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Received: 7 July 2015 /Accepted: 21 January 2016 / Published online: 18 February 2016
� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Investments in scientific and technological knowledge depend on the level of

excludability. In this study, based on a game-theoretic analysis of discrete public goods, it

is shown that pure excludability and pure non-excludability are equally inefficient, whereas

the socially optimal level of excludability is a function of the benefits and costs of the

knowledge investment, where it lies between the two extremes. This result illustrates the

challenges and dangers of intellectual property rights policy. Allowing for voluntary R&D

cooperation, the optimal level of excludability becomes an interval, typically between the

two extremes. Thus, R&D cooperation can make intellectual property rights perform more

efficiently and alleviate the problem of optimal policy design. This also demonstrates that

knowledge commons can be provided efficiently through voluntary cooperation when

imperfect property rights give partial excludability. Therefore, R&D cooperation and

intellectual property rights should be considered as complementary rather than as separate

and alternative policy measures.

Keywords Excludability � Intellectual property rights � Knowledge � Positive
externalities � Public goods � R&D cooperation

JEL Classification O31 � H41 � O34 � D70 � D62

1 Introduction

The public good nature of knowledge creates both opportunities and challenges. After its

creation, new knowledge can have vast social benefits because of its non-rivalness.

However, the extent to which these benefits are gained as well as the incentive required for

the initial investment both depend on the level of excludability. There are several known
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solutions for providing incentives for innovation, such as intellectual property rights

(IPRs), research prizes, R&D cooperation, and government subsidies, although none of

these is without its problems. Using a game-theoretic model of a discrete public good

provision, the present study aims to determine the socially optimal level of excludability

for purely non-rival knowledge. The main result obtained by the model is that IPR and

R&D cooperation should be considered as complementary rather than as alternative policy

measures and that efficient provision of knowledge commons can be achieved through the

combination of voluntary cooperation and imperfect property rights.

On the backdrop of this article are the past changes in antitrust and IPR policies. Over

the course of the 1980s and 1990s, both the USA and Europe became increasingly worried

about the Japanese competition, and one of the main policy responses to this was to make

antitrust exemptions for R&D cooperation between firms. For example, the 1984 US

National Cooperative Research Act and its amended version in 1993 marked a significant

departure from the earlier policy, which was relatively hostile towards any form of inter-

firm cooperation (Hart 2001). On the other hand, the same two decades saw important

reforms in the US patent system, which strengthened patent protection and extended its

scope (Gallini 2002). The proposed transcontinental trade agreements of the present day

would imply a further step towards global IPR policy, while at the same time the current

IPR regimes in the US and elsewhere are facing increasing criticism (e.g., Tabarrok 2002;

Shapiro 2008; Boldrin and Levine 2013).

Recently, several studies questioning the need for (strong) IPRs have emerged. For

example, Choi (1998) and Krasteva (2014) show that stronger IPRs do not always benefit

the innovator. In the former, an intermediate IPR strength drives the innovator to

accommodate the first entrant, whereas weaker IPRs lead to a waiting game between

potential entrants, which can be more profitable to the innovator. In the latter, R&D

investment is maximized for an intermediate protection level, since some imitation also

benefits the innovator in the form of expected damage payments. Furthermore, Bessen and

Maskin (2009) show that in the context of sequential innovation the society and even

innovators may be better off without IPRs. This outcome arises because, while imitation

reduces the profit from current discovery, it raises the probability of subsequent innova-

tions and hence future profits.

The results obtained in this article similarly support imperfect IPRs. In the case of non-

cooperative investments alone, it turns out that the optimal level is a complex function of

the specific costs and benefits even in our stylized model, which suggests that optimal IPR

policy alone requires too much knowledge on behalf of the policymakers. Furthermore, it

is shown that pure excludability creates an outcome that is equally inefficient as pure non-

excludability. This is due to the duplication of effort induced by the higher monopoly rents

of excludable knowledge. Thus, there is a clear danger if policymakers are lobbied for

stronger IPR protection.

There is a notable disjoint in the existing literature, however. On the one hand, R&D

cooperation has not been considered in the context of optimal IPRs. On the other hand,

while the social benefits of R&D cooperation have been studied in the industrial organi-

zation literature (e.g., d’Aspremont and Jacquemin 1988; Baumol 2001), voluntary par-

ticipation and the effect of IPRs on these incentives have not been considered there. The

game-theoretic public good approach of the current paper brings these aspects together and

shows how R&D cooperation and partial excludability through imperfect IPRs act together

to provide optimal innovation incentives.

While Dixit and Olson (2000) demonstrate that the absence of transaction costs alone

does not induce much voluntary public good provision, our model shows that a range of
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excludability exists within which voluntary R&D cooperation can both attract the optimal

contributions as well as deter excessive duplication of effort. Recognizing the benefits of

and allowing for cooperation decreases the margin for error in IPR policy. Therefore, R&D

cooperation and IPRs should be considered as complementary rather than as separate and

alternative policy measures. While favoring the combination of strong IPRs and tough

antitrust policies, this policy complementarity has been similarly highlighted by Spulber

(2013).

The remainder of this article is organized as follows. Section 2 reviews the underlying

problem in knowledge investments and describes the main characteristics of the model. In

Sect. 3, we analyze the socially optimal level of excludability in the absence of cooper-

ation. We present the optimal level of excludability as a function of the benefits and costs

of R&D investment as well as showing that the two extremes are equally inefficient in

terms of social welfare. In Sect. 4, we introduce the possibility of R&D cooperation into

the model. The main result demonstrates that the socially optimal level of excludability

becomes an interval that again depends on the cost and benefits of the particular knowledge

investment in question. It is shown that this complementarity between IPR and R&D

cooperation also holds when there is uncertainty in the outcome of the research project and

some degree of duplication is optimal. The last section summarizes our results and dis-

cusses their policy implications.

2 Setup

Throughout this study, we use the term ‘‘knowledge’’ to refer to scientific and techno-

logical knowledge, although the issues discussed also apply to other types of knowledge to

various extents. Nevertheless, this type of knowledge most clearly exemplifies the char-

acteristics of a public good, which arguably make the efficient allocation of resources

problematic. As such, discussions of the importance of excludability and IPRs have

occurred mainly in this context. Before presenting the formal model, this section provides a

brief discussion of the reasons for adopting a game-theoretic approach to discrete public

goods.

2.1 Knowledge as a discrete public good

Instances of pure public goods are hard to find in reality, and many typical examples were

later found to be unsatisfactory (Buchanan and Kafoglis 1963; Cheung 1973; Coase 1974).

However, knowledge has persisted in this role since Pigou (1920, p. 158), who considered

scientific research to be the most important case of positive externalities, subject to

underinvestment. Although positive externalities and public goods were originally per-

ceived as different phenomena, in essence both are incentive structures and public goods

can be thought of as a special case of externalities (Cornes and Sandler 1996).

Efficient provision of knowledge depends on the level of excludability as various

knowledge spillover mechanisms decrease the level of social value that the innovator is

able to appropriate. Among others, Arrow (1996, p. 125) noted that: ‘‘Patents and copy-

rights are social innovations designed to create artificial scarcities where none exist nat-

urally. These scarcities are intended to create the needed incentives for acquiring

information.’’ However, it has been argued that often some natural excludability of
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knowledge exists, and thus the gap between marginal private and social benefits is not

necessarily extensive (e.g., Dosi et al. 2006).

Unlike the perfect non-excludability of knowledge, its perfect non-rivalness, which

rarely holds elsewhere, has not been contested. The non-rivalness of knowledge implies

that it can be used simultaneously by an infinite number of individuals and in perpetuity

without additional costs (Foray 2004, p. 94). However, this non-rivalness led Nelson

(1959, p. 305) to acknowledge that the assumption of the homogeneity of knowledge

‘‘products’’ is suspect and thus Pigouvian marginal analysis might not be adequate. In fact,

non-rivalness is of great importance because after the good has been produced, there is no

need for continuing investment so the costs are fixed (Callon 1994), which implies that

knowledge is a discrete public good.

Another important feature that is not captured by the Pigouvian framework is the

possibility of strategic interaction. Strategic interaction is particularly important in the case

of public goods since non-rivalness implies an opportunity for collective gain, whereas

non-excludability implies difficulties in its realization (Ver Eecke 1999). Non-exclud-

ability can induce strategic free-riding on the efforts of others, or people may choose to act

collectively, particularly when the cost of an action exceeds the individual gain but not

their sum. These issues support the use of game-theoretic methods for analyzing knowl-

edge investments (Dasgupta 1988).

2.2 The model

We consider a population of N� 2 players, which are individuals or firms that would

benefit from a knowledge investment. The cost of the investment is C[ 0, and the

resulting gain (if the investment is successful) is V per player. Constant V implies that

knowledge is assumed to have no strategic value by itself in this context. We consider the

implications of uncertainty in Sect. 4.2, but, in general, we assume deterministic innova-

tion. Therefore, the gross social gain is NV when one or more investments are made.

We focus on cases where investment is socially feasible such that NV [C: A dis-

tinction can be made between the cases where the individual gain is less than or more than

the investment cost. We refer to the first case, V �C; as basic scientific research and the

second case, V[C; as applied scientific research. While the meanings of these terms are

different than in The Frascati Manual (OECD 2002), for example, our purpose is to make a

distinction between two relevant analytical cases with respect to whether a player might

benefit from making the investment if there is no cost sharing or excludability of

knowledge. Therefore, this reflects the assumption that underinvestment will be a greater

problem for more basic research (Nelson 1959; Arrow 1962).

We assume that there is a patent race, which is a simple winner-takes-all lottery. Thus,

all players (or later their coalitions) that invest C have an equal probability of winning the

appropriable share of the social benefit NV. The level of excludability, a 2 ½0; 1�; dictates
how the benefits are divided between the patent holder and others. The gain of the indi-

vidual patent holder will be V þ aðN � 1ÞV ; whereas all others will gain only ð1� aÞV:
Therefore, due to the uniform value of V across all N individuals, we assume that the level

of excludability is at the same time the level of appropriability. This also implies that there

is no monopoly deadweight loss in the model. Although relevant, monopoly deadweight

loss is already a well-known issue in the patent literature (Foray 2004; Scotchmer 2004).

Instead, we focus on the issue of the efficient investment level because there may be either

too little or too much investment. The first problem has been studied widely in the public
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goods literature, while the latter problem is known as duplication of effort in the patent

literature (e.g., Loury 1979).

When the level of excludability decreases (increases), part of the social benefit is

transferred away from (to) the patent holder. These transfers are neutral from the utilitarian

viewpoint, so excludability affects social welfare through the willingness to invest rather

than directly. Internalizing social benefits through higher excludability makes the invest-

ment more lucrative and decreases the incentive to free-ride on others’ efforts, but the

problem is that it encourages multiple investments, whereas only one (successful)

investment is needed to provide the knowledge. When cooperation becomes an option, the

players can also make a joint investment where they share the expected revenue and

investment cost equally. If some choose to cooperate, which is not always guaranteed, both

free-riding and the duplication of effort decrease.

The characteristics of scientific and technological knowledge strongly support game-

theoretic public good analysis, so we consider multiple individuals and their mixed

strategies in public good provision. Similar to Palfrey and Rosenthal (1984) and Dixit and

Olson (2000), we focus on the mixed strategy equilibrium for two reasons. First, asym-

metric pure strategy equilibria arbitrarily require that identical individuals select different

strategies. Second, there is a coordination problem when choosing collectively from among

the asymmetric equilibria. Thus, the associated uncertainty regarding the final provision

will be revealed via mixed strategy equilibria (Dasgupta 1988).

In the spirit of the Coase theorem, we study how the allocation of property rights

matters (indirectly) with respect to social welfare. Therefore, to elucidate the implications

of excludability, we assume that there are no transaction costs and that the property rights

are defined perfectly in the sense that individuals’ opportunity sets are defined (Stubblebine

1972). The level of excludability determines how much of the social benefit of knowledge

the patent holder is able to appropriate. This appropriation is perfect because of the absence

of transaction costs, and the use of the patent system and negotiation with respect to R&D

cooperation are similarly assumed to be costless. In reality, of course, these costs can be

non-negligible and shift the balance either way.

In Sect. 3, we study the socially optimal level of excludability when innovation is

deterministic and the players can either make or abstain from investment. In Sect. 4, we

introduce an additional strategy that allows the players to contribute to a joint investment.

In the first subsection, we study the optimal level of excludability when innovation is

deterministic, and the second subsection shows how the implications can be extended to

the case where there is uncertainty in R&D. The respective payoffs of the strategies, ui for

each player i 2 N; are defined in the later sections for convenience. Throughout this study,

we use the utilitarian notion of social welfare, which is then given by U ¼
P

ui: Thus, the
distribution of costs and benefits only matters for achieving the highest possible social

welfare.

3 Optimal excludability in the absence of cooperation

In the absence of cooperation, player i can either choose to invest (I) or abstain (A). Given

deterministic innovation and the level of excludability, a; the payoff from the investment is

uiðIÞ ¼
aNV
n
þ ð1� aÞV � C; ð1Þ
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where n�N is the (expected) number of all investments. The payoff from abstaining is

uiðAÞ ¼ ð1� aÞV; ð2Þ

if n� 1 and zero otherwise. Thus, the net social welfare is

U ¼ NV � nC ð3Þ

if n� 1 and zero otherwise.

To characterize the resulting equilibria, we use the standard pure strategy Nash equi-

librium condition, xi 2 fI;Ag; xi 6¼ x�i : uiðx�i ; x��iÞ� uðxi; x��iÞ; and the mixed strategy

Nash equilibrium condition, ri 2 PðI;AÞ; ri 6¼ r�i : uiðr�i ; r��iÞ� uðri; r��iÞ; where P is the

set of probability distributions on the available strategies and the conditions hold for all

players i.

Let p 2 ½0; 1� be the probability that the players other than i choose I and 1� p that they

choose A. Then, the expected payoff from the investment for player i becomes

uiðIÞ ¼
XN�1

j¼0

N � 1

j

� �

pjð1� pÞN�1�j aNV
jþ 1

þ ð1� aÞV � C: ð4Þ

When i abstains the probability that n� 1 is 1� ð1� pÞN�1 and the expected payoff from

abstaining is

uiðAÞ ¼ ð1� ð1� pÞN�1Þð1� aÞV: ð5Þ

Finally, the net social welfare if all N players choose I with probability p is given by

U ¼ ð1� ð1� pÞNÞNV � pNC: ð6Þ

The policymaker’s problem is to maximize net social welfare by choosing the level of

excludability such that the players’ actions are determined by the mixed strategy equi-

librium. In addition to incentive compatibility, the mixed strategy equilibrium also guar-

antees the individual rationality requirement since by abstaining the players can always

achieve a non-negative payoff.

Proposition 1 In the absence of cooperation, the socially optimal level of excludability is

given by

a� ¼
1�

ffiffiffiffiffi
C
NV

N�1
q� �

ðN � 1ÞC
NV � C

:

Proof See Appendix 1.

Proposition 1 demonstrates how the socially optimal level of excludability is conditional

on the specific circumstances. Similarly as Tabarrok (2002) and Shapiro (2008), this result

strongly suggests that IPR policy should consider the costs and benefits of different

knowledge commons. However, the variance in the optimal level of excludability is

probably high, and it can be close to pure excludability in some cases while close to pure

non-excludability in others. This emphasizes the one-size-fits-all problem of IPRs, i.e.,

they cannot be tailored for each and every type of knowledge, and thus they are likely to be

non-optimal in the vast majority of cases.
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Corollary 1 The socially optimal level of excludability, a�; is increasing in C, decreasing
in V, and decreasing in N for N[ maxfN0;N1g; where N0 and N1 can be calculated.

Proof See Appendix 1.

The intuition behind this result is that a higher C or lower V decreases the incentive to

invest, and hence a higher level of excludability is required. By contrast, with a higher N,

each individual becomes less pivotal, which also causes the duplication of effort to become

a more severe problem. This latter effect soon becomes dominant, which explains the

direction. Although the optimal level of excludability is not always decreasing in N, this

seems to be generally the case based on our numerical computations.

Corollary 2 Pure excludability, a ¼ 1; and pure non-excludability, a ¼ 0; are equally

inefficient from the social viewpoint.

Proof See Appendix 1.

With perfect excludability, the duplicated research effort crowds out all (basic research)

or as much as possible (applied research) of the social benefit, which essentially makes the

situation a zero-sum game. This result is less surprising if we remind ourselves that it is a

general outcome of all-pay auctions, which have been argued to characterize patent races

(Dasgupta 1986). The ‘‘bid’’ (i.e., the investment cost) is fixed in this case and the same for

everyone, but the use of mixed strategies achieves the same outcome, i.e., the sum of the

expected research costs equals the social benefit. This result is also an example of the more

general phenomenon of rent dissipation, where the social costs of monopoly not only

include the (possible) monopoly deadweight loss, but also the resources used for com-

peting for the monopoly rents (Tullock 1967).

Figure 1 illustrates the situation further and plots the net social welfare, U, on the

vertical axis against the individual probability of investing, p, on the horizontal axis. The

optimal probability of investing, p�; which is reached by choosing the optimal level of

excludability, lies at the top of each curve, the point on the left of the curve denotes the

individual probability of investing with pure non-excludability, and the point on the right is

the same with pure excludability. As stated by our previous results, the social benefit

obtained is equal with pure non-excludability and pure excludability. In the upper row,

(a) and (b) show two cases for basic research, and thus the two extremes result in zero

social benefit. In the lower row, (c) and (d) show two cases for applied research, where the

social benefit is above zero in the case of both extremes, but again significantly lower than

what could be achieved with the optimal probability of investing. While the inverted-U

relationship between patent strength and innovation has been noted in the literature (Gallini

2002; Tabarrok 2011), Figure 1 reminds us that the same holds between social welfare and

R&D expenditures, the latter of which is often used as a measure of innovation.

The downside of excludability, i.e., the duplication of effort, was noted previously by

Loury (1979). While it is not surprising that less than perfect IPRs may be socially optimal

(Shapiro 2008), it is quite interesting to see that pure excludability yields equally ineffi-

cient outcome as pure non-excludability. It is not fully clear what brings this outcome, but

it seems to be related to what takes place in homogeneous good oligopolies with R&D

output spillovers (d’Aspremont and Jacquemin 1988; De Bondt et al. 1992). There, it was

discovered that the relationship between the firms’ effective R&D, which includes own

R&D and spillovers, and the spillover rate has an inverted-U shape and is minimized and

equally small with no spillovers and perfect spillovers. Unlike in d’Aspremont and

Public Choice (2016) 166:29–52 35

123



Jacquemin (1988), however, the optimal level of excludability in our model is not fixed (to

one half).

To sum up, without R&D cooperation, the optimal IPR policy would need to be tailored

for each separate situation, which is not possible because it requires that the policymaker

has perfect knowledge and foresight of all investment opportunities. Furthermore, there is a

clear danger when stronger IPR protection is lobbied, e.g., because it would be better to

have a small degree of natural excludability rather than perfect excludability through

strong IPRs. The logic that strong property rights are always good for the society does not

extend to knowledge that is non-rival.

4 Cooperation and the level of excludability

As noted by Buchanan (1964), the outcome should not be treated as a market failure simply

if no single individual has sufficient incentive to finance the full cost of an essentially

indivisible operation because people may or may not decide to act collectively. Similarly,

the scholars of the Bloomington School have argued that like other commons, knowledge

can be managed cooperatively under the right conditions (Hess and Ostrom 2007). Thus,

we now supplement the earlier analysis by assuming that a third strategy, i.e., a joint

investment, becomes a possibility.

Various different mechanisms for the private provision of public goods have been

proposed (e.g., Bagnoli and Lipman 1992; Tabarrok 1998). In particular, the present study

Fig. 1 Net social welfare as a function of the probability of investing
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most closely follows Dixit and Olson (2000), which is a further development of an earlier

model by Palfrey and Rosenthal (1984). In addition to being a discrete public good model,

it has two other suitable properties (cf. Bagnoli and Lipman 1989; Saijo and Yamato 1999).

First, the mechanism is very simple and realistic compared with many other studies.

Second, the individuals have a choice about whether to participate in the mechanism, i.e., it

is not imposed upon them, which is crucial when non-excludability is assumed.

In the first stage of Dixit and Olson (2000), all individuals decide simultaneously

whether to participate in the provision of the public good. In the second stage, when the

number of participants is known, the public good is provided if and only if the private

benefit for participants exceeds their equal share of the cost; otherwise, the game ends with

no public good provision or cost to anyone. The only possible symmetric pure strategy

equilibrium is Pareto optimal, but Dixit and Olson (2000) show that the expected social

welfare in the mixed strategy equilibrium becomes very small as the share of the required

contributors increases, or the distance between private cost and benefit decreases, which is

consistent with the normal assumptions regarding public good provision (Olson 1965).

Hence, they argue that the mere lack of transaction costs is not sufficient such that vol-

untary cooperation would reach the Pareto optimal outcome. In the present study, we show

that partial excludability can help to achieve the Pareto optimal outcome. In other words,

R&D cooperation and IPR work in a complementary manner.

If we can make cooperation self-enforcing, we will reach the Pareto optimal outcome

where everyone participates in the optimal number of joint R&D investments. First, this

requires that no single player has an incentive to free-ride on the investments of others.

Second, no player should have an incentive for trying to acquire the patent through a non-

cooperative investment. Thus, the socially optimal level of excludability becomes an

interval, which is our main result. We consider this situation under deterministic innova-

tion, where the optimal number of investments is one, before we show that the result

extends to stochastic innovation, where the optimal number of investments can be greater.

4.1 Cooperation and deterministic innovation

Player i can now make the investment (I) or abstain (A) as well as participating in a joint

investment (J). Given deterministic innovation and the level of excludability a; the payoff
from the joint investment is

uiðJÞ ¼
aNV
nm
þ ð1� aÞV � C

m
; ð7Þ

where n�N is the (expected) number of all investments and m�N is the (expected)

number of players participating in the joint investment. The payoffs obtained from making

a non-cooperative investment (1) or abstaining altogether (2) remain the same as before.

In Dixit and Olson (2000), no joint investment is made in the second stage if (7) is

negative, and thus the payoff is given by (2). To make the question of voluntary coop-

eration interesting, we assume that the non-negativity of (7) does not require that everyone

participates in the joint investment. In this case, the analysis is also more straightforward

than in Dixit and Olson (2000) because we need not consider the probability of the joint

investment occurring as we focus on the symmetric equilibrium where it is certain. Thus, in

the case of deterministic innovation, the Pareto optimal outcome is that everyone partic-

ipates in the joint investment with a probability of 1. We now show that this is an

equilibrium outcome for particular levels of excludability.
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Proposition 2 With the possibility of a joint R&D investment, the socially optimal level

of excludability is an interval that depends on the values of N, V, and C, i.e.,

a� 2 C
NV

; 2CðN�1Þ
NVðN�2Þ

h i
:

Proof See Appendix 1.

Proposition 2 shows that the socially optimal level of excludability is now an interval

with upper and lower bounds. The upper bound is not binding in the few cases where it is 1

or greater. Pure excludability and pure non-excludability are generally outside the interval,

however, and thus cooperation is not self-enforcing if excludability is either too low or too

high.

When R&D cooperation is possible, i.e., it is not prevented by antitrust law or nego-

tiation costs, this gives more leeway to intellectual property law. With R&D cooperation,

the outcome is improved and designing IPR policies becomes easier with a larger margin

for error. From the bounds of the interval, we can observe that they move in the same

direction with changes in C, V, or N, e.g., a higher cost requires higher excludability, but at

different speeds. Hence, the length of the interval describes the amount of room for

maneuver for the IPR policy.

Corollary 3 The length of the interval for the socially optimal level of excludability, a�j j;
is increasing in C and decreasing in V and N.

Proof See Appendix 1.

The intuition behind Corollary 3 is that when C increases, the incentive to compete with

a non-cooperative investment (I) decreases more than the incentive to free-ride (A) in-

creases. The opposite holds for an increase in V or N since the incentive to free-ride

decreases less than the incentive to make a competing investment increases. In summary,

with a high C, a higher level of excludability is required but there is also more leeway

given the longer interval of optimal excludability, whereas the opposite applies in cases of

V and N.

Any additional costs or benefits of taking part in the joint investment may of course

affect the required excludability. For example, it is straightforward to show that with a

large enough transaction cost of cooperation the joint investment may cease to be feasible.

However, cooperation may create additional benefits as well that increase the length of the

interval for the socially optimal level of excludability. For example, it is a common

concern that cooperation between the firms may extend to the product market. While this

issue is beyond the scope of the article, there may thus be a further policy tradeoff between

IPR-based market power and product market collusion.

4.2 Cooperation and stochastic innovation

Hitherto, we have assumed deterministic innovation, where there is no uncertainty in the

outcome of the research project. This has facilitated the analysis, because solving for the

mixed strategy equilibrium when there is further uncertainty in R&D output would prove

very difficult. In reality, of course, knowledge investments typically involve uncertainty, so

we investigate this matter further in this subsection.

Suppose now that an R&D project is successful with probability p 2 ð0; 1Þ and that it

fails with probability q ¼ 1� p: In many cases these probabilities also depend on the

actions of the players. Hence, we assume that a player or coalition of players i chooses the

probability of success pi and pays the R&D cost cðpiÞ; where limpi!0 cðpiÞ[ 0; c0[ 0; and
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c00[ 0; which imply fixed costs and decreasing returns. (An equivalent approach would be

to presume that the probability of success, pðciÞ; increases, but at a diminishing rate, with

R&D expenditures ci:)
Before proceeding to our main result concerning stochastic innovation, we consider the

challenges presented by variable R&D costs and non-cooperative investment decisions. In

this case a simple formation of joint investment projects may not ease the task of IPR

policy. Suppose that there are n non-cooperative joint R&D projects, each of which has

m�N=n members. Then, coalition i chooses pi to maximise

vi ¼ aNVpiFi þ ð1� aÞmVð1� qi PqjÞ � cðpiÞ; ð8Þ

where qi ¼ 1� pi and i 6¼ j: In Eq. (8), Fi is i’s probability of winning the patent given its

success in the R&D project, and hence it is a function of other probabilities of success pj:

More specifically, Fi ¼
Pn�1

j¼0
Pðs¼jÞ
jþ1 ; where P(s) is the probability that s other coalitions are

successful. We assume that the coalitions’ members share the costs and benefits equally,

and hence the expected net gain of each coalition member, uiðJÞ; is one-mth of (8). For the

given n, the payoff from abstaining is

uiðAÞ ¼ ð1� aÞVð1�PqjÞ:

If player i opts for private, non-cooperative investment instead, its payoff is given by

uiðIÞ ¼ aNVpiFi þ ð1� aÞVð1� qi PqjÞ � cðpiÞ:

Suppose for now that there are only joint investments with m members each and no private

investments. Equation (8) gives the following first order condition:

ovi

opi
¼ aNVFi þ ð1� aÞmV Pqj � c0ðpiÞ ¼ 0: ð9Þ

Since the projects are identical, I assume that the equilibrium is symmetric. Since pi ¼ p

for all i 2 n;

Fi ¼
Xn�1

j¼0

n� 1

j

� �
pjqn�1�j

1þ j
¼ 1

pn
ð1� qnÞ and P qj ¼ qn�1:

We rewrite (9) as

ov

op
¼ a

NV

pn
ð1� qnÞ þ ð1� aÞmVqn�1 � c0ðpÞ ¼ 0; ð10Þ

which determines the equilibriumprobability of success p given the number of investments n.

If all N players are part of a coalition, i.e., m ¼ N=n; then (10) becomes

a
NV

pn
ð1� qnÞ þ ð1� aÞNV

n
qn�1 � c0ðpÞ ¼ 0: ð11Þ

Whether n is composed of joint or private investments, the expected net social welfare is

given by

U ¼ NVð1� qnÞ � n cðnÞ:

As such, the optimal probability of success p� and number of investments n� are given by

the first order conditions
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oU

op
¼ nNVqn�1 � n c0ðpÞ ¼ 0$ NVqn�1 � c0ðpÞ ¼ 0 ð12Þ

and

oU

on
¼ � ln qNVqn � cðpÞ ¼ 0: ð13Þ

Consider now the socially optimal R&D investment given n projects. Substituting (12) into

(11) gives us the following proposition:

Proposition 3 Given n non-cooperative joint investments that have m members each, the

optimal level of excludability is given by

a ¼ ðn� 1Þðqn�1 � qnÞ
1� qn�1

:

This result indicates that in the presence of uncertainty and variable R&D costs, it may

not be a panacea that players simply form coalitions, because if these coalitions act non-

cooperatively then the equilibrium R&D decisions are sensitive to the level of exclud-

ability. Hence, achieving the social optimum would require that the policy maker is able to

set the correct level of excludability. Furthermore, it is not clear that the same level of

excludability would sustain the socially optimal number of joint R&D projects in the

equilibrium as required by the first-best optimum.

The case where the investment efforts are not sensitive to the level excludability or the

number of projects arises when there is free entry of private projects. In this case all

individual players choose the probability of success that minimizes the average cost.

However, as Tandon (1983) shows, this outcome is suboptimal. It can be shown that free-

entry of identical joint projects gives the same outcome. This provides an additional reason

for including all players into the joint projects in order to prevent excessive entry.

Taking into account the further challenges that stochastic innovation poses, the rest of

the article concentrates on two cases under which R&D cooperation nevertheless achieves

the social optimum given an interval of excludability. The first case is very straightforward,

since in the case of fixed R&D costs alone the above-mentioned problem naturally

disappears.

Proposition 4 If there are only fixed R&D costs, then the first-best optimum can be

reached with joint investments and a level of excludability that is within an interval given

by

a� 2 Cn�

NVð1� ð1� qÞn� Þ
;
ðCðN � n�Þ � NVqð1� qÞn

�
Þðn� þ 1Þ

ðN � n� � 1ÞNVð1� ð1� qÞn�þ1Þ

" #

:

Proof See Appendix 1.

Proposition 4 shows that as in the case of deterministic innovation, R&D cooperation

and IPRs can be complementary also when there is uncertainty. Note that the upper bound

is not binding when n� ¼ N � 1; i.e., perfect excludability is within the interval if the

optimal number of investments is one less than the population size and the risk of

duplication is very low. The optimal interval for excludability and optimal number of

investments depend on C, V, and N, so we do not present the comparative statics for the
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length of the interval because of its complexity and cumbersomeness. However, we con-

jecture that as in the case of stochastic innovation, the length of the interval, and thus the

margin for IPR policy, is increasing in V and N, and decreasing in C.

A further possibility for the first-best optimum comes with a supercoalition. By

supercoalition, we mean the situation where, instead of n competing coalitions, these

n investment decisions are made cooperatively by a coalition of coalitions, i.e., by a

supercoalition. Supercoalition is therefore the strongest form of R&D cooperation in this

framework.

Proposition 5 If forming a supercoaltion is possible, then the first-best optimum can be

reached with joint investments and a level of excludability that is within an interval given

by

a� 2 cðp�Þn� � ðq0n
�
� q�n

� ÞNV
NVð1� q0n

� Þ
;
Vðqi qns � q�n

� Þ � n�cðp�Þ
N
þ cðpiÞ

NVpi
1þqns
2
� Vð1� qi qns Þ

" #

:

Proof See Appendix 1.

Proposition 5 shows that also in the case of stochastic innovation a particular interval

of excludability is sufficient for the social optimum under R&D cooperation. While the

supercoalition produces the optimal R&D effort, it requires a specific range of exclud-

ability for its stability. This result is also related to other theoretical papers on R&D

cooperation (e.g., Amir 2000), which have found that the stronger the form of cooper-

ation is, the better the outcome from the social point of view. That is, cooperative

investment decisions on top of cost sharing can improve the outcome and ease the task

of IPR policy.

5 Conclusion

In this study, we showed that the socially optimal level of excludability is not the same for

all types of knowledge investments, but instead it depends on their costs and benefits. This

may help to clarify the controversy regarding the desirability of IPRs and provide support

for the claim that the optimal policies for protecting ideas should consider the respective

costs and benefits. However, this is a major challenge for intellectual property law because

it would place enormously high knowledge requirements on the policymakers. Further-

more, the formidable inefficiency of perfect excludability illustrates the risk when poli-

cymakers are lobbied for and biased toward overprotection of ideas.

While the perspective is different from the earlier work in industrial organization, our

results similarly demonstrate the welfare improving effect of R&D cooperation. Although

R&D cooperation used to be as highly suspect by antitrust scholars (Jorde and Teece

1990), important policy changes took place in the US and Europe in the 1980s and 1990s,

which led to a substantial increase in R&D cooperation. In addition to the substantial

theoretical justification, the actual outcome has been deemed welfare enhancing as no

evidence of subsequent collusion in the product market has been found (Liu et al. 2007).

However, it is also the case that the level of cooperation has been low in industries with

strong IPRs, such as pharmaceuticals (Vonortas 1997). While thorough empirical research

is needed to examine the issue, this outcome is well within the predictions of the model as
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for R&D cooperation to take place it is necessary that excludability is neither too high nor

too low. This suggests that allowing pharmaceutical firms to engage in joint R&D efforts

while simultaneously reducing the strength of patent protection could increase both profits

and welfare.

There has been considerable criticism of the current IPR laws during the recent years.

At the same, the ideal of strong IPRs has become contested in economic research. The

focus has been exclusively on non-cooperative R&D investments, however, whereas now,

especially given the changes in antitrust law, the re-examination of IPR policies should

take joint R&D into account. As shown in this article, R&D cooperation gives more leeway

to intellectual property law as the need to tailor IPRs and the knowledge requirements for

the policymakers are reduced. Therefore, antitrust and IPR policies are complements and

should be jointly considered. That is, antitrust exemptions for joint R&D improve patents

and, similarly, imperfect patent protection facilitates R&D cooperation.
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Appendix 1

Proof of Proposition 1 By taking the partial derivative of (6) with respect to p, we have

oU

op
¼ N2Vð1� pÞN�1 � CN: ð14Þ

Since o2U=o2p ¼ �ðN � 1ÞN2Vð1� pÞN�2\0; we find the socially optimal probability to

invest by setting (14) as equal to zero, i.e.,

p� ¼ 1�
ffiffiffiffiffiffiffi
C

NV

N�1

r

: ð15Þ

In the mixed strategy equilibrium, the payoff from investing (4) is equal to the payoff from

abstaining (5):

XN�1

j¼0

N � 1

j

� �

pjð1� pÞN�1�j aNV
jþ 1

þ ð1� aÞV � C ¼ ð1� ð1� pÞN�1Þð1� aÞV: ð16Þ

After a few simplifying steps, (16) can be rewritten as

ð1� ð1� pÞNÞaV ¼ ðC � ð1� pÞN�1ð1� aÞVÞp: ð17Þ
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Solving (17) for a gives

a ¼ pðCðp� 1Þ þ ð1� pÞNVÞ
ðp� 1þ ð1� pÞNÞV

: ð18Þ

The optimal level of excludability should produce the optimal probability to invest.

Therefore, we substitute (15) into (18), which yields

a� ¼
1�

ffiffiffiffiffi
C
NV

N�1
q� �

�
ffiffiffiffiffi
C
NV

N�1
q

C þ V C
NV

� � N
N�1

� �

�
ffiffiffiffiffi
C
NV

N�1
q

V þ V C
NV

� � N
N�1

¼
1�

ffiffiffiffiffi
C
NV

N�1
q� �

ðN � 1ÞC
NV � C

ð19Þ

as the optimal level of excludability. h

Proof of Corollary 1 The relevant values of N, V, and C are given by

N� 2;V[ 0;NV [C[ 0: The optimal level of excludability without R&D cooperation

is

a� ¼
1�

ffiffiffiffiffi
C
NV

N�1
q� �

ðN � 1ÞC
NV � C

¼
1�

ffiffiffiffiffi
C
NV

N�1
q� �

ð1� NÞ
1� NV

C

:

The partial derivatives are

oa�

oC
¼ �
ð1� NÞN 1� C

NV

� � 1
N�1

� �
V

C2 1� NV
C

� �2 �
ð1� NÞ C

NV

� ��1þ 1
N�1

ðN � 1ÞNV 1� NV
C

� �

¼
ðN � 1ÞNV þ C

NV

� � 1
N�1ðC � N2VÞ

ðC � NVÞ2
;

ð20Þ

oa�

oV
¼
ð1� NÞN 1� C

NV

� � 1
N�1

� �

C 1� NV
C

� �2 þ
Cð1� NÞ C

NV

� ��1þ 1
N�1

ðN � 1ÞNV2 1� NV
C

� �

¼ �
ðN � 1ÞNV þ C

NV

� � 1
N�1ðC � N2VÞ

V
C
ðC � NVÞ2

;

ð21Þ
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oa�

oN
¼
ð1� NÞð1� C

NV

� � 1
N�1ÞV

C 1� NV
C

� �2 �
1� C

NV

� � 1
N�1

1� NV
C

�
ð1� NÞ C

NV

� � 1
N�1 � 1

ðN�1ÞN �
ln C

NV½ �
ðN�1Þ2

� �

1� NV
C

¼
ðN � 1ÞNðV � CÞ þ C

NV

� � 1
N�1 CðN � 1Þ2 þ NðNV � CÞ ln C

NV

	 
� �

1
C
ðN � 1ÞNðC � NVÞ2

:

ð22Þ

In (20), the denominator is always positive within the relevant range. We form a new

function of the numerator:

f ðCÞ ¼ ðN � 1ÞNV þ C

NV

� � 1
N�1

ðC � N2VÞ; ð23Þ

and differentiate it with respect to C to obtain

of ðCÞ
oC

¼ 1

NV

� � 1
N�1

C
1

N�1�1
1

N � 1
ðC � N2VÞ þ C

NV

� � 1
N�1

¼ C

NV

� � 1
N�1 1

N � 1
1� N2V

C

� �

þ 1

� �

\
C

NV

� � 1
N�1 1

N � 1
1� N2V

NV

� �

þ 1

� �

¼ C

NV

� � 1
N�1 1

N � 1
ð1� NÞ þ 1

� �

¼ 0:

Therefore, f 0ðCÞ\0; 8C 2 ð0;NVÞ: Furthermore, f ðNVÞ ¼ ðN � 1ÞNV þ 1 � ðNV �
N2VÞ ¼ 0: Hence, when f 0ðCÞ\0; 8C 2 ð0;NVÞ; this implies that f ðCÞ[ 0; 8C 2
ð0;NVÞ; and thus oa�=oC[ 0:

In (21), the denominator is again positive and the numerator is the same as that in (23).

We already know that f ðVÞ[ 0; 8V 2 ðC=N;1Þ; so we conclude that oa�=oV\0:

The denominator in (22) is positive, and the term, ðC=NVÞ1=ðN�1Þ; in the numerator is

increasing in N when

o C
NV

� � 1
N�1

oN
¼ C

NV

� � 1
N�1�N ln C

NV

	 

� N þ 1

ðN � 1Þ2M
[ 0

$ N � ln
C

NV

� �

� 1

� �

þ 1[ 0 � ln
C

NV

� �

� 1[ 0

$ ln
C

NV

� �

\� 1$ C

NV
\e�1 $ N[

Ce

V
:
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Therefore, we know that ðC=NVÞ1=ðN�1Þ is increasing 8N[ maxfCe=V; 2g: Thus,

1[
C

NV

� � 1
N�1

[
C

Ce
V
V

 ! 1
Ce
V
�1

¼ 1

e

� � 1
Ce
V
�1
; when N[

Ce

V
[ 2; and

1[
C

NV

� � 1
N�1

[
C

2V
; when N[ 2[ 1[

Ce

V
:

In the following, we use the notation

k ¼ C

max Ce
V
; 2

 �
V

 ! 1

max Ce
V
;2f g�1

:

Then, it holds that 1[ ðC=NVÞ1=ðN�1Þ[ k:
Next, we rearrange the numerator in (22) into a polynomial function:

p1ðNÞ ¼ ðN � 1ÞNðV � CÞ þ C

NV

� � 1
N�1

CðN � 1Þ2 þ NðNV � CÞ ln C

NV

� �� �

¼ N2 V � C þ C

NV

� � 1
N�1

C þ V ln
C

NV

� �� � !

þ N C � V þ C

NV

� � 1
N�1

�2C � C ln
C

NV

� �� � !

þ C

NV

� � 1
N�1

C:

Inside the first coefficient, a1;

C þ V ln
C

NV

� �

\0 when N[
e
C
VC

V
:

Therefore,

a1\V � C þ k C þ V ln
C

NV

� �� �

; when N[ max
e
C
VC

V
;
Ce

V
; 2

( )

:

Now,

V � C þ k C þ V ln
C

NV

� �� �

\0; when N[
C

V
e
Cðk�1ÞþV

Vk :

Therefore, a1\0 when

N[ max
C

V
e
Cðk�1ÞþV

Vk ;
e
C
VC

V
;
Ce

V
; 2

( )

:

Hence,

p1ðNÞ\N2 V � C þ k C þ V ln
C

NV

� �� �� �

þ a2N þ
C

NV

� � 1
N�1

C;
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and

a2\C � V þ 1� �2C � C ln
C

NV

� �� �

; when N[
e2C

V
;

since

�2C � C ln
C

NV

� �

[ 0; when N[
e2C

V
:

Therefore,

p1ðNÞ\N2 V � C þ k C þ V ln
C

NV

� �� �� �

þ C � V þ �2C � C ln
C

NV

� �� �� �

N þ C

¼ p2ðNÞ; when N[ max
C

V
e
Cðk�1ÞþV

Vk ;
e
C
VC

V
;
Ce

V
; 2

( )

:

Then,

p2ðNÞ ¼ ln
C

NV

� �

ðkVN2 � CNÞ þ N2ðCðk þ 1Þ þ VÞ þ Nð�V � CÞ þ C

¼ ln
C

NV

� �

ðN2ðkV � C=NÞ þ N2ðCðk þ 1Þ þ VÞ þ Nð�V � CÞ þ C

\ ln
C

NV

� �

ðN2ðkV � CÞ þ N2ðCðk þ 1Þ þ VÞ þ Nð�V � CÞ þ C

¼ N2 Cðk � 1Þ þ V þ ðkV � CÞ ln C

NV

� �� �

þ Nð�V � CÞ þ C;

where

Cðk � 1Þ þ V þ ðkV � CÞ ln C

NV

� �

\0; when N[
C

V
e
C�Ck�V
C�kV :

We choose

N0 ¼ max
C

V
e
C�Ck�V
C�kV ;

C

V
e
Cðk�1ÞþV

Vk ;
e
C
VC

V
;
Ce

V
; 2

( )

þ 1:

Then,

p2ðNÞ\N2 Cðk � 1Þ þ V þ ðkV � CÞ ln C

N0V

� �� �

þ Nð�V � CÞ þ C ¼ p3ðNÞ:

p3ðNÞ is a degree 2 polynomial, which is zero when either
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N ¼
C þ V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�C � VÞ2 � 4C Cð�1þ kÞ þ V þ ð�C þ kVÞ ln C
N0V

h i� �r

2 Cð�1þ kÞ þ V þ ð�V þ kVÞ ln C
N0V

h i� �

¼ 2C

C þ V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ð5� 4kÞ � 2CV þ V2 þ 4CðC � kVÞ ln C
N0V

h ir ¼ N1

ð24Þ

or

N ¼
C þ V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�C � VÞ2 � 4C Cð�1þ kÞ þ V þ ð�C þ kVÞ ln C
N0V

h i� �r

2 Cð�1þ kÞ þ V þ ð�V þ kVÞ ln C
N0V

h i� �

¼ 2C

C þ V þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ð5� 4kÞ � 2CV þ V2 þ 4CðC � kVÞ ln C
N0V

h ir ¼ N2:

ð25Þ

Since (24) is greater than (25), we conclude that p3ðNÞ\0; 8N[N1: In summary:

p1ðNÞ\p3ðNÞ\0; 8N[ maxfN0;N1g; and thus oa�=oN\0; 8N[ maxfN0;N1g: h

Proof of Corollary 2 When a ¼ 1; the equation for the mixed strategy equilibrium (16)

becomes

XN�1

j¼0

N � 1

j

� �

pjð1� pÞN�1�j NV

jþ 1
� C ¼ 0;

which can be further simplified to

1� ð1� pÞN ¼ p
C

V
: ð26Þ

Note that if V [C; Eq. (26) cannot hold for p 2 ½0; 1� since the LHS will be larger.

Therefore, if V[C; every player invests with probability p ¼ 1 and the social welfare (6)

becomes

U1 ¼ NðV � CÞ:

If C�V ; then Eq. (26) holds. Substituting (26) into (6) gives

U2 ¼ p
C

V
NV � pNC ¼ 0:

When a ¼ 0; the equation for the mixed strategy equilibrium (16) becomes

V � C ¼ ð1� ð1� pÞN�1ÞV ð27Þ

Note that if C[V ; Eq. (26) cannot hold for p 2 ½0; 1� since the RHS will be larger.

Therefore, if C[V; every player invests with probability p ¼ 0: In addition, no invest-

ments are made when V ¼ C: Therefore, the social welfare (6) when C�V is U02 ¼ 0 ¼
U2: If V[C; then Eq. (27) holds. Solving (27) for p gives
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p ¼ 1�
ffiffiffiffi
C

V

N�1

r

: ð28Þ

Substituting (28) into (6) gives

U01 ¼ 1� 1� 1�
ffiffiffiffi
C

V

N�1

r ! !N !

NV � 1�
ffiffiffiffi
C

V

N�1

r !

NC

¼ N V � V
C

V

� � N
N�1

�C þ C
C

V

� � 1
N�1

 !

¼ NðV � CÞ ¼ U1;

and hence the social welfare is always the same in the two extreme cases. h

Proof of Proposition 2 To ensure a single joint investment with probability 1, the level of

excludability should be sufficiently high such that no single player wishes to deviate and

abstain from the investment. With n ¼ 1 and m ¼ N; this holds when

uiðJÞ ¼ V � C

N
�Vð1� aÞ ¼ uiðAÞ

or

a� C

NV
:

The level of excludability should not be too high in order to ensure that no single player

has the incentive to deviate for a non-cooperative investment. With n ¼ 1 and m ¼ N; this
holds when

uiðJÞ ¼ V � C

N
� aNV

2
� C þ Vð1� aÞ ¼ uiðIÞ

or

a� 2CðN � 1Þ
NVðN � 2Þ :

Combining these two conditions gives us an interval for the socially optimal level of

excludability, which is

a 2 C

NV
;
2CðN � 1Þ
NVðN � 2Þ

� �

and this completes the proof. h

Proof of Corollary 3 The length of the interval is given by

a�j j ¼ 2CðN � 1Þ
NVðN � 2Þ �

C

NV
¼ C

VðN � 2Þ ;

based on which it is easy to see that o a�j j=oC[ 0; o a�j j=oV; o a�j j=oN\0: h
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Proof of Proposition 4 If the R&D costs are fixed such that cðpÞ ¼ C; then each project

also succeeds with an exogenously given probability pi ¼ q for all i 2 n: This implies that

the social optimum depends only on the number of investments. That is, rewriting (13) as

� lnð1� qÞ ð1� qÞnNV � C ¼ 0

yields

n� ¼
ln �C

NV lnð1�qÞ

� �

lnð1� qÞ

as the socially optimal number of investments. To ensure exactly n� joint investments, the

level of excludability should be sufficiently high such that no single player wishes to

deviate and abstain from the investment:

uiðJÞ ¼ ð1� ð1� qÞn
�
ÞV � n�C

N
�ð1� ð1� qÞn

�
Þð1� aÞV ¼ uiðAÞ

or

a� Cn�

NVð1� ð1� qÞn� Þ
:

The level of excludability should also not be excessively high in order to ensure that no

single player has the incentive to deviate for a non-cooperative investment:

uiðJÞ ¼ ð1� ð1� qÞn
�
ÞV � n�C

N

� a
NV

n� þ 1
ð1� ð1� qÞn

�þ1Þ � C þ ð1� aÞVð1� ð1� qÞn
�þ1Þ ¼ uiðIÞ

or

a� ðCðN � n�Þ � NVqð1� qÞn
�
Þðn� þ 1Þ

ðN � n� � 1ÞNVð1� ð1� qÞn�þ1Þ
:

Combining these two conditions gives us an interval for the socially optimal level of

excludability, i.e.,

a� 2 Cn�

NVð1� ð1� qÞn� Þ
;
ðCðN � n�Þ � NVqð1� qÞn

�
Þðn� þ 1Þ

ðN � n� � 1ÞNVð1� ð1� qÞn�þ1Þ

" #

and this completes the proof. h

Proof of Proposition 5 If everyone participates in the supercoalition, then the coalition’s

R&D decision is given by (12) since vs ¼ U: Then using (13), the policy maker can set a

rate of appropriability that yields the first-best optimal number of investments n� as well as
R&D intensities p�:

If player i abstains, then the supercoalition chooses p0 to maximize

vs ¼ ðN � 1þ aÞVð1� qnÞ � n cðnÞ:

The first order condition,

Public Choice (2016) 166:29–52 49

123



ovs

op0
¼ nðN � 1þ aÞVq0n�1 � n c0ðp0Þ ¼ 0; ð29Þ

yields the equilibrium probability of success p0ð¼ 1� q0Þ:
An individual coalition member has no incentive to deviate and abstain from the

supercoalition if

uiðJÞ ¼ ð1� q�n
� ÞV � n�cðp�Þ

N
�ð1� q0

n� Þð1� aÞV ¼ uiðAÞ

or

a� cðp�Þn� � ðq0n
�
� q�n

� ÞNV
NVð1� q0n

� Þ
;

where p0 (q0) is given by (29).

If player i competes against the supercoalition it chooses pi in order to maximize

ui ¼ aNVpi
1þ qns

2
þ ð1� aÞVð1� qiq

n
s Þ � cðpiÞ;

whereas the supercoalition with n projects chooses ps in order to maximize

vs ¼ aNVð1� qns Þ
1þ qi

2
þ ð1� aÞðN � 1ÞVð1� qiq

n
s Þ � n cðpsÞ:

Note that the above assumes that only the overall probability of success, not the number of

successful R&D projects, matters for winning the patent. The first order conditions,

oui

opi
¼ aNV

1þ qns
2
þ ð1� aÞVqns � c0ðpiÞ ¼ 0 ð30Þ

and

ovs

ops
¼ anNVqn�1s

1þ qi

2
þ ð1� aÞnðN � 1ÞVqiqn�1s � n c0ðpsÞ ¼ 0; ð31Þ

together yield the equilibrium probabilities of success pið¼ 1� qiÞ for the individual

player and psð¼ 1� qsÞ for the supercoalition in this event.

Therefore, no single player has the incentive to deviate for a non-cooperative invest-

ment if

uiðJÞ ¼ ð1� q�n
� ÞV � n�cðp�Þ

N

� aNVpi
1þ qns

2
þ ð1� aÞVð1� qi q

n
s Þ � cðpiÞ ¼ uiðIÞ

or

a�
Vðqi qns � q�n

� Þ � n�cðp�Þ
N
þ cðpiÞ

NVpi
1þqns
2
� Vð1� qi qns Þ

;

where pi (qi) and ps (qs) are given by (30) and (31). Combining these two conditions gives

us an interval for the socially optimal level of excludability, i.e.,
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a� 2 cðp�Þn� � ðq0n
�
� q�n

� ÞNV
NVð1� q0n

� Þ
;
Vðqi qns � q�n

� Þ � n�cðp�Þ
N
þ cðpiÞ

NVpi
1þqns
2
� Vð1� qi qns Þ

" #

and this completes the proof. h
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