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ABSTRACT 
Wetting of a pollution layer by mist or light rain is inhibited, in the case of silicone 
rubber (SiR) insulators, by the migration of hydrophobic polymeric chains from the 
insulator to the layer surface. However, recent laboratory fog-chamber tests have 
shown that a salt/kaolin layer applied to the surface of an 11kV SiR insulator can 
reduce the specific creepage distance (SCD) at flashover to as low as 16mm/kV. Even 
for larger values of SCD, potentially damaging partial arcs can arise along the insulator 
surface. It has been shown that some mitigation of partial-arc activity and an increase 
of flashover voltage can be achieved by appropriate texturing of the SiR insulator 
housing. The present paper describes additional infrared (IR) recording which 
accompanied these previous tests. Although a reduction of the flashover voltage in 
polluted environments is generally surmised to be the result of the formation of dry 
bands in a conducting moistened surface layer, no direct observations of dry bands 
appear to have been previously demonstrated in the laboratory. Such observations are 
described here, where details of dry-band location and growth are revealed by IR 
recording. Dry bands are shown by close-up visual photography to be invariably 
bridged by small streamer/spark discharges which maintain current continuity in the 
pollution layer. Local surface heating by these discharges are the probable cause of the 
delayed rewetting of the bands. Partial-arc channels that may result in flashover 
develop from and across the dry-band streamers. It has become clear that clean-fog 
testing with infrared recording and leakage current measurements provide new 
possibilities for the modeling of dry band discharges and improvement of insulator 
design. 

   Index Terms — Outdoor insulation, flashover, high voltage, insulation 
contamination, silicone rubber insulation, pollution, insulator testing, dry-banding. 

 
1 INTRODUCTION 

DRY-BAND formation on the wet pollution layer is known to 
cause a significant reduction of the withstand level of external 
insulation in some coastal, desert and industrial regions. In such 
environments, designs with an increased leakage path are used to 
maximize the unified specific creepage distance (USCD in 
mm/kV). The Technical Specification IEC/TS 60815-3 (2008) 
[1] describes procedures for the selection and dimensioning of 
polymeric insulators for polluted environments. No laboratory 
tests such as those available for ceramic insulators [2] are 
specified because of the perceived difficulty of applying artificial 
pollution coatings without at the same time compromising the 
surface hydrophobicity. It is also recognized that the 
determination of withstand voltages by the up-and-down method 
may be unreliable because of the risk of destroying 

hydrophobicity by flashovers [3]. The Specification thus 
suggests instead that tests can be agreed between utility and 
manufacturer.  

This somewhat undefined situation was addressed in a 
previous paper [4], where it was shown that it is possible to 
perform tests to discriminate without ambiguity between the 
pollution performance of silicone-rubber 11 kV insulators of 
different housing materials. These test data also quantify the 
inverse relationship of pollution severity and flashover voltage 
(FOV). The use of constant rate-of-rise ramp voltages in these 
tests eliminates the need for up-and-down iteration and excessive 
flashovers. Leakage current measurements [5] were found to 
corroborate the inverse relationship between FOV and pre-
flashover leakage current. 

The present paper describes infrared (IR) recording which 
accompanied most of the tests. These records reveal the 
formation and development of heated bands in the pollution 
layer which are found always to precede the arc initiation. 
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The combination of clean-fog testing with infrared recording, 
visual photography and leakage current measurements can 
extend the laboratory data that are needed to improve future 
insulator performance. Models of the mechanism of failure of 
polluted insulators [6-11] are generally based upon 
quantifying the properties of the partial-arc that precede 
flashover. The initiation mechanism of a partial-arc channel 
in polluted environments has long been envisaged to be 
caused by the presence of a dry band [12-16]. The 
mechanism is shown in the present tests to be a transition 
from a streamer across the dry-band. 

2   TEST RESOURCES 

2.1 PROCEDURES 

A full description [4] has already been given of: 

 The in-house fabrication of test insulators from two 
different silicone-rubber formulations; 

 The method of deposition of layers of salt deposit 
density in the SDD range 0.21 to 1.15 mg/cm2. 

 A 3 m x 2 m x 2 m chamber in which a clean fog is 
produced by pressurized water nozzles; 

 A 150 kVA source of suitable rating to supply a 
linear ramp test voltage. A rate of rise of 4 
kV/minute, provided repeatable test results. It also 
avoided both the significant loss of surface 
pollution, and the long recovery-time after flashover, 
which were experienced with standard up-and-down 
testing. 

 The acquisition and post-processing of voltage and 
leakage current data with a synchronised video 
recording. 

2.2 INSULATOR GEOMETRY 

The profile dimensions (mm) of sets of four-shed 11kV 
insulators manufactured for the tests are: creepage length L 
(375), trunk diameter (28), shed diameter (90) and axial 
length (175), corresponding to a form factor Ff of 2.76. The 
layer conductance k for uniform pollution is obtained from 
the measured leakage conductance G and the insulator form 
factor: 

 k ൌ F ௙ · G (1) 

2.3 INFRARED AND VISUAL RECORDING 

The facilities of Section 2.1 were augmented by a FLIR 
A325 camera of spectral range from 7.5 to 13 μm with an 
image resolution of 320 x 240 pixels. The maximum imaging 
frequency is 60 frames/s. This enabled the temperature 
changes of the insulator surface to be recorded synchronously 
with the leakage current and the applied voltage throughout 
the tests. The precision of the IR temperature measurement in 
the fog environment was calibrated to be ± 0.5 °C by using a 
test insulator preheated at 40 °C. Laboratory conditions 

external to the chamber were close to normal sea-level values 
of 18-22 °C, 98-102 kPa and 10-12 g/m3 throughout all tests. 
The temperature of the saturated fog within the chamber was 
slightly cooled by the spray injection and was in the range 
16-18 °C. 

As well as the video records described in [4], a Nikon D700 
digital camera with 200mm focal length was used with long 
exposure time to detect low-luminosity streamer discharges. 

3 TEST RESULTS 

Four to six insulators were tested at each of the four SDD 
pollution levels and each test consisted of a series of up to ten 
ramp voltages. The results below are typical examples from 
different ramps during a series at an SDD of 0.64 mg/cm2. 

3.1 DRY-BAND ONSET AND DEVELOPMENT 

3.1.1 BEFORE DRY-BAND FORMATION 

The maximum measured leakage conductance G is usually 
achieved after 20-30 minutes of wetting in the clean-fog 
chamber, and has a value of the order of 1 µS for an SDD of 
0.64 mg/cm2. The corresponding maximum pollution-layer 
conductance is obtained from equation (1) to be about 2.8 µS. 

3.1.2 ONSET OF DRY BANDS 

Figure 1a illustrates the initial steps of a full-voltage ramp test, 
which was applied to a fully wetted insulator.  The voltage 
control system has not at this stage achieved the steady-state rate 
of 10 x 400 V steps/minute. Figure 1b is the resulting leakage 
current. For the first two voltage steps, the leakage conductance 
is maintained constant at about 1.25 µS, and the trunk sections 
were shown by the IR camera to be uniformly heated, which 
confirmed that the pollution layer conductance k was also 
uniform. This is changed by a further voltage step to 1.6 kV, 
which soon leads to a reduced conductance of about 0.3 µS. At 2 
kV the leakage conductance falls within 2 s to 0.25 µS or less. 
This discontinuity and loss of conductance is strongly indicative 
of the formation of local drying of part of the moist pollutant 
surface, with the inevitable formation of a complete dry band. 
Subsequent characteristics of the leakage current are later shown 
in Figure 5d. 

3.1.3 DRY-BAND DEVELOPMENT 

Figure 2 shows the development of dry-bands on the top 
and middle insulator trunk sections during a ramp voltage 
test. A heated ring (dry band) is formed on the middle trunk 
at low voltage (2 kV). This brightens with increasing voltage 
(see images in Fig. 2 at 4.5kV, 7 kV and 9.4 kV) until, in this 
case at 14.6 kV, a second dry band forms just below the first 
on the same trunk, with the third band forming on the upper 
trunk. At 27.1 kV, five bands are present, although in this 
instance, none forms on the third lowest trunk section before 
flashover occurs at 27.5 kV.  

3.3.2 DRY-BAND TEMPERATURE 

The temperature rise associated with dry-band formation is 
modest. The insulator in Figure 3 is in a fog environment at 
17 °C, yet most of the trunk surfaces are at 22 °C and the dry 
bands reach 26-27 °C. 
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Figure 1. Dry band inception on insulator at the start of a ramp voltage test. SDD 0.64 mg/cm2 

Stepped applied voltage (a), Leakage current (b), Leakage conductance (c). 
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Figure 2. Formation and development of dry-bands at stages A – J during a ramp voltage test. SDD 0.64 mg/cm2.

 

a) 
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Figure 3. Visible image, infrared record and temperature profile at 22 kV on ramp

. 
 

Flashover at 25 kV. SDD 0.64 mg/cm2. 

 

 
 

 
a) Visible record of 

streamer 
b) Equivalent IR 

record 
 
 

Figure 4. Visible and IR close-ups of streamer discharges and dry-band heating at 17 kV on ramp. SDD 0.64 mg/cm2. 
 
 

 

3.3 DRY-BAND STREAMER DISCHARGES 

Close-up visual photography (Figure 4) reveals faint 
discharges that bridge the bands, whose violet colour is 
consistent with the appearance of atmospheric streamer 
breakdown. The shapes of the heated surfaces of the dry 
bands that are visible in Figure 4b are congruent with the 
shapes of the bands of streamer discharges in Figure 4a. The 
voltage fall across the band associated with a low-current 
glow or streamer discharge is significant, and may ensure that 
the local power dissipation within the band sustains a rate of 
evaporation that matches the wetting rate. This persistence of 
dry-band heating indicates that these streamer discharges 
provide current continuity across each band despite the low 
conductance caused by moisture loss. A transition to a spark 
channel would account for the partial-arc development visible 
in Figure 3. 

 

3.4 DRY-BAND NUMBER AND LOCATION 

 Figure 5 represents results from a test similar to that of 
Figure 2. The horizontal bars indicate the times of onset of 
each band, its location and the increasing number of dry 
bands during an applied ramp leading to a FOV of 23 kV. 
The first bands in this example are located on the upper (high 
voltage) trunk section of the insulator, with seven bands 
appearing at the middle and then lower (ground) sections 
before a flashover in this instance at 290 s.  

Throughout this period, the average band temperature rise 
remains fairly constant (Figure 5) at about 10 °C above the 
fog temperature. At higher voltages, increases in band 
temperature of up to 15 °C above ambient temperature could 
occur. The transient increases to higher temperatures are 
associated with short-lived partial arc discharges which 
bridge the dry bands (Section 3.5). 
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a) Dry-band onset and location.  c) Ramp voltage to flashover at 24.5kV. 

b) Insulator surface temperature.  d) RMS leakage current 
 

Figure 5.   Pre-flashover dry-band development and leakage current growth. SDD 0.64 mg/cm2. 
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3.5 PARTIAL ARC DEVELOPMENT 

The pre-flashover RMS ramp voltage and current 
accompanying the dry-band development of Figure 5a are 
seen in Figures 5c and 5d to attain a typical partial-arc value 
of 60 mA, compared with less than 1 mA in dry-band 
streamers. Figure 6 shows the correlation of visual and 
infrared records with post-processed electrical data of a ramp 
test at successive instants during the 290 s before flashover 
(n.b. a scale of time-before-flashover is used here to facilitate 
comparison with other tests). Such tests confirm that the 
streamer discharges of a dry band are always a necessary 
precursor for the formation of partial arcs that may eventually 
lead to insulator flashover. Partial arcs are brighter than the 
streamers, and their often yellow colour suggests the presence 
of sodium ions from the pollution layer. During post-
processing the number of partial arcs per second (Np) is 
computed from the number of current transients greater than 
0.5 mA during successive windows of 1 s [5]. It is noticeable 
that Np reduces with increasing voltage. This reduction of 
partial-arc activity near flashover may be the result of the 
increasingly numerous and wide dry bands revealed by the IR 
records, so that even the substantial partial arc of event 
numbered VI in Figure 6b does not lead to flashover, which 
later occurs at 29 kV. The energy dissipation shown in Figure 

6a is the mean energy loss per partial arc. This is given by the 
ratio Pav/Np, where the mean power loss Pav during each time 
window is calculated from leakage current and voltage 
measurements. Power dissipation can exceed 1 kW in partial-
arc events, and energy loss in the largest arcs is usually 10 J 
or more. Although the streamer discharges of a dry band 
appear to be a necessary precursor for the formation of a 
partial arc, any streamers which are not so transformed may 
act as a stabilising influence, since significant local voltage 
falls are necessary to maintain the dry-band streamers. 
 

3.6 INSULATOR RECOVERY 

The thermal recovery of the silicone-rubber housing can be 
expected to be slow because of low thermal conductivity. IR 
records after completion of a ramp test, but with continued 
fog, showed the temperature difference to remain above 1 °C 
after 200 s. This produces a continuing reduction in the 
insulator strength if up-and-down constant-voltage tests are 
attempted, although the overcurrent protection prevented 
damage of insulator surfaces during the series of flashover 
tests. For this reason, all tests included interval of 5 minutes 
between successive ramps. 
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Figure 6a            Voltage ramp. 
          Partial-arc activity (current peaks> 0.5A) per second). 
          Energy dissipation in events I – VI. 
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                         I                                                   II                                                   III                          

   
                         IV                                                   V                                                   VI                          

 
 

Figure 6b. Correlation of digital camera and infrared records with events I – VI of electrical data. 
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4 CONCLUSION 
Infra-red imaging reveals the detailed development of dry 

bands which are normally invisible to observation. A leakage 
current of only a few milliamperes is sufficient to create the 
first dry band. For the range of salinity levels in the tests, the 
surface temperature of the pollution layer in the dry-bands is 
merely a few degrees Celsius above ambient. This appears to 
be sufficient to prevent rewetting. Current continuity and heat 
losses in the dry bands are associated with small-scale 
streamer discharges. 

Comparison of visible and infrared emissions indicates that 
dry-band discharges are necessary to initiate extended, 
higher-current partial arcs. These frequently link or span dry-
band regions. However, where a number of dry bands 
develop, partial-arc activity may be reduced prior to 
flashover. 

The thermal and electrical data from these tests are 
currently being used by the authors to improve existing and 
alternative models of the flashover of polluted insulators. It is 
possible to discriminate and quantify the convective and 
evaporation heat losses associated with the leakage current 
power dissipation, and to estimate the consequent distortion 
of the voltage gradient along the polluted insulator. 
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