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Abstract Automating high school timetabling is a challenging task. This prob-
lem is a well known hard computational problem which has been of interest to
practitioners as well as researchers. High schools need to timetable their regular
activities once per year, or even more frequently. The exact solvers might fail to
find a solution for a given instance of the problem. A selection hyper-heuristic
can be defined as an easy-to-implement, easy-to-maintain and effective ‘heuristic
to choose heuristics’ to solve such computationally hard problems. This paper de-
scribes the approach of the team HySST (Hyper-heuristic Search Strategies and
Timetabling) to high school timetabling which competed in all three rounds of the
Third International Timetabling Competition. HySST generated the best new so-
lutions for three given instances in Round 1 and gained the second place in Rounds
2 and 3. It achieved this by using a fairly standard stochastic search method but
significantly enhanced by a selection hyper-heuristic with an adaptive acceptance
mechanism.

Keywords Timetabling · Stochastic Local Search · Hyper-heuristic · Restart ·
Scheduling

1 Introduction

Due to the inherent difficulties in educational timetabling, this area of study
has been of interest to many researchers and practitioners across operational re-
search, computer science and artificial intelligence since 1960s (Broder, 1964).
There are different types of educational timetabling problems, such as examination
timetabling and high school timetabling (Pillay, 2010a) which are all known to be
NP-hard real-world constraint optimisation problems (Even et al, 1976; de Werra,
1997). The last competition in the series of timetabling challenges was recently
organised on high school timetabling: the Third International Timetabling Com-
petition (ITC2011). ITC2011 aimed at providing a high school timetabling bench-
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mark, determining the state-of-the-art solution method and promoting researchers
and practitioners to deal with the problems as they are without any simplification.
This study describes the approach of the HySST (Hyper-heuristic Search Strate-
gies and Timetabling) team which competed in the three rounds of ITC2011.

Many different tailored methodologies have been proposed for solving specific
high school timetabling problems. We describe a fairly standard stochastic search
method but significantly enhanced by a selection hyper-heuristic for high school
timetabling. The proposed approach is more general in the sense that it is ap-
plicable to a variety of high school timetabling problems across the world and
more effective than the existing approaches which frequently ignore the real-world
complexities. A hyper-heuristic is a high level search methodology that performs
search over the space formed by a set of low level heuristics to solve computa-
tionally hard problems (Burke et al, 2013). A selection hyper-heuristic improves
an initially generated solution iteratively through heuristic selection and move
acceptance processes (Özcan et al, 2008). A candidate solution is perturbed after
applying a chosen heuristic using the heuristic selection method and a new so-
lution is obtained. Then a move acceptance method considers whether to accept
or reject the new solution. This cycle continues until a set of termination crite-
ria is satisfied. There have been a growing number of studies on hyper-heuristics
since the initial ideas of combining the strength of existing heuristics (neighbour-
hood structures) was rooted in 1960s (Fisher and Thompson, 1963). More on dif-
ferent types of hyper-heuristics including selection hyper-heuristics can be found
in (Chakhlevitch and Cowling, 2008; Ross, 2005; Burke et al, 2013). A selection
hyper-heuristic should be “fast to implement, requiring far less expertise in either
the problem domain or heuristic methods, and robust enough to effectively handle
a range of problems” (Cowling et al, 2001). HySST generated the best new solu-
tions for three given instances in Round 1 and gained the second place in Rounds
2 and 3 with the proposed selection hyper-heuristic, and which also satisfies the
above design criteria.

Section 2 discusses high school timetabling and selection hyper-heuristic frame-
works. Section 3 provides an overview of the competition and high school timetabling
problem dealt with during the competition. Section 4 describes the selection hyper-
heuristic components that are used for solving the high school timetabling prob-
lem. Section 5 presents the empirical and so competition results. Finally, Section
6 concludes the study.

2 Background

2.1 High School Timetabling Problem

High school timetabling (HST) is a well-known NP-hard real-world combinato-
rial optimisation problem (Even et al, 1976; de Werra, 1997). A solution requires
scheduling of events such as courses, classes and resources such as teachers, rooms
and more using a number of time slots subject to a set of constraints. The con-
straints are classified as hard and soft. The solutions respecting all hard constraints
are considered feasible and they are expected to satisfy as many of the soft con-
straints as possible, which represent preferences. In most of the previous formula-
tions of the high school timetabling problem, infeasible solutions are allowed and



evaluated, differentiating their quality by considering the degree of hard constraint
violations.

There are a variety of real world high school timetabling problems exhibit-
ing various characteristics from different countries and many different approaches
have been proposed for a particular problem in hand, including a tiling algorithm
(Kingston, 2005), constraint programming approach (Valouxis and Housos, 2003;
Marte, 2007), Hopfield neural networks (Smith et al, 2003) and integer program-
ming (Birbas et al, 2009). The tabu search or simulated annealing metaheuris-
tics are frequently preferred as the single-point-based solution methods for high
school timetabling. Abramson (1991) employed simulated annealing for course
timetabling and proposed a parallel algorithm for solving some randomly gen-
erated problem instances and some Australian data. Hertz (1992) utilised tabu
search for teacher-course assignment using hypothetical data from a Yugoslavian
school. Schaerf (1996) tested a tabu search based approach which interleaves differ-
ent types of moves on some instances from the Italian high-schools. The approach
generated schedules that are of better quality than the manually created ones.
Abramson et al (1999) compared different simulated annealing cooling schedules
and the experimental results showed that geometric cooling with multiple rates
performs the best. Jacobsen et al (2006) presented a tabu search algorithm for
solving a timetabling problem at German secondary schools of Gymnasium type
and compared its performance to a constraint programming approach. The results
showed that they have a similar performance based on the feasible solutions ob-
tained for the given instances. Bello et al (2008) tested a tabu search approach on
some instances that are presentative of Brazilians high school timetabling prob-
lems. Kannan et al (2012) applied graph theoretic approach to a problem from
the New York City public school system, which decomposes a given instance and
applies randomised heuristics.

The number of studies investigating into population-based metaheuristics, par-
ticularly hybrid evolutionary algorithms for high school course timetabling has
been growing since the 1990s (Ross et al, 1994; Corne et al, 1994; Erben and Keppler,
1996). Colorni et al (1992) compared various metaheuristics based on GA, simu-
lated annealing and tabu search using an Italian high-school data. Their results
indicate that GAs hybridised with local search is promising. Filho et al (2001)
formulated the timetabling problem as a clustering problem and applied a genetic
algorithm to construct solutions to the timetabling problem of public schools in
Brazil. Wilke et al (2002) proposed a hybrid genetic algorithm using multiple ge-
netic operators and a parameter configuration strategy that randomly chooses
from different options during the search process whenever the algorithm detects
that no improvement can be made. The results showed that the proposed hy-
brid approach performed better than the traditional genetic algorithm on a large
German high school problem instance. Beligiannis et al (2008) presented an evolu-
tionary algorithm which employs no crossover and multiple mutation operators. A
comparison to the previously proposed approaches of column generation and con-
straint programming on a Greek school course timetabling problem revealed the
success of the approach. Raghavjee and Pillay (2008) compared the performance of
a genetic algorithm, neural network, simulated annealing, tabu search and greedy
search on the problem instances provided by Abramson and Dang (1993). The
experimental results showed that genetic algorithm delivered either a better or
similar performance to the previously proposed methods. Raghavjee and Pillay



(2010) described a hybrid evolutionary algorithm with no crossover using a hill
climber for solving a South African high school course timetabling problem along
with a primary school timetabling problem. Moura and Scaraficci (2010) applied
the greedy randomised adaptive search procedure (GRASP) heuristic to solve a
Brazilian high school timetabling problem. Pillay (2010b) implemented an evo-
lutionary algorithm based hyper-heuristic selection method. The study revealed
that the incorporation of local search heuristics with mutation and crossover op-
erators improves the performance. The approach outperforms the other methods
applied to the same problem. Özcan et al (2012) introduced a variant of a high
school timetabling problem from Turkey and proposed a genetic algorithm hy-
bridised with hill climbing which interleaves the proposed algorithm with con-
structive methods while exploiting the underlying hierarchical structure of a given
problem. More on high school timetabling can be found in (Pillay, 2010a, 2012).
This study presents a selection hyper-heuristic method which is able to solve a
variety of high school timetabling problems from different countries.

2.2 Selection Hyper-heuristic Frameworks

Figure 1(a) illustrates how a high level generic selection hyper-heuristic oper-
ates. A selection hyper-heuristic manages a set of perturbative or constructive low
level heuristics (move operators) (Burke et al, 2010b) and often improves an ini-
tially generated solution (si) under an iterative framework until the termination
criterion is satisfied. We focus on the former type of selection hyper-heuristics.
Özcan et al (2008) identified two successive stages that are common to most of the
single-point-based search hyper-heuristics influencing their performances: heuris-
tic selection and move acceptance. Most of the simple selection hyper-heuristics
are introduced by Cowling et al (2001). For example, A simple random heuristic
selection method chooses a random low level heuristic at each step, while ran-
dom permutation produces a random permutation of all low level heuristics and
applies the low level heuristic in the list one after another at each step. Greedy
applies all low level heuristics to a given solution and selects the best heuristic
which produces the best solution (which could be worse than the given solution,
if all heuristics are performing random perturbation). Selection hyper-heuristics
have been successfully applied to many different real world problems, includ-
ing channel assignment (Kendall and Mohamad, 2004), examination timetabling
(Özcan et al, 2009), space allocation (Burke et al, 2005), vehicle routing problems
(Pisinger and Ropke, 2007). More on hyper-heuristics including the descriptions
of more elaborate selection hyper-heuristic components as well as other types of
hyper-heuristics can be found in Burke et al (2013).

A mutational operator in the context of search randomly perturbs a given solu-
tion and the new solution is not guaranteed to be of the same quality as the given
one, whereas a hill climbing operator always returns a non-worsening solution
which might be the same as the given solution. A generic selection hyper-heuristic
does not differentiate between the types of low level heuristics. Özcan et al (2008)
proposed different types of selection hyper-heuristic frameworks showing that a
generalised version of iterated local search (Lourenço et al, 2010) performed well
on some benchmark functions which separates mutational and hill climbing opera-
tors, invoking them successively and so enforcing diversification and intensification



processes explicitly. Burke et al (2010a) also showed that a similar hyper-heuristic
framework performs well on a hyper-heuristic benchmark1. In this study, we use a
multistage approach as shown in Figure 1(b), which separates mutational and hill
climbing heuristics as well. Mutational heuristics are employed until some criteria
are satisfied which decides that it is time for intensification, and then a new stage
starts employing only hill climbing low level heuristics. The proposed framework
allows switching back and forth between diversification and intensification stages.
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Fig. 1 Illustration of a (a) generic and (b) multistage selection hyper-heuristic framework

The idea of reducing the number of low level heuristics within selection hyper-
heuristics has been studied previously. Cowling and Chakhlevitch (2003) tested
peckish heuristic selection strategies within hyper-heuristics on a real-world per-
sonnel scheduling problem. Although those strategies are found effective, selecting
a low-level heuristic to apply at each decision point turned out to be slow since
a large set of low level heuristics were used. Hence, Chakhlevitch and Cowling
(2005) investigated learning strategies for choosing the subset of low-level heuris-
tics with good performance. At each step, the total improvement due to a heuristic
is updated and used as a measure to choose that subset. The approach which lin-
early reduces the number of the good performing low level heuristics in the subset
shown to be promising. Mustafa (2012) introduced an adaptive strategy within

1 www.asap.cs.nott.ac.uk/chesc2011



a selection hyper-heuristic which identifies poorly performing low level heuristics
and discards them during the search process. Özcan and Kheiri (2011) proposed
a multistage hyper-heuristic in which the number of low level heuristics combined
with their parametric choices are reduced based on the trade-off between improve-
ment achieved by a low level heuristic with a given setting and the time it takes to
achieve that performance. The selection hyper-heuristic methods described above
do not make use of the nature of the low level heuristics while selecting and ap-
plying them to the candidate solution. In contrast, our approach to high school
timetabling uses the type of the heuristic. It is based on a selection hyper-heuristic
managing a reduced set of low level heuristics, with the method employing either
only mutational or only hill climbing low level heuristics at a given stage. More-
over, the proposed framework enables the use of two separate heuristic selection
mechanisms at each stage.

3 The Third International Timetabling Competition (ITC2011)

Due to the variety of existing high school timetabling problems and sometimes lack
of algorithmic details, it is not trivial to implement and compare the performance
of different approaches. More importantly, many previous studies frequently focus
on simplified models of high school timetabling because of its inherent difficulty.
The International Timetabling Competitions have been organised with the goal
of encouraging researchers and practitioners to design solution methods for real
world problems incorporating all real world complexities into their models and
form real world benchmark for the timetabling community. The state-of-the-art
methods for a given domain has always been of interest for researchers as well as
practitioners, which has been the case for timetabling as well. The Third Interna-
tional Timetabling Competition (ITC2011)2 was recently organised after ITC2002
(http://www.idsia.ch/Files/ttcomp2002/) and ITC2007 (McCollum et al, 2010)
which were on educational timetabling, mainly focusing on university course and
examination timetabling.

The focus of ITC2011 was high school timetabling. The competition consisted
of three rounds. In the first round, competitors were invited to submit solutions
to all public instances with the goal of finding the best approach that improves
upon the best known solution for each instance. In the second round, a time limit
was imposed as 1000 nominal seconds based on the organisers’ computer. For
each of the hidden instances, ten runs with different random seeds were conducted
considering submission of stochastic algorithms. The solutions obtained from each
run for each instance were ranked and then averaged to determine the winner. In
the third round, the hidden instances were published and the competitors were
invited to submit the best solutions that they can achieve by any algorithm. The
same ranking strategy as the second round was used during this round to determine
the winner. The high school timetabling instances were obtained across the world
based on different education systems, where each problem came with its particular
format. A unified format was required. Post et al (2012) proposed and used a
common XML data format to represent a given problem instance of ITC2011 as
input.

2 ITC2011 website: http://www.utwente.nl/ctit/hstt/



3.1 Problem definition

The ITC2011 problem instances (Post et al, 2012) contain four components in-
cluding times, resources, events and constraints. A time component represents an
indivisible interval of time during which an event runs. A resource represents the
entity which attends an event. For example, teacher, room, student or class are re-
sources. An event is a meeting between resources. A constraint is the condition that
a solution must/should satisfy, if possible. The ITC2011 problem instances contain
15 types of constraints overall: assign resource, assign time, split events, distribute
split events, prefer resources, prefer times, avoid split assignments, spread events,
link events, avoid clashes, avoid unavailable times, limit idle times, cluster busy
times, limit busy times, limit workload (Post et al, 2012). In a standard fashion,
constraints are separated into hard and soft. Each constraint has a boolean vari-
able called Required to indicate whether the constraint is hard or soft. In the
ITC2011 competition, such constraints are not strictly hard but are simply much
more heavily penalised than the ’soft’ constraints.

A candidate solution is evaluated in terms of two components: feasibility and
preferences. The evaluation function computes the weighted hard and soft con-
straint violations for a given solution, where the weights are pre-defined in the
input file representing a given instance, as infeasibility and objective values, re-
spectively. The quality of a solution is denoted concatenating those two values as
in infeasibility − value.objective− value using sufficient number of digits in the
objective-value part and filling with 0s if necessary. For example, 10.000090 rep-
resents an infeasibility value of 10 and objective value of 90. For the comparison
of algorithms, a solution is considered to be better than another one, if it has a
smaller infeasibility value, or an equal infeasibility value and a smaller objective
value. Post et al (2012) provides a more detailed description of the high school
timetabling problem and ITC2011.

3.2 ITC2011 Dataset

As a total of twenty one high school timetabling problem instances were made
public during the first round of the competition. Eighteen hidden instances were
used during the second round of the competition which are then made public
and used for the third round of the competition. Table 1 summarises the main
characteristics of all problem instances obtained from different countries. These
characteristics give some rough idea about the size of each instance, yet do not
define a given problem fully as the importance of violating a given constraint is not
provided. The ITC2011 dataset can be downloaded from the competition website.

4 A Multistage Hyper-heuristic Search for High School Timetabling

A stochastic local search algorithm is implemented for solving ITC2011 high school
timetabling problems, based on the selection hyper-heuristic framework as de-
scribed in section 2.2 (Figure 1(b)), and as a time contract algorithm which termi-
nates after a given time, toverall for each instance. The approach consists of an ini-
tial solution construction phase followed by an extensive improvement phase using



Table 1 Characteristics of the problem instances used during the three rounds of the compe-
tition

Round 1
Instance - Country Times Teachers Rooms Classes Students Duration
BGHS98 - Australia 40 56 45 30 1564
SAHS96 - Australia 60 43 36 20 1876
TES99 - Australia 30 37 26 13 806
Instance1 - Brazil 25 8 3 75
Instance5 - Brazil 25 31 13 325
Instance7 - Brazil 25 33 20 500
StPaul - England 27 68 67 67 1227
ArtificialSchool - Finland 20 22 12 13 200
College - Finland 40 46 34 31 854
HighSchool - Finland 35 18 13 10 297
SecondarySchool - Finland 35 25 25 14 306
HighSchool1 - Greece 35 29 66 372
Patras 3rd HS 2010 - Greece 35 29 84 340
Preveza 3rd HS 2008 - Greece 35 29 68 340
Instance1 - Italy 36 13 3 133
GEPRO - Netherlands 44 132 80 44 846 2675
Kottenpark2005 - Netherlands 37 78 42 26 498 1272
Lewitt2009 - South Africa 148 19 2 16 838

Common to All Rounds
Instance4 - Brazil 25 23 12 300
Instance6 - Brazil 25 30 14 350
Kottenpark2003 - Netherlands 38 75 41 18 453 1203

Rounds 2 and 3
Instance2 - Brazil 25 14 6 150
Instance3 - Brazil 25 16 8 200
ElementarySchool - Finland 35 22 21 60 445
SecondarySchool2 - Finland 40 22 21 36 566
Aigio 1st HS 2010 - Greece 35 37 208 532
Instance4 - Italy 36 61 38 1101
Instance1 - Kosovo 62 101 63 1912
Kottenpark2005A - Netherlands 37 78 42 26 498 1272
Kottenpark2008 - Netherlands 40 81 11 34 1118
Kottenpark2009 - Netherlands 38 93 53 48 1301
Woodlands2009 - South Africa 42 40 30 1353
School - Spain 35 66 4 21 439
WesternGreeceUni3 - Greece 35 19 6 210
WesternGreeceUni4 - Greece 35 19 12 262
WesternGreeceUni5 - Greece 35 18 6 184

a multistage selection hyper-heuristic. The pseudocode of the algorithm is provided
in Figure 1. The initial construction of a complete solution is performed using the
general solver implemented by Jeff Kingston as the KHE library3. Note that the
construction phase often yields a solution in which many constraints are still vio-
lated requiring further enhancement. The improvement phase uses the remaining
time left (tremaining) after the construction of the initial solution which takes tinit

time. Until the given time limit is reached, the proposed approach switches be-
tween a diversification stage (stage A) which employs a selection hyper-heuristic
combining simple random heuristic selection with an adaptive move acceptance
and an intensification stage (stage B) which employs a strict hill climbing process
based on two heuristics (see section 2.2). Each stage takes a prefixed amount of
time (tMUstage and tHCstage). Moreover, stage A controls a threshold value ϵ to
relax the degree of consecutive worsening moves during the search process.

3 http://sydney.edu.au/engineering/it/~jeff/khe/



Algorithm 1 Pseudocode of the proposed multistage hyper-heuristic.

1: procedure HySST Solver ITC2011( toverall, tMUstage, tHCstage )
2: S ← create initial solution(); ◃ takes tinit time
3: tremaining ← toverall − tinit;
4: Sbest ← S;
5: thresholdList[] = {ϵ1, ϵ2, ..., ϵmaxLevel};
6: level← 1;
7: while tremaining notExceeded do
8: Sstage best ← S;
9: Sstage start ← S;
10: ϵ← thresholdList[level]; ◃ stage A entry using ϵ
11: while tMUstage notExceeded && tremaining notExceeded do
12: LLH ← SelectRandomlyFrom(MutationalHeuristics);
13: S′ ← ApplyHeuristic(LLH,S);
14: if S′ isBetterThan Sbest then
15: Sbest ← S′;
16: end if
17: if S′ isBetterThan Sstage best then
18: Sstage best ← S′;
19: end if
20: S = MoveAcceptance(S, S′, Sstage best, ϵ); ◃ threshold acceptance
21: end while
22: if Sstage best isNotBetterThan Sstage start then ◃ stage B entry
23: while tHCstage notExceeded && tremaining notExceeded do
24: LLH ← SelectRandomlyFrom(HillClimbers);
25: S′′ ← ApplyHeuristic(LLH,S);
26: if S′′ isBetterThan Sbest then
27: Sbest ← S′′;
28: end if
29: if S′′ isBetterThan Sstage best then
30: Sstage best ← S′′;
31: end if
32: S ← S′′; ◃ accept all moves
33: end while
34: end if
35: if Sstage best isNotBetterThan Sstage start then
36: if level == maxLevel then
37: S ← Sstage start;
38: level← 1;
39: else
40: level ++;
41: end if
42: end if
43: end while
44: return Sbest;
45: end procedure

The diversification stage makes use of eight mutational low level heuristics al-
lowing worsening moves to be accepted via a näıve move acceptance method. The
usefulness of restart in randomised search algorithms has already been known and
different approaches have been proposed (Kautz et al, 2002; Luby et al, 1993). In
this study, we use an adaptive threshold move acceptance method to enable ac-
ceptance of worsening moves and partial restarts. The threshold move acceptance
method accepts all improved solutions or a worsening solution with a quality bet-
ter than (1 + ϵ) of the quality of the best solution obtained during the search
process at a stage. The acceptance of a worsening solution in this manner can be



considered as a partial restart on a given solution. The degree of a partial restart
is indicated by level controlling the threshold value of ϵ. The larger the threshold
is, the lower the quality of solutions that get accepted. The diversification stage is
repeated within the time limits as long as the best solution obtained at the end
of a stage (Sstage best) is of better quality than the best solution in hand at the
start of a stage (Sstage start). In a way, the diversification stage is parametrised
depending on ϵ. Each diversification stage using a different ϵ is considered as a
different stage. If a diversification stage produces a worsening resultant solution,
then the intensification stage which makes use of two hill climbing heuristics kicks
in. If a solution cannot be improved even after an intensification stage, the ϵ value
is increased to allow even larger changes in the solution causing larger worsening in
its quality in the stage. We have used a discrete choice for the ϵ values and grabbed
the next (previous) item from an ordered fixed-size list of threshold values in order
to increase (decrease) its value. The minimum and maximum threshold values are
limited using the first and last items in the list.

4.1 Low level heuristics

Two selection hyper-heuristics are employed operating cooperatively and mixing
a set of 10 domain-specific low-level heuristics which are (mostly) fairly simple
moves such as moving a task to a different resource, or swaps of events.

During the diversification-stage, the selection hyper-heuristic manages eight
mutational move operators:

– MH1 swaps the start time of two randomly selected events. For example,
assuming that the Mathematics class meeting is assigned to the first time slot
on Monday and the History class meeting assigned to the third time slot on
Friday, after the swap operation, History is assigned to the first time slot on
Monday, while Mathematics to the third time slot on Friday.

– MH2 randomly selects an event and reschedules it to a random time. For
example, assuming that the Mathematics class meeting is assigned to the
first time slot on Monday, after applying this heuristic, Mathematics could be
rescheduled to the last time slot on Friday.

– MH3 swaps the time of two randomly chosen events. If both events have the
same duration, this heuristic operates like MH1, but if their durations are not
the same then the first chosen event is moved to the time slot right after the
second event ends. For example, when swapping a Mathematics class meeting
with a duration of one assigned to the first time slot on Friday with a History
class meeting with a duration of two assigned to the second time slot on Friday,
MH3 moves the Mathematics class to the third time slot on Friday, rather
than the second time slot, and moves the History class to the first time slot
on Friday.

– MH4 selects a random resource element within an event and modifies its as-
signment randomly. For example, assuming that Classroom1 is assigned for the
Physics meeting, after applying this heuristic, Classroom1 can be reassigned
for a meeting of Mathematics.

– MH5 swaps two random resources. For example, assuming that Classroom1
is assigned for Mathematics and Classroom2 is assigned for History, after



applying this heuristic, Classroom1 is assigned for the History lesson while
Classroom2 is assigned for the Mathematics lesson.

– MH6 reassigns a randomly chosen resource element of an event to a random re-
source. For example, assuming that Teacher1 is assigned to teachMathematics,
after applying this heuristic, Teacher1 gets replaced by Teacher8.

– MH7 merges two class meetings of the same event and adjacent in time. For
example, assuming that the Biology class meeting with a duration of two is
assigned to the first time slot on Monday and another Biology class meeting
with a duration of one is assigned to the third time slot on Monday, then after
applying the heuristic, the Biology class meetings are merged into a single
meeting with a duration of three starting at the first time slot on Monday.

– MH8 splits a randomly selected event requiring an assignment of a time block
consisting of multiple time slots into two events with separate times with a
fixed low probability of 0.1%. For example, assuming that a Biology class
meeting is randomly chosen which has an assignment of a time block of two
consecutive time slots, MH8 divides the teaching of Biology into two separate
(but still consecutive) time slots without changing their current assignments
allowing future moves to operate on those two meetings separately.

During the intensification-stage, the selection hyper-heuristic mixes two hill
climbing heuristics. Unlike most of the mutational operators, these two hill-climbing
operators are capable of making quite large changes to a solution. The intensification-
stage itself is slightly non-standard. One of the operators is designed using neigh-
bourhood structures based on ejection chains, while the other one is a type of first
improvement hill climbing operator. Both hill climbing operators attempt to make
moves which respect a particular constraint type, while hoping to improve upon
the other types of constraint violations, but might have a net worsening of the
objective, however, then such worsening moves are rejected. A hill climbing step is
always non-worsening and so can be repeatedly applied in a standard fashion until
a local minimum is reached. A notable difference from standard methods (such
as in memetic algorithms) is that we found that performance is better, if the hill
climbing is not applied whenever the mutational operators managed to improve
the best solution. We suspect that excessive use of the hill climbing somehow gives
over-optimised local solutions that afterwards lead to restricted movement within
the search space.

5 Results

We joined ITC2011 as the team HySST (Hyper-heuristic Search Strategies and
Timetabling) using the approach described in Section 4. At the end of the com-
petition, there were four additional teams who were able to submit solutions for
ITC2011: GOAL, HFT, Lectio and VAGOS. In this section, we present the results.

5.1 Multistage improvement using adaptive move acceptance

The multistage stochastic local search hyper-heuristic managing all low level heuris-
tics and using the adaptive move acceptance for partial restarts turned out to be
very effective in solving high school timetabling problems. If a small value of ϵ



does not provide any improvement in the solution quality in stage A, then its
value is increased which causes acceptance of lower quality solutions and escape
from a local optimum. Figure 2 provides a sample run on Instance4-Brazil using
ϵ ={0.001, 0.33, 1.99} ignoring the strict hill climbing process in stage B. The
plot shows that the reheats do lead to drastic drops in the cost of a solution, and
without the reheats, the search is clearly stuck. For example, the stage indicated
as level 1 in Figure 2 (red points) performing almost strict hill climbing based on
ϵ = 0.001 is eventually stuck and even the stage indicated as level 2 in which ϵ is
0.33 (green points) gets stuck. The blue points (level 3) in Figure 2 are a strong
relaxation where ϵ = 1.99, but do lead to later improvements.
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Fig. 2 Cost versus iteration plot of a sample run towards the end of the search process which
is obtained by applying the proposed approach to Instance4-Brazil using the threshold list of
{0.001, 0.33, 1.99}.

The hill climbing algorithms fail to produce an improving solution most of the
time and for most of the instances. For example, Figure 3 displays a sample run
where hill climbing yields no improvement in any stage. Yet, it has been observed
that the stage B based on hill climbing is useful for achieving high quality solu-
tions; in particular, for the Australian high school timetabling instances. At the
end of a run on those instances, the proposed approach using hill climbing yield
(even if slightly) better results than the one which does not use hill climbing. Fig-
ure 4 shows a sample run on the BGHS98 instance with and without hill climbing
(stage B). After the mutational heuristics are employed at a stage A, regardless of
the threshold level, hill climbing generates a non-worsening feasible solution. Un-
fortunately, this seems to occur once and no more improvement could be achieved
via the hill climbing algorithms.

5.2 Competition results

The proposed hyper-heuristic successfully improved upon the best previously known
solutions (BKNs) for the Australian high school timetabling instances of BGHS98,
SAHS96 and TES99 in the first round of the competition as shown in Table 2.

Table 3 summarises the results of Round 2 on the hidden instances. The column
labelled as “KHE” shows the average quality of ten initial solutions produced
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Fig. 3 Cost versus iteration plot of a sample run on WesternGreeceUni5.
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Fig. 4 Cost versus iteration plot for BGHS98 - Australia (a) with and (b) without hill climb-
ing.

Table 2 The performance of the HySST approach in Round 1. The quality (cost) of a solution
is indicated as feasibility-value.objective-value and BKN is the best previously known solution.

Dataset BKN HySST
BGHS98 - Australia 7.433 3.494
SAHS96 - Australia 23.044 8.052
TES99 - Australia 26.134 1.140

by the constructive approach of the KHE library. The best feasibility/objective
values over ten runs for each instance show that HySST performs the best on two
instances of Kottenpark2003 and Kottenpark2005A from Netherland and worst
on Instance1 - Kosovo. The results reveal that HFT and Lectio did not use the
default constructive approach and they obtained solutions of quality which are even
worse than the constructive approach achieves for 16 and 6 instances, respectively.
Since the GOAL team submitted the Brazilian timetabling instances they are not



considered for ranking for the first four instances. The table 3 provides, also, the
average ranks of each approach based on their ranking for each instance per run.
The proposed hyper-heuristic turns out to be the second best approach.

Table 3 The performance comparison of the HySST approach to the other competing ap-
proaches over 10 trials showing the best quality (cost) of a solution indicated as feasibility-
value.objective-value in Round 2. The best values are highlighted in bold.

Problem KHE HySST GOAL HFT Lectio
Instance2 3.20001 1.00069 1.00051 5.00183 0.00019
Instance3 3.50002 0.00096 0.00087 26.00264 0.00112
Instance4 - Brazil 39.10001 2.00238 16.00104 63.00225 1.00172
Instance6 11.60003 2.00229 4.00207 21.00423 0.00183
ElementarySchool 9.90000 0.00004 0.00003 29.00080 0.00003
SecondarySchool2 1.80017 0.00006 0.00000 28.01844 0.00014
Aigio 1st HS 2010 12.20008 0.00322 0.00006 45.03665 0.00653
Instance4 - Italy 32.60218 0.04012 0.00169 250.05966 0.00225
Instance1 1307.10005 1065.17431 38.09789 986.42437 274.04939
Kottenpark2003 4.40747 0.47560 0.87084 203.87920 34.55960
Kottenpark2005A 32.70292 26.35251 27.37026 393.40463 185.83973
Kottenpark2008 72.51725 32.71562 10.33034 INVALID 84.99999
Kottenpark2009 48.22637 33.99999 25.14030 337.99999 97.96060
Woodlands2009 13.90000 2.00047 2.00012 59.00336 0.00094
School 2.50039 0.01247 0.00597 63.13873 0.01927
WesternGreeceUni3 0.00024 0.00010 0.00005 14.00198 30.00002
WesternGreeceUni4 0.00044 0.00016 0.00005 233.00277 35.00070
WesternGreeceUni5 15.40000 0.00001 0.00000 9.00174 4.00013

Average ranking 2.23 1.18 3.64 2.32

Table 4 summarises the feasibility/objective values obtained by the five com-
petitors’ solvers including the developed hyper-heuristic (HySST) on the hidden
instances on Round three. The proposed hyper-heuristic produced the best results
in six including three ties out of eighteen instances. The GOAL team was not
considered for the Brazilian instances for ranking in this round as well. The table
4 provides, also, the average ranks of each competing approach in round 3. Our
selection hyper-heuristic became the second best approach.

6 Conclusion

Although heuristics are frequently tailored for a given problem domain, and in
some cases even for a given instance, the high level hyper-heuristic methodolo-
gies are more general and their components are reusable without requiring any
algorithmic modification while dealing with unseen instances. There is a growing
number of studies on such search algorithms. A selection type of hyper-heuristic
commonly manages the search process by controlling a set of low level heuris-
tics or move operators and their parameters. In this study, we present a stochastic
search method which is significantly enhanced by a selection hyper-heuristic under
a generalised iterated local search framework. The multistage approach switches
between diversification and intensification processes automatically and allows par-
tial restarts via a threshold move acceptance method whose parameter is also



Table 4 The best-of-runs performance comparison of the HySST approach to the other com-
peting approaches using the quality (cost) of a solution indicated as feasibility-value.objective-
value in Round 3. The best values are highlighted in bold.

Dataset HySST GOAL HFT Lectio VAGOS
Instance2 0.00044 0.00032 0.00082 0.00005 0.00026
Instance3 0.00084 0.00101 0.00212 0.00048 0.00047
Instance4 - Brazil 0.00176 1.00136 0.00205 0.00090 0.00078
Instance6 0.00150 0.00160 0.00347 0.00060 0.00074
ElementarySchool 0.00003 0.00003 0.00003 0.00003 ABSENT
SecondarySchool2 0.00000 0.00000 0.00576 0.00000 ABSENT
Aigio 1st HS 2010 0.00218 0.00000 0.00555 0.00076 ABSENT
Instance4 - Italy 0.00052 0.00061 0.08623 0.00078 ABSENT
Instance1 0.01721 0.00003 36.12987 274.00281 ABSENT
Kottenpark2003 0.03919 0.05355 1.88983 0.02918 ABSENT
Kottenpark2005A 15.28693 24.13930 36.36132 198.04845 ABSENT
Kottenpark2008 16.17720 10.27909 167.99999 129.69216 ABSENT
Kottenpark2009 18.08010 19.05590 148.99999 87.09440 ABSENT
Woodlands2009 0.00013 0.00012 8.00206 0.00019 ABSENT
School 0.00920 0.00441 1.08163 0.00762 ABSENT
WesternGreeceUni3 0.00007 0.00005 0.00032 30.00002 0.00005
WesternGreeceUni4 0.00009 0.00008 0.00142 35.00058 ABSENT
WesternGreeceUni5 0.00000 0.00000 0.00064 4.00001 0.00000

Average ranking 2.25 1.64 3.75 2.75 3.86

controlled by the proposed method. We joined the ITC2011 competition, as the
team “HySST” (Hyper-heuristic Search Strategies and Timetabling), with this
multistage selection hyper-heuristic.

A selection hyper-heuristic should be “fast to implement, requiring far less
expertise in either the problem domain or heuristic methods, and robust enough
to effectively handle a range of problems” (Cowling et al, 2001). The teams HFT,
Lectio and VAGOS attempted to develop tailored solutions in the given the limited
time, while the HySST team preferred implementing a hyper-heuristic. Ultimately,
our approach performed better than the approaches proposed by those teams,
though couldn’t beat the approach proposed by GOAL. However, the primary
point of our work is that it shows the utility of the hyper-heuristic in that it makes
better usage of the domain specific heuristics, and in particular demonstrates the
advantages of multistage methods with adaptive relaxations.
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classification of hyper-heuristics approaches. In: Gendreau M, Potvin JY (eds)
Handbook of Metaheuristics, International Series in Operations Research &
Management Science, vol 57, 2nd edn, Springer, chap 15, pp 449–468

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013)
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