
An Algorithm for Stage Semantics

Martin CAMINADA a

a University of Luxembourg

Abstract. In the current paper, we re-examine the concept of stage semantics,
which is one of the oldest semantics for abstract argumentation. Using a formal
treatment of its properties, we explain how the intuition behind stage semantics dif-
fers from the intuition behind the admissibility based semantics that most scholars
in argumentation theory are familiar with. We then provide alabelling-based algo-
rithm for computing all stage extensions, based on earlier algorithms for computing
all preferred, stable and semi-stable extensions.

1. Introduction

The concept of stage semantics for abstract argumentation was first introduced by Verheij
[15] and has subsequently been worked out in Verheij’s DEFLOG system [16,17], which
can be regarded as a generalization of the abstract argumentation theory of Dung [10].
Although stage semantics is one of the oldest semantics for abstract argumentation, it
has so far remained relatively unknown, which might have to do with the fact that it was
originally stated not in terms of the usual extensions approach, but in the form of pairs
(J, D) whereJ is a set of justified arguments andD is a set of defeated arguments [15].
Nevertheless, there exist good reasons for treating stage semantics as one of the main-
stream semantics for abstract argumentation, not only because it can be expressed using
a relatively simple and elegant principle, but also becauseit implements a fundamentally
different intuition than the traditional admissibility based semantics (such as complete,
grounded and preferred [10], ideal [11] or semi-stable [15,5]).

Despite of the differences between stage semantics and the traditional admissibility-
based semantics, it is still possible to provide an algorithm for computing all stage ex-
tensions, that is very close to previously stated algorithms for computing all preferred,
stable and semi-stable extensions [6,14], as is demonstrated in the current paper.

2. Stage Semantics

In Verheij’s original work [15] stage semantics was defined in terms of pairs of sets
of arguments. In the current paper, however, we will describe stage semantics in terms
of the more commonly applied extensions approach. We assumefamiliarity with ba-
sic argumentation concepts, such as that of an argumentation framework, conflict-free
sets, admissible sets, complete extensions, preferred extensions, stable extensions and
the grounded extension. Definitions of these can be found in [10]. In the current paper,
we only consider finite argumentation frameworks.

If A is an argument then we writeA+ for the set of arguments attacked byA. Simi-
larly, if Args is a set of arguments then we writeArgs+ to refer to the set of arguments
attacked by at least one argument inArgs .

Definition 1. Let AF = (Ar , att) be an argumentation framework. A stage extension
is a conflict-free setArgs ⊆ Ar whereArgs ∪ Args+ is maximal (w.r.t. set inclusion)
among all conflict-free sets.

Stage semantics can to some extent be compared to semi-stable semantics, which is
essentially an admissible setArgs whereArgs ∪ Args+ is maximal. In the remainder
of this paper, we refer toArgs ∪ Args+ as therangeof Args , a term that was first
introduced in [15]. Thus, where semi-stable extensions areadmissible sets with maximal
range, stage extensions are conflict-free sets with maximalrange.

One could examine whether the same principle can also be applied to other seman-
tics. That is, what if for instance one would look at complete, preferred or stable exten-
sions with maximal range? It turns out that doing so does not yield any additional se-
mantics. Complete extensions with maximal range, as well aspreferred extensions with
maximal range, are semi-stable extensions.1 Stable extensions by definition have a maxi-
mal range, so selecting the stable extensions with maximal range simply means selecting
all stable extensions. An overview of the effects of selecting sets and extensions with
maximal range is provided in Table 1.

input conflict-free admissible complete preferred stable

extensions/sets sets sets extensions extensions extensions

result when selecting stage semi-stable semi-stable semi-stable stable

for maximal range extensions extensions extensions extensions extensions

Table 1. Selecting the extensions with a maximal range, given a semantics.

As an example of how stage semantics operates, consider the first argumentation
framework on the left of Figure 1. Here, there exist five conflict-free sets:∅, {A}, {B},
{C} and{A, C}. Both {B} and{A, C} are maximal, but only{A, C} has a maximal
range, so only{A, C} is a stage extension. This illustrates that selecting a maximal
conflict-free set is different than selecting a conflict-free set with maximal range.2

Another example is the second argumentation framework of Figure 1. Here, there
exist pricisely two stage extensions:{A, D} and{B, D} (both of which have a range of
{A, B, C.D}). Hence, the results of stage semantics of this example are in line with the
results of more established semantics like preferred, stable and semi-stable.

In the third argumentation framework of Figure 1, the two-cycle of the previous
example has been replaced by a three-cycle. Here, there exist three stage extensions
{A, E}, {B, E} and{C, E} (with corresponding ranges{A, B, D, E}, {B, C, D, E}
and{C, A, D, E}). This is in contrast with the admissibility based semantics (grounded,
preferred, complete, ideal and semi-stable) which all yield ∅ as the only extension.

1The equivalence between admissible sets with maximal ranges and complete extensions with maximal
ranges has been proved in [5], and the equivalence between complete extensions with maximal ranges and
preferred extensions with maximal ranges can be proved in a similar way.

2Just like selecting a maximal admissible set (preferred) isdifferent than selecting an admissible set with a
maximal range (semi-stable).

Hence, one of the advantages of stage semantics is that odd and even loops are treated
equally. The only other well-known semantics with this property is CF2 [3].3

The fourth argumentation framework of Figure 1 is where stage semantics yields a
different result than obtained by the admissibility based semantics, as well as by CF2.
The only stage extension here is{B}, where the admissibility based semantics all yield
∅ as the only extension.

C

A B

D

E

A

B

B

A

C

BA

C

D

Figure 1. Four argumentation frameworks

It holds that every stable extension is a stage extension (just like every stable exten-
sion is a semi-stable extension [5]).

Theorem 1. LetArgs be a stable extension of argumentation framework(Ar , att).Args

is also a stage extension of(Ar , att).

Proof. Let Args be a stable extension of(Ar , att). ThenArgs is a conflict-free set that
attacks every argument inAr\Args. This means thatArgs ∪ Args+ = Ar . Therefore,
Args ∪ Args+ is maximal (it cannot be a proper superset ofAr). Therefore,Args is a
stage extension.

It also holds that if there exists at least one stable extension, then every stage exten-
sion is also a stable extension (just like if there exists at least one stable extension, then
every semi-stable extension is also a stable extension [5]).

Theorem 2. Let (Ar , att) be an argumentation framework that has at least one stable
extension. It then holds that every stage extension is also astable extension.

Proof. Let Args be a stable extension of(Ar , att). It then holds thatArgs is a conflict-
free set withArgs ∪ Args+ = Ar . Therefore, every stage extensionArgs ′ will have to
satisfyArgs ′ ∪ Args ′+ = Ar in order to have a maximal range. This means that every
stage extension will also be a stable extension.

Theorem 1 and 2 can be seen as special instances of the resultsobtained in DEFLOG

[16,17]. Apart from the extensions approach, it is also possible to describe stage seman-
tics in terms of argument labellings [4,8,7].

3CF2 semantics does have the advantage that the grounded extension is a subset ofeveryCF2 extension,
whereas for stage semantics one has the weaker property thatthe grounded extension is a subset ofat least one
stage extension. See [7] for more details.

Definition 2. Let (Ar , att) be an argumentation framework. A labelling is a function
Lab : Ar → {in, out, undec}.

If Lab is a labelling then we writein(Lab) for {A | Lab(A) = in}, out(Lab)
for {A | Lab(A) = out} and undec(Lab) for {A | Lab(A) = undec}.
Since a labelling is a function, it can be represented as a setof pairs. In this pa-
per we will sometimes use an alternative way to represent a labelling, as a partition
(in(Lab), out(Lab), undec(Lab)).

Definition 3. Let (Ar , att) be an argumentation framework. A conflict-free labelling is
a labelling such that for everyA ∈ Ar it holds that:

1. if Lab(A) = in then∀B ∈ Ar : (BattA ⊃ Lab(B) 6= in)
2. if Lab(A) = out then∃B ∈ Ar : (BattA ∧ Lab(B) = in)

The definition of a conflict-free labelling is almost equal tothat of an admissible
labelling in [8]. The only difference is that for an admissible labelling, the first clause is
“if Lab(A) = in then∀B ∈ Ar : (BattA ⊃ Lab(B) = out)”, which is stronger than
the first clause of Definition 3. It immediately follows that every admissible labelling is
also a conflict-free labelling, just like every admissible set is also a conflict-free set.

Definition 4. Let (Ar , att) be an argumentation framework.Lab is a stage labelling iff
Lab is a conflict-free labelling whereundec is minimal (w.r.t. set inclusion) among all
conflict-free labellings.

It can be verified that stage extensions and stage labellingsstand in a one-to-one
relationship to each other.

Proposition 1. LetAF = (Ar , att) be an argumentation framework.

1. If Args is a stage extension ofAF thenExt2Lab(Args) is a stage labelling of
AF , whereExt2Lab(Args) = (Args ,Args+,Ar\(Args ∪ Args+)).

2. If Lab is a stage labelling ofAF thenLab2Ext(Lab) is a stage extension ofAF ,
whereLab2Ext(Lab) = in(Lab).

Moreover, when restricted to stage extensions and stage labellings, the functions
Ext2Lab andLab2Ext become bijective and each other’s inverses.

The proof of Proposition 1 is included in [7], where it is alsoproved that every stable
labelling (in the sense of [4,8]) is also a stage labelling, and that if there exists at least
one stable labelling, then every stage labelling is also a stable labelling.

3. An Algorithm

In the current section we provide an algorithm for computingall stage labellings of a
given argumentation framework. Using the result of Proposition 1 we then also obtain
the stage extensions of the argumentation framework, whichare after all simply the sets
of in-labelled arguments of the stage labellings.

The basic idea of the algorithm is to start with a labelling inwhich every argument is
labelledin. This labelling will subsequently be referred to as theall-in labelling. Then,

a sequence oftransition stepsis applied, where each step resolves a conflict between
two in-labelled arguments where one attacks the other. The algorithm described in the
current section is a slightly modified version of the earlierdeveloped algorithm for com-
puting all semi-stable labellings4 [6]. The main difference is that where the semi-stable
algorithm is based on the notion of an admissible labelling,the currently presented stage
algorithm is based on the notion of a conflict-free labelling.

Definition 5. LetLab be a labelling of argumentation frameworkAF = (Ar , att).

1. an in-labelled argumentA is called illegally in iff ∃B ∈ Ar : (BattA ∧
Lab(B) = in) ∨ ∃B ∈ Ar : (AattB ∧ Lab(B) = in)

2. an out-labelled argumentA is called illegally out iff ¬∃B ∈ Ar : (BattA ∧
Lab(B) = in)

In essence, an argument is illegallyin iff it violates point 1 of Definition 3 and
is illegally out iff it violates point 2 of Definition 3. It then follows that a labelling is
conflict-free iff it does not have any argument that is illegally in or illegally out.

Definition 6. LetLab be a labelling of argumentation framework(Ar , att) andA ∈ Ar

and argument that is illegallyin in Lab. A transition stepon A in Lab consists of the
following:

1. the label ofA is changed fromin to out

2. for everyB ∈ {A} ∪ A+, if B is illegally out then the label ofB is changed
fromout to undec

It can be observed that each transition step preserves the absence of arguments that
are illegallyout. That is, if a labelling does not have any argument that is illegallyout
before a transition step, then there will still be no argument that is illegallyout after
the transition step. Moreover, since each transition step reduces the number of illegally
in-labelled arguments by at least one, subsequently applyingtransition steps starting
from the all-in labelling ultimately yields a labelling without any illegally in-labelled
arguments.

Definition 7. A transition sequenceis a list [Lab0, A1,Lab1, A2,Lab2, . . . , An,Labn]
(n ≥ 0) whereLab0 is the all-in labelling, eachAi (1 ≤ i ≤ n) is an argument that
is illegally in in Labi−1, and everyLabi (1 ≤ i ≤ n) is the result of doing a transition
step onAi in Labi−1. A transition sequence is calledterminatediff Labn does not have
any argument that is illegallyin.

Since we only consider finite argumentation frameworks, it holds that every tran-
sition sequence can be extended to a terminated transition sequence, in which a finite
number of transitions have been performed. We say that a transition sequenceyieldsLab

if its last labelling isLab.
As an example of a transition sequence, consider the third argumentation frame-

work of Figure 1. Starting with the all-in labellingLab0 = ({A, B, C, D}, ∅, ∅), one
could, for instance, select argumentA to do a transition step on, resulting in the labelling
Lab1 = ({B, C, D, E}, {A}, ∅). Subsequently one could, for instance, select argument

4Other variations of the same algorithm exist for computing all preferred and all stable labellings [6].

C to do a transition step on. OnceC is relabelledout, A becomes illegallyout and is
therefore relabelledundec in the same transition step. Hence the resulting labellingLab2

is ({B, D, E}, {C}, {A}). Subsequently, one could select argumentD to do a transtion
step on, resulting in the labellingLab3 = ({B, E}, {C, D}, {A}). This labelling does
not have any argument that is illegalyin, so the transition sequence is terminated. The
overall transition sequence is[Lab0, A,Lab1, C,Lab2, D,Lab3].

Lemma 1. Let [Lab0, A1,Lab1, . . . , An,Labn] be a terminated transition sequence. It
holds thatLabn is a conflict-free labelling.

Proof. Since the all-in labelling does not have any argument that is illegallyout (it has
no out-labelled argument at all) and each transition step preserves the absence of ille-
gally out-labelled arguments, it follows that each terminated transition sequence yields
a labelling without any illegallyout-labelled arguments. Since a terminated transition
sequence also yields a labelling without any illegallyin-labelled arguments (otherwise
the transition sequence would not be terminated), it follows that the result yielded by a
terminated transition sequence is a conflict-free labelling.

As an example, consider the argumentation framework on the left of Figure 1. An
example of a (terminated) transition sequence is, startingfrom the all-in labelling, first
to perform a transition step onB, resulting in a labelling({A, C}, {B}, ∅), which is
conflict-free, thus terminating the transition sequence. Another possibility would be first
to perform a transition step onA, resulting in a labelling({B, C}, ∅, {A}), and subse-
quently performing transition steps onB or C, resulting in the conflict-free labellings
({C}, ∅, {A, B}) and ({B}, {C}, {A}), respectively. Other transition sequences also
exist. Only the first obtained labelling is a stage labelling. All other labellings that are
yielded by terminated transition sequences are conflict-free but not stage. Fortunately, it
holds that, as a general rule, every stage labelling is included in the results yielded by the
terminated transition sequences, as is expressed by the following theorem.

Theorem 3. Let Labstage be a stage labelling of argumentation framework(Ar , att).
There exists a terminated transition sequence which yieldsLabstage.

Proof. We prove the theorem by, given a stage labelling, constructing a terminated tran-
sition sequence that yields it. The idea is to construct thistransition sequence in two
phases, first by doing transition steps on the arguments thatare labelledout byLab, then
by doing transition steps on the arguments that are labelledundec byLab.
Let Labstage be a stage labelling. Let[Lab0, A1,Lab1, . . . , Am,Labm] (m ≥ 0) be a
(possibly unterminated) transition sequence whereA1, . . . , Am are the arguments that
are labelledout byLabstage (that is:{A1, . . . , Am} = out(Labstage). This is a correct
transition sequence, because everyAi (1 ≤ i ≤ m) will be illegally in until it is rela-
belled toout (this is because everyAi is legallyout in Labstage, so it has an attacker
that is labelledin by Labstage, and since we do not relabel this attacker in any of the
transition steps, it will be labelledin by everyLabi (0 ≤ i ≤ m)). Furthermore, none of
the transition steps will relabel anyout-labelled argument toundec because everyout-
labelled argument will stay legallyout throughout the transition sequence. This implies
thatundec(Labm) = ∅. Furthermore, since transition steps are done on every argument
that is labelledout by Labstage, it follows thatout(Labm) = out(Labstage). Since
no transition steps are done on arguments that are labelledin by Labstage, it holds that

in(Labm) ⊇ in(Labstage).
We now continue the transition sequence, this time by doing transition steps not on ar-
guments that are labeledout by Labstage, but on arguments that are labelledundec
by Labstage. The idea is to keep doing this until there are no more arguments in
undec(Labstage) that are illegallyin in the transition sequence. Thus, the extended tran-
sition sequence becomes[Lab0, A1,Lab1, . . . , Am,Labm, Am+1,Labm+1, . . . , Am+n,

Labm+n] (m, n ≥ 0) where:
(1) {Am+1, . . . , Am+n} ⊆ undec(Labstage), and
(2) Labm+n does not have any illegallyin-labelled argument that is an element of
undec(Labstage).
Not only doesLabm+n not have any illegallyin-labelled argument that is an element
of undec(Labstage), it also does not have any illegallyin-labelled argument that is an
element ofout(Labstage) (this is because these arguments have been relabelled toout

in the first part of the transition sequence), and it also doesnot have any illegallyin-
labelled argument that is an element ofin(Labstage) (this is because if there exists such
an argument (sayA), then it must have a conflict with anin-labelled argument from
undec(Labstage) (sayB), but then it follows thatB is also illegallyin in Labm+n: con-
tradiction). From the fact thatLabm+n does not have any illegallyin-labelled argument
that is inundec(Labstage), in out(Labstage) or in in(Labstage), it holds thatLabm+n

does not have any illegallyin-labelled argument at all. This means that the transition se-
quence is terminated, and that therefore (Lemma 1)Labm+n is a conflict-free labelling.
Since no transition steps on any arguments inin(Labstage) were performed, it holds
thatin(Labm+n) ⊇ in(Labstage). Furthermore, sinceout(Labm) = out(Labstage),
and none of the transition steps followingLabm relabels any of theseout-labelled
arguments toundec (they will always stay legallyout because they all have attack-
ers in in(Labstage) that are not selected for any transition steps) it also holdsthat
out(Labm+n) ⊇ out(Labstage). From the fact thatin(Labm+n) ⊇ in(Labstage) and
out(Labm+n) ⊇ out(Labstage) it follows thatundec(Labm+n) ⊆ undec(Labstage).
However, sinceLabstage is a stage labelling andLabm+n is a conflict-free labelling, it
follows thatundec(Labm+n) cannot be a strict subset ofLabstage. Therefore, it must
hold thatundec(Labm+n) = undec(Labstage). It then follows thatin(Labm+n) =
in(Labstage) and out(Labm+n) = out(Labstage). This means thatLabm+n =
Labstage.

Since each terminated transition sequence yields a labelling that is conflict-free,
Theorem 3 allows for a simple way of obtaining all stage labellings: simply produce all
terminated transition sequences and select the results with minimalundec. Fortunately,
it is not necessary to computeall of the terminated transition sequences. This is because
during the course of a transition sequence, the set ofundec-labelled arguments either
stays the same or increases, as is stated in the following proposition.

Proposition 2. Let [Lab0, A1,Lab1, . . . , An,Labn] be a transition sequence. For any
1 ≤ i ≤ n it holds thatundec(Labi−1) ⊆ undec(Labi).

Suppose we have already computed a terminated transition sequence yielding la-
bellingLab, and we are currently computing a (not yet terminated) transition sequence
whose last labelling isLabi. If undec(Lab) $ undec(Labi) then Proposition 2 tells
us that the current transition sequence will never yield a stage extension once it is ter-

minated, and that it would therefore be a good idea to backtrack to another possibility.
This allows us to prune the search space, a possibility that was not available in Verheij’s
original treatment of the dynamics of stage semantics [16,17].

Overall, the algorithm for computing the stage labellings of a given argumentation
framework can be described as follows.

potential_stage_labs := ∅; find_stage_labs(all-in);

print potential_stage_labs; end;

procedure find_stage_labs(Lab)

if we found something that is worse than found earlier

then prune the search tree and backtrack

if ∃Lab′ ∈ potential_stage_labs: undec(Lab′) $ undec(Lab) then return;

now see if our current transition sequence has terminated

if Lab does not have an argument that is illegally in then

for each Lab′ ⊆ potential_stage_labs

if an old candidate is worse than the new candidate: remove

if undec(Lab) $ undec(Lab′) then

potential_stage_labs := potential_stage_labs - {Lab′};

endif;

endfor;

add our newly found labelling as a candidate

we already know that it is not worse than what we already have

potential_stage_labs := potential_stage_labs ∪ {Lab};

return; # we are done with this one; try next possibility

else

for each argument A that is illegally in in Lab

find_stage_labs(transition_step(A, Lab));

endfor;

endif;

endproc;

procedure transition_step(A, Lab)

Lab′ := Lab;

relabel argument A from in to out

Lab′ := (Lab′ − {(A, in)}) ∪ {(A, out)};

relabel any resulting illegal out to undec

for each B in {A} ∪ A+

if B is illegally out then Lab′ := (Lab′−{(B,out)})∪ {(B, undec)};

endfor;

return Lab′;

endproc;

A software implementation of the above algorithm is presented at the COMMA
demo session. Apart from computing the stage labellings (extensions), the software is
also able to compute the grounded, preferred, stable and semi-stable labellings (exten-
sions) using the algorithms described in [6,14].

4. Stage Semantics and Maximal Consistency

There exists an alternative way to describe the concept of stage semantics. In essence,
what stage semantics does is taking a maximal subgraph of theargumentation framework
that has at least one stable extension. A stage extension is then a stable extension of such
a maximal subgraph. Similar observations have been made in the context of DEFLOG

[16,17]. In the current section, however, we treat these results in the context of abstract
argumentation.

Definition 8. LetAF = (Ar , att) be an argumentation framework andArgs ⊆ Ar . We
define asubframeworkAF |Args of AF as (Args , att ∩ (Args × Args)). If AF |Args1

andAF |Args2
are subframeworks ofAF then we say thatAF |Args2

is at least as big as
AF |Args1

iff Args1 ⊆ Args2.

Proposition 3. Let AF = (Ar , att) be an argumentation framework andArgs ⊆ Ar .
The following two statements are equivalent:

1. Args is a conflict-free set ofAF

2. Args is a stable extension ofAF |Args∪Args+

Theorem 4. LetAF = (Ar , att) be an argumentation framework andArgs ⊆ Ar . The
following two statements are equivalent.

1. Args is a conflict-free set ofAF whereArgs ∪ Args+ is maximal (w.r.t. set
inclusion) among all conflict-free sets (that is,Args is a stage extension ofAF).

2. Args is a stable extension of a maximal subframework ofAF that has at least
one stable extension.

Proof. “from 1 to 2”: LetArgs be a conflict-free set ofAF whereArgs∪Args+ is max-
imal. From Proposition 3 it follows thatArgs is a stable extension ofAF |Args∪Args+ .
SoArgs is a stable extension of a subframework ofAF that has at least one stable ex-
tension. We now prove thatAF |Args∪Args+ is also amaximalsubframework that has at
least one stable extension. LetArgs ′range % Args ∪ Args+ be such thatAF |Args′

range

has at least one stable extension, and letArgs ′ be such a stable extension. It then follows
thatArgs ′ ∪ Args ′+ = Args ′range. From Proposition 3 it then follows thatArgs ′ is a
conflict-free set ofAF . However, sinceArgs ′∪Args ′+ % Args ∪Args+, it follows that
Args does not have a maximal range. Contradiction.
“from 2 to 1”: Let Args be a stable extension of a maximal subframework that has at
least one stable extension. It follows that this maximal subframework isAF |Args∪Args+ .
Then from Proposition 3 it follows thatArgs is a conflict-free set ofAF . We now prove
that it is also a conflict-free set with a maximal range. LetArgs ′ be a conflict-free set of
AF such thatArgs ∪Args+ $ Args ′ ∪Args ′+. Then from Proposition 3 it follows that
Args ′ is a stable extension ofAF |Args′∪Args′+ . But this means thatAF |Args∪Args+ is
not amaximalsubframework that has at least one stable extension. Contradiction.

In order to understand the difference between stage semantics and the admissibility
based semantics, it is useful to make an analogy with classical logic. In the presence of a
potentially inconsistent knowledge base one could do two things:

1. Take the maximal consistent subsets of the knowledge base, and examine what
is entailed by all of these (the “maximal consistency approach”). That is, take
the (classical) models of the maximal subsets of the knowledge base that have
classical models.

2. Define a new semantics such that the entire knowledge base will have models
(the “new semantics approach”). This is the approach that is, for instance, taken
in the field of paraconsistent logic [1,9].

Solution 1 (applying the original semantics to maximal subsets of the original problem
description) is comparable to stage semantics, whereas solution 2 (redefining the seman-
tics so that it can meaningfully be applied to a bigger class of knowledge bases) is com-
parable with the admissibility based semantics.

To understand the difference between solution 1 (the maximal consistency approach)
and solution 2 (the new semantics approach), it helps to study the following labelling-
based definition of stable semantics.

Definition 9. LetAF = (Ar , att) be an argumentation framework. Astable labellingis
a function that assigns each argumentA ∈ Ar either the labelin or out, such that:

1. A is labelledin iff all its attackers are labelledout, and
2. A is labelledout iff it has at least one attacker that is labelledin.

The innovation of complete semantics5 can be described as adding a third kind of
label (undec) to the existing labels (in andout), while keeping the two clauses in the
above definition the same [4,8]. A similar approach has been stated in the field of logic
programming, where complete semantics is known as thethree-valued stable model se-
mantics[18]. In either case, the result is that under the new semantics (complete or 3-
valued stable) solutions (models or extensions) exist, even for situations where solutions
did not exist under the old semantics (2-valued stable). A similar trend can be observed
in the field of paraconsistent logic, where some approaches try to warrant the existence
of solutions (models) by implementing additional truth values [1,9].

An alternative approach would be not to come up with a fundamentally new seman-
tics, but instead to apply the “traditional” semantics on the maximal part of the knowl-
edge base that has “traditional” solutions. In the domain ofclassical logic, for instance,
one could examine what is entailed by all maximal consistentsubsets of formulas in the
knowledge base, which in essence is the same as considering the classical models of
all maximal subsets of formulas that have classical models.Similarly, in the context of
logic programming, one could apply stable model semantics to the maximal subsets of a
logic program that have stable models, or in the context of abstract argumentation, one
could apply stable semantics to maximal subframeworks thathave stable extensions, as
is implemented by stage semantics.

5. Discussion

In the current paper, we have re-examined the concept of stage semantics and studied
some of its properties. Apart from that, we have provided an algorithm that computes

5Recall that other admissibility-based semantics (like grounded, preferred, ideal or semi-stable) in essence
select particular subsets of the complete extensions (labelings).

all stage labellings, and therefore also all stage extensions. This algorithm starts with
the all-in labelling and then performs a sequence of transition steps in which the set of
in-labelled arguments decreases and the set ofundec-labelled arguments increases. This
approach allows one to prune the search space, a possibilitythat would not be available
if one would, for instance, start with the all-undec labelling, and then perform an alter-
native type of transition steps which increase the sets ofin andout-labelled arguments.
Nor would pruning be available when one uses the extensions approach (instead of the
labellings approach) starting with the empty set while subsequently adding arguments
such that the set remains conflict-free.

Although for the extensions approach it would also be possible to allow for pruning
by starting with the set of all arguments, and then subsequently removing arguments un-
til the set becomes conflict-free, such an approach would require the computation of the
range of the set after every removal. This computation is relatively expensive, because it
is essentially a global recomputation from scratch. With the labellings approach, on the
other hand, no such global recomputation is needed. Insteadof removing an argument
(sayA) from the set, we perform a transition step on anin-labelled argument. We do this
by relabelling the argument fromin to out (which is similar to removing the argument
from the set) and by subsequently relabelling theout-labelled arguments in{A} ∪ A+

that have now become illegallyout to undec (which serves the same purpose as recal-
culating the range of the new set). However, while recalculating the range of the new
set is a global operation, based on the entire argumentationframework, relabelling any
illegally out-labelled arguments in{A} ∪ A+ to undec only requires a local operation
on a restricted part of the argumentation framework. This isone of the main advantages
of the labellings approach above the sets approach.

Like was mentioned before, stage semantics forms one of the foundations of Ver-
heij’s DEFLOG system [16,17], which can be seen as a generalisation of Dung’s notion
of an argumentation framework by providing a full logical formalism of justification and
attack. Where various recent work in abstract argumentation theory has been driven to
implement things like higher order attacks [2] and extendedargumentation frameworks
[12,13], these concepts have been implemented in DEFLOG already ten years ago, in the
context of stage semantics, as well as in the context of othersemantics. Apart from this,
the concept of semi-stable semantics can be traced back to [15], where it was described in
terms ofadmissible stage extensions. Although differences in basic formalisation do not
make it immediately obvious (Verheij for instance does not use the standard extensions
approach) it can be proved that Verheij’s approach is equivalent to that of Caminada, who
independently from Verheij rediscovered the same concept,this time under the name of
semi-stable semantics [5]. In addition, Caminada has proved various additional proper-
ties (like the fact that each semi-stable extension is also acomplete extension [5]) and
provided an algorithm [6].

One of the more fundamental issues that were treated in this paper is the difference
between the “maximal consistency” approach and the “new semantics” approach. For
instance, scholars in the field of paraconsistent logic had to justify their often more elab-
orate new semantical approaches above the simpler approachof selecting the maximal
consistent subsets of a knowledge base. However, in argumentation it appears that we
have gone directly to the “new semantics” approach (admissibility) without even consid-
ering the “maximal consistency” approach (stage semantics) in any serious way. This is
remarkable, especially since the maximal consistency approach turns out to be express-

ible using the relatively simple notion of a conflict-free set with maximal range, which
does not require concepts like acceptability, fixpoints andmonotonic functions. This
raises the question of what are the fundamental advantages of the admissibility based
semantics above what appears to be the simpler approach of stage semantics.

References

[1] O. Arieli and A. Avron. The value of the four values.Artificial Intelligence, 102:97–141, 1998.
[2] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida. Encompassing attacks to attacks in abstract argumen-

tation frameworks. InProc. of ECSQARU 2009, 10th European Conference on Symbolicand Quantita-
tive Approaches to Reasoning with Uncertainty, pages 83–94, 2009.

[3] P. Baroni, M. Giacomin, and G. Guida.SCC-recursiveness: a general schema for argumentation seman-
tics. Artificial Intelligence, 168(1-2):165–210, 2005.

[4] M.W.A. Caminada. On the issue of reinstatement in argumentation. In M. Fischer, W. van der Hoek,
B. Konev, and A. Lisitsa, editors,Logics in Artificial Intelligence; 10th European Conference, JELIA
2006, pages 111–123. Springer, 2006. LNAI 4160.

[5] M.W.A. Caminada. Semi-stable semantics. In P.E. Dunne and TJ.M. Bench-Capon, editors,Computa-
tional Models of Argument; Proceedings of COMMA 2006, pages 121–130. IOS Press, 2006.

[6] M.W.A. Caminada. An algorithm for computing semi-stable semantics. InProceedings of the 9th Euro-
pean Conference on Symbolic and Quantitalive Approaches toReasoning with Uncertainty (ECSQARU
2007), number 4724 in Springer Lecture Notes in AI, pages 222–234,Berlin, 2007. Springer Verlag.

[7] M.W.A. Caminada. A labelling approach for ideal and stage semantics. submitted, 2010.
[8] M.W.A. Caminada and D.M. Gabbay. A logical account of formal argumentation.Studia Logica, 93(2-

3):109–145, 2009. Special issue: new ideas in argumentation theory.
[9] W. Carnielli, M.E. Coniglio, and J. Marcos. Logics of formal inconsistency. In D.M. Gabbay and

F. Guenthner, editors,Handbook of Philosophical Logic, second edition, volume 14, pages 15–114.
Springer Verlag, 2002.

[10] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming andn-person games.Artificial Intelligence, 77:321–357, 1995.

[11] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation.Artificial Intelligence,
171(10-15):642–674, 2007.

[12] S. Modgil. An abstract theory of argumentation that accommodates defeasible reasoning about prefer-
ences. InProc. ECSQARU 2007, pages 648–659, 2007.

[13] S. Modgil. Reasoning about preferences in argumentation frameworks.Artificial Intelligence, 173:901–
1040, 2009.

[14] S. Modgil and M.W.A. Caminada. Proof theories and algorithms for abstract argumentation frameworks.
In I. Rahwan and G.R. Simari, editors,Argumentation in Artificial Intelligence, pages 105–129. Springer,
2009.

[15] B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation stages. In
J.-J.Ch. Meyer and L.C. van der Gaag, editors,Proceedings of the Eighth Dutch Conference on Artificial
Intelligence (NAIC’96), pages 357–368, Utrecht, 1996. Utrecht University.

[16] B. Verheij. DEFLOG - a logic of dialectical justification and defeat. Technicalreport, Department of
Metajuridica, Universiteit Maastricht, 2000.

[17] B. Verheij. DEFLOG: on the logical interpretation of prima facie justified assumptions.Journal of Logic
and Computation, 13:319–346, 2003.

[18] Y. Wu, M.W.A. Caminada, and D.M. Gabbay. Complete extensions in argumentation coincide with 3-
valued stable models in logic programming.Studia Logica, 93(1-2):383–403, 2009. Special issue: new
ideas in argumentation theory.

