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Abstract 

Ligand field molecular mechanics (LFMM), density functional theory (DFT) and semi-empirical 

PM7 methods are used to study the binding of two Pt(II)-L systems to an N-terminal fragment of 

the amyloid-β peptide, where L = 2,2-bipyridyl or 1,10-phenanthroline. Molecular dynamics 

simulations are used to explore the conformational freedom of the peptide using LFMM combined 

with AMBER molecular mechanics parameters. We establish a modelling protocol, allowing for 

identification and analysis of favorable platinum-binding modes and peptide conformations. 

Preferred binding modes are identified for each ligand investigated; metal coordination occurs via 

Nε in His residues for both ligands - His6ε-His13ε and His6ε-His14ε for the bipyridyl and 

phenanthroline ligands, respectively. The observed change in binding mode for the different 

ligands suggests that the binding mode of these platinum-based structures can be controlled by the 

choice of ligand. In the bipy systems, Boltzmann population at 310K is dominated by a single 

conformer, while in the phenanthroline case, three conformations make significant contributions 
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to the ensemble. The relative stability of these conformations is due to the inherent stability of 

binding platinum via Nε in addition to subtle H-bonding effects. 

Introduction 

Alzheimer’s disease (AD) is a widespread neurodegenerative condition associated with 

progressive cognitive decline in patients. AD is the most common cause of dementia in adults and 

the fourth most common cause of death in Western countries.1 The pathogenesis of AD is  

complex, involving the interplay of a range of molecular, cellular and physiological processes2; 

the causes and development of AD are not well understood, with links to both lifestyle3,4 and 

genealogy.5 Amyloid-β (Aβ) peptide was first recognized as a factor in AD in 19856 and has been 

the subject of the much research in the decades since. The well-publicized amyloid-cascade 

hypothesis remains popular, if controversial, and suggests that individual Aβ peptides - between 

39-43 residues in length - agglomerate, leading to plaque formation.7,8,9,10 These plaques are 

thought to be the cause of local inflammation and neuronal cell death. Subsequent effects seen in 

AD may be caused by this imbalance between Aβ generation and clearance. As such, the early 

stages of Aβ aggregation form a realistic druggable target for the development of anti-AD 

therapeutics.2 

The N-terminal region of Aβ contains histidine-rich metal binding sites that are responsible for 

physiological coordination of transition metals. These metal ions are believed to play an important 

role in the development of amyloid plaques; analysis of fibrils in Alzheimer’s brains proves that 

they show increased concentrations of transition metal ions such as Cu, Zn and Fe.11,12 However, 

the exact metal binding sites are the subject of debate, with authors showing varied metal 

coordination involving several different peptide residues, though N-terminal histidines at positions 

6, 13 and 14 feature prominently.13,14,15,16 One route to potential therapeutic agents for AD is the 
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development of compounds that selectively occupy Cu/Zn binding sites on Aβ and so prevent 

aggregation and oligomerisation.  

Pioneering work by Barnham et al.17 showed that PtII(phenanthroline) complexes are able to 

inhibit Aβ aggregation, and inhibit its neurotoxicity in vitro. Additionally, Pt(II) compounds are 

stable (i.e. kinetically and redox inert) in biological systems, meaning that once the Pt(II) complex 

is bound to a target, it is very difficult to displace. However, there has been a great deal of debate 

over exactly how these platinum-ligand systems interact with the Aβ peptide. Of particular 

relevance to the current study, Streltsov et al combined DFT and EXAFS data for a 

Pt(phen)(imidazole)2 model complex to arrive at experimentally derived predictions of binding 

modes.18 

Spectroscopic evidence19 suggests that several platinum adducts are formed in the coordination 

of PtII(phen) complexes to Aβ, but that His-6 and His-14 are preferentially bound. Recent work 

has also shown that aromatic ligands such an phenanthroline are vital for activity - it is believed 

that π-π stacking interactions between the ligands and aromatic residues Phe, Tyr and His are 

important in the association of PtII(phen) to Aβ.17,20,21 

Computational modelling of molecules of this type present significant challenges; quantum 

mechanical (QM) methods such as DFT are not routinely applicable to large protein systems, 

especially flexible ones such as Aβ. Classical modelling techniques using molecular mechanics 

(MM) forcefields typically fail to model the effects of transition metal d-electrons on the structure 

and properties of coordination complexes. This problem may be circumvented by combining the 

quantum and classical techniques, using QM for the metal center and MM for the remainder of the 

system. This QM/MM approach is widely used and has been applied to metal-biomolecule systems 
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similar to those investigated here22,23,24. However, there is still a significant cost associated with 

the QM calculation compared to pure MM. 

An alternative is ligand field molecular mechanics (LFMM) 25,26, designed to provide ‘the 

flexibility and generality of quantum mechanics with the speed of molecular mechanics.’26 This 

technique has been applied to the study of a variety of complex metal-based systems, such as d9 

Cu(II)27, high- and low-spin d8 Ni(II) 28 and d8 Pt(II)29,30. The aim of this work is to establish a 

protocol for generating and subsequently analyzing conformations of a series of platinum(II) 

species bound to a fragment of Aβ peptide (residues 6-14 – see Figure 1), with the aim of 

identifying favorable metal-binding modes and peptide conformations. This model is too small to 

truly represent the biology of Aβ, but this subset of residues is large enough to contain those 

important for platinum binding, while remaining such a size that we can benchmark computational 

results against DFT. This preliminary work presents findings for two platinum-ligand systems: 

2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), the choice of which stem from recent 

literature. Ultimately, this protocol could be extended to study other ligands, different transition 

metals such as those of physiological importance (e.g. copper and zinc)31 or other potential 

therapeutics of current research interest (e.g. ruthenium)32.  

 
Figure 1. Schematic of PtL (L = bipy or phen) binding to residues 6-14 of Aβ peptide 
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Computational Methods 

The peptide sequence His6-Asp-Ser-Gly-Tyr-Glu-Val-His-His14, taken from the N-terminal 

domain of Aβ was built in an extended conformation in MOE33. Pt was added in eight distinct 

coordination modes (i.e. to His6 and either His13 or His14 through Nδ or Nε), and the bipyridine 

or phenanthroline ligand manually constructed. For conformational searching, the resulting 

complexes were described using molecular mechanics using a combination of ligand field 

molecular mechanics (LFMM) for Pt26,29,30 and AMBER9434 parameters for all other atoms, as 

implemented in the DommiMOE35 extension to MOE. Partial charges for Pt and coordinated 

groups were calculated for model Pt(imidazole)2(ligand) systems using the Merz-Kollman scheme 

from HF/6-31G(d)/SDD electrostatic potential in Gaussian0936, with Pt given a van der Waals 

radius of 2.0 Å. The remaining peptide atoms, i.e. those beyond coordinated imidazole, were given 

AMBER94 charges as calculated by MOE. Solvation effects were modelled using the reaction-

field model with default parameters. 

Conformational freedom was explored through the LowMode MD37 method in MOE. LowMode 

MD searches were configured to terminate after 100 successive failures to generate a new 

molecular conformation, up to a maximum of 10,000 iterations. An arbitrarily large energy cut-off 

(10,000 kcalmol-1) was used alongside an RMSD cut-off of 0.25 Å for retention of all new 

conformations. LowMode MD is able to analyze complex molecular systems such as protein loops 

and macrocycles, taking into account complex non-bonded interactions, and is able to locate low-

energy conformations for a variety of structures in a computationally efficient manner37,38,39. 

During initial conformational searches, it was found that often a large portion of the kinetic energy 

was localized on the four Pt-N coordination bonds. These bonds are not important for exploring 
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conformations since their final position is determined by the LFSE contribution to LFMM. This 

lead to the LowMode MD search becoming ‘stuck’ and unable to escape a certain conformation, 

resulting in the premature termination of the conformational search. We resolved this by fixing the 

platinum centre, making the mass of this atom effectively infinite. 

DFT calculations were performed using Gaussian09 with the BHandH40 functional with a 6-

31G(d) basis set on all atoms in conjunction with a Stuttgart-Dresden (SDD)41,42 effective core 

potential for platinum(II), within a polarizable continuum model (PCM) model of aqueous 

solvation43,44. The choice of functional was determined by modelling relevant Pt(II) crystal 

structures, while BHandH has been widely used in description of π-stacking and other dispersion-

based interactions.45 In addition, two more modern functionals, B97D and M06-2X,46,47 

specifically designed to account for dispersion were tested for a subset of complexes. Semi-

empirical calculations were performed using MOPAC48 with the PM7 method49 and the COSMO 

model of aqueous solvation50; full relaxation was achieved through use of keywords LET and 

DDMIN=0. Overlay plots were obtained using Chimera imaging software51. RMSD values were 

calculated using a python script obtained via GitHub (https://github.com/charnley/rmsd)52,53. 

 

Results and Discussion 

Using the conformational searching protocol described above, searches were performed on the 

eight platinum binding modes of interest for each ligand system. This produced between 400 and 

1600 conformers for each platinum binding mode ( 

Table 1). There is appreciable variation between sets which may be at least partially due to the 

stochastic nature of the LowMode MD method as well as the inherent flexibility of the different 

complexes. For comparison, an identical simulation of the peptide fragment without Pt-
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coordination results in 9,962 conformations from 10,000 starting attempts. It is therefore apparent 

from  

Table 1 that Pt binding to two His residues allows the peptide chain significant flexibility, no 

matter which coordination mode is considered, but that this conformational freedom is 

significantly reduced compared to the free peptide.  

 

 

Table 1. Number of conformers found using LowMode MD for the ligands studied. 

Coordination mode bipy phen 

6δ - 13δ  893 425 

6δ - 13ε 426 495 

6ε - 13δ 484 468 

6ε - 13ε 995 405 

6δ -14δ 574 411 

6δ -14ε 1570 454 

6ε - 14δ 429 618 

6ε - 14ε 1135 450 

 

While the MM protocol used to generate data in  

Table 1 has been successfully applied to many similar problems, it is important to validate the 

results it provides against other theoretical approaches. In particular, we note that LFMM has long-

standing use for metal-peptide binding, but that Pt(II) is not yet among the metals used. Pt(II) 

parameters are available, and have been used to model Pt-DNA complexes29,30.  In the current case, 

the relatively flexible peptide fragment contrasts with more structured protein and DNA for which 
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LFMM has typically been used. DFT was therefore applied to a subset of 158 unique low-energy 

conformers, encompassing several different platinum-binding modes, in order to test further 

computational methods. We first consider the relative energies of LFMM-generated structures, 

calculated without further geometry relaxation. We find little correlation between LFMM and DFT 

relative energies at LFMM geometry (R2 = 0.14), suggesting that the combined LFMM/AMBER 

approach does not accurately predict the relative energies of different conformers.  

In order to check the reliability of DFT methods used as a benchmark, a set of non-platinated 

conformations was constructed by removing PtL from conformations located as discussed above, 

and their energies calculated using DFT and AMBER. Three different DFT methods (BHandH, 

B97D and M06-2X) show excellent agreement with one another (R2 BHandH vs. B97D = 0.94, 

BHandH vs. M06-2X 0.93, B97D vs. M06-2X 0.95), supporting our conclusion that BHandH is a 

suitable method for these structures. Furthermore, these DFT methods show little agreement with 

the AMBER energies for these non-platinated systems (R2 BHandH vs. AMBER = -0.02). This 

suggests that the poor agreement between DFT and LFMM/AMBER energies described above 

stems from the use of AMBER94 for the peptide, rather than from use of LFMM for the metal 

centre.  

Due to the high computational expense of DFT calculations, a faster computational method was 

required to identify conformers of interest. PM7 and DFT energies of platinated conformations at 

MM geometries are in good agreement with one another (R2 = 0.78); PM7 therefore reproduces 

DFT energies at a much lower computational cost. This suggests that PM7 is a suitable theoretical 

method for structures of this type. This assertion is reinforced by the modelling of the non-

platinated conformations: BHandH and PM7 calculations show strong agreement (R2 = 0.77), 

further showing that PM7 is an accurate and reliable alternative to DFT. 
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Figure 2. Plot of DFT vs. PM7 relative energies at LFMM geometry. 

 

 

 

Table 2. Correlation between relative energies of 158 conformers. 

 LFMM PM7 DFT 

LFMM 1.00 0.38 0.14 

PM7 - 1.00 0.78 

DFT - - 1.00 

 

The other key consideration of the LFMM results is whether the geometries produced are 

reliable. We therefore carried out DFT and PM7 geometry optimization of all 158 platinated 

conformers, and evaluated the all-atom RMSD of the resulting structures from those obtained from 

LFMM energy minimization.  
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Table 3 reports the results of such comparison, and demonstrates that LFMM and DFT are in 

good general agreement, i.e. DFT optimization of a selected structure does not significantly alter 

the overall geometry, indicating that LFMM produces robust geometries.  

 

Table 3. Summary of geometry comparison between LFMM, PM7 and DFT. 

RMSD VALUES LFMM vs. DFT PM7 vs. DFT 

Mean 0.670 0.817 

SD 0.191 0.307 

Min. 0.336 0.339 

Max. 1.293 1.982 

 

 

 

Figure 3. Left: LFMM (blue) vs DFT (grey) geometry overlay. Right: PM7 (yellow) vs DFT 

geometry (grey) overlay. 

DFT optimization is a laborious task, requiring several CPU-weeks per structure on the 

computing resources available to us. We therefore also investigated whether the much faster PM7 
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approach might be suitable for this purpose. Table 3 shows that, on average, PM7-optimised 

structures are slightly further from DFT ones than LFMM structures (mean RMSD 0.82 vs. 0.67 

Å). These values include data from 9 conformers for which PM7 predicts large (> 1.3 Å) RMSD 

from DFT-optimized geometry. For the remaining 149 structures, the mean RMSD is 0.77 Å. 

Interestingly, further DFT optimization for the 9 complexes with large RMSD, starting from the 

PM7 endpoint produced significant reduction in energy, indicating that in some cases PM7 

geometry optimization in MOPAC is able to escape from the local minimum located by LFMM 

conformational search. One such case is illustrated in Figure 4 below, in which DFT optimization 

following initial PM7 refinement leads to a structure that is 62.3 kJ mol-1 more stable than that 

reached by optimization directly from the LFMM structure.  

 

Figure 4. DFT optimised structure (grey) overlaid with PM7-DFT optimised structure (yellow). 

 

We therefore surmise that PM7/COSMO optimization following initial LFMM conformational 

search is a useful step in obtaining reliable energy and geometry data. Although the extra step 

requires significant additional computational effort (PM7 optimization takes approximately 20 
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minutes per structure on a single compute node), the evidence above indicates that it provides a 

more balanced set of data than either LFMM alone or PM7 at the LFMM geometry. We therefore 

performed this step for all conformations located for both ligands, a total of 6506 for bipy and 

3726 for phen. The resulting relative energies were collated and used in Boltzmann weighting to 

determine the binding mode(s) and conformation(s) that contribute significantly to the overall 

ensemble at 310 K, the results of which are reported in Table 4. 

 

 

 

 

 

Table 4. Relative energy and Boltzmann factors for low energy conformations. 

Ligand Coordination 
Rel. E /  

kJ mol-1 

Boltzmann  

fraction 

Bipy 6ε - 13ε 0.00 0.79 

 “ 6.27 0.07 

 “ 7.07 0.05 

 “ 7.51 0.04 

Phen 6ε - 14ε 0.00 0.38 

 “ 0.77 0.28 

 “ 1.96 0.18 

 “ 4.14 0.08 

 “ 4.38 0.07 
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On the basis of these results, we predict that Pt(II) binds to histidine residues via Nε rather than 

Nδ. The first conformations that feature binding via Nδ of any His residue are found over 22 and 

15 kJ mol-1 for bipy and phen ligands, respectively, and so contribute almost nothing to the 

Boltzmann-weighted ensemble of structures. This is an inherent property of the histidyl residue: 

calculations on a model system Pt(bipy)(Cl)His gives a preference for Nε over Nδ of 5 kJ mol-1 

using DFT, and 3 kJ mol-1 using PM7. The data in Table 4 indicate that, out of the several thousand 

conformations considered, just a small number contribute significantly to the Boltzmann-weighted 

ensemble. A single conformation accounts for almost 80% of the ensemble of bipy complexes, 

and four conformations for over 95%. Three low energy conformations account for over 80% of 

the ensemble of phen complexes, and five account for 99%. This shows that coordination of Pt 

massively reduces the conformational freedom of the peptide by “pinning” two histidines to the 

metal center.  

There is also a clear preference in coordination mode for each ligand; metal binding occurs via 

Nε of His-6 and His-13 for the bipy systems and via Nε of His-6 and His-14 for the phenanthroline 

systems. This result is particularly promising for the phenanthroline case, since the preferred 

metal-binding mode identified here (6ε - 14ε) was also determined to be the binding mode of this 

ligand system in experimental work carried out by Ma et al.19 The fact that a relatively small 

change in ligand from bipy to phen alters the preferred coordination mode is somewhat surprising, 

and suggests that binding mode can be controlled through suitable choice of ligand. 

To probe this change of binding mode in more detail,   
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Table 5 reports selected details of the DFT-optimized structures of the low energy 

conformation(s) for each ligand system. These data show that there is almost no variation in Pt—

N bond lengths following change in conformation and/or coordinated ligand. In the bipy complex, 

the bonds to the N-donor ligands are slightly longer than those to the histidine residues of Aβ 

(mean values 1.963±0.004 vs 1.986±0.000 Å). Moreover, Pt—NHis distances are slightly shorter 

in the low energy bipy conformation than the average over all conformations located for the same 

binding mode (mean = 1.966 Å ±0.005), whereas Pt—NLig distances are slightly larger (mean = 

1.981 Å ± 0.004). However, differences are typically within 1 or 2 standard deviations, and so not 

statistically significant. One apparently significant difference lies in the NHis-Pt-NHis angle that is 

on average 84.5° (±1.75) for the collection of 6ε - 13ε conformations but 88.5° in the single low-

energy conformation. It is notable that these Pt—N distances are in good agreement with those 

reported by Streltsov et al,18 Pt–N(imidazole) and Pt–N(phen) bond distances of 1.99(1) Å and 

1.993(5) Å, respectively. 
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Figure 5. Left: Low energy bipy conformation. Right: Lowest (grey), second- and third-lowest 

(yellow and blue, respectively) conformations of phen system. 
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Table 5. Selected geometrical details of single low energy conformations (Pt-bipy) and three low 

energy conformations (Pt-Phen) 

Structure Pt-NHis Pt-NLig NHis-Pt-NHis NLig-Pt-NLig H-bonds π-π 

Pt-bipy 1.960 

1.966 

1.986 

1.986 

88.5 80.9 14 1 

Pt-phen 1 1.958  

1.961  

1.994  

1.989  

85.2 82.1 12 0 

               2 1.964  

1.966  

1.994  

1.993  

83.1 81.8 7 0 

               3 1.961  

1.976  

1.992  

1.995  

82.8 81.6 6 0 

 

 

As expected for biomolecular systems, a large number of intramolecular hydrogen bonds are 

present in the low energy conformations, including backbone-backbone, backbone-side chain and 

side chain-side chain interactions. The low energy Pt-bipy complex contains 14 H-bonds, as judged 

by geometrical criteria. Of these, five are concentrated around Glu-11 and a further three around 

Asp7. Four of these H-bonds are relatively long at over 2 Å, but a number of strong interactions 

were also identified, including those between backbone and residue (Asp7 – backbone N-H at 

1.659 Å and Glu11 – N-terminal N-H at 1.794 Å) and residue-residue (Glu11 – His14 at 1.691 Å 

and Asp7 – His13 at 1.775 Å) which may be responsible for the stability of this conformation. In 

addition, four backbone-backbone H-bonds were identified in residues Gly9-His14. The low 

energy bipy conformation also contains a possible π−π interaction between bipy and the imidazole 
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side chain of His14. The two ring systems lie in an approximately parallel orientation (angle 

between mean planes = 29.9°) with an inter-centroid distance of approximately 4 Å.  

The Pt-phen complexes identified exhibit markedly fewer H-bonds than the bipy complex, and 

also no evidence for π-π stacking interactions is found in these low energy conformations (see 

Figure 5). As before, the H-bonds are generally found around residues Glu11 and Asp7, though 

strong interactions (average length 1.526 Å over the three phen conformations) were identified 

between the hydroxyl group of Tyr10 and Asp7. 

 

Conclusions 

LFMM has previously been demonstrated to be a powerful tool in predicting geometries and 

conformations of biomolecules bound to TM species. In the present work, we aim to apply this 

methodology to the study of platinum-complexes of the type studied by Barnham17,21 bound to 

model amyloid-β fragments in order to determine favourable metal-binding modes and peptide 

conformations. Thorough exploration of the conformational space of these biomolecules was 

achieved using LowMode MD in conjunction with AMBER molecular mechanics parameters. 

Comparison of calculated relative energies of a subset of these conformations indicates that LFMM 

fails to reproduce DFT results (R2 = 0.14). However, QM evaluation of structures of this size is 

computationally expensive, so the less expensive semi-empirical PM7 method was utilized, which  

agrees well with QM results (R2 = 0.78); PM7 therefore reproduces DFT energies at a much lower 

computational cost. In addition, PM7 optimization generally retains the DFT structure, with 

average all-atom RMSD of 0.817 over 158 conformers. This illustrates that PM7 accurately 

reproduces DFT geometries as well as energies. The present results indicate that PM7 is an 

appropriate and computationally manageable approach to modelling these metal-biomolecule 

systems.  
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This semi-empirical approach was subsequently extended to all conformations identified by 

LFMM. Statistical thermodynamics was applied to the generated databases in order to generate 

relative populations of each conformer at 310K. It was found that platinum coordination occurs 

via the Nε atom in His residues for both of the ligands investigated here. Favorable platinum-

coordination modes were identified for each ligand: 6ε-13ε and 6ε-14ε for bipy and phen, 

respectively. Furthermore, this change in binding mode for different ligands suggests that the 

binding mode can be controlled by the choice of ligand. 

In the bipy systems, the Boltzmann population is dominated by a single conformer that accounts 

for almost 80% of the weighted ensemble containing a large number of intramolecular H-bonds 

and a possible π-stacking interaction between His 14 and the bipy ligand. In the phenanthroline 

case, three conformations make significant contributions to the ensemble. Each of these 

conformations contains fewer intramolecular H-bonds than the dominant bipy conformation and 

no evidence of π-π stacking interactions was found. 

As this work continues, research will focus on two areas. Firstly, the peptide fragment will be 

extended to at least the Aβ1-16 unit studied in experimental work19,54. This would allow 

confirmation of platinum binding modes on a more realistic model of biological Aβ. Additionally, 

this modelling protocol may be used to study other ligands, such as those investigated by Barnham 

et al.,21 Collin et al.55 and Yellol et al.56 and Furthermore, the flexibility of LFMM allows the study 

of different transition metals such as those of physiological importance (e.g. copper and zinc)31 or 

other potential therapeutics of current research interest (e.g. ruthenium32 or mixed-metal 

complexes57).   
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