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Resonant-state expansion applied to planar waveguides

L. J. Armitage, M. B. Doost, W. Langbein, and E. A. Muljarov*

School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom
(Received 21 October 2013; published 27 May 2014)

The resonant-state expansion, a recently developed method in electrodynamics, is generalized here to planar
open optical systems with non-normal incidence of light. The method is illustrated and verified on exactly
solvable examples, such as a dielectric slab and a Bragg reflector microcavity, for which explicit analytic
formulas are obtained. This comparison demonstrates the accuracy and convergence of the method. Interestingly,
the spectral analysis of a dielectric slab, in terms of resonant states, reveals an influence of waveguide modes
in the transmission. These modes, which on-resonance do not couple to external light, surprisingly do couple to
external light for off-resonant excitation.
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I. INTRODUCTION

Optical waveguides (WGs) are a basic building block for
optical technology owing to their lossless guiding of light,
enabled, for example, by total internal reflection. WGs provide
confinement of the light in one or two dimensions, whereas,
allowing light waves to propagate along the remaining dimen-
sions in which the waveguides are approximately invariant.
Planar WGs with one-dimensional (1D) confinement, such
as a dielectric slab, and fiber WGs with two-dimensional
(2D) confinement, are widely used, for example, in fiber-
optic cables for telecommunication, photonic crystal fibers
[1], integrated optical circuits [2], and terabit chip-to-chip
interconnects [3].

The optical spectra of WGs, however, do not consist of
only these bound modes called WG modes, but also contain
unbound modes which couple to the outside, commonly known
as leaky modes. An elegant and intuitive way to understand and
describe the properties of optical systems is to use the concept
of discrete resonant states (RSs) [4,5], which include all types
of modes in the system and present a mathematically complete
set of spatial functions. RSs are defined as eigensolutions of the
Maxwell equations having outgoing wave boundary conditions
(BCs). Their energies are generally complex with the real and
imaginary parts, respectively, corresponding to the spectral
position and the linewidth of the mode. The quality factor
of the mode is given by the real part divided by twice the
imaginary part of the mode frequency. The finite imaginary
part reflects the fact that these states decay in time and leak
out of the system. Such RSs grow exponentially outside of
the system and require an adapted normalization [4–9]. WG
modes, which may exist in the system, are included in the set
of RSs and are required for the completeness of the set, even
though they have real energies and evanescent tails.

To calculate the RSs in optical systems in which ana-
lytic solutions are not possible, the resonant-state expansion
(RSE), a rigorous perturbation method in electrodynamics,
has recently been developed [6] and has been applied to
finite 1D, two-dimensional (2D), and three-dimensional (3D)
systems, such as planar [7], cylindrical [8], and spherical [9]
resonators with perturbations, respectively. The RSE turned
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out to be suited for the calculation of sharp resonances, such
as whispering gallery modes. Such modes have previously
been investigated in microcylinders [10–12] and microspheres
[13]. Available computational techniques, such as the finite
difference in time domain (FDTD) [14,15] and finite element
method (FEM) [16–18] need large computational resources
[19,20] to calculate such modes. Very recently, we have
compared the performance of the RSE with commercial FEM
and FDTD solvers and have found that the RSE was a few
orders of magnitude more computationally efficient [9]. It,
therefore, has the potential to supersede the presently used
methods.

Up to now, the RSE has been applied only to modes with
zero wave vector p along the translationally invariant direction
of the system considered, corresponding to normal incidence
of light without propagation along the waveguide. In this paper,
we extend the application of RSE to arbitrary wave vectors p,
thus, allowing to describe the propagation along waveguide
structures. This introduces in the spectrum of RSs, which,
for normal incidence, is dominated by lossy Fabry-Pérot (FP)
modes, WG and antiwaveguide (AWG) modes, as well as a
continuum of modes due to a cut of the Green’s function
(GF) in the complex frequency plane appearing for p �= 0.
The modes on the cut contribute significantly to the optical
spectra and are required for the completeness of the RS basis.
They present a challenge in the technical implementation of the
RSE, which is dealing with discrete states. We have recently
shown [8] that one can perform an effective discretization of
such continua for the RSE applied to 2D systems which already
show a cut for p = 0.

In the present paper, we eliminate the cut in planar systems
with p �= 0 by going from the frequency representation of
the system to the normal wave-vector representation. We
treat planar WGs and verify our theory on exactly solvable
structures, such as a homogeneous dielectric slab and a Bragg-
mirror microcavity (MC), using the RSs of a homogeneous slab
as a basis for the RSE. The role of the different types of RSs is
studied in detail, revealing the importance of WG modes in the
transmission. The method of eliminating the cut presented here
can be applied to fiber WGs, generalizing our recent paper on
cylindrical resonators [8] to non-normal incidence and will be
the subject of a future paper. Furthermore, it enables treating
planar photonic crystals and cavities, which have important
applications. Given the superior performance of RSE in 3D
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systems [9], we expect that the RSE has the potential to
improve on presently available approaches which are based
on the WG mode expansion [21,22] or on scattering matrix
formalism [23,24].

The paper is organized as follows. In Sec. II, we study
the transmission of a homogeneous slab in the complex
frequency and normal wave-vector plane in order to analyze
the contributions of different types of RSs to the optical spectra
of planar WGs. In Sec. III, we present a general formulation of
the RSE for planar systems with nonzero in-plane momentum.
In Sec. IV, we demonstrate applications of the RSE to different
systems and compare results with available exact solutions. In
particular, in Sec. IV A, we introduce the basis of RSs for a
homogeneous slab in inclined geometry and then use it for
calculation of optical modes of a homogeneous slab with a
different refractive index in Sec. IV B, and of a Bragg-mirror
microcavity in Sec. IV C.

II. ROLE OF WAVEGUIDE MODES IN
TRANSMISSION SPECTRA

We study the role of RSs in the transmission of a dielectric
slab and, in particular, the influence of the WG modes on the
slab transmission. The WG modes are RSs which have zero
linewidth and are present in the spectrum of a planar system at
non-normal incidence of the incoming light wave. We consider
a dielectric slab with thickness 2a in vacuum, having the real
dielectric constant,

ε(z) =
{
εs for |z| � a,

1 for |z| > a,
(1)

where εs is the permittivity of the slab and z is the coordinate
normal to the slab. We assume a permeability of μ = 1
everywhere throughout this paper. The electric field E(r,t)
satisfies Maxwell’s wave equation,

∇ × ∇ × E + ε(z)
1

c2

∂2E
∂t2

= 0, (2)

and Maxwell’s BCs on the dielectric-vacuum interfaces. For
an incoming plane monochromatic wave with the transverse-
electric (TE) polarization along ŷ (ŷ is the unit vector along
the y axis) and real frequency ω, the electric field in the system
takes the form

E(r,t) = ŷe−iωt+ipxE(z), (3)

in which p is the in-plane projection of the wave vector. For
the component E(z) of the electric field, Eq. (2) transforms to
a 1D wave equation,[

d2

dz2
− p2 + ε(z)

ω2

c2

]
E(z) = 0. (4)

The electric field for z > a is given by the transmitted plane
wave E(z) = t(ω)eikzE0, where E0 is the amplitude of the
incoming wave. The field transmission through the slab t(ω)
has the analytic form

t(ω) = 2ikqe−2ika

2ikq cos(2qa) + (k2 + q2) sin(2qa)
= T (k), (5)

in which

k =
√(

ω

c

)2

− p2, (6)

q =
√

εs

(
ω

c

)2

− p2 =
√

εsk2 + (εs − 1)p2 (7)

are the z components of the wave vector in vacuum and di-
electric, respectively. Equation (5) shows that the transmission
t(ω) is a function of the real frequency ω. One can also express
the transmission t(ω) as a function T (k) of the normal wave
vector k in which k takes only real positive values as dictated
by the outgoing character of the transmitted wave. The wave
vector q inside the slab can be complex for a dielectric with
dissipation and can have an arbitrary sign, reflecting the fact
that waves within the slab propagate in both directions. Hence,
the transmission is insensitive to the sign of q as seen in
Eq. (5).

To study the influence of different modes on the transmis-
sion, we consider analytic continuations (ACs) t̃(ω) and T̃ (k)
of both functions in the complex ω and k planes, respectively,
in order to investigate their pole structures and for each of
them, apply the Mittag-Leffler theorem [25–27]. The AC of
the transmission has different types of poles, which are shown
in Fig. 1 for pa = 5. As in the case of normal incidence [7],
there is a countable-infinite number of FP modes having nearly
equidistant real parts and finite imaginary parts. In addition,
there are two types of modes on the real ω axis: WG and
AWG modes, which are appearing for p �= 0. The WG modes
have an evanescent, i.e., exponentially decaying electric field
into the vacuum, whereas, the AWG modes are exponentially
growing into the vacuum and are known in quantum mechanics
as antibound states [28]. Finally, there is one leaky mode (LM)
at the center of the spectrum which has zero real and negative
imaginary parts of ω. Due to the square root in Eq. (6), the
function t̃(ω) has two branch points at ω = ±pc connected
by a cut. We choose the cut going through ω = −i∞ and,
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FIG. 1. (Color online) Poles (symbols) and cut (red lines) of the
transmission t̃(ω) of a homogeneous dielectric slab with εs = 9
and in-plane wave vector pa = 5. The poles are Fabry-Pérot (blue
crosses), waveguide (black diamonds), and antiwaveguide modes
(open circles), including a leaky mode (open star). The inset shows
the absence of ω = 0 and k = 0 modes.
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thus, producing two vertical cut lines as shown in Fig. 1. The
other square root in the definition of q(ω) does not produce
any cuts due to the above-mentioned fact that t(ω) is an even
function of q and, thus, independent of its sign. Integrating
t̃(ω′)/(ω − ω′) over a closed infinite-radius circular contour
circumventing the cut, similar to that used in Ref. [8], we
obtain the spectral representation in the frequency domain,

t̃(ω) =
∑

n

Res
ω′=ωn

[t̃(ω′)]

ω − ωn

+ 1

2πi

∑
p′=±p

∫ p′c

p′c−i∞

�t(ω′)dω′

ω − ω′ .

(8)

Here the first term represents a sum over residues at all poles
of t̃(ω). The second term is the integral of the step �t(ω) in
the transmission along the two parts of the cut shown in Fig. 1.
Specifically, �t(ω) is defined as the difference between the
values of t̃(ω) on the left and right sides of the cut for the
given cut point ω.

Using the spectral representation Eq. (8) for real frequen-
cies ω, we analyze contributions of the poles and the cut to the
transmission. The transmission is usually studied for a fixed
angle of incidence θ , motivated by experimental constraints.
An example of the calculated transmission through a slab with
εs = 9 is shown for θ = π/4 in Fig. 2(a). For a fixed θ , the
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FIG. 2. (Color online) Transmission |t(ω)| of a homogeneous
dielectric slab with εs = 9 as a function of the light frequency ω,
in (a) for a fixed angle of incidence θ = π/4 and in (b) for a fixed
in-plane wave vector pa = 5, along with partial contributions to the
transmission of different types of modes and the cut shown in Fig. 1.
Black vertical arrows indicate the frequency for which pa = 5 in
panel (a) and θ = π/4 in panel (b). The inset shows a schematic of
the total wave vector ω/c along with its projections p and k on the x

and z axes, respectively.

in-plane wave vector p changes with frequency so that the
contributions of the poles (which are different for different p’s)
are not constant across the spectrum. We, therefore, analyze
the spectrum for a fixed p as shown in Fig. 2(b) in which the
contributions of different pole types and the cut are shown
individually, summing up to the analytic transmission Eq. (5).
Note that the transmission t(ω) is defined over the angle range
0 < θ < π/2, corresponding to ω > pc. FP modes dominate
for ω � pc, giving rise to the oscillations in the transmission,
whereas, the contribution of all other modes and the cut are
significant only close to the threshold ω = pc, corresponding
to grazing incidence θ ∼ π/2.

The cut contribution to the spectral representation Eq. (8)
and to the transmission in Fig. 2(b) produces a continuum of
resonances. Such a continuum can approximately be treated
in the RSE by replacing it with a series of poles as done in
Ref. [8]. In the present case, however, the cut can actually be
removed by going into the wave-vector domain. Indeed, being
treated as a function of the normal wave vector k, the AC of the
transmission T̃ (k) has no cuts in the complex k plane, and its
spectral representation, obtained by using the Mittag-Leffler
theorem, has the following form:

T̃ (k) =
∑

n

Res
k′=kn

[T̃ (k′)]

k − kn

, (9)

in which kn = √
ω2

n/c
2 − p2 with n numbering the poles as in

Eq. (8). On the real k axis, T̃ (k) coincides with the transmission
T (k) given by Eq. (5) and is shown in Fig. 3 along with
the contributions of the different types of modes. We see,
in particular, that the WG modes, which are not emitting into
an outgoing plane wave, and thus, by reciprocity are expected
not to be excitable by an incoming plane wave, have a finite
contribution to the transmission, which is possible only due to
their off-resonant excitation. This contribution increases with
decreasing the wave vector k as the frequency of the incoming
wave is getting closer to the resonant frequencies of the WG
modes lying beyond the vacuum light cone.

0 2 4 6 8 10
10-3

10-2

10-1

100

Tr
an

sm
is

si
on

 |T
(k

)|

Wave vector ka

 Total
 FP
 WG
 AWG
 LM

FIG. 3. (Color online) Transmission |T (k)| of a homogeneous
dielectric slab with εs = 9 and pa = 5 and partial contributions of
different modes as functions of the normal component k of the wave
vector in vacuum. As in Fig. 2(b), vertical arrows indicate the wave
vector at which θ = π/4.
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III. RESONANT-STATE EXPANSION FOR
NON-NORMAL INCIDENCE

The RSE formulated in our previous papers [6–8] is based
on three key elements, which are as follows: (i) Dyson’s
equation for the GF, (ii) spectral representation of the GF, and
(iii) completeness of RSs used for expansions of perturbed
states and the GF itself. We have previously applied the RSE
to infinite 1D and 2D systems at normal incidence. The non-
normal incidence, characterized by p �= 0, is treated here. The
previously used spectral representation of the GF in the
frequency domain contains a cut for p �= 0, which, however,
can be removed by mapping the problem onto the complex
normal wave-vector space k as demonstrated in Sec. II. We,
therefore, reformulate the RSE in the complex k plane in
which the spectral representation of the GF of an infinite
planar system with an in-plane momentum p �= 0 for TE
polarization [29] has the form

Gk(z,z′) =
∑

n

En(z)En(z′)
2kn(k − kn)

, (10)

where En(z) is the electric field of a RS, defined as an
eigensolution of Eq. (4) with an arbitrary profile of ε(z) within
a finite interval |z| < a, satisfying the outgoing wave BCs,

En(z) ∝ eikn|z| for |z| > a, (11)

and orthonormality conditions [30],∫ a

−a

ε(z)En(z)Em(z)dz

− En(−a)Em(−a) + En(a)Em(a)

i(kn + km)
= δnm. (12)

Substituting Eq. (10), which is valid for |z|,|z′| < a, into the
equation for the GF,[

d2

dz2
− p2 + ε(z)(k2 + p2)

]
Gk(z,z′) = δ(z − z′), (13)

using the wave equation for the eigenmodes, and tak-
ing the limit k → ∞, we obtain the closure relation,
ε(z)

∑
n En(z)En(z′) = 2δ(z − z′), and the sum rule:

∑
n

En(z)En(z′)
kn

= 0. (14)

For p = 0, the right-hand side of the above sum rule is replaced
by i due to the k = 0 pole of the GF [6]. For p �= 0, however,
the GF has no pole at k = 0 corresponding to ω = ±pc as
demonstrated in Fig. 1. Using Eq. (14), one can write Eq. (10)
as

Gk(z,z′) =
∑

n

En(z)En(z′)
2kn

[
1

k − kn

+ F (k)

]
, (15)

where F (k) is an arbitrary function which will appropriately be
chosen later in order to linearize a resulting matrix eigenvalue
problem of the RSE.

We now consider an arbitrary perturbation �ε(z) of the
dielectric constant inside the layer |z| < a. The new perturbed
GF Gk(z,z′) is related to the unperturbed one via the Dyson

equation,

Gk(z,z′) = Gk(z,z′) − (k2 + p2)

×
∫ a

−a

Gk(z,z′′)�ε(z′′)Gk(z′′,z′)dz′′. (16)

Substituting Eq. (15) into Eq. (16) and using a similar spectral
representation for the perturbed GF in terms of the perturbed
modes Eν(z), in Eq. (16) we equate, following Ref. [6], residua
at the perturbed poles k = �ν . This results in the following
relationship between unperturbed and perturbed modes:

Eν(z) = −(
�2

ν + p2
) ∑

n

En(z)

2kn

[
1

�ν − kn

+ F (�ν)

]

×
∫ a

−a

En(z′)�ε(z′)Eν(z′)dz′. (17)

Note that the perturbed modes Eν(z) satisfy Eq. (4) with
ε(z) replaced by ε(z) + �ε(z) and the BCs Eq. (11) with kn

replaced by �ν . In the interior region |z| < a which contains
the perturbation, the perturbed RSs can be expanded into the
unperturbed ones, exploiting the completeness of the latter,

Eν(z) =
∑

n

bnνEn(z). (18)

Substituting this expansion into Eq. (17) and equating coeffi-
cients at the same basis functions, En(z), results in the matrix
equation,

bnν = −�2
ν + p2

2kn

[
1

�ν − kn

+ F (�ν)

] ∑
m

Vnmbmν, (19)

where

Vnm =
∫ a

−a

�ε(z)En(z)Em(z)dz (20)

is the matrix of the perturbation in the basis of unperturbed
RSs.

Equation (19) is a matrix eigenvalue problem which can be
solved numerically in order to find the wave vectors �ν and the
corresponding eigenfrequencies of the perturbed RSs as well
as their expansion coefficients bnν in terms of the unperturbed
ones. However, this problem is generally nonlinear in �ν as can
be seen by choosing F (k) = 0. Nonlinear eigenvalue problems
are known to lead to numerical instabilities and can produce
spurious solutions. In order to avoid these issues, we choose

F (k) = − k

k2 + p2
= −kc2

ω2
, (21)

explicitly depending on the in-plane wave vector p, which
linearizes the eigenvalue problem. Indeed, with the substitution
cnν = bnν

√
kn/�ν , the eigenvalue problem is given by∑

m

(
δnm

kn

+ Vnm

2
√

knkm

)
cmν

= 1

�ν

∑
m

(
δnm − p2Vnm

2kn

√
knkm

)
cmν, (22)

which is linear and can be solved by inverting the matrix on
the right-hand side of Eq. (22) and diagonalizing the resulting
nonsymmetric matrix on the left-hand side in order to obtain
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its eigenvalues 1/�ν . Alternatively, one can solve Eq. (22)
by employing a variety of software libraries available for
generalized linear matrix eigenvalue problems. Note that the
matrix equation of the RSE for normal incidence previously
derived in Ref. [6] is restored by choosing p = 0 in Eq. (22).

IV. RESULTS

To apply the method developed in Sec. III, we first construct
a convenient basis of unperturbed states. We use the RSs
of a homogeneous dielectric slab discussed in Sec. II. We
calculate the wave functions En(z) of the RSs and investigate
the dependence of their eigenvalues kn on the in-plane wave
vector p. Then, using the RSE, in particular, Eqs. (20) and
(22), we calculate the perturbed eigenvalues �ν for the simplest
perturbation, which is constant across the slab, and compare
the RSE results with the available exact solution. Finally, we
use the RSE to treat a structured perturbation simulating a
Bragg-mirror MC. We specifically discuss the lowest-energy
cavity mode (CM) and compare results with the transfer-matrix
calculation of the MC transmission and with an available
analytic approximation for the CM linewidth.

A. Unperturbed resonant states

The solutions of Eq. (4) which satisfy the outgoing-wave
BCs Eq. (11) in TE polarization take the form

En(z) =
⎧⎨
⎩

(−1)nAne
−iknz, z < −a,

Bn[eiqnz + (−1)ne−iqnz], |z| � a,

Ane
iknz, z > a,

(23)

where the eigenvalues kn satisfy the secular equation,

(kn − qn)eiqna + (−1)n(kn + qn)e−iqna = 0, (24)

with qn = √
εsk2

n + (εs − 1)p2. Here we use an integer index n

which takes even (odd) values for symmetric (antisymmetric)
En(z), respectively. The normalization constants An and Bn

are found from the continuity of En across the boundaries and
the normalization condition Eq. (12). They take the form

An = e−ikna

√
a(εs − 1)

√
εsω2

n/c
2 − p2

εsω2
n/c

2 + ip2/(kna)
, (25)

Bn = (−i)n

2
√

aεs + ip2/
(
knω2

n

/
c2

) , (26)

where ω2
n/c

2 = k2
n + p2.

The frequencies ωn of the RSs of a dielectric slab for pa = 5
and εs = 9 were shown in Fig. 1. The normal wave vectors kn

of the RSs for a slab with εs = 3 versus p are given in Fig. 4. All
states in the range |Re kna| < 5 and |Im kna| < 5 for pa < 5
are shown in Fig. 4(a) and are separated into mode types
in Figs. 4(b) and 4(c). For WG and AWG modes, Re kn = 0,
therefore, Fig. 4(c) shows only their imaginary parts, which are
positive for WG modes, corresponding to evanescent waves,
and negative for AWG modes, corresponding to exponentially
growing waves outside the slab. The WG and AWG modes
continuously transform into each other and produce branches
similar to those also seen for FP modes. These branches cross
each other at certain points [shown in Figs. 4(b) and 4(c) by

FIG. 4. (Color online) Resonant-state wave numbers of a ho-
mogenous dielectric slab with εs = 3 as a function of the in-plane
wave vector p: (a) The complex wave vectors kn of Fabry-Pérot (red
lines) and WG and AWG modes (black lines) with a projection on the
lower plane, (b) Re kn of Fabry-Pérot modes with the color giving the
value of Im kn, and (c) Im kn of the WG and AWG modes. The points
where the modes in panels (b) and (c) connect are given by magenta
dots joined by dashed lines.

magenta dots] where two FP modes are transformed into two
AWG modes which subsequently transform into a AWG - WG
mode pair. The AWG mode branch, which starts at p = 0, has
no connection to any WG or FP branches; the mode on this
branch was identified in Fig. 1 as the leaky mode.

The RSs of the homogeneous slab, similar to those shown
in Fig. 4, are used as a basis for the RSE in the two examples
given below. In general, for any local perturbation �ε(z) which
does not change the translational symmetry of the slab, i.e.,
does not depend on x or y, the in-plane momentum p remains
a good quantum number. In other words, �ε(z) does not mix
states with different p’s so that, in any such problem solved
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by the RSE, one can use the basis of RSs with a given fixed
value of p.

The numerical results shown in the following were obtained
with a program written in C++ using the Numerical Algorithms
Group library, running on an Intel E8500 CPU, taking a few
seconds for a given p with a basis size of N = 500. The
matrix elements of the perturbations were calculated using the
analytic expressions provided in the Appendix of Ref. [7].

B. Full-width perturbation

To illustrate the accuracy and convergence of the RSE, we
consider a homogeneous full-width perturbation of the slab,
which is given by

�ε(z) =
{
�ε for |z| � a,

0 otherwise, (27)

and for which the exact solution can be obtained by solving
the transcendental Eq. (24) with εs replaced by εs + �ε. We

FIG. 5. (Color online) (a) Exact (squares) and calculated by the
RSE with N = 2000 (crosses) resonant-state wave numbers of a
homogeneous dielectric slab with εs = 3 along with those of the
unperturbed slab with εs = 9 (circles with a dot). Relative errors
in the calculation of (b) Fabry-Pérot modes and (c) waveguide and
antiwaveguide modes for different total numbers of basis states N

used in the RSE as labeled. Inset: the dielectric constant profile of the
unperturbed and perturbed systems with the full-width homogeneous
perturbation of the slab �ε = −6.

denote these exact perturbed wave numbers as �(exact)
ν and

compare them with the perturbed values �ν obtained by using
the RSE for different basis sizes N . We choose, as the basis
of given size, all poles with |kn| < kmax(N ) using a suitably
chosen wave-number cutoff kmax(N ).

In Fig. 5, we compare the RSE wave numbers with the
exact wave numbers for our system in the case of pa = 5 and
�ε = −6. In Fig. 5(a), we can see that the RSE is reproducing
the exact solution to a high accuracy, which is quantified by
the relative error |�ν/�

(exact)
ν − 1| shown in Fig. 5(b) for the FP

modes with Re �ν > 0 and in Fig. 5(c) for the WG and AWG
modes. We see that the relative error scales as N−3, which was
observed also in planar systems at normal incidence [6,7] and
in homogeneous microcylinders [8] and microspheres [6]. In
the simulation used to generate Fig. 5 for a basis of N = 2000,
we find that the RSE reproduces about 300 modes with a
relative error below 10−8. This error can further be improved
by 1 to 2 orders of magnitude using the extrapolation method
described in Ref. [7].

C. Microcavity perturbation

To evaluate the RSE for inclined geometry in the presence
of sharp resonances in the optical spectrum, we use a Bragg-
mirror MC, which consists of a FP cavity of thickness LC and
dielectric constant εC = 9 surrounded by distributed Bragg
reflectors (DBRs). The DBRs consist of P = 5 pairs of
dielectric layers with alternating high εH = 9 and low εL =
2.25 susceptibilities as illustrated by the inset in Fig. 6. The
alternating layers have a quarter-wavelength optical thickness,
and the cavity has a half-wavelength optical thickness. The
nominal wavelength which determines the layer thickness is
that of the lowest-frequency CM at normal incidence. As the
unperturbed system, we used a dielectric slab with εs = 9 as
in Sec. IV B.

The unperturbed modes of the slab and the perturbed modes
of the MC are shown in Fig. 6(a) for pa = 5. One can see how
the nearly equidistant FP modes of the unperturbed system are
redistributed in the MC, transforming into a sharp CM in the
middle of a wide stop band and modes outside of the stop band.
The link between the peaks in the transmission in Fig. 6(b) and
the poles in Fig. 6(a) is also exemplified by the real part of the
poles giving the position of the peaks in transmission and
the imaginary part giving their linewidth. This is discussed in
Ref. [7] in terms of the GF, which is related to the transmission
via T (k) = 2ikGk(a,−a)e−2ika .

The transmission T (k) for a layered planar structure can
be calculated using the transfer-matrix method leading to the
following explicit result:

T (k) = e−i(q0+qM )a

ξ+
M

, (28)

in which ξ+
M is found from the recursive formula,

2ξ±
j+1 =

(
1 ± qj+1

qj

)
e−iqj aj ξ+

j +
(

1 ∓ qj+1

qj

)
eiqj aj ξ−

j ,

(29)
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FIG. 6. (Color online) (a) The same as in Fig. 5(a) but with
the perturbed system being the Bragg-mirror microcavity with the
dielectric profile shown in the inset. The lowest-energy cavity mode
is shown by an arrow. (b) Transmission as a function of the normal
component of the wave vector k for the perturbed (thick black
curve) and unperturbed systems (thin red curve) demonstrating the
correspondence between the RS wave numbers in panel (a) and the
peaks in the transmission.

with the starting value,

2ξ±
1 =

(
1 ± q1

q0

)
, (30)

and the normal component of the wave vector in the j th layer,

qj =
√

εj k2 + (εj − 1)p2. (31)

Here εj and aj , respectively, are the dielectric constant of the
j th layer and its width so that

∑M−1
j=1 aj = 2a. The layers j = 0

and j = M , respectively, correspond to the vacuum before and
after the MC so that q0 = qM = k and qj ≥ 0 for real εj . M

gives the total number of interfaces in the structure; in the
present case, M = 2(2P + 1).

In Fig. 7, we show the evolution of the perturbed poles with
p. We see that one of the modes is separated in the middle of a
gap and has an imaginary part well below the others. This mode
is know as the CM. The perturbed Green’s function Gk(z,z′),
which has a spectral representation equivalent to Eq. (10), and
the corresponding transmission T (k) are dominated by the
single term from the CM in this frequency region, therefore,
a sharp isolated peak is seen in the center of the stop band in

FIG. 7. (Color online) The same as in Fig. 4(b) but for the Bragg-
mirror microcavity with the dielectric profile given by the inset in
Fig. 6(a).

Fig. 6(b). Interestingly, the modes in Fig. 7 show an almost
circular behavior, indicating that the frequency of each mode
ων = c

√
�2

ν + p2 is approximately constant versus angle θ .
Indeed, in Fig. 8(a), we can see that the CM frequency ωC

has a weak dependence on θ , whereas, the corresponding wave
vector �C changes more strongly. In parallel, the linewidth
given in Fig. 8(b) shows a similar behavior both in the ω and
in the k representations, although, at θ → π/2, the imaginary
part of ωC is 1 order of magnitude smaller than that of �C .

Figures 8(a) and 8(b) demonstrate good agreement between
�C obtained using the RSE and �

(exact)
C extracted from the

linewidth in the transmission calculated via Eqs. (28)–(31).
Figure 8(c) shows the relative error |�C/�

(exact)
C − 1| for

different values of N demonstrating convergence of the RSE
for the cavity mode with N−3, the same as for the homogeneous
perturbation of the slab. The convergence behavior depends
on the distribution of the perturbation in the wave-vector
space as discussed in Refs. [7,8]. Interestingly, the RSE can
reproduce sharp resonances in the transmission profile, despite
the absence of sharp resonances in the basis.

We can also compare the results in Fig. 8(b) with an analytic
approximation for the CM linewidth,

Im ωC = −2cηext

nCηC

(ηL/ηH )2P

LC cos(θC) + λC

2
ηLηH

ηH −ηL

1
ηC

, (32)

which we have derived by generalizing the approximation for
normal incidence of light available in the literature [7,31,32].
Here nj is the refractive index of layer j, ηj = nj cos(θj ),
and θj is the angle to the normal in layer j , given by
nj sin(θj ) = next sin(θ ). The layers j used are as follows:
the external region (ext), which is vacuum in our case, the
high-index (H ) layer, the low-index (L) layer of the Bragg
mirror, and the cavity layer (C). The cavity wavelength is
given by λC = 2LC cos(θC). Equation (32) is exact in the limit
P → ∞ for a structure with Bragg-mirror layer widths strictly

053832-7



ARMITAGE, DOOST, LANGBEIN, AND MULJAROV PHYSICAL REVIEW A 89, 053832 (2014)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
10-8

10-6

10-4

10-2 N =

2000

1000
500
250

R
el

at
iv

e 
er

ro
r

Angle θ  (rad)

(c)
125

10-4

10-3

10-5

10-4

10-3 Exact κC

 RSE κC (N = 2000)

- I
m

 κ
C
a

 Exact ωC

 analytic ωC

R
e

κ C
a

-I
m

ω
C
a/

c

(b)

0

2

4

6

8

10

0

2

4

6

8

10

R
e

ω
C
a/

c

 Exact κC

 RSE κC  (N = 2000)
(a)

 Exact ωC

FIG. 8. (Color online) (a) Real and (b) imaginary parts of the
cavity mode frequency ωC (left axes) and the normal component of the
wave vector �C (right axes) calculated using the RSE (blue crosses)
for N = 2000, the transfer-matrix method (red circles and open
squares), and the analytic approximation Eq. (32) for the linewidth
� = −Im ωC (green open circles). (c) Relative error of �C determined
by the RSE for different basis sizes N as given. All data are shown as
a function of the angle of incidence θ , and all symbols are connected
by lines as a guide to the eye.

equal to a quarter-wavelength and the cavity layer width equal
to a half-wavelength optical thickness. This condition depends
on the incident angle and, in our fixed structure, is fulfilled for
normal incidence only. Nevertheless, Eq. (32) reproduces the
exact result reasonably well over the whole angle range as
shown in Fig. 8(b).

V. CONCLUSION

We have generalized the resonant-state expansion to planar
optical systems with inclined geometry. The method is based
on the spectral representation of the Green’s function of
Maxwell’s wave equation and expansion of the optical modes
of a perturbed system into a complete set of resonant states of a
simple dielectric slab. In inclined geometry, the spectrum of a
planar system contains a continuum of resonances originating
from a cut of the Green’s function, which we have eliminated
by mapping the frequency into the normal wave vector. The
optical modes and spectra of a perturbed planar system are
then calculated by solving a linear matrix eigenvalue problem
containing matrix elements of the perturbation in the basis of
discrete resonant states only. We have verified the method
on full-width homogeneous and Bragg-mirror microcavity
perturbations and have compared results with obtained analytic
solutions, demonstrating fast convergence of the method
towards the exact result.

We expect that the method of eliminating the cut presented
here will be suited to treat planar photonic crystals and cavities.
We have recently demonstrated application of the RSE to two-
dimensional open optical systems at normal incidence. The
present method will also enable extending this treatment to
inclined geometry and will provide an efficient algorithm for
calculating the optical modes in fibers and waveguides, such
as photonic crystal fibers with complex structures.
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