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Abstract
During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar

cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast

cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated

in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor

virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5

levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in pri-

mary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived

suppressor cells, a group of immature neutrophils recently identified as mediators of vascu-

logenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of

these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis

and metastasis. Expression signatures in luminal A breast cancers indicated that increased

myeloid cell invasion and inflammation were correlated with ELF5 expression, and

increased ELF5 immunohistochemical staining predicted much shorter metastasis–free

and overall survival of luminal A patients, defining a group who experienced unexpectedly

early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased

ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been

previously implicated in the development of antiestrogen resistance, this finding implicates
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ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in

luminal A breast cancer.

Author Summary

The transcription factor Elf5 defines hormone-insensitive and endocrine-therapy–resis-
tant breast cancer. In this study, we have discovered that ELF5 drives the spread of tumor
cells to the lungs. We demonstrate that the underlying mechanism for this metastatic
spread is via recruitment of the innate immune system. Interestingly, this effect is able to
overcome the other tumor-suppressive effects of ELF5 on cancer cells, such as reduced
proliferation, motility, and invasion. This important finding challenges the more conven-
tional view that the most potent determinant of metastatic activity lies within the cancer
cell. We clearly demonstrate that the innate immune system strongly influences the meta-
static activity of cancer cells despite their cell-intrinsic spread potential. Our previous
work demonstrated that in luminal breast cancer, ELF5 is a key determinant of antiestro-
gen therapy resistance. Here, we show that the metastatic mechanism driven by ELF5 is
most important in luminal breast cancer patients, in whom higher ELF5 expression is
associated with low presence of cytotoxic T lymphocytes, an immune cell population
responsible for tumor rejection. Thus, we now see that ELF5 may be behind the two most
important processes that cause luminal breast cancers to progress towards the lethal phe-
notype; resistance to antiestrogen therapy and the development of metastatic activity. This
understanding could pave the way for new therapeutic strategies to be devised and new
predictive tests to be developed.

Introduction
Breast cancer is a heterogeneous disease in which subtypes predicting differential clinical out-
come are recognized based on shared patterns of gene expression and mutation, indicating a
shared path to cancer [1]. The most striking subtype distinction in breast cancer is provided by
expression of ESR1, the estrogen receptor (ER). This divides breast cancer into two very different
diseases, recognizable by more than their response to hormones and antiestrogen therapies. For
example, the risk of recurrence remains constant for more than 20 y for ER+ disease, but drops
dramatically after 5 y for ER- disease [2,3]. ER+ cancers are also more insensitive to chemother-
apy than those that are ER- [4–6]. The basis for this phenotypic dichotomy probably includes
the characteristics of the cancer’s cell of origin, which for the basal ER- and luminal ER+ breast
cancer subtypes are thought to be the members of the mammary progenitor cell pool [7].

A key transcriptional determinant of cell fate decisions made by the progenitor cells is the
ETS transcription factor ELF5 [8], which is first expressed as mammary stem cells differentiate
to become progenitor cells, coincident with promoter demethylation [9]. In progenitor cells
ELF5 levels fall under hormonal control. The systemic hormones of pregnancy prompt local
mammary paracrine signals involving RANKL [10–12] to induce ELF5 [13,14], and force a pro-
genitor cell fate decision that establishes the ER- secretory cell lineage responsible for milk pro-
duction. An alternative progenitor cells fate, that of an ER+ hormone sensing cell, may result if
ELF5 levels remain in check due to the dominance of the estrogen-driven phenotype [15].

In luminal breast cancer cells, a mutual negative-regulatory loop between ER and ELF5
occurs, which is dominated by ER and so keeps ELF5 levels low [16]. Conversely, ER- basal

ELF5, Innate Immunity, and Metastasis

PLOS Biology | DOI:10.1371/journal.pbio.1002330 December 30, 2015 2 / 27

Breast Cancer Foundation and Cure Cancer
Foundation Australia. SRO is a National Breast
Cancer Foundation Fellow JMWG is a Breast Cancer
Now Fellow. URLs: National Health and Medical
Research Council: http://www.nhmrc.gov.au/; National
Breast Cancer Foundation Australia: http://www.nbcf.
org.au/; Cancer Council New South Wales (NSW):
http://www.cancercouncil.com.au/; Cancer Institute
NSW: https://www.cancerinstitute.org.au/; Banque
Nationale de Paris Paribas Australia: http://www.
bnpparibas.com.au/en/; Breast Cancer Now: http://
breastcancernow.org/. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: All authors declare no
competing interest.

Abbreviations: DMFS, distant metastasis free
survival; DOX, doxycycline; ER, estrogen receptor;
FACS, Fluorescence-Activated Cell Sorting; FC, Flow
cytometric; GSEA, Gene Set Enrichment Analysis;
H&E, haematoxylin and eosin; IF,
immunofluorescence; IHC, immunohistochemistry;
LHS, left-hand side; MDSC, myeloid-derived
suppressor cells; MMP, Matrix Metaloproteinases;
MMTV, mouse mammary tumor virus; NES,
Normalized Enrichment Score; OS, overall survival;
PyMT, Polyoma Middle T; RHS, right-hand side;
ROS, Reactive Oxygen Species; VEGF, Vascular
Endothelial Growth Factor; WT, wild type.

http://www.nhmrc.gov.au/
http://www.nbcf.org.au/
http://www.nbcf.org.au/
http://www.cancercouncil.com.au/
https://www.cancerinstitute.org.au/
http://www.bnpparibas.com.au/en/
http://www.bnpparibas.com.au/en/
http://breastcancernow.org/
http://breastcancernow.org/


breast cancers are characterized by high ELF5 levels, while the stem-cell–like claudin-low sub-
group does not express ELF5 [16]. Knockdown of ELF5 levels in luminal breast cancer cells has
a small effect on proliferation, but a much greater effect is seen in ER- basal cell lines [16].
Importantly, ELF5 levels rise when MCF7 luminal breast cancer cells acquire antiestrogen
resistance, and resistant cells become dependent on ELF5 for their proliferation [16]. Thus,
increased ELF5 levels provide an escape pathway from inhibition of proliferation by antiestro-
gen therapy, facilitating disease progression. Whether ELF5 is involved in other key aspects of
disease progression, such as metastasis, is unknown.

Like primary tumor formation, the acquisition of the metastatic phenotype involves events
that alter both intrinsic cell behavior and the extrinsic responses of the host environment. An
example of an intrinsic event is the gain of phenotypic plasticity, which regulates the acquisi-
tion of invasive and motile characteristics to cancer cells [17]. ELF5 influences phenotypic plas-
ticity by driving the expression of epithelial characteristics, as shown by the fact that knockout
of Elf5 in mice, or knockdown of breast cancer cells, caused the loss of epithelial patterns of
gene expression, while forced Elf5 expression caused their gain [16,18].

An example of an extrinsic event is the interaction of the tumor with the host immune sys-
tem. For example, in the mouse mammary tumor virus–PolyomaMiddle T (MMTV-PyMT)
model of breast cancer, knockout of CSF-1 depleted macrophages and delayed the development
of lung metastases, while over expression caused the migration of macrophages into the tumor
and accelerated metastasis [19,20]. Another important innate immune cell subset active in
metastasis of mammary and breast cancer are myeloid-derived suppressor cells (MDSC) [21].
Their circulating numbers are increased by the presence of a tumor [22,23]. They invade pri-
mary tumors, where they promote angiogenesis, via Matrix Metaloproteinases (MMP) secretion
and Vascular Endothelial Growth Factor (VEGF) production [24]. These cells inhibit and kill
natural killer cells [25] and T-cytotoxic lymphocytes [26], while promoting the proliferation of
the T-regulatory cell population and inhibiting dendritic cell maturation; all mechanisms that
allow tumors to evade immune control [27]. In some contexts MDSC can also promote type II
macrophage development and macrophage-assisted metastasis. In the MMTV-PyMTmodel of
mammary metastasis, increased TGF beta signaling caused their recruitment to primary tumors.
Depletion of their numbers reduced the number of lung metastases while tumor cell co-inocula-
tion with MDSC increased the number of lung metastases [28,29].

We have used our inducible mouse model of mammary-specific ELF5 expression, in the
context of luminal mammary tumors induced by PyMT expression, to investigate the roles
played by ELF5 during mammary carcinogenesis and progression to metastatic disease.

Results

Elf5-Inducible Model of Mammary Carcinogenesis
To investigate the effects of Elf5 expression in breast cancer progression, we crossed our mam-
mary epithelial specific ELF5-inducible transgenic mouse [8] with the MMTV-PyMT mouse
model of luminal mammary cancer [30–32]. Triple-transgenic animals were created carrying
one copy of each of the alleles (S1A Fig) on an inbred FVB/N genetic background. Time course
experiments showed that after 7 d of Doxycycline (DOX) in the feed the ELF5 protein was
detectable by western blot in established mammary tumors and that expression was maintained
for at least 8 wk (S1B Fig).

Elf5 Reduces Tumor Cell Proliferation and Induces Epithelial Properties
Induction of ELF5 was measured in whole tumors by imaging EGFP fluorescence. A heteroge-
neous pattern of expression was observed (Fig 1A), which may have resulted from a chimeric
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Fig 1. Effects of forced Elf5 expression on tumor growth and cell autonomous pro-tumorigenic traits. Panel A, PyMTmammary tumors showing
heterogeneous expression of ELF5 visualized by EGFP expression. Panel B, percent primary tumor burden for each experimental group showing
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expression pattern of the rtTA transgene, a feature of older MTB mice [33]. We used Kaplan-
Meier survival plots to analyze primary tumor growth. Only mice that showed a tumor burden
of ~10% (7%–13%) of body weight at autopsy were included in the analysis (Fig 1B). Overall
survival at ~10% tumor burden showed no significant difference (Fig 1C LHS), however, forced
expression of Elf5 produced tumors that were detected earlier (Fig 1C middle), but which took
longer to then reach the ethical endpoint (Fig 1C right-hand side [RHS]). To overcome the
effects of heterogeneous ELF5 induction (Fig 1A), we performed intraductal allografts of Fluo-
rescence-Activated Cell Sorting (FACS)-sorted (Lin- and CD24+) tumor cells that were either
EGFP (ELF5) positive or negative. Purified cells were injected into the mammary ducts of
FVB/N host animals pretreated with DOX and maintained on DOX. EGFP+ transplants
resulted in longer overall survival, longer time to tumor detection and longer time to the ethical
endpoint, than transplants originated from EGFP- cells (Fig 1D). To demonstrate that EGFP/
ELF5 was not only expressed in a particular subset within the mammary epithelium, we per-
formed a similar experiment including allografts made from cells that were sorted (Lin- and
CD24+) from excised tumors not carrying the ELF5 transgene (PyMT/wild type [WT]) or cells
that were purified from tumors (PyMT/ELF5) made fluorescent by a short 7 d pulse of DOX
administration, to allow flow capture of EGFP+ cells as before, but then injected into the mam-
mary ducts of hosts either pretreated and maintained on DOX, or not ever treated with DOX
(S2A Fig). As before, EGFP+ allografts maintained on DOX produced slower growing tumors.
The two control groups (WT and EGFP+ with no DOX after transplant) produced tumors that
expanded at indistinguishable rates.

The effect of ELF5 on a variety of cell-autonomous endpoints was examined. Cell prolifera-
tion was analyzed using a BrdU pulse to label cells in S-phase and EGFP IF to detect Elf5-ex-
pressing areas. We observed that much higher rates of cell proliferation occurred in the areas
of the tumor which expressed low levels of ELF5, marked by low or no EGFP. This was
observed after 2 wk of Elf5 induction (S2B Fig) and was maintained for at least 8 wk of DOX
treatment (Fig 1E), indicating long-term functional activity of the Elf5 transgene. We used
these flow-sorted primary cells to examine other cell-autonomous aspects of ELF5 action in
tumor formation. ELF5 reduced the motility of tumor cells through a permeable membrane in
a Boyden chamber, using serum as the chemo-attractant (Fig 1F), and also reduced the ability
of these cells to invade through a layer of matrigel using the same apparatus (Fig 1G). Injection
of primary cells into the tail vein of wild-type hosts produced engraftment of WT tumor cells
in the lungs, but rarely when the cells expressed ELF5 (Fig 1H). We compared these cell popu-
lations using Affymetrix MoGene transcript expression arrays and examined the expression of
genes indicative of epithelial and mesenchymal characteristics. Long-term induction of ELF5
produced a detectable mesenchymal to epithelial transition while EGFP- cells showed no
change and resembled WT PyMT cells (Fig 1I). Together these data show that forced Elf5
expression reduced cancer cell proliferation, motility, invasion and mesenchymal characteris-
tics, corresponding with reduced primary tumor growth in the MMTV-PyMT mouse mam-
mary cancer model.

equivalence. Panel C, survival analysis of time to ethical endpoint (10% tumor burden), time to tumor detection, and time from detection to the ethical
endpoint, in animals of the indicated genotypes carrying tumors that developed in situ. Panel D, survival analysis, as above, in animals carrying tumors that
developed from an intraductal transplant of EGFP+ tumor cells derived from animals treated long term with DOX. Log-rank p-values are shown for +/- DOX
comparison. N.S.; not significant. Panel E, representative image of cell proliferation measured by BrdU incorporation (red cells) in EGFP high (bright green)
compared to EGFP low/no areas (dark green) of primary tumors, quantified by counting cells in random fields (bar chart). Panels F and G, Boyden chamber
assays of motility and invasion through matrigel of EGFP high cells (PyMT ELF5) compared to wild-type PyMT cells separated by flow sorting. Panel H, lung
colonies per field that developed from EGFP high or wild-type cells injected through the tail vein. Panel I, changes in gene expression of a set of genes
involved in epithelial and mesenchymal characteristics. Significant increase in expression in red (UP), decrease in blue (DN), and nonsignificant changes in
grey. Labels are EGFP- (G-), EGFP+ (G+) and WT (W). Raw data for panels E, F, G, and H can be found in S1 Data.

doi:10.1371/journal.pbio.1002330.g001
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Elf5 Produces Hemorrhage, Leukocyte Infiltration, and Angiogenesis in
MMTV-PyMT Primary Tumors
Induction of ELF5 caused wide-spread tumor hemorrhage. This was apparent as small and dis-
crete areas of hemorrhage after 2 wk of induction that rapidly developed to affect the entire
tumor (Fig 2A). Haematoxylin and eosin (H&E) histology showed pools of erythrocytes within
the affected area of the tumor and macrophages exhibiting hemosiderin (Fig 2B). Infiltrating
CD45+ leukocytes were found associated as clusters or along basement membrane planes
between lobular structures (Fig 2C). Quantification using flow cytometry (FC), revealed a
6-fold increase in Ter119+ tumor erythrocytes (Fig 2B RHS) and 2-fold increase in CD45+ leu-
kocytes (Fig 2C RHS). Immunohistochemical staining for endothelium using antibodies recog-
nizing CD31 revealed a higher vascular density with finer and more branched vessels in
response to Elf5 (Fig 2D). Flow cytometry showed a 1.5-fold increase in CD31+ endothelial cell
content of tumors. Quantification of endothelial area using CD31 immunofluorescence (IF)
confirmed a statistically significant increase in the vasculature in response to ELF5 (Fig 2E).

We used in vivo real-time intra-vital microscopy to examine tumor vasculature reorganiza-
tion and increased blood vessel permeability. Intravenous injection of blood tracer quantum
dots revealed their accumulation in the interstitial space of PyMT/ELF5 mice treated with
DOX for 8 wk (Fig 3A), but not in control animals. Live time course imaging at the times indi-
cated in Fig 3A showed that quantum dots accumulated in the interstitial space within minutes
of injection and reached a steady state after 1 h. Quantification showed that accumulation of
quantum dots in the spaces beyond 5 um from the center of major vessels was mostly complete
within 30 min (Fig 3B). Blood vessel permeability was found to be very consistent between
individual mice of the same genotype and the increased permeability of ELF5high tumors was
highly statistically significant (Fig 3C).

The ability of Elf5 to induce an angiogenic response in the PyMT tumors was analyzed using
an independent experimental system. Two independent cell lines established from explanted
PyMT tumors were stably infected with the pHUSH construct encoding a DOX inducible Elf5
(V5 tagged) expression cassette [16]. PyMT-ELF5-V5 cells robustly expressed ELF5-V5 upon
DOX exposure (Fig 3D). PyMT-ELF5-V5 cells were maintained in culture with and without
DOX for 2 wk, harvested, re-suspended in matrigel and placed subcutaneously in the flank of
congenic FVB/n recipients. Hosts on DOX showed increased recruitment of vasculature around
the implantation site (Fig 3E). Flow cytometric analysis of the cells captured within the matrigel
revealed greater infiltration of CD31+ cells from DOX treated hosts (Fig 3F).

Overall these data demonstrate that ELF5 exerts a potent angiogenic force that produces an
aberrant leaky vasculature.

Forced Elf5 Expression Induces Metastatic Ability of PyMT Mammary
Tumors
We examined the effect of the induction of ELF5 on the metastatic behavior of the PyMT
model. In control animals, constitutive PyMT expression produced no visible lung metastatic
nodules by the time the primary tumors reached the ethical endpoint of 10% body weight (Fig
4A), but small metastases within the lungs were detectable by H&E histology (Fig 4B). DOX
administration in control animals had no effect on metastasis (Fig 4C and 4D). Induction of
ELF5 from 6 wk of age resulted in a dramatic increase in metastasis to the lungs, now visible as
numerous nodules on the surface of the lung at the ethical endpoint (Fig 4E) and large and
numerous metastases within the lungs by H&E histology (Fig 4F). Induction of ELF5 for 2 wk
once tumors were palpable also increased the size and number of detectable lung metastases
(Fig 4G and 4H) but with more variable penetrance between animals compared with longer
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Fig 2. ELF5 produces hemorrhagic mammary tumors and increased tumor vasculature. Panel A,
appearance of PyMT-driven tumors in WTmice or those experiencing long-term (8 wk) forced expression of
Elf5. Panels B–D, increased presence of erythrocytes (H&E), leukocytes (black arrows), and endothelial
cells (white arrows), respectively (immunohistochemistry [IHC]), driven by ELF5, (scale bars 100μm). Flow
cytometric (FC) quantification of these effects is shown in the right-hand side (RHS) panels. Panel E,
measurement by immunofluorescence (IF) of CD31+ endothelium area (blue) in relation to the total cell area
stained by DAPI (yellow). ImageJ quantification of random fields is shown in the RHS panel.

doi:10.1371/journal.pbio.1002330.g002
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Fig 3. ELF5 drives angiogenesis and the generation of an intra-tumor leaky vasculature. Panel A.
Intravital real-time microscopy of blood tracer quantum dots (red) injected into the vasculature of mice of the
indicated genotypes. LHS panels, quantum dots visualized together with EGFP (green) marking Elf5
expression. RHS panels, imaging of quantum dots (red) in the tumors 30, 60, and 90 min after injection.
Panel B quantification of quantum dots in relation to the distance from the center of multiple blood vessels in
ELF5 animals (red hues) or control animals (blue hues) at the times indicated. Raw data can be found at S2
Data. Panel C, statistical analysis of the vascular leakiness revealed by imaging of quantum dots in four and
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three mice of each genotype, respectively. Panel D, induction of ELF5 protein in a PyMT cell line in response
to 48 h DOX treatment transduced with the pHUSH DOX-inducible expression vector (PyMT-pHUSH-Elf5) or
a pHUSH empty vector. Panel E, area occupied by a matrigel plug (indicated by dashes) containing long-
term DOX exposed PyMT-pHUSH-Elf5 cells. Panel F, endothelial content of the matrigel plugs removed from
mice measured by flow cytometry (FC).

doi:10.1371/journal.pbio.1002330.g003

Fig 4. ELF5 expression in the tumor epithelium increases metastases to the lungs. Panel A, appearance of lungs from a control PyMT animal following
long term (8 wk) DOX treatment. Panel B, H&E histology of lungs in Panel A. Panels C and D, examples of H&E histology of lungs from control PyMTmice
receiving short term (2 wk) DOX treatment. Panel E, appearance of lungs following long term ELF5 expression. Panel F, H&E histology of the lungs in Panel
E. Panel G and H, H&E histology of lungs frommice receiving short term induction of ELF5. Panel I, visualization of EGFP of the lungs in Panel E. Panel J,
example of IHC staining for ELF5 in a PyMT/ELF5 lung metastasis. Panel K, relationship between the size of an individual lung lesion and the IHC score for
ELF5 level (combining intensity and percent positivity). Panel L and M, quantification of the number of metastases in the lungs of the mice with the indicated
genotypes after long or short term DOX exposure respectively. Panel N, metastatic behavior of the indicated genotypes expressed as an area. Panel O,
PyMT expression measured by qPCR in the blood of mice of the indicated genotypes. Panel P, comparison to the number of metastases driven by
pregnancy. Labels are pregnancy (preg.) and nulliparous (nullip.). Raw data for panels K, L, M, N, O, and P can be found at S3 Data.

doi:10.1371/journal.pbio.1002330.g004
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DOX treatment. Most of these metastases expressed ELF5, observed by visualization of EGFP
(Fig 4I) and by ELF5 IHC (Fig 4J). Quantification showed a positive correlation between the
size of the metastatic lesion and the level of ELF5 protein (Fig 4K). Unlike the primary tumors
the metastases showed no regions of hemorrhage. Quantification of H&E stained sections
showed statistically significant increases in the number of lung metastases (Fig 4L and 4M).
Measurement of metastatic area produced similar results (Fig 4N). Induction of ELF5 greatly
increased the amount of PyMT-mRNA present in blood (Fig 4O), suggesting increased numbers
of circulating tumor cells. Elf5 is a master regulator of the development and remodeling of the
mammary epithelium during pregnancy. During this period Elf5 is intensively expressed. We
found that the metastasis-promoting effect of Elf5 was comparable to that produced by preg-
nancy in this model (Fig 4P).

Transcriptional Activity of ELF5 in Cancer Cells Drives Inflammation in
PyMT-Tumors
We purified Lin- CD24+ EGFP+ mammary epithelial cancer cells from the primary tumors
and lung metastases of DOX treated PyMT/ELF5 mice, and Lin- CD24+ mammary epithelial
cancer cells from the primary tumors of DOX treated PyMT/WT mice, and examined the dif-
ferential patterns of gene expression using Affymetrix arrays analyzed by LIMMA. Functional
gene networks were identified by Gene Set Enrichment Analysis (GSEA) and were visualized
using the Enrichment Map plugin for Cytoscape software (Fig 5A) (for a PDF version that can
be zoomed in on, see S3 Fig). EGFP+ cells were compared to WT cells from primary cancers to
discover functions altered by ELF5 induction, shown by the inner node color, while the outer
node color shows how these functions changed in EGFP+ primary compared to EGFP+ lung
metastasis. Functions related to cell cycle control, DNA repair, transcription, and translation
were suppressed by ELF5 during primary carcinogenesis and remained similarly suppressed in
the metastases. Aspects of kinase-based cell signaling were increased by ELF5 during primary
carcinogenesis but were then generally suppressed following metastases, although GPCR-
mediated signaling increased during carcinogenesis and increased again following metastasis.
These results are consistent with Elf5 action in human breast cancer cell lines MCF7 and T47D
[16]. Strikingly, we identified functional clusters related to an inflammatory response that were
activated in the ELF5-driven primary tumors, but reversed in the metastases. To investigate
this further, we extended the GSEA to include molecular signatures of immunologic origin.
Guided by an automated clustering approach, we identified gene-sets related to HGF and IL4,
inflammation, immune system and interferon responses, and activated monocytes, which were
all enriched in the primary tumors in response to ELF5 and suppressed in the metastases (Fig
5B). Fig 5C shows a heat map of the Normalized Enrichment Score (NES) for each individual
gene-set included in the defined functional clusters (S1 Table).

We identified patients from the TCGA breast cancer cohort that were classified as having
either a luminal A or luminal B PAM50 molecular subtype [34]. Each luminal subtype was
stratified on ELF5 expression levels and ranked gene lists of differential expression were gener-
ated using LIMMA. These ranked lists were used as the input for GSEA, to allow comparison
of the transcriptional response correlated with increased ELF5 expression in human luminal
cancers. We found a positive correlation in luminal A tumors, whereas a negative correlation
was found in luminal B patients (S4A and S4B Fig). Higher ELF5 expression in luminal A, but
not B breast cancers, was broadly associated with the same five functional networks identified
in the PyMT/Elf5 model: HGF and IL4, invasive phenotype, monocytes, immune system
involvement, inflammation and the interferon response (S4C and S4D Fig). These observations
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Fig 5. Patterns of gene expression driven by ELF5 in primary tumors, and comparison to subsequent changes in gene expression following
metastasis. Panel A, Cytoscape Enrichment Map visualization of a gene set enrichment analysis (GSEA) of Affymetrix microarray data comparing EGFP
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suggest that ELF5 expression produces a more similar response in human luminal A breast
cancer to that observed in the ELF5-driven mouse PyMT model.

Taken together, these findings confirm our observations made in human breast cancer cells
regarding the function of ELF5, and indicate that, in vivo, these effects are coupled with the
immune system, both in the PyMT model and in luminal A human breast cancer.

ELF5 Drives Metastasis to the Lung through a Mechanism Involving
Granulocytic MDSC
We sought to characterize the ELF5-driven inflammatory phenotype and its effect in metasta-
sis. There is an extensive and persuasive literature regarding the pro-angiogenic and -meta-
static roles of innate immune cells in the PyMT model. New drugs targeting the immune
system are currently revolutionizing cancer treatment. We examined the recruitment and acti-
vation of tumor immune cell infiltrates in response to ELF5 using flow cytometry. We mea-
sured myeloid (Fig 6A) and lymphoid (Fig 6B) lineages as a percentage of the remaining total
cells, or as a proportion of total CD45+ hematopoietic cells. S5 Fig shows the gating strategy
and cell surface markers used to produce this analysis. Among the myeloid populations,
MDSCs (defined as Gr-1+CD11b+) showed an increased proportion of either total cells or
hematopoietic cells, however no significant changes were observed in the number of the other
myeloid populations analyzed (Fig 6A). T- and B-cell lymphoid lineages increased as a propor-
tion of total cells, indicative of increased inflammation (Fig 6B). Proportional with the total leu-
kocyte population, B-cell increase was 1.5-fold higher in ELF5 tumors. Within the leukocyte T
CD3+ population, T-CD8+ cell number was significantly decreased (2-fold) but no change was
observed in the T-CD4+ population, increasing the T-CD4 to -CD8 cell ratio consistent with a
MDSC-driven pro-tumorigenic immune suppressive microenvironment.

MDSC (Gr1+) can be subdivided in the granulocytic and the monocytic subset according to
their expression of the antigen molecules Ly6G and Ly6C, (Mo-MDSC (CD11b+-
Ly6G-Ly6Chigh) and G-MDSC (CD11b+Ly6G+Ly6Clow) [35,36]. Flow cytometric analysis of
these subsets in PyMT tumors determined that the main population was the Ly6G+ granulo-
cytic subset (Fig 6C). Reactive Oxygen Species (ROS) play a major role in MDSC-mediated
immune suppression though the impairment of T cell activation [26]. ROS production by
MDSC was significantly increased in both infiltrated granulocytic and monocytic subsets in
response to Elf5, consistent with a tumor permissive environment (Fig 6D). A large proportion
of the infiltrated Ly6G+ population presented ROS production and this number was further
increased to nearly 100% in response of ELF5. The intensity of ROS production was also
increased in the MDSC populations in response to ELF5 (Fig 6D). Thus Elf5 increased the
number and suppressive ability of tumor-infiltrated MDSC.

To determine if the increase in MDSC could account for the increase in metastases caused
by ELF5, we used the specific Ly6G antibody to deplete the granulocytic MDSC population
during induction of ELF5 in PyMT tumors. Two weeks of treatment with the rat Ly6G anti-
body resulted in a consistent and efficient depletion, no granulocytic MDSCs were observed in
the blood of Ly6G-treated animals (Fig 7A), and a 98% depletion of tumor-infiltrated MDSC
was observed (Fig 7B). As a result, only 1.5% of infiltrated Ly6G+ granulocytic MDSC cells

high mammary cancer cells with WT cells from primary tumors (inner node color). EGFP high cell gene expression is then compared to that from EGFP high
cells from lung metastasis (outer node color). Labels summarize the functions of gene set clusters indicated by grey shading. Red node color indicates
positive gene set enrichment and augmentation of function. Blue node color indicates negative enrichment and the suppression of function. Panel B, violin
plots comparing GSEA normalized enrichment scores for inflammatory functions in the tumors and their metastases. Panel C, heatmap showing normalized
enrichment score (NES) score value for each individual gene set included in the defined functional clusters. Gene-set names and statistics can be found in
S1 Table.

doi:10.1371/journal.pbio.1002330.g005
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were identified in both PyMT/WT and PyMT/ELF5 tumors in the CD11b+ compartment (Fig
7C). Ly6G depletion did not significantly affect the numbers of other infiltrated immune popu-
lations in PyMT tumors (S6 Fig). An analysis of the ROS production in the tumor infiltrated
CD11b+ myeloid population showed a reduction of total ROS producing cells, consistent with
a Ly6G granulocytic cell depletion and a less immune-permissive environment (Fig 7D).

Fig 6. Immune cell subsets within tumors and the effect of depletion of MDSCs on ELF5-driven lungmetastases. Panels A and B, tumor content of
myeloid or lymphoid lineage immune cell subsets expressed as either a proportion of total tumor cells (after erythrocyte lysis) or as a proportion of CD45
+ hematopoietic cells. S5 Fig shows the gating strategy. Panel C, relative proportions of Ly6G and Ly6CMDSC in mice of the indicated genotypes (Ly6G/
Ly6C ratio between genotypes are nonsignificant Student’s t test p = 0,886). Panel D, the effect of ELF5 on the proportion of reactive oxygen species (ROS)
positive Ly6C or Ly6G cells (LHS panels) or on ROS cellular intensity measured as geometric mean (RHS panels). Nonsignificant p-values are not shown.

doi:10.1371/journal.pbio.1002330.g006
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MDSC depletion reduced the number of lung metastases in both WT and ELF5 tumors (Fig
7E). We also observed that the antibody treatment reduced the number of red blood cells
within the primary tumor (Fig 7F), establishing MDSCs as a key part of the mechanism respon-
sible for both induction of metastases and the hemorrhagic tumor phenotype by ELF5.

ELF5 Is a Predictive Marker of Poor Prognosis in Breast Cancer
To study the relevance of ELF5 in metastasis in luminal breast cancer patients, we analyzed a
cohort of ER+ HER2- tumors staining for ELF5 protein levels using IHC (Figs 8 and S7). This
cohort has more than 15 y of clinical follow-up [37]. All patients were treated with the anties-
trogen Tamoxifen and none received chemotherapy. We observed nuclear and cytoplasmic
patterns of ELF5 staining. Across all ER+ cancers, higher nuclear ELF5 staining predicted bet-
ter overall survival (OS) after 10 and 15 y but not after 5 y (Fig 8A LHS). This prediction was
relatively weak as the hazard ratio was 0.5 and the p-value 0.03. In contrast, higher cytoplasmic
ELF5 staining predicted worse survival, and at 5 y this prediction was strong, with the hazard
ratio greater than 3 at a p-value of 0.005. These same effects were evident for distant metastasis

Fig 7. Effect of depletion of MDSC on ELF5-driven lungmetastasis and vascular permeability. Panel A, representative plot of the depletion of Ly6G
+ cells by treatment for 2 wk with the Ly6G antibody. Panel B, Time course for the depletion of neutrophils by treatment with the Ly6G antibody. Panel C,
Effects of Ly6G antibody treatment on tumor infiltrated MDSC in mice of the indicated genotypes. Panel D, effect of Ly6G treatment on total ROS production
in the CD11b+myeloid population measured by FACS. Panel E, effect of Ly6G treatment on lung metastases. Panel F, effects of treatment with the Ly6G
antibody on tumor vasculature leakiness. RBC: red blood cells. Raw data for panels B and C can be found at S4 Data.

doi:10.1371/journal.pbio.1002330.g007
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free survival (DMFS) where again cytoplasmic ELF5 level was a strong predictor of poor sur-
vival (Fig 8B LHS).

We used the St. Gallen definition of Ki67% to split these ER+ cancers into luminal A and B
tumors [38]. We found that cytoplasmic ELF5 staining in luminal A patients predicted poorer

Fig 8. Elf5 immunohistochemistry as a predictor of luminal breast cancer survival. ELF5 was measured by immunohistochemistry in the cytoplasm
and nucleus of tumors in a subset of ER+ samples from the Nottingham breast cancer series. Panel A, overall survival (OS) and Panel B distant metastasis
free survival (DMFS). Hazards ratio (HR) and Log Rank p-value (p) are given for 5, 10, and 15 y of follow-up. Tumors are split into high ELF5 expression
(green) and low Elf5 expression (blue) by XTile and p-values are black where >0.1, red where�0.05, and pink where 0.05–0.1.

doi:10.1371/journal.pbio.1002330.g008
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overall survival with a large hazards ratio, especially at 5 y when it was 11 (Fig 8A). A similar
effect was evident for distant metastasis free survival and a large hazard ratio was again evident
at 5 y (Fig 8B). Nuclear staining in luminal A patients weakly correlated with poor prognosis in
the 10 y follow up overall survival but this prediction was not maintained after 15 y follow up.
In contrast, ELF5 levels either cytoplasmic or nuclear, had no predictive value for survival in
the luminal B subtype. These results show that ELF5 predicts poorer survival and metastasis in
the Luminal A subgroup and that it is a marker of early progression in this subtype.

An interesting observation, given that ELF5 is a nuclear transcription factor, is that cyto-
plasmic rather than nuclear staining provides this prediction in luminal A breast cancer
patients. Although abrogation of ELF5 transcriptional action by restriction to the cytoplasm is
suggested by this finding, alternative explanations exist. For example, the antibody epitope
may be obscured when ELF5 is bound within a specific transcriptional complex so we caution
against over interpretation of the nuclear/cytoplasmic dichotomy until it is better understood.

We studied the immunogenicity of ER+ luminal breast cancer tumors in relation to Elf5. In
the absence of a reliable immunohistochemical technique that detects MDSC we instead corre-
lated ELF5 IHC protein levels from this cohort with staining for lymphocytes. We used CD3
and the cytotoxic specific T CD8 maker, the T cell subset targeted by MDSC that was identified
in the PyMT/ELF5 model (S2 Table). In this cohort of patients, it has been demonstrated that
tumor infiltrated T CD8+ cells correlate with better patient prognosis, suggesting that presence
of this cell type is associated with immune tumor rejection [39]. The presence of lymphocytes
was analyzed according to their location, intratumoral (within the tumor nests), in the adjacent
stroma and in distal stroma. Cytoplasmic ELF5 staining significantly correlated with increased
intratumoral T CD3 cell numbers in the luminal ER+ cohort (Spearman’s rank p = 0.11, rs =
0.156), with no correlations seen with T cells adjacent or distant to the tumor. Despite this
increase in total T lymphocytes in ELF5-high expressing tumors, the number of intratumoral
T-CD8+ lymphocytes were significantly underrepresented (Spearman’s rank p = 0.04, rs =
-0.203). Categorical Mann-Whitney analysis (cut off CD3� 2 cells; CD8> 1 cell, based on X-
tile analysis) confirmed the direct association (p = 0.075) between cytoplasmic ELF5 expression
and intratumoral CD3 infiltration and the negative correlation with the T-CD8+ subset
(p = 0.046). When the ER+ cohort was split into luminal A and B subtypes these effects were
maintained, although the statistical power of the analysis was reduced due to the sample num-
ber (S2 Table). Interestingly, a strong inverse association of nuclear ELF5 staining and T-CD8
+ cells was identified in the ER+ cohort and in the Luminal B subgroup.

These data indicate that luminal ER+ tumors with high Elf5 levels show higher intratumoral
T lymphocytes, however the cytotoxic T-CD8+ population is selectively reduced. Our results in
human breast cancer are consistent with our observations in mice suggesting the implication of
ELF5 in a tumor permissive inflammatory environment. These data establish a strong case for
further investigation of the role played by Elf5 in immunosupression and its relationship with
survival in luminal A breast cancer.

B-cell lymphocytes analysis using the B20 marker in the Nottingham cohort revealed a high
number of samples with absent staining [40]. Fifty-six percent (73/130) of the cases in this
study were completely negative for B20 and 80% (105/130) lay below the statistical x-tile cutoff
(B20> 5 cells). In the positive cases, B-cells infiltrated in the tumor nests were rare, with the
majority of B-cells localized at the distal stroma. No correlation with ELF5 expression was
found using intratumoral or adjacent stromal B-cell numbers. Spearman and MannWhitney
analysis on total and distal B-cell number revealed inverse associations between ELF5 expres-
sion and the CD20 marker as indicated in S3 Table. B-cell number is directly associated with
breast cancer specific survival and longer disease free interval in ER+ patients treated with
anti-estrogen therapy [40]. In the MMTV-PyMT model, ELF5 contributes to tumor
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progression; this discrepancy might be as a result of the poor modeling of the distal stroma in
the PyMT tumor FACS analysis, where the majority of the tissue analyzed corresponds to
intratumoral and adjacent stroma. Taken together, these results indicate that B-cell analysis
does not model ELF5 action in luminal breast cancer.

Discussion
We show that induction of ELF5 in the PyMT model leads to an increase in lung metastasis
because ELF5 recruits MDSCs to the tumor, which promotes leaky vasculature and causes an
increase in lung metastasis. Interestingly this effect swamps the cell autonomous effects of
ELF5, which predict a tumor suppressor action. Analysis of human breast tumor data suggests
that these processes also operate in ER+ breast cancer, and analysis of survival data shows this
is prognostic in Luminal A cancers, with ELF5 expression in the cytoplasm clearly identifying a
group of luminal A patients with early disease progression. High cytoplasmic ELF5 expression
in luminal patients also correlated with a pro-tumor inflammation characterized by decreased
cytotoxic T-CD8 lymphocytes.

ELF5 has been proposed by Chakrabati and colleagues as a metastasis suppressor gene for all
breast cancers [18], but our studies demonstrate that the luminal A subgroup shows the oppo-
site response. Interestingly, we show that ELF5 produces a number of cell-autonomous pheno-
typic changes that are consistent with a tumor-suppressor role, such as reduced proliferation,
invasion, motility, epithelialization, and colonization in a lung-seeding assay, some features of
which have been previously reported by us [16] and by Chakrabati and colleagues [18] using dif-
ferent model systems. Our results point to the dominance of the immune system over cell
autonomous characteristics in regulating the metastatic behavior of luminal A primary tumors,
and so to the importance of pursuing immunoregulatory therapies for luminal A breast cancer.

Given the previously described role of ELF5 in the progression to antiestrogen insensitivity
in luminal breast cancer, where ELF5 levels rise [16], our results now show that this escape
pathway is likely to lead to metastasis via attraction of the innate immune system. This may
represent a normal biological response, as macrophages and neutrophils are attracted to the
mammary gland during periods of tissue remodeling, especially during weaning when the
mammary alveoli are largely resorbed, returning the gland to a series of branched ducts. We
observed enrichment of involution and lactation signatures in our transcriptional data in
response to ELF5 in both the mouse model and the TCGA data sets. Higher ELF5 expression
may result in the tumor being seen by the host as an involuting mammary gland, and the lumi-
nal A subgroup may possess a background phenotype which allows or best expresses this
appearance. When we treated our mice with the anti MDSC antibody Ly6G we did not
completely ablate metastasis, rather we returned metastasis to control levels. This shows other
prometastatic pathways continue to operate. One key pathway demonstrated in the PyMT
model is the role of macrophages [41], whose numbers were unaffected by ELF5 expression.

Hemorrhagic necrosis and intratumoral hemorrhage is observed in breast cancer [42],
where it generates pain due to mastodynia in otherwise painless cancers. Short-term induction
of ELF5 in the mouse provides a good representation of this human pathology, where isolated
hemorrhagic regions are seen. Longer term induction produces a more severe effect than seen
in the clinic. The basis for hemorrhage involves the recruitment of MDSC, as shown by its
reduction following suppression of these cells with Ly6G antibody. We speculate that the ear-
lier detection of in situ ELF5 tumors is due to the immune cell infiltration, making them larger
than the WT controls, since further monitoring showed that they expanded more slowly.
Unlike the primary tumor, our data show that colonies of cells growing in the lungs have found
a supportive environment. Transcriptional signatures indicative of cellular stress are lost.
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Necrotic areas are not present and the hemorrhagic phenotype is lost. Interestingly innate
immune system recruitment also appears to be absent in the metastases.

These results indicate that ELF5 is a major determinate of the lethal phenotype in luminal A
breast cancer. Elf5 expression provides a marker that defines early disease progression in this
otherwise slow to progress subtype, and may also define a group that should benefit from
future immunomodulatory therapies.

Materials and Methods

Ethics Statement
Mice were maintained following the Australian code of practice for the care and use of animals
for scientific purposes observed by the Garvan Institute of Medical Research/St. Vincent's Hos-
pital Animal Ethics Committee (AEC), AEC#11/35 (previous) and AEC# 14/27 (current).
Euthanasia was performed by asphyxiation with carbon dioxide gas, followed by cervical dislo-
cation, in a separate area away from other animals. For all surgical procedures, animals were
anesthetized with Isoflurane at a rate of 1L/minute oxygen 5% Isoflurane for induction and 1L/
minute 2% Isoflurane for maintenance. Animals recovered from surgery at room temperature
in a box “half on/half off” over a warm heat pad to prevent hypothermia. They received analge-
sia systemically and locally. Animals were closely monitored until they had regained the ability
to right themselves, then placed individually in cages in a special purpose room. When
required, animals were checked for blood on their coats that will be removed before they wake
up from anesthesia. The next day animals are checked for general condition (e.g., alertness,
weight loss, balance, and mobility).

Experimental Animal Models
The Elf5 inducible PyMT mammary tumor transgenic model has been generated by crossing
the MMTV- Polyoma Middle T antigen (PyMT) mouse mammary tumor model [30] with the
doxocyclin (DOX) inducible Elf5 Knock In mouse line [8]. The inducible promoter induces a
bicistronic cassette codifying for the human version of Elf5 followed by EGFP using an IRES
sequence. We used the rtTA locus under the MMTV promoter to control the expression of
Elf5 in the mammary epithelial cells (MTB animals). All animals used in this study are hetero-
zygous for Elf5, MTB, and PyMT. S1A Fig shows a schematic representation of the transgenic
cassettes and genotypes used for the study. To induce the expression of the Elf5 and EGFP
mice were exposed to a diet containing 700 mg/Kg of Doxocyclin (Gordon’s Specialty Stock-
feeds). For the neutrophil depletion experiment, 100 μg of Ly6G antibody clone 1A8 (UCSF)
was injected IP twice a week for 2 wk, a pretreatment injection was performed 2–3 d before
DOX exposure. Syngenic FVB/n hosts were used for matrigel plug assays.

Cells and Constructs
Elf5 was tagged at the 30 end with V5 and incorporated into the pHUSH-ProEX vector (Genen-
tech) [43] as descried before [16]. Elf5 expression was achieved using Doxycycline (Clontech)
at 0.1 μg/ml. Luciferase/GFP [44] and pHUSH-ProEx plasmids were packed into retrovirus
using PlatinumE cells (Cell Biolabs) using FuGene6 or X-Treme transfection reagent (Roche)
following manufacturer instructions. PyMT cell lines were established in culture from enzy-
matically disaggregated PyMT tumors and double FACS-purification based on CD24 expres-
sion; and were maintained in DMEMmedium containing 10%FBS, 1% L-Glutamine, 5 ug/ml
Insulin, EGF 10 ng/ml, and 10 ng/ml cholera toxin. The line was considered to be established
in culture after ten passages.
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Flow Cytometry and Antibodies
Flow cytometry was performed using FACS Canto II or LSR II (analysis) and FACS Aria III
(analysis and sorting) from Becton Dickinson and exported to the FlowJo software (Tree Star
Inc.) for data analysis. Reactive Oxygen Species was measured using the DCFDA reagent
(Abcam). DAPI ([40,6-diamidino-2-phenylindole dihydrochloride]) (Molecular Probes) or
Propidium Iodide (Sigma) was used as death cell exclusion marker. Flow cytometry was per-
formed using the following fluorophore conjugated antibodies: CD45, CD31, Ter119 from BD
Pharmingen; CD3 (clone 17A2), F4/80 (clone BM8), Gr-1 (clone RB6-8C5), CD4 (clone
GK1.5), CD8 (clone53-6.7), CD11c (clone N418), CD11b (clone M1/70), and B220 (clone
RA3-6B2) from eBioscience; Ly6G (clone 1A8) and Ly6C (clone HK1.4) antibodies were pur-
chased from BioLegend. For neutrophil depletion experiments Ly6G antibody (clone 1A8) was
used (UCSF or Bio X Cell) and FACS performed using an anti-rat IgG secondary form BioLe-
gend. A list of the defined populations using these antibodies is listed in S4A Fig. IF for CD31
was performed using OCT embedded tissue and the BD Pharmigen antibody clone MEC13.3.

Matrigel Plug Assays
Two established PyMT cell lines were stably transduced with a DOX-inducible pHUSH vector
encoding Elf5 tagged with the V5 peptide [16]. PyMT pHUSH-Elf5-V5 cells were then exposed
to 0.1 μg of DOX every other day for 10 d or remained untreated for control. 105 long term
DOX and control PyMT pHUSH-Elf5-V5 cells were then harvested and mixed with 4C matri-
gel (1:9/vol:vol) and immediately injected subcutaneously in the flank of FVB/n recipients.
Hosts were exposed to DOX containing food 24 h prior matrigel implantation and until collec-
tion or left untreated for control cells. Ten days after implantation matrigel plugs were
extracted, cell suspensions prepared using collagenase digestion and processed for FACS
analysis.

Gene Expression Microarray Profiling Analysis
Normalization and probe set summarization was performed using the robust multichip average
[45] implemented in the Affymetrix library [46] from R [47] as part of the NormalizeAffyme-
trixSTmodule in GenePattern. Control probe-sets were removed from the arrays. Differential
gene expression was then assessed for each microarray probe set using an empirical Bayes,
moderated t-statistic implemented in Limma (Smyth, 2004) using the limmaGP tool in Gene-
Pattern. All pairwise experimental comparisons performed are described, where relevant, in
the text.

Where indicated, the analysis tools utilizing GenePattern software [48] are available at the
Garvan hosted GenePattern server http://pwbc.garvan.unsw.edu.au/gp/. Microarray data are
available from GEO: GSE58729. Detailed information about mRNA extraction, purification,
chip hybridization and processing can be also found in this link. All analysis results, additional
GSEA gene-sets, and custom analysis scripts are available on request from the authors.

The Cancer Genome Atlas Database
For the analysis of TCGA expression data, clinical and molecular annotation of samples was
obtained from the Cancer Genome Atlas (TCGA) breast cancer publication [49]. Agilent
mRNA expression microarray data (Level 3) was obtained from the TCGA data portal in Janu-
ary 2012. Missing expression values were imputed and replaced using the k-nearest neighbor
(KNN) approach, with k = 10 (using the ImputeMissingValuesKNNmodule in GenePattern).
The TCGA microarray data consisted of a total of 533 tumors. From this, we generated 2
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subsets of patients based on their PAM50 classified molecular subtype [34], 231 with a Luminal
A PAM50 sub-type and 127 with a Luminal B PAM50 subtype.

The samples in each of these luminal patient subsets, were each stratified on expression
level of ELF5, and the top 25% (ELF5hi) and bottom 25% (ELF5lo) expressing samples were
selected. For each of these ELF5 stratified groups, differential gene expression between ELF5hi

and ELF5lo patient groups was assessed, for each gene, using an empirical Bayes, moderated t-
statistic implemented in LIMMA [50] via the GP tool in GenePattern.

Gene Set Enrichment Analysis (GSEA)
For all pair-wise experimental comparisons, Gene Set Enrichment Analysis (GSEA) [51] was
run in pre-ranked mode using a ranked list of the LIMMAmoderated t-statistics. One thou-
sand gene-set permutations were performed using minimum and maximum gene-set sizes of
15 and 1,500, respectively. Gene-sets used in GSEA were extracted from version 3.1 and 4.0 of
the Broad institute’s Molecular Signatures Database (MSigDB) [52] and extended with addi-
tional curated gene-sets from literature. All GSEA analysis was performed using a combined
set of the c2, c6 (for Fig 5A), and extended with c7 gene-sets (for Fig 5B and 5C and S4 Fig)
fromMSigDB plus additional curated sets that we identified in the literature. This resulted in a
total of 5,145 gene-sets (MSigDB v3.1 c2, c6 collections plus custom sets) used in the initial,
exploratory analysis, shown in Fig 5A, and an expanded gene-set collection of 6,947 gene-sets
(MSigDB v4.0 c2, c6, c7 collections plus custom sets) used in the analysis described in Fig 5B
and 5C, and S4 Fig.

Network-based visualization and analysis of the GSEA results was carried out using the
Cytoscape [53] Enrichment Map [54] plug-in, with permissive thresholds of: FDR (Q-value) =
0.25; p-value = 0.05 and overlap coefficient cutoff = 0.5. The functional networks definitions
were based on the cytoscape pre-annotated clusters tool.

To identify functional clusters of gene-sets that were enriched in the PyMT/ELF5 tumors
and the TCGA luminal A ELF5hi tumors an automated clustering approach was used. First, an
EnrichmentMap network of the GSEA results of these two comparisons was carried out using
conservative thresholds of: FDR (Q-value) = 0.05; p-value = 0.001, and overlap coefficient cut-
off = 0.5. The “annotate clusters” feature in EnrichmentMap v2.1.0 (build 522) was then used,
with default “clusterMaker”MCL cluster parameters, to generate a list of gene-set clusters with
two or more members. Guided by these automated clusters and those identified in the explor-
atory analysis in Fig 5A, we defined five gene-set clusters of functional interest. These are listed
in S1 Table along with the associated GSEA statistics.

RNA and PCR
RNA extraction was performed using the RNeasy extraction kit (Qiagen) following manufac-
turers procedure. For blood samples, Trizol (Ambion, Life technologies) lysis was performed
before kit purification. High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems)
was used for the cDNA preparation. Quantitative PCR was performed using the LightCy-
cler480 (Roche) using SYTO9 as a dye and the 2-ΔCt method to analyze expression difference
[55]. Q-PCR PyMT in blood was detected using the following primers: Fwd: tgtgcacagcgtgta-
taatcc and Rv: tcatcgtgtagtggactgtgg; and confirmed with Fwd: taagaaggctacatgcggatgggt and
Rv: ggcacctggcatcacatttgtctt; and housekeeping gene GAPD using the following primers Fwd:
agcttgtcatcaacgggaag; and Rv: tttgatgttagtggggtctcg. Q-PCR for Elf5 was detected using Taq-
man probe Mm00468732_m1 or Hs01063022_m1 (Applied Biosystems), and housekeeping
gene GAPD, Mm99999915_g1 or Hs99999905_m1; using the 7900H Fast Real-Time PCR sys-
tem (Applied Biosystems).
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Immunohistochemistry and Immunoblot
For ELF5 and GFP immunohistochemistry, slides were blocked with protein block after anti-
gen retrieval using Dako buffers (pH 6.1 at 125°C for 2 min, or pH9 at 100C for 25 min), fol-
lowed with 0.05%Tween in PBS or 0.2% TritonX100. Primary antibodies were incubated for 1
h, ELF5 1:500 (N20, sc-9645, Santa Cruz) or GFP 1:200 (A11122, Invitrogen), then followed by
either Rabbit anti-Goat 1:100 (Invitrogen) and LSAB+ label (Dako) or Envision Rabbit 30 min
(Dako), then detection with DAB+ (Dako). For ELF5 IHC in patient samples, following block-
ing of the 4 micron paraffin-embedded sections from breast cancer TMAs for endogenous per-
oxidases, antigen retrieval was performed using pressure cook-microwaving in EDTA buffer
(pH 9) for 5 min. This was followed by 0.02% Tween in PBS blocking for 5 min. Primary anti-
bodies were incubated overnight with ELF5 antibody 1:70 in 0.1% BSA.PBS (N20 sc-9645,
Santa Cruz) at room temperature. Detection was performed using 1:1000 Rabbit anti-Goat in
0.1% BSA.PBS (Invitrogen A10537) for 20 min, followed by Envison+ system-HRP labelled
polymer anti-rabbit for 20 min (Dako 4003). DAB chromogen solution (Dako) was applied for
6 min followed by methyl green counterstaining. ELF5 nuclear and cytoplasmic staining assess-
ment was performed using H-Score analysis that encompasses both percentage positivity and
staining intensity on a 0–300 scale.

GFP and BrdU co-immunofluorescence antigen retrieval was pH 9 and 100°C for 25 min,
followed by 0.2% TritonX100 then 1:250 GFP (A11122, Invitrogen), and 1:200 BrdU (M0744,
Dako) at 4°C overnight. This was followed by 30min incubation with AlexaFluor 488-tagged
anti-rabbit antibody, AlexaFluor 555-tagged anti-mouse antibody (1:200; Invitrogen) and
ToPro (1:2000; Invitrogen).

Protein analyses by Western Blot were done as previously described [16]. Primary Antibod-
ies used were anti-β-actin (AC-15, Sigma), anti-ELF5 (N20, sc-9645, Santa Cruz) and anti-V5
(R960-25, Invitrogen).

In Vitro Invasion Assays
Boyden Chamber assays (Bencton Dickinson) were performed by plating 1x105 cells (PyMT)
in media containing 0.5% FBS, the chemotactic gradient was established by placing the insets
into full media (10%FBS) containing wells. Invading cells were visualized with the Diff Quick
Stain Kit (Lab Aids). Area measured with Image J 1.41 (Wayne Rasband, US National Institutes
of Health).

Multiphoton Imaging
Imaging was conducted on an inverted Leica SP8 confocal microscope and the excitation
source used was a Ti:Sapphire femtosecond pulsed laser (Coherent Chameleon Ultra II), oper-
ating at 80 MHz and tuned to a wavelength of 920 nm. 10 ul of blood tracer quantum dots
blood tracers (655nm Life Technologies) were injected through the tail vein of the animals.
Images were acquired with a 25x NA0.95 water objective. A dichroic filter (560 nm) was used
to separate the GFP signal from quantum dot emission, which were further selected with band
pass filters (525/50 and 617/73, respectively). Intensity was recorded with external RLD HyD
detectors. For z-stacks, images were acquired at a format of 1,080 × 1,080 and a z-step size of
2.52 μm.

Statistical Analyses
Sample comparisons have been made by unpaired Student’s t test using the GraphPad Prism
software, La Jolla California USA. All error bars showed in this paper correspond to standard

ELF5, Innate Immunity, and Metastasis

PLOS Biology | DOI:10.1371/journal.pbio.1002330 December 30, 2015 21 / 27



error (SEM) unless otherwise stated. All analysis in clinical samples were performed using the
SPSS software (SPSS Inc. Chicago USA), assessment of the correlation between IHC markers
was performed using Spearman rank order correlation and Mann-Whitney U test. Kaplan-
Meier curves and log-rank test were used for survival analyses.

Patient Samples Description
The patient cohort is a subset of the Nottingham series [37] comprising Luminal ER+ patients
treated with tamoxifen but no chemotherapy, the distinction of luminal A or luminal B subtype
was made according to the St Gallen criteria: n = 126 versus survival (74 luminal A, 52 luminal
B); n = 129 versus DMFS (76 luminal A, 53 luminal B). Optimal staining cutpoints for analysis
were selected using Xtile.

Supporting Information
S1 Data. Raw data for Fig 1, panels B, G, and H.
(XLSX)

S2 Data. Raw data for Fig 3B.
(XLSX)

S3 Data. Raw data for Fig 4, panels K to P.
(XLSX)

S4 Data. Raw data for Fig 7, panels B and C.
(XLSX)

S1 Fig. The ELF5/PyMT mouse model. Panel A, schematic representation of the inserted
transgenes. The promoter from the mouse mammary tumor virus (pMMTV) drives expression
of the reverse tetracycline transactivator (rtTA), which binds doxycycline to activate the tetra-
cycyline-on promoter (pTetOn). This drives expression of a single mRNA encoding ELF5 and
the enhanced Green Fluorescent Protein (EGFP), translated as 2 independent proteins by the
presence of an internal ribosome entry site (IRES). The Polyoma Middle T (PyMT) oncogene
is constitutively expressed from pMMTV. All alleles are integrated separately in the mouse
genome. Panel B, ELF5 levels in response to DOX administration measured by Western blot,
nsb, nonspecific band. DOX was administered either short- or long-tem as indicated.
(TIF)

S2 Fig. Effects of ELF5 in tumor growth and cell proliferation. Panel A, survival analysis of
animals carrying tumors that developed from intraductal transplantation of EGFP+ tumor
cells made fluorescent by 7 d administration of DOX, then withdrawing DOX as indicated. The
ELF5 transgenic cassette is not selective of a specific epithelial population during tumor pro-
gression showed by survival analysis. Panel B, proliferation after 7 d DOX treatment measured
by BrdU incorporation (red cells) in EGFP high (bright green) compared to EGFP low/no
areas (dark green) of primary tumors, quantified by counting cells in random fields (bar chart).
(TIF)

S3 Fig. GSEA representation of gene expression changes produced by expression of ELF5.
Figure can be viewed at a range of high magnifications, 1,600% or higher, to identify individual
gene sets and to see the composition of functional clusters.
(PDF)

S4 Fig. Functions correlated with ELF5 expression in the TCGA series of luminal breast
cancers. Differential gene expression associated with ELF5 expression in PAM50 defined
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Luminal A and B breast cancer was calculated and ranked (by LIMMAmoderated t-statistic)
and used as input for GSEA. Panel A, shows the Pearson correlation matrix between the nor-
malized enrichment scores (NES) for all gene-sets. Panel B, heatmap of the full GSEA-derived
transcriptome for Elf5 action in each luminal subtype of the TCGA series compared with the
PyMT model, where each row represents the NES of a gene-set and are sorted by PyMT/ELF5
NES. Panel B, comparison of the defined inflammatory functional networks by GSEA enrich-
ment scores in each luminal subtype of the TCGA series compared with the PyMT model.
Panel C, heatmap showing the NES for each individual gene set included in the defined func-
tional clusters. Gene-set names and statistics can be found in S1 Table.
(TIF)

S5 Fig. Gating strategy used to isolate MDSCs and other immune cell subsets from PyMT
tumors. Panel A, definition of the cell sets used in this analysis. Panel B, gating strategy. Color
coding of antibodies from panel A shows the gated populations they selected.
(TIF)

S6 Fig. Ly6G antibody treatment specifically targets granulocytic MDSC within the tumor
infiltrated immune populations. FACS analysis of immune infiltrates in tumors from PyMT/
WTmice after Ly6G antibody treatment. Panel A, shows total leukocytes; Panel B, myeloid
lineage; and Panel C T lymphocytes.
(TIF)

S7 Fig. Cytoplasmic and nuclear ELF5 staining. Panel A, correlation between cytoplasmic
and nuclear staining in the analyzed patient cohort. Panel B, prognostic value (OS, overall sur-
vival and DMFS, distal metastasis free survival) of the combined cytoplasmic and nuclear ELF5
staining. Panel C, prognostic value in the samples positive for nuclear staining only.
(TIF)

S1 Table. Gene sets corresponding to the functional clusters defined by GSEA and guided
by the automated cytoscape cluster tool.
(XLSX)

S2 Table. Correlations between ELF5 and the indicated lymphocyte marker within ER+ can-
cers from the Nottingham cohort using the indicated statistical test. Darker highlight repre-
sent stronger statistical association (p� 0.05 dark highlight; p� 0.1 light highlight) green
indicates a negative correlation and red a direct correlation.
(XLSX)

S3 Table. Correlations between ELF5 and the B20 lymphocyte marker within ER+ cancers
from the Nottingham cohort using the indicated statistical test. Darker highlight represent
stronger statistical association (p� 0.05 dark highlight; p�0.1 light highlight) green indicates a
negative correlation and red a direct correlation.
(XLSX)
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