since the

number of operating theatre sessions required by the specialty also needs to be

halved when whole day sessions are considered.

If yi is odd, then yi − 1 required operating theatre sessions are grouped into

whole day sessions, as in the case when yi is even, and the ‘leftover’ odd session is

then allocated to an a.m. or p.m. session. The number of possible allocations of

this remaining odd session is equal to the number of zero elements in the A matrix

that was constructed with the yi − 1 sessions, since each zero can be changed to a

one. The number of plans generated with the yi − 1 sessions is xi/2C(yi − 1)/2. The

number of zeros in these plans is equal to the difference between the total number

of elements in these plans and the number of ones in these plans, i.e.

Number of zeros in the plans =
(
xi ·

xi/2 C(yi − 1)/2

)
−
(
(yi − 1) ·xi/2 C(yi − 1)/2

)
In summary, the number of plans generated through enumeration for each specialty

is

The number of plans for specialty i =

{
xi/2Cyi/2 if yi even

(xi − yi + 1) ·xi/2 C(yi − 1)/2 if yi odd

The number of plans in the A matrix is then the total number of plans that have

an even number of required operating theatre sessions and those that have an odd

number of required operating theatre sessions. i.e.

Number of plans in A matrix =
∑
i∈E

xi/2Cyi/2 +
∑
i∈O

(xi − yi + 1) ·xi/2 C(yi − 1)/2

where E is the set of specialties that require an even number of operating theatre

sessions, and O is the set of specialties that require an odd number of operating

theatre sessions.

Using the above formula, the number of plans in the A matrix resulting from using

the current scheduling rules for the MSS used in UHW are calculated and given in

Table 4.2.
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Number of sessions

Specialty

(i)

Available

(xi)

Required

(yi)

No. plans

in A matrix

Cardiac 20 20 1

CEPOD 10 10 1

Colorectal 10 8 5

ENT 10 5 60

General 20 8 210

Liver 10 2 5

Neuro 20 20 1

Ophthalmology 10 2 5

Oral 30 6 455

Paeds ENT 10 1 10

Paeds General 10 8 5

Paeds Trauma 10 2 5

Renal 30 6 455

Scoliosis 10 4 10

Thoracic 10 8 5

Trauma 10 2 5

Urology 10 10 1

Vascular 20 8 210

Total no. plans

in A matrix =
1449

Table 4.2: Size of the A matrix for current UHW MSS scheduling rules

As a validation check, 1449 plans are generated in the A matrix when the current

scheduling rules that are used in UHW are used to construct an MSS. This is a

large problem, though not as large as the problem instances reported by [147] which

involved thousands of decision variables.

4.2.4 Bed Constraints

As described in Section 4.2.3, the A matrix defines in which theatre and at what

time each surgical specialty will operate. Using the A matrix, the B matrix is then

generated by filling in the predicted number of beds required on each ward on each

day for each plan. This section describes how the B matrix is generated and the

different methods used to calculate the bed requirements. The structure of the B

matrix is illustrated in Figure 4.3.
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Figure 4.3: Illustrative diagram of the B matrix

This B matrix illustrates the relationship between the A and B matrices. For

example, it can be seen in Figure 4.2 that the first plan in the A matrix has

scheduled Specialty 1 in operating theatre 1 in both the morning and afternoon

sessions on Monday. The first plan in the B matrix therefore gives the predicted

bed requirements of Specialty 1 for this plan on Ward 1 for each day of the week.

Nine beds are required on Monday, then eight on Tuesday. This is assumed to

continue to reduce to four beds on Sunday, reflecting the fact that patients are

discharged from hospital according to the specialty’s LoS distribution.

As discussed in Section 3.5, the LoS of an episode in hospital for a surgical

patient can be split into two separate LoSs: pre-operative (before surgery) and

post-operative (after surgery). The LoS is rounded up to the nearest whole day

since, according to the OECD [129], a bed day is defined as ‘a day during which a

person is confined to a bed and in which the patient stays overnight in a hospital’.

It is deemed appropriate to use whole day pre-operative and post-operative LoS in

order to capture the fact that a bed day involves an overnight stay.

Whenever a specialty is scheduled to operate in the A matrix, a bed is re-

quired in the model (in the B matrix) for the total duration of the patient’s

pre-operative and post-operative LoS. The number of patients that are operated
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on per-session is known, the pre-operative LoS is a user-specified duration, and

several methods of generating the bed requirements for the post-operative LoS are

investigated. The optimisation model concerns the bed requirements for mainly

elective surgical inpatients, with the exception of surgical patients being admitted

to hospital via the emergency CEPOD theatre. This theatre generates a high

demand for beds, so is deemed necessary to include it in the model.

The basic algorithm for generating a B matrix based on the A matrix is

given in Algorithm 4.

Algorithm 4 Basic generation of the B matrix

for each column j do

Look-up which specialty plan j refers to from the GUB constraints.

for each session i do

if aij = 1 then

Find corresponding day of surgery in B matrix.

Put the new arrivals in the B matrix before the day of surgery for their

pre-operative LoS.

Put the new arrivals in the B matrix on the day of surgery.

Update B matrix with the post-operative bed requirement.

end if

end for

end for

A look-up table of which ward(s) each specialty sends their patients to is used in the

generation of the B matrix in order to get the bed requirements for the appropriate

bed constraints. It is assumed that as soon as a patient’s post-operative LoS is

complete, they leave the hospital and are not modelled as going to another ward in

the hospital. Although in reality a surgical patient may move to a different ward for

a different medical need, the current surgical episode is only being considered in the

model and so if the patient moves to a different ward, they are starting a new episode.

There is, however, one ward that is an exception to this rule: the CCU. The

CCU is a special ward in which the patients who require the most intense medical

attention are treated, typically for a short period of time. In the model, patients

are either deemed well enough to leave the CCU and move onto another surgical

ward for further post-operative recovery, or unfortunately they die while in the

CCU, ending their episode in hospital. The CCU is the only ward in the model

from which patients can move into another ward. A separate look-up table is used
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to send patients from the CCU to appropriate surgical wards to continue their

post-operative recovery. It is assumed that no patients return to the CCU once

they have left.

Data concerning patients’ post-operative LoSs in each ward and the CCU is

used to determine how long patients will remain in beds in the model. Several

approaches to modelling the post-operative LoS are discussed below. The method

used to determine which wards patients go to and how the post-operative LoS is

used to generate the B matrix is given in Algorithm 5.
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Algorithm 5 Assignment of patients to wards for the generation of the B Matrix

for each column j do

Look up the specialty plan j refers to and the number of new arrivals that will

require a bed.

for each session i do

if aij = 1 then

Calculate the number of new arrivals that go to each of the wards (including

the CCU) using a look-up table.

Calculate, using i, the day of surgery.

Put a specified proportion of patients into beds on wards one and/or two

days before day of surgery for pre-operative LoS.

if Some patients are to be sent to the CCU then

Send those patients to the CCU and update the B matrix with their

CCU LoS.

Calculate how many patients are discharged from the CCU on each day

of the week.

Send the other patients from surgery straight to other wards (not the

CCU) and update the B matrix with their post-operative LoS.

else

Send patients from surgery straight to wards (not the CCU) and update

the B matrix with their post-operative LoS.

end if

Re-adjust number of CCU discharges according to the mortality rate.

for each day, d, in the planning horizon do

if The number of discharges from the CCU on day d is > 0 then

Distribute these discharges between all other wards using a look-up

table.

for Each ward l do

if Any CCU discharges are sent to ward l then

Send these patients to ward l and update the B matrix with their

post-operative LoS.

end if

end for

end if

end for

end if

end for

end for
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In this research, several different methods of using the data on post-operative LoS

are used to generate the B matrix. A patient’s LoS is categorised based on their

surgical specialty, except when the patients are on the CCU, in which case the LoS

is based on the overall CCU LoS. Patients who were operated on in the CEPOD

theatre have a LoS based on their actual surgical specialty. As we saw, the LoS data

was analysed and discussed in Section 3.5. Here the B matrix is generated using

three methods: (1) the average LoS for each ward, (2) the expected bed count on

each ward on each day after surgery, and (3) the conditional probability of leaving

the hospital on each day after surgery. Each method is discussed in the following

sections.

Generating the B Matrix: Method 1 – Mean LoS

The first method of using the LoS data to generate the B matrix is based on using

the mean LoS for each specialty. It is assumed that each patient in the model has a

LoS equal to the mean LoS of their specialty, and it does not vary. In this method, all

patients who have surgery during the same operating theatre session will therefore

leave the ward together. This method does not take the uncertainty of patient LoS

into account.

Generating the B Matrix: Method 2 – Conditional Probability of Failure

In this method of filling the B matrix, an example, or ‘scenario’, of the number of

beds required is generated based on each plan. Using information from the LoS

data, on each day after surgery, the probability of each patient leaving hospital will

be evaluated to determine whether or not they will stay in the bed until the next day.

Let the post-operative LoS for a patient be denoted by the random variable

T . More specifically, T denotes the duration of time after surgery until the patient

either leaves hospital (end of the spell in hospital) or moves to the care of a different

specialty (end of episode). In either case, T is effectively the time taken for the

patient to ‘recover’ from surgery.

For each specialty, we need to calculate the probability that a patient leaves

on day d, given that the post-operative LoS has already reached d days. In survival

analysis, this is known as the conditional probability of failure. To enable this, the

post-operative LoS will be used to find the survival distribution: the probability of

a patient staying in a bed past day d. The Kaplan-Meier estimate of the survivor

function is used because no parametric distribution has been found fit to our LoS
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data [97].

From the theory of survival analysis, the survivor function, S(t), is the prob-

ability that the random variable T takes a value greater than a specified time,

t.

S(t) = P (T > t)

In this application, S(t) is the probability that the post-operative LoS is longer

than a specified time t. Theoretically, the function S(t) decreases smoothly from

S(t) = 1 at t = 0, towards zero as t increases towards infinity. If a parametric

distribution cannot be fitted to S(t), then S(t) can be estimated by step functions

that provide the survival probability for discrete time points; days in this case.

An estimate of S(t) can be calculated using the Kaplan-Meier method, sometimes

known as the product-limit estimate. This method is non-parametric, so no

assumptions about the data are made.

For the Kaplan-Meier estimate of the survivor function, let t(j), j = 0, 1, 2, . . . , k,

be the ordered LoSs. The estimate of the survivor function, S(t), at time t(j), is

given by the general Kaplan-Meier formula:

Ŝ(t(j)) = Ŝ(t(j−1))P (T > t(j) | T ≥ t(j))

An alternative expression for the estimated survivor function is found if we substitute

for the survival probability Ŝ(t(j)), and is given in the Kaplan-Meier product limit

formula:

Ŝ(t(j)) =

j−1∏
i=1

P (T > t(i) | T ≥ t(i))

Using information from the LoS data such as the number of patients that have each

distinct LoS, m(j), and the number of patients that could have left at each LoS time,

n(j), the Kaplan-Meier estimate is calculated as:

Ŝ(t(j)) =
n(j) −m(j)

n(j)

In order to fill the B matrix, the conditional probability of each patient leaving

the hospital is evaluated on each day after surgery, and the number of patients

remaining in hospital is updated. The conditional probability of failure, L(t(j)), is

the probability that the event (patient leaves hospital) occurs in a small time interval
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of length h after time t, and is defined as:

L(t(j)) = P (t < T < t+ h | T > t)

L(t(j)) can be estimated when finding the Kaplan-Meier estimate of S(t) as follows:

L̂(t(j)) =
m(j)

n(j)

i.e.

Cond. prob. of leaving hospital on day d =
No. of patients leaving on day d

No. of patients in hospital at start of day d

The B matrix is generated using the conditional probability of failure estimate,

L̂(t(j)), according to Algorithm 6.

Algorithm 6 Generation of the B Matrix using the conditional probability of failure

for each column j do

Look up the specialty plan j refers to and the number of new arrivals that will

require a bed (newArrivals).

for each session i do

if aij = 1 then

Enter the number of new arrivals in the row in the B matrix that corre-

sponds to the weekday of the operating theatre session.

Let remainingArrivals = newArrivals.

for Day d = 1 to maximum LoS for this specialty do

for k = 1 to remainingArrivals do

Generate a random number, r ∈ [0, 1].

if r > conditional probability of leaving hospital on day d then

Decrease remainingArrivals by 1.

end if

end for

Update B matrix with number of remaining arrivals on this day

end for

end if

end for

end for
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Generating the B Matrix: Method 3 – Expected Bed Count

By sampling from the LoS distributions to generate the B matrix as in Method

2, the observed LoSs are being anticipated. Here B is generated using a non-

anticipatory method so that nothing about the patients’ LoS (distribution) is

assumed.

The principle behind this expected bed count approach is to determine how

many patients are expected to require a bed on day d after surgery, given a

particular schedule. Using the theory of survival analysis on empirical distributions

of LoS data, the expected number of beds required on day d after surgery is

calculated as follows:

Let ed be the expected bed requirement on day d after surgery. Let pd be

the probability of a patient staying in a bed from day d to the next day, day d+ 1.

Then,

Expected bed requirement on day d after surgery, ed = ed−1pd−1

where e0 = N = number of patients having surgery during an operating theatre

session, and who will later require a bed on a ward.

The probability of a patient staying in a bed from day d to the next day is

found using the conditional probability of failure as described in Method 2, i.e. the

probability that a patient leaves the hospital on day d, in the following way:

pd = 1− conditional probability of failure on day d

Two counters of expected bed count are used for the generation of the B matrix: the

true, fractional form of ed, and the corresponding rounded value. It is important to

use the fractional form in the calculations of expected bed count to avoid rounding

error; however, the rounded value is required as it represents a whole number of

beds for use in the model.

4.3 Simulation of an Optimal MSS

The second stage of the modelling process involves the simulation of an optimal

schedule obtained from the previous optimisation stage. The simulation provides
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a number of output measures that can be used to evaluate how well an optimal

schedule might perform if implemented.

The simulation is performed by producing a snapshot of future bed require-

ments for each ward. Future bed requirements are generated using the same

method as in Method 2 in Section 4.2.4; the conditional probability of leaving

hospital on each consecutive day after surgery. This method of simulation is

equivalent to generating a B matrix, using the plans of the optimal schedule to

form an A matrix as the input required for generating a B matrix. It is important

to note that the B matrices generated as part of the simulations are different to

those generated as inputs to the optimisation problem. Typically, 1000 simula-

tions of an optimal MSS are performed, unless specified differently later in the thesis.

Performance measures concerning an optimal MSS that are obtained from

the simulation include whether more beds are required than available on at least

one day on one ward, the average number of these violations (over all wards on

all days) and the expected bed shortage. The expected bed shortage is the total

number of beds required in addition to those available on all wards on all days.

Further details and discussion of these results are given in Chapter 5.

4.4 Model Validation

The remainder of this chapter concerns the validation of the developed model. An

important stage of the modelling process is to verify that the model is valid and

represents the real-life system accurately. Robinson [134] discusses how validation is

a process of increasing confidence in a model to ensure that the model is sufficiently

accurate for purpose for which the model is to be used. This is particularly relevant

to models applied to heathcare problems as there is a high degree of uncertainty

associated with many hospital systems, and it is important to develop models that

the end-users feel are sufficiently accurate for their purposes. Model credibility is

also concerned with developing in the end-users the confidence in the information

derived from the model [141].

The aim of validation of the developed optimisation and simulation model is

to establish whether what is currently happening in UHW can be modelled. That

is, the current MSS being used can be modelled correctly with relation to the

resulting bed requirements. This will instill confidence in potential end-users of the

model so that it can be used to determine whether improvements can be made to
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the MSS that will reduce the number of cancellations and level demand for beds on

wards.

There are a number of aspects to the optimisation and simulation model

that can be investigated for validation. It would be expected that the throughput

of surgical inpatients in the model, i.e. the number having operations, would be

similar to that observed in the data from UHW. This ensures that we are not

planning the MSS based on too few or too many patients over the planning horizon.

This affects the bed requirements modelled for each ward, and so needs to be

compared to the observed bed count from the UHW data. Checking the bed count

ensures that the number of patients and their LoSs are similar to that observed in

UHW. All validation is performed based on the current MSS used in UHW, and

with the data from UHW for the year 2012/13.

4.4.1 Baseline Scenario

A baseline scenario for the problem to be modelled is required in order to assess

the model and to compare with the results obtained from parameter variation. The

baseline scenario is defined by the values of parameters that are used within the

optimisation and simulation model and are chosen to reflect the current set-up at

UHW, such as the number of operating theatres and number of days in the MSS.

Parameter values are either based on knowledge of the current practices at

UHW, or from the extensive data analysis as discussed in Chapter 3. A summary

of the parameters and their values used in the baseline scenario is given in Table

4.3.
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Parameter Value in baseline scenario

No. of operating theatres 14 operating theatres

No. of days in MSS 5 days a week

No. of sessions per day 2 sessions per day

No. of specialties 18 specialties

No. of sessions required Same number as current UHW MSS for each specialty

No. patients per session From 2012/13 UHW data (see Section 4.4.2)

Pre-operative LoS Every patient has pre-operative LoS = 1 day

Post-operative LoS
From 2012/13 UHW data (see Section 3.5.2),

based on specialty

No. of wards 11 wards

Wards used by specialties From 2012/13 UHW data (see Section 3.4.1)

No. of beds As in UHW (see Section 3.4.1), constant over all days.

Allowable ward transfers
Only allowed from the Colorectal to the

General/Liver ward

CCU mortality Current mortality rate (10%) from 2012/13 data

Table 4.3: Parameter Values for the Baseline Scenario

4.4.2 Number of Operations per Session

The number of operations per session, as calculated by dividing the duration of

surgical procedures into the total session duration, was found in Section 3.3.3.

Since the number of operations per session has a big influence on the demand for

beds on the wards, the calculated number of operations is validated with respect

to total patient throughput and simulated bed requirements in the model. A more

detailed discussion of the validation of these two measures are given in Sections

4.4.3 and 4.4.4 respectively.

The number of operations per session for the baseline scenario is found by

rounding the calculated number of operations as in Section 3.3.3. Adjustments are

made as necessary in order to improve the total patient throughput and simulated

bed count in the model to better match the observed numbers in UHW. The

number of operations per session used in the baseline scenario is given in Table 4.4.
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Specialty

Calculated

operations

per session

Operations

per session

(rounded)

Baseline scenario

operations per

session

Cardiac 1.16 1 1

CEPOD 2.77 3 4

Colorectal 0.89 1 1

ENT 1.35 1 1

General 2.10 2 3

Liver 1.47 1 2

Neurosurgery 1.94 2 2

Ophthalmology 2.05 2 1

Oral 0.92 1 1

Paeds ENT 2.10 2 3

Paeds General 1.39 1 1

Paeds Trauma 1.72 2 2

Renal 2.06 2 2

Scoliosis 3.42 3 3

Thoracic 0.98 1 1

Trauma 2.98 3 5

Urology 2.19 2 2

Vascular 1.20 1 2

Table 4.4: Number of operations per session used in the baseline scenario

The rounded calculated number of operations per session is used for all specialties

apart for CEPOD, Ophthalmology and Paediatric ENT for which the number of

operations have been adjusted in order for the total number of patients in the model

to be better aligned with observed data. It has also been adjusted for the Gen-

eral, Liver, Trauma and Vascular specialties so that the simulated bed count better

reflected that of the observed bed count in 2012/13.

4.4.3 Patient Throughput

In order to validate the throughput of patients in the operating theatres, the

number of patients operated on in the model is compared to the observed number of

operations performed in UHW in 2012/13 for each surgical specialty. In the model,

the number of operations per session controls how many patients enter the system.

This data was extracted from the UHW 2012/13 data by calculating how many

surgeries could be included in an operating theatre session, based on the average
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length of operations for each specialty (discussed in Section 3.3.3). It reflects the

number of operations that could be performed given the operating theatre time

available; however, it does not take into account the cancellation rates observed

over the same period which will be considered subsequently.

The total number of surgical patients expected to be seen over a year in the

model, assuming a 50 working-week year, is calculated for each specialty and is

shown in Table 4.5. The number of sessions per week for each specialty is found

from inspection of the current UHW MSS.

Specialty
Operations

per session

Sessions

per week

Sessions

per year

Operations

per year

Cardiac surgery 1 20 1000 1000

CEPOD 4 10 500 2000

Colorectal 1 8 400 400

ENT 1 5 250 250

General 3 8 400 1200

Liver 2 2 100 200

Neurosurgery 2 20 1000 2000

Ophthalmology 1 2 100 100

Oral surgery 1 6 300 300

Paeds ENT 3 1 50 150

Paeds General 1 8 400 400

Paeds Trauma 2 2 100 200

Renal 2 6 300 600

Scoliosis 3 4 200 600

Thoracic 1 8 400 400

Trauma 5 12 600 3000

Urology 2 10 500 1000

Vascular 2 8 400 800

Table 4.5: Number of planned operations in the model

Since the number of operations per session are calculated based on the length of time

for surgery within each session, cancellation rates need to be considered in order to

better reflect reality. The cancellation rates for 2012/13 and the corresponding

adjusted number of planned operations in the model are shown in Table 4.6.
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Specialty

Planned

operations

per year

Cancellation

rate

(%)

Adjusted planned

operations

per year

Cardiac 1000 15.3 847

CEPOD 2000 0.8 1984

Colorectal 400 15.9 336

ENT 250 25.4 187

General 1200 28.4 860

Liver 200 24.1 152

Neurosurgery 2000 15.7 1685

Ophthalmology 100 17.5 83

Oral surgery 300 16.9 249

Paeds ENT 150 20.6 119

Paeds General 400 13.2 347

Paeds Trauma 200 17.8 164

Renal 600 29.5 423

Scoliosis 600 0.0 600

Thoracic 400 12.4 351

Trauma 3000 33.0 2011

Urology 1000 26.6 734

Vascular 800 0.0 800

Table 4.6: Number of planned operations in the model adjusted for cancellation
rates

The absolute percentage error can be used to compare the adjusted number of

planned operations with the observed number of operations for the year 2012/13.

The absolute percentage error for each specialty is given in Table 4.7, and is calcu-

lated as follows:

Absolute percentage error =
|No. planned from model - No. observed|

No. observed
× 100%
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Specialty

Adjusted number of

planned operations

from the model

Observed number

of operations

(2012/13)

Absolute

percentage error

Cardiac 847 731 15.9

CEPOD 1984 2391 17.0

Colorectal 336 270 24.5

ENT 187 309 39.6

General 860 806 6.7

Liver 152 132 14.9

Neurosurgery 1685 1019 65.4

Ophthalmology 83 104 20.6

Oral surgery 249 310 19.6

Paeds ENT 119 165 27.8

Paeds General 347 566 38.7

Paeds Trauma 164 273 39.8

Renal 423 136 210.9

Scoliosis 600 411 46.0

Thoracic 351 395 11.3

Trauma 2011 1673 20.2

Urology 734 592 23.9

Vascular 800 403 98.5

Table 4.7: Percentage error between the adjusted planned number of operations
from the model and the observed number of operations

As can be expected, there is some variation between the number of adjusted

planned operations predicted by the model and the observed operations. This can

be attributed to the various uncertain aspects of planning operations. The number

of operations per session may not always be constant for all sessions throughout

the year, hence some variation in the total number observed might occur. Another

reason that could cause this difference is that the number of sessions available per

week in the MSS to each specialty may have changed during the year 2012/13, again

causing the number of actual operations to be different than expected. However,

having discussed this with hospital management this is not believed to be the case.

Most specialties have an absolute percentage error of less than 25%. Special-

ties that have particularly high percentage errors are Renal (210.9%), Vascular

(98.5%) and Neurosurgery (65.4%). The Renal specialty has the second highest

cancellation rate (29.5%) observed in 2012/13. This is explained by the nature
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of the Renal specialty: the uncertain nature of transplant surgery means that

scheduled surgery time is often not utilised because of a lack of transplant organs.

The throughput in the model for Vascular is almost twice as many patients as was

observed in 2012/13. However, when bed count is considered in Section 4.4.4, the

bed requirements produced in the model by having two operations per session is

almost exactly what was observed in 2012/13. Two operations per session is deemed

appropriate to use in the model, since it is important to match the modelled bed

requirements to that observed. There are almost two-thirds too many operations

in the model than observed in 2012/13 for the Neurosurgery specialty. As found in

Section 3.3.3, the average total time for a neurosurgery operation is 216 minutes

which implies that, on average, two operations can fit into a 420 minute session.

Therefore, two operations per session will still be used for Neurosurgery.

4.4.4 Comparison of Predicted and Observed Bed Count

The combination of the input data concerning the number of operations per session

and the LoS data needs to be validated to ensure it is being used correctly in the

model to produce the bed requirements for the B matrix. In order to validate the

bed requirements, the simulated bed requirements for the current UHW MSS are

compared to the observed bed count on the wards from the 2012/13 UHW data.

The simulated bed requirements in the model will be considered similar to

the observed bed count when the simulated bed requirement lies within two

standard deviations of the observed mean bed count. By applying the Central

Limit Theorem to the observed bed count data, 95% of the data falls within two

standard deviations either side of the mean. Of course, there will be fluctuations

in the bed count throughout the week in the simulation, so the mean simulated

bed requirement throughout the week will be compared to the range around the

observed mean found from the data. Results on the simulated bed requirements for

the current UHW MSS and the corresponding observed bed count for each ward is

given in Figure 4.4.
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Figure 4.4: Comparison of simulated bed requirement and observed bed count in
UHW in 2012/13

It can be seen in Figure 4.4 that the mean simulated bed requirement lies within

the upper and lower bounds of observed bed count for most wards. The bounds

represent two standard deviations above and below the mean observed bed count.

This is not the case for the Paediatric, Renal and Cardiothoracic wards. The mean

simulated bed requirement for the Renal ward is slightly above the upper bound of

the observed data, although throughout the week the fluctuations in the simulated

values do lie within the observed range. Therefore, the simulated bed require-

ments for the Renal ward are considered to be acceptably close to the observed data.

The simulated bed requirements for the Paediatric and Cardiothoracic wards,

however, never lie within the observed range. The simulated bed requirement

for the Cardiothoracic ward is always lower than the observed bed count range.

95% of the observed bed count for the Cardiothoracic ward lies between 37.3

and 73.8, whereas the simulated bed requirement fluctuates between 4.3 and

30.3 throughout the week. It could be possible that the number of beds on the

Cardiothoracic ward was higher at some point during 2012/13 and has since

reduced to the current 37 beds being used in the model. There could also have

been data input errors where patients were recorded as being on the Cardiothoracic

ward, but were actually outlying on other wards. Considering there are 37 beds

available on the Cardiothoracic ward, the simulated bed count for inpatients seems

safe, as this allows for spare beds to be available for emergency patients on the ward.
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The simulated bed requirement for the Paediatric ward is always higher than

the observed bed count, which ranges between 0 and 11.5 beds. The simulated

bed requirement ranges between 13.1 and 30.5 throughout the week, which is

closer to the 28 beds actually available on the ward. Hence is it deemed that the

simulation for the Paediatric ward is in reasonable agreement with the observed data.

The differences between the simulated bed requirements and observed bed

count might be attributable to the uncertain occurrence and number of unplanned

and emergency surgical inpatients. Figure 4.5 shows how the beds were used in the

year 2012/13 by planned and unplanned surgical patients in each surgical ward in

UHW.

Figure 4.5: Use of beds by planned and unplanned patients in surgical wards in
2012/13

As can be seen in Figure 4.5, the beds on the Paediatric, Urology, Colorectal,

Cardiothoracic and Neurosurgery wards were used by a majority of planned

inpatients during the year 2012/13. On all other wards, the majority of beds were

used by unplanned inpatients. This is understandable for the Trauma ward, as the

trauma specialty primarily deals with emergency patients who have broken bones.

There is also uncertainty associated with the occurrence of unplanned patients

inherent in the nature of the ENT/Oral, Vascular, Renal and General surgical

specialties. CCU beds are also dominated by unplanned patients, probably due

to the fact that it receives the majority of its patients from the General/Liver
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specialty and the CEPOD theatre, as discussed in Section 3.4.1.

The maximum number of simulated beds required over a week by planned

surgical inpatients on each ward for the current UHW MSS is shown in Figure 4.6.

The maximum number of simulated beds is shown by the black sections of the

bar chart, and the number of unused beds by the grey sections. The total number

of physical beds available on each ward can therefore be interpreted as the total

height of the bars. The bar for the Peadiatric ward is slightly different due to there

being more beds required than available.

Figure 4.6: Maximum number of beds used in simulations of the current UHW
MSS

The percentage of beds used by planned surgical inpatients in the data and simula-

tion is given in Table 4.8. The simulation agrees with the data for all wards apart

from the ENT/Oral, Vascular, Trauma, Renal and Colorectal wards. A higher pro-

portion of planned inpatients occur in the simulation than the data for all of these

wards apart from the Colorectal ward. Hence, a greater number of inpatients are

being handled in the model than were observed in the data, so any optimal schedule

produced from the model would be able to cope with more planned patients than

observed in past data.
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Percentage of beds used by planned inpatients

Specialty In 2012/13 data In simulation of current UHW MSS

Paediatric 67.2 107.4

ENT/Oral 44.5 64.3

Vascular 45.4 57.8

Trauma 11.7 80.4

Renal 44.8 55.7

General 27.7 49.5

Urology 58.4 78.5

Colorectal 62.8 40.3

Cardiothoracic 71.6 71.9

Neurosurgery 69.1 79.8

Critical Care 35.1 46.9

Table 4.8: Comparison of beds used by planned inpatients as observed in the
2012/13 data and in the simulation of the current UHW MSS

4.5 Summary

This chapter has introduced the set partitioning based optimisation model that

has been developed for the construction of an MSS. An overview of the SPP

and solution methods was provided in Section 4.1. As we have discussed, a set

partitioning based model seems appropriate for this scheduling problem due to the

combinatorial nature of the problem, together with the benefit of being able to

choose an optimal schedule from a selection of possible schedules that are defined

within the optimisation model.

The proposed model has been developed and explained in Section 4.2. The

model aims to find an optimal MSS that minimises the number of unused bed days

over the planning horizon, subject to constraints on both the operating theatres

and demand for beds on the wards. The developed model is a deterministic model,

since a ‘snapshot’ of bed demand is used to form the bed constraints. LoS data can

be used to generate this bed demand input in three different ways: assuming each

patient requires a bed for the mean LoS of their specialty, using techniques from

survival analysis to calculate the conditional probability of each patient leaving

hospital on each day after surgery, and by calculating the expected bed count on

each consecutive day after surgery. The possibility of bed transference between

wards is also present in the bed constraints so that the model better reflects reality.
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An essential part of any model development is the validation and verification

of the model to ensure that the model is accurate and represents reality as best

it can. Validation of the model was performed in Section 4.4 by comparing the

patient throughput and bed count that was observed in the data and predicted

by the model. A baseline scenario is also defined for later use of comparison with

experimental results. These experiments and results are presented in Chapter 5.



Chapter 5

Results of the Deterministic

Model for the MSS

This chapter discusses the results produced by applying the deterministic model de-

veloped in Chapter 4 to the current situation at UHW. It then investigates the effects

on the MSS by varying a subset of the model’s parameters. A number of ‘what-if’

scenarios of potential interest to the managers of UHW are also investigated.

5.1 Optimisation of the Baseline Scenario

The chosen optimisation software for this research is Xpress-MP. Inputs for the

set partitioning based optimisation model are generated in Java and passed to

Xpress-MP for automatic optimisation. Optimal values of the decision variables are

then passed back to Java so that simulations of the optimal MSS can be performed.

Performance measures that will be used to assess the optimal schedules across the

different parameter experiments include the optimal objective function value, the

percentage of simulations that have more beds required than are available, and the

average number of these violations per simulation. The expected bed shortage for

an MSS is also investigated. This is determined from the simulations of the MSS

and is the total number of beds required in addition to those available on all wards

on all days in the model. This performance measure has been used previously

by Beliën and Demeulemeester [19] and is of interest here because it corresponds

to the number of cancelled operations that would be expected based on the MSS

under investigation. Hence a lower expected bed shortage is sought.

Finally, a desirable feature of an MSS is that the demand for beds on wards

is levelled throughout the week. The number of simultaneous sessions, i.e. surgical

99
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sessions occurring at the same time but in different theatres, that each specialty

has in the MSS is therefore inspected in order to investigate if the demand has been

levelled.

5.1.1 Feasibility of the Current UHW MSS

It is important to investigate whether the current MSS used in UHW is a feasible

solution of the developed model. That is, is the current UHW MSS feasible with

respect to the bed requirements for each ward in the hospital? It is also of interest

to determine whether or not a different MSS can be found that would result in

fewer cancelled elective operations given the shortage of beds currently experienced

in UHW.

When only the operating theatre constraints are considered in the optimisa-

tion, i.e. only the A matrix is in the optimisation model, the current UHW

MSS was found to be a feasible solution. This is not surprising as there are far

fewer constraints in the optimisation model. Managers at the hospital have also

commented that the operating theatres are not the main hospital resource causing

cancelled operations, but rather bed availability is the cause.

It is also of interest to investigate whether the current UHW MSS remains a

feasible solution when the B matrix is taken into account. This is achieved in our

optimisation model by forcing the variables that correspond to each specialties’ cur-

rent schedule to be chosen. For this experiment, 1000 B matrices were constructed

using the conditional probability of failure approach discussed in Section 4.2.4.

The optimisation failed to find the current UHW MSS as a feasible solution in any

of the 1000 instances. Hence, it can be inferred that the current UHW MSS used

in UHW is not a feasible solution to the scheduling problem when bed constraints

are taken into account. This supports the opinion of the hospital managers and

findings from the hospital data that the availability of beds on wards can greatly

influence the scheduling of operations.

Despite the current UHW MSS not being a feasible solution, the performance of

the current UHW MSS can still be investigated to determine whether there are

particular problem areas that cause the current UHW MSS to become infeasible

when taking into account bed constraints. In order to do this, the current UHW

MSS was simulated 1000 times and the simulated bed count inspected. The

simulated bed requirement on each ward on each day of the week is shown in Figure
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5.1.

Figure 5.1: Simulated bed requirement for the current UHW MSS

As can be seen in Figure 5.1, the simulated bed requirements follows a similar

pattern on all wards: higher bed requirements in the middle of the week, and lower

bed requirements during the weekend. Some wards are busier than others, but

this is due to the nature of the specialties using those wards, and the number of

operations they perform each week.

It was found that 66.8% of the simulations of the current UHW MSS had at

least one violated bed constraint. Figure 5.2 shows how many violated bed con-

straints were in each simulation of the current UHW MSS, providing an indication

of how frequent the violated bed constraints are in the simulations. It can be seen

that most frequently only one bed constraint is violated in the simulations, and

very rarely are four or more constraints violated.



Chapter 5 Results of the Deterministic Model for the MSS 102

Figure 5.2: Violated bed constraints in the simulations of the current UHW MSS

The total expected bed shortage is on average 3.3 beds (standard deviation = 0.3).

To gain an insight into which wards in particular experience an expected bed short-

age, the simulated bed requirements are compared to the number of beds available

on each ward, i.e. the RHS of the bed constraints. Across the simulations, the aver-

age number of additional beds required on each ward is given in Table 5.1. It can be

seen that the problem of requiring more beds than available primarily occurs on the

Paediatric ward, but also very rarely on the ENT/Oral, Urology and Neurosurgery

wards.
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Average expected bed shortage

Specialty Mon Tue Wed Thur Fri Sat Sun

Paediatric 0.03 0.21 0.17 2.62 0.17 0 0.03

ENT/Oral 0.02 0.01 0.01 0.01 0 0 0

Vascular 0 0 0 0 0 0 0

Trauma 0 0 0 0 0 0 0

Renal 0 0 0 0 0 0 0

General 0 0 0 0 0 0 0

Urology 0 0 0 0.01 0 0 0

Colorectal 0 0 0 0 0 0 0

Cardiothoracic 0 0 0 0 0 0 0

Neurosurgery 0 0 0.01 0.01 0 0 0

Critical Care 0 0 0 0 0 0 0

Table 5.1: Average expected bed shortage on each ward for the current MSS

As can be seen in Table 5.1, the Paediatric ward has, on average, the highest ex-

pected bed shortage throughout a simulated week. The Paediatric ward is now

examined in more detail in order to determine the causes for the high level of ex-

pected bed shortage. It can be seen in Table 5.1 that the simulated bed requirement

is higher than the number of beds available on all days apart from Saturday. The av-

erage simulated number of patients requiring a bed in the Paediatric ward is shown

in Figure 5.3.
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Figure 5.3: Simulated bed requirement for the Paediatric ward for the current
UHW MSS

The simulated bed requirements on the Paediatric ward is below the number of

physical beds available (28) on all days apart from Thursday. On Thursday, ap-

proximately 2 more patients require a bed than are available on the ward. The

Paediatric ward receives patients from the four paediatric surgical specialties and

the CEPOD theatre. Figure 5.4 shows when the demand for beds on the Paediatric

ward is produced from each paediatric surgical specialty. This demand includes pre-

and post-operative stays in the ward. As can be seen in Figure 5.4, Thursday is the

day on which the demand for beds on the Paediatric ward is the greatest, i.e. the

five sessions in the MSS are contributing to the high demand on the Paediatric ward

on Thursday.

Figure 5.4: Demand for beds on the Paediatric ward in the current UHW MSS
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The demand for pre- and post-operative stays on beds in the Paediatric ward from

sessions in the current UHW MSS is consistent with the simulated bed requirement,

in that there is excessive demand for beds on the ward, particularly on Thursday.

This indicates that the current UHW MSS results in a demand for beds on the

Paediatric ward that is higher than the number of beds available on the ward due

to the combined influx of patients from five specialties.

It is of interest to investigate when peaks in the number of simultaneous ses-

sions occur in the MSS because this corresponds to an influx of patients that will

be sent to the ward for post-operative recovery. Experiencing a high demand from

patients could result in not being able to find a feasible solution to the optimisation

problem since the bed constraints would not be satisfied. In reality, this would

result in cancelled operations which is undesirable.

The Pediatric ward is one of five wards in which beds on a ward are shared

between specialties and in which bed contention has been identified as a particular

problem. These wards often experience high demand for beds because there are mul-

tiple surgical specialties in the MSS that send their patients to these wards on the

same or near similar days. Since these wards have been identified as ‘pinch-points’

in the system, schedules will be investigated in terms of the number of sessions

that are scheduled simultaneously that result in patients going to these shared wards.

Figure 5.5 shows the number of sessions in the current UHW MSS that are

scheduled simultaneously throughout the week for the specialties that send their

patients to shared wards.
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(a) Paediatric ward (b) ENT/Oral ward

(c) General/Liver ward (d) Cardiothoracic ward

(e) CCU

Figure 5.5: Number of sessions that are scheduled simultaneously in the current
UHW MSS

In Figure 5.5(a), we see that there is always one scheduled session that results in

patients being sent to the Paediatric ward, apart from peaks on Wednesday where

there are two simultaneous sessions, and on Friday when there are either two or

three simultaneous sessions. There does not appear to be a cyclic pattern across

the week, suggesting that the MSS has not been constructed to take into account

the typical LoS of patients on the Paediatric ward. If this had been considered,

a cyclic pattern would be expected with a cycle peroid similar to the average LoS

of the Paediatric ward. Figure 5.6 illustrates the expected cyclic pattern and the
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relationship between when sessions are scheduled in the MSS and the demand it

generates for beds on the wards.

Figure 5.6: Expected cyclic pattern between operating theatre and ward

The number of simultaneous sessions that result in patients going to the ENT/Oral

ward is shown in Figure 5.5(b). There is no real trend evident across the week,

though there are more simultaneous sessions on Monday and Friday than during

midweek. This does not correspond to the average LoS of 2.4 days for the ENT/Oral

ward. This also suggests that the current UHW MSS was not constructed with

respect to the LoS of patients on these wards.

The number of simultaneous sessions for the General/Liver ward (Figure 5.5(c))

appears to be the most erratic out of all of the shared wards. There is no trend

or cyclic pattern throughout the week. For the majority of the week there is only

one session; however, there are no sessions on Tuesday, followed by a peak of two

sessions on a Wednesday.

The Cardiothoracic ward receives patients from the Cardiac and Thoracic

specialties. The Cardiac specialty has exclusive use of two operating theatres in the

MSS, so there are always two simultaneous sessions of cardiac surgery throughout

the week in the MSS. The only variation in Figure 5.5(d) is attributable to the

Thoracic specialty because it is more flexible as to when it can be scheduled, since it

is constrained to one theatre and only requires eight sessions per week. There is no

real trend or cycle in the graph of simultaneous sessions for the Cardiothoracic ward.

Similarly, the CCU also receives patients from specialties that have a fixed
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number sessions per week: Trauma and Neurology always have one and two

simultaneous sessions throughout the week respectively. Hence the variation in this

graph is attributable to the General and Vascular surgical specialties. There is no

trend or cycle evident in Figure 5.5(e), however there is a peak in the number of

simultaneous sessions on Wednesday and Thursday.

In summary, it appears that sessions for specialties using these shared wards

have not been scheduled in the current UHW MSS in such a way that the peaks

in the number of simultaneous sessions are spread evenly throughout the week. In

particular, they have not been scheduled with respect to the average LoS of each

ward. It has been shown that the current UHW MSS is not a feasible solution

when bed constraints are considered due to an excessive demand for beds on (some)

wards. This influx in patient demand appears to be particularly relevant to shared

wards, and is attributable to the number of simultaneous sessions of specialties that

send their patients to these shared wards.

5.1.2 Optimal Baseline MSS

In this section, the baseline scenario will be optimised with respect to the operating

theatre and bed constraints. Results from the three methods of generating the B

matrix from the LoS data, as discussed in Section 4.2.4, are compared.

B Matrix Generated Using the Mean LoS

The mean LoS, rounded to the nearest whole day, used in the model is shown in

Table 5.2.
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Specialty
Mean LoS

(days)

Rounded mean LoS used in model

(days)

Cardiac 7.7 8

CEPOD 3.2 3

Colorectal 3.9 4

ENT 1.2 1

General 3.8 4

Liver 3.1 3

Neurosurgery 3.8 4

Ophthalmology 0.4 1

Oral 1.7 2

Paeds ENT 1.0 1

Paeds General 1.4 1

Paeds Trauma 1.0 1

Renal 3.5 4

Scoliosis 1.5 2

Thoracic 4.9 5

Trauma 4.2 4

Urology 2.5 3

Vascular 4.6 5

Critical Care 3.0 3

Table 5.2: Mean length of stay used to generate the B matrix

In these experiments, no feasible MSS solutions were found using this method of

generating the B matrix. From inspection of the B matrix generated for each

instance, it was established that this is because there are simply too many beds

that are required on each ward. By assuming every patient requires a bed for the

same pre-defined time (the mean LoS), there is no staggered departure from the

wards allowing new patients to replace them. Instead, there is an influx of patients

that all require a bed all at the same time. In reality some patients have a shorter

than average LoS, thus freeing up beds for new patients to use. Hence, it can be

concluded that this approach for generating the B matrix is not useful for optimising

the MSS, since it does not take into account the variance of the patients’ LoSs.

B Matrix Generated Using the Expected Bed Count

The number of operations per session for the expected bed count uses data on the

number of planned operations per session in UHW, i.e. the number of operations
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that were intended to happen during each session, regardless of whether or not they

actually took place or were cancelled. This is seen as a non-anticipatory approach,

since it cannot be known before a session which, if any, operations will be cancelled.

By using data from non-cancelled operations per session, it is thought that an MSS

can be generated that allows for the desired number of operations to take place and

is constructed in such a way that all of the patients’ demand for beds can be satisfied.

An optimal solution is found when the optimisation is not restricted to the

current UHW MSS. A comparison of the optimal solution and the current MSS

used in UHW is provided in Table 5.3. Figure 5.7 shows how prevalent the violated

constraints are in the simulations of the optimal MSS. It is much worse than for

the current UHW MSS (shown in Figure 5.2) since it is more likely to have a larger

number of violated constraints.

Result Current MSS Optimal MSS

Optimal value 984 1285

Simulations with violated bed constraints 66.8% 99.7%

Expected bed shortage 3.3 23.5

Table 5.3: Comparison of the current and optimal MSS using expected bed count

Figure 5.7: Violated bed constraints when using expected bed count in baseline
scenario

It is clear from these output measures that the optimal MSS found using the expected
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bed count to generate the B matrix does not perform as well as the current UHW

MSS, despite it being a feasible solution.

B Matrix Generated Using the Conditional Probability of Failure

In this approach, 1000 instances of the problem were used, and each resulting

optimal schedule was simulated 1000 times. The average optimal objective function

value was 1175.6 unused bed days, with a standard deviation of 46.0 days. On

average, 55.6% of the simulations had at least one violated bed constraint.

It is of interest to look in more detail into the prevalence of violated bed

constraints. Figure 5.8 shows the proportion of violated bed constraints in each

simulation of each run for the baseline scenario. It can be seen that, most frequently,

no constraints are violated, and very rarely are six or more constraints violated.

This is an improvement over the current UHW MSS for which one constraint was

most frequently violated in the simulations.

Figure 5.8: Violated bed constraints in the baseline scenario

The average expected bed shortage across the simulations for all instances is

3.0 beds, with a standard deviation of 1.2. On average over all of the instances

considered, this is a slight improvement from the results of the simulations of the

current UHW MSS, for which the expected bed shortage is 3.3 beds. It is clear

that some MSSs exist that will decrease the expected bed count. This indicates

that by optimising the schedule with respect to the bed constraints, the expected
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bed shortage can be reduced.

Table 5.4 shows the simulated number of beds required in the baseline sce-

nario, averaged over all instances. This takes into account different optimal

schedules that are generated for different instances of the baseline scenario.

Average bed requirements

Specialty Mon Tue Wed Thur Fri Sat Sun Beds available

Paediatric 24.5 25.4 25.6 26.9 20.2 14.1 20.6 28

ENT/Oral 11.2 12.3 13 13.2 8.4 5.2 8.5 19

Vascular 18.1 19.5 20.9 21.7 17.3 14.4 16.5 38

Trauma 54.7 58.4 61.9 64.5 52.9 43 48.9 83

Renal 8.3 9.2 9.8 10.1 8 6 6.8 20

General 32.5 34.5 35.9 37.4 29.8 25.2 30.4 76

Urology 10.9 12.7 14.1 14.9 11.3 7.5 8.8 19

Colorectal 6 6.5 7 7.4 6.1 4.8 5.4 20

Cardiothoracic 32.6 33.7 34.8 36.3 32.7 29.3 31.2 50

Neurosurgery 35.1 38.1 40.5 42.4 33.8 26.8 31.5 53

Critical Care 7.9 9.3 10.4 11.2 11.7 8.1 5.7 27

Table 5.4: Average simulated bed requirement for the baseline scenario

It can be seen in Table 5.4 that for all wards, for every day of the week, the

number of beds required does not exceed the number available. This is a definite

improvement over the current UHW MSS.

Figure 5.9 shows the average number of sessions in the baseline scenario,

over all instances considered, that are scheduled simultaneously throughout the

week for the specialties that send their patients to shared wards.

Some theatres are given the same assignment of specialties in all instances

due to the scheduling rules: namely the Trauma, CEPOD, Urology, Cardiac and

Neurosurgery specialties are always scheduled in the same theatres in the same

sessions. These specialties are therefore ignored in the comparison of optimal

schedules.
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(a) Paediatric ward (b) ENT/Oral ward

(c) General/Liver ward (d) Cardiothoracic ward

(e) CCU

Figure 5.9: Average number of sessions that are scheduled simultaneously in the
baseline scenario

The number of simultaneous sessions that result in patients going to the Paediatric

ward, as shown in Figure 5.9(a), decreases throughout the week. In addition to this

downward trend, there are slight peaks in the number of simultaneous sessions on

Monday, Wednesday and Friday. The average LoS for the Paediatric ward is 1.95

days, which is approximately equal to the period of this cyclic pattern. Hence there

is evidence to suggest that the MSS for the baseline scenario has been constructed

with respect to the LoS distributions of patients on the Paediatric ward. The

Paediatric sessions are spaced throughout the week so that there is enough time to
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discharge patients between high influxes of patients requiring beds on the Paediatric

ward. In comparison with the number of simultaneous paediatric sessions for the

current UHW MSS (Figure 5.5(a)), by including bed constraints in the optimisation

model, there is an improvement in the spacing of these sessions throughout the

week. This helps to avoid peaks in demand for beds on the Paediatric ward, and

when peaks do occur, the elapsed time between peaks is roughly the same as the

average LoS on the ward.

Figure 5.9(b) shows the number of simultaneous sessions that result in pa-

tients going to the ENT/Oral ward. There does not appear to be any strong trend

in the graph, though there is a slight increase in the number of simultaneous sessions

towards the end of the week on Thursday and Friday. There is also no obvious cyclic

pattern throughout the week, though there are slight peaks on Tuesday and Thurs-

day/Friday. The average LoS on the ENT/Oral ward is 2.4 days, so this could be

an explanation for these slight peaks because they are separated by approximately

2 – 2.5 days. Similar to the results obtained for the Paediatric ward, this could

provide evidence that the model is constructing the schedule for the ENT/Oral

specialties with respect to the LoS on the ward. This graph for the baseline scenario

is markedly flatter than the graph for the current UHW MSS (Figure 5.5(b)).

The ENT/Oral sessions in the baseline MSS are more equally spaced through-

out the week, and the differences in peaks and troughs in demand have been reduced.

From visual inspection, there could be a slight increasing trend in the num-

ber of simultaneous sessions throughout the week for the General/Liver ward, as

shown in Figure 5.9(c). There is one peak on Tuesday and possibly another on

Thursday; however, the graph is much flatter than the graph for the current UHW

MSS (Figure 5.5(c)), indicating that the demand for the General/Liver ward has

been leveled over the week. Since there is only one certain peak on Tuesday, this

would indicate a cycle length of 5 days, which is similar to the average LoS on this

ward which is 5.4 days. Hence this also provides evidence that the optimisation

model is spreading the simultaneous sessions throughout the week based on the

average LoS for this ward.

The graphs for the Cardiothoracic and the CCU wards are shown in Figures

5.9(d) and 5.9(e) respectively, and do not differ markedly from the graphs for the

current UHW MSS. The specialties that use these wards and that have a fixed

schedule during the week have been removed from these graphs in order to show

the variation of the specialties that can be scheduled at different times of the
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week; hence the Cardiothoracic graph only shows the simultaneous sessions for the

Thoracic specialty, and the CCU graph only shows the simultaneous sessions for the

General and Vascular surgical specialties. It can be seen that there is little variation

in the number of simultaneous sessions throughout the week in both graphs. There

is a peak in the Cardiothoracic graph that is spread over Wednesday and Thursday,

and the graph for the CCU slowly increases throughout the week to a peak on

Thursday, after which it decreases rapidly on Friday. Both the Cardiothoracic

wards and CCU have an average LoS that is longer than 5 days, making it hard

to determine whether or not a cycle exists in the graphs. The Thoracic specialty

has an average LoS of 5.7 days, which could correspond to the wide peak evident

in Figure 5.9(d) over Wednesday and Thursday. The combined average LoS of

the General and Vascular specialties is 8.8 days, which is much longer than the

duration of the MSS. It could be argued that the slowly increasing peak in Figure

5.9(e) corresponds to a long average LoS, however, it is not possible to confirm this

from our results.

In summary, it appears that there may well be a relationship between the

cycle length in the graphs of simultaneous sessions and the average LoS for each

ward. This is especially evident from the graphs for the Paediatric and ENT/Oral

wards, though it becomes much more speculative for the other shared wards for

which the average LoS is longer than five days, making it difficult to determine

from inspection of the graphs. The average LoS and corresponding cycle length

determined from the above graphs for each of the communal wards in the optimal

MSS’s obtained in the baseline scenario is shown in Figure 5.10.
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Figure 5.10: Correlation between the average length of stay and cycle length for
shared wards in the baseline scenario

In Figure 5.10, there appears to be a positive, linear relationship. As there are

only five shared wards to analyse, there are not many data points available to

give a very reliable analysis of correlation between the average LoS and the cycle

length. Despite this, a Kolmogorov-Smirnov test confirms that both variables are

Normally distributed with a high probability, and Figure 5.10 indicates that there

is a linear relationship between the two variables and that there are no significant

outliers. Based on these assumptions, a Pearson product-moment correlation

analysis was run at the 5% significance level. The results indicate that there is a

strong, statistically significant, positive correlation between the average LoS and

cycle length on the communal wards (r = 0.997, p < 0.0005).

Based on the inspection of the graphs in Figure 5.9 and the confirmation of

a strong, positive correlation between the average LoS on a ward and the cycle

length between peaks for simultaneous sessions in the MSS, there is evidence to

suggest that the inclusion of bed constraints serves to level the bed requirements in

shared wards. Furthermore, the sessions that send their patients to shared wards

are distributed throughout the week with respect to the average LoS for each ward.

This leveling of the demand for beds on the shared wards could be a contributing

factor to the reduction of the expected bed shortage from the current UHW MSS

to the average optimal baseline scenario MSS.
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5.2 ‘What-if ’ Scenarios

As we have seen, there are many inputs and parameters that are used within the op-

timisation and simulation model. By having so many parameters, the model is very

flexible and can be customised to many different situations or hospitals. Parame-

ters of interest are listed in Table 5.5, together with some examples of experiments

that can be performed. A subset of parameters will be chosen to demonstrate the

flexibility of the model and to investigate interesting scenarios.

Parameter Experiments

No. days theatres in use Increased number of days in the MSS

No. sessions per day Whole day sessions compared to half day

No. patients per session More/less operations performed during a session

LoS data Increase/decrease in post-operative LoS by x%

Pre-operative arrivals Increase/decrease in pre-operative LoS by x%

No. wards More/less wards open to surgical specialties

Transition matrix (W ) More/less allowable transitions of patients between wards

No. beds available More/less beds available on the wards

Table 5.5: Experiments associated with model parameters

5.2.1 Post-Operative Length of Stay

It is of interest to the hospital to see how changes to the post-operative LoS affect

the characteristics of the optimal MSSs. In particular, how will the demand for

beds on wards change with varying LoSs. Both an increase and decrease in LoS

will be investigated, however, the hospital is expected to be more interested in the

results from a decrease in LoS as they are implementing initiatives on wards to

reduce LoS and therefore free up beds for more patients.

The model will be used in two ways to investigate how LoS affects demand

for beds on the wards. It will first be used to determine whether schedules can

be found for different changes in LoS by inputting the experimental data into the

optimisation and simulation (Figure 5.11(a)). The second use is to investigate how

schedules that were generated with current levels of LoS in the optimisation cope

with different LoS using the experimental data in the simulations only (Figure

5.11(b)). The first use is linked to hospital planning; the second use is linked to

robustness to see how well an MSS copes with different realisations of bed demand.
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(a) Experimental LoS data used in both the op-

timisation and simulation

(b) Experimental LoS data used in simulation

only

Figure 5.11: How different length of stay data will be used in the model

In this case, the number of new arrivals per session is kept the same as in the

baseline scenario. The LoS is increased or decreased by the same amount for all

wards, except for the CCU. It is not considered appropriate to change the LoS for

the CCU because it experiences a very high demand from the most seriously ill

patients who are already moved out of the CCU as soon as possible to allow other

patients to be treated. Results of 1000 instances using increased or decreased LoS

in the optimisation and simulation are shown in Table 5.6.

% change in

post-op LoS

Optimal value

(Unused bed days)

Average percentage

of simulations

with bed violations

Expected bed

shortage (beds)

-30% 1537.9 19.7 0.5

-20% 1418.6 29.8 1.0

-10% 1293.4 42.6 1.8

Baseline 1175.6 55.6 3.2

+10% 1070.9 69.1 5.3

+20% 954.4 82.3 8.5

+30% 860.5 93.0 14.0

Table 5.6: Results of changing the length of stay in the optimisation and simulation

The results of this experiment indicate that it is still possible to find feasible and

optimal schedules when the LoS departs from the baseline scenario. As the LoS

decreases, the average optimal objective function value increases, indicating that

the number of unused bed days in the system increases. This is as expected, since

more bed days will be used if patients stay in hospital for longer. As the LoS

decreases, the average percentage of simulations with bed violations also decreases.

This is as expected, since the earlier patients leave hospital, the more beds are

available for new patients to take and it is less likely that bed capacity will be
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exceeded. As the LoS decreases, the expected bed shortage also decreases. This is

consistent with fewer beds being used if the LoS is shorter.

The above results show that is is possible to construct optimal MSSs if a

change in the post-operative LoS is predicted, i.e. the changed LoS data is used in

the optimisation and simulation. The ability of an MSS constructed using current

levels of LoS as in the baseline scenario to cope with changes in the LoSs is now

investigated. The results of using different levels of LoS in the simulation only are

shown in Table 5.7.

% Change in

post-op LoS

Average % simulations

with bed violations

Expected bed

shortage (mean)

Expected bed

shortage (StdDev)

-30% 14.9 0.4 1.3

-20% 25.8 0.8 2.1

-10% 39.6 1.7 3.3

Baseline 55.6 3.2 5.1

+10% 69.8 5.3 7.1

+20% 82.7 8.6 9.6

+30% 93.5 14.3 12.9

Table 5.7: Results of changing the length of stay in the simulation only

As can be seen in Table 5.7, the average percentage of simulations with bed

violations decreases as the LoS decreases. This is as expected, since the shorter a

patient’s LoS, the sooner they will leave hospital, freeing up a bed for any incoming

patients.

The expected bed shortage is also reported in Table 5.7. As the LoS de-

creases, the average expected bed shortage of all wards decreases, as does the

standard deviation of the expected bed shortage. It is not surprising that the

mean expected bed shortage increases as the LoS increases, because more patients

will require beds for longer, therefore increasing the demand for beds for longer.

The increase in the standard deviation of the expected bed shortage as the LoS

increases can be explained due to the fact that more patients have longer LoSs

causing higher expected bed shortages, but there are also some simulations that do

not result in any bed shortages, ie. the expected bed shortage is being stretched

from 0 to an increasing maximum, as the LoS increases.

By using the same baseline LoS data as input to the optimisation in all of
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these LoS experiments, the same optimal schedules will be found for each run of

the trials. It is therefore possible to compare the results of the LoS experiments on

a run-wise basis as the same schedules are used in the simulations. Matched pairs

tests can be used to determine at what level of change of the LoS causes the change

in expected bed shortage to become significant.

The expected bed shortage results from all instances of different levels of

LoS in the simulations were not found to be Normally distributed at the 5%

significance level. A related-samples Wilcoxon signed rank test, the non-parametric

equivalent to a matched pairs t-test, is used to compare the difference in expected

bed shortage for different levels of LoS. Six pairwise tests were carried out, in each

case testing the null hypothesis that there was no difference between the medians of

the data on expected bed shortage in the baseline scenario and in the changed LoS

scenarios. The Wilcoxon signed rank tests, carried out at an overall significance

level of 5%, found that there is a significant difference in the expected bed shortage

when the LoS is increased by 10–30% above the baseline scenario and decreased by

10–30% below the baseline scenario. A recommendation can therefore be made to

the hospital that if the LoS can be reduced by at least 10% across all wards, then

the expected bed shortage will be significantly lower (at least 47% lower) than if

the LoS remained at current levels.

5.2.2 Number of Beds Available on Wards

It is of interest to investigate the effects of changing the number of beds available

on the hospital wards on the MSS. Here, all parameters are set to the values as in

the baseline scenario, but in each experiment the number of beds available on all

wards will be altered by the same percentage. It is important to note that for these

experiments, the same level of sharing of beds between wards, as specified in the

W matrix, is as used in the baseline scenario. The effects of the sharing of beds

between wards will be investigated in Section 5.2.3.

The number of beds that have been used in the baseline scenario is the number

of actual physical beds on each ward in UHW. This does not take into account

the very real possibility that some of those beds might be occupied by patients

from other surgical or medical specialties. As learnt from discussions with hospital

managers, it is often the case in UHW that beds on surgical wards, that should

really be used for inpatients of the assigned surgical specialty, are used by other

surgical specialties or outlying medical patients. This occurs when the demand
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for beds on other wards outweighs the supply on those wards and the patients

must be placed on another ward within the hospital. Another factor that can

affect how many beds are available to planned inpatients on surgical wards is the

uncertain occurrence and number of unplanned and emergency surgical inpatients,

as discussed in Section 4.4.4.

The number of physical beds available on each ward was the same as used

in the baseline scenario (Section 4.4.1). Optimal schedules were then simulated

using a number of different levels of bed availability on the wards. Results for these

experiments, when the bed constraints were changed by a certain percentage for all

wards, are given in Table 5.8.

% Change in

number of beds

Average % simulations

with bed violations

Expected bed

shortage (mean)

-20% 99.8 26.6

-10% 89.0 9.3

Baseline 55.6 3.0

+10% 23.0 0.9

+20% 6.3 0.2

Table 5.8: Results of changing the number of beds available in the simulation

As expected, when using the same input data as the baseline scenario for the optimi-

sation, as the number of beds available on the wards decreases, a higher percentage

of simulations contain violated bed constraints and the expected bed shortage in-

creases. Table 5.9 shows at what level of bed change each ward experiences a short-

age of beds in the simulations. An ‘X’ indicates that a ward features a shortage of

at least one bed in the simulations.
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Amount of beds available on each ward

Specialty -20% -10% Baseline +10% +20%

Paediatric X X X X X

ENT/Oral X X X X

Vascular

Trauma X X

Renal

General

Urology X X X

Colorectal

Cardiothoracic X

Neurosurgery X X X

Critical Care

Table 5.9: When wards experience bed shortages in the simulations

It can be seen in Table 5.9 that there are four wards in the baseline scenario that

experience a bed shortage: Paediatric, ENT/Oral, Urology and Neurosurgery.

When the number of beds are increased on all wards by 10%, only the Paediatric

and ENT/Oral wards continue to have a shortage of beds, and only the Paediatric

ward continues to have a bed shortage when the number of beds are further

increased by 20%. When the number of beds is reduced by 10%, the Trauma ward

also then has a bed shortage, and when the number of beds is reduced further by

20%, the Cardiothoracic ward experiences bed shortages in the simulation. This

gives an indication of which wards are the most sensitive to a change in the number

of beds on the hospital wards. The Paediatric ward always experiences a bed

shortage, whereas the Vascular, Renal, General and Colorectal wards and the CCU

can all withstand a 20% reduction in the number of beds on their wards.

Figure 5.12 gives more detail on the scale of the expected bed shortages over

a simulated week when the number of beds available on the wards is changed. Only

wards that experience an expected bed shortage are shown. Again, the Paediatric

ward has the greatest expected bed shortage, and the ENT/Oral ward has some

bed shortage in the baseline scenario and below, but not on the same scale as the

Paediatric ward. Bed shortages only become a sizable problem on the Trauma,

Urology and Neurosurgery wards once the number of beds have been reduced by

20% on each ward.
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Figure 5.12: Effect of different amounts of beds available on each ward on the
expected bed shortage

5.2.3 Sharing of Beds Between Wards

As we saw in Section 4.2, our formulation of the optimisation model incorporates

the facility of sharing beds between wards through the use of slack and surplus

variables. The sharing is controlled by the W matrix in the formulation by stating

which wards each can share with. It is of interest to see how the sharing of beds

between wards affects the performance of the resulting MSS.

The baseline scenario involves sharing between a limited number of wards to

reflect the reality at UHW. Patients who should be sent to the Vascular ward are

allowed to be put on the Cardiothoracic ward, and patients whose home ward is

the Colorectal ward can go to the General surgery ward. This sharing is based on

current practices in UHW and the closely related nature of the surgical procedures

of these specialties.

Two experiments will be performed based on the allowed sharing of beds in

the optimisation model. The first will investigate the effect of absolutely no sharing

of beds between wards. This scenario is based on the premise that specialties in

the hospital could become responsible for all of their resources; from the scheduling

of their operations to the management of their beds. For this to happen, no other

surgical specialty would be allowed to use the beds of another specialty; beds would
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be completely ring-fenced and managed within the specialty.

The second experiment will investigate the opposite extreme of bed sharing;

allowing the sharing of beds between many different wards. The creation of large

pools of beds using wards of specialties of similar surgical nature could be a

strategy to even out demand for beds across the hospital. In this scenario, it would

make it easier for a specialty to borrow a bed from another specialty if they were

experiencing high demand for beds, and vice versa if the demand for beds was

reversed. The pools used in the scenario are summarised in Table 5.10. They

are based on the similarity of the surgical nature of the specialties, and assuming

that the specialties require similar equipment and specially trained nurses for

post-operative care. The CCU is not pooled with any other specialty due to the

very specialised nature of the care given in that ward. Within each pool, beds are

allowed to be shared between every ward within that pool, but not with any other

ward outside their pool.

Cardiothoracic

Vascular

General/Liver

Colorectal

Renal

Urology

Paediatric

ENT/Oral

Trauma

Neurosurgery

CCU

Table 5.10: Grouping of the wards to create bed pools

In this case, the Paediatric ward has been pooled with the ENT/Oral and Trauma

wards which both cater for adult patients. It is not common practice in UHW for

children to be put on adult wards, and this would never happen in reality. The

Paediatric ward has been pooled with adult wards here in order to demonstrate

that the Paediatric ward requires more beds than it currently has, and that if there

is the possibility of the ward sharing beds with any ward, then it would benefit

the whole system. It is left to the hospital managers to decide which ward would

be able to be pooled with the Paediatric ward if this bed pooling strategy was

implemented.

In order to investigate the different levels of sharing of beds between wards,

the optimisation model will be run using the number of beds on each ward as in
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the baseline scenario, i.e. the number of physical beds available on each ward. The

average slacks and surpluses of the resulting optimal solutions will be inspected to

determine how many beds, if any, are shared between wards. This will then be used

to inform the simulation model, in which the altered number of beds available on

each ward will be used. For example, if it was found from the slacks and surpluses

from the optimal solutions that Ward 1 shares four of its empty beds with Ward

2, then Ward 1 will have four more beds available in the simulation of the optimal

schedules, and Ward 2 will have four fewer beds available in the simulation.

For the first experiment, when no sharing of beds is allowed, the same opti-

mal solutions as in the baseline scenario were found. This is as expected due to

the very restricted W matrix. The values of the slacks and surpluses indicate that

the empty beds on all (real) wards were given to the dummy ward in the model as

part of the optimal solutions. This is to ensure that the equality bed constraints

(4.18d) were satisfied, and has the added property that the beds on each ward are

safeguarded from other wards using their beds.

For the second experiment, when extra sharing compared to the baseline sce-

nario is allowed via the use of a number of bed pools, the average optimal objective

function value was 1156.3 unused bed days. This is a 1.7% reduction from the

baseline scenario in which the average optimal value is 1175.6 unused bed days,

suggesting that the additional sharing through the use of bed pools results in

more bed days being used, and thus the beds being utilised more. The slacks and

surpluses in the optimal solutions also indicate that more beds are being shared

between wards than in the baseline scenario. Figure 5.13 shows where beds are

shared between wards within bed pools in the optimal solutions. For example, in

the Cardiothoracic and Vascular bed pool, beds on the Cardiothoracic ward are

used by Vascular patients.
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Figure 5.13: Sharing of beds between wards in bed pooling experiments

The average number of empty beds on each ward for this scenario are shown in

Table 5.11.

Specialty
Average number

of empty beds

Average %

of empty beds

Paediatric 2.9 10.2

ENT/Oral 5.9 30.8

Vascular 17.4 45.9

Trauma 23.6 28.4

Renal 9.9 49.3

General/Liver 38.6 50.8

Urology 7.4 39.1

Colorectal 12.6 62.9

Cardiothoracic 15.6 31.1

Neurosurgery 17.9 33.7

Critical Care 15.4 57.1

Table 5.11: Amount of empty beds when more sharing between wards is allowed

As can be seen in Table 5.11, on average, all wards have empty beds. This is in

agreement with the current UHW MSS simulation results in Section 4.4.4. However,

the Paediatric ward is the only ward that experiences a shortage of beds and so uses

some beds on another ward in the optimisation model. The average number of

empty and additionally required beds on the Paediatric ward over a simulated week

is shown in Table 5.12. The ward has empty beds on Monday, Friday, Saturday and

Sunday, uses all of its beds on Tuesday, but requires additional beds from other wards
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on Wednesday and Thursday. From inspection of the slack and surplus decision

variables, these additional beds were acquired from the Trauma ward. Therefore,

additional beds were moved from the Trauma ward to the Paediatric ward in the

model in order for all patients in the Paediatric ward to be able to have a bed.

However, what would happen in reality is that these additional Paediatric patients

would outlie on the Trauma ward. As discussed previously, children would never be

put on an adult ward as a matter of policy, but these results are used to illustrate

the benefits that could be achieved if the Paediatric ward could be pooled with any

ward in order to help with its high demand for beds.

Mon Tue Wed Thu Fri Sat Sun

Beds 1 empty Full 1 extra 2 extra 5 empty 11 empty 6 empty

Table 5.12: Number of empty and additionally required beds on the Paediatric
ward

All empty beds on other wards are given to the dummy ward. This ensures the

equality bed constraints are satisfied in the optimisation model, but also has the

implication that these empty beds are safeguarded for the sole use of the assigned

specialty of each ward.

The results of the experiment using bed pooling is summarised in Table 5.13, along

with results from the first experiment and the baseline scenario for comparison. It

can be seen that the more sharing that is allowed in the system, the better the

system performs. This is shown by the reduction in the percentage of simulations

that have bed constraint violations and the average violation per simulation is also

reduced. The expected bed shortage is also reduced, indicating that if more beds

are allowed to be shared between wards, then fewer cancellations would occur over

the surgical specialties as a whole.

Scenario

% simulations

with violated

bed constraints

Av number

of violations

per simulation

Expected bed

shortage (mean, SD)

No sharing 55.6 1.07 3.19, 5.08

Baseline 55.6 1.07 3.19, 5.08

Bed pools 46.3 0.73 2.14, 3.75

Table 5.13: Summary of results of the bed sharing experiments
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5.3 Conclusion

This chapter has concentrated on the analysis of results from the deterministic

model for the construction of the MSS which was developed in Chapter 4. Inves-

tigation into whether the current MSS used in UHW is feasible with respect to

the operating theatre and bed constraints has been performed, followed by and

investigation of optimal MSSs under experiments relating to hospital variables.

A baseline scenario was used to reflect the current reality at UHW, and as-

sociated investigations were described in Section 5.1. Interestingly, the current

MSS used in UHW was not found to be a feasible solution for the optimisation

model. Optimal schedules could, however, be found for a less restricted baseline

scenario, and were found using the expected bed count and conditional probability

of failure methods of generating bed demand for the bed constraints. These optimal

schedules were found to perform better than the current MSS used in UHW in

terms of a more levelled number of simultaneous sessions across the week, and fewer

simulations with violated bed constraints.

A series of ‘what-if’ scenarios that were chosen to be of interest to hospital

managers were investigated in Section 5.2. In particular, it was found that feasible

MSSs could be found for different levels of post-operative LoS, different number of

beds available on each ward, and different bed pools composed of wards sharing beds.

Note that while the deterministic model presented and investigated in Chap-

ters 4 and 5 provides some important insights into the interplay between the MSS

and resulting bed requirements on surgical wards, it does not take into account

the stochastic nature of the post-operative bed requirements. Extensions of the

model are derived in Chapters 7 and 8 that aim to create more robust MSSs that

safe-guard against this uncertainty.



Chapter 6

Optimisation Under Uncertainty:

an Overview

As previously discussed, there is uncertainty associated with the resources involved

with the scheduling of operating theatres. This chapter includes a literature review

on the various techniques that can incorporate uncertainty into the optimisation

process.

6.1 Optimisation Under Uncertainty

Traditional optimisation methods of linear programs in the form of Model 6.1, for

example, implicitly assume that the parameters for a given problem are known. That

is, the coefficients in the objective function, c, and constraints, A and b are known.

However, it is not always the case that these inputs to optimisation problems are

fixed and known accurately. Uncertainty in the values of the parameters can be due

to a variety of reasons, including measurement error or the fact that the parameters

represent some information about the future. Examples include the costs of products

for the optimal inventory mix and the future demand for a product, which may not

be known with certainty.

max cTx

s.t. Ax ≤ b

x ∈ X
(6.1)

Point estimates or expected values can be used as ‘snapshots’ of these uncertain

parameters in deterministic optimisation methods in order to give an indication of

an optimal solution. However, Ben-Tal and Nemirovski [24, 25] have shown through

the use of case-studies that small perturbations in these uncertain parameters can

129
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result in infeasible solutions. Hence, even if an optimal solution can be found for

certain point estimates, they may not remain feasible when the data changes or

is not as expected once implemented. This is not appealing to decision makers,

since they require solutions in which they can have confidence for highly uncertain

problems.

It could even be the case that each instance, or snapshot, of input data re-

sults in a different solution being found from the optimisation, as illustrated in

Figure 6.1. This situation is also undesirable for decision makers because it is not

clear as to which optimal solution is best to choose since it is not known which of

the input data will be realised on implementation.

Figure 6.1: Multiple inputs resulting in multiple solutions

Ideally, all possible realisations of uncertainty should be taken into account by the

optimisation model to provide a single optimal solution, as in Figure 6.2. The

field of optimisation under uncertainty is concerned with this ‘black box’ method

of optimisation. A number of approaches to optimisation under uncertainty have

been identified in the literature: stochastic programming that uses the probability

distributions of the possible realisations of uncertainty, the use of recourse for making

decisions in stages once more data becomes certain, and robust optimisation in which

a range of possible values that the uncertain parameters could take is specified.

Figure 6.2: Multiple inputs resulting in one solution

By taking into account the possible realisations of uncertainty, either by using their

probability distributions in stochastic programming or by using specified ranges of

uncertain values, the notion of a ‘good’ solution may be found. The definition

of good, or ‘robust’, for these solutions is different for each application, and the

robust solutions should be more resilient to uncertainty than their non-robust or

deterministic counterparts found from traditional optimisation methods.
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6.2 Approaches to Optimisation Under Uncer-

tainty

Two broad approaches to optimisation under uncertainty have been identified in

the literature; stochastic programming and robust optimisation. A brief overview of

both methodologies are given in this section.

6.2.1 Stochastic Programming

Stochastic programming (SP), also referred to as stochastic optimisation, provides

a framework for finding solutions to problems that involve uncertainty. Pioneered

by Dantzig [54] in 1955, SP uses the fact that the uncertain data in the model

can be described by probability distributions in order to find a solution for all (or

at least most) of the possible instances of realisations of the data which, in some

sense, is optimal. The reader is directed to the textbook by Birge and Louveaux

[35] for a comprehensive overview of SP.

A widely used technique in SP is recourse. Multistage stochastic programs

with recourse are problems in which some decisions, or recourse actions, are

taken once the uncertainty has been disclosed, for example, choosing the product

mix when the availability of the resources required to make the products are

uncertain [8]. In solving the problem, the mix must be chosen before the uncertain

availability is known, then additional decisions (recourse decisions) are made once

the uncertainty is realised to adjust for the new conditions. Although two-stage

programs are most common, more than two stages can be used depending on the

application. Two-stage problems assume that data in either stage can be modelled

as a random vector with a known probability distribution. Decisions at either

stage are based on the data available at the time, and should not depend on future

observations.

If the probability distributions of the random variables are known, then nu-

merical integration is employed over the random continuous probability space.

Due to computational difficulties with this approach, it is often assumed that the

random data have a finite number of possible realisations, known as scenarios.

This discretisation of the probability space helps to solve the two-stage problem

numerically since it can be re-formulated as a single linear programming problem.

The more scenarios considered in the probability space, the more likely that the

actual realisation of uncertainty will be covered in the stochastic program, however,
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this causes the model size, and hence computational time, to increase rapidly. A

number of approaches have been developed in order to smartly choose scenarios,

such as using Monte Carlo simulation [143], and to combine a number of scenarios

into a reduced number [68].

Chance-constrained programming is also a common technique used in SP.

First developed by Charnes and Cooper [50], the approach is based on satisfying

the constraints of a linear program up to a pre-specified level of probability. By

limiting the probability of constraint violation in this way, solutions are very

difficult to find due to the computational intractability of the chance-constrained

problem. Another drawback to this approach is that probability distributions

of the uncertain parameters are required. Approximations of chance-constrained

programs have been developed [126], including the sample average approximation

method [99] that replaces the probability distribution of the constraints with an

empirical distribution obtained from a random sample of the uncertain parameters.

SP approaches to operating theatre scheduling have been commonly used in

the literature. Bruni et al. [40] use a stochastic model with recourse for the

scheduling of surgeries when the occurrence of emergency patients and surgery

durations are uncertain. Belien and Demeulemeester [19] use SP, via MIP based

heuristics, to construct an MSS with resulting levelled bed occupancy when the

number of patients and their LoS is uncertain.

The main disadvantages of using the SP approach to optimisation under un-

certainty include the requirement of specifying the probability distributions of the

possible outcomes at each decision stage. Reliable data is needed to estimate them

accurately, which often is not available in practice. If the alternative scenario ap-

proach is used for SP, the number of scenarios to generate is unclear. More scenarios

will give a more complete picture of the uncertainty, however, this will increase

the computational time required in order to solve the problem. Scenario-based

approximation methods to SP are discussed in more detail in Section 6.4.

6.2.2 Robust Optimisation

As noted by Gabrel et al. in [81], the term ‘robust optimisation’ (RO) has assumed

different definitions since its conception by Soyster [145] in 1973 and Beyer and

Sendhoff [34] note that the term even encompasses several approaches within

the application of robust design. The term was first made popular in the 1990s
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by Mulvey et al. [123], however, their scenario-based robust optimisation model

is completely different to that of Soyster, and will therefore not be covered in

this review. The original concept of RO proposed by Soyster has continued to

be extended since the late 1990s, and will be taken to be the definition of RO herein.

The theory of RO, first proposed by Soyster [145], uses the notion of bounded,

convex uncertainty sets to define the nature of the uncertain data. The objective

function is then optimised over the uncertainty set, while maintaining feasibility

for the worst-case value of the constraints. The use of uncertainty sets is especially

useful if a stochastic model of the uncertainty is unknown, rendering SP impossible.

An uncertainty set specifies a set of values that the uncertain data could re-

alise. By optimising over an uncertainty set, the original problem is reformulated

and replaced by what is known as its robust counterpart. Probability distributions

for the uncertain data are not assumed, though the shape of the uncertainty set

must be defined. Uncertainty sets that are defined as having an ellipsoidal form

[23, 71], result in the original linear program being transformed into a non-linear

robust counterpart. This approach is less conservative than that of Soyster [145],

however, the robust counterparts are harder to solve computationally. More recent

efforts have focused on the definition of simpler uncertainty sets that preserve

the tractability of the original linear program and are thus more computationally

efficient [31, 32].

Recent research directions include trying to bridge the gap between RO and

SP. Chen et al. [51] provide an RO perspective on SP in which they develop a

tractable approximation for multistaged chance-constrained linear programming

problems. Bertsimas and Goyal [29] and Bertsimas et al. [28] also apply RO

techniques to multistage stochastic problems. Düzgün and Thiele [70] develop an

RO approach that describes the uncertainty in objective coefficients using multiple

ranges for each coefficient. This approach avoids a very large single range that

would be required by the traditional RO model, and which would lead to overly

conservative results.

One of the main advantages of RO over SP is that a (full) stochastic model

of the uncertain data is not required. When sufficient information on the proba-

bility distribution of the uncertain data is not known, RO becomes an attractive

alternative due to the relatively simple requirement of an uncertainty set. The

selection of an appropriate uncertainty set is an issue which will be discussed further
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in Section 6.3, however, the benefits that RO provides are generally considered

worth it. The fact that RO techniques are available that ensure the tractability of

the original problem is maintained in the robust counterpart, and that the degree

of conservatism can be controlled are particularly appealing.

6.3 Robust Counterpart Optimisation

6.3.1 Development of Robust Optimisation

Soyster [145] first suggested modelling uncertainty in linear programming problems

through the use of bounded, convex sets. Unknown coefficients were assumed to

take values from a realistic subset called the uncertainty set, often centered on

the nominal values of the unknown coefficients. The model developed by Soyster

[145] resulted in each uncertain parameter taking its worst-case value from the

uncertainty set. This ensures that the constraints remain feasible for any of the

possible realisations of uncertainty (within the uncertainty set), whilst the objective

function is optimised with respect to the worst-case realisation. By taking the

worst-case value, this approach is at maximum conservatism. In a similar approach

developed in 1976, Falk [77] considered uncertainty in the objective function whose

coefficients were assumed to lie in a closed, convex set.

Interestingly, this approach to RO was not advanced in the operational re-

search literature until the late 1990s. Soyster’s model of using the worst-case

scenario was deemed too conservative in practice, since complete protection against

the uncertainty often results in severe worsening of the objective function value. As

a result of this view, the earlier RO framework of Soyster was extended to consider

other forms of uncertainty sets.

Extensions to the original RO model involved the use of ellipsoidal uncer-

tainty sets by Ben-Tal and Nemirovski [23, 24, 25], El-Ghaoui and Lebret [71],

and El-Ghaoui et al. [72]. Ellipsoidal uncertainty sets were assumed because the

corners (or extremes) of the box representation employed by Soyster [145] were

considered unlikely to occur once the uncertainty was realised. Ben-Tal et al. [22]

provide an overview of RO using ellipsoidal uncertainty sets and the resulting

robust counterparts. This approach reduces the level of conservatism of Soytser’s

model and tractable reformulations for the robust counterparts can be produced.

However, the robust counterparts obtained from this approach are second-order

cone problems and are computationally complex.
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Due to the drawback of increased computational complexity of the robust

counterparts encountered using ellipsoidal uncertainty sets, Bertsimas and Sim

[30, 31] developed a methodology that considers the uncertainty set as a polyhe-

dron. Specifically, the uncertainty set is an interval of a range of values that each

uncertain parameter can take. An additional parameter is also introduced to each

constraint, called the protection level [31] or the budget of uncertainty [32], that

the decision maker can use to control the degree of conservatism of the solution

by limiting the number of coefficients that can take their worst-case value. This

approach preserves the tractability of the nominal problem; the robust counterpart

of a linear problem is linear. The reader is referred to Bertsimas et al. [28] for a

comprehensive review of RO using different uncertainty sets.

The choice of uncertainty set is not always clear, so Bertsimas and Brown

[27] provide a prescriptive methodology for constructing uncertainty sets. The

approach of Bertsimas and Sim [31] that uses ranges of realistic values for the

uncertainty set is particularly appealing to practitioners due to its simplicity [81].

No special assumptions about the probability distribution of the uncertain data

are required, and the intuitive nature of the protection level aids the model’s

interpretation.

Although in some situations it may be advantageous to be able to control

the level of conservatism of the robust solution, as will be discussed in Section

6.3.2, there are many applications in industry, such as robust control theory [67]

that deals with bounded system uncertainty, that require a worst-case analysis. A

large branch of RO still focuses on this worst case optimisation, as discussed by

Ben-Tal and Nemirovski [26].

6.3.2 Recent Developments in Robust Optimisation

A number of interesting advances in RO have occurred in recent years; Gabrel et

al. [81] provide a detailed overview of developments since 2007. Key developments

include the ‘robustification’ of stochastic optimisation, using work from risk theory

to describe uncertainty sets, and the development of non-linear and multistage RO

models.

The ‘robustification’ of SP tries to bridge the gap between RO and SP by

assuming the uncertain parameters belong to unknown probability distributions.
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Bandi and Bertsimas [16] propose a new approach to finding tractable methods

of analysing stochastic systems using RO. The field of distributionally robust

optimisation, in which a robust formulation for SP is constructed using a set of

probability distributions that is assumed to include the true distribution of the

uncertain parameters [56, 89], is also related to this concept.

The early work in RO focused on static problems in which the values of all

decision variables had to be chosen at once. In recent years however, dynamic RO,

in which recourse decisions are incorporated in a tractable way into a modelling

framework, has seen a rise in popularity. Thiele et al. [149] discuss approaches to

RO with recourse, and Assavapokee et al. [11] develop tractable algorithms specific

to two-stage robust problems that minimise the worst-case regret. The reader is

directed to Düzgün and Thiele [69] for an overview of recent findings in dynamic

RO research.

6.3.3 Applications of Robust Optimisation

RO has been shown to be applicable to a wide range of applications due to

its flexible framework for dealing with uncertainty in optimisation problems.

Applications include inventory management, such as finding robust policies for

supply chains that are subject to stochastic demand [33], robust portfolio selection

in which stock returns are uncertain [76], and robust unit commitment schedules in

the energy sector [144]. The reader is directed to an in-depth review of the different

application areas given in Gabrel et al. [81].

RO has been used extensively in different scheduling applications. Lu et al.

[108] study the single machine scheduling problem with uncertainty associated with

job processing times. The total flow time of jobs is minimised by measuring the

schedule robustness as the maximum absolute deviation from the optimal solution

in the worst-case scenario. The robust project scheduling problem, in which there is

uncertainty associated with activity durations, has an extensive array of literature

[10]. Hazir et al. [92] also use the RO approach for robust scheduling of the discrete

time/cost trade-off problem often seen in project scheduling.

A well developed application of RO is to airline scheduling. This was also

found to be a common application of the SPP in Section 4.1.6. Problems in airline

scheduling involve airline fleet planning and airline crew scheduling. Burke et al.

[41] use a multi-objective approach to robust airline scheduling that focuses on
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reliability and flexibility as measures of robustness in real world schedules. The

crew pairing problem, where flight and connection times are assumed to vary

within an interval, are considered within an RO framework by Lu and Gzara [109].

Simulation experiments were used to confirm that this robust approach led to more

robust crew pairing solutions. Gao et al. [82] consider an integrated approach that

addresses both the fleet planning and crew scheduling problems simultaneously.

RO Applied to Healthcare Problems

In 2010, Rais and Viana [132] comment that, ‘considerably less work appears to

have been carried out with potentially promising methodologies’, such as RO,

rather than more traditional methods of dealing with uncertainty, for applications

in healthcare. In a more recent discussion paper on the use of RO in healthcare

management, it was noted that the approach due to Bertsimas and Sim [31] has

rarely been applied to healthcare problems [6]. Many aspects of decision making in

healthcare settings are subject to a high level of uncertainty, and the small number

of papers that apply RO techniques to an application in healthcare are discussed

here.

Robust appointment scheduling has been investigated by Mittal et al. [122],

since the need for well-designed appointment systems is relevant to many aspects

of healthcare delivery, from outpatient clinics to scanners. The service times of

patients are uncertain, and an RO approach to assigning service slots to patients

in advance has been shown to improve the utilisation of expensive personnel and

medical equipment, and to reduce the waiting times of patients.

Perhaps more relevant to this research, Meng et al. [118] propose an RO ap-

proach to managing hospital beds for both emergency and planned inpatients, and

Addis et al. [6] discuss the use of a robust methodology for patient scheduling.

Meng et al. [118] use a distributionally robust optimization approach for managing

elective admissions to determine the required quotas of elective patients given the

unscheduled and urgent nature of emergency patients. The level of uncertainty

the admission system can withstand, as opposed to the worst-case performance,

is maximised without breaching the expected bed shortfall limit. Simulation

of the resulting quotas suggest that improvements to the bed shortfalls can be

achieved. Addis et al. [6] do not give details of their model for assigning surgery

cases to blocks of operating theatre time when the surgery duration is uncertain,

however, they comment on the trade-off between increasing robustness for a

reduction in the number of patients scheduled per operating theatre block. Having
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an increased level of robustness was found to decrease the number of cancella-

tions which improves the quality of the solution from the point of view of the patient.

Denton et al. [58] also use a robust counterpart model to allocate surgeries

to operating theatre blocks. The results are compared to those from a two-stage

stochastic program with recourse, and conclude favourably that the RO model

performs approximately as well as, and is much faster, than solving the stochastic

recourse model, whilst having the benefit of limiting the worst-case outcome.

A methodology to construct an MSS when the demand, i.e. the number of

patients for each specialty, is considered uncertain from week to week, is developed

by Holte and Mannino [95]. Mannino et al. [113] previously worked on an RO

model for the construction of an MSS that aims to balance patient queue lengths

among the different specialties, and to minimise the likelihood of using operating

theatre overtime. Their investigations into robustness found that, in order to gain

a more robust schedule, the amount of allowable overtime should increase.

Banditori et al. [17] group patients based on surgery resource requirements

and maximise patient throughput taking into consideration patient’s surgery due

dates. Surgery durations are taken to be uncertain, so RO is used to find solutions

that allow for a satisfactory number of surgeries without incurring overtime or

excessive cancellations. The resulting MSSs are tested using a simulation model

of patient’s uncertain surgery duration and LoS. They also present a combined

optimisation-simulation approach that allows the fine-tuning of the optimisation

model to trade-off robustness and efficiency.

6.4 Scenario-Based Optimisation

6.4.1 Approaches to Scenario-Based Optimisation

Scenario-based optimisation takes its name from the many, often infinite, possible

realisations of uncertainty, or scenarios, that are associated with stochastic opti-

misation problems. A scenario is an instance of an optimisation problem in which

the uncertain data realise certain values. Many approaches to optimisation using

scenarios exist and are discussed in this section.

A popular approach to optimisation using scenarios was first developed by

Calafiore and Campi [44] in which a finite set of constraints are sampled at random
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from all possible constraint instances to construct the ‘sampled program’. This

computationally efficient methodology is seen as an alternative to RO. Sampled

programs provide a less restrictive framework than RO by requiring that the risk

of failure of the solution is small in a probabilistic sense. This scenario-based

optimisation technique is also closely related to chance-constrained programming

in which constraints are required to be satisfied by at least a certain level of

probability. Benefits of using scenario-based optimisation as opposed to chance-

constrained programming include not having to assume a probability distribution

for the uncertain parameters in the constraints, and it being a computationally

tractable methodology.

A key decision in the scenario-based optimisation methodology concerns how

many scenarios to include in the scenario program. Several bounds for the

number of scenarios have been developed [42, 43, 44, 45, 46] that ensure that

a solution is optimal among all but a few constraint instances. ‘Tuning pa-

rameters’ in these bounds allow the decision maker to trade the probability

of violation of the omitted constraints for performance. The theory developed

for scenario programs initially related to convex optimisation problems, however,

Esfahani et al. [74] later extended this approach to non-convex problems. A more in

depth discussion of this scenario-based optimisation approach is given in Section 8.1.

Other approaches to optimisation under uncertainty using scenarios as repre-

sentations of a subset of the realisations of uncertainty include that of Mulvey

et al. [123], Berstimas and Brown [27] and Dembo [57]. Mulvey et al. [123] use

scenarios within a two-stage SP model and formulate a robust counterpart to find

a robust solution. This work bridges the gap between SP and RO, however, it has

the same dimensionality issues as RO since the robust counterpart is nonlinear.

Bertsimas and Brown [27] try to bridge the gap between RO and scenario-based

optimisation by developing a data-driven approach to constructing uncertainty

sets for RO based on a finite set of sampled constraints. Coherent risk measures

are used to ensure that the optimal solutions remain feasible for all realisations of

uncertainty, however, this approach can only be applied to problems with multiple

constraints in a constraint-wise fashion. Dembo [57] presents an approach to

solving stochastic problems through a series of deterministic sub-problems, each

representing a different scenario of the uncertain constraints. All scenario solutions

are then combined into a single, feasible policy.
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6.4.2 Applications of Scenario-Based Optimisation

One of the first applications of scenario-based optimisation was to the area of robust

control design [45]. Indeed, much of the theory developed by Calafiore and Campi

was in relation to robust control in which uncertainty is inherent in the feedback

from systems. Pagnoncelli et al. [131] use a scenario-based optimisation approach

for portfolio optimisation. The uncertain returns on investments are handled using

the scenario approach modified for chance-constrained programming problems.

They also use a sampling and discarding approach to selecting the scenarios for the

scenario program, as developed by Campi and Garatti [47].

Denton et al. [58] apply the sample average approximation method for SP

to surgery sequencing and scheduling, assuming that the surgery durations are

uncertain. They conclude that scheduling models that consider uncertainty in the

surgery durations have the potential to improve operating theatre schedules. The

scenario-based optimisation method of Calafiore and Campi [44] does not appear

to have been applied to healthcare problems.

6.5 Summary

A review of the literature on RO has revealed the potential that exists in applying

this optimisation technique to many different areas that deal with uncertainty.

A popular application of RO is to scheduling problems; ranging from machine

scheduling to airline scheduling. Of particular interest here is the great potential

that has been demonstrated by applying RO to scheduling in healthcare. A handful

of papers have used RO on aspects that relate to generating an MSS by taking

uncertain surgery duration into consideration. To the best of our knowledge, it is

believed that RO has not been applied to the construction of the MSS in the specific

case when uncertain patient LoS or uncertain post-operative bed requirements are

taken into account. The use of simulation has also been demonstrated to be a

useful tool for testing the robustness of the resulting solutions. Development of a

RO model for the construction of the MSS is presented in Chapter 7.

Scenario-based optimisation offers an alternative approach to incorporating

uncertainty into an optimisation model. This is achieved by including multiple

instances, or scenarios, in the optimisation programme. However, a key research

question concerns how many scenarios are required to provide a sufficient level of

feasibility, without excessive computational complexity. Scenario-based optimisa-
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tion has been used for a limited number of applications, however, it has been used

successfully in the scheduling of individual patients for surgery, showing promise

that it can be applied successfully to the construction of the MSS. Development of

a scenario-based optimisation model for the construction of the MSS is presented

in Chapter 8.



Chapter 7

Robust Optimisation of the MSS

Due to the importance of constructing a ‘good’ MSS that affects many expensive

hospital resources such as beds, staff and the operating theatres themselves, it

is desirable to develop a modelling framework that pro-actively guards against

the uncertainty inherent in these resources. As discussed in Section 6.3, the

methodologies analogous to RO provide a framework to include uncertainty of

model parameters in the optimisation process when information on the stochastic

behaviour of the uncertainty is unknown.

In particular, the RO approach due to Bertsimas and Sim [31] seems partic-

ularly appealing to modellers due to the ability to vary the level of conservatism

of the robust solution, while keeping the problem tractable. It also provides scope

for using probabilistic bounds of constraint violation which could be important for

decision makers.

Due to our application of RO to the construction of the MSS requiring the

use of binary decision variables, and because the robust counterparts of ellipsoidal

uncertainty sets are non-linear, a polyhedral uncertainty set will be used. Although

this approach adds decision variables and constraints to the original problem

(via the robust counterpart), the benefits of problem linearity and computational

tractability are deemed to outweigh these slight drawbacks. A polyhedral uncer-

tainty set based on ranges of values for the uncertain parameters has a particularly

intuitive interpretation that will help hospital decision makers understand the

modelling concepts.

142



Chapter 7 Robust Optimisation of the MSS 143

7.1 Robust Counterpart Optimisation

The approach developed by Bertsimas and Sim [31] will be used to develop a robust

counterpart optimisation framework to construct a robust MSS.

Consider the following deterministic nominal linear optimisation problem:

max cTx

s.t. Ax ≤ b

l ≤ x ≤ u
(7.1)

In this model, data uncertainty is assumed only for elements of A. All other

parameters will be assumed to be certain.

Consider row i of A, and let

Ji = set of coefficients in row i that are subject to uncertainty.

The model of uncertainty that is adopted in this approach, assumes that each

element aij, j ∈ Ji, is modelled as a symmetric, independent and bounded random

variable ãij, j ∈ Ji. It is then assumed that this random variable, ãij, takes values

in the range [aij − âij, aij + âij], where âij is a user-defined amount.

For every row i in A, a parameter Γi is introduced and is used to adjust the

robustness of the proposed model against the level of conservatism of the solution.

Γi is known as the ‘protection level’, or alternatively as the ‘budget of uncertainty’,

and its value can be chosen to make the solution more or less conservative by taking

values in the range Γi ∈ [0, |Ji|], however, is not necessarily integer. Essentially,

Γi specifies how many of the uncertain coefficients in constraint i we would like to

protect the solution against.

The values of the two parameters, Γi and âij, that are used in this RO ap-

proach are independent of one another. That is to say, that a higher value of âij,

which implies there is more uncertainty associated with the value that ãij takes,

does not imply that a larger value of Γi should be used to protect against more of

the uncertainty. The value of âij should be informed by data analysis or knowledge

of the application, however, the value of Γi is chosen by the decision maker and

should reflect his views on how much to protect against the uncertainty. Although
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the parameters take independent values, there is a special case when âij = 0 ∀ j

for constraint i. If âij = 0 ∀ j for constraint i, this is equivalent to saying that the

random variable ãij takes its point estimate aij for constraint i, since the width

of the interval is specified as zero. Hence we are certain of the value of ãij for

constraint i, so the only sensible choice of Γi is also zero because there are no

uncertain coefficients to protect against.

In most circumstances, it is unlikely that all of the aij, j ∈ Ji, will change,

but through the use of Γi we have the ability to be protected against up to bΓic
of the aij, j ∈ Ji, changing values. Only one other coefficient, say ait, t ∈ Ji,

is allowed to change at most by the amount (Γi − bΓic)âit. Here, b·c denotes

the floor function which returns the largest integer less than or equal to its argument.

Under these conditions, Bertsimas and Sim [31] have shown that this approach to

RO has the properties that:

� the robust solution will be feasible deterministically;

� even if more than bΓic coefficients change, then the robust solution will be

feasible with very high probability.

The robust counterpart of Model 7.1 involves the use of a protection function for

each uncertain constraint as follows:

max cTx

s.t.
∑
j

aijxj + max
{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{∑
j∈Si

âijyj + (Γi − bΓic)âityt

}
≤ bi ∀ i

−yj ≤ xj ≤ yj ∀ j

l ≤ x ≤ u

y ≥ 0

(7.2)

As can be seen in Model 7.2, the objective function remains the same as in the

nominal problem (Model 7.1) because it is assumed there are no uncertain data

that affects the objective function coefficients. If there exists some uncertainty in

the objective function coefficients, then the objective function can be transformed

into a constraint and included into Ax ≤ b in Model 7.1. A protection function,

βi(x,Γi), has been added to the left hand side of each constraint which is used to

account for the desired level of robustness. For each constraint i, the protection

function is the maximum amount the uncertain coefficients can change. Dummy

decision variables, y, are included in the protection function to represent the
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uncertainty set.

An important point to note is that when Γi = 0, the protection function,

βi(x,Γi), also equals zero implying that the constraints in Model 7.2 are equivalent

to those in the nominal problem (Model 7.1). In the other extreme, if Γi = |Ji| to

ensure full protection against uncertainty, the robust problem (Model 7.2) becomes

that of Soyster’s method [145].

The set of coefficients over which the protection function is maximised, is

Si ∪ {ti}, where

� Si is a subset of Ji, whose number of elements equals bΓic;

� ti is an element of Ji that is not in Si.

This is illustrated in Figure 7.1, where Ji is the set of of uncertain coefficients from

ai1, ..., ain. In this example, Γi ∈ [0, 3], and let Γi = 1.5. Hence bΓic = 1. Note

that it is not always the case that Si ∪ ti = Ji. Therefore the protection function is

maximised over all combinations of Si and {ti} in Ji.

Figure 7.1: Illustrative example of the sets used in the protection function

By considering all combinations of Si and {ti} in Ji, the maximum amount that

the uncertain coefficients can vary by (
∑
j∈Si

âijyj), and the maximum amount

that the one other coefficient can vary by ((Γi − bΓic)âityt) are found. By taking

the maximum value, the constraint ensures that the ‘worse-case’ scenario is satisfied.

As a result of including a protection function in each constraint, Model 7.2

becomes a bi-level optimisation problem. In order to get a linear formulation of

the robust counterpart, we need to use the fact that the protection function is

equivalent to a linear optimisation problem. Specifically, given a solution vector x∗,

the protection function of the ith constraint,

βi(x
∗,Γi) = max

{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{∑
j∈Si

âij|x∗|+ (Γi − bΓic)âit|x∗|

}
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equals the objective function of the following linear optimisation problem:

βi(x
∗,Γi) = max

∑
j∈Ji

âij|x∗|zij

s.t.
∑
j∈Ji

zij ≤ Γi

0 ≤ zij ≤ 1 ∀ j ∈ Ji

(7.3)

This can be shown to be true by inspecting the optimal solution to Model 7.3. The

optimal solution consists of bΓic of the zij decision variables equalling 1, and one zij

decision variable equalling (Γi − bΓic); giving the sum of the decision variables as:

bΓic × 1 + 1× (Γi − bΓic) = Γi =
∑
j∈Ji

zij.

Using duality theory, the dual of sub-problem Model 7.3 is:

min Γiqi +
∑
j∈Ji

pij

s.t. qi + pij ≥ âit|x∗|
pij ≥ 0

qi ≥ 0

(7.4)

where pij and qi are the dual decision variables.

By the strong duality theorem [55], since Model 7.3 is feasible and bounded

for all Γi ∈ [0, |Ji|], the dual of the problem is also feasible and bounded. The dual

and primal will also have identical optimal values of the objective function. Using

this fact and substituting the dual problem, Model 7.4, back into Model 7.2, a

linear formulation of the robust counterpart of Model 7.1 is obtained:

max cTx

s.t.
∑
j

aijxj + Γiqi +
∑
j∈Ji

pij ≤ bi ∀ i

qi + pij ≥ âijyi ∀ i, j ∈ Ji
−yj ≤ xj ≤ yj ∀ j

lj ≤ xj ≤ uj ∀ j

pij ≥ 0 ∀ i, j ∈ Ji
qi ≥ 0 ∀ i

xj ≥ 0 ∀ j

yj ≥ 0 ∀ j

(7.5)
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We now have a linear optimisation problem that includes the original decision

variables, xj, to indicate which plans are chosen for each specialty, and new decision

variables pij and qi that are used to reflect the desired robustness of the final solution.

If the decision variables xj are binary decision variables, then the linear ro-

bust formulation becomes:

max cTx

s.t.
∑
j

aijxj + Γiqi +
∑
j∈Ji

pij ≤ bi ∀ i

qi + pij ≥ âijyi ∀ i, j ∈ Ji
pij ≥ 0 ∀ i, j ∈ Ji
qi ≥ 0 ∀ i

xj ∈ {0, 1} ∀ j

(7.6)

Bertsimas and Thiele [32] show how, in some cases, the optimal solution to this

binary robust problem can be found by solving n subproblems of the same size

and structure as the original deterministic problem, and selecting the one with

the highest objective value as the optimal solution. This approach exploits the

nature of the binary variables, while preserving the computational tractability of

this approach to RO. It is not deemed applicable in the case of the construction of

the MSS optimisation model due to the restrictive nature of the GUB constraints.

7.2 Developing a Robust Optimisation Model for

the MSS

Recall the nominal formulation for the construction of the MSS from Section 4.2.1

is as follows:

min

p∑
k=1

q∑
l=1

(d
(l)
k −

n∑
j=1

b
(l)
kjxj)

s.t.
n∑
j=1

aijxj = 1 ∀ i = 1, ..., s

n∑
j=1

aijxj ≤ 1 ∀ i = s+ 1, ...,m

n∑
j=1

b
(l)
kjxj ≤ d

(l)
k ∀ k = 1, ..., p, l = 1, ..., q

xj ∈ {0, 1} ∀ j = 1, ..., n

(7.7)
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The above nominal problem differs from the nominal problem in Section 7.1 since it

is a maximisation problem, and there are both equality and inequality constraints.

In order to be confident that a robust counterpart can be found using the approach

presented in Section 7.1, Model 7.7 is re-formulated to match the format of the

nominal problem in Model 7.1.

The nominal problem for the construction of the MSS in the same format as

Model 7.1 is as follows:

max

p∑
k=1

q∑
l=1

(
n∑
j=1

b
(l)
kjxj − d

(l)
k ) (7.8)

s.t.
n∑
j=1

aijxj ≤ 1 ∀ i = 1, ..., s (7.9)

−
n∑
j=1

aijxj ≤ −1 ∀ i = 1, ..., s (7.10)

n∑
j=1

aijxj ≤ 1 ∀ i = s+ 1, ...,m (7.11)

n∑
j=1

b
(l)
kjxj ≤ d

(l)
k ∀ k = 1, ..., p, l = 1, ..., q (7.12)

xj ∈ {0, 1} ∀ j = 1, ..., n (7.13)

The objective function in (7.8) is now being maximised. Initially we were min-

imising the difference between the beds available and the beds required, i.e. the

number of empty beds, however, now we are maximising the difference between

the number of beds required and the beds available, i.e. the number of used beds.

Both objectives aim to increase the throughput of patients through the wards. The

GUB constraints in Model 7.7 are equality constraints, so are transformed into two

equivalent sets of constraints; one less than (constraint 7.9) and one greater than

(constraint 7.10) which was multiplied by −1 in order to be in the form of a less

than or equal constraint. The nominal problem for the construction of the MSS is

now in the same form as Model 7.1, allowing us to continue to formulate a robust

counterpart.

The nominal problem for the construction of the MSS can be summarised in
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the following matrix form:

max Bx− d

s.t. Mx ≤ e

x ∈ {0, 1}n
(7.14)

where M is the combined matrix of the A and B matrices from Model 7.7, and e is

the combined vector of the right-hand side values of the GUB constraints, operating

theatre constraints and bed constraints. M and e are summarised in Figure 7.2.

Figure 7.2: Combined matrix and vector for constraints in the nominal problem

In Model 7.14, data uncertainty only affects elements of matrix M . Indeed,

the only uncertain data in the model are the b
(l)
kj coefficients of the B matrix,

i.e. we are uncertain about the number of beds required in ward k on day l for plan j.

Let

Ji = set of coefficients in constraint i in matrix M that are subject to uncertainty.

We assume that each uncertain coefficient in M , mij, j ∈ Ji, is modelled as a

symmetric, independent and bounded random variable m̃ij, j ∈ Ji, taking values in

[mij − m̂ij,mij + m̂ij].

For each constraint i, we introduce a parameter, Γi, that represents the bud-

get of uncertainty and can be used to control the conservatism of the robust

solution. Let

Γi ∈ [0, |Ji|] ∀ i.

The robust counterpart of Model 7.14, which includes a protection function for each
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constraint i, is therefore:

max Bx− d

s.t.
n∑
j

mijxj + max
{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{∑
j∈Si

m̂ijxj + (Γi − bΓic)m̂itxt

}
≤ ei∀i

x ∈ {0, 1}n
(7.15)

Model 7.15 is a bi-level optimisation problem, so following the linearisation approach

as in Section 7.1, the linear formulation of the robust counterpart of Model 7.14 may

be written:

max Bx− d

s.t.
n∑
j

mijxj + Γiqi +
∑
j∈Ji

pij ≤ ei ∀ i

qi + pij ≥ m̂ijxj ∀ i, j ∈ Ji
pij, qi ≥ 0 i, j ∈ Ji
xj ∈ {0, 1} ∀ j = 1, ..., n

(7.16)

where pij and qi are dual decision variables from the linearisation process.

Given that we know that the only uncertain data in the model are the b
(l)
kj

coefficients of the B matrix, i.e. we are uncertain about the number of beds

required in ward k on day l for plan j, we can specify some values of the parameters

m̂ij and Γi.

If we are certain about the value of a coefficent in a constraint, the size of

the interval [mij − m̂ij,mij + m̂ij] is zero, and the random variable m̃ij takes

the value of its point estimate mij. Therefore, we can set m̂ij = 0 for all certain

coefficients. If a constraint does not contain any uncertain data, then |Ji| = 0 and

there are no uncertain coefficients to protect against in the robust solution. There-

fore, we can also set Γi = 0 for all constraints that do not contain any uncertain data.

In the problem of the construction of the MSS, we are certain about the co-

efficient values in the GUB constraints and the operating theatre constraints.

Therefore m̂ij = 0 and Γi = 0 for these constraints.

For the bed constraints that contain uncertain data, let

Jk = set of bed requirement coefficients for ward k that are subject to uncertainty.
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It is assumed that the set of uncertain coefficients, Jk, is constant for all days l on

each ward k. This is because there are the same number of plans that result in

uncertain bed requirements for all days on each ward in the B matrix.

We assume that each b
(l)
kj , j ∈ Jk is modelled as a symmetric, independent and

bounded random variable b̃
(l)
kj , j ∈ Jk, taking values in the interval [b

(l)
kj−b̂

(l)
kj , b

(l)
kj+b̂

(l)
kj ].

Due to the lack of bed count data available from UHW, we cannot infer any in-

formation on the shape of the uncertainty set that the uncertain b
(l)
kj coefficients

belong to. Therefore, it is considered reasonable to assume that the uncertain bed

count coefficients belong to a symmetric interval around a point estimate. We must

ensure that the b̃
(l)
kj take integer values so that they correspond to a whole number

of beds required. A discussion of how the b
(l)
kj and b̂

(l)
kj values are chosen is given in

Section 7.3.1 and 7.3.2.

For every ward k, we introduce a parameter Γk ∈ [0, |Jk|] that is not neces-

sarily integer and is used to adjust the robustness of the proposed model with

respect to the level of conservatism of the solution. The robust solution will be

protected against up to bΓkc of the b
(l)
kj , j ∈ Jk changing values. Only one other

coefficient, b
(l)
kt , is allowed to change at most by the amount (Γk − bΓkc)b̂(l)

kt . The

higher the value of Γk, the more protection there is against the uncertain bed

requirement for ward k. Γk is assumed constant for all days l on each ward k; a

different Γ
(l)
k could be specified for each day l on each ward k, however, this is

deemed too detailed for the data available from UHW.

Having defined the parameters for the uncertain bed constraints, Model 7.16

can now be separated into the GUB, operating theatre and bed constraints, and

values can be set for Γk and m̂ij. We can set Γi = Γk and m̂ij = b̂
(l)
kj which results

in the following forms of m̂ and Γ in Figure 7.3.

Figure 7.3: Specific values of Γk and b̂
(l)
kj

Separating the constraints of Model 7.16 into their constituent parts of the A and
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B matrices, we get the following formulation:

max Bx− d

s.t.

n∑
j=1

aijxj + Γiqi +
∑
j∈Ji

pij ≤ 1 ∀ i = 1, ..., s

−
n∑
j=1

aijxj + Γiqi +
∑
j∈Ji

pij ≤ −1 ∀ i = 1, ..., s

n∑
j=1

aijxj + Γiqi +
∑
j∈Ji

pij ≤ 1 ∀ i = s+ 1, ...,m

n∑
j=1

b
(l)
kjxj + Γkq

(l)
k +

∑
j∈Jk

p
(l)
kj ≤ d

(l)
k ∀ k = 1, ..., p, l = 1, ..., q

qi + pij ≥ m̂ijxj ∀ i = 1, ...,m, j ∈ Ji
q

(l)
k + p

(l)
kj ≥ b̂

(l)
kjxj ∀ k, l, j ∈ Jk

pij, qi ≥ 0 ∀ i, j ∈ Ji
p

(l)
kj , qk ≥ 0 ∀ k, l, j ∈ Jk
xj ∈ {0, 1} ∀ j = 1, ..., n

(7.17)

We can now substitute the above chosen values for m̂ij and Γi into Model 7.17 to

simplify the formulation:

max Bx− d

s.t.
n∑
j=1

aijxj +
∑
j∈Ji

pij ≤ 1 ∀ i = 1, ..., s (7.18)

−
n∑
j=1

aijxj +
∑
j∈Ji

pij ≤ −1 ∀ i = 1, ..., s (7.19)

n∑
j=1

aijxj +
∑
j∈Ji

pij ≤ 1 ∀ i = s+ 1, ...,m (7.20)

n∑
j=1

b
(l)
kjxj + Γkq

(l)
k +

∑
j∈Jk

p
(l)
kj ≤ d

(l)
k ∀ k = 1, ..., p, l = 1, ..., q

qi + pij ≥ m̂ijxj ∀ i = 1, ...,m, j ∈ Ji (7.21)

q
(l)
k + p

(l)
kj ≥ b̂

(l)
kjxj ∀ k, l, j ∈ Jk

pij, qi ≥ 0 ∀ i, j ∈ Ji
p

(l)
kj , qk ≥ 0 ∀ k, l, j ∈ Jk
xj ∈ {0, 1} ∀ j = 1, ..., n

If a constraint does not contain any uncertain data, then |Ji| = 0 and the sum∑
j∈Ji

pij = 0, since Ji is an empty set. This affects constraints 7.18, 7.19 and 7.20
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that relate to the GUB and operating theatre constraints, so this summation term

can be removed from these constraints, and constraint 7.21 becomes redundant. The

linear robust counterpart of the construction of the MSS problem can therefore be

simplified to:

max

p∑
k=1

q∑
l=1

(
n∑
j=1

b
(l)
kjxj − d

(l)
k ) (7.22a)

s.t.
n∑
j=1

aijxj ≤ 1 ∀ i = 1, ..., s (7.22b)

−
n∑
j=1

aijxj ≤ −1 ∀ i = 1, ..., s (7.22c)

n∑
j=1

aijxj ≤ 1 ∀ i = s+ 1, ...,m (7.22d)

n∑
j=1

b
(l)
kjxj + Γkq

(l)
k +

∑
j∈Jk

p
(l)
kj ≤ d

(l)
k ∀ k = 1, ..., p, l = 1, ..., q (7.22e)

q
(l)
k + p

(l)
kj ≥ b̂

(l)
kjxj ∀ k, l, j ∈ J (l)

k (7.22f)

p
(l)
kj , qk ≥ 0 ∀ k, l, j ∈ Jk (7.22g)

xj ∈ {0, 1} ∀ j = 1, ..., n (7.22h)

The combined terms in the uncertain bed constraint (Constraint 7.22e) that include

the dual decision variables can be interpreted as a safety buffer of beds reserved

on each ward on each day. As Γk increases, i.e. the decision maker becomes more

conservative against the uncertainty associated with the number of required beds,

the size of the safety buffer increases. This intuitively matches the interpretation as

the decision maker becomes more conservative against the uncertainty associated

with the number of required beds.

Through the development of Model 7.22, we have shown that the RO ap-

proach developed by Bertsimas and Sim [31] can successfully be applied to

construct a robust counterpart of Model 7.14. It has also been shown that if there

is a mixture of certain and uncertain constraints in the nominal problem, then it is

possible to apply the protection function to the uncertain constraints only, thereby

extending the original model formulation of Bertsimas and Sim [31].
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7.3 Applying the Robust Optimisation Model to

the Case Study

The selection of values for the two parameters in the robust counterpart for the

construction of the MSS (Model 7.22) is discussed in the following sections.

7.3.1 Parameter Values: Point Estimate of Bed Require-

ments, b
(l)
kj

We have assumed that the uncertain coefficients, b
(l)
kj , representing the bed require-

ments in the bed constraints for each ward on each day are modelled as symmetric,

independent and bounded random variables b̃
(l)
kj ∈ [b

(l)
kj − b̂

(l)
kj , b

(l)
kj + b̂

(l)
kj ] ∀ j ∈ Jk.

The interval is centred on a point estimate of the bed requirement, which is

found using the approach described in Section 4.2.4. The values must be a whole

number of beds that are required for each ward on each day, given the conditional

probability of leaving the hospital on each consecutive day after surgery. One

instance of the B matrix generated in this way can be thought of as one instance

of the estimate of the bed requirement on each ward on each day for each plan.

Of course, different instances of the B matrix will result in different values of

b
(l)
kj . However, this uncertainty is inherently taken care of through the use of the

protection level Γk and b̂
(l)
kj in the robust counterpart of the problem.

7.3.2 Parameter Values: Width of Uncertainty Set, b̂
(l)
kj

The b̂
(l)
kj values represent the amount by which the point estimates of bed require-

ments can vary, i.e. creating the interval [b
(l)
kj − b̂

(l)
kj , b

(l)
kj + b̂

(l)
kj ]. In order to ensure

that the random variable b̃
(l)
kj has an integer value, the b̂

(l)
kj values need to be chosen

to also take integer values.

The choice of b̂
(l)
kj is left to the decision maker to choose appropriate values.

In order to make an informed choice of b̂
(l)
kj , variation in the observed bed count

data on each ward in UHW is used to obtain information on what values b̂
(l)
kj should

take.

Given that the conditional probability of leaving hospital on each consecutive

day after surgery is fixed for each ward (as found from the LoS data), the only

way that the bed requirement can vary is due to the number of patients that have
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surgery per operating theatre session. The distribution of the number of operations

per session that took place in 2012/13 for each specialty is shown in Figure 7.4.

Figure 7.4: Number of operations per session in 2012/13

A discussion of the distribution of the number of operations per session observed in

2012/13 was given in Section 3.3.3. In order to use this information for the number

of operations that took place per session to inform the values of b̂
(l)
kj , we will let the

interval [b
(l)
kj ± b̂

(l)
kj ] be represented by the interquartile range (IQR). The data on the

number of operations per session relates to each surgical specialty and is shown in

Table 7.1. To find values for b̂
(l)
kj , the IQR is rounded down after being divided by

two, i.e.

⌊
IQR

2

⌋
, since a whole number of operations per session is required. If half

the IQR is a fraction of an operation, then for surety the largest integer number of

operations that is not larger than half the IQR can be performed in a session.
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Specialty Operations per session IQR

⌊
IQR

2

⌋
Cardiac 1 0

CEPOD 2 1

Colorectal 1 0

ENT 2 1

General 1 0

Liver 1 0

Neurosurgery 1 0

Ophthalmology 1 0

Oral 3 1

Paeds ENT 2 1

Paeds General 2 1

Paeds Trauma 3 1

Renal 1.5 0

Scoliosis 1 0

Thoracic 1 0

Trauma 3 1

Urology 2 1

Vascular 1 0

Table 7.1: Value of b̂
(l)
kj for each specialty

These values of b̂
(l)
kj for each specialty need to be translated into b̂

(l)
kj values for each

ward, since b̂
(l)
kj relates to each ward k. This is calculated by finding the average half

IQR of all specialties that use ward k, and the b̂
(l)
kj values for each ward are given in

Table 7.2.



Chapter 7 Robust Optimisation of the MSS 157

Ward Average operations per session IQR b̂
(l)
kj

Paediatric 0.8 1

ENT/Oral 0.75 1

Vascular 0.5 1

Trauma 1 1

Renal 0 0

General/Liver 0.33 0

Urology 1 1

Colorectal 0 0

Cardiothoracic 0 0

Neurosurgery 0 0

Critical Care 0.4 0

Table 7.2: Values of b̂
(l)
kj for each ward

Note that all values of b̂
(l)
kj are zero, except for the Paediatric, ENT/Oral, Vascular,

Trauma and Urology wards for which b̂
(l)
kj = 1. If b̂

(l)
kj = 0 for ward k, the random

variable b̃
(l)
kj will take the value of the point estimate b

(l)
kj because the symmetric

interval uncertainty set has zero width.

However, from the analysis of the bed count in UHW, it is clear that there

is variation and hence uncertainty associated with the bed requirement on all wards

under consideration. Therefore, b̂
(l)
kj ≥ 1 will be assumed for all wards in order to

be able to use a protection function and to investigate varying levels of uncertainty

associated with the bed requirements. Unless stated otherwise, b̂
(l)
kj = 1 will be

used for all wards k since this is the smallest integer value that b̃
(l)
kj can take, and

is deemed reasonable from the results of the above data analysis of the number of

operations per session.

7.3.3 Parameter Values: Protection Level, Γk

As discussed in Section 7.1, the parameter Γ is used to adjust the robustness of the

proposed model against the level of conservatism of the solution. The protection

level, Γ, controls the price of robustness which is defined as ‘the trade-off between

the probability of constraint violation and the effect to the objective function of

the nominal problem’ [31]. The optimal value of the objective function typically

worsens in order to have a more robust model that attempts to reduce the proba-

bility of constraint violation. Hence the choice of Γ is important in this compromise.
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Bertsimas and Thiele [32] call the parameter Γ the ‘budget of uncertainty’

since it relates to the number of uncertain coefficients in each constraint that are

protected against the uncertainty. Theoretically, the budget of uncertainty can take

values in the range Γi ∈ [0, |Ji|], i.e. you can protect against all of the uncertain

coefficients in constraint i, none of them, or a subset of the uncertain coefficients.

The values of Γi chosen for model implementation are chosen by the decision maker.

They can be chosen to reflect the decision maker’s attitude to uncertainty, or based

on their knowledge of the application.

In the robust counterpart model for the generation of the MSS (Model 7.22),

a value of Γk needs to be chosen for each ward k. Γk will reflect the amount of

uncertain coefficients in the bed constraints, i.e. the bed requirement on ward k

on day l for plan j. It is assumed that Γk is constant for all days for each ward k

considered in the bed constraints.

Due to the enumeration of all possible plans for each specialty, given a vari-

ety of scheduling rules, there are a different number of possible plans for each

specialty in the model. This results in a different number of uncertain coefficients

for each ward in the bed constraints, i.e. |Jk| is different for each ward k. Hence,

the values of Γk are chosen in relation to |Jk| for each ward k.

For all wards k, Γk will be assigned a value that is a certain proportion of

|Jk| so that all wards are protected against the same proportion of uncertainty,

regardless of how many actual uncertain coefficients there are for each ward. The

same proportion of uncertainty will be protected for all wards, i.e. Γk = x% of |Jk|
where x ∈ [0, 100] and is constant for all wards k. This ensures that Γk will take

proportionate values in the range [0, |Jk|] for each ward k. Illustrative examples

of the values of Γk for different proportions of |Jk| are given in Table 7.3. If the

decision maker in the hospital was able to quantify whether one ward is more

uncertain than another ward, x could be varied across wards. Since this information

is not available, the level of Γk will remain constant for all wards k in this model.
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Γk = x% of |Jk|
Ward 5% 10% 25% 50% 80% 100%

Paediatric 1.6 3.1 7.8 15.5 24.8 31.0

ENT/Oral 26.1 52.1 130.3 260.5 416.8 521.0

Vascular 10.6 21.1 52.8 105.5 168.8 211.0

Trauma 0.3 0.6 1.5 3.0 4.8 6.0

Renal 22.8 45.5 113.8 227.5 364.0 455.0

General/Liver 10.8 21.6 54.0 108.0 172.8 216.0

Urology 0.1 0.1 0.3 0.5 0.8 1.0

Colorectal 0.3 0.5 1.3 2.5 4.0 5.0

Cardiothoracic 0.3 0.6 1.5 3.0 4.8 6.0

Neurosurgery 0.1 0.2 0.5 1.0 1.6 2.0

Critical Care 21.4 42.7 106.8 213.5 341.6 427.0

Table 7.3: Illustrative values of Γk for different proportions of |Jk|

An alternative approach to choosing values of Γk for all wards k that ensures that

the probability of constraint violation is bounded by a specified amount is discussed

in Section 7.6.

7.4 Results: Investigating Different Values of b̂
(l)
kj

It is up to the decision maker to decide on the value of b̂
(l)
kj to use in the robust

counterpart. Therefore, it is of interest to see the affect of different values of b̂
(l)
kj on

the optimal schedules and their performance measures.

From further inspection of the distributions of the number of operations per

session for each specialty in Figure 7.4 and Table 7.1, it can be seen that half the

interquartile range of the number of operations per session does not exceed 1.5

operations for all specialties. Therefore, since b̂
(l)
kj must be integer, experiments will

be carried out in order to investigate what happens when b̂
(l)
kj = 2 for the uncertain

coefficients in the bed constraints for all wards k. An extreme case of demand

for beds, b̂
(l)
kj = 3, will also be considered. These values of b̂

(l)
kj correspond to an

additional two or three patients requiring a bed on each day on each ward than

the point estimate b
(l)
kj . This is deemed a sensible and arguably realistic additional

demand for beds; any more than three additionally required beds is considered

unlikely to occur in reality.
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In order to see the effect of changing the values of b̂
(l)
kj , the other parameter

in the robust model, Γk, will be kept constant for all experiments. In the robust

counterpart model of the MSS problem (Model 7.22), b̂
(l)
kj affects the values of the

dual decision variables. These dual decision variables are also present in the bed

constraints, and considering the fact that the bed constraints are already quite

‘tight’ as found from the deterministic model in Section 5.1.2, it is considered the

protection level should be kept quite low to ensure that the bed constraints are not

violated as b̂
(l)
kj is increased. Hence, Γk will take values of 10% of |Jk| for all wards

k, i.e. 10% of the uncertain coefficients will be protected in the model and will be

kept at this level for all experiments.

An initial analysis found that the current MSS used in UHW is not a feasi-

ble solution to the robust counterpart (Model 7.22) when Γk is 10% of |Jk| for all

wards k, and b̂
(l)
kj = 1, 2 or 3. This supports the conclusion from Section 5.1.1,

that the current MSS is not a feasible solution to the deterministic optimisation

problem when the bed constraints are also included in the model. It also implies

that the current MSS used in UHW is not robust against likely variations of bed

requirements as described.

7.4.1 The Effect of b̂
(l)
kj on the Optimal Value

The first thing to note is the reduction in the number of feasible instances of

the robust counterpart as the value of b̂
(l)
kj increases. Out of 1000 instances of

the problem, 38.7% resulted in feasible solutions when b̂
(l)
kj = 1, whereas only 2%

resulted in feasible solutions when b̂
(l)
kj = 2, and no feasible solutions were found

when b̂
(l)
kj = 3. This supports the theory that as b̂

(l)
kj increases, the bed constraints

become ‘tighter’ due to the fact that the dual decision variables need to increase

in order to satisfy constraint 7.22f. Hence, as b̂
(l)
kj increases, the uncertainty about

the values of the bed requirements increases and it becomes harder to find feasible

solutions and schedules for the problem. Subsequent experiments will therefore be

performed for b̂
(l)
kj = 1 and b̂

(l)
kj = 2.

The results for twenty instances of the robust counterpart with b̂
(l)
kj taking

different values are given in Table 7.4. Recall that the objective function is now

maximising the difference between the number of beds required and the number of

beds available, so a negative objective function value implies that there are unused

beds in the system.
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Optimal value

b̂
(l)
kj Mean Std Dev

1 -903.8 36.0

2 -1003.2 43.2

Table 7.4: Results of twenty instances for different values of b̂
(l)
kj

As can be seen in Table 7.4, when b̂
(l)
kj increases from 1 to 2, the average optimal

value of solutions is reduced. A matched pairs t-test was performed at the 5%

significance level on these results, which found that the average optimal value when

b̂
(l)
kj = 2 is statistically significantly lower than when b̂

(l)
kj = 1 (t = 9.895, p < 0.0005).

A higher value of b̂
(l)
kj implies that there is more uncertainty associated with

the bed requirement coefficients since the random variable will take values from a

wider interval. Hence, if there is more uncertainty, then we can expect to see worse

(lower) optimal solutions because different plans will have to be chosen to enable

the tighter bed constraints to be satisfied.

7.4.2 The Effect of b̂
(l)
kj on the Optimal Schedule

The optimal schedules for the same twenty instances were investigated to see if

they are affected by different values of b̂
(l)
kj . Specifically, the spread of simultaneous

sessions of specialties that send their patients to one of the shared wards will be

analysed. As in Sections 5.1.1 and 5.1.2, the five shared wards that have been

identified as pinch-points in the system are investigated. Only specailties that are

not assigned to fixed sessions are considered.

Figure 7.5 shows the average number of sessions that are scheduled simulta-

neously throughout the week for the specialties that send their patients to the

shared wards, for when b̂
(l)
kj = 1 and b̂

(l)
kj = 2. These results represent the average

across twenty instances of the robust counterpart.
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(a) Paediatric ward (b) ENT/Oral ward

(c) General/Liver ward (d) Cardiothoracic ward

(e) CCU

Figure 7.5: Number of specialties that are scheduled simultaneously

As seen in Figures 7.5(a), 7.5(b), 7.5(c) and 7.5(e), more simultaneous sessions are

scheduled at the start of the week (in particular on Monday) when b̂
(l)
kj = 2 than

when b̂
(l)
kj = 1. For the Cardiothoracic ward, the majority of sessions are shifted to

be earlier in the week when b̂
(l)
kj = 2, as shown in Figure 7.5(d).

The higher the value of b̂
(l)
kj , the wider the interval of possible bed require-

ments, which could imply that there are more bed days on the ward. It would

appear that on average, the optimal schedules for a higher value of b̂
(l)
kj schedule

more simultaneous sessions at the beginning of the week. This allows for the greater
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volume of bed days to be serviced throughout the week.

As well as a general trend in scheduling more sessions at the beginning of

the week for a higher value of b̂
(l)
kj , there also appears to be cyclic patterns in all

graphs in Figure 7.5. For both values of b̂
(l)
kj , the peaks in Figures 7.5(a) and 7.5(b)

occur roughly every 2 days. This ties-in with the average LoS for the Paediatric

ward and ENT/Oral wards which is 1.95 days and 2.4 days respectively. For the

other wards, cyclic patterns are evident for both values of b̂
(l)
kj , however, there is no

apparent trend in the change in the cyclic pattern in relation to the different values

of b̂
(l)
kj . It is also not evident that the cycle length is related to the average LoS on

each of these wards as shown in Table 7.5.

Ward
Cycle length Ward average LoS

b̂
(l)
kj = 1 b̂

(l)
kj = 2 (days)

Paediatric 2 2 2.0

ENT/Oral 1 2 2.4

General/Liver 5 2 – 5 5.4

Cardiothoracic 5 2 – 3 5.7

Critical Care 5 5 8.8

Table 7.5: Comparison of cycle length and average length of stay for different
values of b̂

(l)
kj

Overall findings from the graphs in Figure 7.5, indicate that for larger values of b̂
(l)
kj ,

when there is increased uncertainty in the values of the bed requirement coefficients,

more sessions are scheduled simultaneously at the start of the week. This could be

in order to allow enough time for the patients to leave hospital, given the LoS

distributions for each ward, ready for the next week to start and the cyclic MSS

to repeat. The graphs in Figure 7.5 also exhibit a cyclic nature of the number of

simultaneous sessions, however, this appears to be independent of b̂
(l)
kj and is related

to the average LoS on each ward.

7.4.3 The Effect of b̂
(l)
kj on the Expected Bed Shortage

Table 7.6 contains the average expected bed shortage, obtained from the simulation

of 100 instances for when b̂
(l)
kj = 1 and 2. The expected bed shortage is, on aver-

age, slightly higher when b̂
(l)
kj = 2 than when b̂

(l)
kj = 1, and the standard deviation

remains quite similar for the different levels of b̂
(l)
kj . This can be interpreted that

as b̂
(l)
kj increases, more cancellations are expected if the optimal schedules were to

be implemented. A higher value of b̂
(l)
kj effectively means there is more uncertainty
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associated with the values of the bed requirement coefficients, so it is not surpris-

ing that an MSS that includes this additional uncertainty does not result in as few

expected cancellations as for a lower value of b̂
(l)
kj .

b̂
(l)
kj

Expected bed shortage

Mean Std Dev

1 7.8 0.9

2 8.2 0.9

Table 7.6: Expected bed count for different values of b̂
(l)
kj

A paired samples t-test was performed at the 5% significance level on the data

on expected bed shortage from the 100 instances. The difference in expected bed

shortage for when b̂
(l)
kj = 1 and 2 was not found to be significantly different (t =

−1.475, p − value = 0.158). Hence, although the expected bed shortage is slightly

higher for a higher value of b̂
(l)
kj , it is not statistically significantly higher.

7.5 Results: Using Γk = x% of |Jk|

As discussed in Section 7.3.3, values for Γk will be chosen to reflect a certain

percentage, x%, of |Jk| where x is a constant percentage for all wards k.

For all experiments that will investigate the parameter Γk, the value of b̂
(l)
kj is

assumed to be one for all wards k. This reasonable assumption was based on a

mixture of data analysis and the inherent meaning of having uncertain coefficients

in the constraints as discussed in Section 7.3.2.

Similar to the b̂
(l)
kj experiments, an initial check for whether the current MSS

was a feasible solution to the RO problem found that it was not a feasible solution

for varying values of Γk ∈ [0, |Jk|]. This is consistent with results from the

deterministic model in Section 5.1.1.

7.5.1 The Effect of the Protection Level on the Optimal

Value

Figure 7.6 illustrates the effect of the protection level on the optimal value of the

objective function for one instance of the MSS problem. Γk is increased for each ward

in 1% increments from 0 to |Jk|. It can be seen that as the protection level increases,

the optimal value decreases. This illustrates the pay-off, or price of robustness, that
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as the model becomes more robust, the optimal value worsens (until it reaches a

plateau).

Figure 7.6: Optimal value as a function of Γk

An interesting characteristic of Figure 7.6 is the existence of ‘phase transitions’ of

the optimal value as the level of protection increases. As soon as the protection

level is set to 1% of |Jk|, the optimal value decreases rapidly from its value when

Γk = 0 for all wards k. The optimal value then remains constant until 6% of |Jk|,
after which it decreases again to another optimal value when the protection level

is between 7% and 12% of |Jk|. A further jump to a decreased optimal value is

present at 13% of |Jk|, where it remains constant for all levels of protection up

to the maximum protection level Γk = |Jk|. When the graph remains constant

for varying protection levels, it implies that the optimal value is insensitive to Γk,

resulting in only a finite number of optimal values of the objective function.

Further instances of the model were investigated in order to determine whether

this trend was specific to the above instance, or is a typical feature of the robust

problem. Figure 7.7 shows how the optimal value varies with the protection level

for twenty instances of the MSS problem.
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Figure 7.7: Optimal value as a function of Γk for 20 instances

The results of twenty instances of the robust MSS problem, as shown in Figure 7.7,

confirm that the optimal value is a non-increasing function of the level of protection

and step changes exist as the protection level increases. For all twenty instances of

the MSS problem in Figure 7.7, there are several optimal values when the protection

level takes values between 0 and 20% of |Jk|. However, the optimal value remains

constant when the protection level is higher than 20% of |Jk| for these twenty in-

stances. This implies that it is not necessary to implement full protection, or indeed

any more protection than 20% of |Jk|, against the uncertain bed requirement coeffi-

cients, since the optimal value is insensitive to changes in higher values of Γk. The

size of the effect of the protection level on the optimal value is shown in Table 7.7

for the same problem instance as in Figure 7.6.

Γk = x% of |Jk| Optimal value % reduction

0% -870 0.00

1% -915 5.17

6% -915 5.17

7% -920 5.75

12% -920 5.75

13% -937 7.70

100% -937 7.70

Table 7.7: Optimal value reduction as a function of the protection level
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When the protection level is set to 0% of |Jk|, there is no protection applied to any

of the uncertain bed constraints. If Γk = 0 for all wards k, the optimal value of

the robust counterpart is the same as that of the nominal problem. This is due to

the fact that there is no protection function in any of the bed constraints in Model

7.22, causing them to become equivalent to the bed constraints in the nominal

problem. For validation purposes, this has been checked for many instances of the

MSS problem for which the optimal value of the objective function and chosen

plans for each specialty are the same for when Γk = 0 for all wards k as the nominal

problem.

As soon as the protection level is increased to 1% of |Jk| for all wards k, the

optimal value is reduced by 5.17% for this particular instance. However, when

the protection level is further increased to the maximum protection, the optimal

value is only marginally worsened to 7.70%. This is a relatively small reduction in

optimal value for full protection against the uncertain bed constraints. Bertsimas

and Thiele [32] discuss that this is an advantage of this approach to RO.

7.5.2 The Effect of the Protection Level on the Feasibility

of Solutions

Given that there are a finite number of optimal schedules for each level of Γk, it is

of interest to check whether these different schedules remain optimal for different

values of Γk. The same instance of the MSS problem as in Figure 7.6 will be used

for this experiment. There are four different optimal schedules for this instance

as Γk ranges from 0 to |Jk| for all wards k. The solution to the nominal problem

(when Γk = 0 for all wards k) was found to be an infeasible solution to the robust

counterpart problem for all values of Γk > 0. The next optimal solution that was

found for values of Γk between 1% and 6% of |Jk| was found to be an infeasible

solution to the problem when values of Γk > 7% of |Jk| were used. However, this

solution was found to be feasible for the problem when Γk = 0 for all wards k.

Similar comparisons were made for all four of the optimal solutions found for

this instance of the MSS problem, and an interesting trend emerged. Solutions

found for a certain protection level were also feasible solutions for lower levels of

protection, but were infeasible for higher levels of protection. This trend is depicted

in Figure 7.8 for this instance of the MSS problem.
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Figure 7.8: Feasibility of solutions for varying levels of Γk

For twenty instances of the problem, it was found that only one optimal solution

existed for each level of Γk from 5% to 20% of |Jk|.

7.5.3 The Effect of the Protection Level on Optimal Sched-

ules

As seen in Sections 7.5.1 and 7.5.2, different optimal solutions are obtained for

different protection levels, so it is of interest to investigate how the optimal

schedules actually change for different protection levels. In particular, the spread

of the simultaneous sessions throughout the week is analysed.

The levels of protection that were chosen for this analysis were 1%, 5%, 10%, 15%

and 20% of |Jk|. Γk > 20% of |Jk| was not investigated because it was found in Sec-

tion 7.5.1 that the optimal solutions become insensitive to Γk once Γk > 20% of |Jk|.

Figure 7.9 shows the average number of sessions (over 100 instances) that

are scheduled simultaneously throughout the week for the specialties that send their

patients to shared wards. The number of simultaneous sessions does not include

the specialties that have fixed sessions in the MSS.
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(a) Paediatric ward (b) ENT/Oral ward

(c) General/Liver ward (d) Cardiothoracic ward

(e) CCU

Figure 7.9: Number of specialties that are scheduled simultaneously for different
protection levels

For all wards in Figure 7.9, an increase in Γk does not seem to affect the overall

trend of the number of simultaneous sessions throughout the week as was observed

for an increase in b̂
(l)
kj in Section 7.4.2. However, an increase in Γk does seem

to affect the magnitude of the variation in the number of simultaneous sessions

throughout the week. Particularly for the Paeds, ENT/Oral and Cardiothoracic

wards, the cyclic pattern in the graphs becomes more pronounced as Γk is increased

from 1% of |Jk| through to 20% of |Jk|. Figure 7.9(c) for the General/Liver ward

does not show much change in the cyclic pattern when Γk is increased. For the



Chapter 7 Robust Optimisation of the MSS 170

CCU in Figure 7.9(e), the shape of the cyclic pattern differs for higher values of

Γk, but there is clearly a more pronounced cyclic shape with peaks on Tuesday and

Thursday when Γk = 15% and 20% of |Jk|.

As Γk increases, more protection is applied to the uncertainty in the con-

straints, and it would appear from the graphs in Figure 7.9 that a more pronounced

cyclic pattern in the number of simultaneous sessions is adopted by the optimisation

model in order to be able to provide this additional protection.

These peaks in the number of simultaneous sessions, however, do not seem

to correspond to the average LoS for each ward. This is illustrated in Table 7.8 for

when Γk = 20% of |Jk| .

Ward Cycle length (days) Ward average LoS (days)

Paediatric 2 2

ENT/Oral 2 2.4

General/Liver - 5.4

Cardtiothoracic - 5.7

Critical Care 2 8.8

Table 7.8: Simultaneous sessions cycle length and ward length of stay when
Γk = 20% of |Jk|

7.5.4 The Effect of the Protection Level on the Expected

Bed Shortage

Table 7.9 contains the average expected bed count that was obtained from the

simulation of 100 instances for different protection levels. As the level of protection

increases, the average expected bed shortage decreases.

Γk 5% 10% 15% 20%

Average expected bed shortage 8.36 8.07 7.94 7.98

Table 7.9: Expected bed shortage for different protection levels

A Friedman test was conducted in order to determine whether there is a difference

in expected bed count for different levels of protection (Γk). The conclusion that,

at the 5% significance level, the expected bed count is statistically significantly

different between different levels of protection (ranging from 5% to 20% of |Jk|) can

be drawn, χ2(3) = 30.155, p− value < 0.0005.
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Post hoc analysis using a series of Wilcoxon signed-rank tests was conducted

at the 5% significance level in order to examine where the difference(s) in expected

bed count actually occur. A Bonferroni correction was used, giving each pairwise

comparison a significance level of 0.8%. The results of this analysis are summarised

in Figure 7.10.

Figure 7.10: Results of post hoc tests for differences in expected bed shortage
between different levels of Γk

As can be seen in Figure 7.10, the post hoc analysis indicates that there is a sig-

nificant difference in the expected bed shortage between the lowest value of Γk

considered (5% of |Jk|) and all values of Γk higher than 10% of |Jk|. These results

suggest that in order to significantly affect the expected bed shortage, the value of

Γk should either be less than 5% or higher than 10%.

7.6 Results: Choosing Γk for a Given Bound on

the Probability of Constraint Violation

The choice of Γk for each ward k is the responsibility of the decision maker, and can

reflect the subjective views on uncertainty held by the decision maker. In the absence

of any information on the uncertain system, it is not clear how to choose the values

of Γk. An approach is proposed in [31] whereby the value of Γi for each constraint

i is based on bounding the probability of constraint violation. This approach is less

subjective, and will be investigated in this section.
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7.6.1 Bound for the Probability of Constraint Violation

Following the theory of Bertsimas and Sim [31], under the assumption that the

uncertain coefficients take values in the interval [aij − âij, aij + âij], they prove that

the probability of constraint violation, P (a′ix > bi), is bounded by a function of Γi

such that:

P (a′ix > bi) ≤ B(n,Γi)

where the bound B(n,Γi) is defined as:

B(n,Γi) =
1

2n

{
(1− µ)

(
n

bνc

)
+

n∑
l=bνc+1

(
n

l

)}
(7.23)

where n = |Ji|, ν = (Γi + n)/2, and µ = ν − bνc.

Although this bound is the best possible, it is suggested in [31] to use an-

other bound, since Bound (7.23) could involve computational difficulties in

evaluating the sum of combination functions for large n. The bound suggested in

[31] takes the form:

B(n,Γi) ≤ (1− µ)C(n, bνc) +
n∑

l=bνc+1

C(n, l) (7.24)

where

C(n, l) =


1

2n
, if l = 0 or l = n,

1√
2π

√
n

(n−l)l exp

(
n log

(
n

2(n−l)

)
+ l log

(
n−l
l

))
, otherwise.

The decision maker may wish to define that the probability of constraint violation

for constraint i should not exceed εi. By letting B(n,Γi) = εi, a lower bound for the

value of Γi for constraint i can therefore be found that ensures that the probability

of constraint violation is at most εi.

For the robust counterpart, values of Γk will be chosen for each ward k in

order that the probability of constraint violation is less than a specified bound εk.

There can be a different bound for each ward, allowing the hospital decision maker

to be more confident of constraint satisfaction on one ward than another. However,

in the absence of information on bounds of probability of constraint violation for

each individual ward, the same εk will be chosen for all wards k.
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7.6.2 Values of Γk for Bounds on the Probability of Con-

straint Violation

It is not possible to rearrange Bound 7.24 to find an equation for Γk, so values of

Γk will be selected to one decimal place in order to obtain a suitable bound on the

probability of constraint violation. Values of εk ranging from 0.01 to 0.85 will be

investigated in this section since Γk = 0 for all wards when εk > 0.85. The values

of Γk for each ward k that correspond to a certain value of εk are shown in Figure

7.11 below.

Figure 7.11: Values of Γk for varying bounds on probability of constraint violation

As can be seen in Figure 7.11, the general trend for each ward is that as ε

(the bound on the probability of constraint violation) increases, the value of Γk

decreases. This implies that as the decision maker becomes more willing to accept

constraint violation, the model requires protection against fewer of the uncertain

coefficients in each of the bed constraints for each ward. Wards with a higher

number of uncertain coefficients in their bed constraints have higher values of Γk

for lower bounds on the probability of constraint violation. The values of Γk for all

wards steadily decrease as the bound on the probability increases, and eventually

converge to Γk = 0 for all wards k once ε reaches 0.85.

There are two wards that are slight exceptions to this trend; Urology and

Neurosurgery. Notice that in Figure 7.11, the value for Urology remains constant

at Γk = 1 until ε exceeds 0.5, and the value for Neurosurgery remains constant at
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Γk = 2 until ε exceeds 0.2. In order to achieve lower values of ε, higher values of

Γk are required, however, for these two wards, Γk is capped at its upper bound n:

one for Urology and two for Neurosurgery. Hence, the lowest possible value for the

bound on the probability of constraint violation is ε = 0.5 for Urology and ε = 0.25

for Neurosurgery. These two ‘special case’ wards both have a very small number of

uncertain coefficients in their bed constraints, which is a consequence of the very

restrictive scheduling rules for these specialties that only allow for the generation

of one and two possible plans respectively.

There appears to be a cross-over point in Figure 7.11 at ε = 0.5, where the

value of Γk decreases for some wards faster than other wards causing an intersection

of the lines. This is shown in more detail in Figure 7.12. As ε exceeds 0.5, five out

of the eleven wards have Γk values of zero. Higher values of ε cannot be used for

these wards, since Γk is at its minimum allowed value.

Figure 7.12: Values of Γk for varying bounds on probability of constraint violation
for ε ≈ 0.5

7.6.3 The Effect of Epsilon on the Optimal Value

We have seen what effect the required bound on the probability of constraint vi-

olation has on the value of Γk, however, now its effect on the objective function

will be investigated. In Figure 7.13, the optimal value of the objective function for

one instance of the MSS problem is plotted for various bounds on the probability
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of constraint violation. It can be seen that as the bound on the probability of con-

straint violation increases, the optimal value of the MSS problem increases. In other

words, as the decision maker becomes more willing to accept constraint violation,

better optimal values are found since we are interested in maximising the objective

function. Step-changes are also evident in this graph due to the finite number of

optimal solutions for varying values of Γk.

Figure 7.13: Optimal value as a function of the bound on the probability of
constraint violation

Again, there is a pay-off to be struck between bounding the probability of constraint

violation and achieving ‘good’ optimal values. A smaller level of ε implies a more

robust solution will be produced, since as ε decreases, the required values of Γk

increase, implying that more uncertainty is being protected against in the solution.

Table 7.10 shows that although the optimal value only becomes compromised for

values of ε ≤ 0.5, even to have a probability guarantee of at most 1% chance of

constraint violation, the optimal objective value is only reduced by 7.7%. We can

conclude that the quality of the optimal solutions are only marginally affected when

ensuring low bounds on the probability of constraint violation.
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ε Optimal value Reduction (%)

(Γk = 0) -870

0.85 -870 0.00

0.80 -870 0.00

0.75 -870 0.00

0.70 -870 0.00

0.65 -870 0.00

0.60 -870 0.00

0.55 -870 0.00

0.50 -902 3.68

0.45 -920 5.75

0.40 -920 5.75

0.35 -920 5.75

0.30 -937 7.70

0.25 -937 7.70

0.20 -937 7.70

0.15 -937 7.70

0.10 -937 7.70

0.05 -937 7.70

0.01 -937 7.70

Table 7.10: Optimal value reduction as a function of the bound on the probability
of constraint violation, ε

7.6.4 An Evaluation of the Bound on the Probability of

Constraint Violation

The proposed bound on the probability of constraint violation, Bound 7.24, is com-

pared to the ‘observed’ probability of constraint violation from the simulation of

the optimal schedules for varying levels of protection. Γk will take values ranging

from 1% of |Jk| to 20% of |Jk|; no higher since the problem becomes insensitive

to Γk, resulting in the same optimal solutions being simulated. The probability of

constraint violation is found for the bed constraints for all wards over all days, and

is calculated for each simulation in the following way:

Probability of constraint violation =
No. of violated bed constraints

No. of bed constraints

In Figure 7.14, the bound on the probability of constraint violation as calculated

using Bound 7.24 and the probability of constraint violation from the simulation
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results are compared.

Figure 7.14: Calculated bound and simulated probability of constraint violation

As expected, the theoretical bound for the probability of constraint violation

decreases as Γk increases, implying that a more robust model will result in fewer

expected violated constraints. However, the probability of constraint violation

found from the simulation is significantly lower than that predicted by Bound

7.25. This is not unexpected based on insights from [31], however, the scale of

the difference between the theoretical and simulated results is surprising, as is the

relative constancy of the simulated probabilities. The simulated probability of

constraint violation has a mean value of 0.04, with a standard deviation of 0.004.

The simulated probability of constraint violation was found to be small and

insensitive to Γk. This could be due to the fact that there are multiple protection

levels in the robust counterpart, each of which have different absolute values on

each ward k. Previous implementations of this bound in [31] involve just one

constraint and thus one value of Γ. The probability of constraint violation has also

been analysed for just one ward, for example the Paediatric ward, by using different

values of ΓPaeds ∈ [0, |JPaeds|] and Γk = 0 for all other wards k. This analysis

also resulted in the probability of constraint violation for the Paediatric ward to

remaining virtually constant for all values of ΓPaeds.

It is suspected that the interaction between the different absolute values of
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Γk for each ward k affects the overall probability of constraint violation for all

wards over all days, rendering the comparison with Bound 7.24 inappropriate. For

this reason, a related measure of how prevalent constraint violation was in the

simulations was also investigated. The percentage of simulations in which at least

one bed constraint was violated was analysed for 100 instances, the results of which

are shown in Table 7.11.

Gamma = x% of Jk % simulations

1% 87.7%

5% 87.5%

10% 86.8%

15% 86.3%

20% 86.5%

Table 7.11: Average percentage of simulations with at least one violated bed
constraint as a function of Γk

As can be seen in Table 7.11, the average percentage of simulations in which at least

one bed constraint is violated decreases slightly as the protection level increases.

This implies that as a more robust model is adopted, it becomes less likely that any

bed constraints will be violated in the simulation. It does not, however, provide

any information on how many constraints are violated, and thus it does not give a

measure of the scale of the problem of violated bed constraints in the simulation.

In conclusion, Bound 7.24 may be used as a guide for the decision maker

when choosing values of Γk for all wards k. However, it has been shown not to be a

tight bound on the resulting simulated probability of constraint violation, and thus

should not be relied upon.

7.7 Conclusion

This chapter has presented the development of a robust counterpart formulation

of the deterministic optimisation model for the construction of the MSS. This RO

technique has been based on the theory developed by Bertsimas and Sim [31], and

has been shown to be a suitable method for incorporating uncertainty about model

coefficients within the optimisation model as discussed in Section 7.2.

An advantage to this RO technique is the use of a tuning parameter, Γ,

within the model. This tuning parameter can reflect the decision maker’s attitude
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toward uncertainty, thus varying the conservatism of the solution. A number of

experiments have been carried out in Sections 7.4 and 7.5 in order to determine

how the parameters chosen by the decision maker affect the solutions obtained, and

the impact on key output measures relevant to the hospital. Key findings include

the existence of a trade-off between obtaining a more robust solution versus the

detrimental affect on the optimal objective function value, more robust schedules

result in a lower expected bed shortage in the simulations, and a characteristic of

more robust schedules is a clearly defined cyclic pattern of simultaneous sessions in

the MSS for specialties that send their patients to shared wards.



Chapter 8

Scenario-Based Optimisation of

the MSS

Scenario-based optimisation has been identified in Section 6.4 as a data-driven and

logical way to deal with uncertainty in optimisation problems. When there exist

a large number, possibly an infinite number, of possible realisations of uncertain

parameters, a natural approach is to use ‘data-driven’ techniques that use these ob-

servations as ‘scenarios’ of uncertainty. In particular, the approach first developed

by Calafiore and Campi [44] finds a solution that is optimal for all instances of un-

certainty included in the optimisation problem (represented by known scenarios),

and can be shown to remain feasible for the other omitted instances of uncertainty

with high probability. This chapter explores the use of this scenario-based optimi-

sation approach for the construction of the MSS, and is compared with the robust

counterpart optimisation method used in Chapter 7.

8.1 Scenario-Based Constraint Sampling Optimi-

sation

The approach first proposed by Calafiore and Campi in [44] considers scenarios

that are based on constraint sampling in order to perform optimisation involving

uncertainty. A finite set of constraints, chosen at random from all possible realisa-

tions of uncertainty, are included in the optimisation model. The model and theory

developed by Calafiore and Campi is presented and extended in this section.

180
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8.1.1 Sampled Convex Programs

Consider the following convex linear optimisation problem for which data uncer-

tainty is assumed only in the constraints and is parameterised by an uncertainty

parameter, δ ∈ ∆ ⊆ Rl

min
x∈Rn

cTx

s.t. f(x, δ) ≤ 0

x ∈ X

(8.1)

where X is a convex and closed set. A single constraint is considered here without

loss of generality, since multiple constraints fi(x, δ) ≤ 0, i = 1, ..,m can be

converted into a single constraint by taking f(x, δ) = maxi=1,..,m fi(x, δ) ≤ 0.

Each realisation of uncertainty, δ, results in a different constraint, and hence

could result in a different optimal solution to Problem (8.1) being found. It is

assumed that δ is a random variable with probability P , implying that different

realisations of uncertainty occur with a known probability. From all possible

instances, N samples, δ(1), ..., δ(N), are chosen randomly and used to construct the

so-called sampled convex program, SCPN :

min
x∈Rn

cTx

s.t. f(x, δ(i)) ≤ 0, ∀ i = 1, ..., N

x ∈ X

(8.2)

The probability, P , according to which the uncertainty is sampled, may have

different meanings in different problems. It could simply be the probability of

occurrence of the different instances of δ, or it could reflect the importance placed

on the different instances by the decision maker. Either way, the probability P may

not be explicitly known, in which case the N sampled constraints are found directly

from observations of the uncertainty.

By constructing the SCPN , the one uncertain constraint in the original prob-

lem (8.1) is now represented by N linear constraints. The SCPN is therefore a

deterministic representation of the original stochastic problem and remains in

standard convex program form. This is an advantage over some approaches in RO

in which the robust counterparts do not maintain computational tractability (see

Section 6.3).

Despite this advantage over RO, a price is paid in this scenario approach

due to the fact that a solution found from considering N random scenarios of
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uncertainty is feasible for many instances of uncertainty, δ, but not all. Hence a

critical question is: how many scenarios need to be included in the SCPN in order

to guarantee that the resulting optimal solution violates only a small proportion of

the constraints that represent all instances of δ?

Calafiore and Campi [44] use statistical learning techniques to provide a bound on

the number of total, omitted constraints that are possibly violated by the SCPN . It

was shown in [44] that the number of violated constraints rapidly decreases as the

number of included constraints increases. Let the probability of constraint violation

be defined by,

V (x) = P (δ ∈ ∆ : f(x, δ) > 0).

The main result from [44] is an upper bound of the probability of constraint

violation in terms of the number of scenarios, N . The result is presented as follows.

Let x̂N be the unique optimal solution to the SCPN . x̂N is itself a random

variable due to the fact that the constraints f(x, δ(i)) ≤ 0 are randomly selected,

and hence depend on the chosen δ(1), ..., δ(N). Thus it was proved in [44] that the

expected probability of constraint violation can be bounded as follows:

EPN [V (x̂N)] ≤ n

N + 1
, (8.3)

where n is the dimension of the decision variable x, and PN is the probability

measure in the space ∆N . It can be seen that the expected probability of violation

of x̂N is proportional to the dimension of the decision variable n, and tends to zero

linearly as N increases.

A parameter, ε ∈ [0, 1], is introduced as an upper bound for the probability

of constraint violation. A solution x ∈ X is defined to be an ε-level robustly feasible

solution if V (x) ≤ ε. Using Bound (8.3), it was shown in [44] that the optimal

solution x̂N of SCPN is ε-level robustly feasible with probability of at least 1 − β,

where β ∈ [0, 1], when

N ≥ n

εβ
− 1. (8.4)

Bound (8.4) is independent of the probability, P , of each scenario occurring and

has been shown in [44] to hold irrespective of P . Hence, this bound still applies if

P is unknown, as is common in many applications.

In later work, Calafiore and Campi [45] generalise Bound (8.3) further, since
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Bound (8.4) is linear in β−1 and increases quickly for smaller, more desirable, values

of β. The more generalised bound for the required number of scenarios is:

N ≥
⌈

2

ε
ln

1

β
+ 2n+

2n

ε
ln

2

ε

⌉
(8.5)

Bound (8.5) results in a smaller number of required scenarios than for Bound (8.4),

whilst maintaining the desired probabilistic level of the solution to the SCPN through

the use of ε and β. An exact formulation of the number of required scenarios that

ensures that the probability of constraint violation does not exceed its desired level

was later found by Campi and Garatti [46], and is given by Bound (8.6).

P(V (x̂N) > ε) ≤
n−1∑
i=0

(
N

i

)
εi(1− ε)N−1 (8.6)

A trade-off exists between the desire to set the probability of constraint violation,

ε, at a small level, and the optimal performance of the SCPN . Prior to running

the optimisation, a-priori parameters ε and β are recommended in [44] to not

be chosen too small due to limitations on the number of constraints that opti-

misation software can handle. Before running the optimisation, it is guaranteed

by the above bounds that if N samples are drawn, the solution of the sampled

convex program will be ε-level robustly feasible, with probability at least 1 − β.

The closer the value of β to zero, the higher the number of required scenarios,

N . However, Calafiore and Campi [45] comment that β plays a very marginal

role in practice. This is due to β appearing under the sign of a logarithm in

the Bound (8.5). Hence β can be chosen as small as 10−10 or even 10−20. In

numerical examples in [44, 45], β takes values ranging from 0.1 to 0.0001. Once a

solution to the problem has been obtained, an a-posteriori calculation of the feasi-

bility level can be made through the use of simulation techniques as discussed in [44].

Calafiore [42] manipulates Bound (8.6) to provide a sufficient bound for the

number of scenarios, N , that are required in order to guarantee that the probability

of violation does not exceed ε with low probability, β, where ε, β ∈ [0, 1]. Let the

right-hand side of Bound (8.6) be denoted by the function BC(ε). Then the aim is

to find N such that:

P(V (x̂N) > ε) ≤ BC(ε) =
n−1∑
i=0

(
N

i

)
εi(1− ε)N−1 ≤ β. (8.7)
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The Chernoff bound on the lower binomial tail [52] was then used to approximate

BC(ε) to:

BC(ε) ≤ e−
(Nε−n+1)2

2Nε , forNε > n. (8.8)

An explicit and sufficient bound for the number of scenarios, N , can then be found

to be:

N ≥ 2

ε

(
ln

1

β
+ n

)
(8.9)

8.1.2 Sampled Non-Convex Programs

All results and bounds on the number of required scenarios discussed in Section 8.1.1

relate to convex optimisation problems. Model 4.18 for the construction of the MSS

is, however, a non-convex combinatorial optimisation problem due to the binary na-

ture of the decision variables. Esfahani et al. [74] extend the analysis to non-convex,

scenario-based optimisation. The reader is referred to Esfahani et al. for much of

the underlying set-theoretic details which have been omitted here for sake of brevity.

Given a sampled convex program, SCPN , as in Problem (8.2), consider a

family of m solutions to the SCPN which are indexed by k, i.e.,(Xk, fk, εk)mk=1.

Here Xk are closed and convex sets for k = 1, ..,m, fk are convex functions for

k = 1, ..,m, and εk is the constraint violation level for SCP
(k)
N , where εk ∈ [0, 1].

The sampled non-convex program (SNCP) is given in Model 8.10.

min cTx

s.t. x �
m⋃
k=1

SCP
(k)
N

(8.10)

where x � SCPN means that x is a feasible solution of SCPN (conversely, x 2 SCPN

means that x is not a feasible solution of the SCPN). This means that the SNCP

seeks an optimal solution, x∗N,k say, that is feasible for at least one of the m SCPN

subprograms.

Adapting the methodology taken from Theorem 4.1 of Esfahani et al. [74]

to the SCPN problem, we extend the Bound (8.6) for a non-convex problem as

follows:

Theorem: Feasibility of the SNCP.

The probability of constraint violation, V (x∗Nk), at the ε-level, ε = (ε1, . . . , εm) where

ε ∈ [0, 1]m, for the SNCP with the optimal solution x∗Nk, where x ∈ Rn, when N
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constraints are included is,

P (V (x∗Nk) > ε) ≤
m∑
k=1

n−1∑
i=0

(
N

i

)
εik (1− εk)N−i (8.11)

Proof. Let x∗Nk be the optimal solution of SCP
(k)
N , then

P
(
x∗Nk 2 SCP

(k)
N

)
= P (V (x∗Nk) > ε)

≤
n−1∑
i=0

(
N

i

)
εi (1− ε)N−i ,

from Theorem 1 of Campi and Garatti [46].

Let x∗N be the optimal solution of SNCPN , then x∗N ∈ (x∗Nk)
m
k=1 since the opti-

mal solution for SNCPN is feasible for at least one of the k subproblems SCP
(k)
N ,

(k = 1, . . . ,m).

Thus,

P (x∗N 2 SNCPN) ≤ PN
(
∃k ∈ (1, . . . ,m) |x∗Nk 2 SCP

(k)
N

)
≤

m∑
k=1

PN
(
x∗Nk 2 SCP

(k)
N

)
≤

m∑
k=1

n−1∑
i=0

(
N

i

)
εik (1− εk)N−i

Using the results from this scenario approach for non-convex problems, an explicit

bound on the number of required scenarios, similar to that of Bound (8.9) is now

derived. In the non-convex setting, let the right-hand side of Bound (8.11) be

denoted by BNC(ε) and bounded by β similarly as in Bound (8.7).

P(V (x̂N) > ε) ≤ BNC(ε) =
m∑
k=1

n−1∑
i=0

(
N

i

)
εi(1− ε)N−1 ≤ β (8.12)

Note that the function for the non-convex problem, BNC(ε), is the sum of the func-
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tion for the convex problem, BC(ε), for m subprograms, since

BNC =
m∑
k=1

n−1∑
i=0

(
N

i

)
εik (1− εk)N−i

=
m∑
k=1

BC(ε)

= mBC(ε)

where m is the number of convex subprograms used to approximate the original

non-convex program. Using the same approximation of BC(ε) as in Bound (8.8),

BNC(ε) is therefore approximated by,

BNC(ε) ≤ me−
(Nε−n+1)2

2Nε , forNε > n. (8.13)

Substituting this into Bound (8.12), an explicit bound for the number of scenarios,

N , can be derived as follows:

me−
(Nε−n+1)2

2Nε ≤ β ⇔ (Nε− n+ 1)2

2Nε
≥ ln

(
β

m

)−1

⇐ 1

2
Nε+

(n− 1)2

2Nε
+ 1 ≥ ln

(
β

m

)−1

+ n

⇐ 1

2
Nε ≥ ln

(
β

m

)−1

+ n

⇐ N ≥ 2

ε

(
ln

(
β

m

)−1

+ n

)
(8.14)

Hence, the number of scenarios, N , to include in the sampled non-convex program

in order to guarantee that the probability of constraint violation does not exceed ε

with probability at most β is given by Bound (8.14).

8.2 Developing a Scenario-Based Optimisation

Model for the MSS

Scenarios will be used to represent possible realisations of the uncertain values of

bed requirements in the bed constraints. If N scenarios are used in the optimisation

model, it can be thought of as considering N random weeks of bed requirements

in order to construct an optimal MSS. Multiple scenarios will be used in the

optimisation model to generate robust schedules with bounds on the probability of

constraint violation.
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If more than one scenario is being considered, the objective function and

bed constraints in Model 4.18 need to be modified in order to take into account

the additional bed constraints for each scenario. Model 8.15 is the scenario-based

optimisation model for the construction of the MSS that includes the scope for

bed transference. Note that when the number of scenarios, N , is equal to one (i.e.

σ = 1), the scenario-based model reduces to Model 4.18.

min
N∑
σ=1

p∑
k=1

q∑
l=1

(d
(l)
k −

n∑
j=1

b
(l)
kjσxj) (8.15)

s.t.
n∑
j=1

aijxj = 1 ∀ i = 1, ..., s

n∑
j=1

aijxj ≤ 1 ∀ i = s+ 1, ...,m

n∑
j=1

b
(l)
kjσxj −

p∑
v=1

wkvz
(l)
vkσ +

p+1∑
v=1

wvkz
(l)
kvσ = d

(l)
k ∀ k = 1, ..., p,

l = 1, ..., q,

σ = 1, ..., N
p∑

k=1

p∑
v=1

wkvz
(l)
vkσ ≤

p∑
k=1

p+1∑
v=1

wvkz
(l)
kvσ ∀ l = 1, ..., q,

σ = 1, ..., N

xj ∈ {0, 1} ∀ j = 1, ..., n

z
(l)
kvσ ≥ 0 and integer ∀ k = 1, ..., p, v = 1, ..., p+ 1,

l = 1, ..., q, σ = 1, ..., N

The scenario-based approach is the equivalent of having multiple B matrices in a

single optimisation model. Each B matrix is generated using the conditional prob-

ability of failure approach as described in Section 4.2.4. The algorithm used to

generate and append multiple B matrices onto the bed constraints in the optimisa-

tion model is given in Algorithm 7.

Algorithm 7 Generation of B Matrix for multiple scenarios

Let N = number of scenarios

for i = 1 to N do

Generate the B matrix, Bi, using Algorithm 6, for scenario i

Append Bi matrix onto the overall B matrix

end for
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8.2.1 Number of Scenarios Required

The number of scenarios, N , that are required in the sampled program to ensure

that the probability of constraint violation does not exceed ε ∈ [0, 1] with probability

at least 1−β, forβ ∈ [0, 1], according to Bound (8.14) is investigated in this section.

Recall that Bound (8.14) is given by:

N ≥ 2

ε

(
ln

(
β

m

)−1

+ n

)

The parameters defined by the decision maker are ε and β. Let the upper bound

for the probability of constraint violation be set at ε = 0.1, and let β = 0.001.

The values of the other parameters in the bound are found from the struc-

ture of the optimisation program. Since Model 8.15 is a non-convex optimisation

problem, it will be approximated by m convex subproblems, as discussed in

Section 8.1.2. For non-convex scenario problems involving binary decision vari-

ables, Esfahani et al. [74] set the number of subproblems to be m = 2l, where

l is the dimension of the decision variable. When applied to the construc-

tion of the MSS in UHW, the dimension of the binary decision variable, x, is

n = 1449. Hence, the number of subprograms, m, required to approximate the

sampled non-convex program into a union of sampled convex programs is 2n = 21449.

Substituting these values into Bound (8.14), the number of required scenar-

ios is:

N ≥ 2

0.1

(
ln

(
0.001

21449

)−1

+ 1449

)
N ≥ 49, 203 (8.16)

Bound (8.16) implies that an extremely large number of scenarios are required in

order to ensure the chosen levels of ε and β are guaranteed in the solution. In the

sampled program, a scenario relates to a B matrix, so in practice there would be

approximately 77 × N constraints in the optimisation problem. This leads to very

constrained problems, as well as large computer memory requirements. As will be

discussed in Section 8.3.1, even when there are twenty scenarios (N = 20) included

in the optimisation, the probability of finding an instance with a feasible solution

reaches as small as 0.002. Therefore, it is considered impractical to use the number

of scenarios that are suggested by Bound (8.16) in the sampled program for the
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construction of the MSS.

8.3 Results

The results of optimal schedules found from 100 instances were collected to investi-

gate the effects of increasing the number of scenarios in the scenario-based optimi-

sation model. The same values for model parameters that were used in the baseline

scenario in Section 5.1.2 are used here when multiple scenarios are considered. We

have checked and validated that the results for the one scenario problem are the

same for the baseline scenario in Section 5.1.2. The current MSS used in UHW was

not found to be a feasible solution to the single scenario problem in Section 5.1.1,

so will not be investigated here for multiple scenarios.

8.3.1 The Effect of N on the Feasibility of Solutions

The results are analysed in order to examine the feasibility of the problem when

multiple scenarios are included in the optimisation. Figure 8.1 shows the relationship

between the number of scenarios and the resulting percentage of problem instances

that did not have a feasible solution.

Figure 8.1: Percentage of problem instances with no feasible solutions

As can be seen in Figure 8.1, the percentage of problem instances that result in no

feasible solutions increases as the number of scenarios increase. This is as expected

due to the increase in the number of constraints when additional scenarios are
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included in the optimisation. As more scenarios are included in the optimisation

model, a smaller feasible solution space is formed, causing a feasible solution less

likely to be found.

When more than 10 scenarios are included in the optimisation model, a fea-

sible solution is found less than 10% of the time. An instance in which a feasible

solution exists is very rarely found (approximately around 0.2% of the time) when

20 scenarios are used. Hence, a maximum of 20 scenarios will be considered in all

subsequent experiments.

8.3.2 The Effect of N on the Computational Time

The effect of including multiple scenarios in the optimisation model on the com-

putational run time to perform the optimisation and simulation is shown in Figure

8.2.

Figure 8.2: Run time as a function of the number of scenarios

As can be seen in Figure 8.2, the run time, normalised to one scenario, increases

virtually linearly as the number of scenarios in the optimisation increases. Despite

the reduced feasible solution space resulting from using additional scenarios, the

run time of the model remains acceptable even when the maximum number of 20

scenarios is used (average of 2.4 seconds on a PC running Intel Core i3-2100 at 3.10

GHz with 4 GB RAM).
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In order to determine a statistical relationship between the number of sce-

narios and the run time, a test on the Spearman correlation coefficient was

performed. It is clear from Figure 8.2 that a positive relationship exists between the

two, so a one-tailed test at the 5% significance level was performed. A correlation

coefficient of r = 0.863 was found to be statistically significant at the 5% level.

8.3.3 The Effect of N on the Optimal Value

The average optimal value of the objective function per scenario, or equivalently

the average number of unused bed days per week, is shown in Figure 8.3 for an

increasing number of scenarios. The 95% confidence intervals are also shown to give

an indication of the variation in the optimal value throughout the 100 instances

investigated.

Figure 8.3: Optimal value as a function of the number of scenarios

As the number of scenarios, N , increases, the average optimal value per scenario

of the objective function increases, with an increasing tendency to flatten off with

increasing N . It is more intuitive to discuss the objective value in terms of the

objective value per scenario since this reflects the number of unused bed days over

all of the wards over one week, not N weeks. Using the definition of the objective

function, this is equivalent to the average number of unused bed days over all wards

increasing as the number of scenarios increases. Even though we are minimising

the objective function, an increase in the number of unused bed days is desirable as

this gives the potential for more patients to use the remaining bed days. In each of
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these multiple scenario experiments, the throughput of patients remains the same

since the number of patients operated on per session remains constant. The LoS

distributions are unaltered for each of these scenario experiments. The increase in

unused bed days must therefore be a result of better chosen plans that means that

fewer beds are required on the wards throughout the week.

As can be seen in Figure 8.3, the width of the 95% confidence intervals around the

average optimal value per scenario get smaller as the number of scenarios increases.

This is desirable, since it implies that the more scenarios that are included in

the optimisation, the smaller the variation in the optimal value throughout the

instances investigated.

Although the average optimal value per scenario increases with the number

of scenarios, the rate of increase in the optimal value appears to decrease from

around seven and more scenarios. Table 8.1 gives the percentage increase in the

optimal value per scenario when more than one scenario is used when compared to

using just one scenario.
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Number of

scenarios

% increase in

optimal value

2 4.5

3 6.8

4 8.1

5 8.9

6 9.6

7 10.2

8 10.2

9 10.5

10 11.1

11 11.2

12 11.4

13 11.4

14 11.6

15 11.9

16 11.9

17 12.1

18 12.1

19 12.3

20 12.4

Table 8.1: Optimal value increase as a function of the number of scenarios

As can be seen in Table 8.1, the benefit of including multiple scenarios in the

optimisation ranges from a 4.5% increase with two scenarios, to a 12.4% increase

with twenty scenarios. It can be seen that in order to obtain a decent increase of

10% in optimal value per scenario, seven scenarios are required. Higher numbers of

scenarios do not have such a great effect on the percentage increase in the optimal

value, especially considering the increase in run time and infeasibility as discussed

in Sections 8.3.1 and 8.3.2.

An increase in unused bed days can be seen as a positive outcome; if the ex-

isting levels of patient numbers can be accommodated in the wards using fewer bed

days, then there is the potential to increase the throughput of patients in these

wards. This could be done by increasing the number of patients operated on per

operating session, if operating theatre resources allowed.
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8.3.4 The Effect of N on Constraint Violation

As can be seen in Figure 8.4, the average percentage of simulations in which there is

at least one violated bed constraint decreases as the number of scenarios increases.

The more bed constraints included in the optimisation indicates a greater resilience

of the optimal schedules to uncertainty.

Figure 8.4: Percentage of simulations with violated bed constraints as a function of
the number of scenarios

In order to investigate how common the violations of constraints are within the

simulations, the proportions of the number of constraints that are violated in the

simulations for each of the experiments of multiple scenarios are shown in Figure

8.5. It would appear that as the number of scenarios increases, fewer constraints are

violated, on average, in each simulation of the optimal schedules.
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Figure 8.5: Violated bed constraints per simulation as a function of the number of
scenarios

Overall, fewer simulations involve violated bed constraints, and in those that do,

there is a trend of fewer constraints that are violated in each simulation as the

number of scenarios increases. Hence, the schedules that are constructed using

more scenarios are more likely to result in the bed requirements being satisfied by

the beds available on the hospital wards.

As discussed in Section 8.2.1, the number of scenarios can be chosen such

that the probability of constraint violation does not exceed ε with probability at

most β. Calafiore and Campi [44] discuss how it is possible to compare the a-priori

chosen value of β with the a-posteriori ‘observed’ values of β, however, it is not

possible to do this here due to the size of the problem as suggested by Bound (8.16).

The probability of constraint violation, in particular for the bed constraints, can,

however, be examined and is shown in Figure 8.6.
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Figure 8.6: Probability of constraint violation as a function of the number of
scenarios

It can be seen in Figure 8.6 that the probability of constraint violation decreases as

the number of scenarios in the scenario program increases. This is a desirable effect

of including more scenarios in the optimisation and would indicate that the more

bed constraints included in the optimisation, the greater resilience of the optimal

schedules to uncertainty.

8.3.5 The Effect of N on Optimal Schedules

It is of interest to determine the effect of increasing the number of scenarios on the

optimal schedules that are found from the optimisation. As in Section 5.1.1, the

spread of the simultaneous sessions of specialties that send their patients to shared

wards is analysed. Shared wards have been identified as ‘pinch-points’ in the system

in Section 5.1.1, where violated bed constraints are more likely to occur. Figure

8.7 shows the average number of sessions, over 100 instances, that are scheduled

simultaneously throughout the week for the specialties that send their patients to

shared wards. The number of simultaneous sessions does not include the specialties

that have fixed sessions in the MSS, as discussed in Section 5.1.1.
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(a) Paediatric ward (b) ENT/Oral ward

(c) General/Liver ward (d) Cardiothoracic ward

(e) CCU

Figure 8.7: Number of specialties that are scheduled simultaneously as a function
of the number of scenarios

For most wards in Figure 8.7, as the number of scenarios in the sampled program

increases, the trend in the graphs of the average number of simultaneous sessions

appears to be that the peaks and troughs become more defined throughout the

week. That is, the peaks get higher, i.e. more sessions are scheduled simultaneously

at certain points in the week, and the troughs get deeper, i.e. fewer sessions

scheduled simultaneously at other points in the week. This trend is evident in the

graphs for all of the shared wards, except for the General/Liver ward in Figure

8.7(c). There does not appear to be any trend in this graph as the number of
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scenarios increases, except perhaps that fewer sessions are scheduled simultaneously

during the middle of the week (Tuesday and Wednesday) and more at the beginning

and end of the week (Monday, Thursday and Friday) for higher numbers of scenarios.

In all graphs for the shared wards in Figure 8.7, the number of simultaneous

sessions follows the pattern from the baseline scenario (when N = 1) for all experi-

ments that have multiple scenarios. This suggests that the results of the baseline

scenario can be improved upon by including more scenarios in the optimisation,

resulting in more pronounced pattern of variation in the schedule.

8.3.6 The Effect of N on the Expected Bed Shortage

Figure 8.8 shows that the trend in the expected bed shortage, averaged over the

simulations of optimal schedules, decreases as the number of scenarios increases.

Figure 8.8: Expected bed shortage as a function of the number of scenarios

A lower expected bed shortage is desirable, as this implies that fewer cancelled

operations might occur if an optimal schedule was to be implemented at UHW.

These results indicate that as more scenarios are considered in the optimisation

model, the resulting optimal schedules become more resilient to uncertainty, thus

reducing the likelihood of cancellations.
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8.4 Comparison of Optimisation Under Uncer-

tainty Models

Two approaches to optimisation under uncertainty have been investigated in this

research. In order to be able to make recommendations regarding which approach

should be used for the construction of the MSS, a comparison of the two approaches

is presented in this section. An evaluation of the strengths and weaknesses and

performance measures of both approaches will be presented.

An advantage of the RO technique is the ability to explicitly set the level of

protection through the parameter Γk. By being able to set the level of conservatism,

the decision maker has a certain degree of control on the resulting MSS. This control

is not present in the scenario-based technique. Despite this being an advantage to

RO, it is also the technique’s weakness – how is the value of Γk chosen? It can

be hard to interpret the meaning of Γk for hospital managers without relying on

the mathematical formulation of the optimisation model. Bertsimas and Sim [31]

derived a method of choosing Γk that is based on the probability of constraint

violation, however, it has been shown in Section 7.6.4 that this theory does not

work well with the formulation of the RO model for the construction of the MSS.

Bed transference between wards was not included in the RO model, since the

protection function in each bed constraint had a similar function to the slacks and

surpluses in the deterministic model. They both provide a safety buffer in each bed

constraint to safe-guard against the uncertainty in bed requirements, so it was not

considered appropriate to include both in the RO model. This has resulted in a loss

of information with respect to the movement of patients between wards in the model.

The scenario-based optimisation technique is a natural extension to the de-

terministic model in the sense that multiple snapshots of bed requirement can be

used simultaneously within the optimisation model for use in the bed constraints.

This strength of the model lends itself to a simpler explanation of the optimisation

model to hospital managers than for the RO model. This technique can also include

bed transference in the bed constraints, further reflecting reality for implementation

in the case study hospital. A disadvantage to using this technique, however, is

the rapidly increasing complexity of the solution space as the number of scenarios

increases. This results in a feasible solution being less likely to be found, or

requiring a longer run time in order to find a feasible solution. Given that the

construction of the MSS should be carried out every 3–6 months, a run time of a

few hours is not considered unreasonable. Experiments showed that it was real-



Chapter 8 Scenario-Based Optimisation of the MSS 200

istic to include up to 20 scenarios which is significantly less than the theory suggests.

A summary of the experimental results for both approaches, together with

results from the deterministic model, is given in Table 8.2. The effects of increasing

the level of robustness on the main performance measures for optimal MSSs are

given for the RO and scenario-based models. This corresponds to the protection

level, Γk increasing in the RO model, and the number of scenarios, N , increasing in

the scenario-based optimisation model.

Performance

Measure

Deterministic

(Baseline)

Robust

Optimisation

Scenario-

Based

Unused

bed days
1175.6 750 −→ 1000 1175.6 −→ 1330

% simulations

with violated

bed constraints

55.6% 87.7% −→ 86.6% 55.6% −→ 39.7%

Expected bed

shortage
3.2 8.4 −→ 8.0 3.2 −→ 2.1

Instances with no

feasible solution
7% 45.8% −→ 81.4% 7% −→ 99.8%

Table 8.2: Comparison of deterministic and optimisation under uncertainty
methods

As can be seen in Table 8.2, an increase in the level of robustness has the same effect

on the optimal value, expected bed shortage, the pattern of simultaneous sessions,

and the percentage of instances with no feasible solutions in both models. The only

performance measure for which the effect of robustness differs is the percentage of

simulations with violated bed constraints. The level of robustness does not appear

to have an affect on the percentage of simulations with violated bed constraints in

the RO model, however, it is reduced in the scenario-based model. A reduction in

the percentage of simulations with violated bed constraints is desirable, since it can

be thought of as the failure rate of the MSS: will there be more beds required than

available in a typical week? A lower failure rate is desirable because it implies that

cancellations might also be lower.

Based on the strengths and weaknesses of both approaches, and the comparison of

the performance measures, we can conclude that the scenario-based optimisation

model is the better of the two approaches considered for the construction of the
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MSS. Given this conclusion concerning optimisation under uncertainty, it is now of

interest to ask whether it is better to use optimisation under uncertainty techniques

to construct the MSS, or to continue with a more traditional deterministic model.

As can be seen in Table 8.2, the values of the performance measures are

substantially worse for the RO model than for the deterministic model. There are

fewer unused bed days, more simulations involve violated bed constraints, there

is a higher expected bed shortage, and it is more likely to have an instance in

which there is no feasible solution. Therefore, it is not advantageous to use the

RO approach over using the deterministic model for the construction of the MSS.

However, the values for the performance measure are better for the scenario-based

optimisation model than for the deterministic model. There is at least the same

number of unused bed days and percentage of instances with no feasible solution,

and there is at most the same percentage of simulations with violated bed con-

straints and expected bed shortage. Hence, it is concluded that it is better to use

the scenario-based optimisation model as opposed to the deterministic model. This

is not surprising since the deterministic model is a special case of the scenario-based

model with one scenario, and hence will be at least as good as the deterministic

model.

Overall, we conclude that it is better to use scenario-based optimisation rather than

RO for the construction of the MSS, and using at least two scenarios to improve the

quality of the MSS in relation to cancellations and better flow of patients through

the system.

8.5 Conclusion

This chapter has presented an alternative technique to that in Chapter 7 for dealing

with uncertainty in optimisation problems. The scenario-based optimisation

approach is data-driven and uses a subset of observations, or scenarios, of the

uncertain values in an optimisation model. A review of the literature on this

topic is given in Section 8.1, however, the previous literature mainly focuses

on convex optimisation problems. An extension to the theory for non-convex

problems is derived and presented here enabling the approach to be applied to

the non-convex MSS problem. A scenario-based optimisation model was then

developed for the construction of the MSS in Section 8.2, using scenarios to rep-

resent possible realisations of the uncertain bed requirements for the bed constraints.
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Results from parameter experiments were collected and analysed in Section

8.3. It was found that including more scenarios in the optimisation problem

resulted in a lower expected bed shortage in the simulations of optimal schedules,

and produced a higher optimal objective function value. A higher objective value

corresponds to a higher number of unused bed days, implying that the optimal

schedules could accommodate the exisiting level of patient throughput in fewer bed

days. This provides an opportunity for more patients to be operated on and use

the beds on the wards, if capacity in the operating theatres allowed. However, a

higher number of scenarios results in a more constrained solution space due to the

increased number of bed constraints. This seems to be the price to pay for more

robust schedules.



Chapter 9

Conclusions and Further Work

As discussed in Chapter 1, the objectives of this research concern the construction

of the MSS when the demand for post-operative beds on wards is considered. This

chapter aims to draw together the conclusions from preceding chapters, in addition

to discussing the main outcomes of the research, and possible directions for future

research.

Several optimisation models were developed and investigated in order to ad-

dress the research objectives. Special consideration was made to include constraints

on both the operating theatres and bed availability in the wards. Post-operative

beds were largely ignored in the scheduling models reviewed in the literature,

despite the authors commenting that bed availability affects the smooth running

of the operating theatre. This was also highlighted by managers in UHW that

bed availability, not theatre capacity, impacts on the MSS, and so was deemed

important to include in the scheduling models developed here.

Novel formulations of a scheduling model for the construction of the MSS

that are based on the set partitioning optimisation model have been developed. It is

not known, to the best of our knowledge, that this technique has been used for this

application prior to this research. The set partitioning technique has allowed for

the sharing of bed between wards to be modelled, flexibility for the incorporation of

soft and hard constraints relating to the operating theatres, and the enumeration of

all allowable MSSs to be performed. The sharing of beds between wards, through

the use of slack and surplus decision variables, is a particular feature of the model

that serves to better reflect current practice in UHW. Optimal solutions can also

be found in very quick run times.

Special consideration has also been made to incorporate the uncertainty as-

203
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sociated with the post-operative bed requirements within the optimisation process.

These optimisation under uncertainty techniques, again, not knowingly been

previously used for the construction of the MSS, result in more robust MSSs which

aid the reduction in the number of cancelled elective operations.

9.1 Conclusions

9.1.1 Operating Theatre Scheduling

It has been widely recognised throughout government reports, health board reviews

and academic literature that careful planning and scheduling of the operating

theatres is necessary in order to fully utilise these expensive resources, and to

ensure any adverse affects on the rest of the hospital are minimised. Chapter 1

introduced the background to the scheduling problem associated with the operating

theatres and the many factors that can affect their efficiency.

The tactical level of operating theatre planning – the construction of the MSS – is

a challenging problem which has received much attention in academic literature.

A comprehensive literature review of operational research publications is provided

in Chapter 2, in which it was noted that mixed integer optimisation models are

commonly used to address this problem. Simulation has also been demonstrated to

be a useful tool in evaluating the performance of MSSs. Based on the opportunities

for future research identified in the papers reviewed, it was considered that

downstream hospital resources and the stochastic nature of many aspects of oper-

ating theatre scheduling should be included in any model developed for this research.

Data relating to operating theatres and surgical inpatient wards in UHW

were provided by CaV UHB. The data analysis presented in Chapter 3 served

to provide an understanding of how the operating theatres are currently used

and provide a profile of the post-operative demand for beds on surgical wards.

Findings from the data analysis were used as inputs into the developed models,

including the number of operations per operating theatre session, post-operative

LoS distributions, and the occurrence of emergency patients.

9.1.2 Deterministic Model for the Construction of the MSS

A deterministic model for the construction of the MSS was developed in Chapter

4. A set partitioning based optimisation model was derived that aims to find an

MSS that minimises the number of unused bed days on wards over the planning
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horizon. This was achieved by assigning one surgical specialty to each operating

theatre session, and ensuring that the number of beds required on each ward does

not exceed the number of beds available.

A set partitioning optimisation model seems to be a natural model to use

for the construction of the MSS since the ability to generate a number of candidate

schedules as inputs into the optimisation model provides great scope for finding a

suitable MSS for the hospital managers. The combinatorial nature of the scheduling

problem also aligns with the characteristics of the set partitioning optimisation

model. The developed model extends the basic formulation of a set partitioning

optimisation model to include the novel use of bed constraints. The facility of bed

transference between wards is also included in the bed constraints. This enables

the modelling to reflect what happens in the case study hospital when beds are

subject to particularly high demand, and patients are put on wards that are not

necessarily assigned to their specialty.

The model formulation appears relatively simple when compared to other

scheduling models reviewed in the literature, however, all important and necessary

constraints that were relevant and identified by hospital managers are included in

the model. Hard constraints concerning the operating theatres and bed availability

are specified explicitly in the model formulation. Softer, preferential constraints are

also included in the model via the generation of the operating theatre constraints.

This prevents schedules that are deemed undesirable from the hospital manager’s

perspective from being generated by the optimisation. The simplicity of the

model is considered an advantage over more complex models seen in the literature,

particularly because the logical structure of the model can aid explanation of the

modelling and the results to hospital managers. This attribute could therefore

assist with the implementation of this scheduling model in the case study hospital.

The model was validated by comparing the patient throughput and bed count

produced in the model with observations from the data. A number of experiments

were then carried out in Chapter 5 to investigate the relationship between the

MSS and the resulting bed requirements on surgical wards. One of the key

findings was that the current MSS used in UHW is not a feasible solution to the

deterministic optimisation model. The inclusion of the bed constraints resulted

in this infeasibility, and certain wards were identified that had particularly high

post-operative bed requirements. These were the wards that are shared between

multiple specialties, and experienced an influx of demand when these specialties
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were scheduled simultaneously in the MSS. This insight lead to further investiga-

tions for optimal schedules in subsequent chapters.

Optimal MSSs were found when a baseline scenario that reflected current

practice in UHW was used for model parameter values, and bed requirements

were generated using the conditional probability of patients being discharged on

each subsequent day after surgery. Optimal schedules using the baseline scenario

parameter values were found to perform better than the current MSS used in UHW.

The number of simultaneous sessions for the specialties that send their patients to

a shared ward resulted in a flatter demand profile throughout the week. There were

also fewer simulations that involved a higher predicted bed requirement than bed

availability.

A series of ‘what-if’ scenarios were used to investigate the robustness of schedules

and examine how they could cope with variation of the parameters in each

experiment. Investigation into whether MSSs could be constructed under these

‘what-if’ scenario parameters was also undertaken. In particular, it was found that

MSSs could be found for different levels of post-operative LoS, a different number

of beds available on each ward, and different bed pools composed of wards sharing

beds. The expected bed shortage was reduced when the post-operative LoS was

reduced on the wards, the number of beds increased on each ward, and when more

sharing between wards was allowed.

Despite the wealth of insights gained from the results, there are some limita-

tions associated with this model. It is a deterministic model, since a ‘snapshot’

of bed demand is used to form the bed constraints. The post-operative bed

requirements that form the bed constraints are, however, uncertain and cannot

be known with surety, which is not reflected in the deterministic formulation.

Investigation into the construction of the MSS under uncertainty was considered in

later chapters.

9.1.3 Construction of the MSS Under Uncertainty

The availability of hospital resources, the length of time required for surgery or

post-operative recovery is not always known with certainty. This can therefore

make constructing the MSS a difficult process. Optimisation under uncertainty

has been found to be a growing area of research, and a review of techniques was

presented in Chapter 6. It was thought that incorporating uncertainty into the
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optimisation model should result in a more robust MSS, and thus provide more

reassurance to hospital managers that an MSS will cope when bed requirements

vary in reality.

Two optimisation techniques that embodied uncertainty in their formulation

were applied to the problem. These were robust counterpart optimisation and

scenario-based optimisation. Both techniques were identified in the literature

as having been successfully applied to healthcare problems, with the ability to

guard against the uncertainty associated with resources. Models were developed,

in Chapters 7 and 8 respectively, using both of these techniques to account for

the uncertainty associated with the bed requirements in the bed constraints. The

resulting models are data-driven, in the sense that the stochastic behaviour of the

uncertainty is unknown and so information from observed data can be used within

the optimisation models.

The RO model developed in Chapter 7 involved the use of a user-specified

uncertainty set for each parameter in the optimisation model. The uncertainty sets

were informed from analysis of the UHW data and took the form of a range of

values around a typical bed requirement value. An additional parameter was also

introduced to each bed constraint to allow the decision maker to control the degree

of conservatism of the solution. This protection level parameter can be thought of

as controlling a safety buffer of beds within each bed constraint in order to protect

the MSS from uncertainty. Both of these parameters were deemed quite relatable

to the scheduling application. Hospital staff can easily state a range of values for

the bed requirement on each ward given their experience, and managers can specify

how ‘protected’ they would like the resulting MSS to be against the uncertainty in

the bed requirements.

It was found that the wider the interval of the uncertainty set for each un-

certain bed requirement in the model, the lower the optimal value of the objective

function. This worsening of the optimal value implies that there are fewer unused

beds on the wards, implying less slack in the system to cope with a possible increase

in demand for beds. The expected bed shortage, however, seems to be insensitive

to an increase in the width of the uncertainty interval.

As the protection level is increased, the optimal value of the objective func-

tion worsens. This is referred to as the ‘price of robustness’ in the literature,

however, this trade-off can be off-set by the observation in the experiments that as
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the protection level is increased, the expected bed shortage decreases. A reduction

in expected bed shortage can be interpreted as a reduction in the number of

cancellations expected from an MSS. This provides great scope to achieve one of

the research objectives specified in the introduction. It appears that the number

of cancellations can be reduced by careful scheduling of the specialties that send

their patients to one of the shared wards that have been identified as possible

‘pinch-points’ in the system. It was also found that as the protection level is

increased, a more pronounced cyclic pattern that is aligned with the average LoS

of each ward appears in the simultaneous sessions of these specialties within the

MSS. The implication is that this cyclic pattern is a characteristic of a more robust

schedule.

The scenario-based optimisation model developed in Chapter 8 naturally ex-

tends the deterministic model of Chapter 4 by including multiple instances, or

scenarios, of the bed constraints within one optimisation model. Theory in the

literature for convex optimisation problems suggests that the more scenarios

included in the optimisation problem, the more robust an optimal solution will

be towards uncertainty. This theory was extended to non-convex problems and

applied to the construction of the MSS.

Results from experiments found that, by including more scenarios in the op-

timisation problem, a higher optimal objective function value was achieved. A

higher objective value corresponds to a higher number of unused bed days, implying

that the optimal schedules could accommodate more patients on the wards if other

resources permitted. A lower expected bed shortage was also achieved by including

more scenarios in the optimisation model, suggesting that fewer cancellations could

be expected on implementation of an optimal MSS in the hospital. However,

including a higher number of scenarios also implies a more constrained solution

space due to the increased number of bed constraints in the optimisation model.

This, again, is a price to pay for more robust schedules.

A comparison of the optimisation under uncertainty techniques was carried

out in Section 8.4. Based on the strengths and weaknesses of both approaches,

and the comparison of performance measures, it was concluded that it is better to

use scenario-based optimisation rather than RO for the construction of the MSS.

Using at least two scenarios, with a practical upper limit of 20, in the optimisation

will improve the quality of the MSS in relation to cancellations and better flow of

patients through the system.



Chapter 9 Conclusions and Further Work 209

9.1.4 Research Objectives: Revisited

In order to demonstrate that the research objectives of this project have been met,

each objective, as outlined in Chapter 1, will be discussed in turn and references to

specific sections within the thesis will be highlighted.

1. Investigate the relationship between the MSS and the resultant bed

demand on surgical wards.

Extensive data analysis was performed on the data provided by CaV

UHB, and was presented and discussed in Chapter 3. The analysis showed

the interdependency between the MSS and the availability of beds on the

surgical wards, with many elective operations being cancelled due to a lack

of available beds. The variability in the number of operations performed per

session and in the LoS distributions was also highlighted, and can be seen as

a contributing factor to the complexity of constructing an MSS. Information

gleaned from the data analysis was used to inform the optimisation models

that were developed in subsequent chapters.

2. Understand the factors, if any, that affect why cancellations of

elective operations occur, and identify whether they occur more

frequently on particular wards.

Cancellation of elective operations has been found to be a problem in

UHW, with over 18% being cancelled in 2012/13. Over half of these cancella-

tions were caused by a lack of beds on surgical wards. As discussed in Section

3.6.2, this can be caused by patients of different specialties outlying on wards,

thereby reducing the number of beds available to the assigned specialty. In

Section 5.1.1, investigations into the current MSS used in UHW found that

particularly high bed demand was experienced on wards that are shared by

multiple surgical specialties. The cyclic pattern of operating theatre sessions

that are scheduled simultaneously for specialties that send their patients to

one of these shared wards was then investigated and found to be a key factor

in influencing the bed demand. Schedules in which the simultaneous sessions

were phased throughout the week resulted in a more levelled bed demand and

fewer expected cancellations.
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3. Develop optimisation models to construct an MSS that satisfy

constraints on both the operating theatres and bed availability on

wards.

A deterministic optimisation model for the construction of the MSS

was developed in Chapter 4. The model is based on a set partitioning

optimisation model, and includes constraints on the operating theatre sessions

and the bed availability on surgical wards. The novel use of slacks and

surpluses within the bed constraints allowed for the sharing of beds between

wards; this was later shown in Chapter 5 to help reduce the number of

expected cancellations.

4. Evaluate robust optimisation techniques for the construction of

the MSS that incorporate the uncertainty associated with post-

operative bed requirements.

In addition to the deterministic model developed in Chapter 4, two ap-

proaches to optimisation under uncertainty were applied to the MSS problem.

A robust counterpart optimisation model was developed in Chapter 7 and

a scenario-based optimsiation model extended the deterministic model in

Chapter 8. It is believed that this is the first time these methods have been

applied to the construction of the MSS taking into account post-operative bed

requirements. The scenario-based optimisation model performed substantially

better than the RO model, constructing schedules that resulted in a higher

number of predicted unused bed days, fewer simulations with violated bed

constraints, and a much lower expected bed shortage.

9.2 Further Work

As with any body of research, there is always scope for extensions to the work

already carried out. Opportunities for further work associated with the research

carried out in this thesis are proposed here.

The bed requirements predicted for each possible plan for the bed constraints in all

optimisation models in this research have been calculated on a daily basis for each

day after surgery. This was because the standard definition of a day in a hospital

bed covers a 24 hour period with an overnight stay. In reality, however, patients
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can be discharged at any point throughout the day, meaning that if a patient is

discharged in the morning, a new patient can be admitted to the same bed that

afternoon. This is not currently reflected in the calculated bed requirements, as it

is assumed that a bed is used by a patient for the whole day. Clearly this more

detailed approach to calculating the bed requirements will affect the inputs for

the optimisation models and the simulation of optimal schedules. It would be

interesting to investigate whether this results in different optimal MSSs being found.

Given the data from CaV UHB, it was deemed most appropriate to schedule

the specialties and predict their bed requirement based on the whole surgical

specialty. It may however, be advantageous to model the surgical patients based

on their specific surgical procedure, or at least by a group of procedures within

each specialty. This would require further analysis of the data, and probably more

discussion with hospital staff in relation to how sub-specialty groups can be deter-

mined. A more detailed picture of the time in surgery and LoS for each sub-group

could again affect the optimal schedules that are found from the optimisation

models. It would also be interesting to investigate whether the MSS should be

specified in terms of whole specialties as is current practice, or by sub-specialty

in which surgery of the same sub-group would take place in the operating theatre

session.

There is additional scope to extend the theoretical work presented in Chap-

ter 7 on RO to include bed transference between wards within each bed constraint.

It was not included in the model developed due to the similarity between the

interpretation of the slacks and surpluses for bed transference, and the protection

function in the robust counterpart. Both act as a safety buffer in each bed

constraint that can be seen to safeguard a number of beds in case of uncertainty

associated with the number of beds required and those available. There are also

concerns with including bed transference in the RO model in view of the already

tight and problematic bed constraints for the shared wards.

A number of ‘what-if’ scenarios were considered in order to explore the af-

fect of changes to parameters within the system. Namely, changes to post-operative

LoS, the number of beds available on each ward, and the amount of sharing of beds

between wards was explored. These scenarios were deemed the most relevant to

hospital managers and also those that could be changed most easily or implemented

in the case study hospital. There are, however, more scenarios that could be

explored. For example, hospital managers have suggested that they might be
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moving towards the use of whole day operating theatre sessions as opposed to

the current half-day sessions. This might allow for more operating time due to a

reduction in set-up time throughout the day. Similarly, the UK government have

indicated that elective patient services could be moved to a seven-day working week

[3]. This would imply the MSS would have to span seven days as opposed to the

current five-day working week. It would be interesting to examine how the wards

would be able to cope with this extra demand for post-operative beds.

9.3 Final Reflections

The research contained in this thesis has identified the importance of systematic

scheduling of the operating theatres within a hospital. The main research aim of

this thesis was to develop a scheduling framework in which the affect of the MSS

on other hospital resources and vice versa could be used to determine the best way

in which specialties should be assigned to operating theatres.

A number of novel optimisation models, together with careful simulation of

the resulting MSSs, have been developed and examined to investigate this research

aim. Critical pinch-points within the system have been identified, namely the

extreme demand experienced by wards shared by multiple specialties. The need

to carefully schedule any simultaneous sessions that result in patients being sent

to these wards is therefore of great importance, and the modelling approaches

developed in this research appear to address this issue.

Finally, the importance of incorporating uncertainty associated with operat-

ing theatre scheduling has been demonstrated through the use of evaluating

alternative optimisation under uncertainty techniques. To the best of our knowl-

edge, this is the first time RO and scenario-based optimisation techniques have been

applied to the construction of the MSS. It has been shown that better schedules

can be produced using a robust, data-driven technique rather than a traditional

deterministic model.

The insights gained from this research have the potential to aid the case

study hospital, and indeed any other hospital that performs elective surgery, in the

construction of an MSS that is robust to uncertainty associated with the demand

for post-operative beds. Benefits of implementation of the modelling techniques

developed here include a more levelled demand for ward beds throughout the

week, and a reduction in the number of cancellations resulting from a shortage of
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beds. Findings from this research will be reported back to CaV UHB with the

intention that this scheduling tool is piloted, resulting in an improved MSS being

implemented for the main elective operating theatres.
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