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A rule merging technique for handling noise in inductive
learning

D T Pham*, S Bigot and S S Dimov

Intelligent Systems, Laboratory, School of Engineering, Cardiff University, Cardiff, Wales, UK

Abstract: Inductive learning algorithms are used for extracting IF–THEN rules from examples. The
main weakness of most existing algorithms is their poor ability to handle data containing noise. This
problem is even more severe when inductive learning techniques are applied to real engineering data.
The paper presents a new pruning technique that improves significantly the performance of the
RULES family of inductive learning algorithms. The technique is designed for RULES-5, the latest
algorithm in the family, but could readily be applied to rule sets created by other algorithms.

Keywords: machine learning, rule induction, pruning, noise handling

NOTATION

Ai ith attribute in an example
Best_rule best rule created by RULES-5
BPP basic post-pruning
CE class value in example E
CE example closest to SE not belonging to the

target class
Condi

R condition in rule R for the ith attribute
Final Rset rule set resulting from the pruning
IPP incremental post-pruning
IREP incremental reduced error pruning
m number of attributes in an example
New_Rset temporary rule set
NL noise level
REP reduced error pruning
Rset rule set being pruned
R2M rule to be merged
SE seed example
Th noise threshold
TCR target class value in rule R
Vi

E value of the ith attribute in example E
Vi

max maximum known value of the ith
continuous attribute

Vi
min minimum known value of the ith

continuous attribute
Vi

maxR lower bound employed in rule R to form a
condition on the ith continuous attribute

Vi
minR lower bound employed in rule R to form a

condition on the ith continuous attribute
Vi

R discrete value employed in rule R to form
a condition on the ith discrete attribute

1 INTRODUCTION

The last decade has seen a steep increase in data storage
capabilities. Many organizations now hold large
amounts of historical data that contain useful but
non-apparent or hidden knowledge. This has led to the
emergence of a new research field, knowledge discovery
in databases (KDD), that aims to develop techniques for
‘mining’ useful knowledge from data. A typical KDD
process comprises the selection of informative data from
the database, the pre-processing of that data (for
example, to correct errors and deal with missing details),
the application of data mining techniques to obtain
specific patterns and the interpretation of those patterns
to extract the targeted knowledge. The key part of this
process is the data mining operation. Data mining,
defined by Mitchell as ‘using historical data to discover
regularities and improve future decisions’ [1], involves
applying specific algorithms for pattern extraction.
Many types of data mining algorithms exist, depending
on the kind of knowledge targeted. These algorithms are
based on a range of tools, from statistics to machine
learning algorithms. They include neural network
training algorithms, instance-based algorithms, genetic
algorithms and algorithms for inductive learning and
association rules learning. These algorithms allow the
creation of different types of model that describe the
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patterns found in the data. Data mining has many
potential applications in mechanical and manufacturing
engineering, enabling the development of knowledge-
based systems for a variety of selection and classification
tasks [2].

This paper concentrates on one type of data mining
algorithms, namely inductive learning algorithms. An
important characteristic of inductive learning algo-
rithms is that their model structure is readily understood
by people. Most inductive learning methods employ the
‘concept learning’ approach [3] and can be categorized
[4] into divide-and-conquer methods and covering
methods.

Divide-and-conquer algorithms, such as ID3 [5], C4.5
[6] and the commercially available C5 algorithm [7],
construct sets of hypotheses in the form of decision
trees. In contrast, covering methods, such as CN2 [8, 9],
RIPPER [10], AQ [11, 12] and its most recent version
AQ19 [13], represent classification knowledge in the
form of a set of rules to describe each class. More
information about covering methods can be found in
references [14] and [15].

An important issue for all inductive learning algo-
rithms is how well they handle noisy data. Most
algorithms attempt to form rule sets that correctly
classify all examples in the training set. In the presence
of noisy data, this leads to the generation of over-
specialized rules, where algorithms overfit the training
data to avoid generating inconsistent rules. This is a
common problem when inductive learning methods are
applied to data resulting from engineering experiments.
In such data sets there are many kinds of noise, for
instance measurement, data entry and data transfer
errors.

A solution to this problem is to apply pruning
methods to make the rules more general. This is usually
achieved by tolerating some inconsistency in the
generated rule sets. There are two main types of pruning
method [16]:

1. Post-pruning methods (rule truncation). These
methods deal with the noise after the learning process
is completed, by post-processing the generated fully
consistent rule sets. The pruning is carried out by
examining each rule and discarding conditions that
are created due to the presence of noisy examples.
Reduced error pruning (REP) [17] and grow [18] are
two typical post-pruning algorithms.

2. Pre-pruning methods (stopping criterion). These
methods deal with the noise during the learning
process by employing heuristics to terminate the rule
specialization process. All rules are generated in a
single pass and some of them may not be consistent.

Post-pruning methods generally yield more accurate rule
sets than obtainable with pre-pruning methods. Unfor-
tunately, post-pruning is also computationally expen-
sive. This is because, unlike pre-pruning methods,

computational effort is wasted to create overspecialized
rules that later have to be pruned. Attempts have been
made to combine these two techniques by initially
applying pre-pruning techniques to reduce the over-
specialization of the rule sets and then post-processing
them to complete the process. An example of such an
implementation is the top-down pruning algorithm
[16]. This hybrid approach offers a good balance
between the processing speed of pre-pruning techniques
and the accuracy of rule sets obtained by post-
processing.

A survey of the most well-known pruning techniques
has been carried out by Breslow and Aha [19]. Most
pruning techniques were originally developed for
decision-tree-based algorithms, because this representa-
tion of the classification knowledge facilitates the
process. In this paper, the use of pruning methods
with covering algorithms is discussed. The aim of the
research is to develop an appropriate pruning technique
that could be implemented in RULES-5 [20], the latest
member of the RULES family of covering algorithms
[21, 22].

RULES-5 is an induction algorithm with a perfor-
mance exceeding that of some of the best available
algorithms in problems where the data are relatively free
from noise. When noise is present, RULES-5 can
generate large numbers of overspecialized rules. An
effective pruning technique will enable RULES-5 to
handle noisy data and generate compact and accurate
rule sets.

The remainder of the paper will summarize the rule
formation procedure of RULES-5, review existing
pruning methods, describe the proposed pruning tech-
nique and two modes of implementing it, give a step-by-
step example of its application to RULES-5 and present
the results of tests on benchmark data sets to
demonstrate the improvements achieved.

2 RULES-5

RULES-5 employs simple and efficient techniques for
handling continuous attributes and extracting IF–
THEN rules from examples. Data are presented to
RULES-5 in the form of a collection of objects, each
belonging to one of a number of given classes. These
objects, together with their associated classes, constitute
a set of training examples from which the algorithm
induces a model. Each example E is described by its
class value CE and by a vector of m attributes
ðA1, . . . ,Ai, . . . ,AmÞ. Each attribute value Vi

E is either
discrete or continuous. In the case of a continuous
attribute, Vi

min 4Vi
E 4Vi

max, where Vi
min is the mini-

mum known value for the ith attribute and Vi
max its

maximum known value. An example E is therefore
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formally defined as follows:

E ¼ ðA1 ¼ V1
E , . . . ,A

i ¼ Vi
E , . . . ,A

m ¼ Vm
E , Class

¼ CEÞ

RULES-5 forms a new rule by starting from an example
not covered by previously created rules, the seed
example. The algorithm employs a specialization pro-
cess that searches for consistent rules that are as general
as possible. The result is a rule set that correctly classifies
all or most of the training examples.

A rule set is a list of IF–THEN rules. Each rule R
is described by a conjunction of conditions on
each attribute ðCondi

RÞ and by a target class value
ðTCRÞ. A rule R can be formally defined as
Cond1

R6 � � �6Condi
R6 � � �6Condm

R ?TCR. If Condi
R

exists, it could be an attribute–value pair ðAi ¼ Vi
RÞ or

a range of values ðVi
minR 4Ai 4Vi

maxRÞ for discrete and
continuous attributes respectively, where Vi

R is a discrete
value and Vi

minR and Vi
maxR are real numbers in the ith

continuous attribute range ðVi
min,V

i
maxÞ.

The complete rule-forming procedure of RULES-5 is
given in Fig. 1. Thus, RULES-5 produces rule sets that
do not contain any inconsistent rules and cover fully the
training examples. Another specific aspect of the
RULES-5 search mechanism is the use of information
about the distribution of examples in order to reduce the
dependence of the concept formation process on the
heuristic measures employed. Consequently, less varia-
bility is achieved in the performance of the algorithm
with respect to different data sets. This feature, along
with the knowledge representation structure of
RULES-5, has to be taken into account when designing
a pruning technique for the algorithm.

3 EXISTING PRUNING METHODS

As already mentioned, there are two main types of
pruning techniques: ‘post-pruning’ and ‘pre-pruning’.
Most of these techniques have been designed for
decision tree structures, especially the pre-pruning

RULES-5 Rule-Forming Procedure

Take one example uncovered by the rule set formed so far (SE)

Initialise PRSET (empty list)

Form an initial rule with no conditions to classify SE

Store this rule in PRSET and copy it into best_rule

WHILE best_rule is not consistent DO

Initialise T_PRSET (empty list)

FOR each rule in PRSET DO

rule_to specialise¼ the rule taken from PRSET

CE¼ an example misclassified by rule_to specialise and the closest to SE

FOR i¼ 1 to i¼m DO

IF Vi
SE=Vi

CE THEN

new_rule¼ rule_to_specialise

IF continuous attribute THEN

IF Vi
SE < Vi

CE THEN

Append the condition ½Ai < Vi
CE � to new_rule

ELSE

Append the condition ½Ai > Vi
CE � to new_rule

ELSE

Append the condition ½Ai ¼ Vi
SE � to new_rule

IF new_rule is consistent

AND new_rule covers more uncovered examples than best_rule THEN

Replace best_rule with new_rule

IF new_rule is not consistent THEN

IF number of rules in T_PRSET<PRSET_size THEN

Store new_rule into T_PRSET

ELSE

IF the new_rule H measure is higher than the H measure of any rule in T_PRSET THEN

Replace the rule with the lowest H measure in T_PRSET with new_rule

END FOR

END FOR

copy T_PRSET into PRSET

END WHILE

IF best_rule contains continuous attribute conditions THEN

Constrain their coverage to training examples

Fig. 1 RULES-5 rule-forming procedure
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techniques based on the use of a stopping criterion. In
order to adopt these methods for covering algorithms,
the algorithms themselves should be modified. Such an
approach is applied in the CN2 algorithm [10, 11], which
is essentially a covering algorithm (AQ) that has been
adapted to allow a decision tree pre-pruning technique
to be employed.

Research carried out by Frank [23] shows that pre-
pruning techniques are generally faster but less accurate
than post-pruning techniques. Frank also came to the
conclusion [23] that pre-pruning techniques, and espe-
cially those based on a stopping criterion, tend to
terminate the specialization process before all branches
are optimized. In general, post-pruning methods have
the potential to achieve a higher level of rule set
refinement. Unfortunately, most post-pruning techni-
ques applied to decision trees cannot be used directly for
rule set processing, because their pruning strategies are
specifically designed for the node/leaf structures of
decision trees. Thus, few existing post-pruning techni-
ques have been adopted for covering algorithms.

Some researchers even claim that existing pruning
techniques are not applicable to rule sets obtained using
conventional covering algorithms. For instance,
Fürnkranz [16] states that the ‘pruning of branches in a
decision tree will never affect the neighbouring branches,
whereas pruning of conditions of a rule will affect all
subsequent rules’. This is due to the fact that most
coveringmethods remove examples from the training sets
when they are covered by a newly formed rule. As a result,
the heuristics employed to guide the specialization process
take into account only the remaining examples. There-
fore, the newly formed rules depend on the rules formed
so far. This leads to the creation of rules that are
dependent on one another, and pruning one of them
affects the performance of the whole rule set.

The RULES family differs from other covering
algorithms. The examples covered by previously formed
rules are only marked in order to avoid the creation of
unnecessary rules. These examples are used to assess the
accuracy and generality of each newly formed rule. As a
result, all rules are independent and each can be pruned
without affecting the rest of the rule set. It should be
noted, however, that the reasons for other algorithms
removing examples from the training set is to direct the
search process towards forming rules that cover a
maximum number of uncovered examples. This leads
to more compact rule sets and minimizes the over-
lapping between rules. For the RULES family, a specific
heuristic has been developed [24] in order to provide
guidance to the search process. The heuristic takes into
account already covered examples without the need to
remove them from the training set. This enables the
RULES family of algorithms to create independent rules
as well as more compact rule sets.

Two of the most popular post-pruning techniques are
reduced error pruning (REP) [25] and incremental

reduced error pruning (IREP) [26]. REP was originally
applied only to decision trees but after modification it
was used for pruning rule sets. The modified version of
this technique has been implemented in C4.5 [6], where
the decision tree is converted into a set of rules that are
then pruned using REP. Algorithms using the REP
technique split the training set into two subsets: a
growing set (usually two-thirds of the training set) and a
pruning set. The algorithms use the growing set to form
the initial rule sets and then the effect of the pruning is
evaluated on the second set of examples. These
algorithms process the rule sets step by step until no
further improvement can be achieved without sacrificing
accuracy. This post-pruning technique has been im-
proved in IREP, where instead of creating the entire rule
set and then pruning it, the algo-rithm prunes the
individual rules immediately after their creation. In this
way the generation of overspecialized rules that need to
be pruned later on can be avoided.

The main deficiency of both techniques is the necessity
to divide the training set into two subsets and the need
for the pruning subset to contain ‘at least one example
of each disjunctive clause’ [17]. These requirements
might be difficult to meet in cases where only a small
number of examples are available. Furthermore, useful
information that is contained in the pruning subset of
examples would not be utilized during the rule-forming
process. This could lead to less generic rule sets that do
not cover fully the example space. As a consequence, the
resulting rule sets would be highly dependent on the
adopted approach for splitting the training data. In
addition, these post-pruning techniques could lead to
overfitting of the pruning sets [27]. Alternative methods
exist that do not require the training set to be split. With
these methods, the removal of each rule or condition is
evaluated by applying heuristic measures. For instance,
a number of methods have been developed recently
based on the minimum description length principle in
order to evaluate rule sets resulting from the pruning
process [28–30].

An important weakness of these methods is that it is
computationally expensive to identify rules or condi-
tions to be removed. In addition, they only rely on
heuristic measures to evaluate whether an acceptable
level of pruning has been reached. These measures stop
the pruning process when a specific criterion is satisfied.
They are employed in an arbitrary manner. Their effect
on the learning process is not fully understood and their
performance often varies depending on the application
domain. This makes the performance of the pruning
process very dependent on the quality of the selected
measures.

The pruning technique proposed in this paper does
not require the data set to be split and allows the user to
control the level of pruning. This considerably reduces
the dependence of process performance on the heuristic
measures used.
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4 DESCRIPTION OF THE PROPOSED PRUNING

TECHNIQUE

To understand the proposed technique, a simple example
will be used to demonstrate the effect of noisy data on the
rule-forming process. Figure 2 provides a graphical
representation of a training set containing noisy data.
The rules generated by RULES-5 are given in Fig. 3. As
can be seen in this figure, the noisy data prevents the
creation of a more general rule for class þ and forces
RULES-5 to create three more specific rules instead.

A key component of the proposed pruning technique
is an operation that merges some rules in order to create
more general ones. This is done by making the
assumption that these rules would have been formed
by RULES-5 if noisy examples were not present.

This section describes the procedure applied to merge
two rules. The rules resulting from these mergers might
not be consistent according to the adopted consistency
measure [24], but this inconsistency could be acceptable
up to a certain limit.

This limit is represented by the noise threshold Th,
which is defined as the required level of consistency of a
rule, and is given by the user, based on his or her domain
knowledge regarding the amount of noise in the data.
The user specifies this information in the form of a
parameter called noise level. The noise level is defined as
the percentage of noise (examples with incorrect values)
expected in the data set. For example, if the noise in
the training data is considered to be 10 per cent then
NL ¼ 0:10 and, using NL, Th can be computed as
Th ¼ 1�NL ¼ 0:9.

The main objective of the proposed pruning proce-
dure is to merge specific rules in order to create new,
more-general rules with a consistency level equal to or
higher than a specified Th. The most general rules are
kept, to form a new rule set, and at the same time the
rules that classify only examples already covered by
those more general rules are removed. This leads to the
creation of more compact rule sets that could handle
noisy examples with greater efficiency.

The proposed pruning technique creates a new rule

by merging two existing rules R1 and R2 covering
examples from the same class. This newly generated rule
(new_rule) contains new conditions formed by combin-
ing the conditions of the two existing rules. The merging
of conditions between R1 and R2 is performed by
carrying out the following operations:

1. Continuous attribute. If a condition exists for a
particular attribute in both rules ðVi

minR1 4Ai 4
Vi

maxR1 and Vi
minR2 4Ai 4Vi

maxR2Þ, a new condition
is created, by forming a new attribute range that
includes the ranges of both rules. Otherwise, no
condition will be formed for this attribute in the
newly formed rule. The new condition in the new rule
has the following form:

Vi
min new rule 4Ai 4Vi

max new rule

with Vi
min new rule ¼ Vi

minR1 if Vi
minR1 4Vi

minR2 and
Vi

min new rule ¼ Vi
minR2 otherwise. Also, Vi

max new rule ¼
Vi

maxR2 if V
i
maxR1 4Vi

maxR2 and Vi
max new rule ¼ Vi

maxR1

otherwise.
2. Discrete attribute. If a condition exists for a

particular attribute in both rules and if the attribute
values in the conditions of both rules are the same
ðVi

R1 ¼ Vi
R2Þ, then the same attribute value is used

to form a condition in the newly formed rule
ðAi ¼ Vi

R1Þ. Otherwise, no condition will be formed
for this attribute in the newly formed rule.

An example of merging two rules is given below:

Rule 1: IF A1¼ yes And A2¼ blue And A3¼ no And
7<A4< 12 Then Class 1.

Rule 2: IF A1¼ yes And A2¼ green And 2<A4< 6
Then Class 1.

Merged rule: IF A1¼ yes And 2<A4< 12 Then
Class 1.

The new rule is more general and classifies all examples
covered by the two initial rules. It could also classify
other examples, including potentially noisy ones. There-
fore, the accuracy of the resulting rules from this
operation must be checked against a predefined Th toFig. 2 Training data containing noise

Fig. 3 Rules generated by RULES-5
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decide if the inconsistency of the new rule is within
acceptable limits.

5 RULE PRUNING PROCESS

This section describes two ways of applying the
proposed pruning technique. The first approach, called
basic post-pruning (BPP), is similar to REP and is
applied after a rule set is already formed. This method
can be computationally expensive and therefore an
incremental method, called incremental reduced error
pruning (IREP), was proposed [16]. With this method,
the pruning is carried out incrementally during the rule
set formation whenever a new rule is created. By
applying this method, more general rules are formed
as early as possible during the learning process, and
fewer computations are required to form a rule set.
Based on this approach a second pruning method is
developed, called incremental post-pruning (IPP). Both
methods employ the same technique for merging rules.

5.1 Basic post-pruning

This technique is applied to the entire rule set (RSet).
The algorithm starts by taking one rule at a time, from

RSet, called the rule-to-be-merged (R2M). This rule is
then merged with each of the other rules for the same
class within RSet. If the consistency measure of the best
resulting rule (the one with the highest consistency) from
these mergers is equal to or higher than Th, then it is
added to RSet and the rules used for its formation are
removed from RSet. Otherwise, if the consistency of the
best rule is lower than Th, which means that the
generality of R2M cannot be improved further without
sacrificing its accuracy, the algorithm stores R2M in the
new rule set (New_RSet) and removes it from RSet. If
there are still rules within RSet that are not processed,
the algorithm takes one of them as R2M and repeats the
procedure.

This iterative process leads to the creation of
New_RSet, which is more general than RSet. However,
at the same time it could contain rules that classify only
examples already covered by other more general rules in
RSet. Therefore, New_RSet has to be further processed
to create a new set called the final rule set (Final_RSet).
This is carried out by selecting the most general rule
within New_RSet, the rule that classifies the largest
number of examples not covered by Final_RSet formed
so far, and transferring it into Final_RSet. The
procedure is repeated until there are no examples
uncovered by Final_RSet. The complete BPP procedure
is presented in Fig. 4.

The Basic Post-Pruning Procedure

Take a rule set to be pruned (RSet)

STEP 1

- Initialise New-RSet (empty list)

WHILE there is a rule in RSet DO

STEP 2

- R2M¼ the first rule in RSet

- Merge R2M with each rule for the same class in RSet

- new_rule¼ the rule with the highest consistency measure resulting from the mergers

STEP 3

- IF new_rule consistency measure 5 Th THEN

- Remove all rules used for its formation from RSet

- Add new_rule into RSet

- ELSE

- Add R2M into New-RSet

- Remove R2M from RSet

END WHILE

STEP 4

- Initialise Final-RSet (empty list)

WHILE there are examples not classified by Final-RSet DO

STEP 5

- new_rule¼ the rule in New-RSet covering the largest number of examples not covered

by Final-RSet formed so far

- Add new_rule into Final-RSet

END WHILE

Where: RSet is the rule set being pruned; New-RSet is a temporary rule set; R2M is the rule to

be merged; new_rule is a temporary rule; Final-RSet is the resulting rule set.

Fig. 4 The basic post-pruning (BPP) procedure
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5.2 Incremental post-pruning

In contrast to BPP, IPP is applied in parallel to the rule-
forming process. Whenever a new rule is formed, the
IPP method merges this new rule (R2M) with each rule
for the same class stored in RSet. If the consistency
measure of the best resulting rule (Best_Rule) is equal to
or higher than Th, then the rules used for its formation
are removed from RSet, Best_Rule is added to RSet and
a new iteration starts with this rule as R2M. Otherwise,
if the consistency of Best_Rule is lower than Th, the
algorithm stores R2M into RSet and continues the rule-
forming process.

As was the case with BPP, at the end of the rule set
forming process, RSet could contain rules that classify
only examples already covered by more general rules in
RSet. Therefore, RSet is processed further in the same
way as New_RSet in BPP. The complete procedure is
presented in Fig. 5.

6 ILLUSTRATIVE PROBLEM

To illustrate the pruning process carried out by the
algorithms described in the previous paragraph, the BPP
procedure is applied to the rule set (RSet) shown in
Fig. 6. The application of the IPP procedure on the same
RSet is not described because the merging process is
identical to BPP. The noise level is set to 10 per cent
ðTh ¼ 0:9Þ for this illustrative problem.

Step 1. A new empty rule set (New_RSet) is initialized
New_RSet¼ { }. RSet contains seven rules:

RSet ¼fRule 1,Rule 2,Rule 3,Rule 4,Rule 5,

Rule 6,Rule 7gðFig: 6Þ

Step 2. The first R2M is Rule 1 covering examples
belonging to class þ. R2M is merged with other rules
for class þ. The results of merging R2M with Rule 3
(Rule 1-3) and Rule 2 (Rule 1-2) are shown in Figs 7
and 8 respectively. The best rule with the highest
consistency measure resulting from this merger is
Rule 1-2; new_rule¼Rule 1-2, consistency¼ 16/17
¼ 0.94.

The Incremental Post-Pruning Procedure

WHILE there is an uncovered example DO

best_rule¼ a rule formed by the Dyna rule forming procedure

IF Th< 1 THEN

- R2M¼Best_Rule

STEP 1

- Merge R2M with each rule for the same class in RSet

- new_rule¼ the rule with the highest consistency measure resulting from the mergers

- IF new_rule consistency measure 5 Th THEN

- Remove all rules used for its formation from RSet

- Add new_rule into RSet

- R2M¼ new_rule

- go back to STEP 1

END WHILE

- Initialise Final-RSet (empty list)

WHILE there are examples uncovered by the Final-RSet DO

- new_rule¼ the rule in RSet covering the largest number of examples still not covered by

Final-RSet formed so far

- Add new_rule into Final-RSet

END WHILE

Where: RSet is the rule set being pruned; Best_Rule is the rule created by Dyna; R2M is the

rule to be merged; new_rule is a temporary rule; Final-RSet is the resulting rule set.

Fig. 5 The incremental post-pruning (IPP) procedure

Fig. 6 Before pruning—seven rules
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Step 3. The consistency of new_rule is higher than Th.
Therefore Rule 1 and Rule 2 are removed from RSet
and new_rule is added to RSet:

RSet ¼fRule 1-2, Rule 3,Rule 4,Rule 5,Rule 6,

Rule 7g
There are still rules in RSet and the algorithm goes back
to Step 2:

Step 2. R2M¼Rule 1-2 can be merged only with Rule 3.
The result of this merger (Rule 1-2-3) is shown in
Fig. 9; new_rule¼Rule 1-2-3, consistency¼ 27/44
¼ 0.61.

Step 3. The consistency of new_rule is lower than Th and
therefore R2M is stored into New-RSet and at the
same time Rule 1-2 is removed from RSet:

RSet ¼ fRule 3,Rule 4,Rule 5,Rule 6,Rule 7g
New-RSet ¼ fRule 1-2g

There are still rules in RSet and the algorithm goes back
to Step 2.

Steps 2 and 3. By repeating these two steps until RSet is
empty, New-RSet is formed (Fig. 10):

New-RSet ¼fRule 1-2, Rule 3,Rule 4,Rule 5,

Rule 6,Rule 7g

Step 4. Final-RSet is initialized. No examples are
covered by Final-RSet; Final-RSet¼ {}.

Step 5. The rule covering the highest number of
uncovered examples is selected and stored in Final-
RSet:

Final-RSet ¼ fRule 1-2g

There are still uncovered examples and therefore the
procedure returns to Step 5. This is repeated until all
examples are covered by Final-RSet. Rule 6 classifies the
last set of examples not covered by Final-RSet so far and
therefore Rule 7 is not added to the rule set.

At the end of the process Final-RSet includes the
following rules (Fig. 11):

Final-RSet ¼fRule 1-2, Rule 3,Rule 4,Rule 5,

Rule 6g

If a higher NL is specified (e.g. 20 per cent), this will lead
to a different rule set. The pruning result with Th¼ 0.8
(corresponding to the specified NL value of 20 per cent)
is shown in Fig. 12. In this case the number of rules
required to cover the whole data set is reduced to only
three.

Fig. 8 Rule 1 merged with Rule 2, consistency¼ 0.94

Fig. 9 Rule 1-2 merged with Rule 3, consistency¼ 0.61

Fig. 10 New-RSet—six rules

Fig. 7 Rule 1 merged with Rule 3, consistency¼ 0.67
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7 TESTS AND ANALYSIS OF RESULTS

A question arises as to how to compare the performance
of the two new rule pruning procedures with those
obtained by applying other existing methods. The main
problem is that the performance of BPP or IPP depends
on the noise level specified by the user, while in REP or
IREP the level of pruning is set automatically; hence,
it is not a straightforward task to carry out this
comparison. Also, even though the main principles of
these techniques are described in the literature, some
issues remain open, such as the way the training set is
split into growing and pruning subsets.

Because of the above problems, it was decided to
compare the performance of RULES-5 enhanced with
BPP or IPP against the well-known divide-and-conquer
inductive learning algorithm C5 [7]. The two new rule
pruning procedures were implemented in RULES-5.
Tests were carried out on 15 data sets [31] commonly
used to benchmark inductive learning algorithms
(balance_scale, breast_cancer, wdbc, wpbc, car, credit

screening, cylinder-band, dermatology, diabetes, ecoli,
glass, haberman, iris, liver and tic-tac-toe).

Initially, the performance of the two new pruning
techniques are compared. Then, the rule sets generated
by RULES-5 and pruned with the best of these two
techniques are evaluated against the rule sets obtained
using only RULES-5 or C5.

As mentioned previously, one of the main features of
the two new pruning techniques is that the noise level
has to be specified by the user, based on his or her
domain knowledge. Unfortunately, such expert knowl-
edge is not available for the benchmarking data
employed. Three arbitrary noise levels of 0.1, 0.2 and
0.3 are therefore used in this study.

7.1 Comparisons between BPP and IPP

The tests (Table 1) show that the results obtained
applying IPP and BPP depend on the training data but
on average are similar in terms of the number of formed
rules and their accuracy. IPP creates on average
approximately the same number of rules as BPP with
a similar test accuracy. Because IPP is computationally
cheaper, this technique was implemented in RULES-5.
However, BPP could be applied as a post-processing
technique for rule sets created by other algorithms such
as RULES-3 Plus, for which it also gave good results
(Table 2).

7.2 Comparison with RULES-5

The performance of RULES-5 with IPP is compared
against that of RULES-5 without any pruning. The test
results presented in Table 3 show a significant reduction
in the number of rules generated when pruning was
performed.

The use of NL¼ 0.3 results in performance improve-
ments with a majority of the data sets:

1. RULES-5þ IPP gives higher test accuracies than
RULES-5 for 3 of the 15 data sets, with a large
decrease in the number of rules.

2. RULES-5þ IPP gives the same test accuracies as
RULES-5 for 6 of the 15 data sets, with a significant
decrease in the number of rules.

3. RULES-5þ IPP gives lower test accuracies than
RULES-5 for 6 of the 15 data sets (balance_scale,
breast_cancer, wdbc, car, credit screening and ecoli).

Thus, with NL¼ 0.3, RULES-5þ IPP outperforms
RULES-5 for 9 of the 15 data sets. The results obtained
with the six remaining data sets show the effect of
overpruning. The number of rules is significantly
reduced, but in most cases this also results in a decrease

Fig. 12 Final-RSet, with specified NL¼ 20 per cent ðTh ¼
0:8Þ

Fig. 11 Final-RSet, with specified NL¼ 10 per cent ðTh ¼
0:9Þ
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in test accuracy. This is due to the use of too high a level
of pruning. It is assumed that, with knowledge about
the data, a more appropriate level of pruning can be
selected. For instance, with NL¼ 0.1:

1. RULES-5þ IPP gives higher test accuracies than
RULES-5 for two of the six data sets (car and ecoli),
with a large reduction in the number of rules.

2. RULES-5þ IPP gives lower test accuracies (2 per
cent reduction in average) than RULES-5 for four of
the six data sets (balance_scale, breast_cancer, wdbc
and credit screening).

For those four data sets, a lower noise level could be
selected to try to avoid reducing the test accuracy.
However, such a reduction can be considered acceptable
for many classification applications because the result-
ing rule sets are much more compact and easier for
human experts to understand/verify. For instance, for
the credit screening data set, the number of rules
obtained is 19 instead of 117, with a reduction in test
accuracy of only 1.92 per cent (from 87.02 to 85.10 per
cent).

Overall, the tests showed that RULES-5 benefits
significantly from the introduction of IPP.

Table 1 Comparison between BPP and IPP

RULES-5 with BPP RULES-5 with IPP

Data set name NL Rules Training % Test % Rules Training % Test %

balance_scale 0.10 30 90.60 83.07 24 88.99 84.13
0.20 14 83.72 82.54 16 85.32 78.84
0.30 6 76.61 71.96 7 76.15 74.60

breast_cancer 0.10 8 93.85 89.10 4 92.62 93.36
0.20 6 89.96 85.78 6 94.26 92.89
0.30 5 90.57 87.20 3 90.78 88.15

wdbc 0.10 6 91.18 91.86 8 93.70 94.19
0.20 5 90.93 91.28 4 92.95 94.19
0.30 5 88.67 91.86 6 92.95 94.19

wpbc 0.10 23 97.81 77.05 23 97.08 72.13
0.20 9 89.05 77.05 10 89.78 68.85
0.30 1 76.64 75.41 1 76.64 75.41

car 0.10 206 100.00 100.00 206 100.00 100.00
0.20 150 90.45 91.59 150 90.45 91.59
0.30 1 70.02 59.00 1 70.02 59.00

credit screening 0.10 21 90.04 86.54 19 89.83 85.10
0.20 8 86.51 85.10 4 86.10 84.62
0.30 4 85.89 84.62 2 85.89 84.62

cylinder-band 0.10 224 100.00 66.87 224 100.00 66.87
0.20 224 100.00 66.87 224 100.00 66.87
0.30 224 100.00 66.87 224 100.00 66.87

dermatology 0.10 42 100.00 94.69 42 100.00 94.69
0.20 42 100.00 94.69 42 100.00 94.69
0.30 42 100.00 94.69 42 100.00 94.69

diabetes 0.10 59 93.28 73.71 61 94.59 74.57
0.20 21 81.90 77.59 24 85.45 74.14
0.30 4 75.19 74.57 7 79.48 76.29

ecoli 0.10 25 95.24 82.86 23 94.37 82.86
0.20 14 90.48 81.90 17 90.48 77.14
0.30 12 85.28 81.90 16 89.18 76.19

glass 0.10 7 100.00 94.03 7 100.00 94.03
0.20 7 100.00 94.03 7 100.00 94.03
0.30 7 100.00 94.03 7 100.00 94.03

haberman 0.10 47 95.77 69.89 48 95.77 68.82
0.20 11 81.22 76.34 11 80.75 77.42
0.30 1 73.71 73.12 1 73.71 73.12

iris 0.10 5 100.00 95.83 5 100.00 95.83
0.20 5 100.00 95.83 5 100.00 95.83
0.30 6 100.00 93.75 5 100.00 95.83

liver 0.10 47 99.03 61.59 49 100.00 57.97
0.20 24 89.37 61.59 22 86.96 68.12
0.30 13 71.01 62.32 17 85.51 63.04

tic-tac-toe 0.10 26 100.00 100.00 26 100.00 100.00
0.20 26 100.00 100.00 26 100.00 100.00
0.30 12.00 96.57 95.49 11 97.61 100.00
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7.3 Comparison with C5

The performance of the new algorithm (RULES-5 with
IPP) is compared against C5, one of the most efficient
inductive learning algorithms currently available. C5 is a
divide-and-conquer algorithm and therefore creates
decision trees. For the purpose of this comparison, the
decision trees have been converted into rule sets. Table 4
shows the results obtained by both algorithms. For this
work, it is assumed that an optimal NL has been found.

For 7 out of the 15 data sets, namely balance_scale
ðNL ¼ 0:1 and 0:2Þ, breast_cancer ðNL ¼ 0:1 and 0:2Þ,
wdbc ðNL ¼ 0:2Þ, credit screening ðNL ¼ 0:1, 0:2
and 0:3Þ, diabetes ðNL ¼ 0:3Þ, ecoli ðNL ¼ 0:3Þ and
tic-tac-toe ðNL ¼ 0:1, 0:2 and 0:3Þ, RULES-5 with IPP

clearly outperforms C5, creating fewer rules but with the
same or higher test accuracies.

With five of the data sets (wpbc, cylinder band,
dermatology, glass and iris) C5 outperforms RULES-5
with IPP when considering both the number of rules
created and the test accuracy obtained. However, for
some of these data sets, the results for RULES-5 with
IPP are still acceptable. For instance, for the iris data set
the only difference with C5 is one rule.

For two other data sets, car ðNL ¼ 0:1Þ and liver
ðNL ¼ 0:2Þ, the comparison is more difficult because C5
produces smaller rule sets than RULES-5 with IPP but
also with substantially reduced test accuracies. Thus, the
advantage of using one set of rules or the other will
depend on the application.

Table 2 Comparison between RULES-3 Plus and RULES-3 Plus with BPP

Rules 3 Plus Rules 3 Plus with BPP

Data set name Rules Training % Test % NL Rules Training % Test %

balance_scale 216 100.00 82.54 0.10 41 91.06 83.07
0.20 14 84.40 84.13
0.30 5 73.39 70.90

breast_cancer 43 100.00 95.73 0.10 7 93.03 88.15
0.20 6 93.85 90.52
0.30 6 93.85 90.52

wdbc 53 100.00 97.67 0.10 12 94.46 95.93
0.20 8 93.20 95.35
0.30 4 85.39 88.95

wpbc 46 100.00 60.66 0.10 40 99.27 63.93
0.20 13 86.86 80.33
0.30 1 76.64 75.41

car 275 100.00 100.00 0.10 206 100.00 100.00
0.20 150 90.10 91.30
0.30 1 70.02 59.00

credit screening 148 98.76 81.73 0.10 40 91.08 83.65
0.20 6 86.10 84.62
0.30 3 85.89 84.62

cylinder-band 218 100.00 62.58 0.10 211 100.00 63.19
0.20 211 100.00 63.19
0.30 211 100.00 63.19

dermatology 48 100.00 95.58 0.10 39 100.00 94.69
0.20 39 100.00 94.69
0.30 39 100.00 94.69

diabetes 224 93.84 65.09 0.10 134 89.93 67.24
0.20 68 85.45 73.28
0.30 5 72.57 71.55

ecoli 83 95.24 77.14 0.10 46 92.64 79.05
0.20 29 89.18 80.95
0.30 22 87.88 79.05

glass 26 100.00 94.03 0.10 17 99.32 92.54
0.20 13 97.96 92.54
0.30 3 81.63 79.10

haberman 53 80.75 77.42 0.10 38 80.28 77.42
0.20 19 78.40 76.34
0.30 1 73.71 73.12

iris 12 98.04 91.67 0.10 4 96.08 93.75
0.20 4 96.08 93.75
0.30 4 96.08 93.75

liver 86 81.64 55.80 0.10 68 81.16 53.62
0.20 54 78.74 52.17
0.30 23 73.43 52.17

tic-tac-toe 140 100.00 95.14 0.10 32 100.00 100.00
0.20 32 98.66 100.00
0.30 12 79.55 79.51
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Finally, the performance of C5 on the remaining data
set (haberman) should be analysed further. When C5 is
applied on the haberman data set, a rule set is created
containing only one rule (IF anything THEN survival).
RULES-5 with IPP gives the same result when NL is set
to 0.3. This rule set fails to represent any interesting
pattern contained within the data set because it ignores
all but one class. As a result, the rule set is too general.
On this particular data set, RULES-5 with IPP
demonstrates one advantage over C5. By allowing the
user to decide the level of pruning, such overgeneraliza-
tion can be avoided. For instance, if NL is set to 0.2 for
this data set, RULES-5 with IPP creates a more accurate
rule set that contains 11 more meaningful rules. The

same problem occurs with the cylinder band data set, for
which C5 creates only two rules.

8 CONCLUSION

The proposed new pruning technique significantly
improves the performance of the RULES-5 algorithm.
The results show that RULES-5, in combination with
IPP, outperforms C5. Compared to other pruning
techniques, the dependence of process performance on
heuristic measures is reduced. This is achieved by
employing a new rule merging technique. The user
controls the rule merging process by specifying a

Table 3 Comparison between RULES-5 and RULES-5 with IPP

RULES-5 RULES-5 with IPP

Data set name Rules Training % Test % NL Rules Training % Test %

balance_scale 93 100.00 86.24 0.10 24 88.99 84.13
0.20 16 85.32 78.84
0.30 7 76.15 74.60

breast_cancer 33 100.00 96.21 0.10 4 92.62 93.36
0.20 6 94.26 92.89
0.30 3 90.78 88.15

wdbc 35 100.00 95.35 0.10 8 93.70 94.19
0.20 4 92.95 94.19
0.30 6 92.95 94.19

wpbc 35 100.00 73.77 0.10 23 97.08 72.13
0.20 10 89.78 68.85
0.30 1 76.64 75.41

car 246 100.00 100.00 0.10 206 100.00 100.00
0.20 150 90.45 91.59
0.30 1 70.02 59.00

credit screening 117 100.00 87.02 0.10 19 89.83 85.10
0.20 4 86.10 84.62
0.30 2 85.89 84.62

cylinder-band 230 100.00 66.87 0.10 224 100.00 66.87
0.20 224 100.00 66.87
0.30 224 100.00 66.87

dermatology 43 100.00 94.69 0.10 42 100.00 94.69
0.20 42 100.00 94.69
0.30 42 100.00 94.69

diabetes 160 100.00 76.29 0.10 61 94.59 74.57
0.20 24 85.45 74.14
0.30 7 79.48 76.29

ecoli 53 100.00 80.00 0.10 23 94.37 82.86
0.20 17 90.48 77.14
0.30 16 89.18 76.19

glass 17 100.00 94.03 0.10 7 100.00 94.03
0.20 7 100.00 94.03
0.30 7 100.00 94.03

haberman 72 99.53 72.04 0.10 48 95.77 68.82
0.20 11 80.75 77.42
0.30 1 73.71 73.12

iris 8 100.00 95.83 0.10 5 100.00 95.83
0.20 5 100.00 95.83
0.30 5 100.00 95.83

liver 61 100.00 60.87 0.10 49 100.00 57.97
0.20 22 86.96 68.12
0.30 17 85.51 63.04

tic-tac-toe 32 100.00 100.00 0.10 26 100.00 100.00
0.20 26 100.00 100.00
0.30 11 97.61 100.00
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parameter, NL, based on his or her assessment of the
noise level present in the data set. Allowing domain
experts to contribute to the rule extraction process may
prove to be important when real data are analysed.
Also, the proposed pruning technique could be regarded
as a tool for analysing data sets for the presence of
noise. This analysis could be carried out by assessing the
changes in the size of rule sets generated and the
variation of their accuracy when NL varies.
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