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Abstract
Wepresent a calculation of exciton states in semiconductor coupled quantumwells in the presence of
electric andmagnetic fields applied perpendicular to theQWplane. The exciton Schrödinger equation
is solved in real space in three-dimensions to obtain the Landau levels of both direct and indirect
excitons. Calculation of the exciton energy levels and oscillator strengths enablesmapping of the
electric andmagnetic field dependence of the exciton absorption spectrum. For the ground state of the
system,we evaluate the Bohr radius, optical lifetime, binding energy and dipolemoment. The exciton
mass renormalization due to themagneticfield is calculated using a perturbative approach.Wepredict
a non-monotonous dependence of the exciton ground state effectivemass onmagneticfield. Such a
trend is explained in a classical picture, in terms of the ground state tending from an indirect to a direct
excitonwith increasingmagnetic field.

1. Introduction

Spatially indirect excitons in coupled quantumwells (CQWs) present amodel system for the study of a
statistically degenerate Bose gas in solid-statematerials. This is due to the long optical lifetime of indirect
excitons in comparison to their thermalization timewhich permits the creation of a cold and dense exciton gas
[1–3]. The exciton lifetime depends on the overlap of electron and holewave functions. For indirect excitons,
this can be varied over several orders ofmagnitude [4, 5] by changing the electric field applied perpendicular to
the growth direction.

Numerous studies on indirect excitons have focused onBose–Einstein condensation [6–9], spatial pattern
formations [10–12] and spin transport phenomena [13]. Transport of indirect excitons has been studied
extensively. Their dipolar nature provides a probe of the density via a blue shift in the emission [14–16]. It also
facilitates transport of excitons over tens ofmicrometers [17] as indirect excitons can screen theQWdisorder
potential due to interface roughness and defects [18].Moreover, the dipole orientation of the excitons provides
the possibility to control transport via patterned electrodes positioned adjacent to theCQWs [19–21]. Exciton
transport has been studied in electrostatic traps [22–26], linear potential gradients [19, 21] and stationary [27]
andmoving [28] lattices. The high degree of control led to demonstrations of devices such as excitonic optical
transistors [29]. The properties of indirect excitons are also important for understanding a new breed of quasi-
particles known as dipolaritons [30]. Such states are realized by embedding CQWs inside a planar Bragg-mirror
microcavity [31]. At the resonant tunneling condition, the dipolariton is a superposition of a cavity photon, a
spatially direct and an indirect exciton and thus acquires a static dipolemoment [32, 33]. Dipolaritons have been
suggested for observation of super radiant THz emission [34] and continuous THz lasing [35].

The application ofmagnetic fields to theCQWstructure provides an extra degree of control. In exciton
systems,magnetic fields are used for trapping [36–38], control of superfluidity [39, 40], tuning of exciton
resonances [41] and studying spin-splitting phenomena [42, 43]. The focus of this paper is the exciton effective
mass enhancement due to amagnetic field [44]. From a qualitative view point, this effect can be understood by
considering a simple classical analogy. The Lorentz force experienced by two oppositely charged particles that
travel perpendicular to a uniformmagnetic field acts to increase their relative separation. This comes at an
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energy cost as it is opposed by theCoulomb attraction between the charges. The energy costmanifests itself as a
resistance to change inmomentum and thus an effectivemass increase, dependent on the appliedmagnetic field
strength.We consider the case where both electric andmagnetic fields are normal to theQWplane. By finding a
numerically exact solution of the exciton Schrödinger equation, we perform a precise calculation of themass
enhancement. This description is an important ingredient for simulating exciton transport kinetics in a
magnetic fieldwhere the exciton effectivemass is a critical parameter [2, 11, 17, 21, 28, 45].

Several works ([46, 47] for example)used variationalmethods to study indirect excitons inmagnetic fields.
However, these approaches were approximate and all lacked a calculation of the effectivemass enhancement. A
theoretical study of excitons inCQWswithfinite barrier andwell widthwas done in [48], using two-dimensional
(2D) free electron–hole pair states inmagnetic field as a basis for expansion of the excitonwave function. This
approach is only well suited for treating highmagnetic fields. Also, a calculation of the excitonmass
renormalizationwas absent. Themass renormalization in the 2D limit was calculated for excitons in singleQWs
[49] and indirect excitons in doubleQWs [50]. In thoseworks, the electron and hole wave functions in theQW
growth directionwere approximated by delta functions located at theQWpositions. This corresponds to the
limit of infinitely deepQWsof zerowidth and is only applicable to the case of strongQWconfinement. It cannot
describe in detail the smooth crossover between direct and indirect exciton states at intermediate electric fields.
It also fails to describe the overlap of electron and holewave functions.

The recently developed rigorousmulti-sub-level approach (MSLA) [5]was previously used to calculate the
CQWexciton states in perpendicular electric fields. The outcomes, which included a calculation of the
dependence of the absorption spectrum and optical lifetime on electricfield, were in good agreementwith
available experimental data. Here, we use theMSLA to solve the exciton Schrödinger equation inCQWswith
both electric andmagnetic fields applied perpendicular to theQWplane. Thismethod solves the exciton in-
plane problemby a numerical discretization in real space and is thus equally well suited for both low and high
magnetic fields.We have refined theMSLA to a highly accurate scheme by usingNumerov’s algorithm [51], a
fourth-order linearmultistepmethod, for obtaining the energies andwave functions of the exciton states. It is
found that the direct-to-indirect exciton crossover with varying electric andmagneticfields is an important
ingredient in describing themagnetic field induced exciton effectivemass renormalization, whichwas not
captured in earlier works.We note that theMSLA can also be used to solve the exciton Schrödinger equation
coupled toMaxwell’s equations in order tomodelmicrocavity polaritons [33]. However,modeling polaritons in
magnetic fields is beyond the scope of this paper and forms the subject of future study.

In section 2, we describe the Schrödinger equation for aCQWexciton in the presence of electric and
magnetic fields pointing in the growth direction and provide details of theMSLA. The perturbative approach
used to obtain the electric andmagnetic field dependence of the exciton effectivemass is outlined in section 3. In
section 4, we present calculations of exciton states and their associated properties for 8–4–8 nmGaAs/AlGaAs
CQWs.Comparisons with 2Dmethods aremade in section 5 andwe show that ourmethod converges to these in
the limit of zeroQW thickness. Conclusions aremade in section 6.

2. Excitons inmultipleQWs in electric andmagneticfields

To calculate the bound exciton states in a semiconductor nanostructure with external bias andmagnetic field
orientated normal to theQWplane, we consider the followingHamiltonian:

H H H V Er r r r r r, , 1e h e e h h C e h gˆ ( ) ˆ ( ) ˆ ( ) (∣ ∣) ( )= + + - +

with

H p m z p U zr r r
1

2
, 2e,h e,h e,h

1
e,h e,hˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( ) ( )= +-

p
e

c
r A r

i
, 3re,h

ˆ ( ) ( ) ( )
=  

V r
e

r
. 4C

2

( ) ( )
e

= -

Here, re,h are the electron and hole coordinates. For amulti-layered heterostructure, we adopt a cylindrical
coordinate system (ρ,f, z)with the z-axis along theQWgrowth direction. The electron and hole effectivemass
tensors, m ze,hˆ ( ), are composed of in-plane and perpendicular components, me,h

 and m ze,h ( )^ , respectively. As in
[5], we neglect here any z-dependence in the in-plane electron and hole effectivemasses, which is justified by
relatively lowmass contrast in the heterostructures treated here and aminor contribution to the exciton problem
of the electron and hole wave functions outside thewell regions. m ze,hˆ ( ) are layer-dependent step functions, as
are theQWconfinement potentialsV ze,h

QW ( ). The confinement potential and the external bias are included in the
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potentialsU z V z eFze,h e,h
QW( ) ( )=  where F is the electric field. For the band gapEg and in-planemasses me,h

 ,
values for theQW layers are used. ε is the average permittivity of the structure neglecting z-dependence. For a
perpendicularmagneticfield (along the growth direction), one takes the vector potential, using the symmetric
gauge, in the form A r B r1

2
( ) = ´ .

It can be shown [52, 53] that the solution to the equation H EˆY = Y has the following variable-separable
form:

z zr r R, , e , , 5m
Pe h

i
e h( ) ( ) ( ) ( )rc j rY = f

with the center ofmassmotion of an exciton carrying 2DmomentumP described solely by

e

c
R P A
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⎡
⎣⎢
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⎦⎥
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where m M m MR e e x h h xr r= +  and ,e h ( )r r r r f= - = are the 2D in-plane center ofmass and relative

coordinates, respectively, M m mx e h= +  is the in-plane excitonmass, andm is the excitonmagnetic quantum
number. Such a substitution enables removal of the center ofmass coordinate from the problem. The exciton

relativemotion is then described by theHamiltonian H
P
x

ˆ derived in appendix A. For zero in-planemomentum,

theHamiltonian H
P
x

0ˆ =
takes the form
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where theHamiltonians of the electron and hole perpendicularmotion are
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These describe theCoulomb-uncorrelated single particle electron and hole states in the absence of amagnetic
field, with thewave functions zq

e,h ( )y , where the index q labels the electron (hole) states quantized in theCQW

heterostructure potentials. The Schrödinger equations H Eq q qe,h
e,h e,h e,hˆ y y=

^
are solved numerically using the

shootingmethodwithNumerov’s algorithm. Figure 1 shows the ground and first excited electron and hole states
forfinite electric fields in aGaAs/AlGaAsCQW.

The kinetic term in (7), K̂ ( )r , is given by

K
m

2

1
, 9

2 2

2

2

2
ˆ ( ) ( )

⎡
⎣⎢

⎤
⎦⎥


r

m r r r r
= -

¶
¶

+
¶
¶

-

whereμ is the in-plane reduced excitonmass, m m1 1 1e hm = + . The potential due to themagnetic field is

V
e mB

c

e B

c2 8
, 10B

2 2 2

2
( ) ( )


r

r
m

= +

where m m1 1 1e h = -  is the inversemass difference of the electron and hole, called the excitonmagnetic
dipolemass [50].

Figure 1.Ground (e1 and h1) andfirst excited (e2 and h2) electron and hole states for (a) F=3 kV cm−1 and (b) F=24 kV cm−1 in
8–4–8 nm GaAs/Al0.33Ga0.67AsCQWs.
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The Schrödinger equation H k m E k m, ,k mx
0

,
ˆ ∣ ∣ñ = ñ, in which k m,∣ ñ is an exciton state in a CQW infinite

electric andmagnetic fields, is solved using theMSLA developed in [5]. The principle of themethod is that we
expand the excitonwave functionj(ρ, ze, zh) in (5) into the set of Coulombuncorrelated electron–hole pair
states leading to

k m z z, e , , 11m

n

N N

n n
k mi

1
e h

,
e h

∣ ( ) ( ) ( )å f rñ = Ff

=

where z z z z,n p qe h
e

e
h

h
n n

( ) ( ) ( )y yF = . Themapping n p q,n n( ) leads toNeNh pair states formed fromNe

electron andNh hole states.We then calculate the radial components of thewave function n
k m, ( )f r , using a

matrix generalization of the shootingmethodwithNumerov’smethod incorporated in the finite difference
scheme. This solved the problemof the electron and hole in-plane and perpendicularmotionmixed by the
Coulomb interaction, leading to the exciton quantization labeled here by the index k. The numerical solution is
generated on a logarithmic grid in the range ρä [ρ0,R]. A sufficiently small inner limit ρ0 is chosen so that the
wave functions and extracted data have convergedwith respect to decreasing ρ0. The outer limitR of thewave
functions is sufficiently large that all radial components asymptotically approach zero. The existence of such a
limit is guaranteed for non-zeroB as the potentialVB growswith ρ

2. This is in contrast to the case ofB=0where
truncation of the solution range leads to a discretization of the unbound e–h continuum. For the range of electric
fields considered (F<25 kV cm−1), it was previously found forB=0 that high accuracy is achieved using two
electron and hole states (Ne=Nh=2) [5].

The state with zero angularmomentumhas radiative linewidth e f m cR
k k2

0( ) ( )( ) ( )p eG = . The oscillator
strength, f (k), is calculated from the overlap of the electron and holewave functions
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2
1

,0
2
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=

where dcv is the dipolematrix element between the conduction and valence bands.

3. Excitonmass renormalization in amagneticfield

For an excitonwith afinite center ofmassmomentum P 0¹ , theHamiltonian (7) ismodified to

H H V , 13
P

Px x
0ˆ ˆ ˆ ( )= +

where the perturbation VP̂ is given by (see appendix A)

V
P
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e

M c
P A

2

2
, 14P

2

x x

ˆ · ( ) ( )r= +

and P P∣ ∣= . To calculate the excitonmass renormalization in amagnetic field, we treatP as a small parameter
and use perturbation theory up to 2nd order. The 1st termof (14) contributes to the exciton energy in 1st order
only leading to the baremass. The 2nd term, vanishing in 1st order, gives rise to a quadratic inP correction in
2nd order and is thus responsible for themass renormalization. Neglecting non-parabolicity of the exciton band,
whichwould be accounted for by treating the 2nd term in higher perturbation orders, we find the correction to
the exciton energy proportional toP2 and renormalized effectivemass Mk m,* of exciton state k m,∣ ñ inmagnetic
field:

M M

e
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k m j m s

E E
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Here the index j counts over the eigenstates with the angularmomentam±1which only contribute in 2nd
order andwhich are calculated at given values of electric andmagnetic field. Details of the calculation of the
matrix elements in (15) are given in appendix B.

The advantage of our approach compared to some previous calculations of the excitonmass renormalization
is that the perturbation is inP only, allowing theB-field to be arbitrarily large. In contrast, the approach
developed in [49] used themagnetic field as a small parameter of the perturbation theory. Consequently, the
applicability of the latter is restricted to lowmagnetic field (up to≈2 T in the structure considered in this paper,
see also the comparison in section 5). Another significant benefit of our approach is that the full 3D solution of
the exciton Schrödinger equation (7)describes the inter-well coupling that is neglected by any 2D
approximation [49, 50].
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4. Application toGaAs/AlGaAsCQWs

All results in this section refer to the structures studied in [1, 2, 4, 17, 21, 27, 28]which consist of symmetric
GaAs/Al0.33Ga0.67AsQWswith barrier andwell thickness of 4 and 8 nm, respectively. A complete list of
parameters used in the calculations are given in table 1. Althoughwe restrict the present analysis to twoQWs, the
method is applicable to any number ofQWs since one can always obtain, either analytically or numerically,
eigenstates of the single particle electron and holeHamiltonians in (8).

Figure 2(a) shows the optical transition energy for different exciton states as a function of electric field at
B=10 T. For each state, the circle area is proportional to the oscillator strength. One can identify four different
exciton states with each state being duplicated in each of thefirst three Landau levels. Firstly, we see a pair of
bright states atEx−Eg≈ 51 meVwhose energy is almost independent of electric field. These are the first Landau
level (L1) direct exciton states occupying adjacentQWs. The direct exciton states are close in energy and appear
almost as a single state infigure 2(a). Secondly, we see a pair of darker states, onewhose energy decreases and one
whose energy increases with electric field from Ex−Eg≈ 60 meV at F=0. These are the L1 indirect exciton
states. Their transition energy dependence on electric field is almost linear with the gradient corresponding to
the nominal distance between theQWs. The state with energy that decreases linearly with F is composed
predominantly of the ground electron and hole states e1h1 shown infigure 1. The other is composed
predominantly of the excited electron and hole states e2h2. The corresponding L2 and L3 replicas of these four
states appear at higher energies. The spacing between the Landau levels for each type of exciton is approximately
equal.

In the previous work using theMSLA [5], which did not includemagnetic field, it was necessary to calculate a
large number of unbound e–h pair states in order to determine the exciton spectrum. These states were
discretized due to afinite domain of the solutionwhich imposed an infinite potential barrier at ρ=R. It was
found that with increasingR, the density of such discretized continuum states increasedwhile their oscillator
strengths decreased. The absorption spectrum converged for sufficiently largeR. In the present case, however,
themagneticfield removes any need to consider the continuum states. The potential due to themagnetic field,
(10), contains a term in ρ2 which naturally closes the domain of the solutions. Therefore, afinite value ofR can
always be found such that thewave functions are sufficiently small there. This point explains the apparent
cleanliness offigure 2(a)which does not contain any unbound e–hpair states.

Figure 2(b) shows amagnification in the region of anti-crossing between the L1 direct and indirect exciton
states, indicated infigure 2(a).We identify the electric field at the anti-crossing Fa-c as the value of Fwhere the
minimum separation occurs between the upper and lower black curves. This is shown infigure 2(c) as a function
ofB for thefirst three Landau levels. Themagnetic field provides ameans to tune Fa-c over several kV cm−1. The
corresponding energy splitting between the upper and lower black curves infigure 2(b) is about 2 meV and
varies by less than 10% in the investigatedmagnetic field range.

Using the Lorentzianmodel of absorbing oscillators, the absorption spectrum is calculated from the
transition energy and linewidth of each exciton state. Themagnetic field dependence of the absorption spectrum
is plotted infigure 3. For clarity, the spectrumhas been broadened by convolutionwith aGaussian of full width
at halfmaximumof 1 meV.Most clearly visible is the Landau fan of the direct exciton states. These bright
spectral lines are due to the two direct exciton states overlapped in energy. Fainter fans are seen for the indirect
exciton states—one starting fromabout 20 meV and another from about 80 meV infigure 3(b). The lower

Table 1.Parameters of themodel.

ε Relative permittivity 12.5

Eg GaAs band gap 1.519 eV

m ze ( )^ Electronmass inQW 0.0665 m0

Electronmass in barrier 0.0941 m0

m zh ( )^ Holemass inQW 0.34 m0

Holemass in barrier 0.48 m0

Mx In-plane excitonmass 0.22 m0

μ In-plane reduced excitonmass 0.042 m0

ù Excitonmagnetic dipolemass 0.15 m0

dcv Dipolematrix element 0.6 nm

ρ0 Inner wave function boundary 0.025 nm

R Outer wave function boundary 500 nm

Number of in-plane grid points 300

z-grid spacing 0.1 nm
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(upper) fan corresponds to indirect excitons composedmainly of an electron and a hole in the ground (excited)
state, e1h1 (e2h2).

A number of properties of each eigenstate can be calculated from the excitonwave functions (11). Infigure 4,
we focus on the characteristics of the ground state of the system. At zeromagnetic field, the results presented
here agree1with those of [5]. Figure 4(a) shows the electric andmagnetic field dependence of the in-plane Bohr

radius, rB
2r= á ñ . Increasing the electric field increases rB due to a reduction in the e–hCoulomb interaction

which is caused by their increased separation in the z direction. Increasing themagnetic field has the reverse
effect and shrinks thewave function in theQWplane. This shrinkage enhances the e–h interactionwhich, in
turn, leads to amore likely localization of the electronwithin the sameQWas the hole and thus the ground state
becomes a direct exciton. This is seen infigure 4(b)where a sharp reduction in the dipolemoment z ze h∣ ∣á - ñ
takes place for increasingB. The value ofB at which this transition occurs increases with F as a stronger
confinement of the in-plane wave function is needed to sufficiently enhance the e–h interaction and to induce
the indirect-to-direct transition. In the indirect exciton regime at high electric field (F=24 kV cm−1), the
dipolemoment corresponds to approximately the center-to-center distance of theQWswhich is 12 nm.

From the radiative linewidth, the radiative lifetime of the ground state exciton, 2R R
0( )( )t = G , is found.

Figure 4(c) shows τR as a function of electric andmagnetic fields. τR is inversely proportional to the overlap of the
electron and hole wave functions (seefigure 1). Therefore, wefind a decrease in τRwith decreasing F or
increasingB, consistent with the shrinking of the exciton radius shown infigures 4(a) and (b).We note that in
experiments [54], contrary to our results, the radiative lifetime ofQWexcitons is found to increase with
increasingmagnetic field. This, however, can be explained by considering the thermal distribution of excitons.

Figure 2. (a)Electricfield dependence of the optical transition energy for different exciton states. The circle area is proportional to the
exciton oscillator strength. (b)Magnified image (indicated in (a) by the boxed area) of the anti-crossing between the direct and indirect
exciton states in thefirst Landau level, L1. Black curves show the exact transition energies. The red arrow shows theminimum energy
separation between the lower and upper curves. (c)The electricfield, Fa-c, at which theminimum separation occurs between the upper
and lower curves in (b) as a function ofB.

1
The calculation of the Bohr radius in [5] has amissing factor of 2p , which is properly included here.
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Only exciton states inside the light cone, i.e. thosewith in-planemomentumP<Pγ, can decay optically. The
momentumPγ corresponds to the intersection of the exciton and photon dispersions. The increase in the
exciton effectivemass (see figure 5) causes a reduction inPγwhich reduces the fraction of excitons coupled to
light. This increases the effective lifetime of the exciton gas—the quantity which ismeasured in experiments via
the decay rate of the photoluminescence intensity [17].

Figure 3.Magnetic field dependence of the exciton absorption spectrum at (a) 9 kV cm−1 and (b) 24 kV cm−1. The spectra are
convolutedwith aGaussian ofwidth 1 meV. Both spectra are normalized to 1 at themaximum.

Figure 4.Electric andmagneticfield dependence of (a) the exciton ground state in-plane Bohr radius, (b) dipole length, (c) radiative
lifetime, and (d) binding energy.
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Figure 4(d) shows the binding energy E E E eB c2b 1
0

0,0 ( )( )  m= - + where E0,0 is the calculated exciton

ground state energy inmagnetic field, E E E1
0

1
e

1
h( ) = + is the energy of the unbound e–hpair state in zero

magnetic field, and the last term takes into account the Landau quantization energy of the free pair inmagnetic
field. The decrease in the size of the exciton, caused by either increasingB or decreasing F, leads to an
enhancement of the e–h interaction [55]. This causes a tighter binding of the exciton and, therefore, an increase
inEb.

The effective excitonmass, Mk m,* , is calculated using second order perturbation theory (see section 3).
Figure 5 shows the electric andmagnetic field dependence of the effectivemass, M0,0* , for the exciton ground
state.We identify two limiting cases: firstly, for small electric fields (F≤3 kV cm−1)where the exciton ground
state is predominantly direct, there is amonotonic increase of the effectivemasswith increasingmagnetic field.
The rate of this increase is weakly dependent on the electric field. Secondly, for electric fields greater than
3 kV cm−1, there is an initial increase in the effectivemass with increasingmagnetic field, followed by an
eventual decrease. At highermagnetic fields, the effectivemass asymptotically approaches the direct exciton
effectivemass.

To interpret the data presented infigure 5, we use the classical analogy introduced in section 1. The exciton is

approximated as two oppositely chargedmasses at an equilibrium separation a r z zB B
2

e h
2= + á - ñ with

center ofmassmotion perpendicular to themagnetic field. The Lorentz force FL=eBv/c acts on each particle to
separate the charges but is balanced by theCoulomb restoring force FC that is approximately linear for small
changes in separation (corresponding to small velocity and small Lorentz force): FL=FC≈kRΔ ρ. In this
picture, one derives from the energy dependence on the exciton velocity v,Mxv

2/2+kR (Δ ρ)2/2, an estimate of
the effectivemass, M M e B c kRcl x

2 2 2( )* = + . The ‘spring constant’ kR is the coefficient of the restoring force. It
can be approximated via linearization of the slope in theCoulomb potential at ρ=rBwhich gives

k V z z . 16R c

r

2

2
2

e h
2

B

( ) ( )
⎡
⎣⎢

⎤
⎦⎥r

r= -
¶
¶

+ á - ñ
r=

The inset infigure 5 shows this classical calculation using the parameters rB and z ze h
2á - ñ characterizing the

exciton taken from the full calculation, see figures 4(a) and (b). The curves for F=3 kV cm−1 and 6 kV fully
describe themain trends seen in the full calculation and even demonstrate to some extent a quantitative
agreement. For larger electric andmagnetic fields this classicalmodel fails because the spring constant kR
becomes too small and the linearization of the restoring force used in themodel no longer works.

The classicalmodel allows us to understand the excitonmass dependence infigure 5. Indeed, from the
calculation presented infigure 4, wefind a greater kR for direct excitons than indirect excitons. Qualitatively, this
is because the indirect exciton has aweaker binding due to the increased spatial separation of the electron and
hole. The difference in kR leads to a greater rate of effectivemass increase withmagnetic field for indirect excitons
than for direct excitons. This explains the effectivemass dependence in the low andhigh electric field limits in
figure 5. At intermediate fields (6–12 kV cm−1), the initial increase and then decrease of the effectivemass is a
consequence of the ground state tending from an indirect to a direct exciton. This happens due to a shrinkage of

Figure 5.Electric andmagneticfield dependence of the exciton ground state effectivemass calculated using the fullMSLA. Inset: the
same calculatedwithin the classicalmodel described in text, using the data infigures 4(a) and (b).
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the excitonwave function caused by themagnetic field. In turn, the e–hCoulomb attraction is enhanced,
making the direct state lower in energy than the indirect state.

5. Comparisonwith the 2D limit

In order to verify ourmodel, wemake comparisonswith previous results inwhich the limiting case of 2D
excitons were treated. Tomake this comparison, we include just one electron and one hole state (Ne=Nh=1
in (11)) taking thewave functions in the form z ze 2∣ ( )∣ ( )y d= and z z dz

h 2∣ ( )∣ ( )y d= - , where δ(z) is the
Dirac delta function and dz is the nominal distance between theQWs. Technically, this is done using normalized
Gaussian functions forψe,h(ze,h), for the electron and hole centered on 0 and dz, respectively, and taking the limit
of their widths to zero.

First, we consider themass renormalization of 2Ddirect excitons in singleQWs (dz=0). This was
calculated byArseev andDzyubenko [49]. The analytical expression for the excitonmass, whichwas derived by
treating themagnetic field as a perturbation, was given as2

M M M

a

l

1 1
1

42

16
. 17

2D x
2

x

x

B

4

( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥*

m
= -

This is relevant in the lowmagnetic field limit where themagnetic length ismuch greater than the exciton Bohr
radius, l c eB a eB x

2 2 e m= = . For the considered system, this corresponds to B 2.6 T . Figure 6(a)
shows the inverse of the effectivemass renormalization as a function ofB2 calculated numerically via (15) and
using the analytic expression (17). There is a strong agreement between the different approaches for smallB. For
increasingB above 1 T, the results depart as expected, since themagnetic length approaches the Bohr radius.

Figure 6. (a)Present numerical calculation (solid red line) and analytic calculation of [49] using (17) (dashed black line) of the inverse
of themass renormalization againstB2 for 2D excitons in a singleQW.The inset shows the corresponding effectivemass increase as a
function ofB. (b) Indirect exciton effectivemass as a function ofB, as determined by the full calculationwith F= 24 kV cm−1 (green
dashed line), using 2D electron and hole wave functions separated by dz=11.5 nm (blue line), via the dispersion relation calculated in
[50] (black circles with a line) and experimentally [44] (red triangles with error bars and a line). The error bars show the errors
extracted from the data presented in [44].

2
Note that a factor of 2 ismissing in equation (16) of [49], whichwe have included here.
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Wealso compare our results with thework of Lozovik [50]which treated the case of 2D indirect excitons in
CQWs. In that approach, the exciton Schrödinger equationwas solvedwith afinite center ofmassmomentum
that enabled calculation of the dispersion relation. The effectivemass was then extracted from a parabolic fit to
the bottomof the dispersion band. Themass calculated by thismethod is shown infigure 6(b). Tomake a
suitable comparison, we calculate the 2D effectivemass using the same parameters as in [44, 50]: dz=11.5 nm,
μ=0.049m0,ù=0.11m0, and ε=12.1. The full calculation using the same parameters with F=24
kV cm−1 is shown for reference.

Infigure 6(b), we also show the effectivemass dependence onmagnetic field as was determined
experimentally [44, 50] using an in-plane component in themagnetic field tomap the indirect exciton
dispersion by shifting it with respect to the photon cone.We note that the quantitative agreement between
theory and experiment could be improved by further adjustment of the parametersμ andù. The calculatedmass
is quite sensitive to these parameters which are not known to great precision. Other possible sources of
discrepancy could be the inhomogeneous permittivity, non-parabolicities of the bands and valence band
mixing.One should also consider the limited accuracy of the effectivemassmeasurement which entails fitting a
parabola to an almost flat dispersion. The dispersion curve is extracted from the energy of the exciton line in the
emission spectrum. This can be influenced by the disorder intrinsic to theCQWsample and the density
dependent blue shift due to the exciton–exciton interaction.On that basis, our data is in good agreement with
the experimentallymeasured exciton effectivemass and the combination of the effects that we neglect is rather
minor.

6. Conclusions

Wehave studied the combined effect of perpendicular electric andmagnetic fields on exciton states inCQWs.
This was done using the rigorousMSLA to solve the full exciton Schrödinger equation in the effectivemass
approximation. In this approach, the excitonwave function is expanded intoCoulombuncorrelated electron–
hole pair states and found using amatrix generalization of the shootingmethodwith high stability and accuracy
provided byNumerov’s algorithm.We calculated the optical transition energy and linewidths for different
exciton states and obtained the electric andmagnetic field dependence of the exciton absorption spectrum. For
the exciton ground state, we evaluated the in-plane Bohr radius, static dipolemoment, radiative lifetime and
binding energy. Furthermore, we have calculated themagnetic field-induced excitonmass renormalization in
arbitrary electric andmagnetic field, by treating the excitonmomentum as a small perturbation. In particular,
our calculations demonstrate a non-monotonous behavior of the exciton effectivemass inmagnetic fieldwhich
is understood in terms of the direct-to-indirect exciton transition and also illustrated in a simple classicalmodel.
Our results for the quantumwell width tending to zero are in good agreement with different 2D approaches
available in the literature. However, in contrast to the 2D approaches, the fullMSLA captures the direct-to-
indirect transitions of the exciton ground state for varying electric andmagnetic fields which are necessary for a
full and detailed description of the system.
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AppendixA. ExcitonHamiltonian in aCQWinperpendicular electric andmagneticfields

Using the factorizable formof thewave function (5) and (6)wemake a transformation of the fullHamiltonian
(1)

H H z zr r, , , , A.1
P

P Px e h
1

e hˆ ( ) ˆ ( ) ( )rc c= -

removing the in-plane center ofmass coordinate from the problem. The excitonHamiltonian then takes the
form

H z z H z H z W E V z z, , , A.2B
P P
x e h e e h h g C

2
e h

2ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( ( ) ) ( )r r r= + + + + + -
^ ^
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where He,h
ˆ ^

andVC are given by (2) and

W H , A.3B B
P

P P
1

e h
ˆ ( ) ˆ ( ) ( )r r rc c= -

with

H
m

A
m

AA A,
2

2i
2

2i . A.4B e h

2

e
e
2

e e
2

e
2

2

h

h
2

h h
2

h
2ˆ ( ) ( · ) ( · ) ( ) r r g g g g= - -  + + - +  +

 

For brevity of notation, we have introduced in (A.4) e cg = , A Ae,h e,h( )r= , and e,h e,h
 = r , where r is a

2Dnabla-operator. For the same reason, we also drop below the indexP inχP, x inMx, and P in me,h
 . Taking an

arbitrary function f ( )r we obtain from (A.4):

H f
m

f f f f f A f

m
f f f f f A f

A

A

2
2 2i

2
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2
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2
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
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Noting that∇ef=∇f and∇hf=−∇f, (A.5) can bewritten as

H f f f
m m
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Finally, noting that
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⎝
⎞
⎠

c g c = 

and after some algebraic simplifications using A A Ae h( )r = - , find the required termWB
Pˆ of the exciton

Hamiltonian (A.2):

W
e

c

e

c
A

P

M

e

Mc
A P A

2

i

2 2

2
. A.9B

P 2
2

2

2
2

2
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
r r r r

m m
=-  -  + + +

This term is the only one in (A.2)which carries in the dependence on themagnetic fieldB and the exciton in-
planemomentumP. For the excitonwave function in the formof (5), with the split-off angularmotion, the
excitonHamiltonian is further reduced to (7) forP=0 and to (14) for P 0¹ .

Appendix B. Perturbative calculation of the excitonmass enhancement due to a
magneticfield

We treat the exciton center ofmassmomentumP as a perturbation and first seek solutions in afinitemagnetic
fieldwithP=0.Without loss of generality, we can takeP along the y-axis, which gives

BPP A cos1

2
· ( ) ( )r r f= in polar coordinates, and evaluate thematrix elements

I
P

k m
e

M c
m s j

eB

M c
z z

z z z z

P A
1

,
2

,

d d d d cos e

, , . B.1

k j
m s

s

n
n n

k m

n
n n

j m s

,
,

x

x
e h

0

2

0

i

e h
,

e h
,

· ( )

( )

( ) ( ) ( ) ( ) ( )

ò ò ò ò
å å

r

f r r r f

f r f r

= +

=

´ F F

p
f

-¥

¥

-¥

¥ ¥

¢
¢ ¢

+

11

New J. Phys. 18 (2016) 023032 JWilkes and EAMuljarov



Wemake use of the following identities:

e cos d B.2m
m

0

2
i

,12( ) ( )ò f f pd=
p

f

z z zd , B.3p p p p
e

e
e

e e ,
n n n n
( ) ( ) ( )ò y y d=
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¥

¢ ¢

z z zd , B.4q q q q
h

h
h

h h ,
n n n n
( ) ( ) ( )ò y y d=

-¥

¥

¢ ¢

. B.5p p q q n n, , ,n n n n
( )d d d= ¢¢ ¢

Thematrix elements then simplify to
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n
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,
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x 0
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+

The correction, Mk m
B
,

( ) , to the effectivemass of exciton state k m,∣ ñ is then given by the 2nd perturbation order:

M
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E E
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E E
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2
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k j
m

k m j m,

,
, 1 2

, , 1

,
,1 2

, , 1

( ) ( )
( )( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥å=

-
+

-

-

- +

Finally, the renormalized effectivemass Mk m,* of an exciton in amagnetic field is determined by

M M M

1 1 1
. B.8

k m k m
B

, x ,

( )( )*
= +

Figure B1 shows some illustrative examples of the convergence of the effectivemasswith respect to jmax for
k=m=0.Here, jmax is the number of states taken into account in the perturbation series, (B.7). It can be seen
that the series converges rapidly for the range of electric andmagnetic fields considered here. jmax=15was used
in all data exceptfigure B1, achieving a relative error in the effectivemass of less than 10−4.
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