
 

 

 

Targeting endoplasmic reticulum 

stress and autophagy in cancer 

 

Thesis submitted for the degree of Doctor of Philosophy 

2015 

 

Charlotte Emily Johnson 

(1264971)  



II 
 

Student ID Number: 1264971 

            

Summary of Thesis:  

Mammalian/mechanistic target of mTOR complex 1 (mTORC1) regulates multiple cellular 

processes, including de novo protein synthesis, autophagy and apoptosis. mTORC1 

overactivation occurs in a range of cancers and benign tumour dispositions as a result of 

mutations which increase mitogenic stimulus or cause malfunction of the tuberous 

sclerosis complex, the prime regulator of mTORC1 activity. mTORC1 overactivation results 

in elevated endoplasmic reticulum (ER) stress which, at low levels, elicits a pro-survival 

response. However, prolonged or excessive ER stress causes cell death. The present study 

utilised clinically relevant drug combinations to simultaneously enhance levels of ER stress 

and inhibit compensatory survival pathways in in vitro models of mTORC1 overactivity in 

order to cause non-genotoxic cell death. The main drugs used in this study were 

nelfinavir, an ER stress-inducer, chloroquine, an autophagy inhibitor, and bortezomib, a 

proteasome inhibitor. The key findings of this study include identification of drug 

combinations nelfinavir and chloroquine, nelfinavir and mefloquine, or nelfinavir and 

bortezomib to induce significant and selective cell death in mTORC1-driven cells, as 

measured by flow cytometry with DRAQ7 staining and western blot analysis for cleavage 

of apoptotic markers. Cell death is likely mediated through ER stress signalling, as shown 

by increased ER stress markers at both the level of mRNA and protein. Of interest, this 

study found cell death as a result of combined treatment with nelfinavir was not 

dependent on proteasome inhibition by nelfinavir, or autophagy inhibition by 

chloroquine. Additionally, nelfinavir-chloroquine-mediated cell death was completely 

rescued by inhibition of the vacuolar ATPase by bafilomycin-A1. In conclusion, mTORC1 

overactive cells have higher basal levels of ER stress which can be manipulated with drug 

treatment beyond a survivable threshold, whereas cells capable of reducing mTORC1 

signalling are able to survive. This study ascertained a combination of nelfinavir and 

chloroquine, nelfinavir and mefloquine, or nelfinavir and bortezomib, to cause effective 

cytotoxicity in mTORC1-driven cells. 
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Chapter 1. Introduction 

Cancer is a leading cause of death worldwide. Current therapies are not curative, cause 

high levels of patient toxicity, and generally lack a targeted approach. Identifying 

cancer biomarkers allows stratified treatment which produces a higher therapeutic 

index and a higher response rate. It is common for cancerous cells to be host to 

elevated levels of cellular stress due to increased proliferative rates, signalling 

imbalances, nutrient deprivation and DNA damage (Hanahan and Weinberg, 2011). 

One of the drivers of cell proliferation is mammalian target of rapamycin complex 1 

(mTORC1), which is frequently upregulated in multiple cancer types due to upstream 

oncogenic mutation in mitogenic pathways or loss-of-function mutation in regulatory 

proteins, such as tuberous sclerosis complex 2 (TSC2). Rather than reducing levels of 

cellular stress, this study explored what effect increasing cellular stress beyond a 

tollerated threshold would have in genetically defined cell lines with overactive 

mTORC1.  

1.1 mTOR 

 1.1.1 mTORC1 

mTORC1 senses energy, oxygen and amino acid status, and is downstream of both 

mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K) 

mitogenic inputs. Protein and lipid synthesis, glucose metabolism, cell cycle, growth 

and autophagy are all regulated by mTORC1 (Fig 1.1). mTORC1 consists of the mTOR 

catalytic subunit, mammalian lethal with sec-13 protein 8 (mLST8), DEP domain-

containing mTOR interacting protein (DEPTOR), Tti/Tel2, regulatory-associated protein 

of mTOR (RAPTOR) and proline-rich Akt substrate 40 kDA (PRAS40) (Laplante and 

Sabatini, 2012). 

Amino acid accumulation within the lysosome causes the lysosomal vacuolar ATPase 

(v-ATPase) to undergo a conformational change which stimulates the coupled 

Ragulator complex to guanine-nucleotide exchange factor (GEF) activity (Zoncu et al., 

2011). This activates the Ras-related GTPases (Rags)  and binds them to the lysosome 

membrane where they recruit mTORC1, bringing mTORC1 into proximity with Ras 

homologue enriched in brain (Rheb) GTPase (Groenewoud and Zwartkruis, 2013). 
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RhebGTP activates mTORC1 - the exact mechanism for Rheb-mediated mTORC1 

activation has not been confirmed but theories involve direct activation, whereby 

Rheb is bound to mTOR, and indirect activation, whereby Rheb binds to phospholipase 

D1 (PLD1) which then hydrolises phosphatidyl choline to phosphatidic acid (and 

chlorine) which binds to mTOR at the FK506-binding protein 12 (FKBP12)-rapamycin 

binding (FRB) domain. Both methods result in a conformational change in mTORC1, 

allowing binding of substrates. Primarily, the inhibitory PRAS40 is bound to RAPTOR 

until phosphorylation encourages its dissociation, allowing competitive binding of 

other substrates, including eukaryotic translation initiation factor 4E-binding protein 1 

(4E-BP1).  

The intracellular location of both mTORC1 and lysosomes is highly dynamic and is 

critical for mTORC1 activation. In nutrient abundant conditions, lysosomes migrate 

along microtubules adjacent to the nucleus, towards the cell periphery in order to 

accommodate upstream mitogenic signalling activation of mTORC1 (Pous and 

Codogno, 2011). 
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Figure 1.1: Signalling pathways and outcomes downstream of mTORC1. mTORC1 increases 

translation through inhibition of 4E-BP1, and increases angiogenesis through HIF1-mediated 
VEGF expression. mTORC1 increases activation of S6K1 which targets many downstream 
pathways, including translational control and mRNA biogenesis. ULK1 is inhibited by mTORC1, 
reducing induction of autophagy.  
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 1.1.2 mTORC2 

As well as forming mTORC1, the mTOR catalytic subunit forms another kinase complex 

termed mTORC2. mTORC2 is composed of a rapamycin-insensitive companion of 

mTOR (RICTOR), protein observed with RICTOR-1 (PROTOR-1), stress-activated protein 

kinase-interacting protein 1 (mSIN1) and mLST8. As with mTORC1, mTORC2 is 

activated in response to growth factor stimulation, resulting in association with the 

ribosome. mTORC2 controls regulation of the actin cytoskeleton and has an 

involvement in cell survival (Dazert and Hall, 2011). Phosphorylation of Akt by mTORC2 

is essential for downstream mTORC1 activation. Both mTORC1 and mTORC2 are 

positioned within the PI3K/Akt signalling pathway, where mTORC2 lies upstream of Akt 

and mTORC1 lies downstream of Akt and the Tuberous Sclerosis Complex 1 (TSC1) and 

TSC2 proteins.  

 1.1.3 TSC1 and TSC2 

The tuberous sclerosis complex (TSC) is formed of the TSC1 and -2 tumour suppressor 

protein products of TSC1 and TSC2 (hamartin and tuberin, respectively). TSC1 and TSC2 

form a GTPase activating protein (GAP) complex in addition to TBC1D7. Recently 

characterised by Dibble et al., (2012), TBC1D7 primarily binds to TSC1, which prevents 

its degradation, before stabilising the TSC1/TSC2 heterodimer (Dibble et al., 2012). 

TSC1/TSC2/TBC1D7 (hereafter referred to as TSC1/2) is the main effective inhibitor of 

mTORC1.  

In mammalian cells, growth factor stimulation of the MAPK and PI3K pathways 

converge to inhibit TSC1/2 through extracellular signal-related kinase (ERK) and Akt-

mediated phosphorylation, allowing downstream activation of mTORC1 by RhebGTP. 

Insufficient mitogenic stimulus, low energy levels or hypoxia stimulate AMP-activated 

protein kinase (AMPK) to activate TSC1/2 which has GAP activity towards Rheb, 

converting Rheb to an inactive, GDP-bound form and therefore preventing activation 

of mTORC1 (Fig 1.2). Consequently, loss-of-function mutations in either of the TSC1 or 

TSC2 genes causes overactive mTORC1 signalling and resultant tumour formation (Tee 

et al., 2005). Additionally, knockdown of TBC1D7 resulted in mitogen-independent 

mTORC1 signalling which was not additive upon knockdown of TSC1 or TSC2, indicating 

the important role of TBC1D7 in the TSC1/2 complex. However, no mutations in 

TBC1D7 have been found in TSC patients (Dibble et al., 2012). 
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Overactive mTORC1 signalling shares common features with hallmarks of cancer, such 

as advanced cell growth, differentiation and angiogenesis, as well as increasing 

adipogenesis and cellular metabolism. Unsurprisingly, TSC1 and TSC2 are both tumour 

suppressor genes and thus inactivating mutations are found in some sporadic cancers. 

TSC1 mutations have been identified in approximately 54 % of bladder cancers (Guo et 

al., 2013) and 4 % of clear cell renal carcinomas (Kucejova et al., 2011). TSC2 mutations 

were detected in 29 % of hepatocellular carcinomas (Huynh et al., 2015), 3 % of 

urothelial carcinomas (Sjodahl et al., 2011), and 57 % of pancreatic cancers (Kataoka et 

al., 2005).  

1.2 Tuberous sclerosis complex (TSC) 

1.2.1 Overview of TSC 

TSC is an autosomal dominant condition characterised by benign multi-organ tumours 

(hamartomas) including; subependymal giant cell astrocytomas (SEGAs), 

angiomyolipomas (AMLs), and specialised lung AMLs termed 

lymphangioleiomyomatosis (LAM). Affecting approximately 1.5 million people 

worldwide, TSC is typically diagnosed through detection of a mutation in either TSC1 

(20-30%) or TSC2 (70-80%), alongside medical history and clinical signs. There is a 

tendency for TSC2 mutations to be phenotypically more severe (Franz and Weiss, 

2012). In approximately 20 % of individuals with symptoms of TSC, no mutation is 

identified.  

 1.2.2 Symptoms of TSC 

Although not the most problematic, the most common symptom of TSC is the 

formation of facial angiofibromas and other skin tumours. The latest therapies involve 

a combination of topical creams, electrosurgery, laser treatment and skin resurfacing 

(Bae-Harboe and Geronemus, 2013, Koenig et al., 2012, Weiss and Geronemus, 2010). 

Central nervous system abnormalities are the leading cause of death in TSC patients. 

Subependymal nodules (SENs) occur in 80% of TSC patients. SENs can develop into 

SEGAs in 5-15% of patients, typically during childhood or adolescence (Franz et al., 

2010). Although slow growing, SEGAs can cause potentially fatal obstruction and 

hydrocephalus. Additionally, up to 90 % of TSC patients can suffer from neuro- 
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Figure 1.2: Regulation of mTORC1. A) Under nutrient and amino acid-sufficient conditions, 
mTORC1 is activated. Accumulation of amino acids within the lysosome causes a 
conformational change within the v-ATPase, allowing binding of the ragulator complex which, 
along with RagA/C, recruits and tethers mTORC1 to the lysosome. Further phosphorylation of 
mTORC1 by GTP-bound Rheb is required before activation. B) mTORC1 is inactivated when 
dissociated from the lysosome surface, e.g. by amino acid depletion, or when TSC inactivates 
Rheb. Growth factor signalling prevents activation of TSC, allowing mTORC1 activation.  



7 
 

cognitive defects including epilepsy, cognitive and behavioural disorders. Renal AMLs 

are the second leading cause of mortality in TSC, affecting approximately 75% of 

patients (Franz and Weiss, 2012). Composed of blood vessels, myocyte-like and 

adipocyte-like cells, AMLs are typically frequent in both kidneys (bilateral) and are at 

risk of haemorrhage when greater than 4cm in diameter. Treatment is limited to 

surgery through embolisation, ablation or excision in severe cases (Franz and Weiss, 

2012). A severe kidney phenotype is seen in patients with the contiguous gene 

deletion syndrome resulting from deletions of both the TSC2 and PKD1 genes.  

 1.2.3 Lymphangioleiomyomatosis (LAM) 

Predominately in premenopausal females (30-40%), LAM is defined by the appearance 

of smooth muscle-like cells and cysts which infiltrate lung structures, causing dyspnea 

and pneumothorax (Franz et al., 2010). Although the cause of LAM is still unknown, it 

is thought to derive from AMLs which migrate to the lungs. LAM is currently 

untreatable and ultimately results in death from respiratory failure. LAM-associated 

smooth muscle cells are positive for estrogen and progesterone receptors, and lesions 

express vascular endothelial growth factor (VEGF)-C and -D involved in angiogenesis. 

Recent research found LAM nodules contain fibroblast-like cells with functional TSC2, 

which may contribute to development of LAM pathology by generation of a supportive 

microenvironment (Clements et al., 2015). 

1.3 Rapamycin 

 1.3.1 Mechanism of rapamycin 

Rapamycin was isolated from Streptomyces hygroscopicus from a soil sample collected 

from Easter Island. Rapamycin was found to be a poor antibiotic but exhibited anti-

proliferative and immonosuppressant activity and is currently used as an 

immunosuppressive treatment. Sirolimus and Everolimus are the present names for 

licenced rapamycin-based therapies. Rapalogues selectively inhibit mTORC1 

allosterically through the formation of a ternary complex with FKBP12 (Choi et al., 

1996). Association of RAPTOR with mTOR weakens, inactivating downstream P70 S6 

kinase 1 (S6K1) and 4E-BP1 signalling (Kohrman, 2012). Current research suggests that 

binding of the rapamycin-FKBP12 drug/protein complex to the FKBP12/rapamycin 
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binding domain of mTOR effectively reduces the accessibility of the mTOR catalytic 

cleft almost to the extent of capping it (Yang et al., 2013).   

 1.3.2 Rapamycin analogues (rapalogues) 

Everolimus (RAD001, an analogue of rapamycin) was recently approved for the 

treatment of AMLs and SEGAs and is the first choice of treatment in the NHS. 

Rapalogues, including everolimus, as single agents are currently in clinical trials for all 

aspects of TSC described above (clinicaltrials.gov NCT00790400 [LAM], NCT01730209 

[Neuropsychological deficit and autism], NCT00411619 [SEGAs], NCT01853423 

[Angiofibroma]). In cancer, everolimus is used for treatment of renal cell carcinoma, 

advanced breast cancer, pancreatic cancer and astrocytoma and a Phase II clinical trial 

for everolimus for treatment of cancers specifically with TSC1 or TSC2 mutation has 

recently begun (clinicaltrials.gov NCT02201212). Rapalogues are being trialled in 

combination with conventional therapies or small molecule inhibitors in a wide range 

of cancers: there are currently 281 open studies with an additional 358 having already 

been completed (clinicaltrials.gov).  

In some TSC patients, LAM tumours and SEGAs regressed but regrowth occurred after 

treatment cessation (Bissler et al., 2013, Franz et al., 2006). Some rare tumour legions 

within renal cell carcinoma appear resistant to rapamycin treatment and can even be 

present amongst other, rapamycin sensitive legions within the same kidney. 

Furthermore, prolonged treatment of some rapamycin-sensitive tumours still retain 

rapamycin-insensitive cells, which contribute to tumour recurrence (Jozwiak et al., 

2006). Clinical therapies using rapalogues indicate that inhibition of mTORC1 is 

cytostatic rather than cytotoxic, and requires continuous treatment to prevent 

regrowth. This highlights the importance of new drug therapies that selectively kill 

tumour cells rather than repress growth. One potential new line of therapy is to target 

existing cell stress pathways within tumour cells that lack functional TSC1/2. TSC1/2-

deficient cells have a high endoplasmic reticulum (ER) stress burden and a defective 

response to ER stress, which can be targeted to induce cell death (Siroky et al., 2012, 

Ozcan et al., 2008). This study investigated the use of a clinically relevant ER stress-

inducing agent, nelfinavir (Viracept, Roche), which is minimally toxic in humans. 

Nelfinavir will be discussed further in chapter 3.  
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1.4 The ER 

The ER was discovered by a group of electron microscopists led by Keith R. Porter in 

the 1940’s and was named for its lacy, net-like structure and location within the cell 

(Porter, 1953). It was later classified further into either rough (RER) or smooth (SER) 

membranes, which are visually and functionally distinct. RER is defined by membrane-

bound ribosomes and is concerned with synthesis, folding, and post-translational 

modification of proteins. The absence of ribosomes defines SER, where sterols and 

lipids are synthesised. The SER is also involved in macromolecule delivery chiefly 

through vesicle budding and fusion, and direct contact with other organelles (Voeltz et 

al., 2002). The ratio and extent of RER to SER is highly dependent on cell type e.g. 

specialised cells such as adrenal cells secreting steroids require a large amount of SER 

(Shibata et al., 2006). Both RER and SER share a continuous membrane but are 

spatially separated within the cell, where RER is primarily found localised to the 

nucleus and SER is located more distally. 

Impaired ER homeostasis causes ER stress. Quality control allows only correctly folded 

proteins to be exported to the golgi, whereas incomplete or misfolded proteins are 

retained within the ER for completion or to be targeted for degradation. Defects in any 

of the transport, sorting or folding stages can result in retention of protein within the 

ER and this is associated with a number of ER storage diseases including cystic fibrosis, 

albinism, and osteogenesis imperfecta. ER storage diseases cover a wide clinical 

spectrum due to the large range of mutations, which can occur in any cell type 

(Rutishauser and Spiess, 2002). ATP-dependent chaperone proteins assist in protein 

folding and are upregulated by stress conditions to facilitate clearance of protein 

aggregates. Failure to pass quality control results in one of two ER-associated 

degradation (ERAD) pathways, an ubiquitin/proteasome pathway and an 

autophagic/lysosomal pathway. Insufficient amelioration of ER stress results in cell 

death (Healy et al., 2009).  
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1.5 ER stress  

1.5.1 Overview of ER stress 

In addition to excessive amounts of unfolded proteins, nutrient deprivation, 

dysfunction of calcium regulation, mutational load and oxidative stress or hypoxia can 

cause ER stress. The effects of ER stress are not localised to the ER alone but are 

spread to interacting organelles and throughout the cell as the required functional 

protein products are not produced. The initial ER stress response is prosurvival – to 

reduce misfolded protein load and restore cellular homeostasis. However, cumulative 

unresolved ER insult results in a switch to programmed cell death to minimise the 

chances of damage to surrounding cells through necrosis, and also to prevent passing 

any accumulated genetic defects to daughter cells. The pro-survival arm of ER stress 

has the following functions: to increase protein folding capacity, to decrease protein 

synthesis on transcriptional and translational levels, and to upregulate misfolded 

protein clearance through ERAD pathways.  

Molecular chaperones, including foldases, heat shock proteins (HSPs), and lectins 

(calnexin, calreticulin and EDEM), are upregulated in response to ER stress in order to 

enhance protein folding and expand the ER itself to increase protein turnover. Under 

normal conditions, these molecular chaperones fold proteins into their final structures 

and undergo post-translational modifications, but during stress primarily help to refold 

misfolded proteins or to reduce aggregation. Generally, misfolded proteins are 

recognised by molecular chaperones through exposed hydrophobic regions which 

would normally be hidden in the native state (Schroder and Kaufman, 2005).  

A series of signalling pathways function to inhibit protein synthesis and promote 

protein clearance: upon accumulation of misfolded proteins, glucose-regulated protein 

of molecular mass 78 (GRP78, or BiP)  binds to unfolded proteins, allowing activation 

of protein kinase-like ER kinase (PERK), inositol-requiring enzyme-1 (IRE1) and 

activating transcription factor-6 (ATF6). PERK, IRE1, and ATF6 recognise ER stress and 

initiate compensatory responses (Fig 1.3).  

1.5.2 BiP 

BiP is a HSP70 class molecular chaperone with a C-terminal binding domain and an N-

terminal ATPase. Identified alongside GRP94 in the mid 1970s, this group of proteins  
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Figure 1.3: ER stress signalling. ER stress triggers 3 main signalling arms through PERK, IRE1, 
and ATF6. A) The initial ER stress response is pro-survival, upregulating autophagic and 
proteasomal degradation pathways, reducing mTORC1-mediated protein synthesis, and 

increasing NF-B. B) Prolonged or excessive ER stress switches to a pro-death response, 
principally mediated by CHOP and GADD34-induced apoptosis.  
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were named after their induction following depletion of glucose (Lee, 1987). BiP was 

later so termed after another group found it to be associated with the ER and that it 

bound Ig heavy chains (Haas and Wabl, 1983). Multiple studies investigating the role of 

BiP helped to elucidate its role in ER stress (Gething and Sambrook, 1992), with BiP 

being the initiator of the unfolded protein response (UPR) upon unfolded protein 

accumulation in the ER.  

1.5.3 PERK 

PERK is a transmembrane protein that is ubiquitously expressed, but found in high 

levels in secretory tissues. Monomers of PERK are sequestered by BiP until BiP 

dissociates during ER stress. This results in dimer/oligomerisation of PERK and trans-

autophosphorylation. Once activated, the C-terminal domain of PERK phosphorylates 

eukaryotic initiation factor 2 (eIF2α), inhibiting global protein synthesis by blocking 

translation initiation. Due to the lower efficiency of translation initiation as a 

consequence of eIF2 phosphorylation, ribosomes are more prone to skip start 

codons, which allows them to bypass earlier reading frames and translate specific 

proteins such as ATF4 (Schroder and Kaufman, 2005). ER stress-response genes such as 

BiP contain internal ribosomal entry sequences which allow continued protein 

production even when eIF2 is phosphorylated. Additionally, PERK phosphorylates 

nuclear factor (erythroid-derived 2)-like 2 (Nrf2), resulting in nuclear localisation and 

transcription of Nrf2 targets: antioxidant response element (ARE) genes. These genes 

reduce reactive oxygen species (ROS) within the cell which can accumulate during ER 

stress.  

1.5.4 ATF4 

The translation of ATF4 is induced upon eIF2 phosphorylation. ATF4 governs the 

exact switch point of ER stress between pro-survival and pro-death. In the pro-survival 

phase, ATF4 migrates to the nucleus and upregulates homocysteine-induced ER 

protein (HERP) which is essential for ERAD, molecular chaperones, and ATF3 which has 

roles in downstream metabolic signalling. It also increases levels of proteins required 

for autophagy and, perhaps most crucially, activates sestrin 2 (SESN2) which induces 

AMPK-mediated activation of the TSC1/2 complex and inhibition of protein synthesis 

through mTORC1 (Brüning et al., 2013). If ER stress is prolonged or excessive, ATF4 

switches to a pro-death response by upregulation of C/EBP homologous protein 
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(CHOP) transcription. CHOP promotes transcription of growth arrest and DNA damage 

protein 34 (GADD34), a protein phosphatase 1 (PP1) binding protein that promotes 

dephosphorylation of eIF2Consequently, GADD34-PP1 reverses the inhibition of 

protein translation to generate an apoptotic signal through translation of pro-

apoptotic proteins (Sano and Reed, 2013). This process appears to be regulated by 

ATF4-CHOP-mediated promotion of Tribbles 3 (TRB3), a pro-apoptotic protein which 

negatively regulates ATF4 (Ohoka et al., 2005). Furthermore, GADD34-PP1 can bind to 

and dephosphorylate the TSC1/2 complex to inhibit mTORC1 during glucose 

deprivation (Watanabe et al., 2007).  

1.5.5 ATF6 

Under normal conditions, ATF6 is sequestered by BiP and calreticulin. ATF6 has  and 

isoforms, both activated by the same mechanism during ER stress. ER stress causes 

BiP to preferentially bind to misfolded protein, and underglycosylation interferes with 

calreticulin-binding to newly synthesised ATF6 (Schroder and Kaufman, 2005). Once 

released, ATF6 dissociates from the luminal domain of the ER and is transported to the 

golgi. Here, the membrane anchor of ATF6 is cleaved allowing translocation to the 

nucleus where the transcription factor binds to promotors of ER stress response genes, 

upregulating production of molecular chaperones and proteins involved in ERAD. In 

addition, ATF6 activates transcription of pro-survival X box-binding protein 1 (XBP1) 

(Jager et al., 2012).  

1.5.6 IRE1 

IRE1 is an ER transmembrane protein similar to PERK in structure and also found in 

monomeric form bound to BiP under normal conditions. Released during ER stress, 

IRE1forms homodimers and trans-autophosphorylates itself to activate its 

endonuclease domain. The RNase activity of the actiated IRE1endonuclease splices 

mRNA of XBP1, which can be used as an early marker of ER stress (Brüning, 2011). 

Spliced XBP1 (XBP1s) is pro-survival and upregulates molecular chaperones, ERAD 

components and ER expansion. It is regulated by the unspliced form, which targets 

XBP1s for degradation by the proteasome (Yoshida et al., 2006). IRE1 signalling is 

primarily pro-survival (Lin et al., 2007), but can also be pro-apoptotic through binding 

to tumour necrosis factor (TNF) associated factor 2 (TRAF2) and downstream C-Jun N-

terminal kinase (JNK)-mediated upregulation of pro-apoptotic proteins such as Bim, 
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and down-regulation of anti-apoptotic proteins such as B cell lymphoma 2 (Bcl-2) (Zhu 

et al., 2014).  

1.6 The UPR 

ER stress signalling is an essential part of the induction of the UPR (Frand et al., 2000, 

Aebi et al., 2010, Ma and Hendershot, 2004). The UPR is a series of events that serve to 

reduce ER stress and restore ER homeostasis through relief of misfolded protein 

burden. This is done by multiple means; existing mRNAs are degraded, 

transcription/translation of new mRNA is inhibited, protein folding is facilitated and 

mis-folded proteins are eliminated. Protein degradation is carried out through 

autophagy and via the proteasome, which are discussed further in chapters 4 and 5, 

respectively.  

1.7 General Aims 

mTORC1 overactivation is a common feature of a broad spectrum of cancer types since 

it can be caused by a number of upstream mutations within mitogenic signalling 

pathways, including: pathological increases in growth factors, growth factor receptor 

activating mutations,  oncogenic mutations within the MAPK pathway, oncogenic 

mutations or loss-of-function tumour suppressor mutations in the PI3K pathway. 

Additionally, overactivation of mTORC1 can also be caused by any direct impairment in 

TSC1/2. mTORC1 overactivation causes ER stress which can be exploited in order to kill 

tumour cells. The main aims of this study were: 

1. To utilise specific in vitro models of mTORC1 overactivation to assess sensitivity to 

ER stress-induction 

2. To identify repositionable drugs and novel drug combinations which cause selective 

cell death in mTORC1-overactive cells 

3. To investigate the mechanisms of said drugs in order to refine and direct future 

treatment strategies 
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Chapter 2. General methods and materials 

2.1 Cell culture and reagents 

 2.1.1 Cell lines 

Tsc2+/+ p53−/− and Tsc2−/− p53−/− mouse embryonic fibroblasts (MEFs) were kindly 

provided by David J. Kwiatkowski (Harvard University, Boston, USA). Tsc2−/− ELT3 

(Eker rat leiomyoma-derived cells) and control ELT3-Tsc2 cells in which Tsc2 is re-

expressed were kindly provided by Cheryl Walker (M.D. Anderson Cancer Center, 

Houston, USA). TSC2-/- human angiomyolipoma cells (AMLs) were kindly provided by 

Elizabeth Henske (Harvard Medical School, Boston, USA). Human lung carcinoma (NCI-

H460) cells were purchased from ATCC.  

 2.1.2 Cell culture and reagents 

All cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplimented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 µg/ml 

streptomycin (Life Technologies Ltd., Paisley, UK) with the exception of AML cells 

which were cultured in DMEM supplimented with 15% FBS. Cells were incubated in 

T75 cell culture flasks at 37 °C, 5% (v/v) CO2. Cells were passaged once every 48 h using 

3 x 1ml washes with Trypsin EDTA (0.25 %) followed by incubation at 37 °C over 5 min. 

Cells were then resuspended in culture medium and re-seeded into a T75 flask for 

continued culture. Surplus cells were used to setup experimentation at a set seeding 

density, as appropriate. 

 2.1.3 Drugs 

Nelfinavir mesylate hydrate, ritonavir, lopinavir, chloroquine di-phosphate salt, 

mefloquine hydrochloride, bafilomycin-A1, 3-methyladenine (3-MA), N-acetyl-cysteine 

(NAC), digoxin, MG132, celecoxib, JSH23, etoposide and thapsigargin were purchased 

from Sigma–Aldrich Company Ltd. (Dorset, UK). Bortezomib, 17AAG and Z-IETD-FMK 

were purchased from Millipore (Hertforshire, UK). Ku0063794 was purchased from 

ChemQuest (Cheshire, UK).  

All drugs were dissolved in 100 % dimethyl sulfoxide (DMSO) to stock solutions and 

stored at -20 °C, with the exception of chloroquine which was dissolved in fresh culture 



16 
 

medium to 100mM stock and further diluted to the required concentration in culture 

medium, and 3-MA which was dissolved in dH20 to 100mM. Drug(s) or DMSO vehicle 

control was added to culture medium for treatment at a final DMSO concentration of 

<0.5% (v/v). Drug stock solutions and final concentrations are shown in Table 1. 

2.2 mRNA extraction and reverse transcription 

Cells were seeded on 6 cm2 plates (TPP Helena Biosciences, Newcastle, UK) and 

allowed to adhere overnight. After treatment, cells were washed in phosphate 

buffered saline (PBS, Sigma) and lysed in RNAprotect reagent (Qiagen, West Sussex, 

UK). Cells were removed from the plate surface by scraping and stored at -80 °C before 

mRNA extraction.  

 2.2.1 mRNA extraction 

RNA was extracted using the RNeasy Plus mini kit and homogenised using 

Qiashredders (Qiagen). Briefly, samples were thawed and centrifuged (5,000 g, 5 min) 

to form a loose pellet. Supernatant was discarded before resuspending in buffer RLT 

supplimented with 10 % -mercaptoethanol (600 µl/sample) and transfering to a 

Qiashredder spin column. Following centrifugation (full speed, 2 min) flow-through 

was transferred to a gDNA spin column with collection tube and again centrifuged 

(8,000 g, 30 sec). An equal volume of 70 % ethanol was added to the flow-through and 

transferred to an RNeasy spin column with collection tube. Samples were centrifuged 

(8,000 g, 15 sec) and flow-through was discarded before addition of 700 µl buffer RW1 

and another centrifugation (8,000 g, 15 sec). Flow-through was discarded before 

addition of 500 µl buffer RPE and centrifugation (8,000g, 15 sec). This step was 

repeated with a longer centrifugation of 2 min. The spin column was then placed into a 

fresh collection tube and 50 µl RNase-free water was added directly to the column 

membrane and left to incubate at room temperature for 5 min. Samples were 

centrifuged (8,000 g, 1 min) before assessment of RNA concentration and purity by 

measurement of absorbance (260 nm and 280 nm) on a Nanodrop spectrophotometer 

(Thermo Scientific, Hemel Hempsted, UK).  

  



17 
 

 

Table 2.1: Drug stock solutions and final concentrations. * standard dose, other 
concentrations as indicated.  

DRUG SOLUTION 
STOCK  

CONCENTRATION (mM) 
FINAL  

CONCENTRATION (µM) 

Nelfinavir DMSO 30 20* 

Ritonavir DMSO 40 20* 

Lopinavir DMSO 40 20* 

Chloroquine Culture Media 100 20* 

Mefloquine DMSO 50 10* 

Rapamycin DMSO 0.1 0.1 

Ku0063794 DMSO 1 1 

Etoposide DMSO 100 100 

3-Methyl Adenine dH20 100 5 

N-Acetyl Cysteine DMSO 500 20 

Thapsigargin DMSO 10 1 

Bafilomycin-A1 DMSO 2.5 2.5 

Digoxin DMSO 10 5 

MG132 DMSO 10 1 

Celecoxib DMSO 500 50 

Bortezomib DMSO 0.1 0.05 

17AAG DMSO 1 1 

JSH23 DMSO 10 10 

Z-IETD-FMK DMSO 5 10 
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 2.2.2 Reverse transcription 

1 µg total RNA per sample was transcribed to cDNA using Quantitect reverse 

transcription kit (Qiagen) in a thermal cycler (Applied Biosystems, California, USA) and 

subjected to a gDNA wipeout stage. Briefly, 1 µg total RNA per sample was calculated 

and diluted to a volume of µl with RNase-free water before addition of 2 µl gDNA 

wipeout reagent. Samples were incubated at a volume of 14 µl at 42 °C for 2 min. 

Reverse transcription master mix was composed of 1 µl primer mix, 1 µl Quantiscript 

reverse transcriptase (RT) and 4 µl RT 5x buffer per sample. 6 µl of master mix was 

added to each sample. Samples were incubated at a final volume of 20 µl at 42 °C for 

30 min, followed by 95 °C for 3 min. Following reverse transcription, samples were 

stored at -80 °C until further use.  

2.3 Detection of endoplasmic reticulum stress 

 2.3.1 Q-PCR 

Quantitative PCR (Q-PCR) reactions were conducted in 96 well plates (Thermo Fisher 

Scientific, Leicestershire, UK) using 25 ng DNA per reaction, appropriate primer sets 

and SYBR Green PCR Master mix (Qiagen). Quantitect β-actin, C/EBP Homologous 

Protein (CHOP), HSP70, and ER degradation enhancer mannosidase-like 1 (EDEM1) 

primers were purchased from Qiagen. Q-PCR was performed using an Applied 

Biosystems 7500 real-time cycler as follows: initial denaturation step (95 °C, 15 min); 

40 cycles of denaturation (94 °C, 15 s); annealing step (55 °C, 30 s); extension step 

(72 °C, 30 s). The amplification products were quantified during the extension step in 

the 40th cycle. Relative quantification was performed using the comparative CT 

method (ddCT) with β-actin as the reference gene and DMSO vehicle-treated Tsc2+/+ 

MEFs as the calibrator. Melting curve analysis was performed to verify specificity of 

the Q-PCR products.  

 2.3.2 XBP1 splicing 

XBP1 primers [Forward: 5′-AAA CAG AGT AGC AGC TCA GAC TGC-3′, Reverse: 5′-TCC 

TTC TGG GTA GAC CTC TGG GA-3′] were synthesised through MWG Operon-Eurofin 

(Ebersberg, Germany).  
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Per sample, XBP1 master mix was composed of the following: 10 µl 5x Phusion GC 

buffer, 1 µl dNTPs, 2.5 µl 5 % DMSO, 34 µl sterile dH20, 0.5 µl Phusion DNA 

polymerase, 0.5 µl forward XBP1 primer 10 pM, 0.5 µl reverse XBP1 primer 10 pM. Per 

sample, -actin master mix was composed of the following: 10 µl 5x Phusion GC buffer, 

1 µl dNTPs, 32.5 µl sterile dH20, 0.5 µl Phusion DNA polymerase (all from New England 

Biolabs), 5 µl -actin primer (Qiagen). PCR was performed using an Applied Biosystems 

GeneAmp 9700 PCR system as follows: initial denaturation step (98 °C, 3 min); 31 

cycles of denaturation (9 °C, 30 s); annealing step (60 °C, 30 s); extension step (72 °C, 

1 min).  

XBP1 products were run on 3 % (w/v) agarose gels, 1x TAE (pH 8.0) using 10 % GelRed 

nucleic acid stain (Cambridge Bioscience, Cambridge, UK). DNA samples were prepared 

for loading by the addition of 5 µl 5x orange G loading buffer. 25 µl of XBP1 samples 

and 5 µl -actin samples were loaded per well alongside 1Kb plus ladder (Life 

Technologies). PCR products of XBP1 were 480 bp, unspliced, and 454 bp, spliced. Gels 

were run at 100 volts over 1 h (actin) or up to 3 h (XBP1).  

 2.3.3 Gel extraction 

XBP1 products were isolated from gels to confirm splicing by restriction digest with 

PST1, which digests unspliced XBP1 mRNA into 2 further products of 312 bp and 298 

bp. The PST1 site is lost in spliced XBP1 so the product remains 454 bp.  

Following the XBP1 assay, unspliced and spliced XBP1 products were extracted from 

the agarose gel using QIAquick Gel Extraction Kit (Qiagen) following the 

manufacturer’s protocol. Briefly, extracted gel was weighed to calculate the amount of 

buffer QG (6 volumes/100 mg gel) for dissolving the gel, before incubation at 50 °C 

with agitation over 10 mins. When fully dissolved, an equal amount of isopropanol was 

added and the solution was centrifuged in a QIAquick spin column (13,000 rpm, 1 min) 

and flow-through was discarded. 500 µl buffer QG was added to the spin column 

before centrifugation (13,000 rpm, 1 min) and discard of flow-through. 750 µl buffer 

PE was added to the spin column, centrifuged (13,000 rpm, 1 min), and flow-through 

discarded. The spin column was then dry-centrifuged (13,000 rpm, 1 min) before 

placing in a fresh collection tube and adding 50 µl sterile dH2O which was left at room 



20 
 

temperature for 5 min. After a final centrifugation (13,000 rpm, 1 min), samples were 

stored at -80 °C until use.  

2.3.4 PST1 digest 

Per sample, 45 µl XBP1 gel extract was mixed with 0.5 µl 100x BSA and 5 µl NE buffer 3 

before adding either 1 µl PST1 restriction enzyme (all from New England Biolabs), or no 

further reagents for negative controls. Samples were incubated at 37 °C for 1.5 h. After 

addition of 5 µl 5x orange G loading dye, 25 µl sample was run on 3% (w/v) agarose 

gels, 1× TAE (pH 8.0) using 10 % GelRed nucleic acid stain to distinguish uncut and PST1 

cut bands of 312 bp and 289 bp alongside a 1Kb ladder. Gels were run at 100 volts for 

up to 3 h.  

2.4 Antibodies and western blotting 

 2.4.1 Western blotting 

Whole lysates were collected from treated cells by first washing in PBS and lysing in 

radio immunoprecipitation assay (RIPA) buffer (Sigma-Aldrich) supplemented with 

protease inhibitors (Complete Mini protease inhibitor cocktail, Roche Diagnostics Ltd., 

Burgess Hill, UK) and dithiothreitol (DTT) on ice. Cells were removed from plates by 

scraping after 5 min in RIPA solution. All supernatants, washes and cells were collected 

into 15 ml (Thermo Fisher Scientific) and centrifuged (1,500 rpm, 10 min). 

Supernatants were discarded and cells were resuspended in 0.5 ml RIPA solution 

before transfer into 1.5 ml eppendorf tubes and storage at -80 °C until further use.  

Samples were subjected to sonication (high: 3 x 20 sec on, 15 sec off) before 

centrifugation at 13,000 rpm for 8 min. Supernatants were transferred to fresh 

eppendorf tubes and sample protein concentrations were optimised using Bradford 

assay (Sigma-Aldrich). 4 x NuPAGE loading buffer (Life Technologies) supplemented 

with 25 mM DTT was added to samples before storage at -20 °C.  

Following boiling at 70°C for 10 min, 25 µl protein samples per well were loaded into 

NuPAGE 4-12 % Bis-Tris protein gels (Life Technologies) alongside a protein ladder 

(Geneflow LTD, Stafforshire, UK) for separation using SDS-PAGE. Proteins were then 

transfered onto activated polyvinylidine difluoride (PVDF) membranes (Millipore) using 

the Novex system (Life Technologies). Membranes were blocked in 5% (w/v) milk 
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powder dissolved in tris-buffered saline (TBS) before probing with primary antibody 

(see Table 2 for concentration - diluted in TBS-T, supplimented with 2 % BSA) 

overnight. Primary antibodies were then removed and membranes were washed 3 

times in 1 x TBS-T for 10 min at room temperature with agitation. Following washing, 

membranes were incubated at room temperature with horse radish peroxidase (HRP)-

conjugated secondary antibody (1:10,000 in TBS-T, New England Biolabs) over 1 h. 

Membranes were then washed (TBS-T, 3 x 10 min) before detection with enhanced 

chemiluminescent (ECL) solution (GE Healthcare) to visualise protein bands using 

Hyperfilm (Fujifilm).  

 2.4.2 Antibodies 

A full list of antibodies is shown in Table 2. 

2.5 Late cell death assay 

Following treatment, cells were removed from plates using trypsin. All washes and 

cells were collected in 15 ml falcon tubes (Thermo Fisher Scientific) before 

centrifugation at 900 rpm for 10 min to form a loose pellet of cells without affecting 

viability. Supernatant was discarded and cells were resuspended in 0.5 ml culture 

medium and transferred to 5ml Falcon round bottom tubes (Thermo Fisher Scientific). 

Cell viability was assessed using 3 µM DRAQ7 (Biostatus, Leicestershire, UK) non-cell 

permeable DNA stain incubated with cell suspensions at 37°C over 10 min. DRAQ7 

fluorescence was detected using flow cytometry and excitation at 488 nm in log mode 

at wavelengths greater than 695 nm (far red). Flow cytometry using a FACS Calibur 

flow cytometer (Beckton Dickinson, Cowley, UK) and Cell Quest Pro software (Beckton 

Dickinson Immunocytometry Systems) was used for data acquisition. Unstained cells 

were analysed for autofluorescence (using FL3-H plots). Correlated signals were 

collected for 10,000 events. Collected data was gated to exclude debris (using SSC/FSC 

plots) from the final analysis. 

2.6 Time lapse microscopy analysis 

Tsc2+/+ or Tsc2-/- MEFs were seeded into 6-well tissue culture plates and allowed to 

adhere over 24 h before treatment with either DMSO control, 20 µM nelfinavir or co-

treatment with 20 µM nelfinavir and 20 µM chloroquine. Following initial treatment,  
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Table 2.2: Table of primary antibodies and suppliers. * New England Biolabs are the UK 
distributer for Cell Signalling Technology antibodies. Primary antibodies were used at a 
concentration of 0.1 µg/ml. 

ANTIBODY SUPPLIER 

ACC New England Biolabs (Hertfordshire, UK) 

Phospho-ACC (Ser79) New England Biolabs 

AMPK New England Biolabs 

Phospho-AMPK (Thr172) New England Biolabs 

ATF4 
Santa Cruz Biotechnology (Heidelberg, 
Germany) 

Phospho-ATM (S1981) New England Biolabs 

β-actin New England Biolabs 

BiP New England Biolabs 

Phospho-Beclin1 (S30) Dr James Murray (Trinity College, Dublin, UK) 

Caspase 3 New England Biolabs 

Cleaved caspase 8 New England Biolabs 

CHOP Santa Cruz Biotechnology 

CHOP New England Biolabs 

Phospho-4E-BP1 (Thr36/45) New England Biolabs 

Phospho-eIF2(S51) New England Biolabs 

ERK 
Prof. John Blenis 

(Harvard University, Boston, USA) 

Phospho-ERK (Thr202/Tyr204) New England Biolabs 

GADD34 Proteintech (Manchester, UK) 

Phospho-H2AX (S139) New England Biolabs 

TSC2 New England Biolabs 

IRE1 New England Biolabs 

LC3 Novus (Cambridge, UK) 

PARP New England Biolabs 

Phospho-Raptor (S859) 
Prof. Diane Fingar, (University of Michegan 
Medical School, Michegan, USA) 

Phospho-RelA (S536) New England Biolabs 

rpS6 New England Biolabs 

Phospho-rpS6 (Ser235/236) New England Biolabs 

S6K1 New England Biolabs 

Phospho-S6K1 (Thr389) New England Biolabs 

SQSTM1 
PROGEN Biotecknik 

(Heidelberg, Germany) 

Ubiquitin Enzo Life Sciences (Exeter, UK) 
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plates were immediately installed into the time-lapse instrument comprising of an 

Axiovert 100 microscope (Carl Zeiss, Welwyn Garden City, UK) fitted with an incubator 

and CO2 regulator (37°C, 5% CO2). Images were captures with an ORCA-ER CCD camera 

(Hamamatsu, Reading, UK) and illumination was regulated by a shuttered transmission 

lamp. An X and Y stage with Z-focus was used to set multi-field acquisition. Images 

were taken in 15 min intervals over 48 h, with 3 fields per well. Sequence capture was 

controlled by MetaMorph software (Molecular Devices, California, USA). 

2.7 Microscopy 

Images of live cells were taken at x 40 or x 100 magnification using phase contrast on 

an EVOS XL Core microscope (Fisher).  

2.8 Statistical analysis 

Experiments were carried out a minimum of 3 times wherever possible. The arithmetic 

mean was used to measure the central tendency of data. The dispersion of values 

around the mean was expressed as the standard deviation (SD) in analysis of raw data, 

i.e. mean ± SD. The significance of difference was tested using Miscosoft Excel and R 

statistical analysis software (R Core Team, 2013 [Available at: http://www.R-

project.org/]). Statistical tests included Student’s t-test for initial assessment of 

significance, followed by ANOVA for confirmation of significance accounting for 

multiple variables. General linear model with gamma distribution and comparisons 

was used for analysis of the larger data sets generated by flow cytometry to effectively 

summarise significant outcomes. The level of statistical significance was set at P<0.05. 

2.9 General buffers and solutions 

1 x Phosphate-buffered saline (PBS) 

200 ml ddH2O, 1 x PBS tablets (Sigma): 10 mM phosphate buffer, 2.7 mM potassium 

chloride and 0.137 M NaCl, pH 7.4 

10 x Tris-buffered saline (TBS) 

500 ml ddH2O, 12.1 g Tris (Sigma), 40 g NaCl (Sigma), pH 7.6 
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1 x TBS-tween (TBS-T) 

450 ml ddH2O, 50 ml 10 x TBS, 0.5 ml 0.1 % (w/v) Tween-20 (Sigma) 

10 x Tris–Acetate–EDTA (TAE) 

1 L ddH2O, 1.14 ml glacial acetic acid (Sigma), 4.84 g Tris (Sigma), 1 ml 0.5 M EDTA 

1 x running buffer for SDS PAGE 

380 ml ddH2O, 20 ml 20x NuPAGE MES SDS running buffer (Life Technologies) 

10 x transfer buffer 

1L ddH2O, 144.07 g Glycine (Sigma), 30.285 g Tris (Sigma), 2 g sodium docecyl sulfate 

(Sigma) 

Western blot transfer buffer 

400 ml ddH2O, 50 ml methanol (Thermo Fisher Scientific), 50 ml 10 x transfer buffer 

5 % Milk block 

20 ml 1 x TBS, 0.5% (w/v) skimmed milk (Marvel) 

RIPA buffer (Sigma) 

150 mM NaCl, 1.0% (v/v) IGEPAL® CA-630, 0.5% (w/v) sodium deoxycholate, 0.1% 

(w/v) SDS, and 50 mM Tris, pH 8.0.  
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Chapter 3. Detection of nelfinavir-induced ER stress and 

cell death 

3.1 Background 

3.1.1 Nelfinavir 

As a first generation human immunodeficiency virus (HIV) protease inhibitor (PI), 

nelfinavir has been used extensively in the treatment of HIV for over a decade but is 

now rarely used for antiretroviral therapy (ART) due to continuing development of new 

drugs. Nelfinavir was derived from saquinavir, designed to inhibit cleavage of viral 

precursor polyproteins, and approved by the Food and Drug Administration (FDA) for 

HIV treatment in 1997. Nelfinavir was the first non-peptidomimetic PI and contains a 

novel 2-methyl-3-hydroxybenzamide group. It was the first PI approved for paediatric 

treatment of HIV (Wlodawer, 2002). Modern day ART combines a PI (of which there 

are 10 approved forms including nelfinavir) with reverse transcriptase inhibitors. ART 

reduces mortality, infection, and AIDS-related cancers such as Kaposi sarcoma (Sgadari 

et al., 2003). For treatment of HIV, nelfinavir was given orally to achieve mean plasma 

concentrations of 2.2 ± 1.25 µg/ml which efficiently inhibited the retroviral proteinase, 

but this low dose is insufficient to induce ER stress in cancer cells. For this, 8-15 µg/ml 

is required. The amount of 250 µg tablets required to achieve this dose is high, but a 

625 µg bolus is also available (Brüning, 2011). Nelfinavir is well absorbed and 

metabolised primarily through the liver within 3.5 – 5 h (Pai and Nahata, 1999). 

Kaposi sarcoma (KS) is an acquired immune deficiency syndrome (AIDS)-related cancer 

caused by opportunistic infection of human herpesvirus 8 (HHV8), as HIV-infected 

persons are immunosuppressed. 1997 saw a flurry of research publications showing 

HIV-infected patients with KS treated with PIs showed regression and reduction of the 

cancerous regions (Blum et al., 1997, Conant et al., 1997, Murphy et al., 1997). This 

prompted further research into the effects of PIs other than on the HIV protease which 

found the regression of KS legions linked to reduction of both angiogenesis and 

invasion though VEGF-A and matrix-metalloprotease-2 (MMP2) inhibition in multiple 

human xenograft KS models (Barillari et al., 2003) and primary KS cells (Grosso et al., 

2003).  
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3.1.2 PIs in preclinical research 

Sequential studies have shown that nelfinavir displays anticancer activity through 

induction of ER stress in preclinical cell and xenograft models. Gills et al., (2007) tested 

a panel of 6 PIs in 60 cancer cell lines derived from 9 tumour types and found 

nelfinavir, ritonavir and saquinavir to be effective at inducting cell death with nelfinavir 

being the most effective (mean 50% growth inhibition). They demonstrated that 

nelfinavir caused both caspase-dependent and –independent cell death, which was 

mediated through ER stress, and went on to further validate this finding in vivo (Gills et 

al., 2007). More recently, Taura et al., (2013) investigated a range of 9 PIs in 3 human 

cancer cell lines, 2 non-malignant cell lines and primary peripheral blood 

mononucleocytes (PBMCs). They found lopinavir, a second generation PI, to be most 

effective at induction of ER stress (as detected by CHOP expression), following 24 h of 

40 µM treatment. However, lopinavir appeared equally effective at ER stress-induction 

throughout all cell types, whereas nelfinavir showed some selectivity. Additionally, the 

study investigated darunavir, a more recent second generation PI with very high 

specificity and binding affinity (Taura et al., 2013). These properties result in lower side 

effects in HIV patients, possibly because it is a poor inducer of ER stress and therefore 

might not be as promising for repositioning for the treatment of cancer. Kraus et al., 

(2014) again examined all 9 approved PIs, this time in the context of leukaemia. They 

used acute myeloid leukaemia cell lines and primary cells as well as primary acute 

lymphocytic leukaemia cells, and primary PBMCs. Results showed saquinavir, ritonavir, 

nelfinavir and lopinavir induced similar levels of ER stress (Kraus et al., 2014). Ritonavir 

proved to be an effective and selective inducer of cell death in primary cultures at 40 

µM over 48 h, but in this study, ritonavir was not directly compared alongside the 

other PIs. A summary of the PIs and other drugs used in this study is presented in table 

3.  

3.1.3 Nelfinavir inhibits Akt 

The PI3K-Akt mitogenic signalling pathway acts to increase mTORC1 activity through 

Akt which directly inhibits the TSC complex whilst also inhibiting activatory 

phosphorylation of AMPK. In the context of cancer, this action to increase mTORC1 

signalling could result from any upstream oncogenic mutation (e.g. PI3K), tumour 

suppressor dysfunction (e.g. phosphatase and tensin homologue (PTEN)), or increased  
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Table 2.3: Mechanisms of drugs relevant to the present study. Adapted from Brüning and 
Jückstock (2015) and Gantt et al. (2013). 
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mitogenic stimulus from malfunctional or upregulated growth factor receptors (e.g. 

epidermal growth factor receptor (EGFR)). Since all these potential and common 

situations result in upregulation of Akt, an Akt inhibitor would be a useful anti-cancer 

agent. Although several PIs appear to inhibit Akt to a certain degree, nelfinavir is the 

most potent of its class (Gills et al., 2007, Yang et al., 2006). The mechanism may be 

through nelfinavir-mediated inhibition of the proteasome, resulting in ER stress and 

induction of the UPR, leading to downstream Akt inhibition (Gupta et al., 2007). 

However, nelfinavir-mediated Akt inhibition appears to be dependent on cell type, 

dosage and treatment length and does not consistently correlate with induction of ER 

stress (Kraus et al., 2013, Gills et al., 2007). It is important to note that inhibition of Akt 

signalling is not always associated with antitumour activity and there have been 

studies published showing nelfinavir activates Akt (Shim et al., 2012, Jiang et al., 2007).  

3.1.4 Relating to angiogenesis 

Increased Akt signalling upregulates angiogenesis through mTORC1-mediated 

elevation of hypoxia-inducible factor (HIF) 1 and downstream VEGF-A expression. 

Angiogenesis allows solid tumours to grow beyond 2-4 mm in size and also facilitates 

metastasis. Drug inhibition of angiogenesis is useful for limiting tumour growth but 

also has serious side effects including reduced maintenance of vasculature leading to 

bleeding and poor wound healing. PIs have been shown to decrease angiogenic 

signalling, likely through Akt inhibition. In particular, nelfinavir decreased HIF-1 and 

VEGF-A expression both under normoxic and hypoxic conditions, in both in vitro and in 

vivo assays of glioblastoma model systems, which sensitised tumour xenografts to 

radiotherapy (Pore et al., 2006b, Pore et al., 2006a).  

3.1.5 PIs relating to apoptosis 

PIs have been shown to induce cell death in multiple cancer cell lines. Although the 

precise mechanism varies, and one single mechanism may not be responsible, ER 

stress and other pathways have been implicated. It is known that nelfinavir inhibits the 

proteasome in multiple cell types (Gantt et al., 2013), which in turn may reduce 

degradation of the inhibitory IB protein, therefore preventing activation of the 

powerful pro-survival complex, Nuclear Factor- B (NF-B). Indeed, ritonavir repressed 

NF-B levels in in vitro and in vivo models of AIDS-related lymphoma (Dewan et al., 

2009). Conversely, long-term incubation with PIs led to activation of NF-B due to 
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degradation of IB through the lysosome (an alternative degradation pathway) in a 

lung cancer cell line (Lee et al., 2013). Further research into the use of PIs to induce ER 

stress combined with a NF-B inhibitor may show therapeutic value.  

3.1.6 Nelfinavir inhibits the cell cycle 

One recent paper using castration-resistant prostate cancer cells showed single 

treatment with nelfinavir inhibited cell proliferation through inhibition of site-2 

proteases, resulting in downstream interference of regulated intramembrane 

proteolysis which is essential for ATF6-mediated induction of the UPR (Guan et al., 

2015). Another study using human cervical cancer cells found nelfinavir inhibited the 

cell cycle at G1, concurrent with many other studies, but also induced apoptosis which 

was potentially mediated through increased mitochondrial ROS production (Xiang et 

al., 2015).  

3.1.7 Mechanisms of nelfinavir-induced ER stress 

Multiple studies have shown that nelfinavir induces ER stress in a wide range of in vitro 

and in vivo models. The exact mechanism of nelfinavir has not been determined and 

appears to vary with cell type, but speculation includes theories affecting proteolytic 

processing of newly synthesised proteins or their degradation (Brüning, 2011). 

Furthermore, it is difficult to implicate a single mechanism since nelfinavir acts on 

multiple targets and has hundreds of predicted off-target kinase binding partners, the 

most dominant of these are within the PI3K signalling pathway, including Akt (Xie et 

al., 2011). This is primarily through the ability of nelfinavir to inhibit HSP90 (Shim et al., 

2012). HSPs were discovered in 1962 in chromosomes of drosophila salivary glands 

following thermal shock (Ritossa, 1962), though it is now known their expression is 

increased within cells during stress, regardless of the stimulus. The general role of 

HSPs is to promote protein folding and restore misfolded proteins (Hartl et al., 2011). 

In addition to this role, HSP90 preferentially interacts with transcription factors and 

regulatory kinases which become stabilised and functional by HSP90 binding. During 

low levels of ER stress, HSP90 associates with and stabilises IRE1a and PERK, which 

promote a pro-survival response (Marcu et al., 2002). Shim et al., (2012) proposed 

nelfinavir binds to HSP90 at the C-terminal domain, in a way distinct to other HSP90 

inhibitors, and causes a conformational change. Therefore, inhibition of HSP90 by 
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nelfinavir causes increased misfolded proteins within the ER and may also reduce the 

pro-survival IRE1 response.  

Nelfinavir was shown to definitively cause ER stress through upregulation of eIF2 and 

BiP, which accumulated in swollen ER vacuoles in ovarian cancer cells (Brüning et al., 

2009). Downstream of BiP, nelfinavir-induced ER stress signalling was found to 

upregulate ATF4 which targeted SESN2 (Brüning et al., 2013), which subsequently 

phsophorylated AMPK and activated TSC2 to inhibit mTORC1 (Budanov and Karin, 

2008).  

3.1.8 PIs in clinical trials 

To date, nelfinavir has been included in 27 clinical trials for cancer treatment, most 

commonly in combination with chemo- or radiotherapy. Of the 9 currently recruiting, 

the focus is on cancers with particularly poor outcome including pancreatic cancer and 

multiple myeloma.  

A phase I trial to determine maximum tolerated dose of nelfinavir in adults with solid 

tumours was recently completed and concluded a dose of 3125 mg twice daily, 2.5 fold 

typical HIV doses, was tolerated. Neutropenia was observed at high doses which was 

reversible with drug discontinuation. Most commonly observed adverse effects were 

diarrhea, anemia, lymphopenia, fatigue and hypoalbuminemia (Blumenthal et al., 

2014). No dose limiting toxicities were observed in dose escalation trials using oral 

treatments up to 4250 mg twice daily in liposarcoma patients but pharmacokinetic 

data suggests only minimal plasma drug concentration increases in doses above 1875 

mg twice daily, with treatments of 4500 mg twice daily inducing self-clearance (Gantt 

et al., 2013, Pan et al., 2012). 

Only 1 study was undertaken using ritonavir and lopinavir for non AIDS-related cancer, 

which failed to meet the primary objective of progression-free survival after 6 months 

and was consequently terminated (clinicaltrials.gov NCT01095094).  

3.2 Aims of Chapter 3 

A wide range of cancers exhibit increased basal ER stress as a consequence of mTORC1 

overactivation. A targeted strategy to exploit mTORC1 overactivation and associated 

ER stress without causing genotoxicity is required. HIV protease inhibitors have shown 
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potential for induction of ER stress in multiple cancer types and are a good candidate 

for drug repositioning. The main aims of this chapter were: 

1. To establish reliable detection methods for ER stress and cell death 

2. To evaluate the ability of nelfinavir to induce ER stress in a specific model of 

mTORC1 overactivation 

3. To investigate the potential mechanisms of nelfinavir-induced ER stress 

4. To establish effective drug combinations with nelfinavir 

5. To identify whether ritonavir or lopinavir are more effective at induction of cell 

death than nelfinavir 
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3.3 Results 

3.3.1 Tsc2-/- MEFs have increased basal ER stress 

The induction of ER stress by nelfinavir was initially assessed using a range of doses at 

a short timepoint. 1 µM thapsigargin, a known ER stress-inducer, was used as a 

positive control. CHOP protein was used as a readout of ER stress following 6 h of 

treatment (Fig 3.1A). However, this produced an unreliable result with unclean CHOP 

protein bands and degradation of -actin in Tsc2-/- cells at the highest dose of 

nelfinavir. A standard dose of 20 µM nelfinavir was chosen for further assessment. To 

establish more reliable antibodies for early detection of ER stress, nelfinavir-treated 

cells were probed for BiP and IRE1 (Fig 3.1B). Following 3 h treatment, little change in 

protein levels was detectable between treated and untreated cells. Despite this, there 

are clear differences in basal ER stress levels between cell lines with BiP and IRE1 

proteins both being basally increased in Tsc2-/- compared to the Tsc2+/+ MEFs.  

3.3.2 Nelfinavir induces ER stress 

Since changes in ER stress-associated protein levels were undetectable in nelfinavir-

treated cells at 3 h of treatment, mRNA was examined. PCR was used to assess XBP1 

splicing, with spliced XBP1 indicating ER stress (Fig 3.2A). Untreated cells show 

increased basal levels of spliced XBP1 in Tsc2-/- MEFs, consistent with increased basal 

ER stress proteins observed in Figure 3.1B. Thapsigargin clearly induced complete XBP1 

splicing in both Tsc2-/- and Tsc2+/+ MEFs. Interestingly, nelfinavir treatment showed a 

differential effect between MEF cell lines, with a clear increase in spliced XBP1 in Tsc2-

/- compared to Tsc2+/+ MEFs. The XBP1 products were confirmed by gel extraction 

and PST1 digest, where unspliced XBP1 was digested into 2 further fragments of 312bp 

and 289bp by PST1 but spliced XBP1 was resistant to PST1 digestion (Appendix I).  

To confirm ER stress induction at the mRNA level and establish reliable primers, a 

panel of ER stress markers were measured by Q-PCR (Appendix II). The most consistent 

of these was found to be CHOP (Fig 3.2B). Although significantly different between cell 

lines (P=0.0022), CHOP mRNA was increased in both Tsc2-/- and Tsc2+/+ to a similar 

level compared to untreated cells (5.7 and 5.4 fold increase, respectively).  
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Figure 3.1: Establishment of reliable antibodies for detection of ER stress-associated 

proteins. A) Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 10 µM, 
20 µM, 40 µM or 80 µM of nelfinavir (NFV), or 1 µM thapsigargin (TPG) for 6 h. Protein extracts 

were analysed for CHOP, TSC2 and -actin. B) MEFs were treated with either DMSO vehicle 

alone, 20 µM NFV, or 1 µM TPG for 3 h. Protein extracts were analysed for BiP, IRE1 and -
actin.   
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Figure 3.2: Establishment of reliable mRNA markers and techniques for early detection of ER 

stress. Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 20 µM 
nelfinavir (NFV), or 1 µM thapsigargin (TPG) for 3 h. A) PCR products for XBP1 mRNA were 

resolved on agarose gels (unspliced 480 bp upper band, spliced 454 bp lower band). -actin is 

shown as a control. B) CHOP mRNA was analysed and standardised against -actin. n=3, *P< 
0.05. 
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3.3.3 Nelfinavir affects multiple cellular pathways including mTORC1 

and autophagy signalling 

Further analysis explored the effect of nelfinavir treatment on mTORC1 and autophagy 

signalling through examination of phosphorylated ribosomal protein S6 (rpS6), 

microtubule-associated proteins 1A/1B light chain 3 (LC3-I/-II) and sequestosome 1 

(SQSTM1 or P62) protein levels (Fig 3.3). As expected, Tsc2-/- MEFs express basally 

elevated levels of phosphorylated rpS6 due to increased mTORC1 signalling compared 

to Tsc2+/+ MEFs. Tsc2+/+ MEFs showed inhibition of rpS6 phosphorylation following 

nelfinavir treatment but this was not observed in the Tsc2-/- MEFs. In contrast, 

thapsigargin reduced rpS6 phosphorylation in Tsc2-/- but not the Tsc2+/+ MEFs. This 

could be explained by an increase in autophagy flux, as indicated by increased 

conversion of LC3-I to LC3-II and reduced SQSTM1 protein, a negative marker of 

autophagy. Similarly, nelfinavir also increased LC3-II and reduced SQSTM1 levels in 

Tsc2-/- MEFs, yet the phosphorylated rpS6 levels were not reduced. There was no 

observable effect on LC3-II and SQSTM1 levels in Tsc2+/+ MEFs following nelfinavir 

treatment.  

A wider investigation of the effect of nelfinavir on cellular signalling was undertaken by 

assessing phosphorylated levels of RelA (the p65 subunit of the pro-survival NF-B 

complex), ERK (a major component of the Ras/Raf mitogenic pathway and a part of a 

negative feedback loop for mTORC1 signalling), AMPK (a key activator of TSC1/2 and a 

downstream target of ATF4), and acetyl co-A carboxylase (ACC, a downstream target of 

AMPK, Fig 3.4). Phosphorylation of RelA was basally higher in the Tsc2-/- MEFs and was 

enhanced with nelfinavir treatment. In contrast, thapsigargin reduced phosphorylated 

RelA in Tsc2-/- MEFs. Phosphorylated ERK was slightly reduced by nelfinavir treatment 

in Tsc2+/+ MEFs but this was not replicated in the Tsc2-/- MEFs. Contrastingly, 

thapsigargin had no effect on phosphorylated levels of ERK in Tsc2+/+ MEFs but slightly 

increased the levels within the Tsc2-/- MEFs. Thapsigargin had no effect on 

phosphorylated AMPK or ACC but nelfinavir treatment increased phosphorylation of 

both AMPK and ACC in both cell lines.  

3.3.4 Nelfinavir does not cause cell death as a single agent 

After discovering that short treatment length had rapid effects on cellular signalling 

pathways including ER stress and autophagy, a longer treatment was investigated to  
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Figure 3.3:  Assessment of the effect of nelfinavir on mTORC1 signalling and autophagy flux. 

Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 20 µM nelfinavir 

(NFV), or 1 µM thapsigargin (TPG) for 3 h. Protein extracts were analysed for phosphorylated 

and total rpS6, LC3-I and –II, SQSTM1, TSC2 and -actin. 

 

  



37 
 

 

Figure 3.4: Assessment of the effect of nelfinavir on cellular signalling. Tsc2+/+ and Tsc2-/- 
MEFs were treated with either DMSO vehicle alone, 20 µM nelfinavir (NFV), or 1 µM 
thapsigargin (TPG) for 3 h. Protein extracts were analysed for phosphorylated RelA, 
phosphorylated and total ERK, phosphorylated and total AMPK, phosphorylated and total ACC, 

and -actin. 
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assess the ability of nelfinavir to induce cell death. Initially, cell morphology was 

examined following 24 h nelfinavir treatment (Fig 3.5). In DMSO vehicle control treated 

cells, both Tsc2+/+ and Tsc2-/- MEFs are fully confluent and well adhered to the plate. 

After treatment with nelfinavir, both cell lines are far less confluent. The Tsc2+/+ MEFs 

are mostly triangular in shape with pseudopodia and appear to be larger or perhaps 

more flat due to greater adherence than the Tsc2-/- MEFs, which are mostly more 

spindle-like in shape. These images do not exhibit hallmarks of apoptosis, nor can any 

non-adherent (likely dead) cells be seen.  

To accurately quantify cell death, flow cytometry was employed using the non-

permeable DNA stain, DRAQ7. Cells were checked and adjusted for auto-fluorescence 

for flow cytometric analysis using Cell Quest Pro software (Fig 3.6A), and gated to 

exclude cell debris for data analysis using FlowJo software (Fig 3.6B). Gated cells were 

divided into viable (below line) and non-viable (above line) populations based on 

DRAQ7 fluorescence, using dot and contour plots for guidance (Fig 3.6C). 

3.3.5 Nelfinavir causes cell death when combined with inhibitors of 

survival pathways 

Flow cytometry was used to assess whether combination of nelfinavir with a panel of 

drugs affecting ER stress, autophagy or survival pathways would cause selective cell 

death in Tsc2-/- MEFs (Fig 3.7A). Viable (below line) and non-viable (above line) cells 

were gated according to log DRAQ7 fluorescence. As a single agent, nelfinavir did not 

induce cell death compared to untreated cells in either cell line (Tsc2+/+ MEFs: 11 % to 

8 %,++ Tsc2-/- MEF: 15.1 % to 6.9 %. A greater than 20% increase in cell death in Tsc2-

/- MEFs was observed when nelfinavir was combined with chloroquine, JSH23, or 

MG132 compared to nelfinavir treatment alone (6.9 % to 31.1 %, 78.3 % and 99.6 %, 

respectively). The same treatments also increased cell death in Tsc2+/+ MEFs 

compared to nelfinavir treatment alone (8 % to 19.7 %, 34.1 % and 99.6 %, 

respectively). Whilst nelfinavir modestly enhanced Tsc2-/- MEF cell death seen with 

celecoxib (8.7 % to 18 %) and 17AAG (15.1 % to 21.8 %), cell death did not appear to 

be selective between cell lines (Tsc2+/+ MEF nelfinavir-celecoxib: 15 %, nelfinavir-

17AAG: 19.9 %). Flow cytometry results were supported by microscopy to assess cell 

density (Fig 3.7B).  
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Figure 3.5: Nelfinavir affects cell density and morphology. Tsc2+/+ and Tsc2-/- MEFs were 
treated with either DMSO vehicle alone, 20 µM nelfinavir (NFV), or 1 µM thapsigargin (TPG) for 
24 h. Images were taken at x 40 magnification using phase contrast. 
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Figure 3.6: Establishment of autofluorescent parameters and gating for DRAQ7 flow 

cytometry. For quantification of cell death, Tsc2+/+ and Tsc2-/- MEFs were subjected to flow 
cytometry analysis and A) unstained cells were checked for autofluorescence, and B) gated to 
remove debris based on side scatter/forward scatter. C) Non-viable and viable cell gating was 
based  populations of DRAQ7 stained and unstained cells, as determined by dot and contour 
plots: DRAQ7 exclusion (below line) represents the viable cell population, whilst positive 
DRAQ7 staining (above line) indicates cell death. 



41 
 

 



42 
 

  



43 
 

  

Figure 3.7: Nelfinavir is effective at cell death induction in combination with multiple drug 

inhibitors of cell survival pathways. Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO 
vehicle alone, 20 µM nelfinavir (NFV), 20 µM chloroquine (CQ), 50 µM celecoxib (CEL), 10 µM 
JSH23, 1 µM MG132, 1 µM 17AAG, or a combination with NFV as shown for 24 h. A) Flow 
cytometry analysis with DRAQ7 staining. B) Images were taken at x 40 magnification using 
phase contrast. 
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3.3.6 Nelfinavir analogues do not exhibit selective cytotoxicity 

Lopinavir and ritonavir-induced cell death was examined by visual assessment of cell 

density following 24 h treatment (Appendix III A) and flow cytometric analysis using 

DRAQ7 staining (Appendix III B), where neither ritonavir or lopinvir treatment 

increased the levels of cell death in the Tsc2-/- MEFs. Since these results are similar to 

those observed with nelfinavir single treatment, which was enhanced when combined 

with chloroquine, lopinavir and ritonavir were combined with chloroquine and cell 

death was assessed. Both combined lopinavir and chloroquine, and ritonavir and 

chloroquine greatly increased cell death as assessed by flow cytometry, but similar 

levels of cell death (~30%) were observed in both Tsc2+/+ and Tsc2-/- MEFs (Appendix 

IV A). Assessment of protein markers of apoptosis, caspase 3 and poly-ADP ribose 

polymerase (PARP, where cleaved products indicate apoptosis) showed no cleavage of 

either PARP or caspase 3 regardless of treatment or cell type (Appendix IV B).  
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3.4 Discussion 

3.4.1 Nelfinavir induces ER stress 

A dose of 20 µM nelfinavir was chosen along with a time point of 3 h for early 

assessment of ER stress. Initial western blots probing for CHOP protein at 6 h 

treatment using an antibody purchased from Santa Cruz Biotechnology were unreliable 

(Fig 3.1A). This is most likely due to the fact that CHOP is difficult to detect at early 

time points (Brüning, 2011). As an important downstream mediator of ER stress and 

pro-apoptotic signalling, it was imperative that an alternative assay for assessment of 

CHOP be found. Since increases in protein levels are subsequent to upregulation of 

mRNA, it was decided to analyse mRNA for ER stress markers through Q-PCR. 3 ER 

stress markers were tested in a single initial Q-PCR experiment: CHOP, HSP70, and 

EDEM1 (Appendix II). Both HSP70 and EDEM1 proteins assist with protein folding and 

are upregulated during ER stress. EDEM1 mRNA levels were very low and did not show 

effective differences between Tsc2+/+ and Tsc2-/- MEFs after treatment. Both HSP70 

and CHOP mRNA levels gave similar results in that mRNA was increased following both 

thapsigargin and nelfinavir treatments, more so in Tsc2-/- MEFs. Consequently, it was 

decided that levels of CHOP mRNA would be used for early assessment of ER stress (Fig 

3.2B).  

Kang et al., (2011) discuss a ‘truncated’ ER stress response in Tsc1-/- and Tsc2-/- MEFs 

and state that induction of CHOP and XBP1 by 4 h treatment with ER stress inducers 

(thapsigargin, tunicamycin and MG132) was blunted compared to control cells. This 

comparatively reduced expression of CHOP in Tsc1-/- MEFs and was shown at the level 

of both protein and mRNA. This is in contrast with results from the present study 

whereby Tsc2-/- MEFs were clearly shown to have basally elevated levels of ER stress 

at the level of both protein and mRNA which was elevated following 3 h treatment 

with either thapsigargin or nelfinavir (Fig 3.1-3.2). These results are supported in the 

literature (Ozcan et al., 2008).  

3.4.2 Nelfinavir affects multiple cellular pathways including mTORC1 

and autophagy signalling 

Tsc2-/- MEFs were observed to express basally higher levels of phosphorylated rpS6 

than Tsc2+/+ MEFs, as expected due to overactive mTORC1 signalling. This supports 
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previous findings (Kang et al., 2011). Nelfinavir decreased phosphorylation of rpS6 in 

Tsc2+/+ MEFs but not in Tsc2-/- MEFs (Fig 3.3). This indicates a TSC2-dependent 

mechanism of mTORC1 inhibition and is likely initiated through ER stress signalling. 

This is confirmed by previous findings (Budanov and Karin, 2008). Basal expression of 

SQSTM1 (a negative indicator of autophagy) was elevated in Tsc2-/- MEFs compared to 

Tsc2+/+ MEFs, again expected due to overactive mTORC1 signalling. Treatment with 

either nelfinavir or thapsigargin reduced expression of SQSTM1 and increased LC3-II. 

This indicates nelfinavir increases autophagy induction, but may also block autophagy 

at later stages and this effect appears to be specific to Tsc2-/- MEFs. Nelfinavir-induced 

autophagy likely occurs through ER stress signalling.  

Figure 3.4 shows phosphorylayion of RelA is basally elevated in Tsc2-/- MEFs, indicating 

active NF-B in these cells, which is increased by nelfinavir treatment but reduced with 

thapsigargin treatment. Since NF-B is a major pro-survival transcription factor within 

the cell, nelfinavir-induced NF-B is likely part of pro-survival ER stress signalling. The 

lack of phophorylated RelA in Tsc2+/+ MEFs, regardless of treatment, may indicate the 

requirement of cells to reach a certain threshold of ER stress before NF-B activation. 

Tsc2+/+ MEFs show reduced phosphorylation of ERK with nelfinavir treatment which is 

not seen in Tsc2-/- MEFs. S6K1 is known to negatively feedback to the insulin receptor 

and therefore impact MAPK signalling, hence it is unlikely that ERK phosphorylation 

seen here reflects this feedback and is more likely to indicate an unknown effect of 

nelfinavir treatment which has previously been suggested to be related to pro-survival 

signalling (Kraus et al., 2013). Nelfinavir elevated phosphorylated levels of AMPK and 

its downstream target, ACC. This is likely part of ER stress signalling and may indicate 

how nelfinavir reduces levels of phosphorylated rpS6 in Tsc2+/+ MEFs: Nelfinavir-

induced ER stress signalling phosphorylates AMPK to activate TSC1/2 and inhibit 

mTORC1. This explains why rpS6 phosphorylation is not reduced in Tsc2-/- MEFs and 

indicates this action of nelfinavir is TSC2-dependent.  

3.4.3 Nelfinavir does not cause cell death as a single agent 

Figure 3.5 shows decreased cell density of both MEF cell lines following nelfinavir 

treatment, likely due to the known cytostatic effect of nelfinavir (Brüning et al., 2009). 

Visually, cells appear healthy and this is confirmed by flow cytometry for detection of 

cell death (Fig 3.7). It is possible to surmise that although nelfinavir induces ER stress, 
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the dose or length of treatment with nelfinavir is insufficient to cause cell death in this 

case. Furthermore, the effects of nelfinavir on cellular signalling observed in figures 3.3 

and 3.4 suggest nelfinavir may induce pro-survival ER stress signalling. 

3.4.4 Nelfinavir causes cell death when combined with inhibitors of 

survival pathways 

A recent drug screen identified nelfinavir as one of several FDA approved compounds 

to selectively inhibit proliferation in TSC2-/- AML cells (Medvetz et al., 2015). However, 

since nelfinavir appears to be more cytostatic than cytotoxic, it may be more 

efficacious to combine it with other drugs - the theory being combining nelfinavir with 

other drugs to push ER stress beyond a tolerated threshold selectively in TSC2-/- cells 

and trigger a cell death response. As this chapter showed, Tsc2+/+ MEFs had a lower 

basal level of ER stress which allows them to tolerate treatment with an ER stress 

inducer, nelfinavir, to a greater extent than the Tsc2-/- MEFs. However, ER stress 

induction with nelfinavir was not sufficient to cause cell death alone. Therefore, 

nelfinavir was combined with other drug inhibitors which target compensatory 

pathways for ER stress. Through this initial drug screen, selective cell death of Tsc2-

cells was observed when nelfinavir was combined with either an autophagy inhibitor 

(CQ), a proteasome inhibitor (MG132), or a NF-B inhibitor (JSH23).  

Chloroquine was used as an autophagy inhibitor. In a similar principle to combining 

nelfinavir with a proteasome inhibitor, pushing ER stress with nelfinavir and inhibiting 

compensatory autophagy with chloroquine should result in cell death, particularly in 

cells with higher basal levels of stress. Although single treatment with either nelfinavir 

or chloroquine had little effect on cell death, combination of the two produced an 

increase in cell death, more so in Tsc2-/- MEFs. Combined treatment with nelfinavir 

and chloroquine is discussed further in section 4. 

MG132 is a potent and specific inhibitor of the 26S proteasome. Inhibition of the 

proteasome prevents degradation of type I and some type II proteins, which can result 

in their dysregulation. As already mentioned, one example of this is IB and NF-B. 

Inhibition of the proteasome also enhances ER stress as accumulated protein 

degradation must rely more heavily on autophagy, which degrades some type II and 

type III proteins. Combined treatment with nelfinavir and MG132 had a deadly effect 
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on both Tsc2+/+ and Tsc2-/- MEFs. It was decided to pursue this further with the FDA 

approved proteasome inhibitor, bortezomib, which is the subject of chapter 3.  

JSH23 is an inhibitor of the p65 subunit of NF-B which prevents its localisation to the 

nucleus and therefore transcriptional activity (Shin et al., 2004). NF-B has a strong 

pro-survival role and is linked to many signalling pathways including those involved in 

cell proliferation and cycle, migration, apoptosis and the inflammatory response. 

Unsurprisingly, it is frequently upregulated in multiple cancer types and is linked to 

treatment resistance (Piva et al., 2006). NF-B is upregulated through both PERK and 

IRE1 arms of ER stress by inhibition of IB, preventing NF-B sequestration 

degradation by the proteasome. As a single agent, JSH23 was highly cytotoxic to both 

cell lines at the concentration used for preliminary investigation (Fig 3.7). Interestingly, 

combination of JSH23 with nelfinavir had a protective effect, particularly in Tsc2+/+ 

MEFs, which resulted in far greater cell death in Tsc2-/- MEFs. Although this effect was 

clearly worth researching further, there are currently no clinically approved NF-B 

drug inhibitors. Instead, proteasome inhibitors are typically used to inhibit degradation 

of IB, preventing NF-B activation. 

Celecoxib is a cycoloxegenase 2 (COX2) inhibitor and non-steroidal anti-inflammatory 

treatment for arthritis and ankylosing spondylitis (McCormack, 2011). COX2 has been 

found to promote mitogenic signalling through RAS/RAF and PI3K pathways, and also 

cell cycle progression through C-MYC and upregulation of cyclin proteins, as well as 

angiogenesis through VEGF-A. Increased COX2 during ER stress elevated levels of BiP 

protein and triggered downstream apoptosis in mouse lungs exposed to hyperoxia and 

IFN-y. Apoptosis was through CHOP-mediated activation of caspase-3  which was 

rescued through COX2 inhibition with celecoxib (Choo-Wing et al., 2013). Additionally, 

the COX 2 inhibitor niflumic acid was successfully used in combination with a PPARy 

inhibitor to induce cell death in multiple lung cancer cell lines, which was significantly 

attenuated by CHOP siRNA knockdown. Activation of CHOP was found to be essential 

for caspase-8-mediated apoptosis in this context (Kim et al., 2011). If COX2 is indeed 

involved in activation of the ER stress response, then celecoxib should suppress 

induction of compensatory UPR signalling. This may prevent activation of autophagic 

and proteasomal degradation pathways and allow toxic accumulation of misfolded 

protein, possibly resulting in necrotic cell death long term rather than apoptosis as a 
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result of the UPR in a more timely manner. The present study combined nelfinavir with 

celecoxib (Fig 3.7), but no differential effect between cell lines or substantial increase 

in cell death was observed. It seems likely that the effects on ER stress of the two 

drugs overlap at some point in the signalling pathway or else cancel each other out. In 

any case, this initial examination did not suggest the combination of nelfinavir and 

celecoxib was worth continuing.  

17AAG (Tanespimycin) is a HSP90 inhibitor and derivative of the antibiotic 

geldanamycin. In the present study, 17AAG had little effect on Tsc2+/+ or Tsc2-/- 

MEFs, which was subtly increased by combination with nelfinavir (Fig 3.7). These 

results suggest that nelfinavir could be acting in part through HSP90 inhibition. As 

combination of nelfinavir with an HSP90 inhibitor did not increase cell death to any 

greater extent than single treatment alone, this combination was not pursued any 

further.  

3.4.5 Nelfinavir analogues do not exhibit selective cytotoxicity 

The nelfinavir analogues ritonavir and lopinavir were compared alongside nelfinavir to 

determine which analogue might be more effective for future study. As shown in 

appendix III A and B, ritonavir or lopinavir did not cause cell death as single agents in 

either Tsc2-/- or Tsc2+/+ MEFs, similar to nelfinavir. Lopinavir and ritonavir were 

combined to replicate the drug, ‘Kaletra’, which shows improved efficacy in HIV 

treatment. This combination also failed to induce cell death. Increased cell death was 

seen in Tsc2-/- MEFs when nelfinavir was combined with chloroquine, so a 

combination of chloroquine with either ritonavir or lopinavir was assessed (Appendix 

IV). Flow cytometry analysis of cell death showed combination of either ritonavir or 

lopinavir with chloroquine increased cell death, but this increase was seen in both 

Tsc2+/+ and Tsc2-/- MEFs to similar levels (Appendix IV A). This contrasts the selective 

cell death seen in Tsc2-/- MEFs with combined nelfinavir and chloroquine treatment. 

Cleavage of apoptosis indicating proteins caspase 3 and PARP was not detected with 

ritonavir or lopinavir when combined with chloroquine, suggesting cell death was not 

mediated by apoptosis (Appendix IV B). Differences in treatment effects between PIs 

may be due to structural differences between nelfinavir, lopinavir and ritonavir. 

Nelfinavir contains a unique cis- decahydroisoquinoline-2-carboxamide moiety not 
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present in ritonavir or lopinavir (Appendix V). The only other PI containing this moiety 

is saquinavir, from which nelfinavir was derived.  

 3.4.6 Summary of chapter 3 

In this chapter, nelfinavir was shown to effectively induce ER stress at a concentration 

of 20 µM, which was detected at the level of both mRNA and protein. Although 

nelfinavir did not cause cell death as a single agent, it effectively induced selective cell 

death in Tsc2-/- MEFs when combined with chloroquine-mediated inhibition of 

autophagy, or inhibition of the proteasome with MG132. Combination of nelfinavir 

analogues ritonavir or lopinavir with chloroquine failed to replicate the selective cell 

death observed with nelfinavir and chloroquine.  
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Chapter 4. Investigation of combination treatment with 

nelfinavir and chloroquine 

4.1 Background 

4.1.1 Autophagy 

Autophagy serves to recycle cellular components through catabolic degradation, 

generating energy and components for biosynthetic reactions (Puissant et al., 2010). 

Autophagy can function as a main survival pathway in normal and abnormal cells (Glick 

et al., 2010). Autophagy is a finely balanced system, where tipping the balance one 

way or another can mean the difference between survival and death (Notte et al., 

2011). Regulation of autophagy occurs through ULK1/2 kinases which form an active 

complex with ATG13 and FIP200. In energy and nutrient-sufficient conditions, mTORC1 

inhibits ULK1 through direct phosphorylation at Ser757. When energy levels are low, 

AMPK inhibits mTORC1 through activatory phosphorylation of TSC1/2 and inhibitory 

phosphorylation of RAPTOR, and continues to activate ULK1 through phosphorylation 

at Ser317 and Ser777 (Sengupta 2010, Kim 2011).  

There are three known processes of autophagy; chaperone-mediated autophagy 

(CMA), microautophagy and macroautophagy. The first observation of the self-eating 

phenomenon was observed in 1963 by Christian de Duve (deDuve, 1963), whose 

subsequent researched to the detection of both macro- and microautophagy (deDuve 

& Wattiaux, 1966). CMA was discovered much later in 1981 by Nicola Neff et al. (Neff 

et al., 1981). All forms of autophagy ultimately serve to shuttle macromolecules into 

lysosomes where they are digested in order for the components to be recycled by the 

cell. Although there are many forms of autophagy, this study will mainly focus on 

macroautophagy.   

The most well documented form of autophagy is macroautophagy whereby cytoplasm, 

proteins and organelles are internalised within double-membrane vesicles termed 

autophagosomes. Macroautophagy is activated within the first few hours of starvation, 

increasing activity until around 6 hours before slowly declining (Cuervo, 2010).  
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CMA differs from other forms of autophagy by the involvement of a translocation 

protein complex which eliminates the need for membrane deformity, fusion, or 

vesicular transport. However, this only allows delivery of single, soluble proteins which 

must be unfolded before entry into the lysosome. CMA is highly selective, directed by 

heat shock cognate 70 (HSC70) which binds to and transports specific proteins directly 

to the lysosome. Activation of CMA occurs initially between 6-8 hours of starvation, 

becoming increasingly active up until 24 hours where it can remain active for 3 days or 

more. The high selectivity of CMA following macroautophagy may prevent degradation 

of structures essential for survival whilst still obtaining the required amino acids. CMA 

also functions to remove oxidized, mis-folded and truncated proteins. Interestingly, 

reduction in CMA has been implicated in aging due to degradation of the substrate 

receptor, lysosome-associated membrane protein type 2A (LAMP-2A). Blockage or 

malfunction of CMA has also been discovered in neurodegeneration, metabolic 

disorders, kidney pathologies, and is suspected to underlie some immunoreactive and 

autoimmune disorders (Cuervo, 2010). 

Microautophagy is concerned with maintenance of organelle size, membrane 

homeostasis and survival and is induced in conditions of nitrogen starvation (also by 

rapamycin treatment). In microautophagy, lysosomes directly engulf malfunctioning or 

damaged organelles (Li et al., 2012). 

Salinomycin, an inducer of ER stress, has been shown to selectively kill breast cancer 

stem cells in vivo (Gupta et al 2009), and a range of other transformed cells. Li et al 

(2013) combined salinomycin with chloroquine in a range of non-small cell lung cancer 

cell (NSCLC) lines and found increased apoptosis compared to salinomycin treatment 

alone. However, salinomycin is currently only approved for use in veterinary practice, 

whereas nelfinavir is immediately available for repositioning.  

4.1.2 Autophagy as part of the UPR 

Autophagy is increased as part of the UPR following ER stress-induction. The aim of 

autophagy in this context is to help clear larger misfolded proteins, and other proteins 

which the proteasome cannot degrade, in order to reduce ER stress burden and to 

normalise cellular stress levels. This pro-survival arm of autophagy is often utilised by 
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cancer cells and has been shown to contribute to resistance to drug resistance (White 

and DiPaola, 2009).  

One main mechanism by how the UPR increases autophagy flux is via inhibition of 

mTORC1, which directly represses autophagy through ULK1 phosphorylation and 

inhibition. All 3 arms of the UPR are able to inhibit mTORC1 though various signalling 

pathways: The PERK/eIF2/ATF4 arm was found to be essential for stress-induced 

autophagy and induces translation (through ATF4) and transcription (through CHOP) of 

many principal autophagy inducer and regulator proteins, including Beclin1, ATG5/7, 

LC3-II and SQSTM1 (B'Chir et al., 2013). ATF4 and CHOP also upregulate GADD34 and 

TRB3 expression which sequentially inhibits mTORC1 through promotion of TSC1/2, 

and inhibition of Akt, respectively (Uddin et al., 2011, Schleicher et al., 2010). The 

IRE1/TRAF2 arm similarly increases CHOP and downstream TRB3 activity and 

promotes JNK suppression of Bcl-2-mediated Beclin1 inhibition. XBP1 splicing is 

promoted by both IRE1 and ATF6 arms of the UPR and increases transcription of 

autophagy components. Further to the UPR, ER stress-induced calcium increase 

triggers calcium/calmodulin-dependent kinase kinase- (CAMKK) which mediates 

reduced mTORC1 signalling through AMPK activation. This is regulated by ER-localised 

Bcl-2 (Hoyer-Hansen and Jaattela, 2007).  

Autophagy inhibition using drug antagonists would contribute to ER stress, particularly 

in combination with ER stress-inducers. In a panel of cancer cell lines, nelfinavir was 

combined with the autophagy inhibitor 3-methyladenine (3-MA) and this combination 

of drugs increased nelfinavir-induced cell death (Gills et al., 2007). Cell death in triple-

negative breast cancer cell lines was found to be synergistically enhanced when 

nelfinavir or celecoxib, another ER stress-inducer, was combined with chloroquine 

(Thomas et al., 2012). Similarly, castration-resistant prostate cancer cells treated with 

nelfinavir showed an additive increase in apoptosis when combined with 

hydroxychloroquine (Guan et al., 2012). In primary cells from chronic lymphocytic 

leukaemia patients, treatment with nelfinavir induced ER stress but not cell death. 

When nelfinavir was combined with chloroquine treatment, significant cytotoxicity 

was achieved (Mahoney et al., 2013).  
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4.1.3 Chloroquine 

The first successful treatment of malaria was performed in the 18th century using bark 

from cinchona trees containing the active ingredient, quinine. Quinine was used to 

control malaria until the 1940’s when chloroquine was developed, which produced 

fewer side effects. Chloroquine synthesis stemmed from research by the Ehrlich group 

(1891) showing malaria could be cured using the synthetic dye, methylene blue. 

Multiple analogues were developed until the production of resochin in 1934, which 

was originally thought to be unsuitable for clinical use due to toxicity. Over a decade 

later, resochin was re-examined and found to be safe. It was then rebranded as 

chloroquine and marketed in 1947 for the prophylactic treatment of malaria, for which 

it is still used today (Solomon and Lee, 2009).  

There are several consequences of chloroquine treatment which may contribute to its 

observed anticancer effects. Prepared as a diphosphate salt, chloroquine is diprotic. 

This allows unprotonated forms to travel freely across cell and organelle membranes, 

but protonated forms become trapped. Chloroquine is highly lysosomotropic and its 

accumulation in the lysosome results in inhibition of lipases, resulting in downstream 

dysregulation of neoglycolipid metabolism affecting multiple cellular signalling 

pathways.  

There has been speculation from early physiochemical studies that chloroquine can 

cause double strand DNA damage through intercalation. Indeed, it is an effective 

antibiotic as it binds to prokaryotic topoisomerases, but binding to human homologues 

is approximately 100 – 1,000 x less efficacious and therefore should not cause DNA 

damage at normal achievable doses (Mitscher, 2005). However, since doses used in 

cancer treatment are expected to be higher than those used for malaria and due to 

potential unknown drug interactions in combination treatments, this aspect of 

chloroquine should not be ignored, particularly when used in combination with other 

DNA-damaging agents.  

Chloroquine has been reported to interfere with phospholipase C, MAPK, Akt, and cell 

cycle signalling (Solomon and Lee, 2009). Chloroquine can induce apoptosis, necrosis 

and inhibit macrophage activity, but the main use for chloroquine in cancer therapy is 

to inhibit autophagy and sensitise cancer cells to drug treatment. Cancer cells typically 
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have an upregulated autophagic flux due to their increased cellular stress by their 

nature. Chloroquine was first noticed to affect autophagy in 1967 (Fedorko, 1967), but 

it wasn’t until the 1980’s that chloroquine was recognised as an autophagy inhibitor 

through prevention of autophagosomal fusion with lysosomes (Trout et al., 1981, 

Kovacs and Seglen, 1982).   

Chloroquine is currently in 15 clinical trials for cancer treatment, but only 1 as a single 

drug agent (clinicaltrials.gov NCT02333890). 

3.1.4 Mefloquine 

Mefloquine is a synthetic analogue of quinine which is highly effective against 

chloroquine-resistant strains of malaria but it is associated with adverse neurological 

or psychiatric symptoms, particularly in females (Shin et al., 2012). It is currently in a 

single phase I clinical trial in combination with temozolomide, memantine, and/or 

metformin in post radio- and chemotherapy treated patients with glioblastoma 

(clinicaltrials.gov NCT01430351). Mefloquine has previously been shown to disrupt 

calcium signalling, ER stress through BiP and CHOP, and interfere with the P-

glycoprotein (Pgp) membrane ATP pump/transporter, enabling it to cross the 

blood/brain barrier. This ability to cross the blood/brain barrier is why it has previously 

been investigated for treatment of neuroblastoma and is used for malarial infection of 

the nervous system. There are conflicting reports on the ability of mefloquine to 

induce or inhibit autophagy, it seemingly being dependent on cell type, nutrient status, 

dose and length of treatment (Sharma et al., 2012, Shin et al., 2012, Golden et al., 

2015). Mefloquine has been shown to be more potent than chloroquine in killing a 

range of glioblastoma cells lines, regardless of p53 status (Geng et al., 2010) and in a 

treatment-resistant human fibroblast carcinoma cell line where the effect of 

mefloquine was shown to be mediated through inhibition of Pgp, sensitising cells to 

the anti-mitotic effects of vinblastine (Kim et al., 2013). Two further studies using 

mefloquine for treatment of prostate cancer in vitro and in vivo showed mefloquine 

induced non-apoptotic cell death which was mediated through ROS and downstream 

mitotic signalling (Yan et al., 2013a, Yan et al., 2013b).  
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4.2 Aims of Chapter 4 

Combination therapy of ER stress-induction and autophagy inhibition has been shown 

to be effective at killing a range of cancer cells. This study theorised that induction of 

ER stress with nelfinavir and concurrent inhibition of autophagy with chloroquine 

would lead to accumulation of misfolded proteins and terminal levels of stress 

specifically within mTORC1 overactive cells. The main aims of this chapter were: 

1. To determine whether chloroquine enhances nelfinavir-induced ER stress 

2. To investigate whether nelfinavir affects chloroquine-mediated autophagy inhibition 

3. To assess whether combination of nelfinavir and chloroquine is an effective and 

selective inducer of cell death in a panel of mTORC1-overactive cells 

4. To identify the mechanism of nelfinavir-chloroquine-mediated cell death 

5. To evaluate whether mefloquine is a more effective mediator of cell death than 

chloroquine in combination with nelfinavir 
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4.3 Results 

4.3.1 Chloroquine enhances nelfinavir-induced ER stress 

Autophagy is a survival mechanism employed by cells to alleviate ER stress. 

Chloroquine was used to determine whether autophagy inhibition would enhance the 

effects of nelfinavir treatment in mTORC1-overactive cells, as suggested by the drug 

screen in chapter 1 (Figure 3.7). To establish the best dose of chloroquine for co-

treatment with nelfinavir, a western blot was performed to detect the ER stress 

markers, CHOP and IRE1 (Fig 4.1A). Both proteins were best elevated in Tsc2-/- MEFs 

at a dose of 20 µM chloroquine with the established dose of 20 µM nelfinavir after 6 h 

of treatment. At this dose in Tsc2+/+ MEFs, CHOP and IRE1 were also elevated but 

this is likely to be partially as a result of unequal protein loading, as indicated by 

elevated levels of -actin. PCR to detect spliced XBP1 clearly shows increased spliced 

XBP1 (lower band) in cells co-treated with nelfinavir and chloroquine compared to 

treatment with either agent alone (Fig 4.1B). This is evident in both cell lines, but more 

so in Tsc2-/- MEFs, likely due to already basally increased levels of ER stress. This is 

supported by Q-PCR of CHOP mRNA levels (Fig 4.1C) which showed significantly 

increased CHOP with co-treatment compared to treatment with either nelfinavir or 

chloroquine alone (P=0.003, P=0.0009, respectively). CHOP mRNA was significantly 

increased in Tsc2-/- MEFs compared to Tsc2+/+ MEFs following co-treatment with 

nelfinavir and chloroquine (P=0.0012).  

4.3.2 Chloroquine blocks the autophagy flux 

Western blot was used to examine mTORC1 and autophagy signalling in Tsc2+/+ and 

Tsc2-/- MEFs (Figure 4.2). Analysis of phosphorylated rpS6 and S6K1 proteins, both 

markers of mTORC1 signalling, showed nelfinavir treatment, either singly or in co-

treatment with chloroquine, greatly reduced phosphorylation of both proteins in 

Tsc2+/+ but not in Tsc2-/- MEFs. This supports data previously seen in chapter 1 

(Figure 3.3). There is a modest reduction in phosphorylation of S6K1 in Tsc2-/- MEFs 

with nelfinavir and chloroquine co-treatment but this is not replicated by rpS6 protein. 

As expected, LC3-II and SQSTM1 accumulation was seen in all chloroquine treatments 

regardless of co-treatment with nelfinavir, consistent with a block in late stage 

autophagy.  
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Figure 4.1: Chloroquine enhances nelfinavir-induced ER stress. A) Tsc2+/+ and Tsc2-/- MEFs 
were treated with either DMSO vehicle alone, 1 µM thapsigargin (TPG), 20 µM nelfinavir (NFV), 
20 µM chloroquine (CQ) or a combination of NFV and 5 µM, 20 µM or 50 µM CQ for 6 h. 

Protein extracts were analysed for CHOP, IRE1, TSC2 and -actin. B and C) Tsc2+/+ and Tsc2-
/- MEFs were treated with either DMSO vehicle alone, 20 µM nelfinavir (NFV), 20 µM 
chloroquine (CQ) or a combination of NFV and 20 µM CQ for 3 h. B) PCR products for XBP1 
mRNA were resolved on agarose gels (unspliced 480 bp [upper band], spliced 454 bp [lower 

band]). -actin is shown as a control. C) CHOP mRNA was analysed and standardised against -
actin. n=3, *P< 0.05. 
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Figure 4.2: Chloroquine arrests the autophagy flux which is enhanced by nelfinavir. Tsc2+/+ 
and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 20 µM nelfinavir (NFV), 20 µM 
chloroquine (CQ) or a combination of NFV and 20 µM CQ for 3 h. Protein extracts were 
analysed for phosphorylated and total rpS6, phosphorylated and total S6K1, LC3-II, SQSTM1, 

TSC2 and -actin. 
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4.3.3 Tsc2-/- MEFs are more motile than Tsc2+/+ MEFs 

Figure 4.3 shows stills from time lapse analysis of Tsc2+/+ and Tsc2-/- MEFs with and 

without treatment over 48 h. Cells were plated at a low density to allow for continuous 

analysis of movement over the duration of the experiment. Data analysis of movement 

in micrometers in shown per 15 minute interval (Appendix VI A) and cumulatively 

(Appendix VI B) over the initial 0-6 h of the experiment to assess cell behaviour around 

the 3 h treatment timepoint used to assess ER stress. DMSO vehicle control 

(untreated) Tsc2-/- MEFs were significantly more motile than Tsc2+/+ MEFs 

(P=<0.001). Both single treatment with nelfinavir and co-treatment with nelfinavir and 

chloroquine significantly reduced motility in both Tsc2-/- cells (P=<0.001) and in 

Tsc2+/+ MEFs (P=<0.01), but Tsc2-/- MEFs were significantly less motile than Tsc2+/+ 

MEFs following nelfinavir-chloroquine co-treatment (P=<0.001). Cumulatively, Tsc2-/- 

MEFs travelled an average distance of 198.3 µm which was reduced to 117.8 µm with 

nelfinavir treatment, and to 50 µm following nelfinavir-chloroquine co-treatment – a 

75 % reduction. Tsc2+/+ MEFs travelled an average distance of 165.7 µm which was 

reduced to 108.3 µm with nelfinavir treatment, and to 132.1 µm following nelfinavir-

chloroquine co-treatment – a 20 % reduction.  

4.3.4 Nelfinavir and chloroquine co-treatment causes significant and 

selective cell death in multiple in vitro models with overactive 

mTORC1 

Flow cytometry with DRAQ7 staining was used to investigate whether co-treatment 

with neflinavir and chloroquine caused cell death in Tsc2-/- MEFs (Fig 4.4). As 

previously shown in chapter 1 (Fig 3.7A), neither nelfinavir nor chloroquine was 

particularly effective at induction of cell death as single agents (Fig 4.4A). However, 

combined nelfinavir and chloroquine induced significant and selective cell death in 

Tsc2-/- MEFs compared to Tsc2+/+ MEFs after 24 h (9 % vs 49 %, P=<0.001, Fig 4.4B). 

Figure 4.4C shows morphological changes apparent in Tsc2+/+ MEFs and Tsc2-/- MEFs 

with and without treatment with nelfinavir and chloroquine after 24 h.  

To test whether the effects of nelfinavir and chloroquine co-treatment could be 

replicated in another model of overactive mTORC1 signalling, the p53-positive Eker rat 

leiomyoma cells which are Tsc2-null (ELT3-V3), and a rescued cell line with Tsc2 added 

back (ELT3-T3) were used. Initial assessment of mTORC1 and autophagy signalling  
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Figure 4.3: Combination of nelfinavir and chloroquine causes selective cell death in Tsc2-/- 

MEFs at 24 h of treatment. Tsc2+/+ and Tsc2-/- MEFs were plated at low density and allowed 
to adhere for 24 h before treatment with either DMSO vehicle alone, 20 µM nelfinavir (NFV), 
or a combination of NFV and 20 µM CQ and assessment over 48 h using time lapse microscopy. 
Images shown are representative of 3 technical replicates. 
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Figure 4.4: Combination of nelfinavir and chloroquine causes selective and significant cell 

death in Tsc2-/- MEFs. Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle 
alone, 20 µM nelfinavir (NFV), 20 µM chloroquine (CQ), or a combination of NFV and CQ for 24 
h. A) For quantification of cell death, cells were subjected to flow cytometry analysis with 
DRAQ7 staining. The number of DRAQ7-stained cells are graphed in B. n=3, *P<0.05. C) Phase 
contrast images at x 100 magnification. 
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following short drug treatment replicated results seen in MEFs (Fig 4.5A) in that co-

treatment produced a modest reduction in phosphorylation of S6K1 was seen ELT3-V3 

cells, and LC3-II was elevated where cells were treated with chloroquine. Interestingly, 

SQSTM1 is reduced in ELT3-V3 cells treated with nelfinavir and chloroquine, despite 

elevated LC3-II. This could be interpreted as an increase in autophagy induction but 

flux is still blocked at later stages by chloroquine. Cell death was assessed by flow 

cytometry with DRAQ7 staining following 24 h treatment (Fig 4.5B). Although there 

was a trend for cell death to be increased following co-treatment with nelfinavir and 

chloroquine in ELT3-V3 cells compared to ELT3-T3 cells, there was no significant effect 

and percentage levels of cell death were insubstantial compared to MEFs (Fig 4.5C). As 

the time lapse data in MEFs showed nelfinavir and chloroquine continued to induce 

cell death for at least 48 h (Fig 4.3), the treatment length was increased to 48 h for 

ELT3 cells (Fig 4.6A/B). At this time point, significant and selective cell death was 

observed in ELT3-V3 cells compared to ELT3-T3 cells with nelfinavir and chloroquine 

co-treatment (37.8% vs 10.5%, P=<0.001). This was significantly increased compared to 

either nelfinavir or chloroquine single treatment in ELT3-V3 cells (5.6 %, P=<0.001, and 

12.7 %, P=0.003, respectively).  

To further test the general ability of nelfinavir and chloroquine to induce cell death in 

mTORC1-overactive models, a human TSC2-null AML cell line was used (Fig 4.7). Short 

term co-treatment with nelfinavir and chloroquine modestly reduced phosphorylation 

of rpS6 and increased levels of LC3-II (Fig 4.7A). In Figure 3.6B/C, 24 h treatment 

showed increased cell death with nelfinavir and chloroquine which was significantly 

different to untreated cells (10.1 % vs 25.3 %, P=0.001) and to single treatment with 

nelfinavir (14.4 %, P=0.015), but not to single treatment with chloroquine (17.6 %, 

P=0.083).  

To test whether nelfinavir and chloroquine treatment was effective in a human cancer 

cell line with overactive mTORC1 signalling, the lung cancer cell line NCI-H460 was 

used (Fig 4.8). This cell line has intact TSC1/2 and has over active mTORC through KRas 

oncogenic mutation. Rapamycin was used in conjunction with drug treatments to 

reduce mTORC1 signalling and replicate a ‘rescued’ version of the cells for comparison 

purposes. Flow cytometry with DRAQ7 staining was used to assess cell death following 

48 h nelfinavir and chloroquine treatment in the presence or absence of rapamycin  
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Figure 4.5: 24 h combination of nelfinavir and chloroquine is insufficient to kill ELT3-V3 cells 

at 24 h of treatment. ELT3-T3 and ELT-V3 cells were treated with either DMSO vehicle alone, 
20 µM nelfinavir (NFV), 20 µM chloroquine (CQ), or a combination of NFV and CQ for A) 3 h; 
protein extracts were analysed for phosphorylated and total rpS6, phosphorylated and total 

S6K1, LC3-II, SQSTM1, TSC2 and -actin, or B) 24 h; cells were subjected to flow cytometry 
analysis with DRAQ7 staining. The number of DRAQ7-stained cells are graphed in C. n=3, 
*P<0.05. 
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Figure 4.6: Combination of nelfinavir and chloroquine causes selective and significant cell 

death in ELT3-V3 cells at 48 h of treatment. ELT3-T3 and ELT-V3 cells were treated with either 
DMSO vehicle alone, 20 µM nelfinavir (NFV), 20 µM chloroquine (CQ), or a combination of NFV 
and CQ for 48 h. A) Cells were subjected to flow cytometry analysis with DRAQ7 staining. The 
number of DRAQ7-stained cells are graphed in B. n=3, *P<0.05. 

  



68 
 

 

  



69 
 

Figure 4.7: Combination of nelfinavir and chloroquine causes significant cell death in AML 

cells at 24 h of treatment. TSC2-/- AML cells were treated with either DMSO vehicle alone, 20 

µM nelfinavir (NFV), 20 µM chloroquine (CQ), or a combination of NFV and CQ for A) 3 h; 

protein extracts were analysed for phosphorylated rpS6, ATF4, LC3-II, GADD34, 

phosphorylated ATM, BiP and -actin. 100 nM Rapamycin was used as a positive control for 

mTORC1 inhibition. B) Following 24 h of treatment, cells were subjected to flow cytometry 

analysis with DRAQ7 staining. The number of DRAQ7-stained cells are graphed in C. n=3, 

*P<0.05. 
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Figure 4.8: Combination of nelfinavir and chloroquine causes significant cell death in NCI-

H460 cells at 48 h of treatment. NCI-H460 cells were treated with either DMSO vehicle alone, 
20 µM nelfinavir (NFV), 20 µM chloroquine (CQ), or a combination of NFV and CQ for 48 h. 
100nM Rapamycin was used to rescue mTORC1 over-activity and compare effectiveness of 
drug treatments. A) Following 48 h of treatment, cells were subjected to flow cytometry 
analysis with DRAQ7 staining. The number of DRAQ7-stained cells are graphed in B. C) Protein 
extracts were analysed for phosphorylated and total rpS6, phosphorylated S6K1, 
phosphorylated AMPK, phosphorylated and total ACC, phosphorylated 4E-BP1, phosphorylated 

eiF2,  GADD34, SQSTM1, LC3-II and -actin. n=3, *P<0.05. 
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(Fig 4.8A). Figure 4.8A shows combined nelfinavir and chloroquine treatment induced 

significant cell death compared to untreated cells (49.2 % vs 3.6 %, P=<0.001) which 

was distinct from single treatment with either nelfinavir or chloroquine alone (13.4 %, 

P=<0.001, and 10.5 %, P=<0.001, respectively). This was slightly significantly different 

to nelfinavir and chloroquine co-treatment with the addition of rapamycin (P=0.035, 

Fig 4.8B). 

A panel of western blots was used to explore the effects of 48 h treatment on cellular 

signalling in NCI-H460 cells with or without rapamycin (Fig 4.8C). Similar to that 

observed in Tsc2-/- MEFs, ELT3-V3, and AML cells, co-treatment with nelfinavir and 

chloroquine modestly reduced phosphorylation of rpS6. However, this was not 

replicated in S6K1. As seen in other cell lines, LC3-II is elevated with chloroquine 

treatments but also with nelfinavir treatment alone. Of interest, phosphorylation of 

AMPK is elevated with co-treatment which may link to reduced rpS6 phosphorylation 

and also the slight increase in GADD34 protein.  

4.3.5 Nelfinavir-chloroquine-induced cell death is not caspase-

dependent 

To discover the mechanism of cell death, a western blot was performed on Tsc2+/+ 

and Tsc2-/- MEFs following 24 h treatment with a standard dose of nelfinavir and an 

escalating dose of chloroquine. Antibodies for detection of whole and cleaved PARP, 

and whole and cleaved caspase-3 were employed. Appendix VII shows that, even with 

50 µM chloroquine combined with 20 µM nelfinavir, no cleaved products of either 

PARP of caspase-3 can be seen in either cell line. A reduction in whole protein levels 

can be observed, consistent with what might be expected from co-treatment, but 

without detection of cleaved protein no real inference can be made.  

4.3.6 Nelfinavir-chloroquine-induced cell death is unlikely through 

DNA damage or ROS induction 

To assess whether chloroquine was enhancing nelfinavir through causing DNA damage, 

a western blot was performed on Tsc2+/+ and Tsc2-/- MEFs following 24 h treatment 

for the detection of phosphorylated H2A histone family member X (H2AX), Appendix 

VIII). H2AX becomes phosphorylated as a reaction following DNA double strand breaks. 

In the Tsc2-/- cells, co-treatment does indeed show a very minimal level of 
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phosphorylated H2AX, but this is no higher than in untreated cells and does not 

compare to the large increase shown in thapsigargin treatment. GADD34 was also 

probed for and, in Tsc2-/- MEFs, a small increase can be observed following nelfinavir 

treatment which is accentuated when combined with chloroquine, to a similar extent 

to thapsigargin treatment. Together, these results show combined nelfinavir and 

chloroquine treatment is an effective inducer of ER stress without causing DNA 

damage.  

To investigate whether cell death was autophagy-mediated ‘autosis’, digoxin was 

added in combination with nelfinavir and chloroquine over 48 h in an attempt to 

rescue cell death through Na+/Ka+ ATPase inhibition (Appendix IX). Initial observations 

with this treatment showed no change in percentage of cell death. 

Because Tsc2-/- cells are known to have defects in mitochondria and increased ROS 

levels (Parkhitko et al., 2014), the ROS scavenger NAC was employed to assess whether 

cell death via nelfinavir and chloroquine co-treatment was mediated by ROS. Using 

flow cytometry and DRAQ7 staining, treated Tsc2+/+ and Tsc2-/- MEFs were assessed 

for cell death (Fig 4.9A/B). Addition of NAC to nelfinavir-chloroquine treatment did not 

rescue cell death in Tsc2-/- MEFs (61.2 % vs 36.5 %, P=0.883). Interestingly, NAC 

increased chloroquine-induced cell death selectively in Tsc2-/- MEFs compared to 

Tsc2+/+ MEFs (31.7 % vs 7.5 %, P=<0.001). A brief examination of the effects of NAC in 

nelfinavir-chloroquine-treated NCI-H460 cells also failed to show rescue of treatment, 

confirming the results observed in the MEFs (Appendix X).  

4.3.7 Mefloquine is an effective inducer of cell death 

The chloroquine analogue, mefloquine, was assessed alongside chloroquine in Tsc2+/+ 

and Tsc2-/- MEFs (Fig 4.10). A western blot was used to compare the inhibition of 

autophagy between a standard dose of chloroquine (20 µM) and a low to high dose of 

mefloquine (2.5, 5, 10, and 20 µM) after 3 h treatment (Fig 4.10A). In Tsc2+/+ MEFs, 

chloroquine strongly induced conversion of LC3-I to LC3-II, which was not replicated by 

mefloquine at any dose. In Tsc2-/- MEFs, only the highest dose of mefloquine 

compared to chloroquine-induced LC3-II protein levels, but was still not equal. This 

showed that mefloquine does not induce autophagy to a similar extent to chloroquine. 

Assessment by flow cytometry and DRAQ7 staining showed mefloquine could induce 
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cell death in Tsc2-/- MEFs at 10 µM (25 %, P=<0.001, Fig 4.10B/C). This was significantly 

different to Tsc2+/+ MEFs (12 %, P=0.004). No significant degree of cell death was seen 

at lower concentrations of mefloquine. 

4.3.8 Nelfinavir-chloroquine-induced cell death is independent of 

autophagy and is recued by bafilomycin-A1 

To confirm chloroquine-mediated autophagy inhibition is the mechanism enhancing 

nelfinavir, a panel of autophagy inhibitors were employed to replicate the effects of 

cell death when combined with nelfinavir (Fig 4.11). Bafilomycin-A1 is a well-known 

inhibitor of late stage autophagy through prevention of autophagosomal-lysosomal 

fusion. More precisely, this is due to inhibition of the vacuolar type H+-ATPase on 

lysosomes which prevents their acidification (Klionsky et al., 2008). 3-MA suppresses 

autophagy early in the flux through prevention of autophagosome formation by 

inhibition of class III PI3Ks which stops downstream recruitment of ATG proteins. 

However, 3-MA has been shown to have contrasting effects on autophagy depending 

on nutrient conditions (Wu et al., 2010). A western blot to detect disruption of the 

autophagy flux through LC3-II and SQSTM1 protein levels was employed using 3 h 

treated samples from Tsc2+/+ and Tsc2-/- MEFs (Fig 4.11A). In both cell lines, 

treatment with chloroquine or bafilomycin-A1 caused an increase in LC3-II and 

SQSTM1 protein levels suggestive of a block in late stage autophagy. However, 

treatment with either 3-MA or mefloquine did not increase either protein. When 

autophagy inhibitors were combined with nelfinavir, similar effects were seen apart 

from combined nelfinavir and 3-MA, which showed increased SQSTM1 protein in both 

cell lines compared to treatment with either agent alone. Since the effects of 

chloroquine were previously shown to be prevented when combined with bafilomycin-

A1 (Harhaji-Trajkovic et al., 2012, Shacka et al., 2006). Interestingly, bafilomycin-A1 

completely rescued the effects of nelfinavir and chloroquine on autophagy in both cell 

lines (Fig 4.11A). A concurrent experiment to investigate the effects of different 

autophagy inhibitors on cell death was performed using flow cytometry and DRAQ7 

staining following 24 h treatment (Fig 4.11B/C). As single agents, 3-MA and mefloquine 

were able to cause a small degree in cell death which was increased in Tsc2-/- 

compared to Tsc2+/+ MEFs (mean 17 % vs 2.5 %, P=<0.001, and 25.7 % vs 15 %, 

P=0.087, respectively). Bafilomycin did not cause cell death in either cell line compared  
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Figure 4.9: Nelfinavir and chloroquine-mediated cell death is unlikely through ROS. Tsc2+/+ 
and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 20 µM nelfinavir (NFV), 20 µM 
chloroquine (CQ), 20 µM N-acetyl-cysteine (NAC) or a combination as shown, for 24 h. A) Cells 
were subjected to flow cytometry analysis with DRAQ7 staining. The number of DRAQ7-stained 
cells are graphed in B. 
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Figure 4.10: Investigation of the chloroquine analogue, mefloquine. Tsc2+/+ and Tsc2-/- MEFs 
were treated with either DMSO vehicle alone, 20 µM chloroquine (CQ), or a dose range of 
mefloquine (MQ) as described. A) Protein lysates were analysed for SQSTM1, LC3-I and –II, and 

-actin after 3 h 2.5 µM, 5 µM, 10 µM or 20 µM MQ treatment. B) Cells were subjected to flow 
cytometry analysis with DRAQ7 staining after 24 h treatment with either 1 µM, 2.5 µM, 5 µM, 
or 10 µM MQ. The number of DRAQ7-stained cells are graphed in C. 
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Figure 4.11: Nelfinavir and chloroquine-mediated cell death is independent of autophagy 

inhibition and is rescued by vacuolar ATPase inhibition with bafilomycin-A1. Tsc2+/+ and 
Tsc2-/- MEFs were treated with either DMSO vehicle alone, 20 µM chloroquine (CQ), 2.5 µM 
bafilomycin-A1 (BAF), 5 µM 3-methyl adenine (3-MA), 10 µM mefloquine (MQ), or a 
combination with 20 µM nelfinavir (NFV) as shown. A) Following 3 h treatment, protein lysates 

were analysed for LC3-II, SQSTM1 and -actin. B) Following 24 h treatment, cells were subject 
to flow cytometry analysis with DRAQ7 staining. The number of DRAQ7-stained cells are 
graphed in C. 
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to untreated cells and this was barely increased when combined with nelfinavir (2.9 % 

to 3.8 % in Tsc2+/+ MEFs and 4.3 % to 6.9 % in Tsc2-/- MEFs). When combined with 

nelfinavir, 3-methyladenine-induced Tsc2-/- cell death was reduced from 17 % to 7.6 

%. In contrast, combination of nelfinavir with mefloquine greatly enhanced cell death 

in both cell lines to 46% in Tsc2+/+ and 90% in Tsc2-/- MEFs (P=0.033) which was 

significantly increased from single treatment with mefloquine (P=<0.001 in both cell 

lines). Combination of nelfinavir and chloroquine caused 37.9 % cell death selectively 

in Tsc2-/- MEFs which was rescued to 9.4 %, a similar level as nelfinavir-chloroquine-

treated Tsc2+/+ MEFs (8.3 %) when combined with bafilomycin-A1 (28.5 % reduction, 

P=<0.001). Taken together, the results shown in Figure 4.11 infer that inhibition of 

autophagy is not required for nelfinavir and chloroquine-mediated cell death. This is 

proven by the fact that mefloquine, shown not to inhibit autophagy at the dose used, 

caused significant cell death when combined with nelfinavir. Instead, it would appear 

that cell death is dependent on chloroquine entrapment within the lysosome (or late 

endosomes where the vacuolar type H+-ATPase is also known to reside), as proven by 

rescue with bafilomycin-A1.  
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4.4 Discussion 

4.4.1 Chloroquine enhances nelfinavir-induced ER stress 

An alternative antibody was sourced for CHOP (Cell signalling technology) which 

resulted in improved visualisation of protein bands, rendering any potential issues 

related to timing of treatment irrelevant. As seen in figure 4.1A, nelfinavir induced 

increased levels of IRE1 and CHOP protein in both Tsc2+/+ and Tsc2-/- MEFs which 

was enhanced by addition of chloroquine. Chloroquine induced ER stress to a similar 

level to thapsigargin. Increasing the dose of chloroquine in combination with nelfinavir 

did not appear to enhance IRE1 or CHOP protein in either cell line so a standard dose 

of 20 µM chloroquine was selected for further treatment. Figure 4.1B shows 

chloroquine induces XBP1 splicing to a similar level as nelfinavir in both cell lines, but 

this is enhanced when both drugs are combined, particularly in Tsc2-/- MEFs. Similarly, 

chloroquine enhanced nelfinavir-mediated CHOP mRNA induction (Fig 4.1C). The 

mechanism of chloroquine-induced ER stress was thought to be through blockade of 

the autophagy flux. Autophagy inhibition enhances ER stress through multiple 

mechanisms but in this context the most likely include reduction of protein aggregate 

breakdown leading to further accumulation within the ER, and reduced feedback 

inhibition of mTORC1 through ULK1.  

4.4.2 Chloroquine blocks the autophagy flux 

Chloroquine-mediated inhibition of autophagy was confirmed by western blot showing 

increased LC3-II protein and SQSTM1 proteins (Fig 4.2). In both Tsc2+/+ and Tsc2-/- 

MEFs, nelfinavir enhanced chloroquine-mediated increases in LC3-II, confirming 

previous results showing nelfinavir affected LC3-II and SQSTM1 levels (Fig 3.3). 

Chloroquine treatment alone did not appear to have any effect on phosphorylation of 

rpS6 or S6K1 proteins, but these were both reduced in the presence of nelfinavir in 

Tsc2+/+ MEFs, confirming previous results (Fig 3.3). This suggests chloroquine does not 

affect mTORC1 signalling and that nelfinavir requires functional TSC2 to reduce 

activation of mTORC1.  

4.4.3 Tsc2-/- MEFs are more motile than Tsc2+/+ MEFs 

Analysis of the time lapse data revealed Tsc2-/- MEFs are basally more active cells. 

Movement is rapid and erratic with cells dividing frequently. They also appear to be 
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less adherent than Tsc2+/+ MEFs with a more refractive appearance (Fig 4.3). This 

could be due to an elevated metabolic rate due to overactive mTORC1. Appendix VI 

shows movement analysis from the time lapse data in which treatment with combined 

nelfinavir and chloroquine greatly reduced cell movement both per 15 minute time 

interval (Appendix VI A) and cumulatively (Appendix VI B). Treatment with nelfinavir 

alone was also affective, but not to the same extent as combined treatment. This may 

be due to the fact that nelfinavir has cytostatic effects and has been shown to arrest 

the cell cycle at G1 in multiple cell types, including ovarian and cervical cancers, and 

hepatacellular carcinoma (Brüning et al., 2009, Xiang et al., 2015, Sun et al., 2012). 

Cytostatic cells are unlikely to be particularly motile. Similarly, the reduction in 

movement in Tsc2-/- MEFs with combination treatment is most likely due to early 

stages of cell death.  

4.4.4 Nelfinavir and chloroquine co-treatment causes significant and 

selective cell death in multiple in vitro models with overactive 

mTORC1 

Although not significant, a trend for increased cell death was observed in ELT3-V3 cells 

following 24 h nelfinavir-chloroquine treatment (Fig 4.5). In order to cause significant 

cell death in ELT3-V3 cells, treatment time with nelfinavir and chloroquine was 

extended to 48 h (Fig 4.6). ELT3-V3 cells are Tsc2-null like the Tsc2-/- MEFs (Howe et 

al., 1995), but possibly the most important difference between the cell lines is that the 

Tsc2-/- MEFs required knockdown of P53 in order to prevent early senescence (Zhang 

et al., 2003). Tsc2-/- MEFs were previously found to be hypersensitive to ER stress-

inducing treatments, resulting in increased apoptosis (Ozcan et al., 2008), which 

explains why increased cell death was observed in Tsc2-/- MEFs compared to ELT3-V3 

cells and also NCI-H460 cells (Fig 4.8), which similarly required an extended treatment 

time of 48 h. Similar to ELT3-V3 cells, TSC2-/- AML cells also showed a limited response 

to nelfinavir-chloroquine treatment after 24 h (Fig 4.7). Therefore, it may be the P53-

null nature of Tsc2-/- MEFs which sensitises them to treatment. Mechanistically, this is 

possibly due P53-mediated activation of sestrins which decreases mTORC1 signalling 

through activation of AMPK and TSC2 (Budanov and Karin, 2008). More recently, 

sestrins were found to inhibit mTORC1 independently of AMPK, through interaction 

with GAP activity towards Rags 2 (GATOR2), which results in failure of Rags to tether 
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mTORC1 to the lysosome (Parmigiani et al., 2014). However, this mechanism would 

result in reduction of phosphorylated rpS6 and S6K1 proteins in treated Tsc2-null cells, 

which was not observed in the present study. A reduction of phosphorylated rpS6 and 

S6K1 proteins was only observed in treated cells with functional TSC2, indicating a 

TSC2-dependent response.  

4.4.5 Nelfinavir-chloroquine-induced cell death is not caspase-

dependent 

Despite observing differing total amounts of apoptosis markers (Appendix VII), no 

cleaved products were detected, indicating cell death was unlikely to be apoptotic. 

Even so, cell death is likely mediated by the UPR, as shown by elevated levels of 

GADD34 following combined treatment in Tsc2-/- MEFs (Appendix VIII). Brief 

additional investigation was undertaken into the possibility of cell death being 

mediated through autophagy, so called ‘autosis’. Autosis was found to be rescued by 

treatment with digoxin (Liu et al., 2013). Digoxin is a cardiac glycoside which inhibits 

the Na+/K+ ATPase and is used in very low doses for treatment of certain heart 

conditions. Addition of digoxin to nelfinavir and chloroquine treatment did not rescue 

observed cell death in ELT3-V3 cells and so investigation into autosis was discontinued 

(Appendix IX). 

4.4.6 Nelfinavir-chloroquine-induced cell death is unlikely through 

DNA damage or ROS induction 

To check for treatment-induced DNA double strand breaks, a western blot was 

performed to assess levels of phosphorylated H2AX (Kuo and Yang, 2008). Appendix 

VIII shows nelfinavir and chloroquine-induced cell death is cytotoxic rather than 

genotoxic, as indicated by lack of phosphorylated H2AX compared to thapsigargin 

treatment. This confirms that chloroquine does not cause DNA damage (Mitscher, 

2005) and is not the mechanism of nelfinavir-chloroquine-induced cell death.  

Investigation into whether cell death was caused by increases in ROS utilised NAC as an 

oxygen scavenger in an attempt to rescue cell death. Combined nelfinavir, chloroquine 

and NAC treatment in Tsc2-/- MEFs showed a trend for increased cell death rather 

than rescue (Fig 4.9), which could indicate the use of ROS in survival pathway 

signalling. However, brief investigation to confirm the effect of NAC in NCI-H460 cells 
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showed a small decrease in cell death when NAC was added to nelfinavir-chloroquine 

treatment (Appendix X). Although unlikely to directly mediate cell death in this 

context, further research is required to completely rule out ROS as a contributor.  

4.4.7 Mefloquine is an effective inducer of cell death 

The chloroquine analogue, mefloquine, was investigated to determine which analogue 

might be more effective for future study. Increasing doses of mefloquine showed little 

if any effect on autophagy inhibition compared to chloroquine (Fig 4.10A) but 

mefloquine exhibited induction of cell death in Tsc2-/- MEFs, which was approximately 

two-fold that in Tsc2+/+ MEFs (Fig 4.10B/C). The difference in treatment effect 

between chloroquine and mefloquine could be related to the differing chemical 

structures (Appendix XI). Mefloquine exists in both (+) and (-) enantiomers, which have 

differing effects, effectively making it two drugs combined (Ngiam and Go, 1987).  

4.4.8 Nelfinavir-chloroquine-induced cell death is independent of 

autophagy and is recued by bafilomycin-A1 

If cell death was not induced through autosis, the question was asked how necessary 

inhibition of autophagy was for cell death induction. It was assumed that the inhibitory 

action of chloroquine on the autophagy flux was the catalyst for promotion of 

nelfinavir-induced death. If that were true, results should be replicated by combining 

nelfinavir with any autophagy inhibitor. Unexpectedly, no other autophagy inhibitor 

replicated the cell death observed with combined nelfinavir and chloroquine (Fig 

4.11B). Furthermore, cell death was observed when cells were treated with 

combination of nelfinavir and the chloroquine analogue, mefloquine, which did not 

inhibit autophagy (Fig 4.11A). Published research is in contention as to whether 

melfoquine induces or inhibits autophagy, and this seems to be dependent on cell type 

and fed or starved conditions (Shin et al., 2012, Sharma et al., 2012).  

Previous data showed bafilomycin-A1 was able to rescue the cytotoxic effects of 

combined nutrient deprivation and chloroquine treatment in multiple cancer cell 

models (Harhaji-Trajkovic et al., 2012). Addition of bafilomyci-A1 to combined 

nelfinavir and chloroquine treatment in Tsc2-/- MEFs completely rescued cell death to 

levels of Tsc2+/+ MEFs (Fig 4.11B/C). Interestingly, this treatment combination also 

reversed autophagy inhibition despite both chloroquine and bafilomycin-A1 clearly 
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inhibiting autophagy as single agents (Fig 4.11A). Together, these results indicate that 

nelfinavir-chloroquine-induced cell death is independent of autophagy. Because 

bafilomycin-A1 is a v-ATPase inhibitor, its rescue of cell death suggests the 

requirement of chloroquine entrapment within lysosomal or endosomal 

compartments is necessary for cytotoxicity.  

Research combining nelfinavir and chloroquine or mefloquine in cancer models was 

published during the course of this PhD. Thomas et al., (2012) found combined 

nelfinavir and chloroquine treatment was successful in killing a variety of breast cancer 

cell lines, particularly triple-negative breast cancer, and this effect was replicated in in 

vivo studies (Thomas et al., 2012). However, the mechanism of chloroquine and 

mefloquine enhancement of nelfinavir-mediated cell death was concluded to be 

through autophagy inhibition, which was confirmed by Beclin-1 si-RNA knockdown and 

measurement of colony development in the presence of drug treatment. This result 

disagrees with the findings in the current study and is not entirely reliable. Cell death 

would have been better confirmed by generation of ATG5 or ATG7 knockdown cells, 

treatment with nelfinavir, and measurement of death through assays previously used 

elsewhere in the published research i.e. MTT assay and ELISA. Indeed, this was the aim 

of the present research before discovering other drug inhibitors of autophagy failed to 

induce cell death when combined with nelfinavir. Mahoney et al., (2013) also found 

combination of nelfinavir and chloroquine induced cell death in primary cell cultures of 

chronic lymphocytic leukaemia. Their research assumed the increase in cell death 

when adding chloroquine treatment was due to autophagy inhibition from observation 

of increased LC3-II and SQSTM1 protein, without testing other autophagy inhibitors or 

knocking down essential autophagy components. Similarly in medullary thyroid cancer 

cell lines, nelfinavir was combined with chloroquine and cell death was observed which 

was attributed to inhibition of autophagy (Kushchayeva et al., 2014). No further tests 

were carried out to confirm the necessity of autophagy inhibition in cell death 

induction. The present research suggests chloroquine-mediated autophagy inhibition 

in mTORC1-overactive cells is not essential for induction of cell death when combined 

with nelfinavir. Instead, results suggest another property unique to chloroquine and 

mefloquine is responsible for enhancement of nelfinavir treatment. One such 

mechanism was proposed by Harhaji-Trajkovic et al., (2012), being that chloroquine 
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entrapment within lysosomes caused lysosomal accumulation, leading to oxidative 

stress, mitochondrial depolarization and a mix of apoptotic and necrotic cell death 

which was not replicated by other inhibitors of autophagy, and could be rescued by co-

treatment with bafilomycin-A1 (Harhaji-Trajkovic et al., 2012).  

 4.4.9 Summary of chapter 4 

Combination of nelfinavir and chloroquine effectively induces selective cell death in 

cells with overactive mTORC1, which is not mediated through apoptosis. Combination 

of nelfinavir with other autophagy inhibitors failed to replicate cell death observed 

with nelfinavir-chloroquine, but dramatic cell death was seen with a combination 

nelfinavir and mefloquine (a chloroquine analogue). Inhibition of the v-ATPase with 

bafilomycin-A1 completely rescued nelfinavir-chloroquine-induced cell death in Tsc2-/- 

MEFs, indicating the requirement of chloroquine entrapment within the lysosome for 

cell death induction.  
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Chapter 5. Investigation of combination treatment with 

nelfinavir and bortezomib 

5.1 Background 

5.1.1 The proteasome 

The 26S proteasome is a molecular machine consisting of proteolytic core and 

regulatory subunits with an ATP-dependent protein entry system. The 20S core is 

composed of a cylindrical stack of 4 heptameric rings with each ring assembled from 

either  or  subunits, in the order . 3 of the 7  subunits are catalytically 

active with each conferring trypsin, caspase, or chymotrypsin activity (Gu and Enenkel, 

2014). The 19S regulatory particle acts as a lid or gateway to regulate entry into the 

proteasome. The base is composed of 6 ATPase and 4 non-ATPase subunits which 

receive delivery proteins and recognise ubiquitin chains. ATP binding to the base 

ATPases opens the ‘lid’ and allows protein entry for degradation (Bhaumik and Malik, 

2008).  

The proteasome regulates many critical cellular pathways, aberration in which can 

eventually lead to oncogenesis. Perhaps the most well studied of these is the mouse 

double minute 2 homologue (MDM2)-P53 interaction. P53, the ‘guardian of the 

genome’ is a critical tumour suppressor in eukaryotic cells. MDM2 has E3 ligase activity 

and one way it regulates P53 is to target it to the proteasome for degradation by 

ubiquitination. MDM2 has been reported as overexpressed in as many as 20% of all 

cancers including osteosarcoma and Hodgkin lymphoma. Overexpression of MDM2 

leads to decreased levels of P53 allowing DNA mutation to go unchecked and eventual 

development of malignant cells (Micel et al., 2013).  

 5.1.2 Protein degradation by the proteasome 

Proteins are targeted to the proteasome by the addition of upwards of 4 chained 

ubiquitin molecules attached by the sequential actions of E1, E2 and E3 enzymes. Poly-

ubiquitin chains interact with the proteasome lid and the protein is unfolded before 

proteolysis within the central chambers (Bhaumik & Malik, 2008). Once the protein is 

within the proteasome, ubiquitin molecules are removed from the protein and 
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recycled by subunits within the base with metalloprotease activity (Gu and Enenkel, 

2014). 

Proteins are grouped in to three types: type I refers to functional, short-lived proteins 

which are degraded as part of their regulation e.g. cell cycle proteins, type II are 

misfolded proteins degraded for clearance, and type III are long-lived proteins 

degraded as a result of a change in the cellular environment e.g. nutrient status. The 

proteasome can degrade type I and II proteins whereas autophagy degrades type II 

and type III proteins (Benbrook and Long, 2012). It is estimated that upwards of 30% of 

newly synthesised proteins are degraded through the proteasome (Schubert et al., 

2000) and over 80% of all cellular proteins (Rzymski et al., 2009).  

5.1.3 Bortezomib 

Bortezomib is a first generation 26S proteasome inhibitor synthesised in 1995 and FDA 

approved for treatment of multiple myeloma just 7 years later. It specifically binds the 

catalytic site of the 26S proteasome with high affinity. Bortezomib treatment is 

associated with neuropathy in 30% of patients and most commonly with gastro-

intestinal problems and muscle weakness (Gelman et al., 2013). Despite being 

efficacious in the treatment of newly diagnosed and relapsed multiple myeloma, 

disease relapse is commonly bortezomib-resistant and is associated with autophagy. 

Research suggests the killing mechanism of bortezomib is firstly through an ER stress 

response, leading to calcium-dependent apoptosis (Escalante et al., 2013). Multiple in 

vitro and in vivo studies have reported inhibition of survival pathways, including 

autophagy and NF-B signalling, in sensitisation of multiple myeloma models to 

bortezomib treatment (Escalante et al., 2013, Kawaguchi et al., 2011, Kawabata et al., 

2012, Kraus et al., 2013, Walsby et al., 2010, Zhang et al., 2015). Continuing research 

has found this principle to be successful in other cancer models including breast, 

cervical, and renal cancers, melanoma and leukaemia (Thaler et al., 2014, Brüning et 

al., 2013, Sato et al., 2012, Selimovic et al., 2013, Kraus et al., 2014, Wang et al., 2015).  

Bortezomib has also been used in the context of TSC: In the ELT3 cell line, bortezomib 

was found to induce apoptosis through the ER stress pathway, primarily through ATF4 

and CHOP expression. This was found to be mediated through mTORC1 induction of c-

MYC, which was rescued by inhibition of mTORC1 with rapamycin (Babcock et al., 
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2013). Conversely, in a Tsc2-/- mouse model, 1 month bortezomib treatment failed to 

significantly reduce kidney tumour volume despite achieving expected 

pharmacodynamic effects. This was compared to rapamycin treatment which achieved 

99% tumour volume reduction (Auricchio et al., 2012). This study highlights how drugs 

can behave differently in vitro to in vivo setting, but the authors did not try sensitising 

the tumour cells by combining bortezomib with other drugs, as described above.  

5.1.4 Bortezomib in clinical trials 

Studies using bortezomib have become increasingly popular and a number of clinical 

trials for its use in cancer treatment have recently been completed. However, these 

have not produced overly positive results: A phase I trial combining bortezomib with 

sorafenib (a small molecule inhibitor of several tyrosine protein kinases approved for 

treatment of kidney, liver and thyroid carcinoma) in patients with advanced malignant 

melanoma documented no observed response despite safe use of the drug 

combination (Sullivan et al., 2015). Using the same combination of bortezomib and 

sorafenib, a phase II study was trialled in patients with metastatic or unresectable 

renal cell carcinoma. Similarly to the phase I trial, the drug combination was found to 

be well tolerated but yielded no additional efficacy to treatment with sorafenib alone 

and so the study was halted for futility (Rao and Lauer, 2015). In a phase II trial in 

paediatric patients with refractory/recurrent Hodgkin lymphoma, bortezomib was 

combined with an alkylating agent, ifosfamide, and an anti-mitotic chemotherapy, 

vinorelbine. The study was halted before completion due to poor trial design. Despite 

no reported statistically significant results, the authors stated that the drug 

combination held promise and showed 91% of patients achieved an overall response 

(Horton et al., 2015). Perhaps the most relevant clinical trial utilising bortezomib 

combined it with NVP-AUY922, an experimental HSP90 inhibitor used in 28 cancer 

clinical trials to date. In patients with relapsed or refractory multiple melanoma, 

disease progression was stabilised using NVP-AUY922 alone and a maximum tolerated 

dose was not reached although patients experienced reversible ocular toxicity. 

However, inhibition of HSP90 was compensated for by an increase in HSP70 which may 

contribute to drug resistance. In patients receiving combination treatment, the 

standard recommended dose of bortezomib was not tolerated when combined with 
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NVP-AUY922 and 3 of 5 patients had to discontinue treatment due to toxicity issues 

(Seggewiss-Bernhardt et al., 2015).  

5.2 Aims of Chapter 5 

Bortezomib has been shown to be an effective inducer of cell death in multiple cancer 

models and also in the context of TSC. Combination of bortezomib with inhibition of 

survival pathways sensitised cancer cells to treatment in preclinical models, but was 

not effective or not well tolerated in clinical trials. The main aims of this chapter were: 

1. To determine whether bortezomib enhances nelfinavir-induced ER stress 

2. To assess whether combination of nelfinavir and bortezomib is an effective and 

selective inducer of cell death in a panel of mTORC1-overactive cells 

3. To identify the mechanism of nelfinavir-bortezomib-mediated cell death 
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5.3 Results 

5.3.1 Bortezomib enhances nelfinavir-induced ER stress 

Treatment with nelfinavir and bortezomib was assessed for effectiveness of ER stress 

induction (Fig 5.1). A western blot was used to detect ER stress markers BiP, CHOP, and 

GADD34, mTORC1 signalling through phosphorylation of S6K1 and rpS6, and 

proteasome activity through accumulation of ubiquitin protein in Tsc2+/+ and Tsc2-/- 

MEFs (Fig 5.1A). Nelfinavir treatment effects on ER stress and mTORC1 signalling 

shown in the previous chapters were replicated once more. Both MG132 and 

bortezomib increased expression of ER stress markers in Tsc2-/- MEFs, which was 

enhanced by nelfinavir co-treatment.  

Of particular interest is that nelfinavir does not inhibit the 26S proteasome in either 

cell line. There are a minority of publications which support this finding in varying cell 

lines (Brüning et al., 2010, Shim et al., 2012). MG132 was used as a positive control for 

proteasome inhibition alongside the more clinically relevant bortezomib. Both MG132 

and bortezomib induced robust inhibition of the proteasome, as indicated by 

accumulation of poly-ubiquitin protein in both cell lines. Interestingly, combination 

with nelfinavir and either MG132 or bortezomib reduced build-up of poly-ubiquitin 

protein in both cell lines. In Tsc2-/- MEFs, rapamycin was shown to inhibit the 

proteasome and could not be used to completely rescue the accumulation of ER stress 

proteins with combined treatment of nelfinavir and bortezomib, although some 

reduction in BiP and CHOP was observed. At the time these results were unexpected, 

but the observation that rapamycin inhibits proteasomal activity in Tsc2-/- MEFs was 

confirmed in the literature shortly afterwards (Zhang et al., 2014). Previous research 

stated rapamycin allosterically inhibits the proteasome at high concentrations but was 

suggested to have little efficacy for proteasome inhibition when the drug is used at 

relatively low concentrations required for inhibition of mTORC1 (Osmulski and 

Gaczynska, 2013). 

To support the increased ER stress markers following nelfinavir and bortezomib co-

treatment shown in figure 5.1A, a PCR was performed to assess XBP1 splicing (Fig 

5.1B). As shown previously, nelfinavir increases XBP1 splicing in both cell lines. 

Bortezomib did not appear to increase XBP1 splicing compared to untreated controls.  
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Figure 5.1: Nelfinavir does not inhibit the proteasome in MEFs but proteasome inhibition 

enhances nelfinavir-induced ER stress.  Tsc2+/+ and Tsc2-/- MEFs were treated with either 
DMSO vehicle alone, 1 µM thapsigargin (TPG), 20 µM nelfinavir (NFV), 1 µM MG132, 50 nM 
bortezomib (BTZ), 100 nM rapamycin (RAP), or a combination of drugs as indicated for 6 h.  A) 
Protein lysates were analysed for BiP, CHOP, GADD34, Ubiquitin, phosphorylated S6K1, 

phosphorylated rpS6, TSC2 and -actin. B) PCR products for XBP1 mRNA were resolved on 

agarose gels (unspliced 480 bp [upper band], spliced 454 bp [lower band]). -actin is shown as 
a control. 
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Indeed, combination of nelfinavir with bortezomib seemed to subtly reduce XBP1 

splicing compared to nelfinavir treatment alone in both cell lines. 

5.3.2 Nelfinavir and bortezomib co-treatment causes significant and 

selective cell death in multiple in vitro models with overactive 

mTORC1 

A standard dose of 20 µM nelfinavir was combined with 50 nM bortezomib and 

assessed for cell death using flow cytometry with DRAQ7 staining over time (Appendix 

XII). After 24 h combined nelfinavir and bortezomib treatment, the Tsc2+/+ MEFs 

showed a significant increase in cell death from 13.3 % to 27.8 % (P=0.026) but this 

was significantly lower than the 75.2 % cell death in Tsc2-/- MEFs (P=0.0034), implying 

selectivity of the drug combination to induce cell death between cell lines. Indeed, 

synergy experiments performed in the Tee lab proved combination of nelfinavir with 

bortezomib is synergistic at induction of cell death (unpublished data). 

The effect of nelfinavir and bortezomib co-treatment on cell death in Tsc2+/+ and 

Tsc2-/- MEFs was assessed by flow cytometry with DRAQ7 staining (Fig 5.2A/B). 

Etoposide, a topoisomerase inhibitor and DNA damage-inducing chemotherapeutic, 

was used as a positive control for cell death. Etoposide increased cell death in Tsc2+/+ 

MEFs from 10.7 % to 11.9% (P=0.736) and from 9.8 % to 26.7 % in Tsc2-/- MEFs 

(P=0.003). As a single agent, bortezomib induced significant and selective cell death in 

Tsc2-/- MEFs compared to Tsc2+/+ MEFs (mean 41% vs 11%, P=<0.001). Combination 

of nelfinavir with bortezomib produced a synergistic increase in cell death to 83% in 

Tsc2-/- MEFs whilst Tsc2+/+ MEFs only increased to 18% (P=0.029 and P=0.157, 

respectively). This effect could not be rescued by mTORC1 inhibition with rapamycin 

and cell death remained high at 87 % (P=0.882). Additionally, rapamycin treatment 

alone had no significant effect on cell death in Tsc2-/- MEFs (P=0.778).  

Combination of nelfinavir and bortezomib was shown to effectively kill ELT3-V3 cells 

(Figure 5.3A/B) and NCI-H460 cells (Figure 5.4A/B), by 63.2 % (P=<0.001) and 58.1 % 

(P=<0.001), respectively. Cell death was not rescued by rapamycin treatment in either 

cell line (P=0.405 and P=0.882), which suggests that cell death through nelfinavir- 
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Figure 5.2: Combined nelfinavir and bortezomib causes significant and selective cell death in 

Tsc2-/- MEFs which cannot be rescued by rapamycin. Tsc2+/+ and Tsc2-/- MEFs were treated 
with either DMSO vehicle alone, 100 µM etoposide (ETO), 20 µM nelfinavir (NFV), 1 µM 
MG132, 50 nM bortezomib (BTZ), 100 nM rapamycin (RAP), or a combination of drugs as 
indicated for 24 h. A) Cells were subjected to flow cytometry analysis with DRAQ7 staining. The 
number of DRAQ7-stained cells are graphed in B. n=3, *P<0.05. 
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Figure 5.3: Combined nelfinavir and bortezomib causes significant and selective cell death in 

ELT3-V3 cells which cannot be rescued by rapamycin. ELT3-T3 and ELT3-V3 cells were treated 
with either DMSO vehicle alone, 100 µM etoposide (ETO), 20 µM nelfinavir (NFV), 1 µM 
MG132, 50 nM bortezomib (BTZ), 100 nM rapamycin (RAP), or a combination of drugs as 
indicated for 24 h. A) Cells were subjected to flow cytometry analysis with DRAQ7 staining. The 
number of DRAQ7-stained cells are graphed in B. n=3, *P<0.05. 
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Figure 5.4: Combined nelfinavir and bortezomib causes significant and selective cell death in 

NCI-H460 cells which cannot be rescued by rapamycin. NCI-H460 cells were treated with 
either DMSO vehicle alone, 100 µM etoposide (ETO), 20 µM nelfinavir (NFV), 1 µM MG132, 50 
nM bortezomib (BTZ), 100 nM rapamycin (RAP), or a combination of drugs as indicated for 24 
h. A) Cells were subjected to flow cytometry analysis with DRAQ7 staining. The number of 
DRAQ7-stained cells are graphed in B. n=3, *P<0.05. 
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bortezomib treatment is unlikely to be mTORC1-dependent, but rather TSC2-

dependent. 

5.3.3 Nelfinavir-bortezomib treatment causes apoptosis which is not 

rescued by rapamycin 

To identify the mechanism of cell death, Tsc2+/+ and Tsc2-/- MEFs were assessed by 

western blot following 24 h treatment (Fig 5.5). Cells were probed for the ER stress 

marker IRE1, markers of apoptosis caspase-3, -8 and PARP, markers of autophagy flux 

SQSTM1 and LC3-I and –II, and phosphorylated rpS6 as a readout of mTORC1 

signalling. IRE1 is primarily involved in a pro-survival response and is shown to be 

robustly increased with nelfinavir treatment in both cell lines. It is greatly reduced by 

etoposide treatment and similarly by combined nelfinavir and MG132 or bortezomib 

treatment in both cell lines. In Tsc2-/- MEFs, rapamycin treatment elevated levels of 

IRE1 but rapamycin was insufficient to rescue reduction by nelfinavir and 

bortezomib. Induction of apoptosis can occur through activation of the caspase 

cascade, which can be triggered through various signalling mechanisms. One such 

mechanism can occur at the level of caspase-8 proteins that are in close proximity to 

death receptors, which when cleaved can trigger the caspase cascade via cleavage of 

caspase-3, which in turn cleaves PARP. Cleaved protein products of caspase-3, -8, or 

PARP were not observed in Tsc2+/+ MEFs regardless of treatment. In Tsc2-/- MEFs, the 

only drug to not induce cleavage of any apoptosis markers was single nelfinavir drug 

treatment. Although MG132 did not induce caspase cleavage, modest PARP cleavage is 

evident. Where the initiator caspase-8 is cleaved, caspase-3 and PARP cleavage 

follows. Of interest, combination of nelfinavir and bortezomib induces strong cleavage 

of apoptosis markers to a similar extent to etopisode, despite causing a higher 

percentage of cell death in flow cytometry assays (Fig 5.2-5.4).  

Inhibition of the proteasome with either MG132 or botezomib also caused autophagy 

inhibition, as indicated by a strong presence of SQSTM1 and LC3-II in both cell lines (Fig 

5.5). Combination with nelfinavir had little effect and so it seems autophagy inhibition 

has little influence on the outcome of cell death. As seen throughout this chapter, it 

would appear that inhibition of mTORC1 with rapamycin also has little effect on the 

outcome of cell death despite effective inhibition of mTORC1 signalling as shown 

through reduced phosphorylation of rpS6. 
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Figure 5.5: Nelfinavir and bortezomib-induced cell death may be through the intrinsic 

apoptosis pathway. Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 
100 µM etoposide (ETO), 20 µM nelfinavir (NFV), 1 µM MG132, 50 nM bortezomib (BTZ), 100 
nM rapamycin (RAP), or a combination of drugs as indicated for 24 h. Protein lysates were 

analysed for IRE1, pro and cleaved caspase 3, pro and cleaved caspase 8, pro and cleaved 

PARP, SQSTM1, LC3-I and –II, phosphorylated rpS6 and -actin. 
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5.3.4 Nelfinavir-bortezomib-induced cell death cannot be rescued by 

inhibition of mTORC1 or caspase 8 cleavage 

To assess whether cell death was caspase- or mTOR-dependent, a caspase-8 inhibitor 

(Z-IETD-FMK) and the ATP-competative mTOR inhibitor (Ku0063794) were employed in 

a range of mTORC1-overactive cell lines (Fig 5.6A/B). Z-IETD-FMK is a peptide substrate 

for caspase-8 which acts as an inhibitor of caspase-8 via irreversible binding to the 

proteolytic active site. Ku0063794 is a more potent inhibitor of mTORC1 and mTORC2 

than rapamycin. With the addition of TSC2-/- AML cells, combination treatment with 

nelfinavir and bortezomib induced significant cell death as seen previously in Tsc2-/- 

MEFs, ELT3-V3 and NCI-H460 cells. Z-IETD-FMK or Ku0063794 treatment was unable to 

rescue cell death in any cell line. Interestingly, Ku0063794 treatment significantly 

increased nelfinavir-bortezomib-induced cell death selectively in Tsc2-/- MEFs (from 

48.2 % to 88.9 %, P=0.024). Complimentary western blots were performed to confirm 

drug effects on markers of apoptosis (Fig 5.7A/B). Figure 5.7A shows Z-IETD-FMK was 

able to prevent cleavage of caspase-8 and downstream caspase-3. However, cleavage 

of PARP was still evident. As the caspase-8 antibody is mouse-specific, it was 

unsuitable for use with the other cell lines, which were either human or rat. Figure 

5.7B shows a reduction in caspase-3 and PARP cleavage following addition of Z-IETD-

FMK treatment with nelfinavir and bortezomib compared to without, as would be 

expected from inhibition of upstream caspase-8 cleavage. In addition to these 

experiments, phase contrast microscopy images were taken at 8 h of treatment to 

assess whether a reduction in cell death by Z-IETD-FMK or Ku0063794 could be seen at 

an earlier time point. From visual assessment of cell density, no obvious reduction in 

cell death could be seen at the earlier time point of 8 h (Fig 5.8).   
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Figure 5.6: Nelfinavir and bortezomib-induced cell death cannot be rescued by inhibition of 

caspase 8 cleavage or inhibition of mTORC1. Tsc2-/- MEF, ELT3-V3, TSC2-/- AML and NCI-H460 
cell lines were treated with either DMSO vehicle alone, combined 20 µM nelfinavir (NFV) and 
50 nM bortezomib (BTZ), combined NFV-BTZ with 10 µM Z-IETD-FMK, or combined NFV-BTZ 
with 1 µM Ku0063794 for 24 h. A) Cells were subjected to flow cytometry analysis with DRAQ7 
staining. The number of DRAQ7-stained cells are graphed in B. n=3, *P<0.05. 
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Figure 5.7: Nelfinavir and bortezomib-induced cell death is not mediated exclusively through 

caspase-dependent apoptosis. Tsc2-/- MEF, ELT3-V3 and NCI-H460 cell lines were treated with 
either DMSO vehicle alone, combined 20 µM nelfinavir (NFV) and 50 nM bortezomib (BTZ), 
combined NFV-BTZ with 10 µM Z-IETD-FMK, or combined NFV-BTZ with 1 µM Ku0063794 for 

24 h before analysis of protein lysates. A) Tsc2-/- MEFs were analysed for IRE1, pro and 

cleaved caspase 3, pro and cleaved caspase 8, pro and cleaved PARP and -actin. B) ELT3-V3 

and NCI-H460 cells were analysed for IRE1, pro and cleaved caspase 3, pro and cleaved PARP 

and -actin. 
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Figure 5.8: Nelfinavir and bortezomib-induced cell death is not rescued by competative 

caspase 8 or mTORC1 inhibitors, even after a shorter treatment length of 8 h. Tsc2-/- MEF, 
ELT3-V3, TSC2-/- AML and NCI-H460 cell lines were treated with either DMSO vehicle alone, 
combined 20 µM nelfinavir (NFV) and 50 nM bortezomib (BTZ), combined NFV-BTZ with 10 
µM Z-IETD-FMK, or combined NFV-BTZ with 1 µM Ku0063794 for 24 h. Images were taken at x 
40 magnification using phase contrast after 8 h treatment. 
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5.4 Discussion 

5.4.1 Bortezomib enhances nelfinavir-induced ER stress 

Combination of nelfinavir with either MG132 or bortezomib greatly increased levels of 

ER stress compared to treatment with either agent alone, as observed by increased 

BiP, CHOP, and GADD34 proteins, particularly in Tsc2-/- MEFs (Fig 5.1A). Of interest, 

nelfinavir-bortezomib was more effective at induction of CHOP protein than nelfinavir-

MG132. In contrast to protein levels of ER stress markers, nelfinavir-bortezomib 

treatment appeared to be less effective at induction of XBP-1 splicing compared to 

nelfinavir treatment alone (Fig 5.1B).  

Aside from the autophagy pathway, unfolded proteins in the ER are also removed by 

proteasomal degradation. Nelfinavir has been shown to inhibit the proteasome in 

multiple tumour types, including epithelial cancer and myeloma (Gupta et al., 2007, 

Bono et al., 2012), which suggests this is one method by which nelfinavir induces ER 

stress. However, the present study did not observe proteasome inhibition in Tsc2+/+ 

or Tsc2-/- MEFs following nelfinavir treatment (Fig 5.1A). Thus, it seems likely that 

proteasome inhibition by nelfinavir is cell type dependent, similar to that previously 

discussed regarding the action of nelfinavir on multiple other cellular functions.  

Since mTORC1 activation suppresses the autophagy flux, malignant cells with 

overactive mTORC1 phenotypically have reduced basal autophagy activity. Autophagy 

downregulation results in a higher dependency on the proteasome for proteolytic 

breakdown of aberrant proteins and restoration of ER homeostasis to prevent cell 

death (Rubinsztein, 2006). This was recently highlighted by research detailing 

functional TSC2 loss enhanced proteasomal degradation in an mTORC1-dependent 

manner in Tsc2-/- MEFs (Zhang et al., 2014). Therefore, inhibition of the preoteasome 

is a potential therapeutic strategy for treatment of mTORC1-driven tumours and 

cancers through enhancement of ER stress beyond a tolerated threshold. Indeed, 

multiple cancer cell lines with elevated mTORC1 signalling have shown selective 

cytotoxicity towards proteasome inhibitor treatment, including melanoma and breast 

cancer (Selimovic et al., 2013, Thaler et al., 2014), and cellular and murine models of 

TSC (Auricchio et al., 2012, Siroky et al., 2012, Babcock et al., 2013).  
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5.4.2 Nelfinavir and bortezomib co-treatment causes significant and 

selective cell death in multiple in vitro models with overactive 

mTORC1 

Despite being labelled as a proteasome inhibitor, nelfinavir has been shown to 

enhance the cytotoxic effects of bortezomib in multiple cancer cell models, likely 

through the action of nelfinavir on multiple cellular targets (Shim et al., 2012, 

Kawabata et al., 2012, Kraus et al., 2013). Phase I and II clinical trials using combined 

nelfinavir and bortezomib have also begun, in the context of myeloma and 

leukaemia/lymphoma (ClinicalTrials.gov: NCT01164709, NCT02188537, NCT01555281). 

Thus far, no preclinical or clinical study has determined whether the cytotoxic effect of 

nelfinavir-bortezomib treatment is dependent on the TSC1/TSC2-mTORC1 pathway. 

Work performed in the Tee lab showed that combination of nelfinavir and bortezomib 

was synergistic at induction of cell death and treatment is selective towards Tsc2-/- 

cells (unpublished data). Similar to the combination of nelfinavir and chloroquine 

treatment in chapter 2, nelfinavir and bortezomib treatment appeared to induce 

elevated ER stress (Fig 5.1) which Tsc2+/+ cells were able to compensate for and 

survive, whereas in Tsc2-/- cells basal ER stress was higher and was pushed beyond 

survivable limits following drug treatment (Fig 5.2). These results are not confined to a 

single cell line and were replicated in other in vitro models with overactive mTORC1 

(Fig 5.3-5.4).  

5.4.3 Nelfinavir-bortezomib-induced cell death cannot be rescued by 

inhibition of mTORC1 or caspase 8 cleavage 

Since neither mTORC1 inhibitor used (rapamycin or KU0063794) was able to reverse 

cell death, the mechanism may not be mTORC1-dependent (Fig 5.2-5.4, 5.6). However, 

TSC2 appears to be critical for cell survival which could be due to a number of reasons. 

In particular, the inhibitory action of TSC1/TSC2 on mTORC1 is much more dominant 

than direct mTORC1 inhibition by AMPK or SESN2, which have a comparatively weak 

suppression of mTORC1 activity.  

In contrast to nelfinavir-chloroquine treatment, nelfinavir-bortezomib treatment 

caused definitive apoptosis, as shown by cleavage of caspase-8, -3 and PARP in 24 h 

treated samples (Fig 5.5). Although caspase-8 cleavage is part of the extrinsic apoptotic 

pathway (typically activated through death receptors on the cell surface), there are 
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several reports of caspase-8 cleavage being mediated through ER stress, specifically 

through CHOP upregulation of death receptor 5 (DR5) (Lu et al., 2014, Liu et al., 2012, 

Kim et al., 2011). Additionally, bortezomib has been shown to enhance caspase-8 

activation, which was implicated to be through UPR induction (Vaeteewoottacharn et 

al., 2013) and was thought to be a mechanism for sensitising human renal cell 

carcinoma cells to further treatment (Brooks et al., 2010). Although nelfinavir-

bortezomib treatment caused increased CHOP protein (5.1A) and cleavage of caspase-

8 (Fig 5.5), inhibition of caspase-8 cleavage by Z-IETD-FMK did not significantly rescue 

nelfinavir-bortezomib-mediated cell death in a range of mTORC1 overactive cell lines 

(Fig 5.6-5.7). This result implies cell death is not primarily through apoptosis, but an 

alternative mechanism, most likely necrosis. Further research is required to define the 

mode of cell death. However the mode, the mechanism of cell death is most likely 

mediated through elevated ER stress.  

The IRE1-TRAF2-ASK1 pathway activates JNK signalling and this feeds into NF-B 

signalling. NF-B is activated by many stimuli including ER stress (Deng et al., 2004). 

The NF-B complex is a transcription factor responsible for regulation of multiple 

cellular pathways including cell growth and survival. It is composed of the RelA, RelB, c-

Rel, NF-B1 and NF-B2 subunits which collectively form hetero- or homodimers. The 

NF-B complex itself is negatively regulated by IB, which binds to and sequesters NF-

B in the cytoplasm. IB activity is controlled by the IB kinase (IKK), which 

phosphorylates IB at Ser32/36 residues to allow its ubiquitination at Lys21/22 and 

subsequent 26S proteasomal degradation, leaving NF-B free to translocate to the 

nucleus (Kim et al., 2006, Lee et al., 2013). Nuclear NF-B has been detected in 

multiple cancer types, both solid tumours and hematological malignancies, and has 

been shown to be activated by oncogenic mutation of mitogenic pathways including 

EGF and PDGF receptors, and proteins within MAPK and PI3K signalling. Activation of 

NF-B in cancers confers resistance to cell death and is associated with poor survival 

(Kim et al., 2000). There are currently no clinically approved NF-B inhibitors and the 

present convention for NF-B inhibition is to prevent degradation of IB by the use of 

proteasome inhibitors. Bortezomib is currently the only approved proteasome 

inhibitor for human use. The present study showed elevated basal levels of 

phosphorylated RelA (a post-translational modification required for NF-B activation) 
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in Tsc2-/- MEFs compared to Tsc2+/+ MEFs, which was further increased by nelfinavir 

treatment, likely through increased ER stress signalling (Fig 3.4). Indirect inhibition of 

NF-B by bortezomib coupled with high levels of ER stress from both proteasome 

inhibition by bortezomib, and nelfinavir treatment, is the likely cause of the observed 

high levels of cell death in mTORC1-overactive cells.  

 5.4.4 Summary of chapter 5 

Combination of nelfinavir with bortezomib effectively induces selective cell death in 

cells with overactive mTORC1. This action is likely mediated through nelfinavir-induced 

ER stress in combination with bortezomib-induced proteasome inhibition, leading to 

reduction of NF-B. Interestingly, nelfinavir was found to have no inhibitory effect on 

the proteasome in either Tsc2+/+ or Tsc2-/- MEFs. Nelfinavir-bortezomib-induced cell 

death caused caspase cleavage, suggesting apoptotic cell death. However, cell death 

was not rescued by drug inhibition of caspase cleavage, indicating death is not 

exclusively apoptotic. Similarly, drug inhibition of mTORC1 failed to rescue nelfinavir-

bortezomib-induced cell death, indicating the mechanism of death may be more 

dependent on TSC2 than mTORC1.  
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6. Final Discussion and Conclusions 

6.1 TSC2 is required for nelfinavir-mediated mTORC1 inhibition 

It was not the purpose of this study to decipher the mechanism of nelfinavir-induced 

ER stress. However, it would appear that nelfinavir elicits a cytoprotective ER stress 

response in Tsc2+/+ cells. This study observed that nelfinavir did indeed elevate ER 

stress through increases in XBP1 splicing, CHOP mRNA, and increased levels of IRE1 

and GADD34 proteins. Concurrently, nelfinavir increased phosphorylation of AMPK and 

reduced phosphoryation of rps6 and S6K1 proteins. This is suggestive that nelfinavir 

activates TSC2 through AMPK to inhibit mTORC1. This mechanism has been described 

by Brüning et al., (2013), whereby nelfinavir-mediated ER stress activated ATF4 and 

increased SESN2 expression, which activated TSC2 through AMPK (Brüning et al., 

2013). These findings corroborate the observed increase in phosphorylated AMPK (Fig 

3.4) in the present study and presents another explanation as to why phosphorylated 

rpS6 is decreased following nelfinavir treatment only in Tsc2+/+ MEFs (Fig 3.3). 

Another ATF4-mediated, TSC2-dependent mechanism of mTORC1 inhibition is through 

regulated in DNA damage and development 1 (REDD1). REDD1 was recently found to 

decrease Akt-mediated inhibitory phosphorylation of TSC2, specifically at Thr308 

(Dennis et al., 2014). SESN2 was recently shown to inhibit mTORC1 independently of 

TSC2 through regulation of GATOR1. The GATOR1 complex functions as a GAP for 

RagA/B, preventing mTORC1 recruitment to the lysosome (Bar-Peled et al., 2013). 

SESN2 has been shown to inhibit the negative regulator of GATOR1, GATOR2, during 

times of stress (Parmigiani et al., 2014). Never-the-less, this study did not observe 

decreases in mTORC1 signalling in Tsc2-/- cells, suggesting a TSC2-dependent 

mechanism. Inability of Tsc2-/- cells to reduce mTORC1 signalling resulted in 

accumulation of protein within the ER, but this was of an insufficient level to cause cell 

death with nelfinavir treatment alone.  
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6.2 Nelfinavir-chloroquine 

 6.2.1 Nelfinavir and chloroquine co-treatment causes cell death in 

mTORC1-overactive cells  

This work also suggested the mechanism of chloroquine-induced cell death was 

independent of apoptosis, since caspase inhibition did not reduce levels of cytotoxicity 

(Maycotte et al., 2012). This additionally supports the findings of the present study 

that nefinavir and chloroquine co-treatment did not induce cleavage of caspase-3 or 

PARP (Appendix VII). Theoretically, nelfinavir-chloroquine treatment should be at least 

partially rescued by an mTORC1 inhibitor such as rapamycin or Ku006379. 

6.2.2 Cell death is not caused by autophagy inhibition 

In this study, cell death was not attributed to autophagy inhibition. It is likely that 

inhibition of autophagy potentiates the ER stress and the effect of nelfinavir-

chloroquine, but autophagy inhibition is not sufficient to cause cell death in 

combination with neflinavir (Fig 4.10). Instead, it would appear that the lysosome is a 

critical mediator of cell death in this context. This is supported by work showing 

chloroquine sensitised breast cancer cells to cisplatin treatment which was not 

replicated by other autophagy inhibitors, or knockdown of ATG12 or Beclin 1 

(Maycotte et al., 2012). Harhaji-Trajkovic et al., (2012) did not observe cell death when 

using autophagy inhibitors other than chloroquine in combination with cell starvation.  

Mefloquine did not inhibit autophagy but was more effective at causing cell death than 

chloroquine in combination with nelfinavir (Fig 4.10). Mefloquine accumulates within 

and disrupts lysosomes in the same manner as chloroquine (Glaumann et al., 1992) 

but, contrastingly to chloroquine, was found to permeabilise the lysosome membrane 

in acute myeloid leukaemia cells (Sukhai et al., 2013). This action of mefloquine could 

account for increased cytotoxicity observed in both Tsc2-/- and Tsc2+/+ MEFs and 

could be tested for using acridine orange staining and flow cytometry or fluorescence 

microscopy, or electron microscopy. If confirmed, mefloquine-mediated lysosomal 

membrane permeabilisation and subsequent release of lysosomal contents into the 

cytoplasm would most likely result in necrosis and an inflammatory response in vivo 

which may render this potential drug treatment too toxic for clinical use. 
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Cell death induction by nelfinavir and chloroquine appears to be relevant when 

mTORC1 is overactive due to upstream oncogenic mutation, even in cells with intact 

TSC2, as demonstrated by the present study in NCI-H460 cells (Fig 4.7).  

 6.2.2 Cell death is rescued by inhibition of the v-ATPase 

The primary function of lysosomes is to degrade extra- and intracellular material by 

engulfment and subjection to the highly acidic environment within. The v-ATPase is 

responsible for maintenance of lysosomal acidity through its ATP-dependent proton 

pump activity. Importantly, the active v-ATPase is required for Ragulator-Rag-mTORC1 

binding to the lysosome (Zoncu et al., 2011). Recent research used chloroquine 

treatment to raise lysosomal pH in osteoclasts which had the effect of increasing 

phosphorylated mTORC1 protein levels through a lack of degradation via the lysosome 

(Hu et al., 2015). In yeast, v-ATPase activity was found to be greatly increased by cell 

growth in pH 7 conditions compared to pH 5 and was insensitive to inhibition (Diakov 

and Kane, 2010). As chloroquine is alkaline, its accumulation within lysosomes 

increases pH which may stimulate activation of the v-ATPase, resulting in more robust 

mTORC1 recruitment to the lysosome. When Rheb is active, this would result in 

increased protein synthesis and elevated ER stress. Combined with nelfinavir in Tsc2-/- 

cells, we observed that chloroquine induces cell death which can be rescued to levels 

of Tsc2+/+ cells by bafilomycin-A1 inhibition of the v-ATPase (Fig 4.10). These results 

confirm previous findings by Harhaji-Trajkovic et al., (2012) where cell death was not 

reversed by antioxidant agents, but was rescued by bafilomycin-A1 co-treatment. 

Taken together, these results suggest cytotoxic effects seen in co-treatment are 

mediated by lysosome dysfunction that involves the v-ATPase. 

6.3 Nelfinavir-bortezomib 

 6.3.1 Potential involvement of NF-B 

Under conditions of ER stress, translation is repressed through PERK-mediated 

activation of eIF2. This results in decreased levels of IB which are further reduced by 

IRE1-TRAF2-ASK1 and JNK-mediated IKK activity. This further allows an increase in 

free NF-B which translocates to the nucleus and transcriptionally activates multiple 

pro-survival genes including those involved in the ER stress response and UPR (Tam et 
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al., 2012). ER stress-mediated NF-B activation could explain some of the 

cytoprotective effects observed following nelfinavir treatment. Preliminary studies 

found JSH23, a drug which prevents NF-B translocation to the nucleus, to be a deadly 

treatment in Tsc2-/- and Tsc2+/+ MEFs (Fig 3.7). Interestingly, combination of JSH23 

with nelfinavir greatly reduced the observed cell death in Tsc2+/+ MEFs, whilst still 

producing a high level of cell death in Tsc2-/- MEFs. This differential result is worthy of 

further research to prove the effect and investigate the potential underlying 

mechanisms. 

Tsc2-/- MEFs exhibited increased basal levels of phosphorylated RelA protein which 

was increased by nelfinavir treatment (Fig 3.4). This suggests increased activation of 

NF-B in these cells which is most likely mediated through ER stress signalling. 

Bortezomib is known to decrease activity of NF-B due to reduced proteasomal 

degradation of IB. In combination with nelfinavir, bortezomib proved to be effective 

at causing selective cell death in mTORC1 overactive cells, which wild type cells were 

able to tolerate. Direct inhibition of proteasomal degradation using bortezomib 

treatment reduced the effectiveness of the UPR and increased ER stress. 

 6.3.2 Failure to rescue cell death with mTORC1 inhibition 

Inhibition of mTORC1 with rapamycin or Ku0063794 failed to rescue nelfinavir-

bortezomib-induced cell death. These findings confirm previous research showing 

rapamycin was not able to protect against ER stress-induced apoptosis in either Tsc1-/- 

or Tsc2-/- MEFs (Kang et al., 2011). One potential explanation for this is that rapamycin 

was observed to cause proteasome inhibition in Tsc2-/- MEFs (Fig 5.1), which supports 

current findings (Zhang et al., 2014). Another explanation is that rapamycin is a poor 

inhibitor of mTORC1, requiring FKBP12 binding to allosterically inhibit mTORC1, 

primarily preventing larger substrate binding, such as S6K1 (Yip et al., 2010). 

Ku0063794 is more effective at inhibiting mTORC1 than rapamycin, but also has 

multiple off-target kinase effects (Garcia-Martinez et al., 2009). Since inhibition of 

mTORC1 did not significantly rescue nelfinavir-bortezomib-induced cell death (Fig 5.2-

5.4, 5.6), it might be suggested that the mechanism of cell death is not mTORC1-

dependent, but rather TSC2-dependent. Since inhibition of caspase cleavage did not 

rescue cell death (Fig 5.7-5.8), the precise mechanism of cell death remains unknown. 

Further investigation is required. 
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6.4 Future study 

Further study with nelfinavir and chloroquine should determine whether the lysosome 

is involved in treatment outcome and include intracellular lysosome tracking in live 

cells under both treated and untreated conditions. Immunofluorescence time lapse 

microscopy with lysotracker red, and co-staining of the nucleus (and actin or other 

cytoskeletal stain) would be an ideal technique for observing lysosome localisation. 

Additionally, acridine orange could be used in combination with flow cytometry to 

identify differences in number and stability of lysosomes between treatments and cell 

lines. This could be used in combination with fluorescence microscopy to determine 

whether rupture of lysosomes and resultant necrosis is the cause of cell death 

following nelfinavir-chloroquine treatment. Additionally, electron microscopy would 

be an effective way of determining the state of ER stress through ER expansion, for 

determining localisation and state of lysosomes, number and condition of 

mitochondria (relating to ROS), for confirming blockade of autophagy, and for 

detection of hallmarks of apoptosis/necrosis after nelfinavir-chloroquine treatment. 

Cell death should be replicated using an alternative lysosome inhibitor such as 

ammonium chloride and/or an alternative ER stress-inducer such as tunicamycin. v-

ATPase activity could be measured using acridine orange staining with flow cytometry 

to measure fluorescence intensity following addition of ATP to cells. 

Future study with nelfinavir and bortezomib should determine whether cell death is 

mediated through changes in NF-B levels, which could be achieved through analysis 

of NF-B-associated proteins through western blot, or through RNA-Seq screening for 

changes in NF-B gene expression targets. As with nelfinavir-chloroquine, electron 

microscopy would be a useful tool for assessment of ER homeostasis, as cell death is 

more likely mediated primarily through excessive ER stress. This could be replicated 

using an alternative ER stress inducer, as mentioned above, combined with 

bortezomib. 

6.5 Conclusions 

This research aimed to identify a novel drug combination for treatment of a broad 

spectrum of cancer and disease with overactive mTORC1 signalling. This novel 

approach utilised several cellular models with overactive mTORC1 through either Tsc2 
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mutation or upstream oncogenic signalling incurring increased mTORC1 activation as 

part of targeted therapy. At the time the research was initiated, nelfinavir had not 

previously been investigated in these cell lines. This study reveals that mTORC1 

overactive cells are sensitive to drug-induced increased ER stress burden. While wild-

type cells tolerate drug combinations, cytotoxicity within the TSC2-null cells is evident 

at low drug concentrations and is likely attributable to their inability to manage ER 

stress burden in a timely and appropriate manner. This is evidenced by elevated 

protein and mRNA levels of ER stress markers such as GADD34, CHOP and spliced 

XBP1. This research shows that cells with overactive mTORC1, through either lack of 

functional TSC2 or through upstream oncogenic mutation, are compromised in their 

ability to efficiently sense ER stress burden and to restore ER homeostasis.  

Unfolded proteins within the ER are removed via both the autophagy and proteasome 

pathways. The present research shows that it is not the inhibitory action of 

chloroquine on autophagy which enhances cell death when combined with nelfinavir. 

Neither is it the inhibitory action of nelfinavir on the proteasome which induces ER 

stress. 

In the present study, cell death was only observed upon co-treatment with nelfinavir 

and another drug: nelfinavir-chloroquine treatment involved chloroquine entrapment 

within the lysosome, likely increasing pH and stimulating mTORC1 activity which could 

not be prevented by nelfinavir-mediated activation of TSC2 in Tsc2-/- cells, resulting in 

cell death. Nelfinavir-bortezomib treatment involved inhibition of the proteasome, 

reducing NF-B activity and increasing ER stress which was further increased by 

nelfinavir. Cell death through nelfinavir-chloroquine or nelfinavir-bortezomib was 

greatly reduced in cells with active TSC2. Inactivation of TSC2 either through genetic 

mutation (Tsc2-/- MEF, ELT3-V3, TSC2-/- AML cell lines) or through oncogenic growth 

factor-mediated inhibition (NCI-H460 cell line) appears to be crucial for significant cell 

death.  

Tsc2-null cells have also been shown to be sensitive to glucose starvation (Choo et al., 

2010) and have elevated levels of ROS (Suzuki et al., 2008). Recent work utilised a 

similar approach to the present study, wherby chelerythrine chloride was used to 

increase ROS beyond a tollerated threshold. Chelerythrine treatment induced 
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necroptotic cell death selectively in Tsc2-/- MEFs and ELT3-V3 cells, which was rescued 

by NAC (Medvetz et al., 2015). Medvetz et al. (2015) also saw 57 % tumour reduction 

in xenograft tumour models after 4 weeks of treatment compared to untreated 

tumours. No evidence of toxicity was observed.  

By targeting ER stress, there is potential for treatment of many cancers known to have 

increased mTORC1 signalling including breast, renal and pancreatic cancers, as well as 

benign tumour diseases such as TSC. However, this combination of drugs was not 

tested in cells heterozygous for Tsc2. Should drug treatment be cytotoxic in Tsc2+/- 

cells, it would likely be unsuitable for treatment of TSC patients.  

This work tested viable drug combinations that could be repositioned to the clinic. The 

focus was to identify an effective, cytotoxic drug combination which could be used for 

stratified treatment of multiple cell types with overactive mTORC1. The main limitation 

of this study was a lack of animal models, the use of which would have enabled testing 

of drug combinations in a more realistic model system and may have given insight into 

associated toxicities. Further research using animal models and, if successful, 

preclinical trials is warranted.  
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8. Appendices 

 

Appendix I: Confirmation of XBP1 spliced and unspliced product using PST1 digest. Spliced 
and unspliced PCR products were isolated from agarose gels and subjected to either PST1 
digest or negative control before re-running on agarose gels for detection of 312 bp and 289 
bp products detectable only in unspliced XBP1 extractions. 
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Appendix II: Establishment of CHOP as a reliable mRNA marker for early ER stress detection. 

Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 1 µM thapsigargin 
(TPG), 10µ, 20 µM, or 30µM of nelfinavir (NFV) for 3 h. A) CHOP mRNA, B) HSP70 mRNA, and C) 

EDEM1 mRNA was analysed and standardised against -actin. n=1. 
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Appendix III: Ritonavir and lopinavir do not induce cell death at 24 h treatment. Tsc2+/+ and 
Tsc2-/- MEFs were treated with either DMSO vehicle alone, 1 µM thapsigargin (TPG), 20 µM of 
either lopinavir or ritonavir for 24 h. A) Phase contrast images were taken at x40 magnification 
and B) cells were analysed using flow cytometry and DRAQ7 staining. n=1. 
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Appendix IV: Lopinavir and ritonavir cause caspase-independent cell death when combined 

with chloroquine in both Tsc2+/+ and Tsc2-/- MEFs. Tsc2+/+ and Tsc2-/- MEFs were treated 
with either DMSO vehicle alone, 1 µM thapsigargin (TPG), 20 µM lopinavir, 20 µM ritonavir, or 
combined lopinavir or ritonavir with 20 µM chloroquine for 24 h. Protein extracts were 

analysed for PARP, caspase-3, TSC2 and -actin. n=1. 
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Appendix V: Structure of nelfinavir, ritonavir and lopinavir.  

  



137 
 

 

  



138 
 

 

Appendix VI: Tsc2-/- MEFs are significantly more motile than Tsc2+/+ MEFs, which is reduced 

with nelfinavir and chloroquine treatment. Movement analysis of MEFs from figure 4.3 was 
performed between 15 minute intervals over the first 6 h of treatment and is displayed in µM 
distance moved A) per 15 minute interval, and B) cumulatively over the 6 h period. n=3 ± SEM. 
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Appendix VII: Combination of nelfinavir and chloroquine does not kill cells through 

apoptosis, even at higher doses. Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO 
vehicle alone, 1 µM thapsigargin (TPG), 20 µM nelfinavir (NFV), 20 µM chloroquine (CQ) or a 
combination of NFV and 5 µM, 20 µM or 50 µM CQ for 24 h. A) Protein lysates were analysed 

for total and cleaved PARP, total and cleaved caspase-3, TSC2 and -actin. B) Cells were 
subjected to flow cytometry analysis with DRAQ7 staining. 
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Appendix VIII: Nelfinavir and chloroquine-mediated cell death is unlikely through DNA 

double strand breaks. Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle alone, 
1 µM thapsigargin (TPG), 20 µM nelfinavir (NFV), or nelfinavir combined with either 10 µM or 
20 µM chloroquine for 24 h. Protein lysates were analysed for GADD34, phosphorylated H2AX 

or -actin. n=1. 
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Appendix IVIII: Nelfinavir and chloroquine-mediated cell death is not rescued by Na+/K+ 

ATPase inhibition with digoxin. ELT3-T3 and ELT3-V3 cells were treated with DMSO vehicle 
alone, 5 digoxin (DIG), 20 µM nelfinavir (NFV) and 20 µM chloroquine (CQ), or combined 
digoxin, nelfinavir and chloroquine for 48 h before analysis by flow cyometry with DRAQ7 
staining (n=1). 
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Appendix X: Nelfinavir and chloroquine-mediated cell death is unlikely through ROS in NCI-

H460 cells. NCI-H460 cells were treated with either DMSO vehicle alone, 20 µM nelfinavir 
(NFV), 20 µM chloroquine (CQ), 20 µM N-acetyl-cysteine (NAC) or a combination as shown, for 
24 h. Cells were subjected to flow cytometry analysis with DRAQ7 staining (n=1). 
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Appendix IX: Structure of chloroquine and mefloquine. 
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Appendix X: Combined nelfinavir and bortezomib causes significant and selective cell death 

at 24 h in Tsc2-/- MEFs. Tsc2+/+ and Tsc2-/- MEFs were treated with either DMSO vehicle 
alone or combination of 20 µM nelfinavir (NFV) and 50 nM bortezomib (BTZ) over 24 h. A) Cells 
were subjected to flow cytometry analysis with DRAQ7 staining at multiple time points over 24 
h. The number of DRAQ7-stained cells are graphed in B. n=3, *P<0.05. 


