An Algorithm for Stage Semantics

Martin CAMINADA @
& University of Luxembourg

Abstract. In the current paper, we re-examine the concept of stage rémsia
which is one of the oldest semantics for abstract argumentatysing a formal
treatment of its properties, we explain how the intuitiohibd stage semantics dif-
fers from the intuition behind the admissibility based setita that most scholars
in argumentation theory are familiar with. We then providalzlling-based algo-
rithm for computing all stage extensions, based on eailigrihms for computing
all preferred, stable and semi-stable extensions.

1. Introduction

The concept of stage semantics for abstract argumentasisfirgt introduced by Verheij
[15] and has subsequently been worked out in VerheigsIDoG system [16,17], which
can be regarded as a generalization of the abstract argatieentheory of Dung [10].
Although stage semantics is one of the oldest semanticshistract argumentation, it
has so far remained relatively unknown, which might haveatavith the fact that it was
originally stated not in terms of the usual extensions apginobut in the form of pairs
(J, D) whereJ is a set of justified arguments aftlis a set of defeated arguments [15].
Nevertheless, there exist good reasons for treating sexgartics as one of the main-
stream semantics for abstract argumentation, not onlyusedacan be expressed using
a relatively simple and elegant principle, but also becé#isglements a fundamentally
different intuition than the traditional admissibility $&d semantics (such as complete,
grounded and preferred [10], ideal [11] or semi-stableq])5,

Despite of the differences between stage semantics andhttisdnal admissibility-
based semantics, it is still possible to provide an algoritbr computing all stage ex-
tensions, that is very close to previously stated algorittion computing all preferred,
stable and semi-stable extensions [6,14], as is demoedtirathe current paper.

2. Stage Semantics

In Verheij's original work [15] stage semantics was defineddrms of pairs of sets
of arguments. In the current paper, however, we will descsifage semantics in terms
of the more commonly applied extensions approach. We assamidarity with ba-
sic argumentation concepts, such as that of an argumemfaéimework, conflict-free
sets, admissible sets, complete extensions, preferretigans, stable extensions and
the grounded extension. Definitions of these can be foundiOh [n the current paper,
we only consider finite argumentation frameworks.

If Ais an argumentthen we writé™ for the set of arguments attacked Ay Simi-
larly, if Args is a set of arguments then we writergs™ to refer to the set of arguments
attacked by at least one argumentdngs.

Definition 1. Let AF = (Ar, att) be an argumentation framework. A stage extension
is a conflict-free setdrgs C Ar where Args U Args™ is maximal (w.r.t. set inclusion)
among all conflict-free sets.

Stage semantics can to some extent be compared to sen@-stabdntics, which is
essentially an admissible sdirgs whereArgs U Args™ is maximal. In the remainder
of this paper, we refer todrgs U Argst as therange of Args, a term that was first
introduced in [15]. Thus, where semi-stable extensionsdneissible sets with maximal
range, stage extensions are conflict-free sets with maxeamngle.

One could examine whether the same principle can also bédpplother seman-
tics. That is, what if for instance one would look at comp|@teferred or stable exten-
sions with maximal range? It turns out that doing so does et yany additional se-
mantics. Complete extensions with maximal range, as wedreferred extensions with
maximal range, are semi-stable extensib8sable extensions by definition have a maxi-
mal range, so selecting the stable extensions with maxinale simply means selecting
all stable extensions. An overview of the effects of seterets and extensions with
maximal range is provided in Table 1.

input conflict-free | admissible | complete preferred stable
extensions/sets sets sets extensions | extensions | extensions

result when selecting stage semi-stable| semi-stable| semi-stable stable
for maximal range extensions | extensions| extensions | extensions | extensions

Table 1. Selecting the extensions with a maximal range, given a stcsan

As an example of how stage semantics operates, considersharfjumentation
framework on the left of Figure 1. Here, there exist five catdliee setsf), { A}, { B},
{C} and{A,C}. Both{B} and{A, C'} are maximal, but only{ A, C'} has a maximal
range, so only{ A, C'} is a stage extension. This illustrates that selecting a maixi
conflict-free set is different than selecting a conflictefset with maximal range.

Another example is the second argumentation framework giirei 1. Here, there
exist pricisely two stage extensiods4, D} and{ B, D} (both of which have a range of
{4, B,C.D}). Hence, the results of stage semantics of this examplendireei with the
results of more established semantics like preferredlestainl semi-stable.

In the third argumentation framework of Figure 1, the twaleyof the previous
example has been replaced by a three-cycle. Here, thereterége stage extensions
{A,E}, {B,E} and{C, E} (with corresponding rangesd, B, D, E}, {B,C, D, E}
and{C, A, D, E'}). This is in contrast with the admissibility based semantgrounded,
preferred, complete, ideal and semi-stable) which alldyiklas the only extension.

1The equivalence between admissible sets with maximal sangd complete extensions with maximal
ranges has been proved in [5], and the equivalence betweeple® extensions with maximal ranges and
preferred extensions with maximal ranges can be provedimitas way.

2Just like selecting a maximal admissible set (preferredjfisrent than selecting an admissible set with a
maximal range (semi-stable).

Hence, one of the advantages of stage semantics is that ddelvan loops are treated
equally. The only other well-known semantics with this pedg is CF2 [3]°

The fourth argumentation framework of Figure 1 is where stsgmantics yields a
different result than obtained by the admissibility basehantics, as well as by CF2.
The only stage extension here{iB}, where the admissibility based semantics all yield
() as the only extension.

oy

Ae

Be

-
@@=-——70
@]
@000
]
-

m

Ce

Figure 1. Four argumentation frameworks

It holds that every stable extension is a stage extensishl{ke every stable exten-
sion is a semi-stable extension [5]).

Theorem 1. Let.Args be a stable extension of argumentation framewetk, att). Args
is also a stage extension @l r, att).

Proof. Let Args be a stable extension ¢fir, ait). ThenArgs is a conflict-free set that
attacks every argument idr\ Args. This means thatlrgs U Args™ = Ar. Therefore,
Args U Args™ is maximal (it cannot be a proper supersetdof). Therefore, Args is a
stage extension. O

It also holds that if there exists at least one stable extengen every stage exten-
sion is also a stable extension (just like if there existgasti one stable extension, then
every semi-stable extension is also a stable extension [5])

Theorem 2. Let (Ar, att) be an argumentation framework that has at least one stable
extension. It then holds that every stage extension is atsalde extension.

Proof. Let Args be a stable extension ¢fir, att). It then holds thafdrgs is a conflict-
free set withArgs U Args™ = Ar. Therefore, every stage extensidmgs’ will have to
satisfy Args’ U Args'™ = Ar in order to have a maximal range. This means that every
stage extension will also be a stable extension. O

Theorem 1 and 2 can be seen as special instances of the médaltsed in EFLOG
[16,17]. Apart from the extensions approach, it is also fidss$o describe stage seman-
tics in terms of argument labellings [4,8,7].

3CF2 semantics does have the advantage that the groundemiertés a subset afveryCF2 extension,
whereas for stage semantics one has the weaker properth¢tgiounded extension is a subseableast one
stage extension. See [7] for more details.

Definition 2. Let (Ar, att) be an argumentation framework. A labelling is a function
Lab : Ar — {in, out, undec}.

If Lab is a labelling then we writdn(Lab) for {A | Lab(A) = in}, out(Lab)
for {A | Lab(A) = out} and undec(Lab) for {4 | Lab(A) = undec}.
Since a labelling is a function, it can be represented as afsegirs. In this pa-
per we will sometimes use an alternative way to represenbelliag, as a partition
(in(Lab), out(Lab), undec(Lab)).

Definition 3. Let (Ar, att) be an argumentation framework. A conflict-free labelling is
a labelling such that for everyl € Ar it holds that:

1. if Lab(A) = inthenVB € Ar: (BattA D Lab(B) # in)
2. if Lab(A) = out then3B € Ar : (BattA A Lab(B) = in)

The definition of a conflict-free labelling is almost equalthat of an admissible
labelling in [8]. The only difference is that for an admidsitabelling, the first clause is
“if Lab(A) = inthenVB € Ar : (BattA D Lab(B) = out)”, which is stronger than
the first clause of Definition 3. It immediately follows thatey admissible labelling is
also a conflict-free labelling, just like every admissibé¢ is also a conflict-free set.

Definition 4. Let(Ar, att) be an argumentation frameworKab is a stage labelling iff
Lab is a conflict-free labelling wherendec is minimal (w.r.t. set inclusion) among all
conflict-free labellings.

It can be verified that stage extensions and stage labekitaggl in a one-to-one
relationship to each other.

Proposition 1. Let AF = (Ar, att) be an argumentation framework.

1. If Args is a stage extension of F' thenExt2Lab(.Arygs) is a stage labelling of
AF, whereExt2Lab(Args) = (Args, Args™, Ar\(Args U Args™)).

2. If Labis a stage labelling ofl F' thenLab2Ext(Lab) is a stage extension ofF’,
whereLab2Ext(Lab) = in(Lab).

Moreover, when restricted to stage extensions and stagelliaps, the functions
Ext2Lab andLab2Ext become bijective and each other’s inverses.

The proof of Proposition 1 is included in [7], where it is ajpgoved that every stable
labelling (in the sense of [4,8]) is also a stage labellimg] that if there exists at least
one stable labelling, then every stage labelling is alsablstabelling.

3. An Algorithm

In the current section we provide an algorithm for computitigstage labellings of a
given argumentation framework. Using the result of Praojasil we then also obtain
the stage extensions of the argumentation framework, warelafter all simply the sets
of in-labelled arguments of the stage labellings.

The basic idea of the algorithm is to start with a labellingvinich every argument is
labelledin. This labelling will subsequently be referred to as #fflein labelling. Then,

a sequence dfansition stepss applied, where each step resolves a conflict between
two in-labelled arguments where one attacks the other. The #igodescribed in the
current section is a slightly modified version of the earieveloped algorithm for com-
puting all semi-stable labelling$6]. The main difference is that where the semi-stable
algorithm is based on the notion of an admissible labelling currently presented stage
algorithm is based on the notion of a conflict-free labelling

Definition 5. Let Lab be a labelling of argumentation framewoAF = (Ar, att).

1. an in-labelled argument4 is calledillegally in iff 3B € Ar : (BattA A
Lab(B) = in) V3B € Ar : (AattB A Lab(B) = in)

2. anout-labelled argument is calledillegally out iff -3B € Ar : (BattA A
Lab(B) = in)

In essence, an argument is illegaily iff it violates point 1 of Definition 3 and
is illegally out iff it violates point 2 of Definition 3. It then follows that abelling is
conflict-free iff it does not have any argument that is illibgan or illegally out.

Definition 6. LetLab be a labelling of argumentation framewofkr, att) andA € Ar
and argument that is illegallyn in Lab. A transition stepn A in Lab consists of the
following:

1. the label ofA is changed fromin to out
2. foreveryB € {A} U AT, if B is illegally out then the label of3 is changed
from out to undec

It can be observed that each transition step preserves slieaed of arguments that
are illegallyout. That is, if a labelling does not have any argument thateégdlly out
before a transition step, then there will still be no arguntbat is illegally out after
the transition step. Moreover, since each transition stepces the number of illegally
in-labelled arguments by at least one, subsequently apptyamgition steps starting
from the allin labelling ultimately yields a labelling without any illeljyp in-labelled
arguments.

Definition 7. A transition sequends a list [Labg, A1, Laby, A, Labs, ..., Ay, Laby)
(n > 0) whereLab is the allin labelling, each4; (1 < i < n) is an argument that
is illegally in in Lab;_1, and everyCab; (1 < i < n) is the result of doing a transition
step on4; in Lab;_1. A transition sequence is calledrminatedff Lab,, does not have
any argument that is illegallyn.

Since we only consider finite argumentation frameworksplth that every tran-
sition sequence can be extended to a terminated transiuresce, in which a finite
number of transitions have been performed. We say that siti@msequencgieldsLab
if its last labelling isLab.

As an example of a transition sequence, consider the thirdnaentation frame-
work of Figure 1. Starting with the alla labelling Laby = ({4, B,C, D},0,0), one
could, for instance, select argumehto do a transition step on, resulting in the labelling
Laby = ({B,C, D, E},{A},). Subsequently one could, for instance, select argument

4QOther variations of the same algorithm exist for computihgreferred and all stable labellings [6].

C' to do a transition step on. On¢€gis relabelledout, A becomes illegallyput and is
therefore relabelledndec in the same transition step. Hence the resulting labellinig,
is({B, D, E},{C},{A}). Subsequently, one could select argum@rib do a transtion
step on, resulting in the labellingabs = ({B, E},{C, D}, {A}). This labelling does
not have any argument that is illegaiy, so the transition sequence is terminated. The
overall transition sequenceliaby, A, Lab1, C, Laba, D, Labs].

Lemma 1. Let[Laby, A1, Laby, ..., A,, Lab,] be a terminated transition sequence. It
holds thatCab,, is a conflict-free labelling.

Proof. Since the allin labelling does not have any argument that is illegally (it has

no out-labelled argument at all) and each transition step presethe absence of ille-
gally out-labelled arguments, it follows that each terminated fitammssequence yields

a labelling without any illegallyut-labelled arguments. Since a terminated transition
sequence also yields a labelling without any illegalthylabelled arguments (otherwise
the transition sequence would not be terminated), it fadldokat the result yielded by a
terminated transition sequence is a conflict-free labgllin O

As an example, consider the argumentation framework oneti@f Figure 1. An
example of a (terminated) transition sequence is, staftorg the all<in labelling, first
to perform a transition step oB, resulting in a labelling{A, C}, {B},0), which is
conflict-free, thus terminating the transition sequena®tAer possibility would be first
to perform a transition step ad, resulting in a labellind{B,C},0,{A}), and subse-
guently performing transition steps d& or C, resulting in the conflict-free labellings
({C},0,{A, B}) and ({B},{C},{A}), respectively. Other transition sequences also
exist. Only the first obtained labelling is a stage labelliA other labellings that are
yielded by terminated transition sequences are configgHfiut not stage. Fortunately, it
holds that, as a general rule, every stage labelling is dteelun the results yielded by the
terminated transition sequences, as is expressed by theifoy theorem.

Theorem 3. Let Labsqqe be a stage labelling of argumentation framewdrkr, att).
There exists a terminated transition sequence which yiétds, . ..

Proof. We prove the theorem by, given a stage labelling, constrgetiterminated tran-
sition sequence that yields it. The idea is to construct tifsissition sequence in two
phases, first by doing transition steps on the argumentatbdabelledbut by Lab, then

by doing transition steps on the arguments that are labeHladc by Lab.

Let Labsiqge be a stage labelling. LéLaby, A1, Laby, ..., Am, Laby,] (m > 0) be a
(possibly unterminated) transition sequence whére. .., A,, are the arguments that
are labellebut by Labsiqege (thatis:{A1,. .., Ay} = out(Labsiage). Thisis a correct
transition sequence, because evary(1 < ¢ < m) will be illegally in until it is rela-
belled toout (this is because every; is legally out in Labsage, SO it has an attacker
that is labelledin by Labs:qqe, and since we do not relabel this attacker in any of the
transition steps, it will be labelleth by everyLab; (0 < i < m)). Furthermore, none of
the transition steps will relabel amyt-labelled argument tandec because everyut-
labelled argument will stay legallyut throughout the transition sequence. This implies
thatundec(Lab,,) = 0. Furthermore, since transition steps are done on everyragu
that is labelledout by Labsiqge, it follows thatout(Lab,,) = out(Labsiege). Since
no transition steps are done on arguments that are lahellegt Lab:qqe, it holds that

in(Labsy,) 2 in(Labstage)-

We now continue the transition sequence, this time by daimgsition steps not on ar-
guments that are labeletht by Labsiqge, but on arguments that are labelleddec

by Labstage. The idea is to keep doing this until there are no more argsnin
undec(Labsiqq.) that are illegallyin in the transition sequence. Thus, the extended tran-
sition sequence becomp&abg, A1, Laby, . .., Am, Laby, Amt1, Labmi1, -y Amn,
Laby4n] (Mm,n > 0) where:

W) {Am+1,---s Amtn} C undec(Labsiqge), and

(2) Lab,,+n, does not have any illegallyn-labelled argument that is an element of
undec(Labstqage)-

Not only doesCab.,,+» NOt have any illegallyin-labelled argument that is an element
of undec(Labstage), it also does not have any illegaliyn-labelled argument that is an
element ofout(Labsiqege) (this is because these arguments have been relabelted to
in the first part of the transition sequence), and it also dagshave any illegallyin-
labelled argument that is an elementiaf Labs:q4.) (this is because if there exists such
an argument (sayl), then it must have a conflict with atn-labelled argument from
undec(Labsiqege) (SAYB), but then it follows thaB is also illegallyin in Lab,,4»: con-
tradiction). From the fact thatab,,,, does not have any illegallyn-labelled argument
that is inundec(Labsiage), IN out(Labsiqge) OF IN in(Labsiqge), it holds thatlaby, 1.,
does not have any illegaliyn-labelled argument at all. This means that the transitien se
guence is terminated, and that therefore (Lemmédb),, ., is a conflict-free labelling.
Since no transition steps on any argumentsiCabsqq.) Were performed, it holds
thatin(Laby4+n) 2 in(Labsiege). Furthermore, sinceut(Lab,,) = out(Labsiage)s
and none of the transition steps followiripb,, relabels any of theseut-labelled
arguments taindec (they will always stay legallyut because they all have attack-
ers inin(Labsiage) that are not selected for any transition steps) it also htids
out(Laby4r) 2 out(Labsiage). From the fact thatn(Laby,+rn) 2 in(Labsiege) and
out(Labp4rn) 2 out(Labsiqege) it follows thatundec(Laby, 1) C undec(Labsigge)-
However, sinceCabs:qq iS a stage labelling andab,, +,, is a conflict-free labelling, it
follows thatundec(Lab,,+») cannot be a strict subset dfubs..4.. Therefore, it must
hold thatundec(Laby,+rn) = undec(Labstage). It then follows thatin(Labp,4r,) =
in(Labsiage) and out(Labytr) = out(Labsiege). This means thatlab,,+, =
ﬁabsmge. O

Since each terminated transition sequence yields a lapditiat is conflict-free,
Theorem 3 allows for a simple way of obtaining all stage |lbgs$: simply produce all
terminated transition sequences and select the resulignitimalundec. Fortunately,
it is not necessary to compuadl of the terminated transition sequences. This is because
during the course of a transition sequence, the sehdéc-labelled arguments either
stays the same or increases, as is stated in the followingppition.

Proposition 2. Let [Laby, A1, Laby, ..., A,, Laby,] be a transition sequence. For any
1 <4 < nitholds thatundec(Lab;_1) C undec(Lab;).

Suppose we have already computed a terminated transitgpresee yielding la-
belling Lab, and we are currently computing a (not yet terminated) ttimmssequence
whose last labelling isCab;. If undec(Lab) G undec(Lab;) then Proposition 2 tells
us that the current transition sequence will never yieldagestextension once it is ter-

minated, and that it would therefore be a good idea to badkti@another possibility.
This allows us to prune the search space, a possibility taatnet available in Verheij's
original treatment of the dynamics of stage semantics [16,1

Overall, the algorithm for computing the stage labellin§s given argumentation
framework can be described as follows.

potential _stage_|abs := @ find_stage_l abs(all-in);
print potential _stage_| abs; end;

procedure find_stage_| abs(Lab)
if we found sonething that is worse than found earlier
then prune the search tree and backtrack
if 3Lab’ € potential _stage_| abs: undec(Lab’) S undec(Lab) then return;
now see if our current transition sequence has terninated
if Lab does not have an argunent that is illegally in then
for each Lab' C potential _stage_| abs
if an old candidate is worse than the new candi date: renove
i f undec(Lab) S undec(Lab’) then
potential _stage_| abs := potential _stage_l abs - {Lab'};
endi f;
endf or ;
add our newmy found | abelling as a candi date
we already know that it is not worse than what we al ready have
potential _stage_| abs : = potential _stage_| abs U {Lab};
return; # we are done with this one; try next possibility
el se

for each argunent A that is illegally in in Lab
find_stage_|l abs(transition_step(A, Lab));
endf or;
endi f;
endpr oc;

procedure transition_step(A, Lab)
Lab' := Lab;
rel abel argument A fromin to out
Lab' 1= (Lab' — {(4,in)}) U {(A,out)};
rel abel any resulting illegal out to undec
for each B in {A}uA*
if Bisillegally out then Lab := (Lab'—{(B,out)})U {(B,undec)};
endf or;
return Lab';
endpr oc;

A software implementation of the above algorithm is presdrdat the COMMA
demo session. Apart from computing the stage labellinge(sions), the software is
also able to compute the grounded, preferred, stable andssabte labellings (exten-
sions) using the algorithms described in [6,14].

4. Stage Semantics and Maximal Consistency

There exists an alternative way to describe the conceptagkstemantics. In essence,
what stage semantics does is taking a maximal subgraph afglienentation framework
that has at least one stable extension. A stage extensioeriststable extension of such
a maximal subgraph. Similar observations have been madeindntext of EFLOG
[16,17]. In the current section, however, we treat theseltem the context of abstract
argumentation.

Definition 8. Let AF = (Ar, att) be an argumentation framework antrgs C Ar. We
define asubframeworkAF| 4,4 Of AF as (Args, att N (Args x Args)). If AF| 4rgs,
and AF'| 4r4s, are subframeworks ol F' then we say thatl F'| 4.4, is at least as big as
AF | args, iff Args; C Args,.

Proposition 3. Let AF' = (Ar, att) be an argumentation framework antlgs C Ar.
The following two statements are equivalent:

1. Args is a conflict-free set ol F’
2. Args is a stable extension 0fF'| 4,450 Args+

Theorem 4. Let AF = (Ar, att) be an argumentation framework antlgs C Ar. The
following two statements are equivalent.

1. Args is a conflict-free set ofAF" where Args U Args™ is maximal (w.r.t. set
inclusion) among all conflict-free sets (thatidrgs is a stage extension ofF’).

2. Args is a stable extension of a maximal subframeworldéf that has at least
one stable extension.

Proof. “from 1 to 2": Let Args be a conflict-free set ol " whereArgs U Args™ is max-
imal. From Proposition 3 it follows thatlrgs is a stable extension oA F | 4,50 Args+ -
So Args is a stable extension of a subframework4f' that has at least one stable ex-
tension. We now prove that F'| 4,454+ IS @lso amaximalsubframework that has at
least one stable extension. Létys;.,,,. 2 Args U Args™ be such thatlF|ags;,
has at least one stable extension, antlets’ be such a stable extension. It then follows
that Args’ U Args't = Args;.,,,,.. From Proposition 3 it then follows thatrgs’ is a
conflict-free set ofAF". However, sincedrgs’ U Args'* 2 ArgsU Args™, it follows that
Args does not have a maximal range. Contradiction.

“from 2 to 1": Let Args be a stable extension of a maximal subframework that has at
least one stable extension. It follows that this maximafisubhework iISAF | 4,qsu Args+ -
Then from Proposition 3 it follows thadrgs is a conflict-free set ol F'. We now prove
that it is also a conflict-free set with a maximal range. Megs’ be a conflict-free set of
AF such thatdrgs U Argst G Args’ U Args't. Then from Proposition 3 it follows that
Args' is a stable extension 0fF| 4,5/ args+- BUt this means thal F'| 4,450 args+ IS

not amaximalsubframework that has at least one stable extension. Glicticm. O

In order to understand the difference between stage sersattd the admissibility
based semantics, it is useful to make an analogy with ckdsigic. In the presence of a
potentially inconsistent knowledge base one could do twagth

1. Take the maximal consistent subsets of the knowledge haseexamine what
is entailed by all of these (the “maximal consistency apph®ga That is, take
the (classical) models of the maximal subsets of the knoyddahse that have
classical models.

2. Define a new semantics such that the entire knowledge bifiseawe models
(the “new semantics approach”). This is the approach th&bisnstance, taken
in the field of paraconsistent logic [1,9].

Solution 1 (applying the original semantics to maximal ®ib®f the original problem
description) is comparable to stage semantics, whereas®oP (redefining the seman-
tics so that it can meaningfully be applied to a bigger clddsrowledge bases) is com-
parable with the admissibility based semantics.

To understand the difference between solution 1 (the maxiamsistency approach)
and solution 2 (the new semantics approach), it helps toyshelfollowing labelling-
based definition of stable semantics.

Definition 9. Let AF = (Ar, att) be an argumentation framework.séable labellings
a function that assigns each argumeht Ar either the labelin or out, such that:

1. Ais labelledin iff all its attackers are labelledut, and
2. Aislabelledout iff it has at least one attacker that is labelléed.

The innovation of complete semanfiasan be described as adding a third kind of
label andec) to the existing labelsifh andout), while keeping the two clauses in the
above definition the same [4,8]. A similar approach has b&srdin the field of logic
programming, where complete semantics is known ashite-valued stable model se-
mantics[18]. In either case, the result is that under the new sermtomplete or 3-
valued stable) solutions (models or extensions) exist) &wesituations where solutions
did not exist under the old semantics (2-valued stable) milar trend can be observed
in the field of paraconsistent logic, where some approaciids tvarrant the existence
of solutions (models) by implementing additional truthues [1,9].

An alternative approach would be not to come up with a funddelly new seman-
tics, but instead to apply the “traditional” semantics oe thaximal part of the knowl-
edge base that has “traditional” solutions. In the domaidadsical logic, for instance,
one could examine what is entailed by all maximal consistabsets of formulas in the
knowledge base, which in essence is the same as consideédrgatssical models of
all maximal subsets of formulas that have classical mo&isilarly, in the context of
logic programming, one could apply stable model semantitiseé maximal subsets of a
logic program that have stable models, or in the context efrabt argumentation, one
could apply stable semantics to maximal subframeworksithe¢ stable extensions, as
is implemented by stage semantics.

5. Discussion

In the current paper, we have re-examined the concept oé stagantics and studied
some of its properties. Apart from that, we have providedlgoréghm that computes

5Recall that other admissibility-based semantics (likeugoed, preferred, ideal or semi-stable) in essence
select particular subsets of the complete extensionslifiaisg

all stage labellings, and therefore also all stage extessibhis algorithm starts with
the all-in labelling and then performs a sequence of transition stepshich the set of
in-labelled arguments decreases and the set@éc-labelled arguments increases. This
approach allows one to prune the search space, a possibdityvould not be available
if one would, for instance, start with the alkdec labelling, and then perform an alter-
native type of transition steps which increase the seia@ndout-labelled arguments.
Nor would pruning be available when one uses the extensigpoach (instead of the
labellings approach) starting with the empty set while egpently adding arguments
such that the set remains conflict-free.

Although for the extensions approach it would also be pdssiballow for pruning
by starting with the set of all arguments, and then subsdtyugmoving arguments un-
til the set becomes conflict-free, such an approach wouldirethe computation of the
range of the set after every removal. This computation &tikelly expensive, because it
is essentially a global recomputation from scratch. Withldbellings approach, on the
other hand, no such global recomputation is needed. Insteemoving an argument
(sayA) from the set, we perform a transition step oniarlabelled argument. We do this
by relabelling the argument froam to out (which is similar to removing the argument
from the set) and by subsequently relabelling she-labelled arguments iA} U A
that have now become illegalbut to undec (which serves the same purpose as recal-
culating the range of the new set). However, while recatoudathe range of the new
set is a global operation, based on the entire argumentatiorework, relabelling any
illegally out-labelled arguments iiA} U AT to undec only requires a local operation
on a restricted part of the argumentation framework. Thais of the main advantages
of the labellings approach above the sets approach.

Like was mentioned before, stage semantics forms one ofotinedfations of Ver-
heij’s DEFLOG system [16,17], which can be seen as a generalisation of ®uangon
of an argumentation framework by providing a full logicatrfmalism of justification and
attack. Where various recent work in abstract argumemtdtieory has been driven to
implement things like higher order attacks [2] and extenaledimentation frameworks
[12,13], these concepts have been implementedHRALIDG already ten years ago, in the
context of stage semantics, as well as in the context of aér@antics. Apart from this,
the concept of semi-stable semantics can be traced back]tajiere it was described in
terms ofadmissible stage extensiordthough differences in basic formalisation do not
make it immediately obvious (Verheij for instance does ra# the standard extensions
approach) it can be proved that Verheij's approach is etpriv¢o that of Caminada, who
independently from Verheij rediscovered the same contleigttime under the name of
semi-stable semantics [5]. In addition, Caminada has preaeious additional proper-
ties (like the fact that each semi-stable extension is alsonaplete extension [5]) and
provided an algorithm [6].

One of the more fundamental issues that were treated in éipisrps the difference
between the “maximal consistency” approach and the “newas¢ins” approach. For
instance, scholars in the field of paraconsistent logic baastify their often more elab-
orate new semantical approaches above the simpler appobdaelecting the maximal
consistent subsets of a knowledge base. However, in argati@nit appears that we
have gone directly to the “new semantics” approach (adbildg) without even consid-
ering the “maximal consistency” approach (stage semg3ritiany serious way. This is
remarkable, especially since the maximal consistencyagmbrturns out to be express-

ible using the relatively simple notion of a conflict-fre¢ ggth maximal range, which
does not require concepts like acceptability, fixpoints ar@hotonic functions. This
raises the question of what are the fundamental advantdgbs admissibility based
semantics above what appears to be the simpler approacigef stmantics.

References

[1] O. Arieli and A. Avron. The value of the four valueétificial Intelligence 102:97-141, 1998.

[2] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida. Encosgiag attacks to attacks in abstract argumen-
tation frameworks. IProc. of ECSQARU 2009, 10th European Conference on SynarafiQuantita-
tive Approaches to Reasoning with Uncertajmigges 83—94, 2009.

[3] P.Baroni, M. Giacomin, and G. Guidaccrecursiveness: a general schema for argumentation seman-
tics. Artificial Intelligence 168(1-2):165-210, 2005.

[4] M.W.A. Caminada. On the issue of reinstatement in arguateon. In M. Fischer, W. van der Hoek,
B. Konev, and A. Lisitsa, editord,ogics in Atrtificial Intelligence; 10th European ConferendELIA
2006 pages 111-123. Springer, 2006. LNAI 4160.

[5] M.W.A. Caminada. Semi-stable semantics. In P.E. Dume®].M. Bench-Capon, editor€omputa-
tional Models of Argument; Proceedings of COMMA 20p&ges 121-130. I0S Press, 2006.

[6] M.W.A.Caminada. An algorithm for computing semi-stalsemantics. liProceedings of the 9th Euro-
pean Conference on Symbolic and Quantitalive ApproachBeé&soning with Uncertainty (ECSQARU
2007) number 4724 in Springer Lecture Notes in Al, pages 222-B&4in, 2007. Springer Verlag.

[7] M.W.A. Caminada. A labelling approach for ideal and stagmantics. submitted, 2010.

[8] M.W.A.Caminada and D.M. Gabbay. A logical account ofrfiad argumentationStudia Logica93(2-
3):109-145, 2009. Special issue: new ideas in argumenttteory.

[9] W. Carnielli, M.E. Coniglio, and J. Marcos. Logics of faml inconsistency. In D.M. Gabbay and
F. Guenthner, editordlandbook of Philosophical Logic, second editiamlume 14, pages 15-114.
Springer Verlag, 2002.

[10] P. M. Dung. On the acceptability of arguments and itsdmental role in nonmonotonic reasoning,
logic programming ana-person gamedAtrtificial Intelligence 77:321-357, 1995.

[11] P.M. Dung, P. Mancarella, and F. Toni. Computing idegiical argumentatiorArtificial Intelligence
171(10-15):642-674, 2007.

[12] S. Modgil. An abstract theory of argumentation that@omodates defeasible reasoning about prefer-
ences. IrProc. ECSQARU 20Qpages 648-659, 2007.

[13] S. Modgil. Reasoning about preferences in argumemtdtameworks Artificial Intelligence 173:901—
1040, 2009.

[14] S. Modgil and M.W.A. Caminada. Proof theories and athons for abstract argumentation frameworks.
Inl. Rahwan and G.R. Simari, editolsrgumentation in Artificial Intelligengepages 105-129. Springer,
2009.

[15] B. Verheij. Two approaches to dialectical argumentatiadmissible sets and argumentation stages. In
J.-J.Ch. Meyer and L.C. van der Gaag, editBreceedings of the Eighth Dutch Conference on Atrtificial
Intelligence (NAIC'96)pages 357-368, Utrecht, 1996. Utrecht University.

[16] B. Verheij. DEFLOG - a logic of dialectical justification and defeat. Techniogport, Department of
Metajuridica, Universiteit Maastricht, 2000.

[17] B. Verheij. DEFL0OG: on the logical interpretation of prima facie justified asgtions.Journal of Logic
and Computation13:319-346, 2003.

[18] Y. Wu, M.W.A. Caminada, and D.M. Gabbay. Complete estens in argumentation coincide with 3-
valued stable models in logic programmirtudia Logica93(1-2):383—-403, 2009. Special issue: new
ideas in argumentation theory.

