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Abstract Educational timetabling problem is a chal-
lenging real world problem which has been of interest
to many researchers and practitioners. There are many

variants of this problem which mainly require schedul-
ing of events and resources under various constraints.
In this study, a curriculum based course timetabling

problem at Yeditepe University is described and an it-
erative selection hyper-heuristic is presented as a solu-
tion method. A selection hyper-heuristic as a high level

methodology operates on the space formed by a fixed
set of low level heuristics which operate directly on the
space of solutions. The move acceptance and heuristic

selection methods are the main components of a selec-
tion hyper-heuristic. The proposed hyper-heuristic in
this study combines a simulated annealing move accep-

tance method with a learning heuristic selection method
and manages a set of low level constraint oriented heuris-
tics. A key goal in hyper-heuristic research is to build

low cost methods which are general and can be reused
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on unseen problem instances as well as other problem
domains desirably with no additional human expert in-
tervention. Hence, the proposed method is additionally

applied to a high school timetabling problem, as well
as six other problem domains from a hyper-heuristic
benchmark to test its level of generality. The empirical

results show that our easy-to-implement hyper-heuristic
is effective in solving the Yeditepe course timetabling
problem. Moreover, being sufficiently general, it deliv-

ers a reasonable performance across different problem
domains.

Keywords Heuristic · Hyper-heuristic · Timetabling ·
Computational Design

1 Introduction

A hyper-heuristic is a high level search methodology
which performs a search over the space of heuristics
rather than the space of solutions for solving hard com-

putational problems (Burke et al, 2013). The idea of
combining different heuristics (neighbourhood opera-
tors) with the goal of exploiting their strengths dates

back to the early 1960s (Fisher and Thompson, 1963;
Crowston et al, 1963). Since then, there has been a
growing interest into hyper-heuristics. A recent theo-

retical study shows that mixing heuristics could lead
to exponentially faster search than using each stan-
dalone heuristic on some benchmark functions (Lehre

and Özcan, 2013). Hyper-heuristics that control and
mix a fixed set of low level heuristics are referred to
as selection hyper-heuristics. A selection heuristic gen-

erally combines a heuristic selection and move accep-
tance methods under an iterative framework. At each
step, a low level heuristic is used to modify a solution

in hand, then a decision is made whether to accept or
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reject the new solution. Almost all previously proposed

selection hyper-heuristics are designed respecting the
concept of a domain barrier which separates the hyper-
heuristic from the problem domain containing the low

level heuristics (Cowling et al, 2001) as illustrated in
Figure 1. Traditionally, this barrier prohibits any prob-
lem domain specific information to pass through to the

hyper-heuristic level. This type of layered and modular
approach to the design of automated search methodolo-
gies supports the development of more general methods

than currently there exist, which are applicable to un-
seen instances from a single problem domain or even
different problem domains. Moreover, reuse of algorith-

mic components becomes possible.
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Fig. 1 A selection hyper-heuristic framework.

Educational timetabling problem is a challenging

real-world combinatorial optimisation problem which
is known to be NP-hard (Even et al, 1976; de Werra,
1997). There are different types of educational timeta-

bling problems, such as university course timetabling
and high school timetabling which have been of inter-
est to many researchers and practitioners. This study

mainly concerns university course timetabling (Lewis,
2007; Lewis et al, 2007; Erben and Keppler, 1996; Socha
et al, 2002). Two subclasses of university course time-

tabling problems can be identified in the literature: (i)
post-enrolment problems in which the student enrol-
ment is known, (ii) curriculum based problems in which

the student enrolment is not known, but curriculums
of the students are available prior to the timetabling
process (McCollum et al, 2010). A solution to a given

university course timetabling problem requires schedul-
ing of courses considering limited resources subject to a
set of hard and soft constraints. In most of the cases,

a feasible solution which satisfies the hard constraints

is sought. The soft constraints represent preferences. A

solution method attempts to satisfy as many of the soft
constraints as possible.

In this study, a curriculum based university course
timetabling problem constantly dealt with at Yeditepe
University, Faculty of Engineering and Architecture,

Computer Engineering Department is introduced. Ad-
ditionally, a selection hyper-heuristic solution to the
problem, which combines a fast reacting greedy and

gradient heuristic selection mechanism with a simulated
annealing is described. We compared the performances
of different heuristic selection methods used within a

selection hyper-heuristic framework. In order to show
that the proposed hyper-heuristic is sufficiently general
and can be applied to the other problem domains with-

out requiring any change, it is implemented as an ex-
tension to a public software library and tested on a high
school timetabling problem as well as a hyper-heuristic

benchmark. The empirical results indeed show that our
hyper-heuristic is adaptive and general, performing bet-
ter than some previously proposed approaches on uni-

versity course timetabling problem, high school timeta-
bling problem and six other domains from the bench-
mark. Designing an effective and general selection hyper-

heuristic approach or its component with less number
of parameters to tune or control has always been of in-
terest. The proposed heuristic selection method has no

parameter to set.

An earlier version of this research first appeared in
the UKCI conference (Kalender et al, 2012). Following
the conference, the editors issued an invitation to sub-

mit extended versions of the conference papers to this
special issue. This paper is the result of that process.
The performance analysis of our approach on course

timetabling and hyper-heuristic benchmark domains is
revised and we report additional results obtained from
testing our hyper-heuristic on a new domain, namely

high school timetabling.

Section 2 provides a brief overview of the selection

hyper-heuristics that relates to the design of our so-
lution method and previous approaches used to solve
university course timetabling problem. Section 3 de-

scribes the curriculum-based course timetabling prob-
lem at Yeditepe University and the developed selec-
tion hyper-heuristic framework including all algorith-

mic components and low level heuristics for solving
it. Section 4 summarises initial set of experimental re-
sults and compares the performance of different hyper-

heuristics including the proposed one on Yeditepe course
timetabling. Section 5 covers the rest of the experi-
mental results discussing the performance of the pro-

posed hyper-heuristic on high school timetabling and
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other benchmark problem domains. Finally, Section 6

presents the conclusions.

2 Related Work

2.1 Selection Hyper-heuristics

There are two main types of hyper-heuristic methodolo-
gies in the literature: methodologies to select and gener-
ate heuristics (Burke et al, 2010). This study focuses on

an iterative selection hyper-heuristic framework based
on a single point search consisting of two stages: heuris-
tic selection and move acceptance (Özcan et al, 2008;

Cowling et al, 2001). Firstly, a hyper-heuristic under
such a framework attempts to improve a solution in
hand by selecting and applying an appropriate heuris-

tic from a fixed set of low level heuristics. This stage
yields a new solution. Then, a decision is made whether
to accept or reject this new solution. The search process

continues iteratively until the termination criteria are
satisfied. A selection hyper-heuristic controls and mixes
a set of perturbative low level heuristics, each process-

ing and returning a complete solution when invoked
In this part, we discuss some selection hyper-heuristics
and their components from the literature that relates

to the design of our hyper-heuristic. A selection hyper-
heuristic will be denoted as heuristic selection−move
acceptance from this point onward.

Cowling et al (2001) investigated the performance
of many simple selection hyper-heuristic components on
a scheduling problem. The heuristic selection methods

covered in this study include simple random, random
descent, random permutation, random permutation de-
scent, greedy and choice function. Greedy applies all

heuristics to the current candidate solution and chooses
the one that achieves the best quality. Choice function
utilises a mechanism that scores each heuristic based

on its individual performance, pair-wise successive per-
formance and the duration since the last time a heuris-
tic was invoked. At each step, choice function selects

a heuristic with the maximum score and updates the
relevant information for the chosen heuristic after its
application to the current solution. A hyper-heuristic

either utilises a learning mechanism or operates with-
out any learning at all (Burke et al, 2010). Both greedy
and choice function are online learning methods, since

they get feedback during the search process. The mem-
ory length of choice function is determined by means
of the limits on the score values. A larger range for

the score indicates a longer term memory as compared
to a lower range. On the other hand, greedy has the
shortest memory and gets instantaneous feedback dur-

ing the search process, then forgets this feedback in

the following step. Cowling et al (2001) combined these

heuristic selection methods with two move acceptance
strategies including accept all moves and accept only
improving moves. Cowling et al (2001) reported that

choice function−accept all moves is the most promis-
ing hyper-heuristic. The successful performance of the
choice function heuristic selection method has also been

confirmed by the other studies (Özcan et al, 2008; Burke
et al, 2012; Bilgin et al, 2007).

There are different types of move acceptance meth-
ods used within selection hyper-heuristics in the litera-

ture (Burke et al, 2013). Mostly, those methods accept
all improving moves, but they differ at how they treat
non-improving moves. For example, simulated annea-

ling move acceptance method accepts non-improving
moves with a probability provided in Equation 1.

pt = e
− ∆f

∆F (1− t
T

) (1)

where ∆f is the quality change at step t, T is the max-
imum number of steps, ∆F is an expected range for

the maximum quality change in a solution after ap-
plying a heuristic. (Bai and Kendall, 2005; Bai et al,
2007b; Bilgin et al, 2007) reported the success of simu-

lated annealing as a move acceptance on the shelf allo-
cation and examination timetabling problems, respec-
tively. Moreover, Bilgin et al (2007) tested 36 different

hyper-heuristics by pairing up a range of heuristic se-
lection and move acceptance methods over a set of ex-
amination timetabling problem instances. The results

indicate the success of the choice function−simulated
annealing hyper-heuristic.

2.1.1 Hyper-heuristics Flexible Framework

Hyperion (Swan et al, 2011) and Hyper-heuristics Flex-
ible Framework (Hyflex) (Ochoa et al, 2012) are re-
cent software libraries which are made publicly avail-

able for rapid development of hyper-heuristics (as well
as metaheuristics) and research. The Java Hyflex imple-
mentation provides an object-oriented hyper-heuristic
framework, having support for six minimisation prob-

lem domains of Boolean Satisfiability (SAT), One Di-
mensional Bin Packing (BP), Permutation Flow Shop
(PFS), Personnel Scheduling (PS), Travelling Salesman

Problem (TSP) and Vehicle Routing Problem (VRP).
Hyflex strictly imposes the domain barrier and does
not give user any access to the problem domain depen-

dant information (see Figure 1). Hyflex was recently
used at the Cross-Domain Heuristic Search Challenge
(CHeSC 2011) 1. The goal of this competition was de-

termining the best selection hyper-heuristic with the

1 http://www.asap.cs.nott.ac.uk/chesc2011/
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best mean performance across thirty problem instances,

five from each of the six problem domains. 20 com-
petitors reached the finals in the competition. CHeSC
2011, including the Hyflex implementation and compet-

ing hyper-heuristics, currently serves as a benchmark to
compare the performance of selection hyper-heuristics.

Hyflex provides implementation of each domain with
a set of low level heuristics. Hyflex low level heuristics
are classified as mutational (MU), hill climbing (HC),

ruin and re-create (RC) and crossover (XO) heuristics.
All heuristics are perturbative. A mutational heuris-
tic returns as solution after processing a given solution

with no quality guarantee, while a hill climbing heuris-
tic always returns a non-worsening solution, even if the
returned solution is the same as the input. Ruin and re-

create heuristic first creates a partial solution based on
a given solution and then rebuild a complete solution.
The crossover low level heuristics take two solutions

as a parameter, combine them and return a new solu-
tion. The number of the low level heuristics for each
heuristic/operator type for each problem domain im-

plemented in Hyflex is summarised in Table 1. We use
OPid to denote the idth low level heuristic of type OP.
For example, MU0 and MU5 for SAT are the 0th and

5th mutational low level heuristics in the SAT domain.

Table 1 The number of different types of low level heuristics
{mutation (MU), hill climbing (HC), ruin and re-create (RC),
crossover (XO)} used in each problem domain.

Domain MU HC RC XO Total
SAT 6 2 1 2 11
BP 3 2 2 1 8
PS 1 5 3 3 12
PFS 5 4 2 4 15
TSP 5 3 1 4 13
VRP 3 3 2 2 10

2.2 University Course and High School Timetabling
Problems

Due to the intrinsic difficulty of educational timetabling

problems (Even et al, 1976; de Werra, 1997), the exact
solvers generally fail to produce high quality solutions
in a given time. Hence, alternative approaches have

been used to solve university course and high school
timetabling problems, ranging from single point based
search methods, including simulated annealing and tabu

search to population based methods, such as, evolution-
ary algorithms and ant colony optimisation. High school
timetabling is different from university course timeta-

bling. The main difference is that the timetable for a

student is more packed in high schools and students

are fully occupied throughout a day. Consequently, the
shared resources are more loaded.

Abramson (1991) employed simulated annealing for
course timetabling. Colorni et al (1992) investigated the

performances of genetic algorithm, simulated annealing
and tabu search. They observed that memetic algo-
rithm combining genetic algorithm and local search per-

formed better. Hertz (1992) utilised tabu search. Erben
and Keppler (1996) employed genetic algorithms with
smart operators to generate a weekly timetable with

a heavily constraint problem instance. Binary encod-
ing is used as a representation scheme. Schaerf (1996)
used tabu search to solve high-school course timeta-

bling problems and developed an interactive interface.
Paechter et al (1998) used an evolutionary algorithm
and developed a user interactive tool which allowed

users to visualise violated objectives and modify the
objectives during a run for solving Napier University
timetabling problem. Abramson et al (1999) tested dif-

ferent cooling schedules within simulated annealing for
course timetabling. Filho et al (2001) formulated time-
tabling problem as a clustering problem and applied a

constructive genetic algorithm for solving timetabling
problems of public schools in Brazil. Socha et al (2002)
described a max-min ant system for solving course time-

tabling problem and compared their approach to a ran-
dom restart local search approach using eleven bench-
mark problem instances.

Alkan and Özcan (2003) hybridised a violation di-
rected hierarchical hill climbing method (VDHC) using
constraint oriented neighbourhood heuristics with ge-

netic algorithms for solving the university course time-
tabling problem. Similarly, the constraint oriented neigh-
bourhood heuristics were found to be effective when

used as a part of a hybrid framework in Özcan et al
(2012) for solving a variant of a high school course time-
tabling problem. Burke et al (2003) used a combina-

tion of tabu search and reinforcement learning scheme
as a heuristic selector and tested their hyper-heuristic
over different timetabling problems. Burke et al (2006)

employed a case-based reasoning approach as a hyper-
heuristic using different measures for similarity of in-
stances for solving course timetabling problems. Burke

et al (2003) used tabu search hyper-heuristic to build
solutions using graph colouring heuristics for solving
timetabling problems.

2.2.1 International Timetabling Competition

Determining the state-of-the-art method among mod-
ern approaches for a given timetabling problem and

providing a real world benchmark for comparison of
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approaches are the main deriving ideas behind the In-

ternational Timetabling Competition series. ITC2007
(McCollum et al, 2010) hosted by PATAT and WATT2

was on educational timetabling. Recently, the Third

International Timetabling Competition (ITC2011)3 on
high school timetabling with three different rounds was
organised. In this study, we test our hyper-heuristic on

the high school timetabling problem instances obtained
used in the second round of this competition. More-
over, we compare its performance to the competing al-

gorithms. The ITC2011 problem instances consist of (i)
times which are indivisible time intervals (ii) resources
that attend the events (iii) events which indicate the

meetings between resources and 15 types of (iv) con-
straints, including assign resource, assign time, split
events, distribute split events, prefer resources, prefer

times, avoid split assignments, spread events, link events,
avoid clashes, avoid unavailable times, limit idle times,
cluster busy times, limit busy times, limit workload (Post
et al, 2012). Each constraint could be defined as hard

or soft for a given instance. In the ITC2011 competi-
tion, hard constraints violations are relaxed and they
are simply much more heavily penalised than the ’soft’

constraints based on weights.

3 A Selection Hyper-heuristic Framework for
Solving a Course Timetabling Problem

3.1 Problem Description

Every year, Computer Engineering Department (and
so the other departments as well) at Yeditepe Univer-
sity, Faculty of Engineering and Architecture deals with

a curriculum-based course timetabling problem. Each
student has to follow a curriculum at Yeditepe Univer-
sity. Since, time to time some changes are made to the

curriculums, there might be a cohort of students with
different curriculums to follow based on the existing
courses at a given time. A curriculum consists of eight

terms and there are on average six courses per term
for a student to register. In general, a student regis-
ters to all the courses at a given term, unless the stu-

dent has failed from some previous courses. The latter
type of students are not considered during the timeta-
bling process. Some courses have prerequisites and/or

co-requisites. The timetables are produced for the reg-
ular students. A course consists of lectures, problem
solving and/or laboratory session meetings which could

take place at different locations (rooms). It is always de-

2 http://www.cs.qub.ac.uk/itc2007/
3 ITC2011 website: http://www.utwente.nl/ctit/hstt/

sirable that the lab or problem solving sessions are after

the lecture hours for a given course.
Lecturers handle the teaching, while laboratory and

problem solving sessions could be handled by a lecturer

or a teaching assistant or both. There are full time and
part time lecturers. The requests of part time lectur-
ers regarding the time that they teach have to be ac-

commodated. There are some courses which have to
be taken by all students across the university and by
all engineering students and by all students at a de-

partment. Similarly, there are optional courses open to
all students in the university, or within the faculty, or
within a department. Moreover, the optional courses are

part of the curriculum appearing in different terms. A
lecture, problem solving or laboratory session meeting
takes 1, 2 or 3 hours, respectively. The university im-

poses a template for the other units to follow to make
the timetabling process easier as illustrated Figure 2.
Only certain slots can be allocated for the meetings of
1 and 2 hour duration. 3 hour meetings have to con-

sist of (2+1, 1+2) blocks. The lecturers are allowed to
provide preference for their lectures, which is taken seri-
ously. In general, the teaching assistants are themselves

postgraduate students taking other courses, hence their
teaching/tutorial hours must not overlap with the lec-
tures that they will attend.

After the university sets the times for the university-
wide compulsory courses, the faculty does the same and
passes the information to the departments. Then the

departments have to deal with the timetabling of the
remaining courses and the required resources. The fol-
lowing hard constraints are identified:

– C01: The timetable template provided by the uni-
versity must be respected while scheduling meetings

(see Figure 2). 2-hour blocks cannot be divided into
a 1-hour block.

– C02: Course meetings can be assigned to predefined

time-slots.
– C03: A set of courses can appear as a part of multi-

ple terms in the curriculum. This is to accommodate

optional courses.
– C04: Course meetings can be enforced to take place

in the same day or in different days.

– C05: (w1) Meetings of a lecturer must not overlap.
– C06: (w2) Lecturers can provide their weekly avail-

ability (or unavailability) for teaching.

– C07: (w3) The courses in a given term of the cur-
riculum must not overlap.

– C08: (w4) Certain time-slots from the weekly time-

table can be excluded during the timetabling pro-
cess of the courses for a term. One of the uses of this
constraint is to arrange a common time slot for de-

partmental or faculty meetings. The aim is to get as
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MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

09:00-10:50

11:00-11:50

12:00-12:50

13:00-13:50

14:00-15:50

16:00-16:50

17:00-18:50

Fig. 2 Yeditepe University course timetabling template.

many lecturers free of teaching during those times
as possible, and so it is a soft constraint.

– C09: (w5) A room with a suitable capacity must be
allocated for each course without any overlap.

– C10: (w6) The equipment required by a course must

be allocated without any overlap.

Soft constraints are as follows:

– C11: (w7) The duration between the meetings of a
lecturer on a day should be within predefined mini-

mum and maximum limits.
– C12: (w8) The duration between the meetings on a

day for a regular student (studying term) should be

within predefined minimum and maximum limits.
– C13: (w9) The total number of meeting hours dur-

ing when a lecturer teaches on a day cannot exceed

a predetermined maximum value.
– C14: (w10) The total number of meeting hours that

a regular student (studying a term) attends on a

day should be within predefined minimum and max-
imum limits.

– C15: (w11) The total number of courses scheduled

for a lecturer on a day cannot exceed a predeter-
mined maximum value.

– C16: (w12) The order of between different course

meetings can be defined.

The constraints C01-C04 are handled through repre-
sentation and restricting the value assignment to each

course and so does not require any further attention
during the search process. Solving the course timeta-
bling problem requires finding a high quality timetable

with the minimum number of constraint violations, if
possible with no violations. The objective function (eval-
uation/cost) used in this study takes the weighted av-

erage of the total number of constraint violations and
treats all constraints as if they were the same, but pun-
ishes the hard constraint violations heavier than the

soft constraint violations:

objectiveFunction(T ) =
∑
∀i

wigi(T ) (2)

where T represents a candidate timetable, wi indicates

the weight associated to constraint i, gi indicates the

number of constraint violations of constraint i for the

given timetable. The goal is to find a timetable which
minimises the cost computed using the objective func-
tion. The cost reflects the quality of a given timetable.

Lower the cost, better the quality of a timetable gets.
The minimum possible cost occur whenever a perfect
solution is obtained with an objective value of 0, in-

dicating that there are no constraint violations. The
weight values used during the experiments are provided
in Table 2.

Table 2 Conflict weight values of the hard and soft con-
straints

w1 w2 w3 w4 w5 w6

5 5 5 5 3 3

w7 w8 w9 w10 w11 w12

1 1 3 3 1 1.9

3.2 A Selection Hyper-heuristic Framework Using
Greedy Gradient Heuristic Selection

In this study, we present a learning hyper-heuristic for

solving curriculum-based course timetabling problem at
Yeditepe University. In most of the previous applica-
tions of reinforcement learning in hyper-heuristics, a

utility value is increased as a reward mechanism and
decreased for punishment (Nareyek, 2004; Bai et al,
2007a). It has also been observed that the memory

length affects the performance. The proposed hyper-
heuristic framework is somewhat adapts a similar strat-
egy. Instead of a predefined scoring mechanism, the cost

change in between the old and current solution gener-
ated after the application of the selected heuristic is
used as a utility value. Whenever the utility value of

each heuristic is 0, a greedy-like strategy is invoked (Al-
gorithm 1, steps 2, 3 and 4). Each heuristic is called one
by one using the same solution at hand and the cost

change is recorded as a utility value of the correspond-
ing heuristic. If a heuristic causes a worsening move,
its utility value is set to 0. Then, a heuristic is chosen

based on the scores (Algorithm 1, steps 6 and 7). In this
study, max function which chooses an option with the
highest value and in this case, chooses a heuristic with

the maximum score is employed. After applying the se-
lected heuristic, its score is updated right away using
the cost change. This strategy neither makes use of a

periodic update of scores as in (Bai et al, 2007b), nor
forgets the scores as soon as a heuristic is selected as in
a greedy method (Cowling et al, 2001). In the case when

one heuristic has a non-zero value, it will be selected as



A Greedy Gradient-Simulated Annealing Selection Hyper-heuristic 7

long as the solution improves and the hyper-heuristic

will act like a gradient hill climber.

During the heuristic selection process, utility values
of a subset of heuristics returned by the max function

might be the same, necessitating a tie breaking strat-
egy. Two different cases emerge: a non-zero tie score
for some heuristics or all 0s. A random selection is per-

formed in the former case. For the latter case, a problem
dependent feature is implemented. Another utility ar-
ray is maintained to keep track of the number of viola-

tions due to each constraint type. Again, max function
is used for determining the highest number of violations
and the corresponding constraint type. Hence, the cor-

responding heuristic is invoked. Then, the utility values
of the selected heuristic are updated in both arrays us-
ing the new solution.

Algorithm 1 Pseudocode of the greedy gradient
heuristic selection method
1: procedure GG Select Heuristic(scores, current solu-

tion)
2: if all heuristic scores are 0 then
3: invoke each heuristic using the current solution
4: record cost change as the score for each heuristic
5: reset the score of a heuristic to 0 if cost increases
6: end if
7: choose a heuristic based on the scores
8: in case of a tie, use a tie breaking strategy
9: return (chosen heuristic id for invocation)
10: end procedure

A hyper-heuristic framework is implemented using

the simulated annealing move acceptance method which
allows non-improving moves based on equation 1 (see
section 2.1). In some problem domains, the maximum

(expected) change in the quality of solutions are not
easy to be estimated. In such cases, ∆F is set to a fac-
tor of the cost of the best solution in hand. There is

strong empirical evidence showing that the choice of a
selection hyper-heuristic components influences its per-
formance (Özcan et al, 2008; Özcan et al, 2006). In this

study, the performances of different heuristic selection
methods including the greedy gradient under the sim-
ulated annealing based selection hyper-heuristic frame-

work are investigated. This framework contains a fixed
set of constraint based neighbourhood operators as low
level heuristics, similar to the ones designed in Alkan

and Özcan (2003), and Özcan and Ersoy (2005). Each
low level heuristic attempts to improve upon a corre-
sponding constraint. An event (course) causing the rele-

vant violation is rescheduled to the best timeslot which
reduces the overall cost at most. For example, if the
low level heuristic handling C15 violation is selected,

then one of the events (courses) causing that violation is

randomly chosen and rescheduled to the timeslot which

produces the least cost. Selection hyper-heuristics work
as a high level strategy to manage those low level heuris-
tics. They aim to find a solution attempting to minimise

the hard and soft constraint violations, simultaneously.

4 Experimental Results for the Yeditepe
Course Timetabling Problem

The performance of four selection hyper-heuristics are

investigated over eight instances (rp1-8) which are ran-
domly generated based on the Yeditepe course time-
tabling problem and a real instance (cse). The exper-

iments were performed on a PC P4 Processor 3 GHz,
512 RAM. A run terminates after solution found or
time limit reached 600 seconds. Figure 3 summarises

the performance of each hyper-heuristic based on 50
runs for each instance. As evaluation measure success
rate is used: s.r. = (number of runs for which the perfect

solution is obtained)/50. The rankings of the different
hyper-heuristics in Figure 3 are calculated according to
the success rates, the average best cost and the average

best duration values of the tests. Lower the ranking,
better a hyper-heuristic is.

The results show that greedy gradient, in the over-
all, performs better than simple random (SR), greedy
(GR) and choice function (CF) heuristic selection meth-

ods as a part of a selection hyper-heuristic embedding
simulated annealing (SA) as a move acceptance method.
It is successful in particular when the problem size grows.

For the cse instance, all hyper-heuristics perform sim-
ilarly. Our ultimate goal was to be able to solve the
university timetabling problem for the whole university

when the solver was designed. The results show that
greedy gradient−simulated annealing (GG−SA) hyper-
heuristic is promising in this respect.

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

rp1 rp2 rp3 rp4 rp5 rp6 rp7 rp8 cse avr

ra
n
k
in
g

instance

GG

CF

SR

GR

Fig. 3 Performance ranking of each hyper-heuristic com-
bined with the SA move acceptance over the Yeditepe course
timetabling instances



8 Murat Kalender et al.

Table 3 provides a pairwise performance comparison

of two top ranking selection hyper-heuristics, the greedy
gradient−simulated annealing (GG−SA) and the choice
function−simulated annealing (CF−SA) based on aver-

age cost using the Wilcoxon singed-rank test on the
Yeditepe course timetabling instances. The following
notation is used: Given A versus B, > (≥) denotes that

A performs (slightly) better than B, since this perfor-
mance variation is (not) statistically significant within a
95% confidence level, while≃ indicates that they deliver

the same performance. Greedy gradient−simulated an-
nealing performs significantly better than choice func-
tion −simulated annealing on three instances: rp4, rp6,

rp7. Greedy gradient−simulated annealing is slightly
better than choice function−simulated annealing for
rp1 and cse, while they perform the same for the rest

of the instances.

Table 3 Average performance comparison between GG−SA
and CF−SA.

label GG−SA vs. CF−SA
rp1 GG−SA ≥ CF−SA
rp2 GG−SA ≃ CF−SA
rp3 GG−SA ≃ CF−SA
rp4 GG−SA > CF−SA
rp5 GG−SA ≃ CF−SA
rp6 GG−SA > CF−SA
rp7 GG−SA > CF−SA
rp8 GG−SA ≃ CF−SA
cse GG−SA ≥ CF−SA

In most of the cases, the hyper-heuristics rapidly im-
prove the quality of the solutions in hand. After a while,
the improvement process slows down as the approach

reaches a local optimum. Still, it seems that the simula-
ted annealing acceptance works well as a part of the im-
plemented hyper-heuristics, allowing further improve-

ment in time until we get the perfect solution where
all the constraints are satisfied. This behaviour is illus-
trated in Figure 4. The figure shows the average best

cost over 50 runs versus the time in seconds for greedy
gradient−simulated annealing and choice function− sim-
ulated annealing on the rp8 instance.

5 Performance of Greedy Gradient−Simulated
Annealing on the Other Problem Domains

The experimental results on the Yeditepe course time-

tabling problem indicates the success of greedy gradient
−simulated annealing. This section provides the results
of the experiments in which we have tested the perfor-

mance of this hyper-heuristic on high school timeta-

 

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600

C
o

st

Time (sec)

GG-SA

CF-SA

Fig. 4 Average best cost (over 50 runs) versus time for the
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bling as well as six other problem domains from the
CHeSC 2011 benchmark.

5.1 High School Timetabling

Greedy gradient−simulated annealing is tested on high

school timetabling problem instances from the ITC2011
dataset which contains a variety of instances obtained
from different countries across the world. A solution is

evaluated using concatenation of infeasibility and ob-
jective values (infeasibility − value.objective− value)
as cost which represent the weighted hard and soft

constraint violations, respectively. For example, a cost
value of 63.00225 indicates an infeasibility value of 63
and objective value of 225. In the second round of the

competition, each algorithm was given 1000 nominal
seconds with respect to the organisers’ computer. Ten
trials were performed using each algorithm for each in-

stance, and then algorithms were ranked for each re-
sult. The average ranking was used to determine the
winner. Four solvers, each identified by the name of the

designing team were submitted to the ITC2011 com-
petition (Post et al, 2012). HySST (Kheiri et al, 2012)
applied a multi-stage hyper-heuristic managing a set of

mutational heuristics and two hill climbers. This selec-
tion hyper-heuristic incorporates random choice for the
heuristic selection and an adaptive threshold move ac-

ceptance method. HFT (Domrös and Homberger, 2012)
used an evolutionary algorithm as a solution method.
Lectio (Sørensen et al, 2012) employed an approach

based on adaptive large neighbourhood search. GOAL
(Fonseca et al, 2012) combined iterated local search
based on multiple neighbourhood operators with simu-

lated annealing, which turned out to be the winner of
the second round of the competition.

In this study, greedy gradient−simulated annealing

manages the same set of seven mutational low level
heuristics as used by HySST (Kheiri et al, 2012). A
low level heuristic swaps, combines, splits or reschedules

events, times or resources, randomly. The ∆F value in
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the simulated annealing move acceptance component of

our hyper-heuristic is set to 0.1 of the cost of the best
solution in hand if there is any hard constraint viola-
tion. This value is set to 0.0001, if the best solution

contains only soft constraint violations, for which the
infeasibility value is 0.

Based on the same performance measurement and

rules of the competition, greedy gradient−simulated an-
nealing ranks the second among the competing algo-
rithms as illustrated in Table 5.1. GOAL is still the

best ranking approach generating the best solutions for
twelve instances. Greedy gradient−simulated annealing
achieves the best results for the ElementarySchool -

Finland and Kottenpark2003 - Netherlands instances.
Moreover, the Wilcoxon singed-rank test reveals that
greedy gradient−simulated annealing performs signifi-

cantly better than GOAL and HySST on average within
a confidence interval of 95% on four instances of In-
stance2 - Brazil, Instance6 - Brazil, ElementarySchool -

Finland and Woodlands2009 - South Africa. This supe-
rior performance over HySST is observed on Instance1
- Kosovo and on Instance4 - Brazil over GOAL. The
average performance of the GG−SA hyper-heuristic is

slightly better on Kottenpark2003 - Netherlands than
GOAL, and HySST on SecondarySchool2 - Finland, In-
stance4 - Brazil and Kottenpark2003 - Netherlands.

5.2 CHeSC 2011 Benchmark

Greedy gradient−simulated annealing is further tested
on Hyflex problem domains, used in an earlier competi-

tion leading to the main event and CHeSC 2011. In both
competitions, a hyper-heuristic was given ten nominal
minutes to run. All algorithms were then ranked us-

ing the Formula1 scoring system. In this system, the
best performing hyper-heuristic for a given instance re-
ceives an award of 10 points, while the second one gets

8, and the next one gets 6, 5, 4, 3, 2, 1 in that or-
der and then all the remaining approaches get zero
point. These points are accumulated as a score for a

hyper-heuristic over all instances from all problem do-
mains. The proposed hyper-heuristic is implemented as
an extension to Hyflex. In the simulated annealing ac-

ceptance method, the value of ∆F is fixed as 0.01 of
the cost of the best solution in hand, since Hyflex does
not have a feature which supports the computation of

maximum (expected) change in the quality of solutions.
Our hyper-heuristic operates under a single point based
search framework, and so ignores all crossover opera-

tors during the search process for any given problem.
We use Formula1 scoring system for comparing the per-
formance of our hyper-heuristic against the other algo-

rithms in both competitions.

5.2.1 Comparison to the mock competition

hyper-heuristics

Prior to the actual competition of CHeSC 2011, the or-

ganisers arranged a mock competition using eight hyper-
heuristics (HH1-HH8). The results of this mock compe-
tition were provided for the competitors to form a base-

line and assess the performance of their algorithms. The
mock competition hyper-heuristics were designed based
on the previously proposed techniques from the litera-

ture. All hyper-heuristics were allowed to run a single
trial on 10 instances from each problem domain, includ-
ing boolean satisfiability (SAT), one dimensional bin

packing (BP), permutation flow shop (PFS) and per-
sonnel scheduling (PS), given ten nominal minutes as
the time limit. Then eight hyper-heuristics were ranked

based on the Formula1 scoring system. The maximum
overall score that a hyper-heuristic can achieve was 400.
More details on the mock competition can be found at

the CHeSC 2011 website.

In the SAT problem domain, our hyper-heuristic

produces the best results in 3 out of 10 instances and
there is a tie in 1 instance when compared to the mock
competition hyper-heuristics. It is the second best hyper-

heuristic based on the Formula1 scoring system in this
domain. In the bin packing problem domain, our hyper-
heuristic performs still well and produces the best re-

sults in 2 instances, but in the personnel scheduling
problem, its performance is not as good as on the other
problem domains. In permutation flow shop, the pro-

posed hyper-heuristic produces the best results in 2 in-
stances. Figure 5 provides the individual and overall
ranking of our hyper-heuristic for each problem domain
based on Formula1 scoring system and overall the pro-

posed hyper-heuristic ranks the third with a total score
of 211.5.
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Table 4 The characteristics of the ITC2011 dataset (where t.: times, T.: number of teachers, R.: number of rooms, C.: number
of classes, S.: number of students, dur.: duration) and performance comparison of GG−SA to the other competing approaches
over 10 trials showing the best quality (cost) of a solution indicated as feasibility-value.objective-value in Round 2 of ITC2011.
The best values are highlighted in bold.

Problem: Country t. T. R. C. S. dur. GG-SA HySST GOAL HFT Lectio
Instance2 - Brazil 25 14 6 150 0.00046 1.00069 1.00051 5.00183 0.00019
Instance3 - Brazil 25 16 8 200 0.00122 0.00096 0.00087 26.00264 0.00112
Instance4 - Brazil 25 23 12 300 1.00234 2.00238 16.00104 63.00225 1.00172
Instance6 - Brazil 25 30 14 350 0.00201 2.00229 4.00207 21.00423 0.00183
ElementarySchool - Finland 35 22 21 60 445 0.00003 0.00004 0.00003 29.00080 0.00003
SecondarySchool2 - Finland 40 22 21 36 566 0.00035 0.00006 0.00000 28.01844 0.00014
Aigio 1st HS 2010 35 37 208 532 0.00514 0.00322 0.00006 45.03665 0.00653
Instance4 - Italy 36 61 38 1101 0.00882 0.04012 0.00169 250.05966 0.00225
Instance1 - Kosovo 62 101 63 1912 71.35367 1065.17431 38.09789 986.42437 274.04939
Kottenpark2003 - Netherlands 38 75 41 18 453 1203 0.18738 0.47560 0.87084 203.87920 34.55960
Kottenpark2005A - Netherlands 37 78 42 26 498 1272 30.27471 26.35251 27.37026 393.40463 185.83973
Kottenpark2008 - Netherlands 40 81 11 34 1118 51.99999 32.71562 10.33034 INVALID 84.99999
Kottenpark2009 - Netherlands 38 93 53 48 1301 31.99999 33.99999 25.1403 337.99999 97.96060
Woodlands2009 - South 42 40 30 1353 0.00121 2.00047 2.00012 59.00336 0.00094
School - Spain 35 66 4 21 439 0.04005 0.01247 0.00597 63.13873 0.01927
WesternGreeceUni3 - Greece 35 19 6 210 0.00016 0.00010 0.00005 14.00198 30.00002
WesternGreeceUni4 - Greece 35 19 12 262 0.00030 0.00016 0.00005 233.00277 35.00070
WesternGreeceUni5 - Greece 35 18 6 184 0.00004 0.00001 0.00000 9.00174 4.00013

Average ranking 2.56 2.69 1.36 4.64 2.91

5.2.2 Comparison to the CHeSC 2011 hyper-heuristics

In CHeSC 2011, the competing hyper-heuristics are run
for thirty one trials on the reference machine and the
median result is used for comparison of the approaches

based on the Formula1 system. The 20 submitted hyper-
heuristics competed over thirty problem instances, five
coming from each of the six problem domains: boolean

satisfiability (SAT), one dimensional bin packing (BP),
permutation flow shop (PFS) and personnel scheduling
(PS), travelling salesman problem (TSP) and vehicle

routing problem (VRP). The maximum overall score
that a hyper-heuristic could achieve was 300. The per-
formance of our hyper-heuristic is compared to all 20

competition entries based on the Formula1 scoring sys-
tem. Table 5 summarises the overall results. Greedy
gradient−simulated annealing ranks the tenth among

others with a total score of 54.0. The proposed hyper-
heuristic delivers the worst performance on the vehicle
routing and traveling salesman problem domains.

Di Gaspero and Urli (2012) suggested the use of nor-
malised objective function values (cost) as a measure-

ment to rank the hyper-heuristics for a given domain.
The median results obtained from the algorithms from
each domain are normalised to a value in [0,1] based

on the maximum and minimum cost obtained for all
instances. Hence, the box plots for the algorithms in
a given domain would indicate the relative variation

of each competing hyper-heuristic for that problem do-
main. Figure 6 illustrates the ranking based on the me-
dian of the normalised cost for each problem domain.

Lower the ranking, better an algorithm is. The greedy-

gradient hyper-heuristic is the top in personnel schedul-
ing problem domain when compared to the previously
proposed CHeSC 2011 approaches. On the permutation

flow shop domain, the greedy gradient−simulated an-
nealing hyper-heuristic produces high quality solutions
when compared to the other approaches and becomes

the fourth bests performing hyper-heuristic. However,
the proposed hyper-heuristic yields a poor performance
on the other problem domains, particularly on the ve-

hicle routing problem domain.

Percentage utilisation is the ratio of number of a

given low level heuristic is invoked to the number of
overall heuristic invocations. Figure 7 shows the av-
erage percentage utilisation over 10 runs for each low

level heuristic considering the invocations in which an
improvement is obtained while solving an arbitrarily
chosen instance from each problem domain. Some low

level heuristics do not make generate improvement in
the quality of a solution. For example, in SAT, MU0,
MU1 and HC1 are the only heuristics that generate im-

provements. However, the other heuristics may still be
useful when combined with another heuristic, consider-
ing that worsening solutions could be accepted. Muta-

tional heuristics dominate the hill climbing heuristics in
improvement for SAT, while the situation is vice verse
in all other problem domains. A similar phenomena is

observed on the other instances as well.

Figure 8 shows the behaviour of the greedy gradi-

ent hyper-heuristic for an arbitrarily selected instance
from each problem over 10 runs. In most of the cases,
the approach rapidly improves the quality of the solu-

tion in hand. After a while, the improvement process
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Fig. 6 Performance comparison (ranking) of hyper-heuristics for each CHeSC 2011 problem domain based on the results
converted to the normalised objective function values. The dots in the box-plots are outliers.
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Table 5 Comparisons of the different hyper-heuristics based on Formula1 scoring system.

HH SAT BP PS PFS TSP VRP TOT
AdapHH 34.3 45 9 36 40.3 15 179.5
VNS-TW 34.3 2 35.5 31 17.3 6 126
ML 14 11 27.5 38 13 22 125.5
PHUNTER 10 3 11.5 7.5 26.3 33 91.3
EPH 0 10 8.5 19 36.3 12 85.8
NAHH 14 19 1 22 12 6 74
HAHA 32.3 0 23.5 0.8 0 14 70.6
ISEA 6 29 13.5 1.5 12 5 67
KSATS-HH 23.5 9 7.5 0 0 22 62
GGHH 4 9 23 18 0 0 54
HAEA 0.5 3 1 6.8 11 27 49.3
ACO-HH 0 20 0 8.3 8 2 38.3
GenHive 0 12 5.5 6 3 6 32.5
DynILS 0 12 0 0 13 1 26
XCJ 5.5 11 0 0 0 5 21.5
AVEG-Nep 12 0 0 0 0 9 21
SA-ILS 0.3 0 16 0 0 4 20.3
GISS 0.3 0 10 0 0 6 16.3
SelfSearch 0 0 2 0 3 0 5
MCHH-S 4.3 0 0 0 0 0 4.3
Ant-Q 0 0 0 0 0 0 0
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Fig. 7 Average percentage utilisation of low level heuristics
over 10 runs while solving an arbitrary instance from each
problem domain.

slows down as the approach reaches a local optimum.
A similar phenomena is observed for almost all other

instances from each problem domain.
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Fig. 8 Plots of the cost versus time over 10 runs while solving
an arbitrary instance from each problem domain. Blue curve
for the “average cost” and red curve for the “average best
cost”.

6 Conclusion

A goal of hyper-heuristic research is to raise the level of
generality by providing automated methodologies which

are applicable to a variety of problem domains. In this
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study, we have introduced a greedy-gradient−simulated

annealing selection hyper-heuristic which automates the
process of mixing perturbative heuristics. A set of se-
lection hyper-heuristics using four different heuristic se-

lection methods, including the proposed method are
tested on a real world problem obtained from the Com-
puter Engineering Department at Yeditepe University

and eight problem instances which are randomly gen-
erated based on the definition of the given problem.
The results show that the proposed greedy gradient

heuristic selection method when combined with sim-
ulated annealing acceptance criterion outperforms the
other selection hyper-heuristics. Although the perfor-

mance of the new hyper-heuristic is evaluated on a
new problem, it is our intention to extend our studies
and investigate its performance across the other uni-

versity course timetabling instances, such as ITC2007.
The proposed methodology was particularly designed
for a software tool implementing a user interface and
the hyper-heuristic framework including all low level

heuristics to deal with a curriculum-based university
course timetabling problem at Yeditepe University. To
test the level of generality that the proposed hyper-

heuristic achieves, it is applied to the high school time-
tabling problem and six other problem domains ob-
tained from a hyper-heuristic benchmark and compared

to the previously proposed selection hyper-heuristics.
The results show that our hyper-heuristic is a viable
general methodology performing extremely well on not

only course timetabling but also particularly person-
nel scheduling domain as well. Moreover, the proposed
hyper-heuristic became the second best approach among

the competing algorithms for high school timetabling.
Although we have not performed any extensive param-
eter tuning on our hyper-heuristic, still the parame-

ter that simulated annealing introduces can be con-
sidered as its weakness. Özcan et al (2008) observed
that the acceptance criteria could make significant im-

pact on the performance of the hyper-heuristics. As fu-
ture work, we would like to analyse the effect of using
other move acceptance criteria preferably requiring no

parameter tuning in combination with the greedy gradi-
ent heuristic selection method. Additionally, crossover
operators provided in each hyper-heuristic benchmark

problem domain are ignored by our hyper-heuristic dur-
ing the experiments, since crossover requires two solu-
tions as input necessitating another top level mecha-

nism to decide on those solutions. We plan to modify
our hyper-heuristic to handle such operations and in-
vestigate into the benefit of using crossover. Finally, we

would like to improve the performance of our selection
hyper-heuristic further by incorporating the dominance-
based method as described in Özcan and Kheiri (2012)

which aims to reduce the set of the low level heuristics

automatically during the search process.
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