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ABSTRACT:  

Biocides, primarily those containing quaternary ammonium compounds (QAC), are 

heavily used in hospital environments, and various industries (food, water, cosmetic, 

etc). To date, little attention has been paid to potential implications of QAC use in the 

emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in 

patients and in the environment. QAC-induced overexpression of efflux pumps can 

lead to: i) cross-resistance with fluoroquinolones mediated by multidrug efflux pumps; 

ii) stress response facilitating mutation in the Quinolone Resistance Determining 

Region; iii)  biofilm formation increasing the risk of transfer of mobile genetic 

elements carrying fluoroquinolone or QAC resistance determinants. By following the 

European Biocidal Product Regulation, manufacturers of QAC are required to ensure 

that their QAC-based biocidal products are safe and will not contribute to emerging 

bacterial resistance.  
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Quaternary ammonium compounds (QAC) are among the most commonly 

used disinfectants in a number of fields of applications (Table 1) [1-3]. Over the past 

decade there has been a dramatic increase in the use of QAC: In Europe, in 2006, 

the market for biocides amounted to €10-11 billion, with an average growth of 4-5% 

per annum during the previous 15 years, and market expansion is predicted to 

continue (http://www.pan-europe.info/campaigns/biocides). QAC are now commonly 

found in consumer products, such as washing liquid, home surface disinfectant, 

toiletries, in Western Europe and North America. The main QAC currently used are 

benzalkonium chloride (BC), stearalkonium chloride, and didecyldimethylammonium 

chloride (DDAC) (Table 2) [3-5]. Their impact may not be limited to their area of use, 

as QAC ultimately reach the environment via waste water and may remain there for a 

long time, due to their poor biodegradability [6,7]. In Europe, the European Biocidal 

Product Regulation [8] states in several articles that the possible effect of a biocidal 

product on developing resistance and cross-resistance in bacteria needs to be 

evaluated. Evidence of bacterial developing antimicrobial resistance following the use 

of biocide was reviewed by the Scientific Committee on Emerging and Newly 

Identified Health Risks [9], and more recently by Maillard et al. [10]. There are a 

number of definitions of bacterial ‘resistance’, to biocides. The following definition has 

been proposed: “‘a change in susceptibility to a microbicide that renders it ineffective 

against a micro-organism that was previously susceptible to that microbicide’ [10], but 

this definition does not necessarily apply to the existing literature that is cited in this 

review. A number of papers are defining resistance to QAC as an increase in MIC, 

although this should now be viewed as a reduced susceptibility [10]. 

 

http://www.pan-europe.info/campaigns/biocides
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 Fluoroquinolones (FQ) are potent broad-spectrum antibiotics that have been 

used in medical practice for the treatment of severe or resistant bacterial infections 

since the late 1980s. As their name suggests, they are derived from the quinolone 

family of antibiotics; quinolones themselves are synthetic constructs, developed by 

modification of 1-alkyl-1,8-naphthyridin-4-one-3-carboxylic acid [11]. 

Fluoroquinolones differ from quinolones by the replacement of the eighth carbon 

atom of the backbone with a nitrogen atom and the addition of a fluorine atom at the 

sixth position, giving them more potent antibiotic action and a broader spectrum of 

activity [12]. FQ are potent inhibitors of bacterial type II topoisomerases, which are 

essential enzymes involved in key cellular processes, including DNA replication [13-

15]. Their spectrum of efficacy against a wide range of Gram-positive and Gram-

negative pathogenic bacteria has led to their widespread use worldwide [16]. Yet, 30 

years after their introduction, resistance levels have dramatically increased worldwide 

[17].  

 
All bacteria have multidrug transporters or bacterial drug efflux pumps 

inserted into the cytoplasmic membrane that can remove toxic substances from the 

cytoplasm and from the cytoplasmic membrane [18]. The major clinically relevant 

efflux systems in Gram-negative bacteria belong to the resistance-nodulation-division 

(RND) superfamily (e.g. AcrAB-TolC in Escherichia coli, Mex-OPr in Pseudomonas 

aeruginosa), and are typically composed of a cytoplasmic membrane pump, a 

periplasmic protein and an outer membrane protein channel [19]. In the case of 

Gram-positive bacteria, the major facilitator superfamily (MFS; e.g., Bmr and Blt in 

Bacillus subtilis and NorA in Staphylococcus aureus), and the ATP-binding cassette 

(ABC) transporters are major players [19]. These efflux pumps can remove various 
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antibiotics and are then called multidrug resistance (MDR) pumps [18,20,21]. The 

regulation of efflux pump genes is complex and controlled by both dedicated 

regulators and multiple global regulators, which also control expression of other 

genes [22].  

Commonalities exist regarding the concomitant use of FQ and QAC in 

industrial and hospital environments, and in both cases, resistance to FQ is 

increasing. In agribusiness, FQ are administered to treat infections in animals, and 

QAC are used as surface disinfectants in farms and in processing plants. In hospitals, 

QAC are used as surface disinfectant, and FQ is among the first two classes in terms 

of antibacterial agent consumption, second only to beta-lactams. QAC and FQ can 

persist in various environments. They have been detected in sewage sludge, river 

water and soil [23-25]. Class 1 integrons encoding efflux pumps were identical in 

clinical samples [26-28] and those isolated from soil and freshwater biofilms. The 

efflux pumps play an important role in increasing MICs, both for QAC that FQ, and 

the hazard/risk of biocide use leading to the selection of antibiotic-resistant bacteria 

and their dissemination is of increasing concern 

(http://ec.europa.eu/health/opinions/en/biocides-antibiotic-resistance/l-3/1-definition-

antimicrobials.htm). In the meantime, WHO developed a list ranking antimicrobial 

classes according to their importance for public health. Fluoroquinolones were 

viewed as one of the highest priority for risk analysis [29]. 

The aim of this review was to present documented interactions between the 

use of QAC and the emergence of fluoroquinolone resistance in bacteria, focusing on 

three main pathways: i) “cross-resistance” of QAC and FQ mediated by multidrug 

efflux pumps, ii) QAC-induced stress responses that trigger mutation in the quinolone 

resistance-determining region (QRDR) and iii) synergistic effect on biofilm formation, 

http://ec.europa.eu/health/opinions/en/biocides-antibiotic-resistance/l-3/1-definition-antimicrobials.htm
http://ec.europa.eu/health/opinions/en/biocides-antibiotic-resistance/l-3/1-definition-antimicrobials.htm
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facilitating the transfer of mobile genetic elements carrying FQ or QAC resistance 

determinants. 

 

 Cross-resistance of QAC and FQ mediated by multidrug efflux pumps  

Overexpression of efflux pumps is hypothesised to mediate cross-resistance of 

FQ and QAC [30]. QAC can directly induce the expression of efflux pumps, or 

promote mutations within the regulators of efflux pump genes (Figure 1) [31-37]. 

Indeed, some strains carrying specific mutations at target sites are no longer 

resistant to FQ if efflux pumps are inactivated [38-40]. Efflux pumps may also play a 

role in the impact of mutations. Oethinger et al. showed that in the absence of the 

AcrAB efflux pump, topoisomerase mutations had no significant impact on FQ 

resistance in E. coli [38]. 

In Gram-negative bacteria, two of the best-studied RND-type MDR-pump 

systems are AcrAB-TolC or OqxAB in E. coli, SdeXY of S. marcescens, and Mex-Opr 

[20], and PmPM pumps in P. aeruginosa, MepA and NorA of S. aureus  (Figure 2) 

[24,41-47]. In E. coli, AcrAB-TolC is present in wild-type bacteria, and its 

overexpression induces resistance to quinolones and QAC, as outlined below. Buffet-

Bataillon et al. [48] observed an epidemiological association between high minimal 

inhibitory concentrations (MICs) of QAC and antibiotic resistance, without previous 

exposure to QAC. The efflux pump inhibitor phenyl-arginine-b-naphthylamide (PAbN) 

reduced the MICs of ciprofloxacin (CIP) and QAC, but remained ineffective in 

reducing the MIC of others antibiotics tested [48]. In this work, AcrAB-TolC system 

explained the association between resistance to FQ and QAC.  Other works showed 

the induction of various efflux pumps in Gram-negative bacteria by antibiotics or by 

QAC [30,49-53]. For example, Serratia marcescens gained resistance to 
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cetylpyridinium chloride, BC and antibiotics by expressing the SdeAB efflux pump 

upon exposure to cetylpyridinium chloride [51]. In P. aeruginosa, primary intrinsic 

resistance to FQ is due to MexAB-OprM as well as to MexXY-OprM [53]. The RND-

type MexCD-OprJ multidrug efflux pump is induced by norfloxacin and by ADBAC 

[49]. In P. aeruginosa, ADBAC, FQ, ethidium bromide, and tetraphenylphosphonium 

chloride were all substrates for PmpM, a multidrug efflux pump belonging to the 

Multidrug and Toxic Compound Extrusion (MATE) family [50]. An active role of efflux 

pump activity in conferring adaptive and cross resistances against CIP and BC has 

been shown in P. aeruginosa isolated from food products [30]. Burkholderia cepacia 

developed stable tolerance to benzethonium chloride with cross-resistance to FQ, 

associated with enhanced efflux, reduced swarming mobility and increased biofilm 

formation [52].  Recently, Webber et al. [54] exposed Salmonella enterica serovar 

Typhimurium to biocides and showed mutations in ramR, which encodes the local 

repressor of ramA, encoding a transcriptional activator that regulates the AcrAB-TolC 

MDR efflux system. 

The same observations were made with Gram-positive bacteria, including 

Listeria monocytogenes, a major agent for severe food-borne illness, or 

Staphylococcus aureus, an important cause of nosocomial infections. Mutations in 

efflux systems of L. monocytogenes strains are responsible for the multidrug 

resistance phenotype of strains selected on CIP or ADBAC [55]. Other authors also 

observed that reduced susceptibility to biocides in staphylococci was associated with 

quaternary ammonium compound (qac) gene-encoding efflux proteins (qacA, qacB, 

qacC, qacG) [56,57].  

However, if many studies are in accordance with the concept of cross-

resistance to QACs and FQ, others are not so supportive. Furi et al. [57] showed that 
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9.5% of clinical isolates of S. aureus carried known genes associated with ethidium 

bromide efflux pump and reduced susceptibility to biocides. Fine characterization of 

the substrate specificity of these pumps associated (i) mutations of the promoter 

region of norA with a 2-fold increase in MIC to BC, (ii) the presence of the plasmid-

encoded MFS pumps QacA and QacB with a 4-fold increase in MIC of BC, and (iii) 

the plasmid-encoded SMR efflux pumps QacC and QacG with a 2-fold increase in 

MIC to BC. Regarding cross-resistance to antibiotics in vitro, mutation of the norA 

promoter conferred cross-resistance to CIP and norfloxacin (NOR), but not all clinical 

isolates with norA promoter mutations were resistant to CIP, and none of the plasmid 

encoded efflux pumps conferred resistance to antibiotics. Such a study highlights the 

importance of future clinical work to validate these experiments.  

 

 Stress responses that trigger mutation in the quinolone resistance-

determining region (QRDR)  

 FQ target DNA gyrase and topoisomerase IV in a broad range of bacteria, by 

inhibiting their control of supercoiling within the cell, resulting in impaired DNA 

replication (at lower concentrations) and cell death (at lethal concentrations) [58,59]. 

An important mechanism of bacterial resistance to FQ is due to mutation(s) in one or 

more of the genes that encode the primary and secondary targets of these drugs, 

type II topoisomerases (gyrA, gyrB, parC, and parE). The region where mutations 

arise in these genes that encode FQ resistance is a short DNA sequence known as 

QRDR [60,61]. Mutations in QRDR, resulting in amino acid substitutions, alter the 

target protein structure and subsequently the FQ binding affinity of the enzyme, 

leading to drug resistance [16,62]. Recently, Weber et al. [54] described that 
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Salmonella enterica serovar Typhimurium to QAC and selected antibiotic-resistant 

mutants: genes in the QRDR region (gyrA) and in rpoA, encoding the RNA 

polymerase alpha subunit, were altered [54].  

The SOS response is an inducible pathway governing DNA repair. Two key 

proteins govern the SOS response: LexA (a repressor) and RecA (an inducer). Whilst 

the SOS response was initially recognised as regulating DNA damage repair, its 

broader role is now well established. The SOS error-prone polymerases that enable 

translation and DNA synthesis also promote an elevated mutation rate that generates 

genetic diversity and adaptation, hence facilitating the emergence of antibiotic 

resistance [63,64]. QAC are strong cationic surface-active chemicals and could be 

hypothesised to trigger a SOS response following their physical interaction with the 

bacterial membrane. However, there are no studies that have directly investigated at 

effect of QAC and bacterial SOS response. Ceragioli et al. [65] reported that Bacillus 

cereus, upon exposure to selected concentrations of BC (0.5 to 7 mg/L), induced 

genes involved in the general and oxidative stress responses.  Although this study 

did not look directly at SOS response, others have observed that exposure to 

oxidative stress can activate the SOS response [66]. A better evidence of the direct 

effect of QAC exposure on SOS response is needed. 

If QAC are indeed significant triggers of the SOS response, this would 

increase mutation rates, which may promote the emergence of mutations in 

topoisomerases. However, these assumptions are not supported by robust scientific 

evidence to date, except on that of McCay et al. [67], who described a P. aeruginosa 

mutant highly adapted to ADBAC with an increased resistance to CIP (0.125 to 32 

mg/L) in 33 generations elapsed in culture enrichment. This was due to mutations in 
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QRDR of gyrA and in genes mexR and nfxB that encode repressors of mexAB-oprM 

and mexCD-oprJ, respectively.  

 

 The impact of QAC on efflux pumps, SOS responses, and biofilm formation, 

may facilitate the transfer of mobile genetic elements carrying FQ or QAC 

resistance determinants between bacteria 

Recent research showed that QAC, efflux pumps expression and biofilm 

formation are connected processes [68-70] (Figure 1). QAC have been shown to 

induce expression of efflux pumps [31-37]. Baugh et al. demonstrated that both 

genetic inactivation and chemical inhibition of efflux pumps resulted in transcriptional 

repression of genes involved in biofilm matrix production, leading to biofilm formation 

inhibition [62]. Similarly, a significant increase of efflux pump activity was observed 

with changes in their biofilm formation potential [68]. Pagedar et al. [68] 

demonstrated that QAC can trigger biofilm formation, highlighting the role of adaptive 

response to FQ and BC. These findings provided an insight into the process of 

conversion from non-resistant to resistant isolates in parallel with biofilm formation 

following adaptation to antimicrobial agent exposure [68]. Ebrahimi et al. [71] 

documented the effects of BC on planktonic growth and biofilm formation in E. coli, 

Salmonella sp., S. aureus, and Streptococcus agalactiae, and found that in all the 

bacteria tested biofilm formation increased with decrease of BC concentration. These 

results were confirmed for L. monocytogenes exposed to disinfectants such as BC, 

which are commonly used to control contamination in food processing plants. 

However, Ortiz et al. [72] also showed that effect of sub-MIC of BC on biofilm 

production by L. monocytogenes might differ between strains with different MICs, and 

even between resistant strains with similar MICs but different genetic determinants of 
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BC resistance. One of the mechanisms involved in reducing biofilm susceptibility to 

antimicrobials is the presence of bacterial persisters [73]. The AcrAB-TolC MDR 

efflux pump has been shown to lower the intracellular concentration of FQ in E. coli, 

and to increase the level of surviving persisters and their tolerance to FQ [74]. Stress 

responses may also act as general activators of persister formation, via the toxin-

antitoxin system TisB, inducing the entry of bacteria into dormancy [70,74]. Although 

QAC can trigger efflux and cause bacterial stress, there is a need for studies showing 

a direct link between QAC exposure and increased levels of persisters in bacterial 

biofilms.  

 

 Several studies have also demonstrated that biofilm formation and 

horizontal gene transfer are connected processes.  

Interrelations between QAC, efflux pump expression and biofilm formation, 

were described above.  Madsen et al. [75] also reviewed the relationship between 

biofilm formation and horizontal gene transfer. Biofilms can enhance the host range 

of mobile genetic elements carrying FQ resistance determinants that are transferred 

horizontally [75], or qac gene cassettes [76].  Horizontal gene transfer can occur by 

conjugation, transformation or transfection, through mobile genetic elements 

(integrons), or plasmids. Both conjugative plasmid DNA transfer and transformation 

induce the SOS response [77-79]. Whereas both conjugation and transformation 

induce the SOS response, the latter also activates integrase genes involved in DNA 

transfer and recombination [80]. Integrons are genetic elements capable of 

integrating genes by a site-specific recombination system catalysed by an integrase 

and class 1 integron incidence was shown to be significantly higher for populations 

that were preexposed to QACs [81,82]. Guérin et al. [83] found that LexA controlled 
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expression of most integrases and consequently regulated cassette recombination 

[83].  Gaze et al. [84] propose that the integration of gene cassettes conferring 

resistance to FQ agents within integrons can be only a matter of time. 

The integrating genes are exogenous genes, including qnr, aac(60)-lb-cr, 

qepA, and oqxAB. The qnr genes have originated in the chromosomes of water-

dwelling or other environmental organisms [85]. The environmental presence of qnr 

gene cassette on qac-containing integrons can contribute to the emergence of FQ 

resistance. Genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the 

pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from 

quinolone inhibition. Data from a recent structural analysis of a Qnr protein suggest 

that resistance to FQ is achieved by the binding of Qnr protein to topoisomerase, 

which physically prevents the intercalation of the antibiotic [86]. The qnr genes 

generally confer modest protection against FQ [87,88]. The gene aac(60)-lb-cr 

confers decreased susceptibility to CIP and NOR by acetylating the amino nitrogen 

on the piperazinyl substituent present in these drugs [87,88].The oqxAB and qepAB 

genes encode efflux systems transporters that can export FQ molecules. Carriage of 

these genes again confers modest increases in FQ MICs [89]. The 3′CS of class 1 

integrons contained qacED1 and sul1, which mediate low-level resistance to QAC: 

qacED1 encodes an efflux pump belonging to the small multidrug resistance family 

(SMR) and to sulfamethoxazole (sul1) [90-92]. Zou et al. [93] showed that the qac 

and sugE(p) genes were highly associated with FQ resistance among E. coli isolated 

from retail meats.  

Unfortunately, only a few data are available about clinical examples of where 

quinolone resistance is clearly related to QAC use. In clinical E. coli isolates, Buffet-
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Bataillon et al. [48,92] demonstrated an epidemiological relationship between higher 

MIC values of QACs and antibiotic resistance, involving AcrAB-TolC system and 

class 1 integrons. They observed the presence of dfrA/sul1 and qacEΔ1 gene 

cassettes correlated with resistance to co-trimoxazole and high MICs of QACs, with 

overexpression of tolC, marOR and soxS. Use of an inhibitor of efflux pumps reduced 

the MICs of ciprofloxacin and QACs, suggesting that extrusion of CIP and QACs from 

bacteria depends on the AcrAB-TolC system. Sidhu et al. [94] studied 61 strains of S. 

aureus and 177 coagulase-negative staphylococcal strains, isolated from the blood of 

patients with bloodstream infections and from the skin of both children under cancer 

treatment and human immunodeficiency virus-infected patients. The MIC analyses 

revealed that 118 isolates (50%) were resistant to QAC-based disinfectant BC. The 

frequencies of resistance to a range of antibiotics, including CIP, were significantly 

higher among BC-resistant staphylococci than among BC-sensitive staphylococci. 

Only qacA/B and blaZ probes where tested (they hybridized to the same plasmid in 

19 (24%) staphylococcal strains), but the higher frequency of antibiotic resistance 

among BC-resistant strains indicates that the presence of either resistance 

determinant selects for the other during antimicrobial therapy and disinfection in 

hospitals. 

 

 Conclusions 

Resistance to FQ is mainly related to antibiotic use and misuse [95], but the 

evidence presented above could potentially be applicable to other antimicrobial 

agents, sharing the same resistance and survival mechanisms. We may have 

underestimated the effects of non-antibiotic antimicrobials, such as QAC, with an 
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extensive use in biocidal products [9,96]. The observations listed in this review 

support that various mechanisms of resistance that may contribute to cross-

resistance between biocide and antibiotics, including overexpression of efflux pumps, 

biofilm formation, and spontaneous mutations [16,53]. Concerning the use of QAC 

some of the evidence between QAC exposure and resistance to FQ can be 

circumstantial and more clinical studies are needed to confirm or not QAC role in 

triggering antibiotic resistance. The overexpression of efflux pumps facilitates the 

horizontal transfer of mobile genetic elements carrying FQ resistance determinants 

(qnr, aac(60)-Ib-cr, oqxAB, qepAB) in Class 1 integrons (QacED1). However, there 

remain important gaps in our understanding of the mechanisms involved: Clinical 

studies are warranted to validate the in vitro experiments, and decipher the impact of 

QAC use on antimicrobial resistance, including to FQ, in patients and in the 

environment. 

 

 Future perspective 

In Europe, the Biocidal Product Regulation (No 528/2012) [8] is now requiring 

that manufacturers provide evidence that their biocidal products will not promote 

antimicrobial resistance. In the US, the Food and Drug Administration recently 

required manufacturers of antimicrobial hand wash to provide evidence that their 

products had no effect on the emergence of bacterial resistance to antimicrobials [84]. 

Although there are no standard to measure the impact of increasing use of biocidal 

products on the emergence of microbial resistance, Knapp et al. [97] developed such 

a test and validated its use with biocide and biocidal products. However, the 

proposed test does not investigate the effect of biocide usage and gene transfer.  
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Understanding the origins, evolution, and mechanisms of transfer of resistance 

elements is important for our ability to adequately address this public health issue.  

 

EXECUTIVE SUMMARY 

Quaternary Ammonium Compounds (QAC) 

 Over the past decade there has been a dramatic increase in the use of QAC 

and their fields of application. 

 The European Biocidal Product Regulation requires evidence of the possible 

effect of biocide on developing resistance and cross-resistance in bacteria. 

Fluoroquinolones (FQ) 
 

 Multidrug resistance and decreased susceptibility to FQ are now widespread 

 FQ is viewed as one of the highest priority for risk analysis by WHO.  

 

QAC and Efflux pumps and FQ-resistance in bacteria 
 

QAC induce the overexpression of efflux pumps that could potentially lead to:  

 i) a cross-resistance of QAC and FQ mediated by multidrug efflux pumps,  

 ii) a stress response that triggers mutation in the quinolone resistance-

determining region (QRDR), that is only supported by some solid scientific 

evidence to date. 

 iii) increasing the number of persisters in biofilm, and facilitating the transfer of 

mobile genetic elements carrying FQ or QAC resistance determinants.  
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Figure and Table legends 

 

Figure 1: Summary of the impact of quaternary ammonium compounds (QAC) use 

on resistance to fluoroquinolones. *QRDR: quinolone resistance-determining region. 
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Figure 2. Schematic illustration of the main types of multidrug-resistance efflux 

pumps (MDR) involved in extrusion of QAC and quinolones in a) Gram positive and 

b) Gram-negative bacteria [24,42-47]. Hatched: the efflux pumps encoded by plasmid 

genes 
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Table 1: Fields of quaternary ammonium compounds (QAC) use [3,4]. 

Preservatives in pharmaceutical and cosmetic products : Eyewash/artificial tears, 

nose decongestant lotions, facial cleansers, acne treatment, sun protection 

creams and lotions, baby lotions, moisturisers, pain relief poultices or creams, 

hair conditioners, hair colour and styling products, make-up and make-up removal 

products, and hand sanitizers 

Supplement in commercially available alcohol-based hand rubs, which contain 

mainly ethanol, isopropanol or n-propanol, as well as in mouthwashes. 

Benzalkonium chloride  

Cleaning and disinfecting farm buildings : poultry buildings (hatcheries), poultry 

cages, poultry house premises, poultry feeding equipment, poultry watering 

equipment, poultry equipment, poultry transportation vehicles, animal cages, 

animal living quarters, animal feeding and watering equipment, commercial egg 

treatment, hatchery equipment, incubators, hatchery premises, farm premises, 

agricultural equipment, shoe baths, and poultry processing equipment  

Alkyl dimethyl benzyl ammonium chloride, Didecyl dimethyl ammonium chloride, 

Octyl decyl dimethyl ammonium chloride, Dioctyl dimethyl ammonium chloride 

Decontamination of healthcare devices and environmental surfaces 

Benzalkonium chloride, Didecyl dimethyl ammonium chloride 

Waste water purification 

Benzalkonium chloride 

Antifungal treatment in horticulture 

Benzalkonium chloride 
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Table 2: Different generations and chemical structures of quaternary ammonium 

compounds (QAC). 

Generation quarternaries Description 

 

The QAC are ammonium compounds 
in which four organic groups (R1-4) 
are linked to a nitrogen atom (N) that 
produces a positively charged ion 
(cation). In these QAC, the organic 
radical is the cation, and chlorine is 
usually the anion (X).  

First generation quaternaries 

 

The first generation of QAC are 
alkyldimethylbenzyl-ammonium 
chloride (ADBAC) ie Benzalkonium 
chloride with alkyl chains of 8 to 18 
Carbons (C); Cetalkonium chloride= 
ADBAC with alkyl chains of 16 C; 
Stearalkonium chloride with alkyl 
chains of 18C. 

Second generation quaternaries 

 

The second generation of QAC was 
obtained by substitution of aromatic 
rings in ADBAC by chlorine or alkyl 
distributions to get the products like to 
get the products like 
alkyldimethylethylbenzylammonium 
chloride; Chlorure d'aralkonium (Alkyl 
diméthyl-3, 4-dichlorobenzyl-
ammonium chloride). 

Third generation quaternaries The third generation of QAC are a 

mixture of first and second 

generation, i.e., benzalkonium 

chloride and 

alkyldimethylbenzylammonium 

chloride.  

Fourth generation quaternaries 

 

The Twin Chain QAC with chains that 

are dialkyl linear and without the 

benzene ring are the fourth 

generation of QAC ie dialkyl methyl 

amines as Dioctyl Dimethyl 

Ammonium Chloride, Didecyl 

Dimethyl Ammonium Chloride 

http://en.wikipedia.org/wiki/File:Quaternary_ammonium_cation.svg
http://img1.guidechem.com/structure/image/1329-25-5.png
http://www.trc-canada.com/Structures/D439375.png


 Future Microbiology 
Peer Review Paper 

 

 28 

(DDAC). 

Fifth generation quaternaries The mixtures of the fourth generation 

(Dialkyl methyl amines) with the first 

generation (alkyl dimethyl benzyl 

ammonium chloride) represents the 

fifth generation 

 

  

 


