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Numerical method for interaction between multiparticle and complex structures
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We propose a numerical method for dealing with interactions between multiple particles and complex
structures. In the method, the structures are represented on a grid by using the level set method. The interac-
tions of particles and structures are calculated by a method based on the discrete element method. The method
can treat the interaction between multiparticle and complex structures robustly.
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I. INTRODUCTION

Phenomena with particles and structures appear in various
research fields such as physics, engineerings, and geophys-
ics. However, numerical studies on the phenomena are diffi-
cult because interaction between complex structures and
multiparticles must be taken into account. In the paper, we
propose a numerical method to study these phenomena.

To simulate interaction among particles, the discrete ele-
ment method (DEM) has been widely used [1-5]. In the
DEM, particles overlap during collision and the dynamics is
defined through the force acting on the collision particles.
The DEM can deal with many-body collisions and sustained
contact between particles. The present method is based on
the DEM. So far, to compute interaction among particles and
structures, the structures are expressed by particles [3,5], lin-
ear elements in the two-dimensional case and surface ele-
ments in the three-dimensional case [3,6,7]. In the paper, we
propose a different approach based on the level set method
[8—10,14]. In this paper, the particle shape is restricted to a
circle.

In the present method, structures are represented by the
zero level set (zero contour) of the level set function. Al-
though the level set method is an interface capturing method,
it is convenient to compute the interaction among particles
and structures. The important features of the level set method
are that the unit normal to the interface and the distance from
the interface are well defined. These characteristics play an
important role in coupling the DEM and the level set
method.

The present method calculates beforehand the level set
function for the structure on a grid. This means the distance
from the structure and the normal vector of the structure are
assigned on each grid point. Here, the normal vector is cal-
culated as the gradient of the level set function. To compute
collision between a structure and a particle, the distance be-
tween the particle and the structure, and the normal direction
for the structure are required. This information can be ob-
tained by interpolating the level set function at the center of
the particle. If line elements or polygons are used to express
the structure, complicated procedures are required such as
computing smallest distances between the particle and ele-
ments. To calculate these, we must calculate distances be-
tween point (the particle center) and point (element vertex),
and point and line (line element). In the three-dimensional
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case, additionally, the point-surface distance must be com-
puted. However, in the present method these procedures are
not required.

II. NUMERICAL METHOD
A. Particle-particle interaction

Equations for translational and rotational motion for a
spherical particle are

d’r
m?=F (1)
and
dw
I—=T, 2
dt @

where r is the position of the particle center, m the mass of
particle, F the sum of all contact forces from other particles,
o the angular velocity, T the torque due to contact forces,
and I the moment of inertia.

Contact forces between spherical particles are modeled by
a linear spring, a dashpot, and a friction slider [1]. The nor-
mal interaction is expressed by a linear spring and a dashpot
[Fig. 1(a)], and the tangential interaction is expressed by a
linear spring, a dashpot, and a friction slider [Fig. 1(b)].

We consider two disks i and j of diameters d; and d;, with
masses m; and m;, particle centers r; and r;, velocities at

(@) (b)

FIG. 1. Schematic figure of the discrete element method. K, 7,
and u refer to the linear spring, the dashpot, and the slider,
respectively.
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mass center ¢; and ¢;, and angular velocities ; and w;. The
contact forces are calculated in contact, namely,

d;+d;
AETL—|VI'J'|>O, (3)

where r;;=r;—r;. The normal component of the contact
force F,’ due to the particle j acting on the particle i is

FY = 2Mk,A —2M 7,0, (4)
with
v,=(¢c;—¢;)-m, (5)
I
n=4, l’ij=rl~—r,~, (6)
|1'i,j | "

where M is the reduced mass [M=mm;/(m;+m;)], k, the
spring constant, 7, the normal damping coefficient, v, the
normal component of the relative velocity, and n the unit
normal. The tangential component of the contact force F'/ is

F = min(|h|, u| F2|)sgn(ht), (7)
with

W = = 2Mkgu, — 2M ., (8)

t
ug= f vdt, )

)

d; d;

vsz(c,-—cj)-s+(5’wi+—21wj>, (10)

where u is the Coulomb friction coefficient for slider, &, the
tangential spring constant, i, the tangential displacement, f,
the time at the impact, 7, the tangential damping parameter,
v, the tangential velocity, and s the unit tangential vector. F;
and T; are calculated as follows:

F,=2 (Fy/ + FY), (11)
J

= %E (n X FY). (12)

J

As the time step, Ar<<2\2M/k, introduced in [1] is used.

B. Structure-particle interaction (level set method)

The interfaces of the structures are expressed by the level
set method. The level set method is an interface capturing
method and has been applied to various problems with inter-
faces [8-10]. This method expresses the surface of an N—1
dimension as a zero level (or contour) of an N-dimensional
level set function . The signed distance function

=0 at the interface,

Vi =1  for the whole region, (13)

is used as the level set function as shown in Fig. 2.
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FIG. 2. Schematic figure of a level set function in the one-
dimensional case.

In the paper, the level set method is used on a regular
Cartesian fixed grid. Although the Cartesian fixed grid is
used, the level set formulation can express subgrid informa-
tion and complex geometries as shown in Figs. 2 and 3.

An advantage of the level set method is that the unit nor-
mal is always well defined from the level set function

_V
vl

The unit normal is useful for computing interaction between
particles and structures by using the distance function.

To construct the level set function for structures, we can
use methods found in [9,11-13] such as the fast marching
method for solving the eikonal equation

Vyi=1. (15)

nyg (14)

The interaction between the structures expressed by the
level set function and particles are computed based on the
DEM. To compute the interaction, information about the dis-
tance from the interface and the normal direction to the in-
terface are needed. In the level set formulation, this informa-
tion is well defined. Therefore, the DEM is slightly modified
by using the level set function s and the n;, of Eq. (14). The
procedures of DEM are replaced as follows:

d.
3)= AE;—|¢|>0, (16)
4)= F=k,A -, (17)
(5)= v,=c¢; -ny, (18)

FIG. 3. (Color online) An example of a level set function in the
two-dimensional case. (a) shows the shape of structures. (b) shows
the contour lines of the level set function for the structure. The thick
and thin lines represent the zero level set and the contour lines of
the level set function. A 70 X 70 Cartesian grid is used.
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M a
(XLy;) () R

Vi
6)= n,=+ —, 19
( ) nyg + |Vl,0 ( )
(1= F"=min(h"] ulF; Dsgn(g™),  (20)
(8) = h?ls == ksus - NV, (21)
t
9)= u,= f vdt, (22)
T
d;
(10) = vx:ci~slx+5wi; (23)

here ¢; is ¢ at the position of particle center. ¢; is estimated
by using an interpolation. The bilinear interpolation is used
in this paper. In Eq. (19), the + sign is used for ¢y,,cpre >0
and the — sign is used for ¥y, cpure<<0. As the time step for
the interaction between a particle and level set function, Az
<2\m;/k, is used.

III. COMPUTATION TIMES

In this type of simulation, the calculation of the minimum
distance or contact detection is dominant. To compare com-
putational time between the present method and the tradi-
tional direct method using elementary Euclidean geometry,
we compare the computational time to compute the mini-
mum distance between a point and a line element as shown
in Fig. 4.

In the present method, the minimum distance between the
point and the line element is calculated as follows:

N .. y
=int| - |, j=int —E) 24
i m(Ax) Jj m(Ay (24)
—iA —JjA
x=2"12t W JAY (25)
Ax Ay

TABLE I. Computation times to calculate the minimum distance
between the line element and the point. Direct(I) is the result in the
case of Fig. 4(I) that (x,,y,) is on the line element. Direct(II) is the
result in the case of Fig. 4(II), that the distance between the point
and either edge of the line element is the minimum distance.

Method Present Direct(I) Direct(II)

Time 1 232 2.37
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FIG. 5. Schematic figure of a test problem.

dyin =1 =X) 1 =Y j + X(1 = V)ihyy j+ (1 = X) Y 1y
+ XY jars (26)

where x,, and y, are the position of the point, i and j are the
index of the cell including the point (x,,,y,), int(a) means the
integer part of a, ¢ is the level set function, and d,,;, is the
minimum distance. The cell including the point is found by
Eq. (24). The minimum distance is computed by using the
bilinear interpolation [Egs. (25) and (26)].

In the traditional direct method, the minimum distance is
calculated as follows:

Ay=Xy—X;, ay=Yr= Y1, (27)

§= (xp_xl)a.x+ ();p_yl)av’ (28)

y

2
ax+a

X,=X,+ 50, Y, =Y,+say, (29)

if  (min(x;,x,) <x,<max(x;,x,) and
<max(y;,y,))

min(y;,y,) <y,

Numerical resut ——
Exact solution ————

Distance from initial position [m]

Time [s]

FIG. 6. Time evolution of the height of the particle from the
slope. The solid line and the dotted line represent the numerical

result and exact solution, respectively. Five cycles are plotted. &,
=5X%107 is used.
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TABLE II. Error of our algorithm.
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TABLE IV. The results of resolution study II. Errory is defined
[
as \”(xpresent_xdirect)z'{'(ypresenr_ydirect)2 and Compuwd at 1=1.02s

Time (s) Error,; Error, (immediately after the collision) and r=1.50 s.
2 2.98 %107 6.08 %1073 Ax Errory (r=1.02 s) Error, (r=1.50 s)
4 1.25% 1073 2.55x107*

6 2.87X% 10—3 5.86 X 10—4 0.0125 7.19 X 10_2 1.98 X 10_1

8 5.14 X 10—3 1.05 X 10—3 0.025 695 X 10_2 2.06 X 10_1

10 8.08 X 10—3 1.65 X 10—3 0.05 8.25 X 10_2 5.23 X 10_1

0.1 6.73x 1072 278 107!

0.2 7.42X 1072 1.43x 107!

—1 -2

pin = g = x,)> + (v, = x,)%, (30) 0.4 1.27X 10 6.92% 10
else

dmin = min(\/(-xl - xp)z + (yl - yp)29 V/(XZ - xp)2 + ()’2 - yp)z) >
(31)

where (x;,y;) and (x,,y,) are the positions of the edges of
the line element as shown in Fig. 4. The parametric equation
is used for the line. The distance between (x,,y,) and (x,,y,)
is the minimum distance of (x,,y,) to an infinite line through
(x1,y1) and (x;,y,). If (x,,y,) exists on the line element as
shown in Fig. 4, the distance between (x,,y,) and (x,,y,) is
the minimum distance [Eq. (30)]. If (x,,y,) is not on the line
element as shown in Fig. 4, the distance between (xp,yp) and
either (x;,y;) or (x,,y,) is the minimum distance [Eq. (31)].

We compare the computational time of these two cases on
a computer (CPU Intel Pentium IV 2.4 GHz, operating sys-
tem Vine Linux 2.4). The present method was about two
times faster than the direct method as shown in Table 1.

Additionally the present method does not depend on the
number of elements. Even in the case of calculating the mini-
mum distance among a point and M pieces of line element,
the procedure and computation time are the same if the level
set function has been computed based on all the elements. In
the traditional formulation, the computational time depends
on the number of the element M. If a sorting technique such
as [7] is used (normally it is used), the computation time is
reduced drastically. But we cannot write which one is better
generally. It is because the time reduction by the sorting
techniques strongly depends on situations like the choice of
sorting algorithm, programming techniques, and particle dis-
tributions. However, if the same sorting technique is used for
both the present method and the traditional method, the
present method must be faster.

TABLE III. The result of resolution study I. Errors is defined as
(numerical result)-(exact solution) at =2 s.

Ax Error;
0.0125 3.76 X 1074
0.025 298X 1074
0.05 3.40%x 1074
0.1 2.98x 1074
0.2 3.91x107*
0.4 3.80Xx10™*

Our method does have some defects. Our method requires
additional internal memory to store the level set function for
the structure. The accuracy in computing the interaction be-
tween particles and flat surface is rather worse because an
interpolation is used to compute the distance. If a particle
hits on the flat plate, the particle must be bounded for the
direction. However in our formulation, the direction is rather
dispersive depending on the grid resolution as reported in the
section on convergence tests.

IV. VALIDATION

To certify the present method, we carried out a simple test
problem. Figure 5 shows the configuration.

The slope is represented by the level set function on a
Cartesian fixed grid of 50X 50. The direction of gravity is
perpendicular to the slope. In this test problem, damping and
rotation of the particle are not taken into account. In this
configuration, if the particle is released with the velocity=0
from height & for the M, the particle must return to the
same position at t=2v2h/g. The numerical result compared
with the exact solution is shown in Fig. 6.

Table II displays the errors at =2, 4, 6, 8 and s.

Error; and  Error, are defined as  Error,
=|(numerical result) — (exact solution)| and Error,=Error,/h.

9 T T T T
dx=0.0125 -
8.5 dx=0.025  «
81 dx=0.05 =
H dx=0.1 a
" dx=02 =
i dx=0.4 o
’g' 6.5} Direct -~~~
= gl
5 s A AAREE L TEEE
a5fi  peeer?
4 il

45 5 55 6 65 7 75 8 85
x[m]
FIG. 7. Trajectory of the particle in the case of resolution study

II. The configuration is the same as in Fig. 5 except for the gravity
direction. The gravity direction is just straight down.
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(d)

FIG. 8. (Color online) Snapshots of interaction between five particles and the structures at r=0, 1, 2, 3 s. The movie is available from

[15].
V. CONVERGENCE TESTS

Resolution studies are done for the above problem (reso-
lution study I) and for a problem where gravity is pointing
straight down instead of in the normal direction as in the
above problem (resolution study II). These results are shown
in Tables III and IV.

Although we simulated six kinds of resolution for both
cases, the dependence on gird sizes is not observed. This
may be because the structure is flat and the level set function
is a smooth function of |¢{=1. Therefore the bilinear inter-
polation (26) gives almost the same answer. Although the
error is small immediately after the collision in the case of
resolution study 11, the error becomes larger as time increases
as shown in Fig. 7.

In this configuration, the numerical error of the collision
calculation is dominant. The trajectory is just calculated by
the Newton law with the Runge-Kutta method except for the
collision computation. Therefore the increase of the error is a
result of the slight error in the collision calculation.

VI. NUMERICAL RESULTS

We carried out numerical simulations in which the par-
ticles interact with structures in the gravity field. As a set of
parameters, we use k,=5 X 107, 7,=21k,, k,=0.2k,, 7,= 1,
and p=0.5. A 140X 140 grid is used for the level set func-
tion. Figure 8 shows the numerical results when five particles
interact with structures.
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FIG. 9. (Color online) Snapshots of interaction between 65 particles and the structures at r=0, 1, 2, 3 s. The movie is available from

[15].

A simulation with 65 particles is also performed, as
shown in Fig. 9.
The results show that the method is robust.

VII. SUMMARY

We have proposed a numerical method based on the level
set method and the DEM. The validity of the method has
been shown by a test problem. The method can deal with

interaction between multiple particles and complex struc-
tures robustly.
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