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Abstract

As the need for smaller, more compact and integrated products has evolved, it is
no surprise that manufacturing technologies have significantly evolved in order to
make miniaturisation to smaller scales possible. More specifically non-
conventional machining technologies, relative newcomers in the field of

machining, have proven well suited to the task at hand.

Among those technologies is micro-EDM (short for Electrical Discharge

Machining) that has been the subject of numerous developments.

A certain number of variants of micro-EDM exists among which are wire micro-
EDM, die-sinking micro-EDM, micro-EDM milling and micro-EDM drilling.
While die-sinking macro-EDM is quite common, its micro counterpart isn’t due

to problematic tool wear.

In order to optimise the die-sinking micro-EDM process in terms of time and cost
and make its use more interesting and viable, the present work aims at optimizing

the initial tool shape so that it compensates for future wear.

The first step was to design a simulation tool effectively able to predict the
location and magnitude of wear during the simulation process. An iterative
geometrical method was developed, first using NURBS as support geometries then
voxels embedded in an octree data structure in order to improve speed and

accuracy.
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The input parameters used in the simulation were initially taken from empirical
data. However those could be tedious to acquire and, in order to simplify the
process, some approaches using multi-linear regression models were used to link

the machining parameters to the expected output.

The third step was to make use of the simulation tool and the results it provided
to design a tool optimisation algorithm that would iteratively test tool shapes and

compare the resulting workpieces with the targeted result.

Finally, a neural network was trained with optimal tool shapes corresponding to
various desired results in order to not have to redo potentially lengthy

simulations.
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Chapter 1

Introduction

The famous speech of Richard Feynman (Feynman, 1960) given in 1959 is a
testimony to the beginnings of the fields of micromanufacturing and
nanomanufacturing as well as their associated challenges. The need for smaller
and smaller components has naturally developed as the electronics industry was
seeking to improve their processes for the manufacturing of electronic components.
Since then, a broad field of industries have found practical uses in micro-scale
components and features. Among them are the IT components industry, the
medical and biomedical industries, telecommunications and automotive industries

(Alting, Kimura, Hansen, & Bissacco, 2003).

The historical fact that the electronics industry has driven the development of
micro components explains that processes and technologies related to silicon-
based microstructures are significantly more advanced and mature than those

related to metal, polymers or ceramics (Menz, 2002).

Micromanufacturing is part of a greater ensemble, micro-production. The object
at the centre of it is the micro-product itself made of micro-parts. Around the
product are processes such as micro-control, micro-assembly (Van Brussel, et al.,
2000) and micro-measurement (Masuzawa, 2000). A global overview of those

notions is depicted in Figure 1.
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Figure 1: Overview of the micro-production concept and its components.
(Masuzawa, 2000)

The definition of micro-products is itself subject to discussion. A first approach,
and the most natural, would be to limit any considerations to size. The term
“micro” could be taken literally as 1 to 999 pm or. However, the constant evolution
of manufacturing processes’ abilities makes it hard to clearly define a lower bound
for dimensions. Using the term “micro” could also be associated with difficulty:
something too small to be easily machined. The definition of a micro-element and
the exact figures of its size vary enormously between people, eras, machining
process or material. However a recurring range can be grossly defined as anything

that involves features between 1 to 500 pm.

In addition to the definition based on size, micro-products also possess another
characteristic which is the high level of integration of components and

functionalities.



Manufacturing not related to the electronics industry has developed recently to
the point that current micro-manufacturing technologies aren’t the most
adapted for mass production of micro-parts. In order to make the various
products available to an increasing number of customers and at a lower cost,
pressure has been put on the development and improvement of

micromanufacturing (Alting, Kimura, Hansen, & Bissacco, 2003).

Table 1 presents an overview of the various manufacturing processes that have

been applied to the manufacturing of micro-products.

Micro-products are often the result of collaboration between various fields due to
the complexity of their applications. For example, the design of a fluid chemical
analysis sensor requires input from disciplines such as chemistry, biology and fluid
mechanics. This necessarily different approach towards product design has an

impact in the way its manufacturing is designed.

In addition the inherent advantages linked to their ability to machine microscopic

features, an additional advantage is worth mentioning.

The development of new and innovative materials that possess unique mechanical
and/or thermal properties has completely changed the field of product design.
The innovation in the field of materials leads to similar innovation in products.
Among them are tungsten carbide, titanium alloys, nickel alloys and other super
alloys. They are characterised by excellent properties such as a very high hardness
or a lower sensitivity to corrosion or weight. However these new materials are also
often considered to be hard to machine (Jahan, Rahman, & Wong, 2011) which

leads to the development of technologies with the potential to machine these.



Table 1: Technology overview for micro products (Alting, Kimura, Hansen, & Bissacco, 2003), (Masuzawa, 2000), (Dimov, Brousseau,
Minev, & Bigot, 2012).

Material Interaction

Working Principle

Subtractive Mass Containing Additive Joining
Mechanical force Cutting, grinding, blasting, ultrasonic machining Rolling, deep drawing, forging, Ultrasound, cold pressure
punching welding
Melting/ Electrical discharge machining, laser beam machining, Chemical vapour deposition, physical vapour ~ Welding, soldering, bonding
Vaporization (Thermal) electron beam melting deposition (ball, wedge, compliant)
Ablation Laser beam machining, focused ion beam, ultra-short

pulse laser

Dissolution Electro-chemical machining, isotropic or anisotropic
etching, reactive ion etching

Solidification Casting, injection moulding

Recomposition Electroforming, chemical deposition

Polymerisation or Lamination Stercolithography, photoforming, polymer gluing
deposition, nanoimprint lithography,
magnetolithography, laser printing

Sintering Combination of mechanical and

thermal principles




In order to make those materials completely viable for mass production, it is
required to possess mature manufacturing technologies able to process them. Once
such a condition is met, the use of innovative materials can be made universal

and open up new applications.

In the micro-manufacturing field in particular, several main technologies have
been developed for the machining of those “difficult to cut” materials. The
contactless nature of micro-EDM makes it a very promising technology when
considering those new high-performance materials. A certain number of challenges
exist in the development of micro-EDM, the main one being its application to

large-scale production.

Among the technologies reported in Table 1, micro-EDM can be considered one
of the most promising. As previously mentioned, its macro contactless nature that
preserves the workpiece from any kind of residual stresses or debris left on the
workpiece surface and its ability to machine any conductive material are its core

strengths.

Additionally it possesses a certain number of other characteristics:

e The capability to machine any kind of complex three-dimensional feature.
Two main variants of micro-EDM exist that are well suited for these
applications. The first, die-sinking micro-EDM (plunge micro-EDM,
conventional micro-EDM are other names) aims at reproducing a 3D cavity
through the use of a tool shaped negatively to the feature to produce. The
second, micro-EDM milling uses a rotating cylindrical or tubular electrode

to machine the feature layer-by-layer. Those two methods are able to
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produce very sharp edges (up to the radius of the electrode used added to
the machining gap) as well as cavities and protrusions that would be

difficult to accomplish with conventional technologies.

The machining speed of micro-EDM, around 0.6-6mm®/h, (Bigot, Ivanov,
& Popov, 2005)(depending on the variant and the parameters considered)
is significantly lower than other technologies, conventional or otherwise.
Laser beam machining (LBM), for one, has a greater material removal rate

(> 10" mm’/min) (Knowles, et al., 2006).

The tool wear of the micro-EDM processes (except for wire-pEEDM) is
extremely important. The reason lies in the intrinsic nature of the process.
The electrical discharges at the origin of the removal of the material don’t
discriminate fully between the tool and the workpiece. As a result, the tool
is inevitably worn. Due to the complex and stochastic nature of the process,

it is hardly predictable.

An excellent surface finish with an average roughness R, smaller than 0.1
nm (Maradia, et al., 2013) is possible with micro-EDM technologies and is
another area it shines when compared with other technologies. The
roughness is linked to the size of the craters produced by the process and
is strictly dependent on the used process parameters. It is noteworthy that
while die-sinking or drilling micro-EDM are capable of achieving such a
surface finish, wire and milling micro-EDM deliver a slightly worse
roughness (Bigot, Ivanov, & Popov, 2005) (R. > 0.5 pm for milling, R, >

0.2 pm for the wire process). It is of note that some research has focused



on the improvement of micro-EDM milling accuracy (Qian, Wang,

Ferraris, & Reynaerts, 2013).

Considering those elements, it appears that micro-EDM is characterised by several
main advantages that are offset mainly by its machining time. Because of the tool
wear, the already significant machining time is increased. Die-sinking micro-EDM
for example would require the use of half a dozen or so electrodes (Maradia, et
al., 2012) before being obtaining the desired feature within the specified
tolerances. However, proven methods exist in the cases of micro-EDM milling and

micro-EDM drilling to compensate for this wear.

The aim of the present work is to explore the possibilities to further improve and
optimize the die-sinking micro-EDM process in order to increase its
competitiveness and viability in the field of non-conventional micro-
manufacturing technologies. Die-sinking micro-EDM is characterized by its ability
to produce complex 3D cavities with a surface finish that is superior to the one
achievable by micro-EDM milling (Bigot, Ivanov, & Popov, 2005). There is a
knowledge gap in the prevention or compensation of tool wear in die-sinking

micro-EDM that would enable it to become a true industrial process.



Chapter 2

Micro Electrical Discharge Machining

2.1. Overview

The present section aims at giving a global presentation of micro-Electrical
Discharge machining and its natural ancestor EDM. Firstly, a brief history of
EDM is given presenting the main actors and events in the development of this
machining process. A second part presents the main principles of EDM with a

focus on the discharge that is at the centre of the whole process.

The next section deals with the main differences between micro-EDM and its
macro equivalent and underlines that those differences, while based on them,

aren’t limited to size considerations.

Section 2.5 presents the main variants of conventional micro-EDM as well as the
main issues and advantages linked to each of them. Several examples of their

applications is also provided.

Next the main aspects of a micro-EDM machine are covered. The pulse generator,

servo control and dielectric circulation systems are described.

Section 2.7 aims at giving an overview of the state of the art in the field of micro-
EDM modelling as well as simulation. This section leads to a conclusion of the

state of the art in the simulation field which is at the basis of the present work.



2.2. History

While electrical discharges and arcs are a commonly known phenomenon
nowadays, it has still been studied extensively by quite a few researchers across

the ages.

The first appearance of the use of discharges in manufacturing dates to the mid-
1600s when Robert Boyle tried to create metal powder from a solid rod and gave

the first description of material removal through electrical discharges.

However, the parenthood of Electrical Discharge Machining as a viable non-
conventional machining process, is attributed to the couple of Russian physicists
Natalya and Boris Lazarenko during World War 11 (Lazarenko & Lazarenko,
1944).

They were tasked in 1943 to find a solution to the problematic erosion of tungsten
electrical contacts and, consequently, studied the erosion process extensively.
While they did not a find a solution to that specific issue, they also described how
the erosion process could be well-controlled if the electrodes were to be immerged
in a dielectric fluid. Their publication describes an RC circuit and defines specific

energies to charge into the capacitor in order to obtain a stable machining process.

While the initial applications of this newly controlled technology could be used
for material removal, the Lazarenko realised that a certain distance needed to be
maintained between the tool and the workpiece in order to improve and stabilize
the process further. That distance is known as the machining gap and is

maintained through the use of a servo-control.



The accession of EDM to a commonly used workshop technology didn’t happen
until the 1950s when it was perceived as a machining process able to fulfil the
ever-increasing needs of the market. Once known as a simple removal machine
used in the removal of broken taps and drills from aluminium castings, it became
a widespread industrial process most notable with the transition from hand-fed

electrodes to CNC controlled 6 axis machining (Jaham, 2013).

The physics behind the material removal process as well as the control of the
machining gap were both at the centre of research. Due to the nationality of the
Lazarenko, the pioneers of EDM, most of the researchers working on that subject
were from the then socialist countries. Most of the machines and tools newly
developed at the time were done so by the Research Institute of Moscow. Many
young researchers studied in Moscow before bringing the technology back to their
home country (Schumacher B M, 2013). Livshiz, director of the EDM group at
the Research Institute of Moscow published a review of the variants of EDM

(Livshiz, 1957).

The last seventy years have seen an increase in the popularity and applications
of EDM and it is now a well-established and controlled non-conventional
manufacturing process. The micro-EDM process did not evolve concurrently to
its macro counterpart. This specific micro technology did not become popular
until the need for miniaturized features became apparent. The first breakthrough
for micro-EDM happened when its capacity to drill micro-holes was demonstrated
by Karafuji and Masuzawa (Karafuji H, 1968) when they made a micro-hole in a

carbide plate of 50 ym.

10



The final development of the micro-EDM technology had to wait until the advent

of software functions that enabled planetary movements of electrodes.

The next section provides with an in-depth presentation of the principle involved

in EDM as well as micro-EDM.

2.3. Principle

Regardless of the variant of EDM or micro-EDM, the underlying concepts and
principles remain the same and are the characteristics of the process (Jameson,

2001).

Two electrodes (the tool and the workpiece) shown in Figure 2 are immerged in
a dielectric fluid, usually deionized water or mineral oil (Jaham, 2013), and
submitted to an electrical current. As the electrodes get closer to each other, the
dielectric breaks down and the current flows between them leading to the
apparition of a spark. The spark is a plasma channel that is at the origin of
thermal energy which in turn leads to the vaporization and melting of the
electrodes” material. Once the current is stopped, the dielectric fluid rushes back

where the plasma was and evacuates the resulting debris.

The result of this repeated process if a controlled series of electrical discharges

that leaves craters on the electrodes’ surfaces.

11



Tool feed

Dielectric fluid

Tool (Cathode)

Workpiece (Anode)

\ ’ Gap:5to 10 pm
\ Plasma channel

Figure 2: General principle of EDM.

In micro-EDM, those sparks occur between a positively charged anode and a
negatively charged cathode. As the process relies on the application of an
electric field between both electrodes, they must necessarily be made of
electrically conductive materials (It is noteworthy to point out that some
techniques exist to introduce the ability to machine non-electrically conductive
materials). When the electric field is applied through an applied voltage, its
force increases as the distance decreases. The electrons emitted by the cathode
collide with neutral atoms that provokes a release of ions and electrons

attracted by the increasing electric field.

The increase in the electric field slowly deteriorates the dielectric fluid present
between the electrodes. The resistivity of the dielectric is reduced over time
until it reaches the point it can act as an insulator and can’t prevent the
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apparition of a spark. The formation of the spark leads to a reduction of the
voltage between the two electrodes to zero (at this point, the current flows
freely from one electrode to another nullifying the initial difference in electric
potential). The spark vaporizes and melts the material which leads to the
apparition of gas bubbles (hydrogen, carbon and various oxides) inside the

dielectric.

The workpiece material being melted is re-solidified by the dielectric. Those
debris are evacuated by the dielectric through flushing. However some of the
debris remain in the machining area, decreasing its resistivity. The current is
then shut during a time known as the time-off interval (t.«). The vapour bubble
in the machining area collapses as the current flow is interrupted and the

dielectric rushes and cools electrodes. With new dielectric in place, the process

can be repeated (Takahata, 2009).

The following figures (Figure 3, 4 and 5) illustrate the events previously

described that occur during an EDM discharge.

Figure 3: EDM Pre-discharge phase. Electrons and ions are attracted towards
the cathode and anode respectively.
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Figure 4: EDM discharge phase. The plasma channel is in red while the
expanding gas bubble is in blue.

Figure 5: EDM post discharge phase. The plasma channel has collapsed and the
gas bubble implodes. The dielectric rushes back in and evacuates debris.

The previous figures also underline the fact that the workpiece isn’t the only
electrode to be affected by the discharge. Thermal energy dissipation also occurs
at the tool leading also to material removal. While inevitable, it is possible,
through the choice of adequate process parameters to minimize the removal of

material on the tool.
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Several main parameters govern the formation of the spark as well as its
intensity. They are the peak current (1,.u), gap voltage ( Vi), time on (%,,) and

time Off (t,,ff).

There are quite a number of variants of EDM (and, as a result, of micro-EDM)
that are mainly differentiated by the type of electrode used and the relative

movement between the workpiece and the tool.

2.4. Main differences between micro-EDM and EDM

Even though micro-EDM and EDM have the same underlying principle, a process
based on a controlled series of electrical discharges, there are some important
differences that need to be underlined. While the dimensions are the main

difference, the issues related aren’t solved by a simple downscaling of the problem.

The scale of the tool is the most obvious difference. As a result, the technologies

used to make those electrodes differ substantially.

The micro EDM process differs also by the energies that are used during
machining. Those are significantly lower in order to limit what is known as the
unit removal rate per spark (abbreviated UR) and to protect the tools that are
much more sensitive to the energies being used due to their small size. This fact
leads to smaller craters on the workpiece and the tool and, therefore, a high

quality surface finish (Uhlmann, Piltz, & Doll, 2005).

Additionally, the erosion phenomenon is preponderant when considering the
micro-scale process against the macro one. In (Zahiruddin & Masanori, 2012), this
difference in behaviour was studied. The energy density (the ratio between energy

absorbed by the workpiece and the area of the plasma channel) is higher in the



micro-scale process and is considered to be a good indicator of machining

efficiency.

In EDM, even when considering similar energy conditions, it is possible to note a
discrepancy in performances between high peak current discharges (characterized
by a short spark duration) and low peak current discharges with a longer

discharge duration (Kunieda, Lauwers, Rajurkar, & Schumacher, 2005).

Table 2 presents a comparison between the parameters used in micro-EDM and
macro-EDM. It is noticeable that the discharge duration when considering the
case of micro-EDM is significantly shorter than in macro-EDM. This fact prevents
the plasma from expanding fully and result in an increased power density (the
heat source being smaller, the density therefore increases). The energy density, in

comparison with macro-EDM, is greater by a factor of thirty.

Another main difference between micro and macro-EDM lies in the flushing
efficiency of the dielectric fluid. As previously mentioned, in addition to increasing
the control and stability of the process, the dielectric is also used to flush the
debris resulting from the sparks. In micro-EDM the small size of the various
elements (most notably the machining gap) make that flushing more difficult and

less efficient (Katz & Tibbles, 2005).

The requirements in terms of axis movements are significantly higher in micro-

EDM where the precision required are within the range of tenth of microns.
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Table 2: Comparison between micro-EDM and EDM parameters (Zahiruddin &
Masanori, 2012).

. Conventional
Parameters Symbol Units pEDM EDM
Discharge current Lyear A 1.14 10.36
Discharge voltage Viear \Y 24 17.19
Discharge duration Lspark 1S 0.07 17
Crater diameter Cy pm 4.25 68.4
Volume removed per V.. pm? 1.90 972.5
pulse
Energy distribution  F. % 10.37 34
in workpiece
Energy IOSt by heat E(:r)nd % 602 30
conduction
Energy absorbed by  Eji % 4.35 1
debris
Plasma radius T, pm 6.8 171.12

The polarity used for the generator also differs. The phenomenon in the plasma
channel is a directional one. As a result, one electrode is used more than the other.
Due to the important effects of tool wear in micro-EDM, the polarity is reversed

so that the tool is worn less than the workpiece.

The final difference between the two processes, and the most important one, is

the dimension of the plasma channel that occurs during a discharge.
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2.5. Types of micro-EDM
2.5.1. Micro-Wire EDM

Micro-wire electrical discharge machining (1{WEDM) is a variant of the general
concept of pEDM in which a metallic wire of a diameter that can go down to 20
pm (Klocke, Lung, Thomaidis, & Antonoglou, 2004), typically brass, comes off a
spool and is fed through the workpiece submerged in a dielectric fluid that also
handles the flushing of the debris. The wire is held by two diamond guides CNC-
controlled allowing ptWEDM to cut intricate shapes. The fact that both of the
wire guides can be independently controlled makes the fabrication of tapered
shapes possible. The cutting path known as a kerf is greater than the width of
the wire since sparking occurs from the edge of the wire. This can easily be
predicted and compensated in most cases. Figure 6 depicts the general concept of

pWEDM.

The main issue associated with micro-wire electrical discharge machining is wire
breakage that drastically reduces the machining efficiency of the process. This
issue arises from the difficulties associated with applying a tension on such a small

wire (Han, Cheng, Feng, & Isago, 2008).

A certain number of control systems have been developed in order to detect on-
line any abnormality associated with wire breakage and prevent it (Kinoshita,
Fukui, & Gamo, 1982), (Rajurkar & Wang, On-line monitor and control for wire

breakage in WEDM, 1991), (Yan & Liao, 1996).
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Figure 6: General concept of wire EDM.

2.5.2. Micro-EDM die-sinking

In Die-Sinking micro-EDM the tool and the workpiece, placed in a dielectric fluid
(usually oil), are connected to a power supply thus creating an electrical potential.
After the breakdown of the dielectric fluid, a plasma channel forms allowing a

spark to jump.

The macro version of Die-Sinking micro-EDM (sometimes known as conventional
EDM) is used with complex electrode shapes in order to produce the inverse
shape. The resulting piece is then usually used as a mould in other manufacturing
processes such as plastic micro-injection (Ho & Newman, State of the art electrical

discharge machining (EDM), 2003).

One of the main issues when dealing with die-sinking micro-EDM is the tool wear
illustrated in Figure 7. This does not apply to wire-EDM in which the wire is

continuously fed and replaced during the process. The tool is worn during the
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process which leads in a change in its geometry. A modification in the shape of

the tool will have adverse consequences on the workpiece’s resulting geometry.

Die-sinking micro-EDM suffers the most from this phenomenon and a typical die-
sinking manufacturing of a complex three-dimensional shape usually involves the
use of a dozen or more electrodes before achieving the desired result within

acceptable tolerances.

Figure 7: The tool wear problem in die-sinking micro-EDM. a) Before machining
b) Ideal machining ¢) Actual machining

This issue associated with the tool wear is the main reason why micro-EDM

milling is the preferred method to produce complex 3D cavities.
2.5.3. Micro-EDM milling

Micro-EDM milling is a type of micro-EDM in which electrodes with simple
shapes (usually tubular or cylindrical electrodes) are used in order to produce 3D

cavities layer by layer. The process is quite similar to conventional milling in the
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sense that the tool electrode movement determines the cavity that will be

produced.

Micro-EDM milling is significantly affected by the wear problem described
previously. However various proven methods exists in the case of micro-EDM

milling.

The linear compensation method (LCM) (Yuzawa, Magara, Imai, & Sato, 1997)
compensates wear by feeding the electrode into the workpiece after it has moved
a certain distance along the tool path. It assumed that the ratio of the electrode

feed depth to the moving distance is a constant.

A major drawback of this method is that it is ill-suited to generate complex three-
dimensional shapes. It is usually restricted to the machining of 3D cavities that

possess straight side walls (Kuo, Chen, Wu, Yan, & Masuzawa, 1997).

The use of an electrode with a simple shape (cylindrical or square-shaped section)
along pre-defined paths has been proposed by (Yu, Masuzawa, & Fujino, 1998)
to circumvent the issue of tool wear. This method, known as the Uniform Wear
Method (UWM), aims at compensating the tool wear through layer-by-layer
machining. When the outline of a layer is machined, the tool loses its sharp edges
and becomes rounded due to wear. However when the inner part of the layer is
machined, due to wear on the axis of the tool feed, the tool recovers its original

shape (Narasimhan & Rajurkar, 2005).

The strategy here is to first machine the outlines of a layer of the three-
dimensional cavity thus creating wear on the edges of our electrode then to

machine the inner part of our layer. Tool feed axis wear will appear destroying
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the part of the tool where edges were worn and presenting a tool without edge

wear for the next layer.

A more recent trend aims at using the Uniform Wear Method with real-time
information obtained during the process in order to correct the paths that have

been defined previously through the application of the UWM before machining.

(Bleys, et al., 2002) proposed to add on-line tool wear measurement as well as
real-time control of the tool feed axis in order to perform wear compensation

without resorting to off-line prediction techniques.

2.5.4. Micro-EDM drilling

This type of EDM is quite similar to die-sinking EDM and only differs by its
power supply. In the case of die-sinking EDM, the power supply is quite sensitive
in order to protect the electrode. In the drilling of small holes, the power supply
is quite aggressive in order to blast through the workpiece. This process is
commonly used to drill holes through very hard metals allowing wire EDM to use
the hole as the start of the wire cut. The process uses cylindrical or tubular
electrodes. The tubular electrodes are commonly used when making holes with a
great aspect ratio (this situation is known as deep drilling) since it is possible to

make the dielectric flow through the tool to improve the flushing and evacuation

of debris.

Micro-EDM drilling is the main application of micro-EDM. Among its
applications are the machining of diesel engines injection nozzles (Potz, Christ, &

Dittus, 2000) or holes in turbine blades for the aerospace industry (Guitrau, 1997).
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The machining of holes has the advantage of not being concerned with the wear
issue as it is easily compensated in the z-direction through the use of long
electrodes. It is of note that the wear is easily predictable in the case of tubular
electrodes but not much so when using rods as the flushing inefficiency severely
alters the wear phenomenon and results in low quality holes (Pham, Ivanov,

Bigot, Popov, & Dimov, 2007).

Considering the difficulty to machine cylindrical electrodes small enough to be
used in the drilling of micro-holes and the clamping issues associated with them,
those tools are commonly made directly on the machine with a process known as
micro-EDG  (micro-Electrical Discharge Grinding). Micro-EDM is used to

fabricate electrodes with a small diameter from a bigger electrode.

a0 e

Figure 8: 2.8 pnm electrode made of cemented tungsten carbide using super fine
particles (SWC). Reproduced from (Han, Yamada, Kawakami, & Kunieda,
2006).
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2.5.5. Concluding remarks

From this brief overview of the various variants of micro-EDM that exist, most
of them possess proven methods to either compensate the issue of tool wear or

wire breakage in the case of wire micro-EDM.

Only die-sinking is lacking a proven method to negate the effects of tool wear on
the process. As a result, this specific variant of micro-EDM isn’t well-established.

However this isn’t the case for its macro-scale counterpart (Jameson, 2001).

Added to the fact that die-sinking possesses some enviable qualities (an excellent
surface finish and the ability to machine complex 3D geometries). This is the main
reason why it is proposed to bridge the gap between micro and macro-scale EDM

through the study of tool wear compensation techniques.
2.6 Main components of micro-EDM machines
2.6.1. Overview

As with most machines, micro-EDM machining systems are made of several
subsystems all performing a very specific task. These sections aim at giving an in-
depth description of those subsystems as well as their performance’s influence on

the machined result.
Among those subsystems can be found:

e The pulse generator responsible for the application of an electrical current

between the tool and the workpiece.

e The axis control systems that ensure a precise relative positioning of the

tool and the workpiece.
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e The dielectric circulation system that is composed in the circulation system

itself as well as a filtering system required to remove the debris.

e The central control unit that acts as the manager of all those subsystems

and interacts with the operator through a Human-Machine Interface

(HMTI).
2.6.2. The pulse generator

Arguably the core component of any EDM system is the pulse generator. Its
design and choice are extremely important and depends highly on the specific
application that is to be made. The difference between micro-EDM and macro-
EDM implies different pulse generators need to be used for each scale. The micro-
scale situation requires the minimization of the average energy per discharge
especially in a finishing situation where process parameters are chosen to
maximize the resulting surface finish quality. As a result, those parameters aim

at being the less aggressive as possible.

The selection of a pulse generator is fully dependent on this particular requirement
and the ultimate choice of a generator is different in EDM and micro-EDM for
this reason. The higher voltages and currents in macro-scale EDM associated with
lesser requirements in terms of geometrical tolerances usually lead to the use of

an aggressive pulse generator in order to maximize the material removal rate

(MRR) of the process.

There are a certain number of pulse generators available that can be classified

into different categories (Springborn, 1976):



1. Rotary impulse generator
The rotary impulse generator depicted in Figure 9 is based on the DC generator
principle which creates a sinusoidal wave. However, since there is no way to

control it, this type of pulse generator is rarely used.

]

e

Workpiece

Motor [ Generator SZD

Figure 9: Rotary impulse generator. Adapted from (Mahendran, Devarajan,

Nagarajan, & Majdi, 2010)

2. Relaxation generator

L

—E _C

Workpiece

Figure 10: Relaxation generator. Adapted from (Mahendran, Devarajan,

Nagarajan, & Majdi, 2010)

The basic principle of the relaxation generator depicted in Figure 10 lies in the
charge and the discharge of the capacitor C connected to a power supply E that

leads to the generation of a saw tooth voltage waveform.
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The capacitor is allowed to charge and discharge when there is a contact between
the tool and the workpiece. The duration of the spark is determined by the
capacitance of the capacitor and the resistance. Since the resistance is constant,
the duration (and therefore frequency) of discharges is dependent on the charging
time.

This dependency on the charging explains why this type of transistor results in a
small material removal rate.

Additionally, the discharge isn’t always uniform due to the variability present in
the dielectric medium which leads to a weaker control of the energy per spark.
Those drawbacks are overcome by the transistor-type generator which is further
described.

3. Transistor-type pulse generator

Solid State Switch

T e

TUL

Workpiece

Figure 11: Transistor-type generator. Adapted from (Mahendran,

Devarajan, Nagarajan, & Majdi, 2010)

A transistor-type generator is made of a series of resistors and transistors that are
placed and connected in a parallel manner to the power supply. The resulting
intensity of the current is a direct function of the number of transistors switched

on.
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The voltage waveform is a rectangular one and offers a significant improvement
when compared with the previous two pulse generators. This is due to the absence
of capacitors which eliminates the need to wait for their charge. Additionally, this
type of generator offers a control over the duration an intensity of a spark and

allows for optimisation of the process parameters (Jaham, 2013).

2.6.3 The servo control systems

The control of the distance between the tool and the workpiece is a central
consideration of micro-EDM machines. It is one of the main factors that control
the quality of the surface finish as well as the accuracy of the various features to

be machined.

Therefore, the development of a stable and robust gap control system is of

paramount importance for a repeatable and controlled machining (Rajurkar, et

al., 2006) (Zhang, Jia, Liu, & Li, 2012).

The usual values for the machining gap in micro-EDM is in the order of magnitude
of tens of micros, significantly lower than the usual gap in macro-EDM. This
additional constraint makes the development of an accurate servo control system

significantly harder and necessary.

Several algorithms dedicated to the prediction of the gap, the tool position and
the gap voltage exist and are implemented in the servo control systems. A large
machining gap than expected leads to a delayed discharge and a higher value for
the gap voltage than set. On the contrary, a smaller gap results in a decreased

spark delay and a smaller gap voltage than the reference.
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Most systems implement a withdrawal of the tool electrode that enables the
increase of the gap voltage in order for the discharge to happen in the correct
conditions. Additionally, this system helps avoiding short-circuits due to the

electrodes entering in physical contact or the debris potentially remaining in the

discharge area (Rajurkar & Wang, 1991).

2.6.4 The dielectric circulation and filtering systems

A critical system on any micro-EDM machine is the dielectric circulation
elements. In addition to the circulation of the fluid, the system provides with
filtering elements as well as a temperature control. The notion of temperature is
quite important considering the fact that, among the various dielectric fluids in
use, kerosene is one of the most commons and is of an inflammable nature (Jaham,

2013).

The dielectric circulation system is made of the following items:

The dielectric fluid (usually kerosene or deionized water)

e The dielectric container

e The low pressure pump

e The high pressure dielectric pump

e The filtering system

e The temperature control of the dielectric fluid
The filtering system is required to keep the dielectric free from the debris. Those
debris are solidified metallic particles coming from molten material that has been

flushed away from the spark locations.
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2.7. EDM modelling and simulation

2.7.1 Introduction

One of the drawbacks related to micro-EDM is the action of tool wear during the
machining process. As such, the notion of simulation for micro-EDM is of interest

as it could potentially increase the knowledge related to the wear phenomenon.

EDM and micro-EDM involve quite a number of different fields such as thermal
transfers, hydrodynamics and electrical conduction to cite a few. These various
interactions between different fields of physics make the problem of accurately

modelling the discharge process that leads to material removal a difficult one.

Pure mathematical modelling has been attempted when considering a single

discharge usually involving the heat transfer equation.

Simulation has also been attempted both in the case of a single discharge or the

whole process.

This section will provide with some insight into those two approaches applied to

EDM as well as micro-EDM.

2.7.2. Physics-based modelling

2.7.2.1. Introduction

Two major situations can be considered that are differentiated by the duration of
an electrical discharge. In the case of short sparks, it is supposed that the metal
doesn't have sufficient time to be heated and, as a result, material destruction
happens mainly by vaporization. In the case of long sparks the thermal aspect
becomes preponderant and the material melts. The problem then becomes one of

heat transmission. If it is not decided to consider the case of very short discharges,
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electrical discharge machining can be considered as a heat transmission problem
for which the temperature distribution in the workpiece shall be sought in order
to determine the shape of the crater. Three main components are to be studied:
energy distribution, size and shape of the discharge channel and material ejection.
A portion of the energy is evacuated in the dielectric and by radiation, another
portion is evacuated in both electrodes by conduction and a negligible part is lost
by convection in the workpiece. The exact repartition of the thermal energy relies
on different factors that include the boiling temperature of the electrodes’

material.

Finally material evacuation has to be considered. Unfortunately all of the molten
metal isn't evacuated by the dielectric fluid and considering so will lead to a
theoretical material removal rate (MRR) that will be greater than experimental
data. This introduces the concept of plasma flushing efficiency which is defined

by the fraction of the molten metal that is actually removed.

Work by (Descoeudres, Hollenstein, Walder, & Perez, 2005) has established that
the plasma flushing efficiency is dependent on the thermal expansion coefficient
of the electrode, the amount of molten material, the plasma channel radius, the

thermal properties of material and the flushing conditions.

2.7.2.2. Thermo-electrical modelling

EDM erosion models based on thermo-electrical principles consist in the search of
solutions for the heat conduction problem described by the following differential

equation:
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Where « is the thermal diffusivity (m?.s™'), K, is the thermal conductivity of the

material (in W.m.K"), p is the density (kg.m®) and C, is the specific heat

capacity (J.kg'.K™). Some models take the melting heat m into account in the

formulation of the thermal diffusivity:

PCy+ 1) (3)

where 7, is the melting temperature of the material.

The boundary conditions relate to the geometry being considered. Several
approaches of the problem exist. Some have used an adiabatic semi-infinite
cylinder, a disk heat input and assumed that the energy was equally shared among
the cathode and anode (Snoeys & Van Dijck, Investigation of electro discharge
machining operations by means of thermo-mathematical model, 1971) (Snoeys &
Van Dijck, Plasma channel diameter growth affects stock removal in EDM, 1972).
This was followed by a model using a two-dimensional heat flow model bounded
by an adiabatic finite cylinder (Van Dijck & Dutre, 1974). (DiBitonto, Eubank,
Patel, & Barrufet, Theoretical models of the electrical discharge machining
process II: The anode erosion model, 1989) used different sources for each

electrode: a disk heat source for the anode and a point heat source for the cathode
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erosion. Another element of the boundary conditions is the plasma heat flux that

can be defined as the following in the case of a uniform temperature distribution:

(EViapl

gaptpeak .
g 1217 disk source
B
| F(:thaplpeak: . (4)
l42 point source
27r

where F,. is the fraction of energy being transferred, V,, ,

is the gap voltage applied

to the electrodes, I,

peak 18 the peak current and r. is the plasma channel radius.

It has been observed that there is variation in the plasma radius. There is an
expansion followed by stabilization. A common function describing the plasma
channel radius, r.(t) as a function of time is given as follows (DiBitonto, Eubank,
Patel, & Barrufet, Theoretical models of the electrical discharge machining

process II: The anode erosion model, 1989):

r,t =Kt

where K and [ are coefficients depending on the machining parameters and

material properties. Those values are determined empirically.

Concerning the plasma heat flux, some researchers have established that the
temperature distribution in the plasma channel is not uniform and have adopted

a Gaussian distribution as following (Kojima, Natsu, & Kunieda, 2007):
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where F, is the fraction of energy being transferred, V_,  is the gap voltage applied

gap

to the electrodes, I is the time-on interval of the spark

peak 18 the peak current, ¢

on
and r, is the plasma channel radius.

In order to provide a better understanding of the various elements that have been
described, a model from Beck is presented here in more details (Beck, Transient

temperatures in a semi-infinite cylinder heated by a disk heat source, 1981).

L,

Workpiece

Figure 12: Parameterisation of Beck's model.

As visible on the parameterisation described on Figure 12, the heat source used

is that of a disk. The geometry is a semi-infinite cylinder insulated (adiabatic)
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everywhere except for the region in contact with the heat flux. Solving Equation

(1) yields the following solution for the temperature distribution.

+2qr(;. {TCB z,t iC’i 2t Jy N Jy AT, }

2[)‘777}:(]0 )\L Te ]2 (7)

where

B et =vat ierfelg) and O =t = {1 +at\vat - 55}

J,, x is the Bessel function of the first kind and is defined as follows:

0 —_1m

T 2m+n
Tow = 6
D Dy el € (8)

m=0

Where I'(z) is the gamma function.
The A; are determined as the solutions of J; A7y =0

The model developed by (DiBitonto, Eubank, Patel, & Barrufet, Theoretical
models of the electrical discharge machining process I: A simple cathode erosion

model, 1989) leads to the following temperature distribution:

Vourd oo .
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The Beck and DiBitonto (for the cathode) models have been used with the
parameters tabulated in Table 3. Those were chosen as parameters relevant to
micro-EDM in the situation where aluminium is used. The use of steel is more
common in micro-EDM but ultra-fine grain aluminium was being used at the time
to study the influence of small grain size. The thermal models being designed
without a specific material, they should be adapted to aluminium as well. The
values for 1y and r. were determined using the recommendations found in (Pandey
& Jilani, 1986). It is noteworthy that Beck’s model was not developed specifically
to be applied in EDM but as a general mathematical application. As a result the
notion of fraction of energy transferred to the electrode is absent. A value of 3.6%

was chosen in line with previous findings (Shao & Rajurkar, 2013).

The use of those parameters in Equation (7) leads to the temperature distribution

at t=t,, shown in Figure 13.

Table 3: Input parameters used for the evaluation of Beck's model.

Input Description Value
K; Thermal conductivity [J/s m K] 220

0 Material density [Kg/m?| 2700

G, Specific heat |J/KgK] 910

T Initial Temperature [K] 293

Ty Boiling Temperature|K] 2792

o Thermal diffusivity [m*/s] 8.95 107
Ty Radius of the insulated surface of the workpiece |[m| = 50R.  0.0041
Te Heat source radius at the cathode surface |m] 8.23 107
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F, Percentage of energy absorbed by the tool [%] 3.6

ton Spark duration [ps] 5

1572
Depth (m) T(K)
-1.6e-1 203
-1.6e-4 Radius (m) L.Ge-4

Figure 13: Temperature distribution obtained with Beck's model.

When used with Equation (9), this leads to this other temperature distribution

also at t=t,, (Figure 14).

() 655
Depth (m) THK)
-1.6Ge-4 353
-1.6e-1 Radius (m) L.Ge-4

Figure 14: Temperature distribution obtained with DiBitonto's model.
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In general, models for EDM applied to micro-EDM tend to significantly
underestimate the temperature distribution at any time in the electrode. In Beck’s
case, the predicted temperature does not reach a value sufficient for the melting,
and even less so, the vaporizing of the material. This is also the case to a greater
extent in DiBitonto’s model. As a result, the applicability of EDM models to the
micro-scale isn’t viable. Possible reasons for this situation could be attributed to

the change in scale that leads to other phenomenon being preponderant.

2.7.2.3. Electro-mechanical modelling

An electro-mechanical model for EDM is adequate in the case of short spark
duration as the material supposedly isn’t sufficiently exposed in order to heat
which is the case in micro-EDM. In (Singh & Ghosh, 1999) researchers have
proposed such a model exploiting the stress induced by electrostatic forces. This
model is based on the assumption that the plasma region is electrically neutral as
the positive ion density is nearly equal to the electron density. The potential
difference can’t be accommodated in this neutral region creating a thin sheath
near the cathode where there is a charge imbalance and where the potential
gradient is formed. The presence of such a sheath creates a strong electrical field
at the cathode that induces a negative charge. This surface charge is pulled
outwards by the field resulting in stress. The research concludes with the
observation that at low duration pulses, the crater depth is independent from the

spark duration.
2.7.3 Stmulations

2.7.3.1. Introduction
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This section will focus on the notion of simulation in EDM and micro-EDM with
an emphasis on die-sinking micro-EDM. Simulations applied to other variants of
micro-EDM will be studied as well in the cases where the ideas presented are

deemed to be relevant with the present research.

The typical simulation concept lies in representing the geometry of tool and
workpiece, using various techniques such as cellular automata or finite element
(FE) models, and in deriving from the gap separating these two elements the most
probable discharge location. Consequently, removal or craters on both the
electrode and the workpiece can be assessed based on the single spark modelling

approach considered and the geometrical models modified accordingly.

2.7.3.2. Numerical simulations

In (Das, Klotz, & Klocke, 2003) the authors used a commercial FEM software
called DEFORM to simulate several aspects of the process, while limiting
themselves to a single spark discharge. The aim of the authors was to make a
prediction of several aspect of the process: the material removal phenomenon, the
heat affected microstructure and the residual stress induced in the workpiece
during the machining. Using the heat equation, the fraction of energy absorbed
by the workpiece, the values of the current and voltage and the plasma
characteristics, the model developed with DEFORM FEM simulator was able to
predict the thermal characteristics and the residual stresses of the workpiece. For
this purpose, the material phase transformation from solid to liquid and vapour
was taken into account, and the same was done for the physical characteristics of
the workpiece material, which were considered temperature dependent. In this

model the residual stresses were supposed to be caused by the temperature
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gradients which resulted in expansions and contractions of the material due to
the thermal cycles of the process. Regarding the crater shape, the authors referred
to assumptions from the literature: the central depression of the crater is
simulated in the model as well as the protruding edges for which an additional
pressure boundary condition was needed. The model was finally validated
comparing the simulated results with the experimental ones. The main stress
involved in this process resulted to be the compressive one: the material, because
of the temperature, tended to expand and this expansion was limited by the
surrounding colder material. This resulted in a compression stress. On the
contrary, when the material was cooling down, it tended to pull the surrounding
cold material and this resulted in a tensile stress in the workpiece. Concerning the
temperature distribution, the residual stresses and the crater shape the model
outputs were considered accurate and the model was considered suitable for the

simulation of the multi-spark discharge process.

The aim of the researchers in (Yang, Guo, Chen, & Kunieda, 2011) was mainly
to overtake the limitation of the thermal models about crater formation and to
analyse from a molecular point of view, the removal mechanism in the micro-
EDM process and to simulate the crater formation mechanism. For this purpose
an approach called Molecular Dynamics was applied: this kind of approach is
useful in order to consider, at the same time, the thermal and the mechanical

behaviour of the discrete parts of the workpiece.

In this model, the workpiece is assumed to be composed of a finite number of

discrete elements. The model is made of three domains: cathode, anode and gap;
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boundary conditions were imposed considering for example the thickness of the

boundary atoms composing the workpiece and the surface involving the sparks.

Concerning the heat source, it was supposed to be circular and the heat income
was simulated for the velocity of each atom basing on the Maxwell-Boltzmann
distribution. The heat transfer phenomenon was considered as well as the
interatomic force between the atoms. The material removal mechanism explained
in this model relies on the formation of bubbles of vaporized material; these
bubbles are located in a small space between cathode and anode. Those bubbles
explode because of the pressure and remove the molten material on the surface in

the form of clusters.

Finally, the influence of the electrode surface finish on the crater formation was
investigated: the presence of pores on the electrode surface resulted in a worse
surface of the workpiece and in a bigger diameter of the craters, which leads to a

general worse roughness of the workpiece.

In (Izquierdo, Sanchez, Plaza, & Ortega, 2009) the authors developed a finite
elements model aimed at describing and predicting the temperature fields
generated by multiple discharges on the workpiece during the process. The model
resulted in it being able to simulate and also represent the resulting surfaces. In
this case, the describing equation considered the most suitable for the EDM
process is a thermal one, with heat transmission coming from the spark. The
solution of the thermal problem leads to the temperature distribution inside the
workpiece from which it is possible to estimate the shape of the craters. In this
paper, the workpiece is discretized by hexahedral elements (cubes) and for each

element appropriate boundaries are defined. For each volume an energy balance
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is carried out considering the losses of energy due for example to the convection.
Basically, the energy flux is supposed to pass through each volume across certain
faces of the volume element. The modelling of the heat source consisted in the
definition of a spark in which the voltage and the current are supposed to be
constant during the process. Moreover, the quantity of energy lost is also
considered constant. Finally, the dependency of the plasma radius on time had
been determined, using previous literature to set the exponent. Once the
temperature distribution had been found, the criterion for the estimation of the
crater volume was set: every part of the workpiece which reached a temperature
higher than T., was supposed to be removed from the workpiece. Another aspect
considered in the paper relates to the spark location, which is influenced by the
local gap and by the debris distribution. Differently from other works, the

influence of multiple discharges instead of single discharges is considered.

2.7.3.3. Geometrical simulations

Those models are called geometrical in the sense that the physics behind the
apparition of craters aren’t considered. Only purely geometrical elements of the
crater such as their dimensions and/or volumes are taken into account. The use
of a purely geometrical solutions makes any simulation faster than with the use
of finite-element methods involving numerous solving of complex equations.
Therefore the ideas presented here tackle with the complete simulation of an

entire micro-EDM process.

The first attempt at geometrical simulation of the die-sinking EDM process was
in (Tricarico, Delpretti, & Dauw, 1988). The geometries are described by a set of
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points that describes the surfaces of the tool and the workpiece and are displaced

during the simulation process.

This was a two-dimensional simulation method that was extended to simple three-

dimensional shape through rotation of the profiles or swept surfaces.

This was followed by work from (Kunieda, Kowaguchi, & Takita, Reverse
simulation of die-sinking EDM, 1999) on die-sinking micro-EDM in which the
geometries were modelled by three dimensional meshes. The notion of reverse
simulation was also introduced which consisted, after having performed a classic
simulation, in inverting the volume removal parameters between the tool and the
workpiece. Once this done, the workpiece was fed towards the tool and, at the
end of the process, the electrodes returned to their original shape. The amount
and distribution of material removed from the workpiece during the reverse
simulation gave an indication of the volume to be added to the tool in order to
compensate for tool wear during the process. An improvement of this method
(Kunieda, Kaneko, & Natsu, Reverse simulation of sinking EDM applicable to
large curvatures, 2012) was made in order to apply it to electrodes with large

curvatures.

The machining gap isn’t taken into account in this method. The material removal
is done through the use of the notion of tool wear ratio but isn’t a crater-by-crater

method. Instead, large rectangular chunks of material are removed.

The three-dimensional geometric simulation of micro-EDM milling processes was
performed by (Heo, Jeong, Min, & Lee, 2009). The tool and the workpiece were
modelled as Z-maps which present an inherent limitation since they can’t
represent overhangs.
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The use of Z-maps was also implemented in the case of die-sinking micro-EDM
by (Zhao, Zhang, Liu, & Yamazaki, 2004). Once again, the use of Z-maps is a
limitation that prevents the representation of overhangs. All the sparks that occur
are vertical. The authors considered the machining gap through the use of tables

meant for wire-EDM.

2.8. Proposed work

Considering the previous work that has been undertaken by various researchers,
there is progress to be made in the field of tool wear compensation in die-sinking

micro-EDM. Previous work has been undertaken in that field with some success.

It is unwise to implement a fully physics-based simulation process when
potentially hundreds of thousands of iterations could be required. Therefore,
should a complete and fast tool be developed, a geometrical approach should be
preferred. While it might be possible that a lack of accuracy might arise when
compared with physical models, the gains in terms of computation times would
counterbalance this. Furthermore, the complexity and interactions of the physics
behind micro-EDM make it unlikely that a single model would be able to

accurately model the process.

However all the proposed geometrical methods have their drawbacks. The most
common is the nature of the geometrical models used for the representation of the
electrodes. All of them use a discretisation of the surfaces at the boundaries of the
electrodes either Z-maps or a common discrete mesh. The main limitation of Z-
maps has been discussed previously. In the case of usual meshes, they are prone

to possible self-intersection which would be a major issue during a simulation.
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Additionally, the meshes would need to be refined regularly as the surfaces are

deformed to accommodate the presence of new craters.

The current state is a preference towards micro-EDM milling because of the tool
wear issue. However, should that problem be solved for die-sinking micro-EDM,
the optimized process could prove to be faster and able to machine larger areas
with micro-features. In addition, it would be possible to obtain complex 3D
cavities with an excellent surface finish. The idea behind the present research is
that die-sinking micro EDM could become a cost effective and potentially more
accurate alternative to micro EDM milling for complex three dimensional shapes
provided that one could model accurately the wear effect on the electrode and
the resulting shape modification. Deformation could then be compensated for
when designing the electrodes by adding extra volume to the electrode in key
locations and therefore reducing the number of electrodes required to achieve

the targeted profile.

The inclusion of the issue linked to the flushing of the debris isn’t considered here
since it is supposed that the problem is too complex to be solved in a fast and

meaningful way.

The first step is to build a tool able to accurately and quickly predict the
location and intensity of tool wear during a micro-EDM process. Considering
the fact that the various thermal models available aren’t adaptedwhen applied
to micro-EDM, a geometrical solution is to be preferred. Additionally, taking

into account the great number of sparks that occur during a complete micro-



EDM process, geometrical methods are well adapted due to their low

computational requirements as opposed to finite element methods.

A three-dimensional approach is to be considered since a two-dimensional
method does not take into account the influence of craters that do not appear in

the same plane.

The second step consists in the development of models issued from experimental
data used to train machine learning algorithms. Those models will be used to

determine the input parameters for the simulation of unknown cases.

The third step is to use the output provided by the simulation tool inside an
iterative loop that will seek to minimize the difference between the desired

workpiece and the actual result achieved.

Finally, it is proposed as a fourth step to use the data provided by the
optimisation loop to train a neural network that will be able to predict optimal

tool shapes from target profiles that haven’t been simulated and optimized.

In order to better understand the different elements, Figure 15 presents the
project in its entirety. The three different parts are highlighted. Part 1 is in

blue, part 2 is in salmon, part 3 is in yellow and part 4 is in purple.

The remainder of the present document is articulated around these four parts.
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Figure 15: Overview of the proposed work.
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Chapter 3

A geometrical material removal tool

3.1. Introduction

As previously mentioned, one of the main issues that arises during the micro-
EDM die-sinking manufacturing process is the tool wear. It is of note that the
case considered here is restricted to micro-EDM die-sinking in dielectric oil. The
alternative use of deionized water results in Electro-Chemical Machining effects
(Campana & Miyazawa, 1999). The present chapter presents two main solutions
that have been explored for the numerical simulation of micro-EDM in order to
better understand and predict the tool wear phenomenon. The first of those is
based on the use of Non-Uniform Rational B-Splines (NURBS) as support
geometries for the modelling of the tool and the workpiece while the second uses

voxels embedded in an octree data structure to represent the electrodes.

A certain number of solutions were available when considering the models of the
electrode. Previous work has focused on the use of z-maps, three-dimensional
meshes or two-dimensional cell decomposition. All those methods have their
drawbacks whether in terms of representation ability (z-maps can’t represent
overhangs) or memory usage and general accuracy (any spatial enumeration
model). This fact has led to the exploration of alternative solutions for the
geometrical representation of the electrodes. NURBS have been chosen for their

ability to represent smooth surfaces that present no discontinuity and this
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characteristic could possibly improve the simulation’s accuracy. However several
drawbacks that appeared led to the consideration of a second solutions based on
voxels embedded in octrees. The voxels method, a purely volumetric solution, has
been preferred over other representations such as dexels since the sampling quality
for those can be very low for surfaces with normal vectors nearly perpendicular
to the sampling direction (Ren, Zhu, & Lee, 2008). It is proposed to address the
main issue of voxels, memory usage, through the use of octrees as a containing

tree structure.

Both of the solutions have been developed using C#.NET as the main
programming language. Visualization was implemented using a C# DirectX

wrapper (SharpDX).

Before going into the details of the simulation itself, the first few sections will give
some basic insight on the various mathematical notions relevant to NURBS as

well as voxels.

The main concepts of the simulation tool will then be described before going into

the details of the implementations using NURBS and voxels.
3.2. Non-Uniform rational B-Splines
3.2.1. Overview

Since the inception of three dimensional models and supercomputers, the
description of complex shapes has been a main problematic. This increasing need

has led to the creation of Bezier curves and surfaces in 1962.
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However Bezier curves can’t exactly describe some specific shapes such as circles.
This has led to the development of other mathematical tools including Non-

Uniform Rational B-Splines.

In order to ease the comprehension of key elements described in further sections,
an overview of the mathematical concepts that NURBS rely upon is provided. A

complete and exhaustive presentation is available in (Piegl & Tiller, 1997).

3.2.2. B-Spline Basis functions

Before formally defining NURBS, it is necessary to start with the notion of B-
splines basis functions and B-splines. There are several ways to define those basis
functions. Considering that the mains cope of our work is to be implemented
numerically, a recurrence formula attributed to de Boor, Cox and Manfield (Piegl
& Tiller, 1997) is used. A B-Spline basis function is defined over what is known

as a knot vector which is a set of non-decreasing values:

U = {ug,...,u, } where u; < wu;,q fori€[0,...,n+p+1] (10)

Where p is the polynomial degree of the B-Spline basis function and n is the
number of basis functions. The u; are known as knots. The i B-spline basis
function of degree 0 is defined over the parametric domain u as follows:

Lif uy <u <

0 otherwise

Nio u :{ (11)

The i™ B-Spline basis function of degree p is defined as follows:
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It is of note that, in some cases, the quotient 0 over 0 can appear. In that case

convention dictates that a value of 0 be attributed to that quotient.

B-Spline basis functions verify the following properties:

Partition of unity : Zlo N;pu =1 (P1)
Non-negativity : V. u,i ,N; , u >0 (P2)
Local support : Vu & [u;,u;4,1], N;p(u) =0 (P3)
10
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Figure 16: B-Spline basis function over the knot vector {0, 0, 0, 0, 0.25, 0.5,
0.75, 1,1, 1, 1}.
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Figure 16 represents the seven B-Spline basis functions over the knot vector
{0,0,0,0,0.25,0.5,0.75,1,1,1,1}. The first and last knots are with multiplicity four
meaning that they are repeated four times which indicates that these are the basis
functions of degree three. This way of representing knot vectors with the first and
last knot vector with multiplicity p+1 is called clamped as opposed to unclamped.
In the remainder of this document, all knot vectors will be given in the clamped

format.

3.2.3. NURBS curves

A NURBS curve of degree p (or of order p+1) is formally defined as follows:

S oNip v w P
g =iz T for 0<u<1 :
vt 2o Nigp v - w; vUEEE (13)

C

{P;} is the set of control points, {w;} is the set of weights (associated with each

control point) and {N;,(u)} is the set of B-Spline basis functions of degree p

defined over the knot vector:

U — {07 ces 707up+17 "'7u'm,—p—17 1, ces 71}
—_——— ————

p+1 p+1

All NURBS curve satisfy the relation: p+1=m —n.

It can be convenient to express C, u in a different way to outline the fact that

each point of the curve is computed as the sum of weighted control points as

follows:



C,u = f 'R, u.P, where R, u = N
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i=0 j=0""dpr i

w;

3.2.4. NURBS surfaces

A NURBS surface of degree p in direction u and of degree ¢ in direction v can be

defined in the form of:

n ™m
S Zi=0 Zj:() Nipu Njgvw ;P ;
u,v = D m (16)
Zy’ oNip u Njg v wy;

p,q
i=0 Jj= 7, 7

{P;;} is the set of control points, {w;;} is the set of weights (associated to each
control point) and {N;,(u)} and {N;,(v)} are the set of B-Spline basis functions

of degree p and q respectively defined over the following knot vectors:

U — {0, e ,O,U,erl, ,U,Tfpfl, 17 ,1}
p+1 p+1

V={0,...0, 0,11, ..,us_4q,1,....1} (18)

q+1 q+1

withr=n+p=lands=m+q+1

Similarly to Equation (15), S(u,v) can be written as:

Su,v = ZZRi,j u,v P, (19)

i=0 j=0

with:



N;pu N;, vw,

tp J4

Z"’L Nk,p U Nl,q v wk?,j (20)

=0

R

u, v = n
k=0

(%]

The main properties of NURBS surfaces are:

Partition of unity : V (u,v) € [0,1]* X%, Yo R j(w,v) =1 (P1)
Non-negativity : V (w,v,i,j) ,R; j(u,v) = 0 (P2)
Local support : Yu & [u;, Uispr1] X [Vj) Vjrgea) Rij(wv) =0 (P3)

3.3. Voxels and octrees
3.3.1. Voxels

Voxel stands short for volumetric pixel and, as the name implies, is often described
as the three dimensional equivalent of pixels. (Kaufman, Cohen, & Yagel, 1993)
In the field of solid modelling, the technique that consists in representing a volume
with voxels is known as spatial occupancy enumeration. The solid is typically
described as the list of voxels it occupies. In addition to defining the occupancy
of a solid, additional values can be affected to each voxel to describe other
properties of the solid such as the colour, density, material and others of its real

properties.

The source of the data that is used to build volumetric representations is usually
sampled from real objects (Computed Tomography, Magnetic Resonance
Imaging), issued from simulation (fluid dynamics simulations, meteorology) or

existing three dimensional models.



The increase in computer memory has made the use of voxels more attractive as
memory usage is its main disadvantage. A volume described by 1024* voxels (more
than a billion voxels) would occupy more than a Gigabyte of memory. The same
trend was observed in the mid-seventies when raster graphics replaced vector

graphics as memory capacity of computers increased.

However, regardless of the resolution used to describe a volumetric object, there
will always be an inherent loss of information when using a discrete solution such
as voxels. Computations of volumes and distances will be limited to the precision
permitted by the voxels’ size which is unacceptable when an exact measurement
is required. If an exact value isn’t required, the approximated computations will

however be significantly easier to compute than with surface models.
3.3.2. Octrees

3.3.2.1. Overview

An octree is a hierarchical data structure in which each node (also known as a
cell) can have up to eight children. This data structure is most often used to
subdivide a three dimensional space into eight octants in a recursive manner. An
illustration of an octree can be observed in Figure 17 and its associated tree

representation is given in Figure 18.

Ut
Ot



/
\

/
\

/
\

<
//

Figure 17: The visual representation of an octree.

Root

Figure 18: An octree hierarchical structure

Octrees are particularly well adapted to represent a spatial occupancy
enumeration into regular hexahedra. They provide with the possibility of
condensing large areas of no interest (mostly large sections of Boolean volume

data) and therefore reducing memory usage. It is of note that in the case of non-



Boolean volume data (when additional material properties are specified for

example), condensation is harder to achieve efficiently.

3.3.2.2. Representations

Programmatically speaking, octrees can be defined in various manners (Knoll,
2006), each with their advantages and disadvantages. Two main layouts exist
when it comes to implementing octrees. The first is a pointer-based octree that is
mostly used when memory consumption isn’t deemed an issue and the octree
needs to be modified frequently. The second, an index-based octree, is used in the

opposite scenario.

In both cases, a node element will always contain a pointer to its children.
Additionally, the node will probably contain information about its position either
in the form of a Vi, and Vnax vector or a Veenter vector and the node’s half-size.
Not doing so would require computing each node’s position from the root node

each time it is required.

Full Octrees

A full octree could be considered as a regular three dimensional grid: all leaf nodes
have the same size corresponding to a tree depth tq and the number of leaf nodes
is:

Nleav;cs = 8td
(21)

A visual representation is given in Figure 19 in which an octree of dimension 1024

pm was subdivided until all leaf nodes were of a size of 128 pm.
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Figure 19: A full octree with a depth level of 3.

The advantage of a full octree lies mainly in its regularity. A node does not have
to contain information about its position and merely pointers to its children.
Alternatively all nodes can be store in a single array. This type of octree is used
in the situation when the volume data is evenly distributed and takes most of the
octree’s volume. Should that not be the case (the described volume being very
sparse), the memory gain in reduced information storage is quickly outstripped

by the additional nodes used to describe large, empty sections.

Pointer-based octrees

A pointer-based octree stores, for each node, a pointer to its children and,
possibly, another one to its parent. The particularity lies in the fact that a node
containing no children is considered as a leaf while, in the case of a node with
more than one but less than eight children, those missing children are empty as

seen in Figure 20.
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Figure 20: Pointer-based octree with an empty node.

A pointer-based octree can either have eight pointers (one for each children) or
only one if the children are stored contiguously in memory. However storing only

one pointer makes it impossible to allocate new children on-demand.

Linear Octrees

The linear octree (Gargantini, 1982) layout consists in affecting to each leaf node
a locational code which is a unique index. The locational code is built in such a
manner that finding a specific node’s parent or children is straightforward. The
locational code of a node is based on its parent locational code and its position

within it. A possible choice is displayed in Table 4.



Table 4: Octree child nodes locational codes.

X Y Z Binary locational code Decimal code
- - + 000 0
+ - + 001 1
- - - 010 2
+ - - 011 3
- + + 100 4
+ + + 101 5
- + - 110 6
+ + - 111 7

All the leaf nodes’ locational codes are sorted in order in a single array.

(Glassner, 1984) proposed a few improvements. For one, the children were
numbered between 1 and 8 instead of Gargantini’s 0 to 7 since a computer can’t
make the difference between 00 and 0. Gargantini circumvented this limitation
by adding a stop bit equal to 1 to the locational codes. In addition, Glassner
proposed to store all eight children contiguously in order to speed up the search
for a node. Finally, instead of being stored in a single sorted array, the nodes are

found through the use of a hash map.
3.4. The simulation tool
3.4.1. Global overview

Regardless of the method of representation, NURBS or voxels, the main principle
of the simulation tool remains the same and can be described through Figure 21

while the input/output relationships of the main algorithms can be described

60



through Figure 22 which is a more detailed version of Figure 15 limited to the

numerical simulation tool.

Start

v

d = machining gap

Fal
— Cument depth < Objective depth i} End
+ True
d = minimum distance
False

+ True

|

— Remove volumes

Move tool down

Figure 21: Main diagram of the simulation tool principle.

Objedive depth

Starting geometries
Tool/Workpiece

Algorithm control

Final geometries

Machining gap

Geometries conversion

Simulation parameters
(tolerances)

Distance computations

Crater dimensions

Soale Sl e e

Volume removal

Figure 22: Input/output relationships of the main algorithms.
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An iteration of the simulation starts with the comparison of the current depth to
the objective depth. If the tool electrode has reached that objective depth, the
simulation ends. If not, the smallest distance between both electrodes is found.
Should that distance be smaller than the machining gap, material is removed from
the geometries to mimic the shape of craters. If that distance is greater than the

machining gap, the tool is moved down by a small increment.
A new iteration can then take place.
3.4.2. The simulation tool using NURBS

3.4.2.1. Introduction

In the proposed approach, both the geometry of the tool and the geometry of the

workpiece are defined by means of NURBS patches.

To allow the insertion of thousands of craters, the surfaces of the tool S; and
workpiece S, are heavily refined using the Boehm’s knot insertion algorithm
(Piegl & Tiller, 1997). It is of note that the whole patches are refined before
starting the process in order to avoid having to do it after each iteration. As a
result the surfaces’ control points will be a lot closer to it, hence local control is

significantly increased.

At each step of the insertion process the location of each crater (one on each
electrode) is determined while identifying the shortest distance between the tool
and the workpiece since it is considered that the electrical spark will happen on

the less resistive path, i.e. the shortest one.

Minimum distance computations are done using an optimisation method known

as particle swarm optimisation (PSO for short) which is a simple numerical
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optimizer that does not require the use of the gradient of the objective function
(Kennedy & Eberhart, 1995). Alternative optimisation methods were applied to
the distance computation with less success in terms of computing speed or
accuracy (in this case the ability to find the global minimum and not a local one).
Among those methods were the Nelder-Mead algorithm (Nelder & Mead, 1965),
the differential evolution algorithm (Storn, 1996), the conjugate gradient method,
the Newton method, the quasi-Newton method and the simulated annealing

algorithm (Kirkpatrick, Gelatt, & Vecchi, 1983).

The minimum distance search parameters related to PSO were determined using
meta-optimisation. The possibility of finding a local minimum instead of the
global solution has been considered as acceptable provided that the deviation isn’t
too important. The risk is that repeatedly finding a local minimum instead of the
optimal solution leads to the two geometries intersecting. To alleviate this, the
algorithm checks regularly for intersection between the two NURBS surfaces. If
an intersection is found, the tool is moved up. This situation has been observed

as being extremely rare.

A crater is then inserted in each of those locations by moving the surrounding
control points. As explained in the literature review, the shape of a crater can be
assimilated to a part of sphere. The use of a purely geometrical method and the
crater dimensions being input parameters makes it possible to include the re-
solidification of melted material within the crater dimensions since those used are

empirically determined.

If the computed minimum distance d exceeds the value of the minimum distance

required for a spark to appear (known in EDM as the gap distance M,) then the
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tool is moved down along the z axis with an increment of Az. Otherwise, if the
computed minimum distance is smaller than M, then the PSO algorithm returns
four values (w, v) and (w., v,) corresponding to the parametric coordinates of the
craters’ centres respectively on the tool (subscript ) and workpiece (subscript w).
The algorithm then moves the control points located in the surrounding of the
craters’ centres so that two craters of volumes V," and V,, are inserted into the
tool and workpiece. The deformation technique is similar to surface warping
considered as a geometric deformation technique (Piegl & Tiller, 1997). The
process ends when the desired depth D, is met. The overall algorithm can be
described in pseudo-code form as in figure 6. The different steps of the crater

insertion process are further detailed in the next subsections.

3.4.2.2. Volume enclosed by a NURBS patch.

In the proposed algorithm, it is mandatory to control the volume V." removed on
the electrode e (with e €{t,w}) at each iteration of the simulation process. To do
so, the idea is to compute the difference between the initial volume V. enclosed
by the NURBS patch and the volume at a given iteration V.. Generally speaking,
the Green-Ostrogradsky’s theorem states that for a vector field F and a region V

enclosed by a surface S:

/ div F dV :jl F.dS (22)
v S

In the proposed approach, the surface S. to be deformed is defined by a single

NURBS patch of degree p. in u and q. in v Figure 23a) and defined by its

parametric Equation (23):
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_ > Z?:i)wijNip u Njq v P
ZZO Z?:b w;; Ny u Njg v (23)

="z u,v,y u,v,z(u,v)]

S, u,v

where P represents one of the (1 + n.) x (1 + m,) control points to be moved,
and wy the weights associated to each control points to be moved. The weights
will be taken equal to 1 in the proposed approach and won’t be considered as

unknowns of the deformation process.

Control points

Surface Se

S

Enclosed volume V,

So

Figure 23: enclosed volume computation.
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:-:;,/ Initialise M, Dy, A, AV, AV, /

(d.up.vpuy, v, )=min_distance(S ,.S;)

7/ move_tool_down(S;, A,)
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/ Compute warping vectors tu,;‘rﬁ'.-"l /

Vg — enclosed _volume(S )

/ Compute sphere centres €, k] /

Identify the N, Jk] control points of S, to be moved in the tu(f"t'.-"l direction

Are there control points still to be jmoved 7
No

/(.”{)mputt: the deviation r, _J.J"Jt'.."ll from tuffﬂ'.-"l
|
/ Compute warping value _,Ir,,_’.J'{ﬁ'.-"fr'f_’.J'r’ﬁ'_-"_.i /

/Mm'{: the control point P, ;to lT’,,_J. =Pg jtfe _J.J'r’t'.-"lu', _J.J'i’t'.-'ll.-i

Figure 24: Simulation diagram for the NURBS solution.
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The surface S, not being a closed surface, the idea is to choose the field F =

10,0,z] so that:

F.dS = F.dS, = F. 0Se X 95 dudv 24
g S . ou ov (24)

e e

where U. is the patch’s parametric domain. The patch is not trimmed in the

simulation tool. Thus the enclosed volume V. becomes (Figure 23.b):
v / <8x oy Oy &U)
= Zol—F =4
© Jy  \Oudv Judv (25)

It can then be approximated while discretizing the parametric space U, with
(N.*xN.") sample points. Thus, for a given sample point S;;, = S.(w,w), and a
neighbourhood [wg,u 1] X [vi,vni1|, the surface S, can be approximated locally by a
quadrangle which can be decomposed in two triangles T,i,h and T,ih and the

enclosed volume becomes (Figure 23.c¢):

Nu—1 Nv—1

V; = Z Z [Vve(Tk},h, + Tl?,h)] (26)

k=1 h=1

where the volume V, (T,i ») enclosed by T,i ,, can be computed using Equation (25)

and a simple parameterization of the triangle:

Vo(Tpip) = = (efen —enen)(sin + Siarn + Shonen) (27)

S| =
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Here, x, v and z stand for the coordinates of the vectors represented on Figure

23.c. A similar formula applies for the triangle T,f, B

Table 5: Comparison of speed and accuracy for the sampling-based method.

Nb. Points Time (ms) V, (um?®) D, (%) D: (%)
25 24 283329 15.66 100

50 97 360872 7.42 24.74
100 379 344769 2.63 6.33
200 1508 334685 0.38 1.59
400 3397 336873 0.27 0.70
800 24652 335950 0.00 0.09

In order to be able to tune the discretization parameters N, and N, , several
samplings have been performed on a final surface S,, and the results are reported
in Table 5. In this table, Dy, is the ratio to the best estimation, and Dy the ratio
to the fastest estimation. As expected, doubling the number of sample points in
each direction leads to four times more sample points over the entire surface,
hence the total computation time is also greater by a factor of four. Overall, it is
noticed that acceptable results (those that would be within 5% of the true value
of the volume) would require computational time of several hundreds of

milliseconds.
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Table 6: Comparison between sampling-based (800 points in each direction) and
control points-based (1000 points in u and v) methods.

Method Time (ms) V, (um?®) D, (%) D: (%)
Sampling 3397 335950 100 1.79
Control points 61 335137 0.24 100

Even if the simulation tool doesn’t need to sample the whole surface but just the
portion being deformed, it is still interesting to explore other strategies. An
alternative would be to consider that the control points are sufficiently close to
the real shape to be used in an accurate calculation of the surface’s enclosed
volume. In this case, formulas similar to Equations (26) and (27) can be obtained
directly from the control points and not from the sampling points anymore (Figure
23.a). A comparison between the sampling-based and control points-based
methods is presented in Table 6. From those results, it is clear that the control
points-based method is much faster than the sampling approach without,
however, significantly reducing the quality of the approximation. Thus, this
method has been adopted since the computation of the enclosed volume will be

performed hundreds of thousands of times during the pEDM simulation.

3.4.2.3. Volume to be removed for each crater

Each electrical spark transfers a certain amount of energy to the tool, the
workpiece and the dielectric fluid. Here, it is considered that the amount of energy
brought to each element is the same at each spark. Previous research (Wang,
Ferraris, Galbiati, Qian, & Reynaerts, 2013) suggests that the energy distribution

at low energy levels is uniform. However, this isn’t the case at higher levels and
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could be accounted for in the future. As such, it is desirable to remove the same
volumes V," and V,; when simulating the insertion of all the craters. These volumes
are experimentally obtained by measuring the mean radius R, and mean depth

D, of actual craters. Then, considering that the craters are domes, the volumes

to be removed V. are computed using the following formula:

, Wbe =2 =2
VIi==t(BR+D.),  ec{tw) (28)

From these volumes and domes, the support spheres can be identified, i.e. the
spheres of radii R. equal to the dome’s radius. As explained, these two radii remain

constant for the two surfaces for the crater-by-crater simulation.

3.4.2.4. Craters insertion

Following the flowchart of Figure 24, for a given depth of the tool, if the minimum
distance is smaller than the gap distance, the craters insertion process starts.
Craters are inserted one by one on each surface S, (e € {t,w}) and centred on
Se(u.,v.). For sake of clarity, the superscript |k has not been put on the parametric
coordinates u. and v. even if these values refer to the k" craters (one on each
surface). First, to identify the displacement directions, the two warping unit

vectors are computed as follows:

with sge = 1fore=t
—1lfore=w (29)

w wr rw

w |

Uyyy U
w Uy U
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Figure 25 represents a two-dimensional version of the process after having found
the minimum distance. For sake of clarity, solely the part of the workpiece is
represented even if the same strategy applies to the tool. The next step consists
in identifying which control points need to be moved in the surrounding of the

two points Se(te,ve).

Tool

S, (u,vy)

Control points

of S,
<—— Sparkline
Sw (uw: Uw)
/*_Y:‘\m
(K]

Figure 25: Definition of the warping vector w,, for a crater to appear on the

w
workpiece.

volume AY,¥]
‘ Workpiece ‘

Figure 26: Definition of the support sphere and removed volume AVw.
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Once the radii of the two spheres identified, the location of the spheres’ centres
has to be computed (one for the tool and one for the workpiece). As illustrated
on Figure 26, the centre of the sphere lies on the spark line. Its exact position
depends on the volume V. that needs to be removed. In order to find the location,
an iterative dichotomy method (also known as binary search or bisection method)
is used. At each step, the surface S, is deformed and the intersecting volume (the

hashed part of Figure 26) between the sphere and the surface is computed while

using the previously introduced formula (AVJM = Ve[k] — V[k]). If the volume

el
obtained is smaller than V., the sphere is moved towards the surface, and if it is

bigger it is moved away from it. The process carries on until the obtained volume

AVJM falls within a specific tolerance T,. Once the C’f[k ] adequate positions are

found, it is possible to determine the fo"] control points of the two surfaces that
need to be moved. This is done by computing for each control point the distance
that separates them from the centre of the sphere. If the distance is smaller than
the radius of the sphere, the control point is added to the list of points to be

displaced. At the end, two lists of control points are obtained.

In order to displace the control points to mimic the shape of a sphere, a

reference is needed. Let H[(,,k] be the plane that includes the centre of the sphere
C[f} and that has w?] as normal vector.

[k

Then, the new position of all the control points Pe’],j to be moved (e € {t,w} and

je{l.. N(Ek]) are computed as follows (Figure 27):

L.
ej

CEPCYRCAL
P P+ £ (re)) we

(30)
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wih 111 = e =] - ) ot

€ e,j

and Ty{]z = ‘73“(]1 —c
where w([k ]] is the projection of PLk]j on the plane Hgﬂ. In this formulation, a unique

|

J

sth

index j has been used to identify the j** control point PEk to be moved to generate

the k™ crater.
This process is repeated iteratively until no more craters can be inserted for the

actual depth. Then, the tool is moved down along the z axis with an increment

of A, and the craters insertion process starts again (Figure 24).

Tool

K]
W, j

f\]
w,j

. Bkl
., w.j

Workpiece

[k

w

Figure 27: Plane 11 ! definition and a control point’s projection.
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3.4.3. The simulation tool using voxels
3.4.3.1. Overview

While the general process can be considered to be exactly the same, the Voxels-
based method is opposed to the NURBS one in the sense that it is a truly
volumetric approach. This change in the nature itself of the geometrical models
lead to a change in the various algorithms and methods that have been
implemented for the NURBS solution. Those new algorithms take advantage of
the hierarchical nature of octrees in order to speed up the discharge simulation.

The two main relevant algorithms are further detailed in the following sections.

3.4.3.2. Minimum distance search

This section deals with the search of the minimal distance between two disjoint
octrees. In addition, both of those are axis-aligned. The presented method is
based on (Borrman, Schraufstetter, van Treeck, & Rank, 2007) with the addition

of some fast exit conditions.

The smallest distance d between two octree nodes can be bounded by two values

such as:

dlower <d < dupper

In the situation where both nodes are leaves (they don’t contain any children),

Equation (31) becomes:

diower = d = dupper (32)
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Additionally, in the case where one node is a leaf but the other isn’t, the
calculation of the maximum distance between them can be modified to take that

fact into account and further refine the value of d,

upper:

The search algorithm starts with the two octrees root nodes and, for each non-
empty children, compares the minimum and maximum distance of each voxel

couple. Those distances are easy to compute since the nodes are axis-aligned.

Node pairs that are still viable candidates for the minimum distance couple are

kept and subdivided at the next iteration.

The viability condition is based on a global value, the smallest of upper bounds

or supremum d Any couple that has a lower bound distance equal or

supremum*

smaller to that value is kept regardless of the minimum distance. The viability

condition is formally written as:

dlowev‘ g dsup’remu'm, (33)

The process goes on until the voxels have been subdivided to a size s,

res)

a
parameter of the algorithm. Since the algorithm relies on a bounding of the
minimal distance, there is no guarantee that, after the number of iterations

required to reach s,., only a single couple is returned.

Tes
Additionally if all couples of candidate nodes are leaves, then, given the way the
candidate nodes are culled, it stand to reason that all of those couples have the

same d. At this stage, the algorithm may be terminated and a pair of nodes can



be selected at random without having reached a resolution of s This is

especially useful when the two geometries are flat and parallel.

Two other early stop conditions can be added specifically for the present problem:

in this case it doesn’t matter whether the smallest distance is found.

Firstly, the returned result must only comply with the condition that it is smaller
than the machining gap. If at any iteration of the search, a couple with a d,,,,., <
M, than the algorithm can be stopped and that couple returned. A couple with

an actually lower d that has been ignored in that way will be used in another

iteration of the simulation.

Secondly, if at any iteration of the search, the list of candidate couples doesn’t

contain any couple with a d,,,,., < M,, the process can be stopped and return

g’
null. Another matter needs to be handled. Since the algorithm might return a
list of couples that aren’t necessary leaves (in the case where the algorithm exits
after having reached a certain number of iterations), a couple is chosen at
random. The algorithm is then re-applied on the selected couple and forced to

exit after having found only leaf nodes. Using a Particle Swarm Optimisation

Method has been tested but has been found to give worse results.

3.3.3.3. Crater insertion

Once the closest nodes have been identified, the crater insertion method on an
octree starts with the root node. The children are tested for intersection with a
sphere defined in the same way as with the NURBS method: the support sphere
is displaced along the spark line until a tolerance condition on the volume to be

removed is met. More specifically, the process uses a root-finding algorithm
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known as Brent’s method. It is a combination of the bisection method, the secant

method as well as inverse quadratic interpolation.

Similarly to the distance algorithm, the volume removal algorithm searches the
octrees in a top-down manner keeping only nodes that intersect with the sphere
and deleting those that are inside. The intersection test is made by finding the
smallest distance d between a cube and a point and comparing it to R;2. The

intersection test returns true if:

d < R?
(34)

Once again, similarly to NURBS, the use of a purely geometrical method relying

on the crater dimensions makes it possible to take into account the melted

material re-solidification phenomenon.

3.4.3.4. Voxelisation

An algorithm of interest is the one wused for the conversion of .STL
(STereoLithography) files into sparse voxel octrees. This is used at the
initialization of the simulation method when importing a geometry to be used as
the tool. The method implemented and adapted from, sparse solid voxelisation,
can be found in details in (Schwarz & Seidel, 2010). Contrary to other
voxelisation methods such as 6-separating surface voxelisation, triangle-parallel
conservative voxelisation or direct triangle-parallel solid voxelisation, it has the
advantage of not determining the state of each single voxel. Those methods

proceed to voxelise the three-dimensional mesh through the actual voxelisation

7



before embedding those into an octree. As a result, the memory usage is quite

significant.
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Figure 28: Single crater at a resolution of one voxel per 125 nm. From top to
bottom: global view, wireframe view underlining the octree structure, detail of
the crater’s voxels.
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The sparse solid voxelisation proposes to perform the voxelisation process
directly into the octree structure. The construction of the octree in the present
work differs slightly from (Schwarz & Seidel, 2010) since the octree type used

differs but the spirit remains the same.

The first step consists in finding the bounds of the STL file in order to determine
the bounding cube that will serve as the root of the voxel model. This is achieved
through the search of the minimum and maximum values for each of the vertexes

in the three main directions: X, Y and Z.

In the second step, all the triangles of the three-dimensional mesh are classified
among the eight octants of the octree’s root node. To do so, a triangle-cube
intersection test is made between the triangle and each octant. Note that a
triangle can be classified into several octants should it intersect with more than
one. Each octant that contains at least one triangle is subdivided and is affected

eight children.

The previous process is repeated with each octants and the triangles it contains

until the octree has reached a set depth level.

The next step consists in deleting all the nodes that are outside of the model and
keeping only those on the boundaries or inside the model. The model is based on

a propagation process that is depicted in Figure 29.
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Figure 29: Two-dimensional representation of the voxelisation process.

The process starts by finding all the leaf nodes that don’t have a neighbour in the
X- direction (Figure 29b) and that have a size greater than the smallest nodes in
the octree (the nodes at the boundary of the circle in Figure 29a). The algorithm
then searches for all the neighbours of those initial nodes in the X-+ direction until
the next neighbour is either nothing or a node with the smallest size in the octree.
All the nodes in blue are marked for deletion. The process is repeated starting
from the nodes that don’t have a neighbour in the X+ direction and propagating

towards the X- direction to get the missing nodes.

Concave shapes are also handled. Once the algorithm has reached a boundary
node, it will start considering that successive larger nodes are inside the volume
and not mark them for deletion. Once it reaches another boundary node, the
algorithm resumes the marking of larger nodes for deletion. An example of

voxelisation is shown in Figure 30.
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Figure 30: Voxelized version of the Stanford library model known as Lucy.

3.5. Experimental validation

3.5.1. Overview

In order to assess the performances of each method, an experiment was devised
in order to measure the shape differences between simulated and experimental

results. The used machining parameters are displayed in Table 7.

The experiments were conducted using a Sarix SX-200 micro-EDM machine.

Figure 31 shows the machine used and its main components.
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Figure 31: The SARIX SX-200 machine used in the experimental campaigns.

At the core of the machine is the generator that is at the origin of the sparks.
The spindle holds the various electrodes. Depending on the type of electrodes
used, it can act as a mechanical pencil and automatically feed the electrode. The
Ariane unit (a small wire-EDM unit) is used to cut and dress electrodes into

various shapes.

The Sarix SX-200 micro-EDM machine was mainly designed for micro-EDM

milling. However it can also be used for drilling and die-sinking EDM.

The tools were made of tungsten carbide while aluminium was used for the

workpiece. A depth of 100 pm is set for the machining operation. This depth was
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selected in order to provide a noticeable wear on the tool without completely

destroying the features on it.

The tool that was used is of a spherical shape as visible in Figure 32(a) and has
been obtained through wire-dressing of a cylindrical electrode of nominal diameter
300 pm. The Ariane wire-dressing unit was used for this operation. The nominal

diameter of the sphere obtained is 250 pm.

This tool was measured with the help of a micro-tomographer of a resolution of
Ipum (Santini & Guilizzoni, 3D X-ray micro computed tomography on multiphase
drop interfaces: From biomimetic to functional applications, 2014) (Santini,
Guilizzoni, & Fest-Santini, X-ray computed microtomography for drop shape
analysis and contact angle measurement, 2013). The resulting workpiece was
exported as a three-dimensional mesh. (Figure 32(c)) The tool was also measured

in the same manner after the experiment (Figure 32(b)).
The machining parameters used are given in Table 7.

Table 7: Used machining parameters.

Parameter Value
Energy level (index) 200
Gap voltage (V) 90
Current (index) 20
Time on (ms) 5
Objective depth (um) 100

The craters were also measured using the 3D meshes and the results are tabulated

in Table 8.
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Table 8: Experimental average craters dimensions.

Parameter Value
Workpiece crater diameter (pm) 13.30
Workpiece crater depth (pm) 4.42
Tool crater diameter (pm) 12.40
Tool crater depth (pm) 4.39

Figure 32: 3-D mesh of the experimental tool. a) before and b) after machining.
¢) workpiece after machining.

3.5.2. The sitmulations

The NURBS elements used were a sphere of diameter 250 pm for the tool and a
flat square surface with a side length of 500 pm for the workpiece as shown in

Figure 32(a).

The voxel tool was created from the micro-tomographer STL files as shown in
Figure 32(b) through a process known as voxelisation. The workpiece is a cube of
dimension 512 pm. Contrary to what is depicted in the figure, only the tip of the

spherical shape was kept in order to reduce the octree’s memory footprint. Those
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two models do represent the same extremity of the tool using a sphere-like shape.

The various tolerances used are tabulated in Table 9.

Table 9: Tolerances used in the simulations.

Parameter Value
NURBS volume removal (in %) 1
Voxel volume removal (in %) 1

Voxel crater resolution (voxels per micron) 4

Voxel distance precision (pm) 0.25

The NURBS simulation ended after 2040 minutes while the voxels simulation
took 126 minutes and is therefore more than 16 times faster. Both simulations
were performed on the same desktop computer, an Intel Core i5 4670K at 4.5

GHz with 8 GB of RAM. Figure 34 and Figure 35 display some of the resulting

geometries after simulation.

Figure 33: a) NURBS models of the sphere-like tool and the workpiece b) Voxel

model of the tool.
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Figure 34: the NURBS surfaces after the simulation of the tool (left) and the
workpiece (right).

Figure 35: Voxel workpiece after simulation (left) and details of the craters
(right).

After the simulation, the resulting models (NURBS and voxels) were compared
to the experimental ones with the use of the Hausdorff metric defined in Equation
(35) where X and Y are two sets of points and d(z,y) is the Euclidian distance
between two points x and y. In this case, the X and Y point sets are samples

taken over the three-dimensional meshes.
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dy X, Y max{supinfd(z,y),supinfd(z,y)}

reX yeY yeY z€X (35)

The Hausdorff metric results are tabulated in Table 10 and are visible in Figure
36. The table gives the minimum, maximum, mean and RMS values of each set
of sampled points’ Hausdorff distance. Those measurements were made using a
software called Meshlab that was previously known as Metro (Cignoni, Rocchini,

& Scopigno, 1998).

Table 10: Hausdorff metric results.

NURBS Voxels
Tool Workpiece Tool Workpiece
dy min (pm) 0.000000 0.000107 0.008184 0.000000
dy max (pm) 8.629291 14.886533 2.163380 14.917241
dug mean (pm) 1.449477 3.073571 0.858142 0.718315
dy RMS (pm) 2.521132 3.626015 0.971600 1.682061
e ) e () Sotanas (i) e

15 15

0 100 occurences 0 185 occurences 0 9= occurences 0 500 occurences

Figure 36: Hausdorff distance maps between experimental and simulated
surfaces. From left to right: NURBS workpiece, NURBS tool, Voxels tool,
Voxels workpiece.
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Figure 36 depicts the maps of the calculated Hausdortf distances. A red colour
represents a small difference between the experimental and simulated elements

while a blue colour indicates a larger difference.

The values obtained through the NURBS-based simulation and the Voxels-based
one are comparable. The NURBS method achieves a 2.52 pm and 3.63 pm
Hausdorff RMS distance for the tool and the workpiece, respectively. The Voxels
method achieves a 0.97 pm and 1.68 pm Hausdorff RMS distance for the tool and
the workpiece, respectively. Those preliminary results alone seem to indicate that
the voxels method is slightly superior. However, the main difference lies in the
computing time: the voxels method is 16 times faster than the NURBS one. The
hierarchical structure provided by Octrees greatly increases the speed of distances

calculations and crater insertions.

It is visible on the Hausdorff maps (Figure 36) that the simulation is only precise
enough to give a global approximation of the tool shape’s evolution after
machining. However, considering the stochastic nature of the micro-EDM process,
such a result is acceptable and it would be improbable at this stage to expect any

simulation to perform any better.

3.6. Synthesis

Section 3 has dealt with the presentation of two different simulation methods
involving two types of geometries and their related algorithms. Both of them,
NURBS and voxels were able to determine the final shapes of the tool and the
workpiece to a reasonable degree. A metric called the Hausdorff was used in order
to quantify their accuracies and it was concluded that, while both methods achieve

similar results, the voxels method is ultimately superior due to its speed. The
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NURBS method could be further improved in terms of computational speed
through the reduction of tolerances related to the various algorithms (distance
search and crater insertion) but that would automatically have an effect on the

final geometries and their accuracy.

Another drawback related to NURBS (as well as meshes in general as support
geometries for the electrodes) is that they are prone to self-intersection and a
reduction in the control point density as the surface is modified. Both of those

are detrimental to their use in a simulation tool.

The next section deals with the input parameters of the simulation in the voxels
method: the machining gap and the crater dimensions. The previous simulation
and its comparison to empirical data has been made using experimental values
for those input parameters. The measurement of those values can be tedious in
the scope of simulating a great number of machining instances. Chapter 4 will
explore the possibilities to build simple predictive models for those input
parameters from a dataset built from experiments. The idea is to be able to predict
the values to be used in the simulation for machining parameters that haven’t

been tested before.
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Chapter 4
Building a database for the efficient choice of

simulation parameters

4.1. Introduction

While it would be possible to consider the parameters used for the simulation
(crater dimensions and therefore volumes, machining gap) on a case by case basis,
such an approach would be slow and tedious considering the additional difficulty

introduced by the measurement of microscopic craters.

The idea in the present chapter is to study the feasibility of building a non-
exhaustive set of data that would link the machining parameters (materials,
voltage, current ...) with the obtained results. That result would ideally be the
mean shape of the craters average radius and average depth). However the
complexity involved in the measurement of craters makes it inconvenient to do

so directly.

Considering that fact, what is proposed here is to use the surface roughness as an
indicator of the machining’s result. The hypothesis being made here is that a
certain set of parameters will consistently yield a specific surface roughness that
is directly in relation with the shape and dimensions of the craters. On the other

hand, simulations will be performed using a variety of simulation parameters and
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the simulated roughness measured. It would then be possible to link simulation

parameters with machining parameters and build a dataset.

The next step will be to build a regression model through the use of artificial
intelligence techniques using the collected dataset as a training set. This process
is desirable when considering the fact that it will be difficult to conduct an
exhaustive campaign to account for all the possible combinations. Different
methods will be implemented and tested against a testing set in order to determine

which one performs better on this specific problem.

Another parameter to be considered is the machining gap that is also used in the
simulation tool. The experimental measurement of that gap is significantly easier.
It is proposed to perform 120 experiments with 5 repetitions across the range of
machining parameters and train a linear regression model using the data obtained
through experimentation. An overview of what is proposed in this section is given

Figure 37.

Machining gap

Crater dimensions

Figure 37: Overview of the relationships between the proposed models (the crater
dimensions and the machining gap), their training sets and the inputs to be used.
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4.2. Roughness

4.2.1. Overview

The roughness campaign revolves around two main steps.

The second step is the collection

n of roughness values issued from the simulation. A certain number of crater
dimensions will be used in various simulations and roughness measurements will
be made numerically. This is done in order to make a link between the crater

dimensions and the resulting roughness in the simulation.

The second is an experimental collection of roughness values. In addition, it is
proposed to measure the current and voltage between both electrodes since some
machining parameters (most notably energy and current) are unitless index values

and aren’t representative of the underlying physical concepts.

Once those two steps are performed, it is hypothesized that the knowledge of the
experimental roughness will be enough to determine the crater dimensions to be

used in the simulation.

4.2.2. Simulated roughness

4.2.2.1. Data generation

The simulated roughness have been performed with a cubic tool of 256x256x256
pm. The dimensions of the workpiece vary depending on the simulation
parameters. In order to keep the simulation time under acceptable levels, smaller
workpieces have been used when small craters were being considered. The crater
resolution was set at 32 voxels per micron. The machining gap was set to 20 pm

and a simulated machining performed until a depth of 1 pm was reached. The
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tool used is significantly bigger than the workpiece in order to make sure that the
entirety of the top part of the workpiece is machined. An example of the resulting

workpiece is given in Figure 38.

Figure 38: Workpiece after simulation in the context of the roughness campaign.
The dimensions of the root node were 16x16x16 pm.

A certain number of crater dimensions were used in the simulation of resulting
surface roughness. The crater radii chosen were 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4.
Each of those values were used with 6 crater depth values found by dividing the
crater radius by 1, 1.5, 2, 2.5, 3 and 3.5. Those values were selected in order to
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cover a wide range of usual values found in micro-EDM. The selected parameters

combinations can be found in Table 11. The dimensions of the craters occurring

on the tool have no influence on the resulting roughness on the workpiece and

therefore aren’t specified.

Table 11: Crater dimensions tested for resulting roughness in the simulation.

Number Crater radius (pm) Crater depth (pm)
1 0.5 0.5
2 0.5 0.33
3 0.5 0.25
4 1 1

5) 1 0.66
6 1 0.5
7 1.5 1.5
8 1.5 1

9 1.5 0.75
10 2 2
11 2 1.33
12 2 1
13 2.5 2.5
14 2.5 1.66
15 2.5 1.25
16 3 3
17 3 2
18 3 1.5
19 3.5 3.5




Number Crater radius (pm) Crater depth (pm)
20 3.5 2.33
21 3.5 1.75
22 4 4
23 4 2.66
24 4 2
25 0.5 0.2
26 0.5 0.17
27 0.5 0.16
28 1 0.4
29 1 0.33
30 1 0.29
31 1.5 0.6
32 1.5 0.5
33 1.5 0.43
34 2 0.8
35 2 0.67
36 2 0.57
37 2.5 1
38 2.5 0.83
39 2.5 0.71
40 3 1.2
41 3 1
42 3 0.86
43 3.5 1.4
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Number Crater radius (pm) Crater depth (pm)
44 3.5 1.17

45 3.5 1

46 4 1.6

47 4 1.33

48 4 1.14

The surface roughness of the 24 resulting octrees was computed by extracting the

surface profile from them. This was done by finding all the leaf nodes that

possessed a topmost face without any neighbour in the Z+ direction. Those nodes

were then converted as clouds of points and saved as a .ply' file and an example

can be observed in Figure 39.

Figure 39: Cloud of points viewed in MeshLab. Profile dimensions: 16x16 jm.

! Polygon File Format also known as the Stanford Triangle Format. It describes a three-
dimensional object as a list of flat polygons.
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Each surface is defined by 1000x1000 points for a total of 1 million points. The

notation is:
{P,;} for i,j €[1...1000] x [1...1000] (36)

A small tool was then designed using C#.NET to perform surface area roughness
analysis. Different values were computed from the cloud of points after having
filtered the low frequency component out (Mitutoyo America Corporation, 2012).
A denotes the projected surface of the profile. The altitude z is the distance to

the average height of the surface.

Arithmetic average:

S0= 4 ], et oy .

Root mean squared

1
Serus = —// 2z x,y 2dxd
RMS \/A A Y Y (38)

Maximum valley depth

S, =min(z x,y )

(39)
Maximum peak height
S, =max(z x,y
p ( ) (40)
Maximum difference
S, =8,—59,
T (41)
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Skewness

1 .
S = 7// 2 x,y *ded
T AS s My / Y (42)

Kurtosis

1
St :// z x,y drdy
T AShs s (43)

All the results are given in Table 12. A closer look at the data shows that there
might be a linear correlation between the crater depth and S, or S,. No

apparent relationship appears immediately for the crater radius.

Table 12: Simulated roughness results. The values are given with three significant
digits to account for the limited precision of experimental data.

Crater Crater Sa Srars S, S, S, S.. Si.
N° radius depth

(um)  (m) @) Gm)  (@m)  (pm)  (m)  (um)
1 0.5 0.5 0.0763 0.0929 -0.175 0.262 0.438 0.162 2.47
2 0.5 0.33 0.0511 0.0617 -0.110 0.172 0.281 0.209 2.39
3 0.5 0.25 0.0771 0.0941 -0.181 0.256 0.438 0.124 2.40
4 1 1 0.143 0.178 -0.368 0.570 0.938 0.433 2.85
5 1 0.66 0.103 0.124 -0.279 0.346 0.625 0.0611 2.32
6 1 0.5 0.0760 0.0922 -0.205 0.264 0.469 0.00190 2.37
7 15 15 0.283 0.328 -0.740 0.698 1.44 -0.444 213
8 15 1 0.151 0.184 -0.397 0.571 0.969 0.196 2.53
9 15 0.75 0.114 0.139 -0.322 0.397 0.719 0.0448 245
10 2 2 0.275 0.357 -0.899 1.01 1.91 -0.640 2.90
11 2 1.33 0.229 0.274 -0.525 0.756 1.28 0.248 2.24
12 2 1 0.139 0.173 -0.403 0.566 0.969 0.225 2.77
13 2.5 2.5 0.256 0.347 -1.07 1.37 2.44 -0.347 3.87
14 2.5 1.66 0.292 0.341 -0.762 0.863 1.63 -0.268 211
15 2.5 1.25 0.210 0.253 -0.505 0.713 1.22 0.239 2.31
16 3 3 0.269 0.354 -1.22 1.66 2.88 0.229 4.33
17 3 2 0.280 0.358 -0.946 1.02 1.97 -0.374 2.72
18 3 15 0.260 0.308 -0.665 0.804 1.47 -0.0667 2.16
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Crater Crater

. Sa Srus Sy Sp Se Sak Sku

N° radius depth
(um)  (pm) (pm)  (@m)  (gm)  (pm)  (@m)  (pm)  (um)

19 3.5 3.5 0.289 0.374 -1.13 2.09 3.22 0.673 4.24
20 3.5 2.33 0.247 0.325 -1.05 1.20 2.25 -0.181 3.54
21 3.5 1.75 0.289 0.378 -1.04 1.18 2.22 -0.411 3.14
22 4 4 0.355 0.450 -1.58 2.48 3.06 1.08 4.16
23 4 2.66 0.329 0.429 -1.02 1.60 2.63 0.00820 3.01
24 4 2 0.317 0.383 -0.837 1.10 1.94 -0.137 2.33
25 0.5 0.2 0.0305 0.0376 -0.0594 0.0969 0.156 0.363 2.44
26 0.5 0.17 0.0252 0.0303 -0.0437 0.0813 0.125 0.493 2.80
27 0.5 0.16 0.0208 0.0244 -0.0472 0.0778 0.125 0.738 3.53
28 1 0.4 0.0594 0.0716 -0.114 0.198 0.313 0.263 2.37
29 1 0.33 0.0500 0.0601 -0.107 0.175 0.281 0.127 2.34
30 1 0.29 0.0455 0.0551 -0.114 0.136 0.250 -0.112 2.38
31 1.5 0.6 0.0945 0.114 -0.237 0.326 0.563 0.118 2.37
32 1.5 0.5 0.0792 0.0967 -0.213 0.255 0.469 0.0755 2.37
33 1.5 0.43 0.0689 0.0837 -0.151 0.224 0.375 0.145 2.40
34 2 0.8 0.120 0.147 -0.318 0.432 0.750 0.0538 2.53
35 2 0.67 0.109 0.131 -0.274 0.351 0.625 0.0224 2.31
36 2 0.57 0.0859 0.106 -0.220 0.311 0.531 0.124 2.46
37 2.5 1 0.152 0.186 -0.419 0.550 0.969 0.182 2.59
38 2.5 0.83 0.126 0.153 -0.350 0.462 0.813 0.0910 2.43
39 2.5 0.71 0.110 0.135 -0.338 0.380 0.719 -0.0374 2.48
40 3 1.2 0.192 0.235 -0.487 0.700 1.19 0.312 2.51
41 3 1 0.150 0.183 -0.444 0.556 1.00 0.157 2.53
42 3 0.86 0.135 0.164 -0.396 0.479 0.875 0.0179 241
43 3.5 14 0.244 0.290 -0.618 0.757 1.38 0.0337 2.12
44 3.5 1.17 0.179 0.222 -0.432 0.724 1.16 0.356 2.67
45 3.5 1 0.149 0.185 -0.446 0.586 1.03 0.154 2.61
46 4 1.6 0.271 0.324 -0.784 0.778 1.56 -0.364 2.29
47 4 1.33 0.228 0.274 -0.567 0.777 1.34 0.192 2.26
48 4 1.14 0.190 0.230 -0.487 0.606 1.09 0.142 2.34

4.2.2.2. Model construction

Those results were then converted to the .arff file format which is used by

WEKA (Short for Waikato Environment for Knowledge Analysis).

100



WEKA is a framework that offers a certain number of machine learning
algorithms out of the box. It features tools for data pre-processing, classification,
regression, clustering and much more (Holmes, Donkin, & Witten, 1994). It is
written in Java and is open-source which makes it possible to check the

implementations of the various algorithms as well as adding new ones.

The WEKA software offers the possibility to quickly display the various
attributes into a plot matrix which is very convenient to quickly assess the
visible trends. The plot matrix for the crater radius, the crater depth, S., Srus,

S, Spy Sty Sek, S is displayed in Figure 40.

As could be expected there is a strong linear correlation between S, and the crater
depth as well as between S, and the crater depth. The first approach will be to

determine a simple linear regression between those parameters that gives:

— 0.5836 % Cy,,p, — 0.031
depth (44)

S, =0.4033 % C.

depth

+0.0202
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Figure 40: Plot Matrix of the various roughness measures and crater dimensions.

The error measures associated to those models are as follow in Table 13.

The mean absolute error (MAE) for a set of n predictions is:
1 n
MAE = EZM — il
=1

Where f; is the predicted value and y; is the actual value.

Using the same notations, the other error measures are:
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Table 13: Error measures for the S, and S, models.

Error measure S, model S, model
Correlation coefficient 0.9901 0.9688
Mean absolute error 0.0455 0.0549
Root mean square error 0.0716 0.0889
Relative absolute error (%) 11.9205 18.6202
Root relative squared error (%) 13.7398 24.3491

The root mean square error (RMSE):

RMSE =

1 n

. Z fi — i
n 4=

The relative absolute error (RAE):

Z;L:l’fv — il

Zi=1’yi o yt|

Where y, is the average of the y;.

The relative squared error (RSE):

Z:I:l fi—wi

RSE =

(49)

The models were obtained through manual selection of the relevant attributes

and 10-fold cross-validation. The high correlation coefficients as well as the low

error measures are to be expected considering that while the simulation process

isn’t entirely deterministic due to a certain randomness in the computation of

the minimum distances, it is minimal when considering the global result.
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Considering these previous results and keeping in mind that the final goal is to
determine crater dimensions to be used in the simulation tool, the next step will
be to verify that it is possible to determine the crater depth from the value of

Sp, Sy or both at the same time.

Once again, using a simple linear regression yields the following models:

Cd&ipth, = 1.6845 % Sp —+ 0.0724

Coioptn = 2.3592 % S, + 0.0103

Using a multi-linear regression model makes it possible to express Caepm as a

function of S, and S, simultaneously:

Clieptn = 0.713 % S, +1.20 % S, + 0.03

Table 14: Error measures for f(S,), f(Sy) and f(S,,S).

Error measure f(S,) model  f(S,) model ffli‘:ilv)
Correlation coefficient 0.99115 0.9695 0.9927
Mean absolute error 0.0803 0.1215 0.0544
Root mean square error 0.1203 0.2116 0.1045
Relative absolute error (%) 11.296 18.0376 8.0684
Root relative squared error o geqq 23.9251 11.8164

(%)

104



While using the {(S,,S,) model to predict the crater depth to be used only

provides with a marginally higher correlation coefficient (0.9927 against 0.9903
and 0.9695) when compared with the other two models, all of the various error
measures are significantly smaller. Using both S, and S, in the prediction of the

crater depth to be used provides with a more accurate value.

The knowledge of S, and S, is therefore sufficient when searching the crater
depth. The t-values of the coefficients and their associated p-values were
computed to analyse their statistical significance. Those values are given in
Table 15. According to the table, the coefficients for S, and S, have a high
statistical significance but not for the intercept coefficient which has a higher
value than a set threshold of 5%. This indicate that said coefficient might be
equal to zero which would make sense since values of zero for S, and S, should
naturally lead to the absence of craters and therefore to crater depths equal to

Zero.

Table 15: Standard error, t-values and associated p-values for the crater depth
model.

Coefficient Value Standard error t-value Pr(>|t])
Sy 0.713 0.131 5.42 2.25e-6
Sy 1.20 0.0924 13.0 <2e-16
Intercept 0.03 0.0225 1.55 0.126

The rest of this section will focus on finding which parameters can be used to
determine a precise value for the crater radius. Since the plot matrix does not
provide a clear indication of a specific path to explore, attribute selection is first

performed.



Attribute selection (feature selection, variable selection or variable subset
selection) is the process of eliminating variables in the problem that are deemed

to be irrelevant or redundant with other variables.

The best subset of attributes determined is reduced to S,, the arithmetic

average roughness. The result is a linear regression. The error measures are

tabulated in Table 16.

C

radius

—0.6924 % S, + 0.63

The model’s error measures are too high to provide any accurate prediction for
the crater radius. An explanation would be that the surface profile roughness

parameters are all amplitude parameters.

Table 16: Error measures for the C,agins model.

Error measure Caains Mmodel
Correlation coefficient 0.7655

Mean absolute error 0.5832

Root mean square error 0.7376
Relative absolute error (%) 56.6402

Root relative squared error (%) 62.4881

Since they all give information related to the amplitude of vertical deviations
when compared to the mean line, they are better suited for the prediction of the
crater depth rather than the crater radius.
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This observation leads to the exploration of other roughness parameters known
as spatial parameters. In order to understand some of the parameters further
described, the notion of the discrete autocorrelation function (ACF) is explained
(Leach, 2013). This function is found by multiplying the considered surface by a
duplicate of itself shifted with a displacement vector (7, 7,). The function

issued from this multiplication is then integrated over the considered area and

normalized to S,. The ACF is:

z &,y 2T — Ty, y — 7,)dedy
G<T:L‘77-y> :fj:A ( J)

I, # @y *dady (54)

Figure 41: An example surface (left) and the representation of its
autocorrelation function (right). Reproduced from (Blateyron, s.d.).

As depicted in Figure 41, a central peak equal to 1 (maximum of
autocorrelation) is visible in the centre of the visual representation of the ACF.
If the values of 1. and T, are equal to 0, then the correlation is at its maximum.

Small variations from 0 still yield high correlation values.

In order to compute the S,; and S;, parameters, a thresholding of 0.2 is carried

out on the ACF which leads to the representation of Figure 42.
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A

Figure 42: Autocorrelation function with a threshold value of 0.2. Reproduced
from (Blateyron, s.d.).

Fastest decay auto-correlation rate, S, (pm)

The fastest decay auto-correlation rate or auto-correlation length, S., is a
measure of the magnitude of the (7,, 7,) vector that minimizes correlation. The
direction chosen for the computation of this distance is the one that yields the
smallest S, value. Its value is shown in Figure 42 as Ry

Texture aspect ratio of the surface, S, (no unit)

The texture aspect ratio of the surface, S;, is a measure of the isotropy of the
surface’s texture. It is the ratio between S,;, the fastest decay auto-correlation

rate and the slowest decay auto-correlation rate (shown as Ry in Figure 42).

Texture direction of the surface, Sy (°)

The texture direction of the surface is a measure of the dominant direction of
the lay of a surface. It is computed from the Angular Power Spectral Density
Function (APSDF) of the surface. The APSDF is determined from the Fourier
analysis of the surface through the integration of each sine components as a

function of an angle.
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Other parameters were considered, the topological characterization of surface

motifs (Leach, 2013).
The mean hills area, S;, (nm?)

The mean dales area, S, (nm?)

The mean hills volume, S, (nm?*)

The mean dales volume, S;, (pm?®)

The surfaces were then analysed again to add those characterizations. The

values are tabulated in Table 17.

Table 17: Results for the spatial and topological characterization measures.

N° Crater radius Crater depth S. (pm) Si.:  Su (°) Saa (pm?) Sia (pm?) Sav (pm?®) Sy (pm®)
1 0.5 0.5 0.328 0.869 42.3 0.628 0.402 0.014 0.0013

2 0.5 0.33 0.281 0.873 176 0.437 0.374 0.00609 0.000774
3 0.5 0.25 0.331 0.85 132 0.584 0.38 0.0101 0.00106
4 1 1 0.613 0.874 47.5 1.92 1.81 0.0655 0.00894
5 1 0.66 0.593 0.804 138 1.32 0.895 0.0396 0.00135
6 1 0.5 0.549 0.863 50.8 1.44 1.06 0.0348 0.00201
7 1.5 1.5 1.14 0.877 177 5.69 4.4 0.652 0.0225

8 1.5 1 0.896 0.874 81.3 3.87 3.65 0.187 0.0162

9 1.5 0.75 0.883 0.885 47.5 3.27 4.52 0.136 0.0224
10 2 2 1.47 0.778 132 9.45 7.32 1.49 0.0592
11 2 1.33 1.18 0.881 17 7.92 7.49 0.446 0.0409
12 2 1 1.02 0.885 102 5.35 6.82 0.33 0.0783
13 2.5 2.5 1.67 0.791 51 10.7 10.3 1.32 0.0965
14 2.5 1.66 1.75 0.802 3.75 11 10.2 1.22 0.0666
15 2.5 1.25 1.47 091 86.8 9.28 9.33 0.667 0.0687
16 3 3 1.52 0.878 12.5 15.8 12.6 2.64 0.0822
17 3 2 1.88 0.878 51 16.8 14.6 2.58 0.12

18 3 1.5 1.94 0.801 86 14.2 15.9 1.3 0.12

19 3.5 3.5 1.61 0.931 56 16.7 18.4 2.77 0.312
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N° Crater radius Crater depth S, (nm) Si; St (°) Saa (1m?) Spa (1mM?) Sy, (nm?®) Si, (MM?®)
20 3.5 2.33 1.88 0.969 66.5 15.2 17.5 1.99 0.221

21 3.5 1.75 2.17 0.837 132 21.1 16 2.83 0.13

22 4 4 1.59 0.829 148 24.2 194 4.86 0.25

23 4 2.66 2.46 0.919 42.3 27.8 26.3 4.38 0.296

24 4 2 2.46 0.892 57.8 30.8 28.3 4.23 0.247
25 0.5 0.2 0.235 0.838 39.5 0.353 0.475 0.00246 0.00088
26 0.5 0.17 0.207 0.886 47.7 0.301 0.421 0.00191 0.000732
27 0.5 0.16 0.197 0.855 129 0.255 0.421 0.000519 0.000849
28 1 0.4 0.48 0.83 123 1.3 0.889 0.0246 0.00174
29 1 0.33 0.47 0.784 141 1.49 1.16 0.0287 0.00205
30 1 0.29 0.523 0.73 65 1.16 1.24 0.0129 0.00195
31 1.5 0.6 0.8 0.857 132 2.91 1.93 0.0938 0.0039
32 1.5 0.5 0.854 0.942 93 2.42 2.23 0.0676 0.00442
33 1.5 0.43 0.826 0.907 163 3.15 2.74 0.0751 0.00648
34 2 0.8 1.18 0.755 155 6.41 7.31 0.257 0.0447
35 2 0.67 1.09 0.911 171 4.96 4.04 0.197 0.00891
36 2 0.57 1.09 0.871 8.51 4.47 2.96 0.14 0.00513
37 2.5 1 1.45 0.924 94 8.06 9.65 0.392 0.0568
38 2.5 0.83 1.42 0.928 103 9 9.79 0.459 0.0346
39 2.5 0.71 1.39 0.949 176 10.1 10.5 0.473 0.0358
40 3 1.2 1.78 0.931 94 12.9 12.7 0.797 0.0571
41 3 1 1.65 0.873 86.3 11.9 12 0.69 0.0506
42 3 0.86 1.66 0.885 93.7 13.3 14.1 0.659 0.109

43 3.5 1.4 1.87 0.787 86.5 20.4 22.2 2.03 0.107

44 3.5 1.17 1.83 0.815 82.5 16.5 15.1 1.17 0.0832
45 3.5 1 1.8 0.91 422 15.7 20.9 0.956 0.17

46 4 1.6 2.55 0.895 118 23.3 24.5 2.61 0.175
47 4 1.33 2.26 0.886 42.2 22.7 26 1.43 0.159

48 4 1.14 2.35 0.946 86.5 20.4 23.7 1.05 0.189
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A simple linear regression was performed in order to extract a relationship
between the crater radius and the spatial/topological parameters. WEKA

outputs the following model:

Crodine = 0.8898 % S, + 0.0648 % S, — 0.162 x Sy, + 2.4544 % S,,,

4 0.4538 (55)

The error measures given in Table 18 give an acceptable correlation coefficients.
The relative error measures however, being above 20% indicate that the model

isn’t likely to perform well with a test set.

Table 18: Error measures for the crater radius model limited to spatial and
topological surface parameters.

Error measure CLagins model
Correlation coefficient 0.9647

Mean absolute error 0.2229

Root mean square error 0.304
Relative absolute error (%) 21.6456

Root relative squared error (%) 25.6194

The next logical step is to consider the entirety of the surface roughness
characterization parameters. Once again, a linear regression is performed and

the output is:
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O’radius =a; * Cde'pth_'_CLQ * Ratio + Ay * Sa +CL4* S’u + Qs

da + Q9

* Sd’u + Gy,

x* S, +ag x Sy +ar xS, + ag x S, + ag

Where Ratio is the ratio between the crater radius and the crater depth. For the

sake of clarity, the various coefficients’ values, the related standard errors, the t-

values and p-values associated to the t-values are given in Table 19.

Table 19: Coefficients computed for the crater radius model.

Coefficient Value Std Error t-value Pr(>]t|)
a 0.2339 0.177 1.32 0.195
s 0.1543 0.044 3.48 0.001
as -6.6465 1.20 -5.52 2.78¢-6
ay 1.6209 0.378 4.28 1.24e-4
as 0.3371 0.216 1.56 0.127
ag 0.5971 0.112 5.31 5.410-6
ay -0.4757 0.106 -4.48 6.91e-5
ag 1.1758 0.159 7.36 9.38e-9
g 0.0502 0.0158 3.16 0.003
ayy -0.2078 0.0685 -3.03 0.004
ayy 0.9443 0.275 3.434 0.001

When considering Pr(>[t|) and a threshold value of 5%, coefficients a; and a;

seem to not be statistically significant and those coefficients could actually be

equal to zero.
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Table 20: Error measures for the crater radius model using all parameters

Error measure CLaains Mmodel
Correlation coefficient 0.9929

Mean absolute error 0.0963

Root mean square error 0.1367
Relative absolute error (%) 9.3514

Root relative squared error (%) 11.5836

When considering Pr(>[t|) and a threshold value of 5%, coefficients al and a5
seem to not be statistically significant and those coefficients could actually be

equal to zero.

Table 20 presents with a significant improvement over the model limited to

spatial and topological parameters with error measures that are halved.

4.2.2.3. Test sets

In addition to the validation performed through 10-fold cross validation, a test
set was generated using parameters distinct from the 48 combinations used in
the training set. Since the validation set is used during the training, it will
always output lower error values than an actual test set that the model has

never encountered before. This is why a separate test set is important.

Table 21 shows the 12 sets of parameters that were used. The first nine sets of
parameters were generated from values within the range of the training set

while the last three are outside of it.
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The crater depth models were tested against the testing set and provided with

the results given in Table 22.

S, and a combination of S, and S, do however perform as expected. Both have

similar root mean squared error measures and the third model has a lower mean

absolute error. The plot of the predicted values against the actual values for the

model base on a combination of S, and S, is depicted in Figure 43

Table 21: Parameters used for the generation of the test set.

Simulation Crater radius Crater depth
T1 1.2 1.2
T2 1.2 0.8
T3 1.2 0.6
T4 1.7 1.7
T5 1.7 1.13
T6 1.7 0.85
T7 2.7 2.7
T8 2.7 1.8
T9 2.7 1.35
T10 4.5 4.5
T11 4.5 3
T12 4.5 2.25
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Table 22: Error measures with the test sets associated with the crater depth

models.

Error measure

£(S,) model

£(S,) model

£(S,,S,) model

Correlation
coefficient

Mean absolute
error

Root mean squared
error

0.9915

0.1078

0.1618

0.6186

0.3409

0.8882

0.9943

0.0749

0.1757

Those results show that the model based on S, does not work well with the test

set and should therefore not be considered for further use. The models based on

4,5

w
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Figure 43: Crater depth model, predicted values against actual values.



Using the same test set, the model for the crater radius is tested in the same

manner with results shown in Table 23.

Table 23: BError measures with the test sets associated with the crater radius

model.

Error measure

Caains model

Correlation coefficient
Mean absolute error

Root mean squared error

0.9339

0.2393

0.5151

45

3,5

2,5

Predicted value (um)

15

0,5

X X

Figure 44: Crater radius model, predicted values against actual values.
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While giving acceptable results, the error measures can be considered quite high.
A closer look to the predicted values shows that the model (Figure 44) is
slightly weaker when working with values for the crater radius that are in the
high range. Considering that those values are actually quite large when
considering the case of micro-EDM, the dispersion that occurs with large values

isn’t problematic.
4.3. Machining gap
4.3.1. Overview

The other main parameter that is used as an input of the simulation is the
machining gap. Here it is considered as the smallest distance at which a spark can
occur and is therefore quite determinant on the final result. While the measure of
this value isn’t as complicated as the crater dimensions, it is nevertheless

interesting to explore what can be done to predict such a value.

The concept of direct measurement of electrical data in order to ignore machine-

specific parameters is introduced.

4.3.2. Electrical data acquisition

As mentioned previously, the nature of some of the machining parameters make
them unreliable to be used when required for further analysis involving regression.
The energy level for example is set on the machine as an index value and the

same goes for the current.

In order to obtain more precise information from the machining itself, it has been

decided to proceed with the acquisition of voltage and current information
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between the electrodes with the help of a Tektronix digital oscilloscope. The
connection between the Sarix SX 200 machine and the oscilloscope was achieved
through the use of a current probe for the measurement of the current and two

wires connected to both polarities of the machine.

The Tektronix oscilloscope functioning under a Windows operating system, it was
possible to use Matlab directly on the oscilloscope without resorting to a

connection to a personal computer.

The toolbox did various tasks autonomously. It performed the setting up of the
oscilloscope according to the machining parameters used and launched a series of

acquisitions during the machining process to obtain electrical discharge data.

The communication with the oscilloscope was performed with the use of a VISA
(Virtual Instrument Standard Architecture) object under Matlab associated with

a GPIB (General-Purpose Interface Bus) controller.

The main limitation resided in the input buffer. Only a certain quantity of data
could be transferred in a certain amount of time. A size of 12 million bytes was
chosen as it was deemed to be a good compromise between speed and quantity of
data. Every 20 seconds, 0.5 second of discharge data could be captured and

transferred to Matlab.

An important point is that the capture of both channels (voltage and current)
can only be captured sequentially. In order to ensure the synchronization of both
channels, a falling edge trigger was set on the oscilloscope with a holding time of

10 seconds.
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Every data patch of 0.5 second contained 12 million points which provided with

a sufficient resolution when sampling both waveforms.
The raw data was then converted to a Matlab matrix format (.mat).

4.3.3. Electrical data processing
4.3.3.1 Filtering

Before being able to extract numerical values from the electrical data, it is
necessary to perform some filtering in order to remove the noise inherent to

electrical circuits such as thermal noise.

This task needs to take into account the fact that the sparks are very short in
duration and can be confused as noise by a filtering algorithm. However the
frequency bands of the noise and of the sparks are sufficiently different to not

pose any significant problem during the filtering process.

Here, the data sample resolution makes it possible to use a simple moving average
filter with a window size of 1000 for the current and voltage. Figure 45 shows an
example of data before and after filtering. After filtering, power data (P(t)) is

created through the multiplication of the filtered current and voltage data.
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Figure 45: Voltage (in V) against time (in s). Green: unfiltered, blue: filtered.

4.3.3.2 The sparks presence function

The sparks presence function is at the core of the analysis process since the way
it is built will be decisive in the computation of all the values extracted from the
data. It is a function that decides whether or not a spark is occurring considering

the electrical data.
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The sparks presence function is as follows:

0 if there isn’t a spark at ¢

Spt = { 1 if there is a spark at ¢ (57)

In order to build that function, the notion of a spark has to be considered.

Observation of the graphs shows that the beginning of spark is characterized by:
e A sudden decrease in the voltage accompanied by:
e An increase in the current.

In the same way it is possible to say that a spark ends when the current is back

to a value close to zero.
Taking into account these observations, the beginning of a spark happens:
e  When the voltage is below a certain level Vi e and:
e  When the current is above a certain level Ly,
A spark ends when:
e A spark is currently on going
e The current is below a certain level I,

The choice of these three parameters, Viesow, li.: and I... is crucial since the
sparks presence function needs to return the correct number of sparks.

Additionally, it needs to do so while making the sparks detected be comparable
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between themselves and, therefore, achieve a certain level of consistency. Those

parameters need to be chosen such as:

e The correct number of sparks is returned,

e The sparks detected maximize their energy.

Those values are also dependent on the experimental parameters and therefore

would be different for each hole that is machined.

A procedure was defined to choose those values with the use of particle swarm
optimisation. For each set of parameters that was used in the experimental
campaign, a figure was selected and the sparks contained in it counted. With the
knowledge of the correct number of sparks and using it as a constraint in the
optimisation process, the algorithm was capable of finding the values of Vi,
Lo and I, that maximized the energy of all sparks. Those values were then used

for the remainder of the figures.

4.3.4. Experimental campaign

The machining gap experimental campaign was conducted at the University of
Bergamo in Italy with the same machine used in the roughness campaign. The
Sarix SX200 machine was once again used and equipped with a similar electrical
data acquisition apparatus. The experimental campaign consisted in holes drilled
in a steel plate of a thickness of 1 mm. The tools used were cylindrical electrodes
made of tungsten carbide. Two diameters were used for those electrodes: 150 and

300 pm. The process parameters used are given in Table 24.
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Table 24: Process parameters used in the machining gap campaign.

Diameter Energy level (index) Current (index) Voltage (V)

300 206 10 35 50 80 110 140
365 40 60 80 80 100 120
150 206 15 30 50 80 110 140
365 20 40 60 70 95 110

Those parameters were chosen in consideration of the limitations of the machine

and the diameter of the electrode.

Given a number of repetitions of 5 for each set of process parameters, a total of
120 holes were machined while electrical data was collected and processed using

the methods described previously.

The diameters of the hole machined were measured with an optical microscope.

The raw data is available in Addendum A.

4.3.5. Data analysis

For all the experiments, electrical data was collected using an oscilloscope. Every
five seconds, a sample of 10pm was collected for the voltage and current
waveforms. The data was processed in the same was as described previously and
average values for the peak current, peak voltage, energy per spark, number of

sparks and occurrence of those sparks was computed.

The data file was converted to the .arff format used by WEKA and a simple

Linear Regression model was trained with the following results in Table 25.
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Table 25: Error measures for the training of a machining gap linear regression

model.

Coefficient Value
Correlation coefficient 0.9904
Mean absolute error 0.0078
Root mean squared error 0.0108
Relative absolute error 10.0%
Root relative squared error 13.8%

The output relationship was:

D = 0.001 = del(zctTnde +

top
0.0005 * [0y +
0.0004 % V, .1 +

—0.0001 * E.S’p(l,’l‘/i? +

0.0528

4.4. Testing the roughness model in the simulation

4.4.1. Overview

Two models have been determined using multi-linear regression algorithms for

the machining gap and the crater dimensions. What is proposed in this section is
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to test the use of the roughness model to determine the correct input parameters

of the simulation.
4.4.2. Experimental roughness

4.4.2.1. Overview

The roughness experimental campaign proposes to machine shallow cylindrical
features using a range of machining parameters. Those features are obtained
through the use of a cylindrical rod made of Tungsten Carbide (W 94, Co 6). The

dimensions of said rod are:

e Diameter: 0.290 mm.

e Length: 30 mm.

The workpiece is a small sheet of stainless steel (AISI 420: Fe 86.7, Cr 13, C 0.3).

Its dimensions are 50x50x1 mm.

The experimental machining parameters were chosen in order to use a wide range
of the machine’s capabilities while keeping the machining time under acceptable

levels. The chosen parameters are tabulated in Table 26.

A total of 18 parameters combination are used. The machining depth was set to
50 pm. The energy levels chosen are in the higher range of what is possible.
However, using low energy levels resulted in extremely long experiments (6 to 7

hours for a single hole).



Table 26: Machining parameters used for the roughness experimental campaign.
Unitless parameters are machine indexes.

N° fiﬁ?lfei};%in dex) (V) f:;;) ton (1s) Gap Regulation Polarity
1 365 40 80 120 ) 60 03 01 -
2 365 40 100 120 ) 60 03 01 -
3 365 40 120 120 ) 60 03 01 -
4 365 60 80 120 ) 60 03 01 -
5) 365 60 100 120 ) 60 03 01 -
6 365 60 120 120 ) 60 03 01 -
7 365 80 80 120 ) 60 03 01 -
8 365 80 100 120 ) 60 03 01 -
9 365 80 120 120 ) 60 03 01 -
10 206 10 80 120 ) 60 03 01 -
11 206 10 110 120 ) 60 03 01 -
12 206 10 140 120 ) 60 03 01 -
13 206 35 80 120 ) 60 03 01 -
14 206 35 110 120 ) 60 03 01 -
15 206 35 140 120 ) 60 03 01 -
16 206 50 80 120 ) 60 03 01 -
17 206 50 110 120 ) 60 03 01 -
18 206 50 140 120 ) 60 03 01 -

4.4.2.2. Results

As determined in the simulated roughness section, the values required for use in

the model are: S,,,.5,, S, Sers Sius Sats Sqa and Sy, for the crater radius model and

da
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S, and S, for the crater depth model. A Form Talysurf PGI machine was used

for the surface profile measurements. This measuring machine is capable of 0.8nm

of vertical resolution and the result are given in Table 27. The sign of Sy is

indicative of the probability density of the amplitude distribution. A negative

skewness means that the measured profile has deep, sharp valleys. On the

contrary, a positive skewness is indicative of high, sharp peaks.

Table 27: Experimental roughness measurements to be used with the model for
the determination of crater dimensions. Values are given with three significant

figures.

N Gy SO S0 Sm) S Se L (b
1 0.0662 0.403 0.578 0.965 0.195 2.52 0.895  3.90 0.185
2 0.101 0.716 0.765 1.30 0.244 2.28 1.16 8.00 0.448
3 0178  0.827 0.860 1.59 -0.263  2.08 1.35 10.9 1.21
4 0.176 0.911 0.925 1.62 -0.266  2.11 1.61 10.8 1.20
o5  0.266 1.16 1.26 1.97 -0.375  2.67 1.78 16.9 2.59
6 0.290 1.31 1.62 2.65 0.00840 2.97 1.96 27.9 4.44
7 0.290 1.19 1.33 2.29 0.179 3.59 1.81 15.5 1.98
8 0.299 1.32 1.62 2.66 0.00810 3.05 2.20 27.3 4.30
9 0.302 1.46 1.76 2.61 0.00810 2.98 2.42 27.5 4.40
10 0.0314 0.112 0.171 0.293 0.217 2.40 0.136  0.464 0.00700
11 0.0455 0.175 0.259 0.437 0.164 2.43 0.256  0.627 0.0140
12 0.0453 0.282 0.345 0.628 0.0601 2.31 0.589 1.34 0.0395
13 0.0620 0.334 0.559 0.946 0.428 2.81 0.622 1.91 0.0667
14 0.0756 0.753 0.591 1.42 0.196 2.12 0.942  5.66 0.202
15 0.175 1.06 0.967 1.62 -0.270  2.12 1.70 10.9 1.24
16 0.139  0.763 0.850 1.28 0.248 2.25 1.26 7.78 0.449
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. S

a Sal Sda de
......... (pum)

S, (um) S, (pm) S;(pm) Sa St (mm)  (um?)  (pm?)

17 0.248  1.10 1.13 1.96 -0.373  2.76 1.75 16.5 2.58

18 0.296 1.28 1.44 2.23 0.434 3.57 1.93 15.4 2.01

The values in Table 27 when used with the roughness model give out the following

values for the crater dimensions (Table 28).

Table 28: Crater dimensions issued from the roughness model for the experimental
values. Values are given with three significant figures.

N° Crater depth (nm) Crater radius (pum) Ratio

1 1.02 1.34 1.65
2 1.47 2.20 1.50
3 1.66 1.85 1.63
4 1.80 2.21 1.60
5) 2.37 3.17 1.34
6 2.92 3.90 1.34
7 2.48 3.40 1.37
8 2.93 3.57 1.43
9 3.18 4.08 1.36
10 0.320 2.46 1.89
11 0.471 2.01 1.55
12 0.651 1.76 1.69
13 0.946 1.79 1.37
14 1.28 1.66 1.30
15 1.95 2.54 1.40
16 1.60 297 1.59
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17 2.18 3.36 1.38

18 2.67 3.61 1.35

4.4.3. The experimental campaign

Three different tool shapes were designed and made using a wire-EDM machine.
The diameter of the wire used was of a nominal diameter of 300 pm. The nominal
profiles are given in Figure 46 while a picture of the achieved shape is given Figure
47. Their dimensions are available in Addendum B. For each shape, 16 of them
were made for a total of 48. The chosen profiles were designed to be used in a
two-dimensional version of the simulation tool in order to speed up the process

for the initial development of the method.

The process parameters that were used for the three different shapes are tabulated
in Table 29. The objective depth was set to 300 pm and all features were made

using the Sarix SX200 machine.

1 mm

Figure 46: The three shapes used in the validation of the roughness and
machining gap models.
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Figure 47: The manufactured shapes.

Considering the likelihood of major differences occurring between the nominal

shapes designed and the actual tools, those were measured using a Nikon AZ100

|
“
‘

. —

Figure 48: The Nikon AZ100 multi-purpose microscope.

multi-purpose microscope shown in Figure 48.
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An example of each of the tool shapes before machining is given in Figure 49

while an example of the tools after machining is given Figure 50, examples of

workpieces after machining are given Figure 51.

Figure 49: Tools measured before machining.

v

1 mm

Figure 50: Tools measured after machining.

. 1 mm

Figure 51: Workpiece features after machining.

131



4.-4.4. The stmulations

4.4.4.1. Overview

Using the values of the crater dimensions determined in the previous section and
using the values for the machining gaps accordingly to the machining parameters,
simulations for three different tool shapes were made using the machining
parameters in Table 29.

Table 29: Parameters used in the simulation of the roughness experimental
campaign.

Energy I Workpiece g;’trelipiece Tool
N index)  (index) ¥ (V) crater radius 0 Gap (pm) Wear

(1m) (em) ratio
1 365 40 80  1.33 1.01 43 0.50
2 365 40 100 2.19 1.46 43 0.28
3 365 40 120 1.85 1.65 46 0.13
4 365 60 80 2.20 1.79 45 0.39
5 365 60 100 3.17 2.37 47 0.20
6 365 60 120 3.89 2.92 48 0.12
7 365 80 80 3.40 2.47 55 0.20
8 365 80 100 357 2.93 48 0.13
9 206 10 80 245 0.320 59 0.55
10 206 10 110 2.00 0.471 70 0.54
11 206 10 140 1.76 0.651 63 0.52
12 206 35 80 1.79 0.946 70 0.55
13 206 35 110 1.66 1.28 65 0.54
14 206 35 140 253 1.95 70 0.55
15 206 50 80 2.96 1.60 71 0.49
16 206 50 110 3.36 2.17 64 0.45
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The crater dimensions for the tool were determined using previous knowledge of
the tool wear ratio (the ratio between the volume removed on the tool and the

volume removed on the workpiece) that is available in Table 29.

The microscope images were converted to pixels in a quadtree structure. An

example of such a conversion is given Figure 52.

Figure 52: One of the circular tools that have been converted to pixels in a
quadtree data structure.

4.4.4.2. Results

The resulting features on the workpiece were then compared to the experimental
ones after alignment. An example of a simulated workpiece is available Figure 53
and a comparison is available Figure 54. The differences between the simulated
and experimental workpiece are coloured in red and blue. The difference in colour
denotes whether or not it is an area that should have been removed (red) or not
(blue) in the simulation. The error measure is the sum of those two areas. The

area of the red difference is 2361 pm? and the area of the blue error is 540 pm?
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for a total of 2901 pm?2. The deviation or error relative to the simulated workpiece

area (64412 pm?) is 4.50%.

1 mm

e — |

Figure 53: Result on the workpiece for a circular tool shape.

1 mm

e — |

Figure 54: Comparison between simulated and experimental workpiece. In red:
volume that should have been removed in the simulation. In blue: volume that
shouldn’t have been removed in the simulation.
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The error measures are tabulated in Table 30 for the circular shapes, Table 31 for

the square shapes and Table 32 for the triangular shapes.

Table 30: Error measures of the simulations for the circular shapes.

N° ?rez; red bAlI;Eaa Tots;l error VS:(Z;IEII)?Z?: area Relative
pm?) (1m?) (nm?) (1m?) error (%)
1 2500 679 3179 74347 4.28
2 2616 722 3338 78881 4.23
3 2865 739 3604 82510 4.37
4 2535 677 3212 7797 4.13
5 2629 725 3354 81297 4.13
6 2833 765 3598 82749 4.35
7 2630 675 3305 79594 4.15
8 2636 722 3358 84406 3.98
9 2361 540 2901 64412 4.50
10 2365 675 3040 66470 4.57
11 2496 695 3191 70005 4.56
12 2409 651 3060 66561 4.60
13 2417 675 3092 72000 4.29
14 2531 718 3249 75917 4.28
15 2582 669 3251 67784 4.80
16 2811 710 3521 71594 4.92




Table 31: Error measures of the simulations for the square shapes.

N° Arez; red bAlI:ea Totz;l error ?:Z?EIIEZZS area Relative
(um?) (um?) (um?) (um?) error (%)
1 3913 1067 4980 116252 6.70
2 4053 1118 5171 123021 6.56
3 4431 1139 5570 128139 6.75
4 3922 1048 4970 121016 6.39
5 4084 1118 5202 126543 6.40
6 4442 1207 5649 129330 6.83
7 4095 1049 5144 123915 6.46
8 4063 1130 5193 131360 6.15
9 3701 834 4535 100179 7.04
10 3709 1042 4751 103291 7.15
11 3895 1088 4983 108580 7.12
12 3762 1022 4784 104275 7.19
13 3744 1054 4798 112106 6.66
14 3940 1105 5045 117693 6.65
15 4031 1050 5081 106420 7.50
16 4371 1108 5479 111444 7.65
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Table 32: Error measures of the simulations for the triangular shapes.

N° Area; red bAlI:ea Totz;l error S’:gll{l;gzj area Relative
(um?) (um?) (um?) (um?) error (%)

1 1300 480 1780 23389 7.61

2 1291 474 1765 23749 7.43

3 1477 460 1937 25784 7.51

4 1268 401 1669 23513 7.10

5 1379 465 1844 25770 7.16

6 1427 480 1907 24943 7.65

7 1319 457 1776 24103 7.37

8 1298 437 1735 25158 6.90

9 1228 363 1591 20025 7.95

10 1241 447 1688 20687 8.16

11 1258 411 1669 21003 7.95

12 1221 428 1649 20261 8.14

13 1266 452 1718 22698 7.57

14 1265 431 1696 22635 7.49

15 1265 411 1676 20237 8.28

16 1379 438 1817 21194 8.57

The results tabulated indicate that the simulation tool is able to achieve results
at 4 to 9% of the actual result. There are multiple potential sources of error

including:
e The inherent stochastics nature of the process.

e The unexpected accumulation of debris.
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e The inherent error measure of the model linking roughness values to crater

dimensions.

While an error of 4 to 9% is far from optimal, considering all the potential sources
of error, the result achieved by the simulation tool is quite honourable and can
be confidently used for global approximations of the micro-EDM die-sinking
process machining process. Those error values are too high to conclude that the
simulation tool can be as accurate as to predict the location of individual craters
but this was never the objective. The location and amplitude of the tool wear
were, however, correctly predicted to a certain extent. Additionally, lower error
values were found for the circular shape. Shapes with sharp corners (rectangle
and triangle) have higher relative error values. This was especially true with the

triangular shape.

4.5. Synthesis

Chapter 4 has explored various option to remove the systematic dependency of
the simulation on experimental values for the crater dimensions or the machining
gap. It was proposed to use models built on empirical data that are able to predict
correct values for the crater dimensions and the machining gap with the

knowledge of the machining parameters.

The crater dimensions were based on the measurement of surface roughness values
and a good correlation between various parameters was shown. This is supported
by the various t-values and their related p-values that indicate that most of the
coefficients determined are statistically significant. These findings were to be
expected since the roughness measured is related to the simulation that is a mostly

deterministic tool. It would be interesting to extend the present work with the
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use of more advanced machine learning algorithms in order to make the

predictions applicable to a wider range.

The machining gap relied on the measurement of electrical data in order to remove
the dependency on machine specific parameters. This method should be extended
to the roughness models in order to generalize the inputs to be used to any kind
of micro-EDM machine. At the present moment the machining gap model hasn’t
been directly tested with a simulation even though the model’s error measures are
quite low. It is of note that there is an expected difference between the side wear
and the bottom wear of a tool. However, as a first approach, it was supposed that
the wear was uniform around the tool when building the model due to the fact

that measuring side wear is easier.

The results obtained with the use of those models ranges between 4 to 9% which
is marginally worse that what can be observed in the simulation available in
Chapter 3 but, considering all the potential sources of error previously mentioned,

those results can be deemed satisfactory.

As can be seen in Figure 50, the tools obtained through wire-cutting differ from
the original design due to the machining errors that arise. However, since the
tools used in the simulation are taken from the actual experimental tools and not
their nominal design, the errors due to deviation between theoretical tools and

the actual ones are taken into account.

The next section deals with the use of the simulation tool in an iterative loop that

has the goal of optimizing the initial tool shape.
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Chapter 5

Tool shape optimisation

5.1. An iterative optimisation process
5.1.1. Introduction

What is proposed in the present section is to develop an iterative simulation
process that adjusts the shape of the tool electrode in order to obtain an ultimate
shape potentially able to produce in a single step the targeted workpiece or one

that is as close as possible.

Although the tool presented in the previous sections deals with three-dimensional
simulations, to demonstrate and validate the optimisation concept more efficiently
and rapidly it was decided to perform optimisations using the simulation with
two-dimensional profiles. However, since all the developed algorithms have been
done so taking this fact into account, the method can easily be adapted for use

with three-dimensional shapes.

Thus, considering a targeted workpiece profile Wi,y to be produced on a
workpiece, each iteration of the optimisation process consists in four main steps

that are illustrated in Figure 55 and Figure 56.

e Compute the difference or mismatch e between the target workpiece (Wiarget)
and the previous resulting workpiece profile W,..u. On the first iteration, the

W, esur is an empty workpiece without any features since no machining has
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been done yet. This means that the first difference ¢ represents the actual

overall target area to be removed (or volume in three dimensions).

e Using the mismatch, the virtual workpiece profile W, .. is created in the first

iteration or modified in the others.

e Using the virtual workpiece W, t.a, a virtual tool profile T, is generated,
which would produce the selected Wi if no wear occurred on the tool
during the process. At the last iteration of the process, Tyiwua is considered to

be the optimal tool shape.

e An EDM simulation using the Tatool on a new workpiece (not machined)
is done. The workpiece provided at the end of the simulation, W, is

analysed for the next iteration.

The accuracy of the optimisation process, A%, is measured with the following

metric:

A
A% = —E=— 100

target

(59)

Where Awtager (mm?) is the area of the target workpiece feature and ¢ is the

mismatch area (pm?) previously defined.

The process is repeated until the accuracy no longer improves by more than 0.5%,
meaning that the resulting workpiece is as close to the targeted workpiece as can
be produced with this process. As a consequence, an optimal tool for the desired

workpiece is obtained.
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Figure 55 : Iterative optimisation process.
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Figure 56: A single iteration of the process.
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Figure 57: Tool shape optimisation capabilities. Left (top and bottom): the non-
optimized tool shape and the target profile. Right (top and bottom): the

optimized tool shape and the feature it produces.

An example of the capabilities of the tool shape optimisation process is given in
Figure 57. Elements a) and b) represent respectively the targeted workpiece
profile Wi,y to be produced on the workpiece and the initial tool shape (the
initial tool shape is chosen as the negative of the target profile accounting for the
expected machining gap). Elements ¢ and d represent respectively the optimized
tool shape (final virtual tool profile Tyiwa) after five iterations and the resulting
workpiece (final result workpiece profile W,.u). In this specific example, after four
iterations, the final shape of the workpiece (Figure 57.d) is similar to the desired

shape (Figure 57.a) with an accuracy of 98.2%.

5.1.2. The target workpiece

In EDM or micro-EDM, the machining gap (or gap) is the designation for the

minimum distance at which it is possible for a spark to occur and therefore the
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closest distance a potential tool can get before machining the workpiece and,

incidentally, itself.

Considering the gap, the target workpiece might include features that could
theoretically never be machined since they are too far to trigger sparks. Indeed
before sparks can reach these areas, other closer areas would trigger sparks before
them. If the tool aims to achieve these areas, it will inevitably damage the rest of

the target workpiece profile.

Since the target workpiece profile is the end goal that the tool is trying to achieve,
it provides the lead metrics that will influence the optimisation of the tool.
Therefore it is important to get rid of misleading information such as these
unachievable areas. As a consequence, the target workpiece undergoes processing

to remove these areas in order to aim towards a more “realistic target workpiece”.

Target workpiece Realistic target workpiece

Figure 58: Realistic target workpiece processing.

Figure 58 depicts an example of such unachievable area and the respective realistic
target workpiece without it. The technique used to generate the realistic target

workpiece is an extension of the tool generation technique described further.
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From then on, only the realistic target workpiece is used in all computations.
However, for simplicity of reading and comprehension, it will be referred to as the

target workpiece Wi although it is an inaccurate designation.

5.1.3. Virtual workpiece profile and tool generation

The end goal of the optimisation process is to generate a tool that would best
produce the target workpiece, but because of the tool wear phenomena this task
is not trivial. Nevertheless, the most intuitive starting point is to try the tool that
would produce the target workpiece in a situation in which no tool wear is present

and act from there.

This simple idea holds both concepts that lie behind the virtual workpiece. As
explained in section previously, the virtual workpiece is an image of the target

workpiece as well as a model for the tool.

On one hand, it will first mimic the target workpiece profile and adjust itself from

there, making it an image of the target workpiece.

On the other hand, it will generate a tool that would reproduce the virtual

workpiece itself if no tool wear occurred, making it a model for the tool.

To keep on with the analogy, in metal casting the pattern is a modified version
of the desired piece that is used to shape a mould that would reproduce the

pattern itself if no solidification shrinkage occurred.

How the virtual workpiece is an evolving image of the tool will be discussed in
the next section regarding virtual workpiece adjustment. The focus will be put on
how the virtual workpiece generates a tool that would reproduce the virtual

workpiece itself in a case where no tool wear occurred.



The generation of such a tool is a 4-step process:

1. From the virtual workpiece, the coordinates of the surface points are
retrieved (Figure 59.a. pinpoints 8 points of the surface with a cross
marker)

2. For each of these coordinates, a circle whose radius is equal to the
machining gap is drawn (The 8 points’ respective circles are displayed in
Figure 59.a.)

3. The combination of all the surface circles draws an outer margin. This
margin brings out the profile to be used for the conjugate tool. (Figure
59.a. shows this profile in a green dashed line)

4. The tool matching the profile is generated (Figure 59.b. depicts the final

tool generated).

a) Virtual workpiece b} Generated conjugate tool

Figure 59 : Virtual workpiece and its respective conjugate tool

Using this process, the profile of the tool generated is only influenced by the
reachable points of the surface and leaving out the rest. This is illustrated in

Figure 59.a) using green circles for influencing points and red circle for non-
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influencing points. With that in mind, the tool that would best reproduce the

virtual workpiece if no tool wear occurred is obtained.

As mentioned in section 5.1.2, the processing that the target workpiece profile
undergoes to remove the unreachable areas is an extension of this technique. The
four steps are simply repeated but using the target conjugate tool as a reference
this time. This way, the new target workpiece profile generated has a fully
reachable surface for a tool that would not wear out, making a version of the
target workpiece that can be more reasonably expected. Hence the designation

“realistic” target profile.

5.1.4. The error measure, &

The end quality of the tool can only be assessed by analysing on the workpiece
side by analysing the resulting workpiece W, in comparison to the target

WorkpieCe thyct-

However, the wear simulation uses a voxel representation embedded in an octree
structure that is not convenient for comparison. While Boolean operations
between octrees are implementable, it is not straightforward to compare two voxel
octrees. As a consequence, another representation is used for this purpose: the
matrix representation. Adding up to three possible representations for one entity

each with their own purpose:

e Voxel representation for computational efficiency with high resolution
during the wear simulation.
e Bitmap representation for user interpretability.

e Matrix representation for comparisons and measurements.
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Algorithms were designed to convert one representation to another in a bijective
way. It is important to know that the resolution of the simulation is defined by
the size of the smallest leaf in the voxel tree in ym/voxel. This smallest leaf is the
equivalent of one pixel in the bitmap representation which transpose to one matrix
element in the matrix representation as displayed in Figure 62Figure 60. This way
the resolution is maintained throughout the conversion process (X um/voxel = X
um,/pixel = X ym/element) and the matrix representation makes measurements

convenient.
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Figure 60: Conversion between bitmap image and 2D Boolean matrix.

At the end of each iteration, the voxel representations of the target workpiece
Wiager and the resulting workpiece W, .. are converted to matrices. The error
matrix € is then computed by doing the matrix difference between the matrix of
the target workpiece Wi, and the matrix of the resulting workpiece, W, .. The
error measure matrix € is the result of a difference operation (€ = Wigryer— Wiesun)

as described in Table 33.
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Table 33: Table of truth of the 2D matrix difference (X=A-B)

A B X
0 0 0
0 1 -1
1 0 1
1 1 0

This computation outputs two distinctive areas:

e Positive area: represents the excess of volume removed.
o Negative area: represents the lack of volume removed.

It is important to make this distinction for corrective purpose. Indeed, these areas
pinpoint the locations where the tool was under/over effective, as described in
Figure 61. With this kind of information, it is possible to modify the virtual
workpiece and, consequently, the tool in order to compensate for its lack or excess
of material removal. Analytics on the mismatch matrix also give valuable

information regarding the advancement of the optimisation process.

5.1.5. Optimasation of the virtual workpiece profile

Based on the assessed difference between the target workpiece profile and the
result of an iteration, the optimisation objective is to make modifications on the
virtual workpiece profile Wi so that the virtual tool profile T, generated in

the next iteration, reduces the difference.

The shape corrective function to apply to the virtual workpiece is computed by
taking the vertical summation of each column of the mismatch matrix (Figure

62). The resulting discrete function represents the vertical difference between the
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objective and the current result. Positive values referring to an excess of removal,

and negative values referring to a lack of removal.

% 1 1
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target workpiece result workpiece mismatch

Figure 61: Computation of the mismatch matrix.

-1 -1 mismatch

11 -1 -2 -1 11 shape corrective
function

Figure 62: Computation of the shape corrective function.

The shape corrective function is then applied onto the surface of the virtual
workpiece, whose shape should evolve to improve the efficiency of the next tool

conjugate generated, as described in Figure 56.

Looking to compensate the difference from a vertical point of view is simpler for

data processing but also relevant in the context of die-sinking EDM, because the



movement of the tool usually is restricted to the vertical axis and thus most

interactions happen in this direction.

It should also be mentioned that the shape corrective function is altered by the
wear ratio in order to take into account the future expected wear on the tool, and
therefore improve the efficiency of each iteration of shape the optimisation

process.

In cases of excess of volume to be removed, following approaches developed for
drilling and EDM milling, one could suggest that the shape corrective factor

obtained for each vertical summation should be altered by the wear ratio.

The wear ratio is defined by the ratio between the wear occurring on the tool
electrode and the wear occurring on the workpiece, which for the simulation would
be equivalent to the ratio between the Tool Crater Volume and the Workpiece

Crater Volume.

5.1.6. Experiments and discussion

In order to demonstrate the viability of the present tool shape optimisation

method, three different targeted profiles have been used.
The following parameters were used for all simulations:
e Machining gap: 5 um

e Tool wear ratio : TWR = 0.5

To achieve a tool wear ratio of 0.5, the volume ratio is defined by the parameters

of the craters which apply respectively on the workpiece and the tool as follows:

e  Workpiece: crater radius = 3.00um and crater depth: 2.25um.

e Tool: crater radius = 2.25 ym and crater depth = 1.50 ym.



The three different target profiles tested are defined as follows:

1. Circle (Figure 64.a): 80 ym radius and 80 yum deep
2. Isosceles triangle (Figure 65.a): 160 ym wide and 80 ym deep
3. Rectangle (Figure 66.a): 160 ym wide and 80 ym deep
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Figure 63: Accuracy of each iteration during the optimisation process for all three
target profiles

Figure 63 represents the evolution of the accuracy for each iteration until the
process stop. The accuracy is the measure of the overall completeness of the
machining in regard to the objective profile. This metric stabilizes after a few
iterations for each tests subjects and the process stops when accuracy’s
progression over one iteration becomes less than 0.5%. It means that the following
optimisation iterations will not improve the tool significantly anymore. Therefore,
the optimisation process stops and the tool giving the highest accuracy is kept as

the optimal tool.



As can be seen in Table 34, in all cases the optimal tool was obtained after 3 to
4 iterations with an accuracy rate of over 96%. This certifies that the optimal
tools are very effective given that the remaining mismatch is mostly due to the
imperfection of craters in regard to the target geometry as shown in Figure 64.c),

Figure 65.c)Figure 66.c).

Table 34: Optimisation process data for all three target profiles.

Accuracy of

Iteration Mean duration

number of Optlm?l of optimisation
) workpiece result
optimal tool loops (s)
(%)
Circular profile 4 98.2 52
Triangular profile 4 96.0 41
Rectangular profile 3 96.6 66

It is important to notice that the cavity of the rectangular target profile is
significantly bigger than the others, with the cavity of the triangular profile being
the smallest. This means that there will be more material to remove. As a
consequence, the duration of each iteration for the optimisation of the rectangular

profile are the longest and those of the triangular profile are the shortest.

Figure 64, Figure 65 and Figure 66 represent the important geometries of the
optimisation process respectively for the circular profile, the triangular profile and
the rectangular profile. Figures a) are the geometries of the target profiles while
Figures b) are the geometries of the optimal tools resulting from the optimisation
process. Finally, Figures ¢) show the mismatch area remaining from the machining

of the optimal tool.
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Figure 64: Tool optimisation results for the circular profile.
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Figure 65: Tool optimisation results for the triangular profile.

a) target profile b) tool of iteration 3 ¢) mismatch of iteration 3

Figure 66: Tool optimisation results for the rectangular profile.
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The remaining mismatch on the triangular profile (Figure 65.c) peaks at 5.75 ym
around the tip of the isosceles triangle, questioning whether the sharpness
objective of the profile is achievable. This highlights the fact that not all target
profiles are achievable with the die-sinking EDM process, a fortiori using a single

tool.

The final mismatch can be considered as a machinability check metric that
indicates to designers if the resulting workpiece will match their dimension
tolerances. Consequently, this can be used as a designer’s tool to check if the
EDM process is adequate for the production of specific new features or, as
mentioned previously, in the middle of a manufacturing chain using scans of
produced components to check if a re-configurability of the EDM process is

required and if it could lead to the desired features’ tolerances.

In order to test the limits of the tool shape optimisation method, the same three
target profiles underwent the tool optimisation method with three different

machining gaps:

e Machining gap: 5 ym, 20 ym and 40 ym

Figure 67, Figure 68, Figure 69 represent the evolution of accuracy during the

optimisation process for all three profiles at each machining gap.

What is worth highlighting here is that, except for the circular profile, the
machining gap significantly worsens the accuracy of the optimal tool as it gets
bigger. This is due to the pointier shapes of the triangular and rectangular profiles.
These shapes are more difficult to acquire when the machining gap increases

because the vertical compensation applied to the virtual tool is then nullified by
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the large machining gap as the conjugate tool is generated. As shown in Figure

68, a significant compensation applied to the virtual workpiece does not affect the

tool much in return.
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Figure 67 : Evolution of accuracy during the optimisation process of the circular
profile for different machining gaps.
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Figure 68 : Evolution of accuracy during the optimisation process of the
triangular profile for different machining gaps.
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Figure 69 : Evolution of accuracy during the optimisation process of the
rectangular profile for different machining gaps.

a) tool of iteration (i) b) tool of iteration (i+2)

Figure 70 : Virtual workpiece and its respective tool at different iterations with
a machining gap value of 40 ym.
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5.2. Generalization using machine learning
5.2.1. Introduction

Following the work presented in the previous section, the feasibility of training
an artificial neural network (ANN) is studied here. The objective is to build a
predictive algorithm able to output an optimal tool shape from the desired profile

and machining parameters.

While the iterative method previously presented works well in providing an
optimal tool shape, it has only been implemented in a two-dimensional setting.
The three-dimensional version is significantly longer in providing with the optimal

tool shape: dozens of hours could be required to perform a single optimisation.

The idea behind using ANN to propose optimal tool shapes is to be able to train
it once and for all for a specific set of shapes and parameters and using it in the
case of unknown shapes. Figure 71 provides with the overview of the proposed

work.

The algorithm will try and maximize its performance P while accomplishing a

task T, through learning from experience E.

e Task (T): Predict the optimal virtual workpiece for a target profile.

e Experience (E): A corpus of target profiles with their respective optimal virtual
workpieces.

e Performance (P): Prediction accuracy, the relative difference between the
predicted virtual workpiece and the actual virtual workpiece obtained through

the iterative optimisation, as a percentage.
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Figure 71: Overview of the relationships between the proposed optimal tool

model, its training set, its input and its output.

The first approach is to only consider a specific set of machining parameters and

focus on the prediction of optimal tool shapes in the case of a different target

workpiece rather than different machining parameters. The reasoning behind it is

to first verify that a machine learning method can be used in this simple test case

before being extended to a more general environment that would include the

machining gap and crater dimensions as input variables for the training of the

model.

The machining parameters are therefore constant and their values are tabulated

in Table 35.

1
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Table 35: The machining and simulation parameters that are taken as constant
during the generation of the data for the machine learning model training.

Parameter Value
Machining gap (pm) 10.0
Workpiece crater radius (pm) 3.00
Workpiece crater depth (pm) 2.25
Tool crater radius (pm) 2.25
Tool crater depth (jum) 1.50
Resolution (pm/voxel) 0.5

5.2.2. Multiplying the training data

Given the little training set instances available and the requirements when
considering the use of a neural network, it is important to look at the problem

differently and to redefine the instances the algorithm will train with.

Throughout the optimisation process, modifications regarding virtual workpiece
profiles are applied strictly vertically via the Shape Optimisation Function that
is based on the mismatch of each iteration. Furthermore, the first mismatch
considered is the area of the target profile. This means that the virtual workpiece
profile is indirectly a modified version of the target profile. Each point of the
target profile can be considered to be individually moved vertically to form the

virtual workpiece profile.

Given the point-to-point correlation between the target profile and the virtual
workpiece profile, it is possible to redefine the problem: for a given point on the
target profile, predict the Y position of the respective point on the virtual
workpiece profile. Therefore the predicted optimal virtual workpiece profile is the
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combination of the predictions of all the points of the optimal workpiece profile

from all the points of the target profile.

e Task (T): Predict the position on the optimal virtual workpiece for a point of
a target profile.

e Experience (E): A corpus of points from target profiles with their respective
counterpart on the optimal virtual workpiece.

e Performance (P): Prediction accuracy, the relative difference between the
predicted virtual workpiece position and the actual virtual workpiece position,

as a percentage.

profile width

Target

Yy

Virtual
workpiece

Model

Model M

Figure 72: A detailed overview of the machine learning model, its inputs and its
output.
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Given the maximum sizes of the profiles and the resolution, each test profile will
provide up to 600 points as data to work with. With thirty profiles considered
(those are displayed in Addendum C), this results in approximatively 18,000

instances to distribute in the following sets:

e The training set (60%): 10,800 instances
e The validation set (20%): 3,600 instances

e The test set (20%): 3,600 instances
5.2.3. Feature selection

Considering that each point is now considered separately from the rest of the
profile, every attribute will have as a purpose to give valuable information

regarding the environment the given point is in (the whole target profile).

Attributes providing information on the local context (i.e. the point and its
surroundings):
e yValue: Y-value of the point on the point on the target workpiece profile
(in ym)
e parametricDescription: three of the four parameters describing the third
degree Lagrange Interpolating Polynomial (Kudryavtsev & Samarin,
2011) that approximates the neighbourhood of the given point with a
window width equal to two machining gaps (Figure 72, in blue). The
constant parameter is excluded since the interpolation is centred on the

given point, making the constant always equal to 0.
Attributes providing information on the global context (i.e. the target workpiece):

o profileWidth: total width of the target workpiece (in ym)
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profileHeight: total height of the target workpiece (in um)
mean: mean Y-value of the target workpiece points (in um)
area: total area (or volume in 3D) of the target workpiece (in pm?)

sd: standard deviation of the Y-values of the target cavity points (in um)

Attributes providing information on the point relative to the rest of the target

cavity:

xValueRel : X position of the point relative to the rest of the profile (0

being the centre and 1 corresponding to an extremity of the profile)

yValueRel: Y position of the point relative to the rest of the profile (0
being the base and 1 corresponding to the maximum height of the

profile)
dirToLocalMax: slope towards the closest local maximum
distToLocalMax: distance to the closest local maximum (in ym)

equivalents: number of times the target workpiece profile goes through

the point’s altitude.

Output variable:

yValuePattern: Y-value of the respective point on the pattern workpiece

profile

This results in 14 input attributes and 1 output variable, all of which are

continuous real values without any missing data.
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5.2.4. Model
5.2.4.1. Model selection

Machine learning has a large variety of models that come with their respective
advantages and disadvantages. When it comes to supervised learning for
regression models like in our case, there are two types of model that usually
perform best: Artificial Neural Networks (ANNs) and Support Vector Machines
(SVMs).

It has been decided to use ANNs because they can perform the most complex
relationships between inputs and outputs and thus have the potential to give
excellent results. However, they are to be used carefully. Indeed, the model
complexity of ANNs rises quickly with the number of features, making it slow to
train and prone to suffer from multiple local minima. As a consequence, SVMs
are usually favoured when dealing with high dimension input vectors.
Fortunately, this is not the case presently since only 14 attributes are to be
considered.

Furthermore, the simulation tool has been developed in C+#. In order to make
use of the tool prediction process, it is advantageous that the model can be
implemented inside the application itself. However, this language only has a few
machine learning frameworks compared to other more computationally oriented
languages like Python, R or Matlab. None of these available machine learning
frameworks have a good support for SVMs, whereas the C# framework Encog
(Heaton, Artificial intelligence for humans, volume 1: Fundamental algorithms,
2013) supports a large variety of neural network algorithms making it possible

to optimize the performances of the model with already available features.
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As a consequence, ANN has been deemed the most adequate candidate model in

this context.

5.2.4.2. Model configuration

One of the crucial steps when using ANNs is determining the model’s
configuration, meaning choosing how many hidden layers and hidden neurons the
networks should have. This task is very complex and has a huge impact on the
performance of the network. If the hidden structure is too complex, the model will
take long to train, will be prone to overfitting and will have a hard time dealing
with local minima. If the hidden structure is too simple, the model will not learn

the problem (underfitting).

The Incremental Pruning technique (Cassandra, Littman, & Zhang, 1997) was
implemented to determine the hidden structure to use. The objective of
incremental pruning is to figure out the most promising hidden layer configuration

out of a variety of potential configurations.

First, some basic rules of thumb were used to determine the reasonable ranges for
the number of hidden layers and their ranges of neurons. Then every network
configuration was tested 3 times for 300 iterations, then the five networks giving
the best scores were saved. Finally it will only take on the network with the
simplest configuration of all for training efficiency as well as overfitting

prevention.

The most promising model in this case turned out to be a network with a single
hidden layer composed of 14 neurons. Now that the model configuration is set,

the network is ready to be trained.



5.2.4.3. Training criteria

The method used for training is the resilient backpropagation algorithm
(RPROP) for feedforward ANN. RPROP is one of the best general purpose
training methods for neural network and have the advantage of having no
parameters to tune (Heaton, Introduction to the math of neural networks,

2011).

In order to reach the minimum error possible, the training method makes use of
the cross-validation set. While iterating through the training set and adjusting
the weights of the network accordingly to the RPROP method, the algorithm
computes the error of the network on the validation set. As long as the validation
error keeps improving by a certain amount over multiple iterations, the training
goes on. This method ensures that the training continues as long as it is effective
even on unseen data while preventing overfitting. Indeed, overfitting occurs when
the model starts fitting the training data too well and doesn’t generalize well

anymore on unseen data (the cross-validation set).

5.2.4.4. Performances

Once it is trained, the model performance can be evaluated with various metrics
on the test set. Here are the different metrics to be considered.
e Mean Absolute Error (MAE) gives the mean absolute error of the

predicted values.

o Coefficient of determination (R?) indicates how well the model predicts

the values.
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Table 36: Evaluation metrics for point altitude prediction.

Metric Value
R? 0.957
MAE (pm) 3.88

The values present in Table 36 mean that, on average, each predicted point of
the pattern cavity is 3.88 um away from its actual position (given by the

iterative optimisation process.

Although these error measures provide insight on how well the model can predict
the pattern cavity, the end goal is the performance of the resulting tool. In order
to evaluate the performance of the predicted tool the accuracy metric described
in section 5.1.1, Equation (59), is used. By simulating the micro-EDM machining
of the predicted tool and the actual optimised tool, it is possible to compare their

accuracy and measure the Mean Absolute Error between them.

Table 37: Evaluation metrics for the predicted tools.

Metric Value
Training set accuracy MAE (%) 2.06
Test set accuracy MAE (%) 3.06

The figures in Table 37 indicate that, on average, the predicted tool for a new

target workpiece would be 3.06% less accurate than the actual optimized tool.

Also, it is good to know that, on average, the predicted tool is as accurate as an

optimised tool that would be half way through the iterative optimisation process.
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In other words, the prediction does half the work of the optimisation process. One
way to make use of the prediction model is to start the tool optimisation process
with the predicted tool right from the beginning. Doing so will save a considerable

amount of time, especially if 3D shapes were to be involved.

5.2.5. An extended dataset
5.2.5.1. Data generation

After having demonstrated the viability of the use of a Multilayer Perceptron
algorithm in the successful prediction of optimal tool shapes, it is proposed to

extend the method to various combinations of machining parameters.

The previous sections focused on applying machine learning methods for a single
set of machining conditions while focusing on varying the target workpiece
profiles. The present section will explore the possibility of varying other

parameters and studying the change on the method’s accuracy.

In order to propose a sufficient amount of data to obtain robust results, a certain
number of tool optimisations were performed using a large variety of target

profiles, machining gaps and crater dimensions. Those were:
e Target profiles: 30 shapes (shown in addendum C).
e Machining gaps: 4 values (5 pm, 10 pm, 15 pm, 20 y,).
e Crater dimensions: 45 combinations (Table 38).

The crater dimensions used were generated starting with five values for the

workpiece crater radii: 2, 2.5, 3, 3.5 and 4 pm.
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Each of those is associated with three crater depth generated from three values

called ratios 4: 1, 1.5 and 2 such as:

Y= ,
D, (60)
Where R, and D, are respectively the radius and depth of the craters for the tool
(e=t) and the workpiece (e=w).

The dimensions for the tool crater radii and depth are found using the following

system of equations:

l 5:& (61)

Where (3 is the tool wear ratio which is here the ratio between the volume of the
crater of the tool and the area (or volume in the 3D case) of a crater of the
workpiece. Values for § were chosen as 1.5, 1 and 0.5 to cover both cases related
to the polarity of the generator (tool is worn more and tool is worn less). However
usual empirical values for g in micro-EDM are around 0.15 and 0.25. Higher

values were used to quickly obtain noticeable tool wear during the simulation.

Which yields:

( Rt - \/B‘R’IU
J D. = \/BR’IU
2=

(62)

For information, the three-dimensional equivalent of this system is:
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Rt = :\B/BR’IU

3
R
D, :@
Y

(63)

Table 38: Crater dimensions combinations used for the generation of the training
data.

Workpiece crater

Tool crater

Radius (pm) Depth (pm)

Radius (pm) Depth (pm)Crater ratio TWR

10

11

12

13

14

15

16

17

18

19

20

2

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.00

2.00

2.00

1.33

1.33

1.33

1.00

1.00

1.00

2.50

2.50

2.50

1.66

1.66

1.66

1.25

1.25

1.25

3.00

3.00

2.44

2.00

1.41

2.44

2.00

1.41

2.44

2.00

1.41

3.06

2.50

1.76

3.06

2.50

1.76

3.06

2.50

1.76

3.67

3.00

2.44

2.00

1.41

1.63

1.33

0.943

1.22

1.00

0.707

3.06

2.50

1.76

2.04

1.66

1.17

1.53

1.25

0.884

3.67

3.00

1

0.5

1.5
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Workpiece crater

Tool crater

Radius (pm) Depth (pm)

Radius (pm) Depth (pm)Crater ratio TWR

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

3

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.00

2.00

2.00

2.00

1.50

1.50

1.50

3.50

3.50

3.50

2.33

2.33

2.33

1.75

1.75

1.75

4.00

4.00

4.00

2.67

2.67

2.67

2.00

2.00

2.00

2.12

3.67

3.00

2.12

3.67

3.00

2.12

4.28

3.50

247

4.28

3.50

247

4.28

3.50

247

4.89

4.00

2.82

4.89

4.00

2.82

4.89

4.00

2.82

2.12

2.44

2.00

1.41

1.83

1.06

4.28

3.50

247

2.85

2.33

1.65

2.14

1.75

1.23

4.89

4.00

2.82

3.26

2.66

1.88

2.44

2.00

1.41

1.5

1.5

1.5

0.5

1.5

1

0.5

1.5

171



Those 45 combinations, associated with the 4 machining gap values and 30
different shapes lead to a total number of optimisations of 5,800. Those were
accomplished in under 12 days using two different computers running the

optimisations concurrently.

5.2.5.2. Training the model

Similarly to what has been described in sections 5.2.1 through 5.2.4, the model

has been similarly generated and trained. The available data was divided into:

e A training set (60%): 3,480 optimisations (approximatively 1 million
instances).

e A cross-validation set (20%): 1,160 optimisations (approximatively 350,000
instances).

e Test set (20%): 1,160 optimisations (approximatively 350,000 instances).

Once again an Artificial Neural Network was trained using the resilient
backpropagation algorithm described previously. The main difference here is the
addition of a few input variables: the machining gap and the crater dimensions.
As a result the input parameters have a count of 19 for one output parameter.
5.2.5.3. The test set

Once the training of the model achieved, it is submitted to the test set. A first

result yields the following metrics (Table 39)

Table 39: Evaluation metrics for point altitude prediction for the extended
dataset.

Metric Value
R? 0.931
MAE (um) 4.02

172



As could be expected, those error values are greater than in the case of the limited
test set (A R2? of 0.931 against 0.957 and a mean absolute error of 4.02 pm against

3.88 pm).

Once again what is actually of interest is to compare the performances of a tool
generated through the iterative process against one generated by the ANN model.
Due to the huge size of the test set, not all of the tools generated by the ANN
could be tested individually against their iterative counterparts. A selection of 20

of them was made across a broad range of parameters. Those are tabulated in

Table 40.

Table 40: Test set optimisations used for direct comparison of the achieved
workpiece results.

Machining gap

N° Shape N° (1m) p V R, (nm)
1 9 20 0.5 1 2
2 6 15 0.5 2 3.5
3 4 10 1.5 1.5 3.5
4 29 15 0.5 1.5 2
) 24 ) 1 1.5 4
6 2 10 1.5 1.5 2.5
7 19 ) 0.5 1 3
8 14 10 0.5 2 4
9 18 15 0.5 1 3.5
10 12 10 0.5 2 2.5
11 10 ) 0.5 2 3.5
12 1 ) 1.5 2 2.5
13 16 20 1.5 1 2.5
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Machining gap

N° Shape N° (um) p by R, (pm)
14 17 10 1.5 2 4

15 13 20 1 1.5 3.5

16 15 ) 0.5 2 3

17 2 15 0.5 1 4

18 20 20 1 1.5 2

19 22 ) 0.5 2 2.5

20 27 15 1.5 2 4

The various accuracies of the two methods (iterative and machine learning) are
given in Table 41 and the mean, variance and standard deviation of the differences
are given in Table 42.

Once again, the accuracy of the method based on machine learning is worse than
of the iterative one. However, considering the much larger range in terms of
number of parameters, these result are quite acceptable. In order to provide with
a visual representation of those errors, an example of optimisation using the
iterative method and its equivalent with the machine learning method are

depicted in Figure 73.
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Table 41: Comparison of the accuracies of the machine learning method and the
iterative method.

N fg;:::;‘g (I}V/Swhme ﬁgi::;cey (%) Difference (%)
1 45.5 54.2 8.63
2 34.0 40.4 6.32
3 16.9 23.7 6.81
4 37.9 44.4 6.51
) 57.5 60.3 2.81
6 82.4 85.4 3.08
7 66.5 73.6 7.09
8 47.8 52.2 4.42
9 62.9 67.6 4.71
10 46.2 52.4 6.16
11 48.3 o7.8 9.49
12 74.3 82.0 7.68
13 17.1 24.9 7.83
14 32.8 34.5 1.62
15 63.3 69.9 6.62
16 35.7 43.3 7.61
17 65.5 67.2 1.74
18 27.0 33.0 5.94
19 21.6 26.1 4.52
20 59.1 64.8 5.62




Table 42: Statistical properties of the accuracy differences between the machine
learning and iterative methods for the twenty optimisations chosen.

Measure Value
Mean 5.76
Variance 4.60
Standard deviation 2.14

Target workpiece

W

Machine learning method [terative method

Figure 73: Visual side-by-side comparison of the machine learning method and
the iterative method for test optimisation number 9.
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5.3. Synthesis

Chapter five dealt with two distinct elements. The first was the development of
a tool optimisation process based on an iterative loop method. Comparing the
differences between the target profile and the actual profile obtained, the
algorithm modified the tool used iteratively until a satisfactory error measure was

achieved.

In addition to converging quite rapidly, the algorithm was found to be quite
efficient achieving high accuracy values (in the range of 95%). Shapes with sharp
angles perform slightly less than shapes without but still constitute a good
approximation of an optimal tool. If needed, a second tool could be designed to

act as a finishing tool to remove any residual material remaining.

This method was developed with the idea that it would be implemented in three
dimensions. However, considering the length of a single 3D simulation, around 2
hours for a 100 pm deep machining, a single optimisation process that could take

4, 5 or more iterations could be potentially lengthy.

From this emerged the idea to train a neural network using the optimized profiles
from the iterative tool in order to limit the number of optimisations to be done
and instead use a predictive neural network model that would be able to output

directly an optimal tool shape.

A wide variety of shapes, crater dimensions and machining gaps were used to
train a neural network. This network was tested against the iterative method and,
while slightly inferior, it offers comparable results nearly instantaneously (in a

few seconds). It is of note that the values used for the tool wear ratio weren’t
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specific to the usual micro-EDM empirical values and that future works might

want to refocus on values around 0.15 for (3.

As of now, the optimization of the tool is deeply linked to the simulation since it
is at the basis of the iterative optimization method. As a result, the performance
of the optimized tool shapes in reality is dependent on the ability of the simulation

tool to accurately predict a machining process.

Experimental validation needs to be conducted for optimized tool shapes using a
broad range of parameters and shapes. The validation would be based on the
measure of the deviation of resulting shapes between the simulation using the

optimal tool and the experiment using the same optimized tool.
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Chapter 6

Synthesis, conclusions and perspectives

6.1. Introduction

The present chapter acts as the conclusion of the thesis, it focuses on underlining
the main contributions of the research that has been made. It also provides with

suggestions towards future work.

6.2. Conclusions

After having studied the various variant of micro-EDM in existence, a gap in
knowledge in die-sinking micro-EDM has been identified. Other variants could be
considered significantly more mature. Proven methods exist in micro-EDM milling
and micro-EDM drilling to counteract the negative effects linked to the
phenomenon known as tool wear. Few attempts have been made in the context

of die-sinking micro-EDM in comparison.

Die-sinking micro-EDM has some inherent advantages such as its ability to
machine complex 3D geometries and an excellent surface finish, greater than in

micro-EDM milling.

If a complete, precise and fast optimisation tool could be developed, this specific

process might gain in competitiveness against other variants of micro-EDM.

This constatation is at the basis of the present work.
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The complexities and, sometimes, inadequacies of physics-based models make
them hard to implement when often hundreds of thousands of iterations are
needed for a complete simulation. A geometrical approach in line with previous
works has been preferred to the more complex and computationally intensive

physics-based simulations.

However the various geometrical options explored in the literature have some

drawbacks that make it worthwhile to explore alternative options.

The first part of the thesis presented a geometrical approach towards the
numerical simulation of the die-sinking micro-EDM process. Two new methods
were presented: a simulation tool based on NURBS and another one based on

voxels embedded in a tree data structure (Octrees).

Both of the methods share the same underlying concept: an iterative, crater-by-
crater, process that uses conditions based on the machining gap and the objective
depth to perform the simulated machining. While the implementation of the
various functions were different due to the opposed nature of the geometrical

models (surfacic versus volumetric), the idea behind them remains identical.

A first approach at experimental validation has shown that these simple
geometrical implementations are sufficient to provide an accurate estimate of the
results obtained on the workpiece and, more importantly here, the wear on the

tool.

It was shown that, while both methods performed well when limiting
considerations to accuracy, the voxels method is significantly faster and the focus

was shifted on it.
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As opposed to previous methods developed in the past, the voxels-based method
has been made memory-efficient through the incorporation into an octree data
structure. This enables fast computations that take advantage of the hierarchical
structure for quick convergence to a solution. Additionally the savings in terms
of memory led to the possibility of using a high resolution for the discretisation
of the various volumes into voxels. A resolution of four voxels per micron was

used previously but can be easily increased.

Further validation of the voxels method has shown that it remained accurate for
a broad range of machining parameters using as its inputs the crater dimensions
extracted from experimental roughness data using a linear regression model built

with simulation data and machine learning methods.

The fact that numerous different micro-EDM machines are in existence is quite a.
problem when trying to optimise a process in a general way. While most of the
work has relied on a specific machine, the simulation tool takes as input the
dimensions of the craters and the expected machining gap therefore limiting its

dependency on a single, specific machine.

The relationship between the machining gap and the current and voltage between
the two electrodes during the machining process has been studied in an effort to

develop models applicable to any kind of machine.

Additionally, efforts were made to develop relationships between the roughness of
a feature obtained by micro-EDM and the crater dimensions. Two relationships,
one for the crater radius and another for the crater depth were obtained with data
from the simulation. The use of those relationships to choose the input values of
the simulation of experimental conditions has given simulated shapes that deviate
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by 4 to 9% with the experimental shapes. These error measures are sufficiently
low to consider that the simulation gives a good global approximation of the final

shape when using the crater dimension models as inputs.

The third part of the thesis focused on the optimisation of the tool shape itself.
The results issued from the simulation tool were used in an iterative optimisation
loop that would modify the shape of the tool in order to minimize the gap between

the target profile and the profile actually obtained.

The method developed proved to be converging rapidly around an optimal tool

shape in a few iterations (usually less than five) and for a broad range of shapes.

The fourth part of the thesis developed the idea that the optimisation process
could be used to train a multilayer perceptron neural network in order to directly
obtain optimal tool shapes for profiles that are unknown to it. This idea stems
from the fact that the optimisation tool was developed in a two-dimensional
setting in order to ease the development time-wise. While great attention has
been put on the fact that all the functions developed needed to be easily used in
a three-dimensional situation, it is likely that a single optimisation loop would
take a significant amount of time. If only the training of a neural network had to
be done, that would save a significant amount of time when considering new and

unknown shapes.

The neural network model developed proved more than adequate at prediction
optimal tool shapes. While the remaining gaps between desired and achieved
profiles are higher than those predicted by the optimisation tool, they provide

with a very good first guess at the optimal tool shape.
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6.3. Future works

Concerning the simulation tool, in its present state, it does not account for the
presence of debris and the flow direction of the dielectric. While it would certainly
increase the computation time of a complete simulation, the results obtained when
taking the presence of debris and their eventual re-solidification would be of

interest.

It is noteworthy that the simulation tool could be adapted to other machining
process that involve material removal or addition. Processes such as micro-laser

manufacturing or any kind of additive manufacturing are likely candidates.

Processes involving the rotation of the spindle would require some re-writing of
the distance search function since it is simplified to the case of axis-aligned

bounding boxes.

The simulation tool could potentially adapted to micro-EDM die-sinking in

deionized water if the Electro-Chemical effects were taken into account.

It is of note that the volumetric nature of voxels could be put to advantage by
using this geometrical representation to store values related to the properties or

state of the material in use.

While the model built for the linking of roughness parameters and crater
dimensions should perform with similar performance with different materials,

some improvements could be made.

First, the case of materials with anisotropic properties hasn’t been considered, it

is possible that the overall shape of craters could differ in this specific situation.
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Secondly, the model has been limited to craters of small dimensions, an extended
campaign could be undertaken to retrieve more data points in the case of large
craters and a new model involving both (small and large) crater dimensions could

then be built.

Efforts should also be made towards the generalisation of the inputs of the
simulation tool. All the development linked to experimental data has been made
on a specific machine. Other experiments in order to collect additional data should

be performed with different types of machine.

A model based on electrical data was developed for the machining gap, it would
be interesting to perform the same campaign on another machine and build the
same model in order to verify that looking at the electrical data between two

electrodes is enough the ignore what type of machine is being used.

The optimisation process has been developed using a two-dimensional version of
the simulation tool for practical purposes. However all the methods that have
been designed have been done so while keeping in mind their eventual

transposition into three dimensions.

A few solutions could be implemented in order to improve the rate of convergence
of the tool through the exaggeration of the material added or removed during the

process.

Finally, the machine learning processes applied for the building of an optimisation
model would also benefit from many potential improvements. Meta-optimisation
of the various parameters used when building the neural network certainly is

among them.
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Addendum A

Raw and processed data from the machining

gap experimental campaign

The index symbol denotes a parameters that is a machining index and has no real

unit. Values replaced by the “?” symbol couldn’t be measured due to a lack of

spark electrical information. Those missing values were handled by WEKA.

Diameter

Energy

I

Hole

V (V) Diameter

Peak Current Peak Voltage Energy per spark

(um) (Index)  (Index) (mm) (A) V) (nJ)
150 206 15 80 0.203 1.36 7.64 22.3
150 365 20 95 0.212 1.40 16.9 10.6
150 206 15 110 0.210 4.60 16.9 57.5
150 365 40 95 0.228 1.65 24.5 20.1
150 206 15 140 0.205 4.42 23.5 111
150 365 20 70 0.209 ? ? ?

150 206 30 80 0.208 0.629 12.6 30.7
150 365 60 70 0.220 ? ? ?

150 206 30 110 0.200 13.4 20.9 107
150 365 60 70 0.216 ? ? ?

150 206 30 140 0.215 5.76 29.0 4.7
150 365 40 110 0.214 1.81 28.6 65.8
150 206 50 80 0.197 2.70 16.0 82.0
150 365 60 95 0.220 1.71 30.1 21.6
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Diameter

Energy

1

V (V)

Hole
Diameter

Peak Current Peak Voltage Energy per spark

(um) (Index)  (Index) o (A) V) (1)
150 206 50 110 0.224 6.34 24.2 71.0
150 365 40 110 0.216 1.77 29.7 24.0
150 206 50 140  0.220 6.12 30.6 83.3
150 365 40 110 0.218 1.71 28.1 22.3
150 365 40 110 0.218 1.92 25.6 22.7
150 206 15 80 0.208 0.783 7.54 29.1
150 206 15 110 0.207 3.26 16.0 52.7
150 365 20 70 0.203 ? ? ?

150 206 15 140 0211 3.17 22.6 64.0
150 365 60 110  0.217 1.82 28.5 26.8
150 365 60 95 0.223 1.62 30.1 20.1
150 206 30 80 0.210 0.510 12.7 25.9
150 365 40 70 0.211 ? ? ?

150 206 30 110 0.208 5.24 21.3 61.8
150 206 30 140 0211 5.41 29.1 72.5
150 365 20 95 0.213 1.51 17.8 10.8
150 365 20 95 0.210 1.49 16.3 12,5
150 206 50 80 0.203 4.28 18.8 51.8
150 365 60 70 0.222 ? ? ?

150 206 50 110 0.216 5.70 26.3 66.7
150 365 60 70 0.221 ? ? ?

150 206 50 140  0.210 7.25 33.0 84.1
150 206 15 80 0.218 3.84 6.77 12.4
150 365 60 110  0.227 1.88 32.9 36.3
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Diameter

Energy

1

V (V)

Hole
Diameter

Peak Current Peak Voltage Energy per spark

(um) (Index)  (Index) o (A) V) (1)
150 365 20 110  0.218 1.60 17.8 12.9
150 206 15 110  0.204 3.01 14.3 75.2
150 206 15 140 0213 4.42 23.6 77.6
150 365 60 110  0.221 1.80 31.6 164
150 206 30 80 0.208 0.900 12.6 30.7
150 365 20 110  0.214 1.58 16.3 12.6
150 206 30 110  0.210 3.60 21.5 53.7
150 365 20 70 0.208 ? ? ?

150 365 40 70 0.211 1.04 8.12 4.49
150 206 30 140  0.203 6.19 28.9 132
150 206 50 80 0.208 0.00518  18.9 35.1
150 365 40 70 0.211 ? ? ?

150 206 50 110 0.214 6.62 23.5 70.7
150 365 40 95 0.220 1.67 22.5 185
150 365 60 95 0.219 1.55 30.7 20.4
150 206 50 140  0.200 12.1 33.3 108
150 365 20 110  0.214 1.60 15.9 13.0
150 206 15 80 0.225 3.44 7.32 32.8
150 206 15 110 0211 1.47 17.0 41.4
150 365 60 95 0.221 1.66 29.8 24.6
150 365 40 95 0.220 1.65 24.8 16.8
150 206 15 140 0214 4.35 23.9 65.3
150 206 30 80 0.211 0.950 13.1 31.4
150 365 40 110 0.218 1.77 30.8 21.4
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Diameter

Energy

1

V (V)

Hole
Diameter

Peak Current Peak Voltage Energy per spark

(um) (Index)  (Index) o (A) V) (1)
150 206 30 110  0.199 13.1 20.4 109
150 365 60 110  0.229 1.84 38.7 39.0
150 365 20 95 0.212 1.41 18.1 115
150 206 30 140  0.215 7.07 30.0 82.0
150 365 20 70 0.210 ? ? ?

150 206 50 80 0.216 2.00 18.0 36.7
150 365 60 110  0.228 1.84 26.3 25.0
150 206 50 110 0.211 6.34 24.2 71.0
150 365 20 110  0.216 1.59 17.3 12.8
150 206 50 140 0.207 10.7 35.1 96.8
150 365 40 70 0.210 ? ? ?

150 206 15 80 0.208 7.76 7.32 67.3
150 365 20 95 0.213 1.45 15.4 11.0
150 206 15 110 0215 2.72 15.7 45.4
150 365 40 95 0.217 1.68 27.4 17.8
150 206 15 140 0211 5.75 24.5 70.5
150 206 30 80 0.213 1.51 12.0 34.8
150 365 60 95 0.219 1.65 29.8 25.4
150 365 20 70 0.203 ? ? ?

150 206 30 110 0.209 10.3 18.8 89.4
150 365 40 95 0.223 1.70 23.5 16.5
150 206 30 140  0.211 6.52 27.5 78.9
150 365 40 70 0.212 ? ? ?

150 206 50 80 0.207 4.52 18.4 52.6
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Diameter

Energy

1

Hole

Peak Current Peak Voltage Energy per spark

(um) (ndex)  (Index) ¥ (V) Plmeter gy V) (1)
150 365 20 110 0213 1.56 16.8 12.0
150 206 50 110 0204  6.71 922.9 75.6
150 365 60 70 0218 145 14.6 12.5
150 206 50 140 0216  7.00 34.8 82.7
300 365 60 120 0355  3.15 48.8 110
300 206 50 140 0371 150 44.3 170
300 206 10 80 0359  2.03 18.3 111
300 365 60 80 0.348 107 24.1 76.4
300 206 10 80 0.363 342 19.0 90.9
300 365 40 100 0346  0.926 22.8 76.9
300 365 80 120 0365  4.90 48.0 117
300 206 32 110 0368 185 34.6 179
300 365 80 80 0355  1.25 32.9 80.6
300 206 10 140 0363  11.1 33.2 152
300 365 60 120 0350 355 43.7 104
300 206 32 140 0372 965 39.5 141
300 365 60 80 0.347 0928 22.7 74.2
300 206 10 110 0370 115 24.5 134
300 206 50 80 0.373  6.38 20.5 106
300 365 60 120 0348 345 38.5 105
300 206 10 140 0363  5.60 33.7 120
300 365 40 120 0349 231 39.2 105
300 365 40 80 0343  1.89 17.6 61.0
300 206 32 110 0372 278 34.3 210
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Diameter

Energy

1

Hole

Peak Current Peak Voltage Energy per spark

(um) (ndex)  (Index) ¥ (V) Plmeter gy V) (1)
300 365 80 80 0.355  0.437 36.3 86.6
300 206 10 110 0370 114 27.5 137
300 206 32 110 0367 109 33.9 132
300 365 80 100 0348 178 43.6 104
300 365 40 80 0344 2.04 17.8 60.1
300 206 50 80 0371 187 31.3 166
300 365 80 100 0349 143 40.3 113
300 206 32 140 0371 159 37.3 166
300 206 32 80 0.373  3.73 26.1 90.4
300 365 80 120 0355 655 48.0 113
300 365 80 120 0355 3.2 48.0 145
300 206 50 110 0371 139 37.4 162
300 365 40 80 0.345  0.863 13.5 62.5
300 206 32 80 0.367  5.10 26.1 99.6
300 365 40 100 0.343  0.999 26.7 83.5
300 206 32 80 0.367 179 26.3 83.7
300 206 10 140 0371 9.40 32.2 138
300 365 80 100 0.353  1.42 40.9 97.6
300 206 10 110 0379 119 26.8 143
300 365 60 100 0387 257 38.3 87.7
300 206 50 110 0364 102 38.4 138
300 365 60 80 0.345  0.760 31.4 71.6
300 365 40 120 0346 2.32 32.7 94.9
300 206 32 80 0.375  5.17 26.0 165
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Diameter

Energy

1

Hole

Peak Current Peak Voltage Energy per spark

(um) (ndex)  (Index) ¥ (V) Plmeter gy V) (1)
300 365 40 100 0347 0.735 30.3 76.4
300 206 10 140 0370  12.0 30.3 157
300 365 80 80 0390 191 36.6 82.0
300 206 32 140 0370 121 40.5 149
300 206 32 140 0371 196 40.8 185
300 365 60 120 0362  1.63 49.6 125
300 365 80 100 0366  1.17 41.9 108
300 206 10 110 0375  7.83 27.7 117
300 206 10 110 0372 975 26.6 134
300 365 40 80 0354 242 18.5 59.5
300 365 40 80 0347  2.16 12.0 60.8
300 206 50 80 0.368  24.7 28.8 208
300 206 50 110 0370 163 30.3 167
300 365 80 120 0394  3.29 46.1 141
300 206 50 140 0363 145 43.8 171
300 365 60 100 0393 0.449 30.9 85.4
300 365 60 80 0.378  1.40 27.5 74.1
300 206 10 80 0.375  2.37 18.6 85.7
300 206 50 140 0365  19.0 44.3 180
300 365 80 120 0399 479 49.9 115
300 365 60 100 0381 150 36.4 85.0
300 206 10 80 0.366 101 18.0 76.1
300 206 50 80 0371  15.3 29.8 153
300 365 80 80 0.378  3.39 315 82.6
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Diameter

Energy

1

Hole

Peak Current Peak Voltage Energy per spark

(um) (ndex)  (Index) ¥ (V) Plmeter gy V) (1)
300 365 40 100 0385  1.52 29.4 87.4
300 206 50 110 0376  8.26 38.8 129
300 206 10 140 0363  5.46 31.5 117
300 365 60 80 0.385  1.04 23.9 73.6
300 206 32 110 0365 306 34.3 224
300 365 80 80 0391 193 36.8 75.6
300 206 32 80 0370 10.1 26.1 127
300 365 60 100 0390 155 32.0 86.3
300 365 60 120 0354 151 41.8 126
300 206 50 140 0368 116 44.9 158
300 365 40 120 0378 220 34.0 93.0
300 206 32 110 0368 202 34.3 194
300 365 40 120 0376 1.89 36.6 101
300 206 50 140 0366 149 44.3 171
300 206 50 110 0374  6.64 40.0 118
300 365 80 100 0383  1.29 42.8 116
300 206 50 80 0372 114 29.8 134
300 365 40 100 0.381  0.452 24.5 79.9
300 206 32 140 0371 109 39.5 149
300 365 60 100 0384  1.69 32.8 82.8
300 365 40 120 0383 2.84 31.8 95.3
300 206 10 80 0371  1.30 17.7 64.6
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Addendum B
Dimensions of the shapes made for the

validation of the roughness and machining gap

models
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Figure 74: Dimensions of the shapes made for the validation of the roughness
and machining gap models
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Addendum C

Target workpiece profiles used in the training of

the Neural Network

Those are the workpiece profiles that were used to train the neural network in

section 5.2. The side dimension is 1024 pm for all shapes.
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Figure 75: The thirty shapes used in the training of the Neural Network aimed

at shape optimisation.
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