
A thesis submitted in partial fulfilment of
the requirement for the degree of Doctor of Philosophy

On the Helmholtz Principle
for Text Mining

Boris Dadachev

School of Mathematics, Cardiff University
& Hewlett-Packard Laboratories, Bristol

October 2015

i

Declaration

This work has not been submitted in substance for any other degree or award at
this or any other university or place of learning, nor is being submitted concurrently in
candidature for any degree or other award.

Signed . (candidate)

Date .

Statement 1

This thesis is being submitted in partial fulfillment of the requirements for the degree
of PhD.

Signed . (candidate)

Date .

Statement 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated. Other sources are acknowledged by explicit references. The views
expressed are my own.

Signed . (candidate)

Date .

Statement 3

I hereby give consent for my thesis, if accepted, to be available online in the
University’s Open Access repository and for inter-library loan, and for the title and
summary to be made available to outside organisations.

Signed . (candidate)

Date .

ii

Copyright © 2015 Cardiff University and Hewlett-Packard.

Dedication iii

To Natalia.

iv

Abstract

The majority of text mining systems rely on bag-of-words approaches, representing
textual documents as multi-sets of their constituent words. Using term weighting
mechanisms, this simple representation allows to derive features that can be used as
input by many different algorithms and for a variety of applications, including document
classification, information retrieval, sentiment analysis, etc. Since the performance of
many mining algorithms directly depend on term weights, techniques for quantifying
term importance are of paramount importance in text processing.

This thesis takes advantage of recent advances in keyword extraction mechanisms,
which further select the terms with the highest weights to keep only the most import-
ant words. More precisely, building on a recent keyword extraction technique, we
develop novel text mining algorithms for information retrieval, text segmentation and
summarization. We find these algorithms to provide state-of-the-art performance using
standard evaluation techniques. However, contrary to many state-of-the-art algorithms,
we try to make as few assumptions as possible on the data to analyze while keeping
good computational performances, both in terms of speed and accuracy. As such, our
algorithms can work with inputs from a variety of domains and languages, but they
can also run in environments with limited resources. Additionally, in a field that tends
to be dominated by empirical approaches, we strive to rely on sound and rigorous
mathematical principles.

Supervisors:

• Prof. Alexander Balinsky, Cardiff School of Mathematics, Cardiff (UK).

• Dr. Helen Balinsky, Hewlett-Packard Laboratories, Bristol (UK).

• Dr. Steven Simske, Hewlett-Packard Laboratories, Fort Collins (USA).

v

Acknowledgements

I owe my gratitude to my supervisors, Prof. Alexander Balinsky, Dr. Helen Balinsky
and Dr. Steven Simske, for their guidance, expert advice and availability over the
past few years. While keeping me on the right track, they have also helped me learn
something new every day and to develop myself as a researcher.

I am also grateful towards my peers and the staff from Cardiff University and HP
Labs, for making these two places such pleasant and friendly environments.

I would like to acknowledge and thank all my sponsors as well. Hewlett-Packard
Laboratories and the Cardiff University School of Mathematics have funded this research
project, allowing me to complete this PhD. Furthermore, ACM SIGWEB has helped
me fund my travel to the DocEng 2014 conference.

Finally, I wish to extend my sincerest thanks to my family for their incommensurable
help and support through the years.

vi

Dissemination of Results

Peer-Reviewed Publications

• B. Dadachev, A. Balinsky, H. Balinsky, and S. Simske. On the Helmholtz
Principle for Data Mining. In Proceedings of the 3rd IEEE Conference on

Emerging Security Technologies, 2012.

• B. Dadachev, A. Balinsky, H. Balinsky, and G. Forman. Automatic Text and Data
Stream Segmentation using Weighted Feature Extraction. In Proceedings of the

3rd IMA Conference on Mathematics in Defence, 2013.

• H. Balinsky and B. Dadachev. Automatic Text and Data Stream Segmentation
using Principles of Human Perception. In Proceedings of the HP Imaging and

Color Symposium, 2013.

• B. Dadachev, A. Balinsky, and H. Balinsky. On Automatic Text Segmentation. In
Proceedings of the 14th ACM Symposium on Document Engineering, 2014.

Patents

• H. Balinsky, A. Balinsky, B. Dadachev, and S. Albright. Keywords to Generate
Policy Conditions. US Patent Application 2014/44596, filed June 27, 2014. Patent
pending.

• H. Balinsky, A. Balinsky, B. Dadachev, and S. Simske. Document Access. US
Patent Application 2015/67807, filed August 3, 2015. Patent pending.

• H. Balinsky, B. Dadachev, S. Simske, and A. Balinsky. Identifying Documents.
US Patent 2015/46324, filed August 21, 2015. Patent pending.

Dissemination of Results vii

Talks and Presentations

• Helmholtz Principle and Small-World Networks for Summarization. Wales Math-

ematics Colloquium. Gregynog (UK), May 23, 2012.

• On the Helmholtz Principle for Data Mining. IEEE Conference on Emerging

Security Technologies. Lisbon (Portugal), September 6, 2012.

• Automatic Document Segmentation. Wales Mathematics Colloquium. Gregynog
(UK), May 21, 2013.

• Automatic Text and Data Stream Segmentation using Weighted Feature Extraction
(Poster). IMA Conference on Mathematics in Defence. Malvern (UK), October
24, 2013.

• Automatic Text and Data Stream Segmentation (Poster). Set for Britain event for

Early-Stage Researchers. Parliament of the United-Kingdom, March 17, 2014.

• Mining Text with the Helmholtz Principle and Example Applications. Computer

Science seminar, Royal Holloway University of London. Egham (UK), June 3,
2014.

• On Automatic Text Segmentation. ACM Symposium on Document Engineering.

Fort Collins (Colorado, USA), September 18, 2014.

Others

• H. Balinsky and B. Dadachev. Automatic Text Segmentation (Poster). HP Labs

Poster and Demo Fair. Palo Alto (USA), April 2014.

• H. Balinsky and B. Dadachev. Enterprise Search as a Light Cloud Service (Poster).
HP Labs Poster and Demo Fair. Palo Alto (USA), April 2014.

• H. Balinsky, D. Perez, and B. Dadachev. Comprehensive Solution for Handling
Sensitive Data. HP Labs Poster and Demo Fair. Palo Alto (USA), June 2015.

• H. Balinsky and B. Dadachev. Invenies: Enterprise Search. HP Labs Poster and

Demo Fair. Palo Alto (USA), June 2015.

viii

Contents

1 Introduction 1

2 Background: Text Mining 3

2.1 Preprocessing . 4

2.1.1 Pre-requisites . 4

2.1.2 Preprocessing tasks and techniques 4

2.1.3 Discussion . 7

2.1.4 Our approach to preprocessing 8

2.2 Text mining algorithms and applications 8

2.2.1 Numerical representation of documents 9

2.2.2 Common mining algorithms and applications 10

2.2.3 Current research challenges and discussion 12

2.2.4 Our approach to text mining 13

3 Background: the Helmholtz principle 14

3.1 Gestalt theory and Helmholtz principle for computer vision 14

3.1.1 Visual perception and Gestalt theory 14

3.1.2 The Helmholtz principle for computer vision 16

3.2 Helmholtz principle for data and text mining 18

3.2.1 NFA for m-tuples in a balls-and-bins experiment 18

Contents ix

3.2.2 Practical adaptation of the balls-and-bins model to keywords
extraction . 19

4 Information Retrieval and Enterprise Search 23

4.1 A brief literature review . 24

4.1.1 Indexing . 24

4.1.2 Retrieval models . 25

4.1.3 Learning-to-Rank . 28

4.2 Proposed algorithm . 29

4.2.1 Preprocessing . 29

4.2.2 Term weighting scheme . 30

4.2.3 Augmenting the system with Learning-to-Rank 31

4.3 Evaluation methodology . 36

4.3.1 Evaluation procedure . 36

4.3.2 Evaluation metrics . 37

4.4 Experimental results on the TREC datasets 39

4.4.1 The CERC collection and associated TREC datasets 39

4.4.2 Initial ranking evaluation . 40

4.4.3 Re-ranking top results with learning-to-rank 44

4.5 Conclusion . 49

5 Text Segmentation 50

5.1 A brief literature review . 51

5.2 Proposed algorithm . 55

5.2.1 Preprocessing . 55

5.2.2 Gap scores calculation . 55

5.2.3 Identification of segment boundaries 58

5.3 Evaluation methodology . 61

Contents x

5.3.1 Evaluation procedure . 61

5.3.2 Evaluation metrics . 62

5.4 Experimental results . 63

5.4.1 Synthetic datasets . 63

5.4.2 Towards more realistic datasets 66

5.5 Conclusion . 75

6 Automatic Summarization 76

6.1 A brief literature review . 76

6.2 Proposed algorithm . 80

6.2.1 Preprocessing . 80

6.2.2 Keyword extraction . 80

6.2.3 Sentence extraction . 81

6.2.4 Complete description of the original algorithm 83

6.2.5 Extending the original algorithm using affiliation networks . . 84

6.2.6 Centrality measures . 88

6.2.7 Complete algorithm description 90

6.3 Evaluation methodology . 91

6.3.1 Evaluation procedure . 91

6.3.2 Evaluation metrics . 92

6.4 Experimental results . 94

6.4.1 Comparative evaluation on the DUC 2002 dataset 94

6.4.2 Experiments with longer documents 99

6.5 Conclusion . 103

7 Conclusion 104

Appendices 106

Contents xi

A Demos and pilot projects 106

A.1 Enterprise Search . 106

A.2 Segmentation . 110

A.3 Summarization . 113

1

Chapter 1

Introduction

As the cost of computer storage keeps decreasing and our modern societies get
increasingly connected, the amount of textual data available on the internet and the
companies’ intranets is growing faster than ever. However, this proliferation of data
comes with a number of challenges, from both the data exploitation and data security
points of view. These numerous challenges have kept mathematics and computer
science researchers busy for decades, as the vast field of text mining was developing.
And if everyone agrees that these data are potentially great sources of information and
intelligence, processing them remains difficult to this day. The main challenges are
related to the very diverse nature of these data (in terms of languages, jargons, types of
documents, etc.) as well as, often, their sheer volume. To make things worse, the large
number of text mining applications, ranging from consumer and business intelligence
to information security, makes text mining systems complex and reliant on a number of
different algorithms.

However, the first step in text processing is almost always to transform the input
text into a numerical representation that text mining algorithms can work with. To this
end, bag-of-words approaches that model a piece of text as a multiset of words have
become nearly ubiquitous, even if they are not suitable for all problems. Ignoring the
order in which words appear may seem crude but in practice, bag-of-words approaches
have proven to be extremely robust and efficient for most problems. Then, relative word
importance is usually determined using a term weighting scheme like the well-known
TF-IDF and term weights are used as input for text mining algorithms. Therefore, the
performance of most text mining algorithms directly depends on the quality of the term
weights they rely on internally.

A threshold can also be applied to these term weights in order to keep the most
important words only or, said differently, to extract keywords. Recently, Balinsky et al.
proposed a novel approach to keyword extraction [21, 22] based on ideas from computer
vision and specifically on the Helmholtz principle from the Gestalt theory of visual

1 Introduction 2

perception [47]. The Helmholtz principle provides a sound and computationally efficient
statistical framework to identify meaningful words using non-parametric methods. The
resulting keywords and their associated "level of meaningfulness" can then be used as
input by text mining algorithms. These were shown to be effective [22] and the authors
proposed an application to summarization, which relies on the extracted keywords to
model documents as small-world graphs [24, 25].

The main goal of this thesis is to build on this keyword extraction mechanism. We
investigate several potential applications and see how this keyword extraction technique
can be used to improve current text mining algorithms and systems. We propose a
number of new algorithms and thoroughly verify their effectiveness using standard
evaluation techniques. We strive to develop algorithms that are:

• Generic. Making as few assumptions on the type of data to analyze as possible
allows to design algorithms that are not limited to restricted inputs in terms of
quality, language, jargon, etc.

• Fast and scalable. Many advanced algorithms have been proposed over the years.
While these may be particularly effective they may also be limited to relatively
small inputs because they are computationally expensive and/or because they do
not scale to larger inputs.

• Theoretically sound. Text mining is a field that is often dominated by empirical
approaches rather than rooted on sound mathematical principles.

More precisely, this thesis is outlined as follows. Chapter 2 gives a brief overview
of the field of text mining and introduces preprocessing techniques and common mining
algorithms. Chapter 3 familiarizes the reader with the Helmholtz principle, explained in
its original context as well as its recent adaptations to computer vision and text mining.
Subsequent chapters each present new algorithms and applications. Chapter 4 proposes
a new term weighting scheme for information retrieval purposes and describes a full
search engine for enterprise search built around it. Chapter 5 continues with a new
algorithm for text segmentation, which effectiveness is demonstrated for a variety of
inputs and languages. Chapter 6 extends the summarization algorithm introduced in
[24]; new models are developed and a comprehensive evaluation is performed. Chapter
7 concludes this work.

Finally, as this is an industrial PhD, the work has also lead to a number of proof-of-
concepts and pilot programs, some of which are described in Appendix A.

3

Chapter 2

Background: Text Mining

Text mining, also referred as text analytics in business-oriented settings, is a broad
and relatively recent research area which aims at automatically extracting and struc-

turing the information contained in (usually large) collections of text. In the current
Information Age, large amounts of textual data are routinely collected and stored. Those
data are potentially rich sources of information but their sheer amount also creates an
information overload. This is the reason why text mining is finding its way in nearly all
businesses and industries in one form or another. Indeed, text mining systems allow to
process, search and visualize information, monitor trends, detect sentiment and anomal-
ous events, etc. As such, text mining is at the cross-roads between many disciplines,
such as data mining, machine learning, statistics, information retrieval, computational
linguistics and natural language processing.

Figure 2.1: Simplified, high-level architecture of a text mining system

As shown in Figure 2.1, text mining systems have two main steps. The first one,
referred as preprocessing, deals with extracting the text from a collection of documents
and converting it into a well-defined canonical format for further processing. The
second step is the mining step per se. The next sections describe these two steps in
more details.

2.1 Preprocessing 4

2.1 Preprocessing

Preprocessing is a preliminary step that is of paramount importance for subsequent
mining algorithms to give good results. Let us briefly review the most common prepro-
cessing techniques.

2.1.1 Pre-requisites

The first two tasks in any text mining system consist of:

1. fetching the documents from their original location, and

2. extracting the text from each document (i.e., parsing the original documents).

A large number of problems can occur during these stages. Common issues arising
when fetching documents include network errors and large latencies for distant doc-
ument repositories. Potential parsing problems are also numerous, due to unknown
file encodings or formats, encrypted files or even scanned documents where the text
is in the form of an image. Information security can also be a major concern when
dealing with confidential or sensitive material. In some cases, all Personal Identity
Information (PII) or confidential material must be removed prior to any processing in
order to prevent potential information leaks. These initial steps may therefore require
important development efforts in practice. However, they are system specific and will
not be further mentioned in this thesis.

2.1.2 Preprocessing tasks and techniques

At this stage, the running text (i.e., the document body) has been extracted from
the original documents and is in the form of a sequence of characters. The goal of
preprocessing is to convert those raw sequences of characters into a canonical form,
ready for subsequent mining algorithms. Given the broad goals of text mining and
the broad nature of the algorithms involved, different systems will have different
preprocessing requirements. The most common preprocessing techniques include
tokenization, word normalization, stop-words removal and stemming.

It is important to note that all preprocessing techniques are language specific. The
work in this thesis mainly focuses on mining English documents, and so is the remaining
of this section.

2.1 Preprocessing 5

Tokenization

Before any mining algorithm can be applied, the running text in each document —in
the form of raw strings— must be broken into smaller meaningful units called tokens.
This process is called tokenization. Words are "the smallest meaningful units that can
stand on their own" (see page 11 in [67]) so very naturally the vast majority of systems
will require tokenization at the word level. However, some systems may have different
requirements. In addition to or in replacement of word tokenization, it is also common
to divide the running text into sentences, clauses or even overlapping character n-grams.

Tokenization is a complex task that depends on the exact definition given to tokens,
especially as difficult cases and exceptions are numerous. For example, "I’m" should
be segmented into "I" and "m" (or "am") but should the name "O’Connell" also be
split because of the apostrophe? What about proper nouns (e.g., "Palo Alto"), com-
pound words (e.g., "part-of-speech") and abbreviations (e.g., "q.e.d.")? The simplest
tokenization schemes use a predefined set of characters as token delimiters. For word
tokenization, such delimiters may be white space or non-alphabetical characters. More
accurate approaches can be rule-based [13, 121] or use machine learning techniques
[68], at the expense of some additional work.

Let us illustrate word tokenization with an extract from "Alice in Wonderland" [7].
The following two sentences:

You used to be much more... muchier. You’ve lost your muchness.

are transformed into the following list of tokens:

"You", "used", "to", "be", "much", "more", "muchier", "You", "ve", "lost", "your", "muchness".

Word normalization

After word tokenization, the same word can be found in the list of tokens with
slight orthographic and case differences. Normalization tries to remove these variations.
American English and British English spellings are a common example: clearly, "air-
plane" and "aeroplane" are the same word. But what about "apartment" and "flat"?
Words of foreign origin can also sometimes be found in various spellings, such as "cafe"
and "café".

In most cases, normalization is limited to case folding (e.g., lower-casing all words)

2.1 Preprocessing 6

but more advanced algorithms also exist. The reader may refer to the ones proposed by
Sproat et al. [122] and Clark and Araki [37] for concrete examples.

For the previous example, limiting normalization to lower-casing lists the following
tokens:

"you", "used", "to", "be", "much", "more", "muchier", "you", "ve", "lost", "your", "muchness".

Note that a more complex normalization procedure could have replaced "ve" by "have".

Stop-words removal

A number of common words called stop-words, such as determiners and prepositions
(e.g., "a", "the", "of", "with"), carry very little meaning in a text. Since such words
are also very frequent and they tend to appear in any text, most systems remove them
during preprocessing in order to speed up computations and/or because some mining
algorithms perform poorly in their presence. However, stop-words filtering has a number
of negative consequences and is certainly not adequate for all applications, as will be
discussed in subsequent chapters. Also, there is no canonical list of stop-words: lists
commonly used in English range in size from a few dozen to several hundred words
(see Section 2.2.2 in [86]).

Continuing with our running example, stop-words removal leaves:

"used", "much", "muchier", "ve", "lost", "muchness".

It is interesting to note that half the words have been discarded with the stop-words list
used to generate this example. Also, "ve" was not removed but "have" would have been
removed.

Stemming

It is extremely common for text mining systems to reduce inflections1 and some
derivations2 to their roots, in a process called stemming. The most popular stemming
algorithm for the English language is Porter stemmer [107]. The interested reader may
refer to Chapters 4 and 5 in [34] for a linguistically rigorous introduction to stemming.

1New words formed from grammatical variations, e.g., due to tense and and number.
2New words formed by adding prefixes and suffixes.

2.1 Preprocessing 7

The main reason for stemming is to reduce the vocabulary size by mapping "similar"
tokens together and thus to consider closely related words as the same (e.g., "dog" and
"dogs"). Note that stemming is often a rather approximative process that strips suffixes
according to a predefined set of rules. On the one hand, this makes stemming very fast.
On the other hand, the resulting stems may not always be linguistically correct due to
numerous language irregularities. More sophisticated algorithms called lemmatizers
(see [140] for an example) take into account the context in order to reduce words to
their lemma (i.e., dictionary form). However, when compared to stemmers, lemmatizers
often bring little benefits to the overall performance of mining systems. This is the case,
for example, in information retrieval (see Section 2.2.4 in [86]).

On our running example, the Porter stemmer gives:

"use", "much", "muchier", "ve", "lost", "much".

Note that "used" becomes "use" but the irregular verb "lost" is left as is.

Other techniques

There are other relatively common preprocessing techniques that will not be used in
this work. Let us mention them briefly for completeness. Part-of-speech tagging consists
in annotating each word with its part-of-speech [38]. Parsing goes one step further and
constructs the entire syntactic tree for each sentence [69] in order to identify the different
sentence components and their relations; it mainly helps for disambiguation. Finally,
entity recognition and extraction [88] can also be used for more specific analyses. For
example, one may need to identify and extract all company names, locations and dates
in a text. Entity extraction is often an important part of practical systems as they add
shallow semantic information. However, they are very domain specific and thus system
specific, as they rely on hand-written rules or, more often nowadays, supervised learning
techniques.

2.1.3 Discussion

At a more abstract level, preprocessing serves two concurrent objectives. On the one
hand, it reduces in a controlled way the vocabulary size and thus the number of features
that subsequent mining algorithms use. By its very nature, text is extremely sparse and
reducing the dimension of the feature space helps with a number of theoretical and

2.2 Text mining algorithms and applications 8

practical problems such as the curse of dimensionality (see page 97 in [29]). On the
other hand, preprocessing is a destructive procedure. Indeed, since in most cases the
original text cannot be recovered after preprocessing, some information has been lost.
Given the incredible complexity of language, its ambiguities and subtleties, destroying
information can be potentially damaging for the end results. The right balance will
depend, once again, on the mining algorithms used and applications of the system.

2.1.4 Our approach to preprocessing

Regarding preprocessing, several examples where the sophistication of the algorithm
has very little influence on the end results of a text mining system have been mentioned.
For that reason and since our goal is to build robust generic algorithms, we choose a
very pragmatic approach in our work, relying only on simple and fast techniques that
were proven to work well in most settings:

• Word tokenization is performed by splitting the running text on every non-
alphabetical characters. Sentence tokenization, when necessary, uses all oc-
currences of the characters full stop ("."), exclamation mark ("!") and question
mark ("?") as sentence delimiters.

• The only normalization used is case-folding: all tokens are converted to lower
case.

• In most cases, no stop-words are removed. Cases where stop-words filtering is
necessary will be clearly mentioned.

• Finally, we use Porter stemmer [107] for stemming purposes.

2.2 Text mining algorithms and applications

Let us present some of the most common applications of text mining and the
associated underlying algorithms. Note that text mining is a very large field of research
and therefore also a relatively generic term. As such, it would not be possible to
comprehensively review all applications and algorithms. This section is intended as a
light introduction for notions and techniques that will be mentioned throughout this
work; more specialized reviews are also provided in later chapters as different fields of
application are investigated.

2.2 Text mining algorithms and applications 9

2.2.1 Numerical representation of documents

After preprocessing, one needs to transform the cleaned input into a numerical
representation that subsequent mining algorithms can work with. The simplest and most
prevalent model is the so-called bag-of-words, which represents a piece of text as the
multiset of its constituent words. As an illustration, the bag-of-words for our running
example from the previous section is:

{"lost": 1, "much": 2, "muchier: 1, "use": 1, "ve": 1}.

Thus this model ignores the order in which words appear as well as grammatical
information. Those simplifying assumptions then allow to represent a piece of text (e.g.,
a document) as a vector where each coefficient corresponds to a word and quantifies
the importance of this word. A large variety of weighting schemes can be used for the
coefficients. Among the most common are:

• binary weights, indicating whether the word appears in the document,

• frequency weights (possibly normalized) indicating the number of times the word
appears in the document, or

• more complex weights like TF-IDF [118].

Such simple vector representations of text may seem naive given the complexity of
natural language but they have proven extremely successful for many applications, like
information retrieval, document classification, summarization, and many more. An
in-depth review of weighting techniques for information retrieval is done in Chapter 4.

Yet, bag-of-words models have several drawbacks. First, they miss semantic rela-
tions between words; indeed, synonyms, antonyms and other related words are treated
like completely independent terms. Furthermore, the resulting vectors are very sparse as
most documents contain a few dozens or hundreds of unique words, whereas vocabulary
sizes are typically in the dozens of thousands of words. Dimensionality reduction

techniques help to solve both issues: capturing semantic links between words while
compressing the data at the same time.

Latent Semantic Analysis (LSA) [46] is one of the most popular technique to do so.
Given a collection of documents, one can compute a term-document matrix A where
Aij is the weight for the word i in document j (for example a TF-IDF weight). Then,
Singular Value Decomposition (SVD) can be used to compute a low-rank approximation

2.2 Text mining algorithms and applications 10

of the matrix A. Intuitively, this procedure projects the original data in a smaller space
where each dimension is a semantic "concept". These concepts are linear combinations
of the original terms, so they can be difficult to interpret. LSA has a wide range of
applications, although it was originally proposed for information retrieval where it
allows to build smaller indexes and also to increase search results recall by mapping
related terms together. However, LSA is computationally expensive, especially for
dynamic collections of documents where the term-document matrix regularly changes.
Topic modeling is another popular dimensionality reduction technique. Here, each
document is seen as a mixture of topics, where topics are clusters of words that often co-
occur in different documents. Given a number of topics and a collection of documents,
topic modeling automatically identifies the topics (i.e., co-occurring words) and does
a soft clustering assignment for each document. The most popular algorithms are
Probabilistic Latent Semantic Analysis (PLSA) [62] and Latent Dirichlet Allocation
(LDA) [31].

Dimensionality reduction solves some of the bag-of-words problems but not all. For
example, ignoring word orders is simply inappropriate for some applications. Natural
language generation is a clear example: "the brown dog" is not equivalent to "dog the
brown". For such applications, it is common to work with n-grams of words (e.g.,
bi-grams or tri-grams, that is, two- or three-tuples of consecutive words) [3, 91].

2.2.2 Common mining algorithms and applications

Let us briefly present some of the most common applications of text mining together
with the associated popular approaches.

Searching large collections of text for a piece of information is a natural and very
common requirement for text mining systems. With regard to search, text mining is very
different from classical data mining. Indeed, textual data is considered unstructured due
to its lack of well-defined structure, making relational databases not readily appropriate
for storing and querying text. Instead, making text searchable and easily manageable is a
challenge and the goal of a discipline called information retrieval. Vector representations
of text make retrieval easy: as both documents and queries are vectors that lie in the
same vector space, the documents that match closely a query will have a large cosine
similarity. This model is called the vector space model, and explained in more details in
Chapter 4.

Another omnipresent need in text mining is categorization. Categorization al-
gorithms automatically identify the class, or classes, of an observation (e.g., a document)

2.2 Text mining algorithms and applications 11

from a pre-defined set of possible classes. To name only a few examples, classification
can be used for spam detection, automatic email categorization, genre, topic, sentiment
and language detection, as well as automatic generation of meta-data. Historically,
categorization was performed using sets of rules manually written by experts but those
tend to be difficult and expensive to maintain. This is why supervised learning ap-
proaches are often preferred; a large number of algorithms are nowadays available,
such as decision trees, linear classifiers and artificial neural networks [30]. Supervised
learning methods require labeled data, usually in large amounts for optimal performance
[57]. However, such labels are often both time-consuming and expensive to obtain.
In such cases, semi-supervised learning methods take advantage of large amounts of
unlabeled data to improve the classification performance obtained with a small set of
labeled data [124]. Also, when only little labeled data is available for the domain of
interest, transfer learning (and sometimes machine translation) can leverage resources
from better datasets, though these techniques remain in their infancy [103].

There are many other common text mining tasks and widely used classes of tech-
niques:

• With unlabeled data, unsupervised learning techniques, can be used to find pat-
terns in the data [123]. In particular, clustering seeks to group similar observations
together. For example, one could group documents that contain similar terms
(and maybe discuss the same topic) for exploratory analysis or to organize a
collection of documents. Also, note that dimensionality reduction techniques that
were already mentioned can be seen as soft clustering.

• Summarization is another omnipresent need that seeks to condense long docu-
ments into shorter versions while preserving important information. Chapter 6 is
dedicated to summarization and an in-depth review is presented on this occasion.

• Information filtering tries to remove uninteresting information from information
streams. Showing news articles that only matches users’ interests is an example
[105]. More recently, these techniques have inspired research on recommender
systems that most often work by finding items that similar users like.

• Time series analysis and anomaly detection methods are also widely used to
analyze trends, for example on social media [87], or to detect potential threats in
cyber-security and bio-surveillance contexts [39].

2.2 Text mining algorithms and applications 12

2.2.3 Current research challenges and discussion

Despite the large attention it has received from researchers, text mining still faces
many challenges. Researchers generally agree that major improvements will come from
better and deeper semantic understanding. So far, semantic analysis remains relatively
superficial as it mainly stems from a better grammatical analysis of sentences, like
parsing and co-reference resolution. The addition of external knowledge, for example
from ontologies, can also help; well-known knowledge sources include WordNet [94]
and the MeSH controlled vocabulary [116].

Real semantic analysis will require a much more advanced knowledge of the world,
on what is possible and what not, what is likely and what not, etc. However, how to
learn this advanced knowledge remains an open question, which is closely related to
advances in artificial intelligence. The current trend in moving towards deeper semantics
is building large semantic networks from the internet [60].

Different text collections are naturally very disparate and dealing with this disparity
is another challenge. Indeed, different languages, contexts, jargons, specialized vocabu-
laries, abbreviations, etc. are all complicating the text mining process. For example,
scientists from different fields will refer to the same concept with different words. Also,
social media are full of typos and non-standard abbreviations, making the text very
noisy. Any algorithm trained on a particular domain will not generalize well to other
domains. Transfer learning, which is still an active research area, is likely to play an
important role in helping to dampen this issue [103].

Dealing with large quantities of data is yet another challenge. Many aspects become
complicated as datasets grow, even the basics like storing and accessing the data
efficiently. The efforts are currently focused on developing specialized software and
on scaling algorithms using parallel and distributed computing frameworks, such as
Map-Reduce [45] that can run on relatively inexpensive clusters of computers. Research
is even being conducted to change computer architectures to deal more efficiently with
data [12].

In summary, significant advances in text analysis are likely to come from the
combination of advances in the various fields on which text mining relies.

2.2 Text mining algorithms and applications 13

2.2.4 Our approach to text mining

The remainder of this thesis will be focused on keyword-based algorithms, that is
to say methods to identify important words in documents and compute a numerical
measure of importance for each keyword. Bag-of-words methods might seem naive
but as we have seen, they still power the vast majority of text mining systems and have
several advantages over more complex approaches due to their simplicity, computational
effectiveness and excellent practical results. Therefore, such approaches remain a major
research area as they can have a direct impact on many mining systems.

This thesis is devoted to the development of algorithms that are:

• Generic. We have seen that text collections differ in their language, domain,
quality, etc. Algorithms that require custom training data or a lot of manual tuning
are expensive as they require the work of human experts. Generic algorithms
that make few assumptions on the data and are therefore more robust provide
compelling alternatives to manually tuned algorithms. Note that such generic
algorithms can often be subsequently specialized using machine learning if
needed; several practical examples will be provided in the coming chapters.

• Fast and scalable. This is important for two main reasons: so that the resulting
algorithms can deal with large amounts of data, but also so that they require
limited computational resources. Indeed, many devices such as printers and other
embedded systems have very limited computing power that de facto prevents the
use of many complex algorithms.

• Theoretically sound. The most common term weighting scheme is, by far, TF-
IDF. Despite its good performance for a variety of tasks, TF-IDF remains rooted
on empirical observations. We will strive to develop algorithms that have solid
mathematical foundations.

14

Chapter 3

Background: the Helmholtz principle

Our work builds on a keywords extraction procedure introduced by Balinsky et al.
[22]. This procedure’s roots come from the Gestalt theory of visual perception. Let us
present it briefly.

3.1 Gestalt theory and Helmholtz principle for compu-
ter vision

3.1.1 Visual perception and Gestalt theory

Visual perception is the science studying how the visual system processes and
interprets the information contained in the light reaching the eyes. In particular, the
retina is made of millions of photo-receptor cells that are sensitive to light and trigger
electric reactions sent to the brain via the optic nerve (see page 25 in [33]). But how
does the brain recover and interpret a full image from these millions of stimuli? The
complexity of the task is huge: after all, every image we form in our brain is unique.
Most objects in those images will be obviously familiar but they are seen under unique
conditions (different angles of view, lighting, etc.). Yet we are able to make sense of
what we see effortlessly. This fact has lead scientists to hypothesize that there must be
general principles of perception, even though the exact mechanisms at play in image
reconstruction remain, to date, mostly a mystery.

One of the most influential theories of visual reconstruction is the Gestalt theory
[89, 134], whose development started in Germany in the 1920s. The central idea
behind the Gestalt theory is that "the whole is other than the sum of the parts" [90].
Indeed, one often sees a line before seeing the collection of points that constitutes
it. For Gestalt theoreticians, the fact that the entirety of an object is seen before its
individual components is due to innate grouping principles [134]. These principles

3.1 Gestalt theory and Helmholtz principle for computer vision 15

identify the way our brain automatically groups points —or retina stimuli— that share
similar characteristics together to form a coherent whole, or gestalt. Recursively, similar
gestalts will be grouped together into new and bigger gestalts.

The work of "gestaltists" has mainly consisted in creating many illustrations of
the grouping principles and categorizing them [33]. Thus, there is not a universally
accepted set of principles. For illustration purposes, let us present the most common
ones. The interested reader may refer to Chapter 6, in [33], for a more comprehensive
introduction.

• The vicinity principle: objects appearing close to each other are grouped together.
In Figure 3.1a, points at a small distance from each other appear like a group,
while increasing the distance between points creates distinct objects.

• The similarity principle: similar objects, in shape, color, texture, etc., are grouped
together. The effect is illustrated in Figure 3.1b, where objects with similar shape
and color are grouped together and separated from dissimilar objects.

• The closure principle: objects tend to be seen as a whole even when they are
incomplete. Only the angles of a square are present in Figure 3.1c, yet the square
is clearly visible.

• The symmetry principle: sets of objects that are symmetric tend to be seen as
a whole. Four main groups of points are drawn in Figure 3.1d and two bigger
objects emerge due to symmetry.

(a) The vicinity principle (b) The similarity principle

(c) The closure principle (d) The symmetry principle

Figure 3.1: Illustrations of the main grouping principles from the Gestalt theory.
Adapted from [33].

The Gestalt theory has been criticized for being descriptive rather than explanatory
and it has been quickly superseded in the field of psychology by newer theories such

3.1 Gestalt theory and Helmholtz principle for computer vision 16

as Tolman’s cognitive theory of learning [128]. However, the Gestalt theory remained
popular as it provides compelling explanations for many visual effects and it still
has an undeniable influence nowadays in the arts. It has also influenced some recent
developments in computer vision.

3.1.2 The Helmholtz principle for computer vision

There is a striking similarity between visual perception and digital images. Indeed,
eyes and digital cameras are both made of photo-receptors. Our brain reconstructs
the images we see from a large number of retina cells stimuli and these stimuli can
be thought as measurements similar to the pixels of digital images. This is why it
may seem very natural for computer vision algorithms to draw parallels with research
on visual perception, although historically those two disciplines have been developed
relatively independently.

A small number of researchers have tried to formalize the descriptive and purely
empirical grouping principles from the Gestalt theory into a more rigorous mathematical
theory, that of Lowe [81] and Zhu [141]. The most comprehensive work so far is, to
the best of our knowledge, due to Desolneux et al. [47] who developed a numerical
framework for detecting "partial gestalts" in digital images. The notion of partial gestalt
was introduced by Desolneux et al. to differentiate between global gestalts (or complete
objects) from their partial gestalts, or sub-parts, with geometric qualities such that they
get combined together by the grouping principles. In other words, angle detection, edge
detection, as well as shape detection (lines, circles, etc.), are all algorithms for detecting
partial gestalts. Thus, one remarkable aspect of Desolneux et al.’s work is the attempt
to cast those basic but diverse image processing problems into a common framework.
Let us present it in more details.

The central idea of Desolneux et al.’s work relies on the Helmholtz principle [81],
which states that structures having a low probability to appear in noise are instantly
perceived:

Definition 1. Helmholtz principle (from Page 31 in [47]):
Whenever some large deviation from randomness occurs, a structure is perceived.

Let us consider an image containing K atomic objects, of which m share a common
attribute such as color or position. In order to decide whether the considered aspect (i.e.,
partial gestalt) will be perceived, it is assumed that the attribute is distributed uniformly
at random and independently among the K objects. This is called the "a-priori" random

3.1 Gestalt theory and Helmholtz principle for computer vision 17

assumption. The Helmholtz principle says that if the observed quality could have
happened by chance under the a-priori random assumption, it will not be perceived. But
if it was unlikely to appear in noise, the quality will be perceived "a-contrario".

Turning the Helmholtz principle into a computational procedure still requires to
define what is meant by "an observed quality happening by chance". Intuitively, an
event is unlikely to happen by chance if it has a very small probability to occur. But how
to decide if a probability is small enough? Another problem with probabilities pointed
out by Desolneux et al. is that in some cases they can be cumbersome to compute; the
Birthday paradox is a well-known example [47]. This is why they preferred working
with expectations. Expectations can also solve the probability thresholding issue in an
elegant manner when using carefully crafted random variables.

Returning to the problem of deciding whether the fact that m out of K objects in an
image share a common property is unusual, let us denote by Cm the random variable that
counts the number of tuples of m objects that have the considered property, under the
a-priori random assumption. This assumption allows us to define E[Cm], the expected
value of Cm. Following Desolneux et al.’s terminology, we call E[Cm] the Number of

False Alarms (NFA) [47]. When NFA is strictly less than 1, then on average, finding
m objects with the considered property is unexpected; thus the Helmholtz principle
states that the resulting structure will be perceived. In this case, Desolneux et al. call
this event meaningful. Otherwise, if NFA is greater or equal to 1, it is a "false alarm".
One great advantage of the Number of False Alarms is that the natural threshold of 1
has an intuitive theoretical grounding: the event is either expected or unexpected. It
also allows derived models to be non-parametric. Obviously, other thresholds may also
be chosen if necessary:

Definition 2. ε-meaningful events (from Page 38 in [47]):
An event is ε-meaningful if the expectation of the number of occurrences of this event is

less than ε under the a-priori random assumption. When ε ≤ 1, the event is said to be

meaningful.

We shall keep using this terminology in this thesis. Note that Desolneux et al.’s
approach is related to the traditional framework of statistical hypothesis testing (e.g.,
tests for randomness). Indeed, it can be seen as a statistical test where the null hypothesis
assumes the considered property is distributed uniformly at random and thus that it is
not perceived. The null hypothesis is rejected when ε-meaningful events are observed;
said differently, the decision criterion is ε rather than some significance level. The
relation with hypothesis testing is discussed at length in Chapter 15 of [47]. Also, for

3.2 Helmholtz principle for data and text mining 18

concrete applications to computer vision problems, the reader may refer to [47, 66, 96].

In the next section, we explain how these notions can be adapted to text mining.

3.2 Helmholtz principle for data and text mining

Despite their computer vision origin, the notions of Number of False Alarms and
ε-meaningful events presented in the previous section are extremely generic. Noting
this fact, Balinsky et al. extended these notions to data mining using a simple model
[22] that can be described in terms of the classical balls-and-bins setting.

3.2.1 NFA for m-tuples in a balls-and-bins experiment

Let us consider a set of K balls thrown uniformly and independently at random into
N bins, as illustrated in Figure 3.2. Let us also denote by Cm the random variable that
counts the number of m-tuples of balls found in the bins at the end of the experiment,
where m ∈ {1, 2, . . . , K}. Without loss of generality, each of the K balls is initially
assigned a unique index between 1 and K. Therefore, each m-tuple can be defined by
the increasing sequence of indices (i1, i2, . . . , im) of the balls in the tuple.

Figure 3.2: Illustration of the balls-and-bins experiment, with K balls thrown
uniformly at random into N bins.

An interesting question to answer in this setting is whether it is expected to find an
m-tuple of balls in one of the N bins. Following the definition given in the last section,
the Number of False Alarms of an m-tuple is the expected value of Cm:

NFAB&B(m,K,N) = E[Cm]. (3.1)

In order to compute E[Cm], let us introduce the indicator random variable χ(i1,...,im)

3.2 Helmholtz principle for data and text mining 19

denoting whether all the balls of the m-tuple (i1, . . . , im) land in the same bin.

χ(i1,...,im) =

1 if all m balls with indices (i1, . . . , im) land in the same bin,

0 otherwise.
(3.2)

By definition of Cm, we have:

Cm =
∑

(i1,...,im):
1≤i1<···<im≤K

χ(i1,...,im) (3.3)

and by the linearity of expectation:

E[Cm] =
∑

(i1,...,im):
1≤i1<···<im≤K

E[χ(i1,...,im)] =
∑

(i1,...,im):
1≤i1<···<im≤K

P (χ(i1,...,im) = 1). (3.4)

The probability that all balls in a given m-tuple land in the same bin, given the inde-
pendence assumption, is:

P (χ(i1,...,im) = 1) = 1× 1

N
× · · · × 1

N
=

1

Nm−1 . (3.5)

The number of possible m-tuples is
(
K
m

)
, so Equation (3.4) becomes:

E[Cm] =
∑

(i1,...,im):
1≤i1<···<im≤K

1

Nm−1 =

(
K

m

)
1

Nm−1 . (3.6)

Finally, from Equations (3.1) and (3.6), unexpected events (i.e., unusually high numbers
of balls in a bin) are such that:

NFAB&B(m,K,N) =

(
K

m

)
1

Nm−1 < 1. (3.7)

In the next section, the relation of this balls-and-bins model to text mining, and
more precisely to keywords extraction, will be explained.

3.2.2 Practical adaptation of the balls-and-bins model to keywords
extraction

First and foremost, one should precise the notion of keyword. It seems intuitive that
the frequency of a word should be correlated with its importance. However, frequencies

3.2 Helmholtz principle for data and text mining 20

alone are not sufficient as stop-words are frequent but unimportant. Indeed, stop-words
are expected to appear everywhere with approximately the same frequency. On the
contrary, new topics emerge with the word frequencies from related vocabulary rising
sharply. Therefore, the context also plays an important role. A common definition for a
keyword is a "word with a local and unusual rise in frequency" [22, 70].

Coming back to the balls-and-bins model, balls represent words and bins represent
the local contexts used for defining such unusual rises in frequency. We shall call
generically those bins "containers". Thus, an unusually high number of occurrences of
a word inside a container is what defines a keyword. The practical definition given to
containers will depend on the data at hand and the application. Common examples are:

• each paragraph (or section, or chapter, etc.) from a document,

• each document from a collection of documents, or

• each class from a categorized corpus of documents.

However, containers may actually be any structure of interest. In some cases, no obvious
structure is available; for example a document may not be divided into paragraphs. In
such cases, one could use overlapping containers, for example sliding windows of a
fixed size (in number of words or number of sentences).

Model refinements

The model presented so far is not realistic as it assumes that the probability of
a word to land in any of the N containers is the same for every container: 1/N . In
practice, containers mirror real structures from the textual data such as paragraphs in a
document, so they will be of varying sizes. Let us define the length of a container to be
the number of words it contains. The model can be easily adapted by using an adaptive

number of containers Nadapt taking into account the length of the container currently
considered:

Nadapt =

⌊
LD
LC

⌋
(3.8)

where LD and LC are respectively the lengths, in words, of the entire collection of
containers and of the current container. bxc denotes the integer part of x.

Thus, each container is associated a different Nadapt which does not, in most cases,
represent real containers. This is why working with overlapping containers, such as

3.2 Helmholtz principle for data and text mining 21

sliding windows, is not a problem: indeed, Nadapt only depends on LD and LC . Let
us consider a document made of 10 words in total and assume this document contains
three paragraphs of 2, 5 and 3 words respectively, as illustrated in Figure 3.3a. For each
paragraph, the NFA computations will set, respectively, Nadapt to

⌊
10
2

⌋
= 5,

⌊
10
5

⌋
= 2

and
⌊
10
3

⌋
= 3 (see Figure 3.3b).

(a) Real containers (e.g., paragraphs) based on the structure of a document.

(b) Fictitious containers used for all NFA computations regarding the first
container.

Figure 3.3: Using the adaptive number of containers Nadapt to cope with contain-
ers of varying lengths.

Putting it all together, the Number of False Alarms for a word in a container is:

NFAkeyword(m,K,Nadapt) =

(
K

m

)
1

Nm−1
adapt

, (3.9)

where m is the frequency of the word in the container, K the frequency in the collection
of containers and Nadapt is computed using Equation (3.8). And this word is a keyword
(i.e., its frequency is unusually high in the container) if:

NFAkeyword(m,K,Nadapt) < 1. (3.10)

Meaningfulness scores

The Number of False Alarms is a strictly positive number that represents an expected
number of occurrences. NFA values in the (0, 1) open interval represent unexpected
events and the smaller the NFA value, the more unexpected the event (or, in other
words, the more important the keyword). This may sound counter-intuitive and one
might prefer working with a measure of importance where larger values represent more
important keywords.

To this end and as suggested in [22], we prefer to work with a meaningfulness score,

3.2 Helmholtz principle for data and text mining 22

denoted by meaning, that will be used heavily in the remaining of this thesis:

meaning(m,K,Nadapt) = −
1

m
logNFA(m,K,Nadapt) (3.11)

= − 1

m
log

[(
K

m

)
1

Nm−1
adapt

]
.

There are several theoretical reasons for such a transformation. Desolneux et al.
use it as a unified format for closed form estimation purposes, as large values of the
parameters m, K and Nadapt may lead to computational issues (see Chapter 4 in [47]
for details). Based on theoretical physics, Balinsky et al. [22] also argue that meaning
represents an "energy per particle" (i.e., an occurrence of a word), allowing comparisons
between different physical systems (i.e., collections of containers).

Regarding computations, it is important to note that in Equation (3.11), m and K
are potentially very large numbers, so

(
K
m

)
can take arbitrary large values. To avoid

overflow issues and speed up computations, the meaning formula can be simplified as:

meaning(m,K,Nadapt) = −
1

m
log

[(
K

m

)
1

Nm−1
adapt

]

= − 1

m

[
log

(
K

m

)
− logNm−1

adapt

]

= − 1

m

[
log

K . . . (K −m+ 1)

m!
− (m− 1) logNadapt

]

= − 1

m

[
K∑

i=K−m+1

log i−
m∑
i=1

log i− (m− 1) logNadapt

]
.

Also, for clarity and convenience reasons, we will often use the equivalent set of
parametersmeaning(w,P,D), where w is a word that appearsK times in the container
P from the collection of containers D.

In summary, the meaningfulness scoremeaning(w,P,D) quantifies the importance
of the word w in the container P (e.g., a paragraph), relative to the collection of con-
tainers D (e.g., the associated document). Positive meaningfulness scores correspond to
keywords and the higher the meaning score, the more important the keyword. Negative
meaningfulness scores correspond to non-meaningful words (i.e., words that are less
important).

In the next chapter, we investigate a first concrete application: information retrieval.

23

Chapter 4

Information Retrieval and Enterprise
Search

Information retrieval refers to the theory and algorithms behind search engines.
More formally, it is the process of retrieving the documents that are relevant to an
information need, from a given collection of documents. The word "document" in
this context is extremely general and can refer to text, audio, video, etc. as well as,
increasingly, combinations of such types. However, we will remain focused in this
thesis on textual systems.

Information needs are described by user-defined queries, generally consisting of
one or more words. The objective of a retrieval system is to identify the subset of
documents that is relevant to the information need expressed by the query and usually
rank these documents by decreasing order of relevance. Information retrieval is crucial
in the current web era but it is far from a new research area. Structuring and organizing
collections of documents is an immemorial need that started with ancient libraries.
Computers have greatly simplified this process and naturally, information retrieval has
been a large research area starting from the second-half of the 20th century.

In this chapter, we investigate enterprise search, which is information retrieval geared
towards collections of documents found on companies’ intranets. More precisely, a new
term weighting scheme for ranking documents by order of relevance is developed and
a complete search engine for enterprise search is built upon it. We start with a review
of the state-of-the-art in Section 4.1. Our algorithm and full system are described in
Section 4.2. The evaluation methodology is introduced in Section 4.3 while Section 4.4
presents and analyzes the results. Finally, Section 4.5 concludes the chapter.

A brief description of the fully-fledged search engine that has been developed as
part of this work is available in Appendix A.1, page 106.

4.1 A brief literature review 24

4.1 A brief literature review

4.1.1 Indexing

The first step when building a retrieval system is to index the collection of documents
that is to be searchable. An index is a data structure that allows fast retrieval of the
documents that contain the query terms. The most common type of index is the so-called
inverted index that stores, for each unique term in the collection of documents, the list
of all documents containing this term, as illustrated in Table 4.1. The example inverted
index allows to find directly that the query "picture" should result in two documents
being returned to the user: Doc2 and Doc3. Without such an index, one would need to
do an expensive linear scan through the entire collection of documents. It should be
noted that the choice of index terms is crucial as words that are not indexed cannot be
retrieved. As an example, if stop-words filtering is done before indexing, the queries
"to be or not to be" and "The Who" (a rock band) will not return any results since they
contains only stop-words.

Table 4.1: Building a simple inverted index. In this example, stop-words are not
indexed.

(a) An example collection of documents

Document ID Document text

Doc1 To be or not to be,

that is the question.

Doc2 A picture is worth

a thousand words.

Doc3 Every picture tells

a story.

(b) The corresponding inverted index

Term Document IDs

where term appears

picture Doc2, Doc3
question Doc1
story Doc3
tells Doc3
thousand Doc2
words Doc2
worth Doc2

Historically, index terms used to be manually assigned by experts to each document.
However, the vast majority of search engines work nowadays with full-text indices.
Full-text indexing simply means that all terms are stored in the index after preprocessing.
As such, our Table 4.1b example is a full-text index, even if stop-words are removed.
As already pointed out, the preprocessing techniques used (stop-words removal, nor-
malization, stemming, etc.) have a large impact on the end results and thus need to be

4.1 A brief literature review 25

carefully devised.

But more than just retrieving potentially relevant documents by means of indexing,
modern systems need to rank these documents by decreasing order of relevance. Indeed,
the results that users first see should be the documents that are most likely to be relevant.
Several retrieval models have been developed over the years to do such a ranking. Let
us present the most popular ones.

4.1.2 Retrieval models

Early information retrieval systems relied on set-theoretic models, which represent
both documents and queries as sets of terms. The best known example is the stand-

ard Boolean model (see Chapter 1 in [86]), in which queries are written as Boolean
expressions. Here is an example of Boolean query:

(picture OR image) AND (words) AND (NOT story)

Unfortunately this model does not provide a ranking mechanism: a document either
does or does not match the query. Extensions have been proposed to introduce document
rankings. The most notable examples include fuzzy models [126] where fuzzy set theory
allows terms to have varying degrees of membership to a document and the extended
Boolean model [119] which draws ideas from algebraic models.

Algebraic models are arguably the most influential type of models as they appear
in one way or another in almost all current retrieval systems. In the standard vector

space model, both documents and queries are represented as vectors in a Euclidean
space where each dimension corresponds to an element of the vocabulary (i.e., a term).
The similarity between a document D and a query Q, respectively represented by the
vectors d and q, can be computed using the cosine similarity:

cos(d,q) =
d • q

‖d‖ × ‖q‖
(4.1)

Intuitively, the cosine is a function of the angle between the two parameter vectors d
and q, with high cosine values representing vectors with similar directions. But we have
not yet defined the vector weights; how should a preprocessed document be transformed
into a vector to reflect the importance of each term in this document? This question
has received huge attention from researchers and TF-IDF term weighting schemes
[118] have become ubiquitous. TF-IDF schemes have little theoretical grounding; the

4.1 A brief literature review 26

first serious attempt to justify them was provided by Robertson in 2004 [111], several
decades after they were first introduced. However, they have become widely popular
since they are both intuitive and very effective in practice. TF stands for Term Frequency

and accounts for the idea that the more a term appears in a document, the more this
term is likely to be important inside this document. Many variations of TF exists but a
common normalized version is:

TF(t,D) =
ft,D

max
u∈D

fu,D
(4.2)

where t denotes a term and ft,D the frequency of t inside the document D. However,
terms that are very frequent in the collection of documents, including stop-words, are
usually less informative than rarer terms. IDF, which stands for Inverse Document

Frequency, reflects this idea. Again, many variations exist but a popular one is:

IDF(t, C) = log
|C|
DFt

= log
|C|

|{D ∈ C : t ∈ D}|
(4.3)

where C denotes the collection of documents and DFt the document frequency of
t, that is the number of documents from C where t occurs. Thus the numerator is
the total number of documents in the collection and the denominator the number of
documents which contain t. Then, TF-IDF weights are simply the products of TF
and IDF components, thus balancing their respective importance criteria. In summary,
vector space models usually work as follows:

• each document D is represented as a TF-IDF vector d, where the weight for each
dimension (i.e., term) is computed as TF-IDF(t,D,C) = TF(t,D)× IDF(t, C),

• when a user types a query Q, the query string is converted to a query vector q
that is often a simple binary incidence vector denoting terms appearing in the
query or a vector made of TF weights,

• for each document in the collection where at least one query term appears, a
relevance score scoreTF-IDF(D,Q) is computed using Equation (4.1) and these
documents are returned in decreasing order of relevance. This step can be achieved
very quickly thanks to the inverted index.

It should be pointed out that dozens of TF-IDF variants have been proposed over
the years. Salton and Buckley summarize and formalize the most prevalent ones in
[118]. The notion of "fields" has been introduced more recently to differentiate between

4.1 A brief literature review 27

the different document sub-parts and thus give more emphasis to the most important
sub-parts, like the title [137].

These vector space models are so popular because of their effectiveness, simplicity
and scalability. They have a number of issues though. First, dimensions are obviously
not orthogonal in practice due to synonymy, antonymy and other relations between
words. Second, they are less expressive than Boolean models as, for example, they do
not have an equivalent to the Boolean negation (i.e., the NOT operator). Also, similarly
to set-theoretic models, they are a bag-of-words approach in which the order of words
is ignored, so semantic and syntactic relations between words are lost. Alternatives
that solve some of these issues have been proposed, most notably the generalized
vector space model [136] which relaxes the orthogonality assumptions and Latent
Semantic Indexing (LSI) [46] that relies on Singular Value Decomposition to work with
dimensions corresponding to semantic concepts rather than just terms.

The last major type of models are probabilistic models. The original motivation for
developing probabilistic models was mainly to improve the theoretical grounding of the
empirical TF-IDF models. Many probabilistic approaches have been proposed. One of
the most influential is the Binary Independence Model [115] which has led to one of
the current state-of-the-art ranking scheme called BM25 [112, 113]:

BM25(t,D,C) =
ft,D
(
k1 + 1

)
ft,D + k1

(
1− b+ b |D|

avgdl

) × log
N −DFt + 0.5

DFt + 0.5
(4.4)

scoreBM25(D,Q) =
∑
t∈Q

BM25(t,D,Q) (4.5)

where k1 and b are tuning parameters, avgdl is the average document length (in number
of terms) in the collection of documents and N the total number of documents in the
collection. The derivation of this formula is rather lengthy and can be found in [113].
It is interesting to note how the BM25 formula remains clearly inspired by algebraic
models: the first part can be considered as a TF component and the second part as an
IDF component. Alternative probabilistic models, that show good performance but do
not try to model relevance directly, include language modelling approaches [106] and
divergence from randomness models [18].

4.1 A brief literature review 28

4.1.3 Learning-to-Rank

Over the years, initial ranking functions such as TF-IDF and BM25 have proven
their efficiency and robustness for a variety of retrieval tasks. But they also have clear
limitations. First, they make simplifying assumptions when representing documents;
for example they ignore the proximity of query terms in the documents. Second, they
do not take into account many potentially useful relevance features. For example, one
might prefer to have well-written and recent documents at the top of the search results.

Supervised learning can be used to alleviate these problems. More precisely,
learning-to-rank algorithms can be used to automatically learn a good ranking function
based on a set of queries with gold-standard relevance judgements. Learning-to-rank
allows the use of many features and can thus incorporate a variety of aspects that affect
document relevance.

Given the large computational requirements of such algorithms, retrieval systems
that use learning-to-rank usually work in a two-stage process. First, a fast ranking
function like TF-IDF is used to retrieve an initial ranking of relevant documents. As an
illustration, this ordered list could be:

initial_ranking(Q) = [Doca, Docb, Docc, Docd, Doce].

Then, the learning-to-rank algorithm re-ranks a fixed number of top documents (say,
50) to ensure the most relevant ones are placed at the very top of the results list. This
re-ranking function can take into account many features ignored by the initial ranking
function, such as the proximity of query terms inside the document, the document
quality, etc. in order to output the best permutation possible:

top_documents(Q, 3) = [Doca, Docb, Docc]

best_permutation(Q, [Doca, Docb, Docc]) = [Docb, Docc, Doca].

The re-ranked top documents are output first, followed by the remaining tail of the
initial list of documents:

final_ranking(Q) = [Docb, Docc, Doca] + [Docd, Doce].

Three main learning-to-rank approaches exist [74]:

• pointwise algorithms, that use traditional classification or regression methods to

4.2 Proposed algorithm 29

directly predict the relevance score of a document,

• pairwise algorithms, building a binary classifier that predicts the more relevant
document for each pair of documents and then reconstructing a ranked list of
documents, and

• listwise algorithms, that directly optimize for retrieval performance measures like
nDCG (which we will discuss in more details in the evaluation section of this
section). This is difficult because such metrics are not continuous.

We use pairwise and listwise algorithms in this thesis. However, we will mainly treat
learning algorithms as blackboxes as these are not the primary focus of our work.

4.2 Proposed algorithm

In this section, we propose the use of the Helmholtz principle to quantify relevance
in an information retrieval context. We also outline a search engine developed for
enterprise search, building upon the proposed term weighting scheme and augmenting
it with learning-to-rank capabilities.

4.2.1 Preprocessing

It goes without saying that the collection of documents must be preprocessed at
indexing time in exactly the same way as the query at search time. This is because the
query terms must exactly match the same document terms in the index.

A very simple preprocessing pipeline is used: the input text, either a document or
a query, is lower-cased and split on every non-alphabetical character. The resulting
tokens are then stemmed with the Porter stemming algorithm.

Two important details are worth highlighting. First, stemming is very simple way to
fuzzily match query terms with document terms. Indeed, a search for "cat" will retrieve
documents containing the word "cats" as one might expect. As always, a trade-off
is necessarily made: this process increases recall (more relevant documents will be
retrieved) at the cost of lower precision (some less relevant documents will also be
retrieved). Second, it might be very tempting to remove stop-words, in order to reduce
the size of the index but also to increase precision. We choose to not filter stop-words

4.2 Proposed algorithm 30

because this has a number of negative consequences on search, for reasons already
mentioned.

4.2.2 Term weighting scheme

Most of the current state-of-the-art weighting schemes are either empirically de-
rived, such as TF-IDF, or arise from lengthy and complex derivations, such as BM25.
The measure of meaningfulness meaning(w,D,C), which stems from the Helmholtz
principle and was presented on Equation (3.11) page 22, provides a simple and theoret-
ically sound measure of word importance. We propose its use for term weighting in
an information retrieval context, where it can provide a simple measure of importance
for the word w inside the document D relative to the entire collection of documents C.
Using the notations introduced in Section 4.1, Equation (3.11), from page 22, can be
rewritten as:

meaning(t,D,C) = − 1

ft,D
log

[(
ft,C
ft,D

)
1

N
ft,D−1
adapt

]
(4.6)

where ft,D and ft,C are the frequencies of the term t inside the document D and
collection of documents C. Nadapt is set to |C|/|D|, that is the length (in number of
terms) of the collection of documents divided by the length of the document (also in
number of terms).

Terms that do not appear in a document are assumed to have a meaning value of
0. Therefore, terms with a negative meaningfulness score are truncated at 0, otherwise
these negative values would act as penalties on relevance scores. Thus, the meaning
formula becomes in the search context:

meaningsearch(t,D,C) =

{
meaning(t,D,C) if t ∈ D & meaning(t,D,C) > 0

0 otherwise.

(4.7)

Finally, inspired by algebraic models, we define the relevance of a document D to a
query Q simply as the sum of the meaningfulness scores of the query terms it contains:

scoremeaning(D,Q) =
∑
t∈Q

meaningsearch(t,D,C) (4.8)

Note that documents containing only non-meaningful query terms are assigned zero

4.2 Proposed algorithm 31

relevance scores similarly to documents that do not contain any query terms. This is not
a problem in practice since the latter documents, which are entirely non-relevant, are
not retrieved from the inverted index and thus are never part of the actual computations.

Algorithm 4.1 gives the full pseudo code for initial ranking computations.

Algorithm 4.1: Initial ranking computations.
I n i t i a l i z e relevant_docs t o t h e empty l i s t .

P r e p r o c e s s t h e que ry Q i n t o a l i s t o f t e r m s .

For each te rm t i n t h e que ry :

Get a l l documents c o n t a i n i n g t (from t h e i n v e r t e d i n d e x) .

For each such document D :

I f D i s n o t i n relevant_docs :

Add D t o relevant_docs , w i th scoremeaning(D,Q) = 0 .

Compute meaningsearch(t,D,Q) [s e e E q u a t i o n (4.7)] .

Add meaningsearch(t,D,Q) t o scoremeaning(D,Q) .

S o r t relevant_docs by d e c r e a s i n g o r d e r o f scoremeaning(D,Q) .

Re tu rn relevant_docs .

4.2.3 Augmenting the system with Learning-to-Rank

A search engine could rely solely on the term weighting mechanism introduced in
the last section and directly return the initial ranking of documents to the user. However,
in order to improve these document rankings based on a richer and more powerful set of
features, we augment our system with learning-to-rank. In this section, we describe the
features that we designed for the system and explain how learning-to-rank algorithms
are trained.

It is worth pointing out that the search engine developed as part of the work for
this thesis, as well as the experiments carried in this chapter, are aimed at enterprise
search. Despite being similar with web search, enterprise search differs on a number of
points and especially in the choice of features for learning-to-rank: for example, web
search benefits from features detecting the techniques used by websites to artificially
get better rankings, known as "spamdexing" [56]. No such adversarial behaviour is
to be expected in the enterprise search context. Also, document metadata (author,
creation and modification dates, etc.) should be more consistently available in enterprise
collections. These differences are reflected in our choice of features.

4.2 Proposed algorithm 32

Features design

Learning-to-rank features are usually divided in two main types: query-dependent
and query-independent features [83]. We prefer to use slightly more precise groupings:
query-document features, document features and query features. Let us present each of
these types in turn.

Query-document features Query-document features attempt to quantify how well a
document matches the query. Features based on initial ranking formulae such as TF-IDF
or BM25 are obviously common [109], as well as various other measures indicating
how many query terms actually appear in a document or how close these query terms
appear to each other. The query-document features used in our models are presented in
Table 4.2.

Table 4.2: Query-document features.
Feature Description

Meaningfulness
scores sum

Sum of meaningsearch scores for the document, over all query
terms. Query terms that do not appear in the document are
assigned 0 scores.

Meaningfulness
scores average

Average of meaningsearch scores for the document, over all
query terms.

Meaningfulness
scores std deviation

Standard deviation of meaningsearch scores for the document,
over all query terms.

Nb covered query
terms in title

Number of unique query terms that appear in the title of the
document.

Nb covered query
terms in content

Number of unique query terms that appear in the body of the
document.

Minimum pairwise
distance in title

Minimum pairwise distance, over all pairs of query terms, in
the title of the document.

Minimum pairwise
distance in content

Minimum pairwise distance, over all pairs of query terms, in
the body of the document.

Average pairwise
distance in title

Average pairwise distance, over all pairs of query terms, in the
title of the document.

Average pairwise
distance in content

Average pairwise distance, over all pairs of query terms, in the
body of the document.

Title min cover Minimum coverage, in the title of the document, of all query
terms.

Content min cover Minimum coverage, in the body of the document, of all query
terms.

4.2 Proposed algorithm 33

The definitions and purposes of most features in the table should be clear, apart
from minimum coverage and pairwise distance [127] that were not introduced. These
are proximity measures quantifying how close the query terms appear together in the
document. They reflect the idea that query terms should co-occur closely in documents.
Indeed, in response to the query "gray cat", a document containing "the gray cat" should
be considered more relevant than a document containing "the gray wolf and the red cat".

Minimum coverage is defined as "the length of the shortest document segment that
covers each query terms at least once in a document" [127]. With the previous example,
the first document has a minimum coverage of 2 while the second document has a
minimum coverage of 6.

The pairwise distance, defined between any two (unique) query terms, is the smallest
distance between these two terms inside a document of the collection. As there is
a pairwise distance for each pair of unique query terms, these distances are then be
combined with an aggregation operator such as the minimum or average. For illustration
purposes, the pairwise distances for the terms "gray" and "cat" are, respectively, 1 and 5
in the first and second document from our running example.

In case a query term does not appear in a document, these proximity measures
are considered by default to be equal to the length of the document. Thus, these two
proximity measures achieve similar goals. Minimum coverage is oriented towards
matching exactly the entire query, while pairwise distance allows some query terms to
be missing so it is more robust in case synonyms are used or only partial matches occur.

As a final remark, it is worth noting that we differentiate the title from the remaining
content of the document for many features. This is because occurrences of query
terms in the title are often good indicators of relevance, more so that occurrences in
the remaining body of the document. This is a very common trick in information
retrieval, that has been recently extended to the notion of "fields" (for example: title,
main content, anchors and comments) that are scored independently [114]. Such fields
could be integrated in our search engine in a trivial way, with more features; however,
these are necessarily corpus specific so we avoid them in the interest of genericness.

Document features Document features are indicative of the quality of a document.
Assuming an equivalent relevance, the better-written document should appear in the
search results before the equivalent badly-written document. The document features
used in our models are presented in Table 4.3. Note that these features can be pre-
computed at indexing time and stored alongside the index, to avoid repeated calculations

4.2 Proposed algorithm 34

and return slightly faster results at query time.

Table 4.3: Document features.
Feature Description

Corpus Binary features (one for each corpus) indicating the source
of the document, if several corpora (sources) of data are
indexed

Document length Document length in number of terms
Title length Title length in number of terms
Content length Length of document content in number of terms
Creation age Time in days since document creation
Modification age Time in days since last document modification
Average rating Average user ratings, on a scale 1 to 5 stars (default 2.5)
Nb ratings Number of user ratings
Nb ingoing links Number of in-going links
Nb outgoing links Number of out-going links

Document features should capture several aspects of document quality. Quality
is unfortunately a rather subjective notion and therefore difficult to quantify. Many
complex measures have been proposed, for example taking into account document
structure [63], but we focus instead on generic features that can be extracted from new
document collections with no or little development efforts. Let us briefly mention the
rationale behind our choice of features:

• document corpora: some corpora/sources are better than others (e.g., Wikipedia
[16] is a generally reliable source on the internet).

• document age: the contribution of document age will be very domain specific; in
some applications, documents become quickly irrelevant (e.g., news stories) while
in collaborative environments, older documents may be more comprehensive,
fact-checked and/or polished.

• ingoing and outgoing links: documents referenced by many other documents
are popular and thus probably of good quality. Many complex algorithms working
with links have been proposed, such as PageRank [102], but for simplicity we
limit ourselves to counts.

• user feedback: users can provide, directly or indirectly, a lot of valuable in-
formation on documents they like or dislike. Our search engine provides several
ways for them to leave feedback, so we incorporate some of this feedback in the
features for ranking.

4.2 Proposed algorithm 35

Query features Finally, query features allow learning-to-rank models to specialize
for different kinds of queries [83]. For instance, let us consider features based on
pairwise distances. Since these features take into account pairs of query terms, they are
only useful for queries made of several words. So when the query length (in number of
terms) is also provided as a feature, a learning-to-rank algorithm can learn to discard
pairwise distance features for queries made of a single term.

We use only a few query features in our models; these are presented in Table 4.4.

Table 4.4: Query features.
Feature Description

Query length Query length in number of stems
Nb unique words Number of unique query words (before stemming)
Nb unique stems Number of unique query stems

Ranking algorithms

Regarding learning-to-rank algorithms, we experiment with both pairwise and
listwise approaches.

A few open-source implementations of pairwise algorithms exist, such as SVMRank

[10, 64]. However, we preferred to re-implement the pairwise transformation process
from scratch to allow experiments with any binary classifier. Indeed the pairwise ap-
proach estimates, for each pair of top documents D1 and D2, which document is more
relevant than the other relative to a query Q. To do so, it can take as input the concat-
enation of the two documents’ feature vectors feature(D1, Q) and feature(D2, Q),
outputting +1 if D1 is more relevant than D2 or −1 otherwise. This is a standard
supervised learning problem and as such, any binary classifier can be used to do so
(logistic regression, SVM, random forest, etc. [9]). Note that when concatenating the
two feature vectors, there is no need to duplicate the query features because these are
the same for every documents, given a query. Once every pair of documents has been
classified, a new ranking is constituted using a simple voting procedure: the document
most often considered as more relevant is placed at the top of the results list, and so on.
In this setting, it is important to note that training instances are not independent from
each other. The reason is two-fold: first, the same document participates in several pairs,
but the query structure of the dataset also means that documents relating to the same
query are dependent on each other. As such, the pairwise setting violates the assumption
that underpins most classification algorithms, namely that the data are Independent and

4.3 Evaluation methodology 36

Identically Distributed (IID). However, this is not an issue in practice as traditional
classifiers still yield good performance.

Listwise approaches, since they work directly with the full list of top documents, are
simpler to use in the sense that they do not require the documents’ feature vectors to be
transformed. Implementing such algorithms is however more complex, so the RankLib
library [8] is used. Note that even though training instances (i.e., queries) are now IID,
training a classifier in this setting is harder since the number of training instances for
the same dataset is much smaller.

With both approaches, all features are standardized: each feature is normalized
by substracting the mean and dividing by the standard deviation of the corresponding
feature. The means and standard deviations are estimated on the training set. Such
a normalization procedure is applied because some machine learning algorithms are
sensitive to the scale of features, in terms of re-ranking performance and/or training
times. Also, constant features are filtered. This can happen, say, when no user feedback
is available, which is the case with the evaluation datasets used later in the chapter.

4.3 Evaluation methodology

4.3.1 Evaluation procedure

Our proposed term weighting scheme based on meaningfulness scores is evaluated
and compared against the traditional TF-IDF and BM25 schemes.

There are many variants of TF-IDF so we use the most prevalent one [86], which is
slightly more elaborate than the one presented in the review (see page 26). It is denoted
LNC-LTC using the standard SMART notation [117] and is equal to:

scoreLNC−LTC(D,Q) =∑
t∈D∩Q

1 + log(ft,D)√∑
t∈D

(
1 + log(ft,D)

)2 × (1 + log(ft,Q))× log(N/DFt)√∑
t∈Q

(
(1 + log ft,Q)× log(N/DFt)

)2
(4.9)

where D and Q represent respectively the document and the query, ft,D is the frequency
of the term t in D, N is the total number of documents in the collection and DFt is the
document frequency of t.

4.3 Evaluation methodology 37

The BM25 measure is defined as presented in Equation (4.5), page 27. The k1 and
b tuning parameters are set, respectively, to 1.6 and 0.75 according to popular default
values (see Section 11.4.3 in [86]).

Regarding learning-to-rank, experiments are conducted with several re-ranking
algorithms. The effect of the number of documents re-ranked on retrieval performance
is also studied. But let us clarify first how retrieval performance is quantified.

4.3.2 Evaluation metrics

Many metrics to evaluate the performance of information retrieval systems exist.
Precision, recall and F-score are well-known examples but are usually avoided since
they work with sets and as such ignore rankings. We use three popular alternatives,
namely Reciprocal Rank (RR), Average Precision (AP) and Normalized Discounted
Cumulative Gain (nDCG).

Reciprocal Rank (RR) is a simple measure that focuses only on the first relevant
document. For a given query Q, it is equal to the inverse of the rank of this first relevant
document. Denoting this rank Rankfirst(Q), we have:

RR(Q) =
1

Rankfirst(Q)
(4.10)

Average Precision (AP) considers all relevant documents in the results list. It is
equal to the average precision at rank, over the ranks of all relevant documents that are
returned:

AP (Q) =

|Results(Q)|∑
i=1

Precision@i(Q)× IsRelevant(Q, i)

|RelevantDocuments(Q)|
(4.11)

where:

• Results(Q) is the set of results returned by the search engine,

• Precision@i(Q) is the precision at rank i (i.e., the ratio of relevant results in the
first i results),

• IsRelevant(Q, i) is an binary indicator function, with value 1 if the i-th docu-
ment is relevant and 0 otherwise, and

4.3 Evaluation methodology 38

• RelevantDocuments(Q) is the set of relevant documents for the query Q.

AP is actually an approximation of the area under precision-recall curve, where data
points are (precision, recall) pairs at every rank. Since we want both precision and
recall to be high, higher values indicate better document rankings. As we are usually
interested in the top results only, an Average Precision at rank k variant exists, which
truncates the results list at k results:

AP@k(Q) =

k∑
i=1

Precision@i(Q)× IsRelevant(Q, i)

min(k, |RelevantDocuments(Q)|)
(4.12)

Finally, the Normalized Discounted Cumulative Gain (nDCG) quantifies the "gain"
(i.e., usefulness) of each document in the results list. Because lower ranks are less
useful that high ranks, these gains are logarithmically discounted (i.e., penalized) as the
ranks increase:

DCG(Q) = Relevance(Q, 1) +

|Results(Q)|∑
i=2

Relevance(Q, i)/ log2(i) (4.13)

nDCG(Q) =
DCG(Q)

IDCG(Q)
(4.14)

where Relevance(Q, i) denotes the relevance level of the i-th result. IDCG(Q) stands
for Ideal Discounted Cumulative Gain and is just a normalization factor that is computed
using the DCG(Q) formula while assuming a perfect ranking of the search results.
Note that in most datasets, relevance levels are not binary (i.e., some documents are
more relevant than others), so nDCG has the advantage over AP that it takes into
account relevance levels. Similarly to AP@k, nDCG@k also exists; it is computed in
exactly the same way, except that the results lists (both the one returned by the search
engine and the ideal one) are cut-off at k documents.

All these measures are defined for a given query Q. In practice, ranking algorithms
are evaluated over many queries, so all the above metrics are averaged. Reciprocal Rank
RR simply becomes Mean Reciprocal Rank:

MRR =

|Queries|∑
i=1

RR(Qi)

|Queries|
. (4.15)

We define similarly MAP (Mean Average Precision), MAP@k, Mean nDCG and

4.4 Experimental results on the TREC datasets 39

Mean nDCG@k. Finally, note that all these measures (both the single query and
averaged versions) take values in the [0, 1] range, with higher values corresponding to
better performance.

4.4 Experimental results on the TREC datasets

4.4.1 The CERC collection and associated TREC datasets

The evaluation of information retrieval algorithms requires datasets of queries
and associated gold-standard relevance judgements, that is to say, a list of relevant
documents for each query.

Evaluating and comparing algorithms designed for enterprise search is difficult
for several reasons. First, the creation of a public and realistic dataset is complicated
because enterprise data are in large parts confidential. Second, even if enterprise data
are available for a given project, creating gold-standard judgements allowing to evaluate
and fine tune search algorithms is a costly and time-consuming task. Alternatively,
gold-standard judgements can be derived from large quantities of search logs [64].
However, this approach requires a search engine to be used without a learning-to-rank
component (or said differently, with sub-optimal performance) until sufficient quantities
of data are gathered. Finally, some research datasets do not provide the raw collections
of documents but only standard features computed for each document from these
collections, such as TF-IDF values. The problem with such datasets is that custom
feature sets cannot be created. This is for instance the case with the LETOR datasets
[79] that are essentially aimed at machine learning, or more precisely learning-to-rank,
research.

Thankfully, a few corpora are still suitable for our purposes. In this work, we use
the CSIRO Enterprise Research Collection (CERC) corpus [19]. The CERC corpus is a
snapshot of all the public facing pages of CSIRO [1], Australia’s national science agency,
as of March 2007. The collection contains a total of 370,715 pages, which represents
slightly more than 4GB of raw textual data. Sets of queries with gold-standard relevance
judgements were created for the enterprise search tracks of the TREC competitions in
2007 [20] and 2008 [27].

More specifically, for the TREC 2007 competition, CSIRO employees were asked
to create overview pages for 50 "topics", each listing a set of key documents [20]. In the
TREC 2008 competition, 77 information requests from the public were used to define

4.4 Experimental results on the TREC datasets 40

topics [27]. Then, from each topic was derived a query, the associated key documents
being used as gold-standard judgements. Relevance judgements were on a three-point
scale:

• 0 indicates that the document is not likely to be relevant,

• 1 that the document is possibly relevant, and

• 2 that the document is very likely to be relevant (a "key page").

Examples of queries include "high protein diet", "H5NI avian influenza" and "recruit-
ment".

In all experiments, the number of search results per query is limited to 1,000
documents as is common practice, so longer lists of results are truncated.

4.4.2 Initial ranking evaluation

Effect of term weighting formulae

First, let us start by comparing the performance of our proposed term weighting
formula based on meaningfulness scores with two state-of-the-art term weighting
mechanisms, TF-IDF and BM25. The results are presented in Table 4.5.

On the TREC 2007 dataset, the best formula is BM25 according to most metrics,
closely followed by our proposed term weighting. TF-IDF results in significantly worse
performance on all metrics. However, the results are more even on the TREC 2008
dataset. TF-IDF now yields the best MRR and Mean nDCG@10, whereas BM25
comes first with the MAP and Mean nDCG metrics. Our formula outperforms the
other two on MAP@10.

Overall, our proposed term weighting formula seems highly competitive with the
state-of-the-art formulae. It is very interesting to note that it consistently performs
well (first or close second) on metrics that emphasize top results, that is MAP@10,
MRR and Mean nDCG@10. This is evidently a desired behaviour as users expect the
most relevant results to be returned first; in practice, users even prefer reformulating a
query rather than looking at the tail of search results [125]. The reason why our scheme
yields slightly worse MAP results might be due to the fact that many documents in
the tail of search results will have 0 relevance scores (i.e., scoremeaning(D,Q) values),
for example if the query contains a stop-word. In the current implementation, these

4.4 Experimental results on the TREC datasets 41

Table 4.5: Comparison of term weighting formulae for initial ranking. Higher
values indicate better performance.

Our weighting TF-IDF BM25

TREC 2007:
MAP 0.316 0.216 0.372
MAP@10 0.670 0.242 0.682
MRR 0.896 0.451 0.916
Mean nDCG 0.778 0.628 0.795
Mean nDCG@10 0.880 0.494 0.864

TREC 2008:
MAP 0.096 0.093 0.146
MAP@10 0.176 0.169 0.131

MRR 0.290 0.358 0.249

Mean nDCG 0.574 0.563 0.611
Mean nDCG@10 0.429 0.451 0.395

documents are randomly ordered. Therefore, if any relevant document contains only
non-meaningful query terms, it will have a 0 score and might end up at a very low rank
amongst many non-relevant documents. Furthermore, since search results are limited
to 1,000 documents, some of these relevant documents might even be discarded. This
issue can be alleviated in a simple way, by further sorting search results that have the
same scoremeaning(D,Q) value by decreasing number of unique query terms it contains.
Note that Mean nDCG numbers, which also takes into account the full results list but
gives a more direct emphasis to the top results than MAP , are particularly competitive.

Overall, these results are especially impressive when put in context. Indeed, both
TF-IDF (or at least the popular LNC-LTC variant that we use) and BM25 are complex,
finely-tuned formulae, that are the outcomes of decades of research. Nonetheless, our
formula based on meaningfulness scores showed its effectiveness on the TREC datasets
and proved to be on a par with state-of-the-art schemes. Hence, we shall continue
building on it in the remaining of this chapter.

It should be pointed out that all three schemes have similar computational require-
ments as their respective formulae rely on similar quantities, that is frequencies relative
to individual documents and frequencies relative to the full collection of documents.
And in any case, these quantities are pre-computed during the indexing stage, which is
much less time critical than the retrieval stage (i.e., query time).

4.4 Experimental results on the TREC datasets 42

Finally, our formula enjoys a much more sound theoretical grounding than TF-IDF
based formulae. Also, because it relies on a simple model (see Section 3.2.1 page 18),
its derivation is more straightforward than BM25’s derivation and does not require many
simplifying assumptions in order to make it computationally tractable [113].

Effect of index compression

Meaningfulness scores provide a natural distinction between important and non-
important terms. Indeed, only terms with a strictly positive meaningfulness score
correspond to keywords, i.e. words with an unusually large number of occurrences
inside a document. Therefore, it is natural to wonder what the effect of the non-important
terms on retrieval performance is. Are they needed at all?

To answer these questions, we modified our initial ranking formula to exclude all
non-meaningful words. That is to say, only documents with a scoremeaning(D,Q) > 0

are now considered relevant and returned as search results. Thus, part of the tail
of results is discarded while the top of the results list (all results with at least one
meaningful query term) is left untouched. But this simple modification has important
practical consequences. Indeed, it can be seen as index compression: the inverted index
now becomes much lighter because non-meaningful words no longer need to be indexed
(i.e., stored). Also, since fewer entries need to be read from the index and processed at
query time, query processing times are shortened. The impact of this experiment on the
evaluation metrics are presented in Table 4.6.

For both TREC datasets, discarding non-meaningful words actually has very little
impact on the numerical results. This confirms that most relevant documents contain
meaningful query terms and that meaningfulness scores are an efficient approximation
of relevance. It is important to point out that, despite a good performance on the
TREC datasets, removing non-meaningful terms will decrease recall in most cases.
This can have a detrimental impact on the quality of search results: indeed, some
potentially relevant documents will no longer be returned by the search engine because
all query terms inside these documents will be non-meaningful. This may be the case,
for example, when only a small part of a document is relevant for the query. If the rest
of the document discusses other topics, the frequencies of query terms are likely not to
be high at the scale of the whole document.

On the positive side, we computed the number of meaningful terms in the entire
collection in order to quantify the gains in terms of index storage space: 2.4 million
terms are meaningful and 32.3 million are not. That is, if non-meaningful terms are

4.4 Experimental results on the TREC datasets 43

Table 4.6: Impact of filtering non-meaningful words on initial rankings.

Default: all words Meaningful words only

TREC 2007:
MAP 0.316 0.306

MAP@10 0.670 0.660

MRR 0.896 0.896
Mean nDCG 0.778 0.788
Mean nDCG@10 0.880 0.882

TREC 2008:
MAP 0.096 0.086

MAP@10 0.176 0.176
MRR 0.290 0.290
Mean nDCG 0.574 0.568

Mean nDCG@10 0.429 0.429

not indexed, 93% of the inverted index entries disappear, representing a significant
reduction in storage space. Said differently, only 7% of unique words inside a document
would be indexed on average. Note that the vocabulary size remains the same as all
words can be indexed: there are still a few index entries for the word "the". These could
be, for example, documents about determiners. To put these savings in perspective,
stop-words filtering is estimated to reduce the number of index entries by 25 to 30%

(see Section 5.1 in [86]).

Also, the two experiments carried so far (with and without non-meaningful terms)
represent the two ends of a spectrum. Hybrid strategies can be devised: for example,
one could discard non-meaningful terms that are in a pre-defined list of stop-words but
leave all other terms untouched. This would still reduce the index size and speed up
computations, while having less impact on recall.

In a nutshell, index compression may have detrimental effects on search results but
these were shown to be negligible on the two TREC datasets. While it would be prudent
for a standard search engine not to rely on this technique, it may prove a convenient
and very powerful technique when storage space and/or computational resources are
limited, e.g., with embedded systems.

4.4 Experimental results on the TREC datasets 44

4.4.3 Re-ranking top results with learning-to-rank

Now that we described several ways to efficiently compute an initial ranking of
relevant documents in response to a query, let us investigate ways to further improve
the rankings before showing them to the user, with the help of learning-to-rank. In
all following experiments, the initial rankings are computed with our default term
weighting formula, scoremeaning(D,Q), introduced in Equation (4.8).

As a quick reminder, a set of top documents is computed using our initial term
weighting mechanism based on meaningfulness scores. For each such top document, a
feature vector that captures many different aspects of relevance is then computed. These
feature vectors then allow a learning-to-rank algorithm to permute these top documents
to ensure the most relevant documents are placed at the top of the results list.

Learning-to-rank algorithms, as all supervised learning algorithms, need data to be
trained on. To this end, queries in each TREC datasets are randomly divided into two
sets. The first set, containing 80% of the queries, is used for training the learning-to-rank
algorithms. The remaining 20% of queries is held out and used as a test set to evaluate
algorithm performance: all numerical results reported below are reported on the test sets.
The main reason for separating training data from test data is that the latter provides
better generalization estimates. Indeed supervised learning algorithms may overfit, that
is model the noise rather than the true signal from the data, in which case performance
estimates computed from training data are unrealistically high.

Also, in the experiments below, the hyper-parameters of all learning algorithms are
optimized using grid search and cross-validation.

Effect of learning algorithm on re-ranking

As already discussed, many machine learning algorithms can be used for re-ranking.
Standard binary classification algorithms can be used in a pairwise fashion. Alternat-
ively, listwise algorithms, specialized for re-ranking, can be used to directly minimize a
listwise loss function such as MAP or nDCG and as such they directly treat lists as
training instances.

In this section, the performance of several re-ranking algorithms is studied and the
results are presented in Table 4.7. Note that the numerical results before re-ranking
are slightly different from the ones presented on Table 4.5; this is because the numbers
presented here are computed using the test set only, which is a subset of the full dataset.

4.4 Experimental results on the TREC datasets 45

Two pairwise algorithms are tested: an SVM with a Gaussian kernel [40] and AdaBoost
[51]. These two classification algorithms were chosen for their ability to learn complex
decision boundaries. A listwise adaptation of AdaBoost called AdaRank [138] is also
tried, optimizing for nDCG@10. In this experiment, the number of top documents to
re-rank is set to 25. The reader should recall that the remaining tail of results, that is
documents at ranks 26 and below, is not modified by the re-ranking procedure and is
still returned as part of the final results.

Table 4.7: Impact of the learning-to-rank algorithm on re-ranking, with top 25
documents re-ranked.

Before re-ranking Gaussian SVM AdaBoost AdaRank

TREC 2007:
MAP 0.281 0.279 0.282 0.267

MAP@10 0.538 0.526 0.582 0.432

MRR 0.789 0.855 0.905 0.648

nDCG 0.727 0.717 0.731 0.683

nDCG@10 0.786 0.721 0.797 0.601

TREC 2008:
MAP 0.107 0.112 0.111 0.108

MAP@10 0.198 0.546 0.510 0.288

MRR 0.304 0.739 0.651 0.548

nDCG 0.673 0.705 0.705 0.681

nDCG@10 0.510 0.739 0.730 0.548

On the TREC 2007 dataset, all metrics agree to designate AdaBoost as the best
re-ranking algorithm. The SVM with a Gaussian kernel improves MRR but slightly
decreases all other metrics, compared to the initial rankings. On the 2008 dataset, SVM
now performs best, with AdaBoost being close second: both algorithms now bring large
improvements compared to the initial results before re-ranking. Rather surprisingly,
the listwise algorithm AdaRank does not perform well: it significantly degrades the
initial results on the 2007 dataset and brings only small improvements on the 2008
dataset. Investigating, we found that the algorithm severely overfits on both datasets.
The explanation for this behaviour is the limited number of queries available for training
(recall that listwise algorithms treat one query as one data point).

Comparing the two pairwise algorithms, AdaBoost seems to be slightly superior
especially on Mean nDCG@10 and is the algorithm chosen moving forward. AdaBoost

4.4 Experimental results on the TREC datasets 46

was also roughly 10 times faster than SVM (11ms per query, as opposed to 140ms) in
our experiments, which further strengthens our preference for AdaBoost. However, it is
difficult to say which algorithm will be faster in general because the two algorithms are
not directly comparable. AdaBoost is a boosting algorithm, which output relies on a
sequence of weak classifiers, typically decision trees. The length of this sequence can
range from a dozen to several hundred weak classifiers. The prediction of each weak
classifier is fast but the sequentiality of the problem makes computation parallelism
impractical. SVM relies on a completely different mechanism, with prediction time
proportional to the number of so-called support vectors. If the classifier does not overfit,
this number should be a small percentage of the training dataset, which can still be large
in absolute terms.

Effect of the number of top documents used for re-ranking

The number of 25 top documents used for re-ranking in the previous experiment
was an educated guess. Let us now study more thoroughly the effect of the number of
top documents on re-ranking performance. To do so, 10 models are trained, starting
with 5 top documents and going up to 50, in increments of 5 documents.

The results with 10, 25 and 50 top documents are presented in Table 4.8. Figures
4.1a to 4.1d show the evolution of various metrics using all 10 models.

Analyzing the numbers in Table 4.8, using 10 top documents already has a large
beneficial impact on the TREC 2008 results but it has a detrimental effect on TREC
2007. Increasing the number of top documents yields good improvements on both
datasets and the best results are obtained with 50 top documents for almost all metrics.

Looking at the plots confirms this analysis. Re-ranking gives good increases on
all metrics starting from 15 to 20 top documents, the improvements on TREC 2008
being particularly impressive. Furthermore, the increases for all metrics seem to plateau
almost immediately, despite some fluctuations. And as shown in Figure 4.1d, increasing
the number of top documents comes with a certain computational cost: indeed, the
re-ranking cost increases quadratically with the number of top documents. This is
because the number of pairs of top documents is

(
n
2

)
, where n denotes the number of

top documents. However, methods to speed up pairwise re-ranking have been proposed
[65]; also, listwise approaches are usually more efficient as they do not rely on creating
document pairs.

As such, our initial choice of 25 top documents seems very reasonable. However,

4.4 Experimental results on the TREC datasets 47

Table 4.8: Impact of the number of top documents on re-ranking, using a pairwise
AdaBoost algorithm.

Before re-ranking 10 documents 25 documents 50 documents

Trec 2007:
MAP 0.281 0.280 0.282 0.285
MAP@10 0.538 0.529 0.582 0.628
MRR 0.789 0.739 0.905 0.903

nDCG 0.727 0.722 0.731 0.732
nDCG@10 0.786 0.779 0.797 0.812

Trec 2008:
MAP 0.107 0.108 0.111 0.113
MAP@10 0.198 0.271 0.510 0.569
MRR 0.304 0.634 0.651 0.823
nDCG 0.673 0.685 0.705 0.710
nDCG@10 0.510 0.653 0.730 0.724

this number should be ideally tuned for each collection, depending on a number of
factors, such as the number of documents and the redundancy of information in the
collection. Redundancy of information, for example, should be low with enterprise
documentation of good quality but it ineluctably increases over time with the launch of
different projects, employee turnover, etc.

4.4
E

xperim
entalresults

on
the

T
R

E
C

datasets
48

(a) Mean Average Precision at rank 10 (b) Mean Reciprocal Rank

(c) Mean nDCG at rank 10 (d) Computational cost of pairwise re-ranking

Figure 4.1: Impact of the number of top documents re-ranked on various metrics and on the computational cost. Dashed lines
indicate baseline performance, that is, before re-ranking.

4.5 Conclusion 49

4.5 Conclusion

Search engines have become ubiquitous and are indispensable tools to deal with
information overload. But the impact of information retrieval is not limited to search
engines. The discipline has also had a large impact on text mining. Search is becoming
a standard component of many systems but it also influenced the development of many
related disciplines like information filtering and query-focused summarization, to name
a few.

In this chapter, we proposed a new term weighting mechanism for information
retrieval. A fully functional search engine, primarily aimed at enterprise search, has
been built upon it. It includes re-ranking using a rich set of features and learning-to-rank
algorithms.

We evaluated and tuned our search engine with the TREC Enterprise Search datasets,
from 2007 and 2008. We found that, on these datasets, our term weighting mechanism is
competitive with state-of-the-art schemes like TF-IDF and BM25. A small modification
allowing to dramatically decrease the index size was also proposed and it was shown to
have almost no detrimental impact on retrieval quality. We then turned our attention
towards learning-to-rank. We found pairwise approaches to be effective and more
appropriate than their listwise counterparts when few gold-standard queries are available
for training purposes. However, the best binary classifier to use in a pairwise setting
was dependent on the dataset. The effect of the number of top documents re-ranked has
also been studied; it was found that using a number large enough is important (around
15-20 with our datasets) after which performance gains stagnate.

A fully-fledged search engine has been developed as part of this work and used by a
large business unit inside HP. It contains features that are not described in this chapter,
such as search result filters (to restrict results by dates, authors, etc.) and "related
terms" suggestions to help users reformulate their queries. It also collects automatically
both implicit and explicit user feedback to automatically create datasets of queries and
allow the search results to improve over time. The software has been written to allow
new features to be incorporated easily and new experiments to be conducted. Adding
spelling correction to the query text and automatic query reformulation are obvious next
steps for future developments.

50

Chapter 5

Text Segmentation

Automatically segmenting a text into consistent topical segments is a fundamental
problem in text mining. Even a moderately long document may consist of several
relatively independent topics and parts. Such heterogeneity in documents can seriously
affect the performance of classification and other mining algorithms.

Let us assume one is trying to automatically detect the sensitivity level of a document
for a government agency. In the United-Kingdom, there are three main classification
policies: Official, Secret and Top-Secret [14]. The main difficulty in this setting comes
from the fact that most documents are not monolithic blocs but rather contain a mixture
of topics with different sensitivity levels and therefore different security restrictions. For
example, a military report might contain a few paragraphs regarding atomic weapons
secrets diluted with publicly known information. Standard automatic classification
algorithms will tend to incorrectly classify the document as non-critical. A potential
solution is to segment the document into homogeneous topical parts, categorize those
parts individually and apply the most restrictive security policy to the entire document.

In this chapter, an algorithm for automatic text segmentation is presented. A brief
review of the state-of-the-art is introduced in Section 5.1. The proposed algorithm is
described in Section 5.2. The evaluation methodology is presented in Section 5.3 and
the evaluation results in Section 5.4. Conclusions are drawn in Section 5.5.

A library implementing the proposed algorithm has been developed and a demonstra-
tion program has been built around it. A brief description of both of these is available
in Appendix A.2, page 110.

5.1 A brief literature review 51

5.1 A brief literature review

Text segmentation has been a large research area in the past twenty years and many
different techniques have been proposed. The most popular and influential approaches
are reviewed below.

The vast majority of text segmentation algorithms rely on the same underlying idea:
the quantification of lexical cohesion between different parts of a document. Lexical
cohesion can be defined as “the cohesive effect achieved by the selection of vocabulary”
(see page 274 of [58]) which intuitively means that changes in the vocabulary signal
topic changes. A number of linguistic structures create lexical cohesion, such as word
repetitions, synonyms, pronouns and more generally related vocabulary. However,
many of these structures can be difficult to detect due to language ambiguities and
variabilities. This is why, even if more sophisticated alternatives exist [95], many
popular and effective approaches to lexical cohesion quantification are solely based on
some measure of word repetitions.

In one of the earliest algorithm TextTiling [61], Hearst uses two adjacent blocks of
length 120 words (see Figure 5.1) and calculates the cosine similarity between these
two blocks as:

sim(b1, b2) =

∑
w

f(w, b1)f(w, b2)√∑
w

f(w, b1)2
√∑

w

f(w, b2)2
(5.1)

where f(w, b) is the frequency of the wordw in the block b. This similarity is attached to
the gaps between the blocks; here, a gap corresponds to a space between two consecutive
words.

Figure 5.1: Cosine similarity computation between adjacent blocks of 120 words,
in the TextTiling algorithm [61]. wis represent words.

By moving the two blocks along the document (shifting the blocks to the right by 20
words at a time), we can graphically represent the calculated cosine similarity as a

5.1 A brief literature review 52

function of gaps. The author then introduces a depth score, defined as the average of the
relative depths between the gap value and the two closest local maxima, one on the left
and one on the right. The gaps with the biggest depth scores are selected using some
automatic threshold and these gaps are used to divide the document into segments. Let
us point out that these gaps are between words and not between sentences, so small
additional adjustments need to be done.

Choi applies methods and ideas from image processing in his algorithm C99 [36].
If a text document consists of n sentences, then an n × n gray image is constructed
with "pixel" values at (i, j) equal to the similarity sim(si, sj) between sentences si
and sj (see Equation (5.1)). An example of such an image is presented in Figure 5.2a;
light colors represent high similarities. As we can see from the picture, the resulting

(a) Cosine similarity matrix (before rank
filtering)

(b) Patches extracted by the divisive clus-
tering procedure

Figure 5.2: Main steps of the C99 algorithm [36]

image has several light patches around the diagonal which correspond to groups of
consecutive sentences with high cosine similarities between them. To extract such
disjoint objects, the image of similarity scores is first filtered using an 11 × 11 rank
mask. Then coherent square regions near the diagonal of the image (i.e., segments)
are extracted using a divisive clustering procedure that maximizes their density, as
illustrated in Figure 5.2b. As in TextTiling [61], the number of segments is determined
by some empirical threshold.

A more rigorous approach to automatic segmentation, using a Bayesian statistical
model, was developed by Utiyama and Isahara in [130]. Their algorithm TextSeg

subsequently influenced many new developments and generalizations. Let us denote
a text document by D and the set of all possible segmentations by F . The optimal
segmentation is defined as the segmentation Ŝ ∈ F that has maximum probability given

5.1 A brief literature review 53

the document D, i.e.:

Ŝ = argmax
S∈F

P (S|D). (5.2)

Using Bayes formula, we can rewrite Equation (5.2) as:

Ŝ = argmax
S∈F

P (D|S)P (S) (5.3)

= argmin
S∈F

[
− log

(
P (D|S)P (S)

)]
. (5.4)

The authors in [130] impose strong independence assumptions and present the following
models for the likelihood P (D|S) and the prior P (S):

P (D|S) =
m∏
i=1

ni∏
j=1

f(wj, Si) + 1

ni + V
(5.5)

P (S) = n−m (5.6)

where:

• m is the number of segments in S,

• n is the number of words in D,

• ni is the number of words in segment Si,

• f(wj, Si) is the frequency of the word wj in Si, and

• V is the vocabulary size (i.e., the number of unique words in D).

To find the optimal segmentation, the following complete graph G is constructed: the
vertex set is the set of all gaps between sentences {gi : i = 1, . . . , n − 1} plus two
additional vertices START and END corresponding respectively to the beginning and
end of D, as illustrated in Figure 5.3. From Equations (5.4), (5.5) and (5.6), the weight
ci of the edge corresponding to the segment Si, between the two vertices encompassing
all words in the segment, is defined as:

ci = log n+

ni∑
j=1

log
ni + V

f(wj, Si) + 1
. (5.7)

5.1 A brief literature review 54

Then, the solution of Equation (5.2) corresponds to the shortest path between START
and END in the weighted graph G, which can be found efficiently using dynamic
programming.

Figure 5.3: The graphG for an example document of 5 sentences in TextSeg [130];
for clarity, some edges are omitted. Two paths between START and END, corres-
ponding to two possible segmentations, are shown. The gi vertices correspond to
gaps between the sentences si and si+1.

Eisenstein and Barzilay [48] introduced BayesSeg, an extension of TextSeg [130], in
which they developed a more general model for P (D|S) based on Latent Dirichlet
allocation (LDA) [31]. LDA is a very natural approach to text segmentation since we
can think of segments as types of topics inside a document. This makes TextSeg more
general and flexible at the expense of a more difficult analysis.

A few other influential approaches are worth mentioning. Galley et al.’s LCSeg

algorithm [52] weights lexical chains with a variant of TF-IDF and then computes
a cosine similarity score for each gap, based on the weights of chains overlapping
two adjacent moving windows. Malioutov and Barzilay [84] build a fully connected
graph and use a Minimum Cut algorithm to find the optimal segmentation. The edge
weights are pairwise sentence cosine similarities, similarly to C99 [36], but also take
into account neighboring sentences to get smoother similarities. Finally, Yamron
et al. [139] compare text segmentation to speech segmentation, a necessary step in
speech recognition. Indeed, segmenting a text document into topics is in some respects
similar to segmenting a sound signal into a sequence of phonemes. Therefore, speech
segmentation algorithms can be adapted to text segmentation and the authors develop a
topic modeling approach based on Hidden Markov models. However, contrary to the
approaches introduced so far, this algorithm requires a training corpus to compute the
parameters for the topic models.

Even though this is not the focus of this chapter, one should also add for com-
pleteness that supervised learning techniques are often used to improve the algorithms’
performance in practical systems. Those techniques also allow to incorporate domain
knowledge and specialize the system for the task at hand: for example, cue phrases,
silences and speaker changes are effective features for speech segmentation [78, 52].

5.2 Proposed algorithm 55

5.2 Proposed algorithm

In this section, we present a new approach to automatic text segmentation based on
the meaningfulness measure introduced in Equation (3.11), page 22.

We will assume in our work, without loss of generality, that segment boundaries
need to be placed at the location of gaps (i.e., breaks) between consecutive sentences.
Depending on the application, one could need to place boundaries between clauses, sen-
tences, paragraphs or even changes of speaker when working with human conversations.
Our algorithm can be trivially extended to all these cases, by choosing another set of
gaps.

Inspired by previous work, the main idea of our algorithm is to calculate, for each
gap in the document to segment, a measure of lexical cohesion between the sentences
around that gap. The measure of meaningfulness, derived from the Helmholtz principle
in Section 3.2, is computed with the help of sliding windows and used to locally quantify
lexical cohesion. After that, the gaps where the biggest drops in cohesion occur will be
selected to segment the document.

5.2.1 Preprocessing

Let D denote a text document. If necessary, D is first split into sentences by using a
regex-based tokenizer considering the characters ".", "!" and "?" as sentence delimiters.
Then each sentence is split into a list of words, using all non-alphabetical characters
as delimiters and all words are downcased. Stop-words removal is optional and it is
actually most of the time detrimental as will be observed later during the evaluation
section. Finally, the Porter stemming algorithm is applied and only stems of length at
least two are considered. After this preprocessing the document D is the sequence of n
sentences s1, s2, . . . , sn.

5.2.2 Gap scores calculation

Text documents typically contain several weakly related or unrelated topics, or parts.
Our goal is to identify topically coherent segments in a document D with n sentences.
From the n − 1 gaps between the document sentences, we are looking for the gaps
which best separate the different topics inside the document (see Figure 5.4).

5.2 Proposed algorithm 56

Figure 5.4: Segmenting is finding which of the n− 1 gaps between sentences best
separate the topics inside the documents.

In most documents topics have a hierarchical structure. Indeed, a book is divided
into chapters, each chapter being divided into sections, which are themselves divided
into paragraphs. The desired segment size will depend on the applications and require-
ments, so we believe a generic segmentation algorithm should not prefer one level of
segmentation over another. This is why our algorithm takes a single input parameter:
the number of segments desired. We denote this parameter by m.

For completeness, it should be pointed out that when the exact number of segments
m is unknown, one could run the algorithm with different values for m and choose the
one that minimizes a global metric to be defined. Alternatively, the algorithm could
be modified to refine the number of segments automatically. The difficulties of such
approaches are briefly discussed during evaluation.

Let us now present the main steps of the proposed algorithm for text segmentation.
Our algorithm works by quantifying lexical cohesion between several consecutive
sentences using gap scores that are attached to each one of the n− 1 gaps. These gap
scores are computed using sliding windows and the weighted measure of meaningfulness
meaning from Equation (3.11), page 22, as follows.

The n − 1 gap scores are initialized to 0. The window size is set to the average
segment size desired, which is simply computed as round(n/m) since the desired
number of segments, m, is given.

Then, for each window, the weighted meaningfulness scores of all words inside the
window are computed; words with a strictly positive score are declared meaningful
inside that window. It is important to note that some meaningful words may be present
only in a small portion of the window; therefore, such a word should only have an
influence in the part of the window where it appears. We call this “part” the activity

stretch of the word inside the window. Formally, the activity stretch of a word w inside
a window Wi is the group of consecutive sentences between the first and last occurrence

5.2 Proposed algorithm 57

of w in the sentences inside Wi, as illustrated in Figure 5.5. For each meaningful word
in each window, the gap scores corresponding to gaps in the current window are updated
by adding the meaningfulness score to all gap scores encompassed by the activity stretch
of the current word. Thus, larger gap scores indicate stronger lexical cohesion between
the sentences before and after the corresponding gaps.

Figure 5.5: Activity stretch: the word w, meaningful in the current sliding win-
dow, contributes only to the gap scores in the part of the window where it appears.
Here w occurs in sentences 13, 15 and 16, so its activity stretch is (s13, s16); thus it
contributes to the gap scores of gaps g13, g14 and g15.

Note that since there are more windows in the middle of a document than in its
beginning or end, we use periodic boundary conditions for defining sliding windows,
assuming the document sentences are arranged in a circular fashion. The exact algorithm
for gap scores calculations is summarized in Algorithm 5.1.

Algorithm 5.1: Gap scores calculation.
I n i t i a l i z e a l l gap s c o r e s t o 0 .

For a l l p o s s i b l e s l i d i n g windows Wi (u s i n g p e r i o d i c boundary

c o n d i t i o n s) :

For each word w a p p e a r i n g i n Wi :

Compute meaning(w,Wi, D) [s e e E q u a t i o n (3.11) page 22] .

I f meaning(w,Wi, D) > 0 :

? Dete rmine t h e a c t i v i t y s t r e t c h o f w i n s i d e Wi .

? Add meaning(w,Wi, D) t o t h e gap s c o r e o f each gap

encompassed by t h e computed a c t i v i t y s t r e t c h .

This moving windows approach allows us to compare the local word frequencies,
in each window, to the frequencies in the whole document. Also, combining a large
window size (set to the expected segment size) together with words’ activity stretches
allows us to capture the lexical cohesion created by both short-range and long-range
word repetitions (i.e., from words repeated very locally in a few sentences to word
repetitions spanning entire segments).

Intuitively, a small gap score indicates that a small number of meaningful words
have their activity stretch encompassing the associated gap and/or that those words are

5.2 Proposed algorithm 58

less meaningful (i.e., have smaller weighted scores) than in other parts of the document.
Thus, a small gap score indicates low lexical cohesion between sentences before and
after the gap, making it a good candidate for placing a segment boundary.

Figure 5.6 shows the typical shape of the gap scores curve for test documents. Sharp
drops in gap scores can be observed at the location of ground truth cuts. The simplest
approach to identify the best cuts (i.e., segment boundaries) is to look for the smallest
gap scores. Unfortunately, as we can see from the figure, the gap scores function is
typically very irregular and noisy. Indeed, it is a highly variable function with a lot of
local minima, even in the vicinity of the global minimum. So, to identify gaps with
sharp drops, some regularization of the gap scores function is required.

Figure 5.6: Unsmoothed gap scores and ground truth boundaries. The ground
truth boundaries coincide, as expected, with sharp drops in gap scores.

5.2.3 Identification of segment boundaries

To regularize the gap scores function we shall follow the well-known approach
from image processing to similar problems. We use the diffusion equation (or the
one-dimensional scale-space theory):

ut =
1

2
uxx (5.8)

to smooth the gap score curve (i.e., u|t=0 is the gap scores function), and find stable
and reliable critical points. In our case, the crucial property of the one-dimensional
scale-space theory is that increasing the smoothing parameter (or diffusion time) results

in the decrease of the number of critical points (see [77] for details). Note that this
property is valid only in one dimension and not in any other dimensions.

5.2 Proposed algorithm 59

From the numerical point of view, the evolution of the gap scores function under
the diffusion equation is just a convolution of this function with a Gaussian filter:

G(x;σ) =
1√
2πσ

ex
2/2σ2

, (5.9)

where σ2 = t. Using the three-sigma rule (i.e., so that 0.9973 probability under the
normal distribution is concentrated in a neighborhood of size 3σ around the mean value),
we convolve the filter only in a neighborhood of size 3σ around every gap. Figure
5.7 illustrates gap scores smoothing with different values for the parameter σ. Since
increasing the smoothing parameter decreases the number of local minima, our strategy
is to increase σ with small steps until the number of minima reaches the desired number
of cuts. Alternatively, for faster computations, one can start from a large value of σ
giving too few local minima and refine it using dichotomy.

Figure 5.7: Effect of the parameter σ for smoothing the gap score curve. σ is
gradually increased until the desired number of local minima is obtained.

An undesirable effect of this diffusion process is that each point shifts, on average,
by a distance less than or equal to σ. This is a well-known property of the Brownian
motion. This phenomenon can be observed in Figure 5.8. We are only interested in
the locations of the critical points but one cannot predict the exact shift of any given
point. Some points will shift by a small distance only from their original location, while
some others will go much farther (i.e., at a distance greater than σ from their original
location).

In our algorithm, we consider that a critical point can shift at a distance up to 1.5σ.
So, we first calculate the shifted critical points (i.e., the local minima computed from
the smoothed curve). After that we find the "true" local minima in the original noisy

5.2 Proposed algorithm 60

Figure 5.8: Smoothed gap scores and final boundaries identified by our algorithm.
Those boundaries are placed in local minima from the unsmoothed signal. We can
clearly see that most boundaries are slightly away from the smooth local minima.

curve in the 1.5σ vicinity of the shifted critical points. The segment boundaries returned
by our automatic text segmentation algorithm are those "true" local minima.

Figure 5.9 shows a comparison of the algorithm output with the ground truth
segmentation of our example document.

Figure 5.9: Comparison of the boundaries from the ground truth segmentation
and from the output of our algorithm. Most boundaries are identified precisely,
except the first and fourth ones that are off by 1 and 12 sentences respectively.

5.3 Evaluation methodology 61

5.3 Evaluation methodology

5.3.1 Evaluation procedure

We compare our algorithm to two state-of-the-art algorithms: C99 [36] and BayesSeg

[48]. We use the public domain implementations released by their respective authors.
Two baseline algorithms are also used. The Uniform algorithm creates segments of
equal size, while Random places segment boundaries randomly.

In all experiments, we consider the number of segments in each document known
and given. This is a common assumption used for evaluation and comparison; the
reasons are two-fold.

First, topics have inherently a hierarchical nature and segmentation can usually be
done at different scales. Indeed, a long segment that discusses a broad topic is likely to
discuss several sub-topics. For example, the chapter dedicated to the standard library of
a C++ book may describe, in turn, basic containers, strings, streams and numeric tools.
Therefore, the scale of segmentation (or, similarly, the number of segments desired)
should be an input of the segmentation algorithm.

Second, inter-agreement between human annotators is generally very low. Even
when receiving similar instructions, annotators tend to select widely different segment
sizes on the same data. In [84], four annotators were asked to manually segment physics
lecture transcripts; the average number of segments created by the different annotators
ranged between 6.6 and 18.4. Naturally, algorithms face the same problem. This issue
is even exacerbated as automatic procedures for determining the number of segments in
a document are likely to be domain dependent, making comparisons difficult. As an
illustration, we experimented with the TextTiling algorithm [61] (Choi’s implementation
with default parameters) and the "3-5" subset of Choi’s dataset [36] (which will be
described in more details in Section 5.4.1). The average number of segments produced
by TextTiling is 23, when each document actually contains 10 segments. Inevitably
TextTiling would score poorly; however, such a poor performance reflects an inadequate
automatic selection of the number of segments but does not allow to fairly judge the
intrinsic qualities of TextTiling.

We will also experiment with the effect of stop-words filtering on the results and,
to this end, we modified both C99 and BayesSeg implementations to make stop-words
filtering optional. Indeed, stop-words removal is an extremely common preprocessing
step across all natural language processing techniques and algorithms, but it does create

5.3 Evaluation methodology 62

undesirable effects. Furthermore, there is not any universal list of stop-words. In the case
of text segmentation, we argue that stop-words may contribute to the creation of lexical
cohesion in a document and that, in most cases, stop-words can be helpful features for
segmentation. Documents where each part has been written by a different author are
clear examples; such documents include streams of news stories, specialized books
where each chapter is written by a different expert, documents written collaboratively,
etc. It is then reasonable to assume that each author will have his own writing style
and will use a slightly different set of stop-words. Filtering them inevitably means
discarding useful information.

5.3.2 Evaluation metrics

Let us explain the general approach to evaluating the performance of text segmenta-
tion algorithms.

For each document from the evaluation dataset, we need to estimate how different
the reference segmentation is from a candidate segmentation obtained with an auto-
matic segmentation algorithm. Using a rigorous mathematical approach, one would
proceed as follows. If a document D is a sequence of sentences s1, s2, . . . , sn, then any
segmentation is a subset of the space of gaps: Gaps = {g1, g2, . . . , gn−1} (see Figure
5.4).

This space of gaps can be turned into a metric space by introducing a distance
d(gi, gj) between any pair of gaps gi and gj . A simple choice for d(gi, gj) is |j − i|,
i.e., the number of sentences between the two gaps. Alternatively, if we also want to
take into account the number of words in the sentences, d(gi, gj) can be defined as the
sum of the sentence lengths (in number of words) between the two gaps. To take into
account the document length, this distance can be normalized by scaling the diameter
of gaps to one.

Now, the segmentations S and S ′ are subsets of the metric space Gaps. Therefore,
the Hausdorff distance between subsets [4] can be used to evaluate the distance between
the two segmentations. Unfortunately, the Hausdorff distance is very sensitive to outliers
so some averaging is needed.

Currently, the most popular distance between segmentations is the WindowDiff
distance (WD) [104]. It computes the distance between a reference segmentation R

5.4 Experimental results 63

and a candidate segmentation C as follows:

WD(R,C) =
1

n− k

n−k∑
i=1

1

[
BR(i, i+ k) 6= BC(i, i+ k)

]
(5.10)

where:

• n is the number of sentences in the document,

• k is the window size, in number of sentences, set to half the average segment size
in the reference segmentation,

• BS(i, j) is the number of boundaries between sentences si and sj in the segment-
ation S, and

• 1 is an indicator function:

1[c] =

1 if c is true,

0 otherwise.
(5.11)

In words, the WindowDiff distance works by moving a window of size k along the
document. It adds a penalty of 1 for each window where the number of segment
boundaries differs between the reference and candidate segmentations. The sum of
penalties is then divided by the total number of windows to get a normalized score with
values between 0 and 1.

Lamprier et al., in [72], noticed that errors at the beginning and end of a document
are less penalized than errors in the middle of the document. This is corrected by adding
k − 1 fictitious sentences at both ends of the document.

For evaluation, we shall be using the WindowDiff distance, with the Lamprier et
al.’s correction [72].

5.4 Experimental results

5.4.1 Synthetic datasets

Evaluating and comparing segmentation algorithms can be tricky as it is often
difficult to define what the reference (i.e., ground-truth) segmentation of a document

5.4 Experimental results 64

should be. This is why most evaluation datasets are synthetic and contain documents
created by concatenating segments of varying sizes and from different sources.

We use Choi’s synthetic dataset [36] which is commonly used for evaluation and
contains 700 English language documents, each made of 10 segments1. Each segment
consists of the beginning of a randomly sampled document from the Brown corpus. The
segment sizes are chosen randomly and range between 3 and 11 sentences. The exact
composition of the dataset is given in Table 5.1; the reader may refer to [36] for more
details on this corpus.

Table 5.1: Composition of Choi’s synthetic dataset [36].

Segment sizes, in number of sentences Number of documents

3-5 100

3-11 400

6-8 100

9-11 100

Segments with lengths ranging between 3 and 11 sentences are quite short and
practical problems may require to deal with much longer segment sizes and much larger
volumes of data. For this reason, we created another dataset containing 100 documents2.
Each document is again made of 10 segments, with segment sizes ranging between 30 to
50 sentences. We will refer to this dataset as “30-50”. Similarly to Choi’s methodology,
we use articles sampled from the News and Learned categories of the Brown corpus.

Table 5.2 shows the evaluation results when stop-words are removed during prepro-
cessing. The default list of stop-words for each algorithm is used. Choi’s implementation
of C99 uses a list of 327 words while Eisenstein’s implementation of BayesSeg uses
329 stop-words. In our algorithm, we use the default list provided by the Natural Lan-
guage ToolKit library (NLTK) [6], consisting of 127 words. In this setting, BayesSeg

consistently outperforms both C99 and our algorithm, in most cases by a relatively wide
margin. On short documents, C99 performs slightly better than our algorithm while we
outperform C99 on longer documents.

However, all three algorithms behave quite differently when stop-words are not
removed, as shown in Table 5.3. Our algorithm now gives better results than both C99

1These documents can be found in the folders data/{1,2,3}/ in the package made publicly available
by the author.

2This new dataset can be downloaded from the author’s webpage.

5.4 Experimental results 65

Table 5.2: WindowDiff scores (using Lamprier et al.’s correction) on the synthetic
datasets with stop-words removal. As a reminder, smaller scores are better.

C99 BayesSeg Our algorithm Uniform Random

Choi 3-5 0.129 0.106 0.168 0.380 0.532

Choi 3-11 0.140 0.108 0.191 0.456 0.531

Choi 6-8 0.110 0.069 0.160 0.223 0.548

Choi 9-11 0.093 0.057 0.128 0.189 0.537

30-50 0.078 0.014 0.050 0.274 0.522

and BayesSeg. The performance of C99 is much worse in this case. The most likely
explanation is that the pairwise sentence similarities are now completely dominated
by insignificant words. The performance of BayesSeg is also degraded in this setting.
On the contrary, our algorithm performs in most cases best when stop-words are not
filtered.

Table 5.3: WindowDiff scores (using Lamprier et al.’s correction) on the synthetic
datasets without stop-words removal.

C99 BayesSeg Our algorithm Uniform Random

Choi 3-5 0.340 0.189 0.141 0.380 0.532

Choi 3-11 0.378 0.182 0.176 0.456 0.531

Choi 6-8 0.356 0.178 0.143 0.223 0.548

Choi 9-11 0.385 0.141 0.109 0.189 0.537

30-50 0.466 0.074 0.052 0.274 0.522

Table 5.4 shows the influence of the stop-words list on the results. Each algorithm
was tested using two different lists: the first one is a list of 127 words (the default for
our algorithm, from NLTK) and the second one a common list of 571 words [5]. As
can be seen from the table, the stop-words list chosen can have a significant impact on
the performance of the algorithm. Furthermore, apart from C99 where larger lists are
preferable for reasons already explained, the list giving the best results is dependent on
the dataset.

Note that, regarding computational performance, all three algorithms have similar
running times on short documents so exact numbers are not presented in this section.
Differences in computational requirements will be discussed in depth in the next section,
when they become much more apparent.

5.4 Experimental results 66

Table 5.4: WindowDiff scores (using Lamprier et al.’s correction) on the synthetic
datasets with different stop-words list. In each cell, the first score is obtained
using a list of 127 words and the second using a list of 571 words.

C99 BayesSeg Our algorithm Uniform Random

Choi 3-5 0.138 / 0.122 0.109 / 0.110 0.168 / 0.180 0.380 0.532
Choi 3-11 0.146 / 0.144 0.113 / 0.108 0.191 / 0.195 0.456 0.531
Choi 6-8 0.117 / 0.105 0.072 / 0.078 0.160 / 0.176 0.223 0.548
Choi 9-11 0.097 / 0.094 0.054 / 0.057 0.128 / 0.127 0.189 0.537
30-50 0.077 / 0.077 0.014 / 0.017 0.050 / 0.058 0.274 0.522

Summarizing the data from all three results tables, BayesSeg gives the best perform-
ance whenever a well-defined list of stop-words is available. This is not surprising: the
algorithm looks for the best segmentation among all possible segmentations. However,
such an analysis, as well as Bayesian inference techniques, are computationally ex-
pensive. Fair and precise running time comparisons are not possible due to different
programming languages. However, to give the reader an idea, the average running
times of our algorithm (Python) and C99 (Java) are about 0.5 seconds per document
on the 30-50 dataset; BayesSeg (Java) requires on average 5.5 seconds per document.
Furthermore, BayesSeg performs significantly worse when stop-words are not removed
and this can be problematic since there is no canonical list. Therefore, adapting the
algorithm to different domains (emails, tweets, IM, speech transcripts, etc.) or lan-
guages will most likely require manual adaptation. On the other hand, our algorithm
proves extremely robust to stop-words and even performs best when stop-words are not
removed. Furthermore, its relative performance compared to other algorithms improve
as documents get longer. Those two facts can be explained by the statistical nature of
the meaningfulness scores used for feature extraction. Indeed, these scores seem to get
more reliable as more data becomes available.

5.4.2 Towards more realistic datasets

Limitations of synthetic datasets

Despite their wide-spread use for algorithm comparisons, synthetic datasets have
several drawbacks.

First, the relative independence of consecutive segments in synthetic documents
makes the segmentation task easy. Indeed, the segment transitions are quite abrupt

5.4 Experimental results 67

because there is no natural flow of ideas between the different segments as should be
expected from most textual documents, such as a book or a business report. Even more
importantly, remembering that segmentation algorithms rely on lexical cohesion and
word repetitions, detecting segment boundaries is artificially easy because:

• the different segments discuss independent topics and thus have different vocabu-
lary,

• the different segments are written by different authors, who formulate ineluctably
the same ideas using different words.

Second, Choi’s synthetic dataset, which is in standard use for algorithm comparisons,
contains very short segments ranging from 3 to 11 sentences. A similar dataset with
segments up to 50 sentences long has been created but one must recognize that this
number remains small and that it does not cover all potential uses of segmentation
algorithms.

To overcome these issues, we will create our own datasets. Experiments in the
remaining of this chapter are conducted with much larger documents, both in terms of
longer average segment sizes and larger number of segments. To simulate more realistic
datasets, genres will be varied and foreign languages will also be tested.

To avoid copyright restrictions and make the results reproducible, popular public
domain books are used. All these works can be found on the Project Gutenberg’s website
[7] and on Wikisource [17]. The reference segmentations are taken as the division
created by the author into chapters, books or volumes. The default implementation of
each algorithm is used: C99 and BayesSeg each use their own stop-words list while our
algorithm does not filter stop-words.

Short stories dataset

Let us start our experiments with books containing short stories. Each segment
being a different story, these give non-ambiguous reference segmentations. Styles and
languages are varied and some books contain stories from a single author while some
others contain stories from several authors. More precisely, the books used are:

• "Complete Original Short Stories" by Guy de Maupassant (English translation,
Gutenberg book #3090).

5.4 Experimental results 68

• "Dubliners" by James Joyce (Gutenberg book #2814).

• "Fairy Tales" by Hans Christian Andersen (English translation, Gutenberg book
#32571).

• "Famous Modern Ghost Stories" by several authors (Gutenberg book #15143).

• "Great English Short-Story Writers" by several authors (Gutenberg book #10135).

Some statistics regarding the different books are presented in Table 5.5. Numerical
results are presented in Table 5.6.

Table 5.5: Short stories dataset statistics. Document and segment sizes are given
in number of sentences.

Document Number of Average Segment size

size segments segment size range

Maupassant 28476 180 158 29-700

Dubliners 4691 15 313 116-1005

Fairy Tales 2851 20 143 36-566

Ghost stories 5775 15 385 77-1023

Great English 3443 13 265 118-524

Table 5.6: WindowDiff scores (using Lamprier et al.’s correction) on the short
stories dataset. Processing times are given between parentheses.

C99 BayesSeg Our algorithm Uniform Random

Maupassant N/Aa N/Aa 0.236 (112s) 0.475 0.511

Dubliners 0.403 (8s) 0.333 (2430s) 0.250 (25s) 0.485 0.556

Fairy Tales 0.331 (4s) 0.133 (452s) 0.234 (8s) 0.500 0.508

Ghost stories 0.259 (15s) 0.242 (2603s) 0.218 (47s) 0.497 0.557

Great English 0.247 (6s) 0.001 (1508s) 0.150 (20s) 0.491 0.503

a Execution failure due to insufficient memory (tested with 12GB of RAM).

Analyzing the results from Table 5.6, the performance of all algorithms seems to be
degraded as compared to results on the synthetic datasets but that is to be expected when
testing on a more realistic and more difficult dataset. BayesSeg and our algorithm are
the most accurate and stable as they consistently rank first or second on all documents,
our algorithm being best on 3 out of 5 inputs. C99 always comes third, sometimes well
behind the first two algorithms.

5.4 Experimental results 69

Knowing that none of the algorithms were particularly optimized for this use case,
two important details are also worth noting. Both C99 and BayesSeg failed on one input
document due to high space complexities which entail high RAM consumption when
dealing with large inputs (tests were made with 12GB of RAM). Even on the largest
documents, our algorithm never required more than 512MB of RAM to complete.

Furthermore, omitting the trivial baseline algorithms, C99 is the fastest algorithm
while our algorithm comes second, usually 2 to 3 times slower. Precise comparisons
cannot be established since the former is implemented in Java while the latter is pure
Python. However, the computational cost of BayesSeg explodes, making it too slow and
hence impractical for large documents.

Novels dataset

Let us continue our experiments with novels. The reason for using novels is to work
with consecutive segments truly forming a continuous logical flow. This is how most
documents are likely to be in real use cases, and it is therefore important to check how
the different algorithms behave. The books we are working with are:

• "Clarissa Harlowe; or the history of a young lady" by Samuel Richardson.
This book is the concatenation of 9 volumes, that can be found as Gutenberg
books #9296, #9798, #9881, #10462, #10799, #11364, #11889, #12180

and #12398.

• "Dracula" by Bram Stoker (Gutenberg book #345).

• "The Iliad" by Homer (English translation, Gutenberg book #2199).

• "The Metaphorphosis" by Franz Kafka (English translation, Gutenberg book
#5200).

• "The Count of Monte Cristo" by Alexandre Dumas (English translation, Guten-
berg book #1184).

• "War and Peace" by Leo Tolstoy (English translation, Gutenberg book #2600)

Statistics on the different books are presented in Table 5.7. The numerical results are
shown in Table 5.8.

5.4 Experimental results 70

Table 5.7: Novels dataset statistics. Document and segment sizes are given in
number of sentences.

Document Segment Number of Average Segment size

size types segments segment size range

Clarissa 38220 Volume 9 4247 3462-4869

Dracula 8398 Chapter 27 311 189-396

Iliad 6397 Book 24 267 164-368

Metamorphosis 797 Part 3 265 224-300

Monte Cristo 26263 Chapter 117 224 82-589

War and Peace 32014 Book 17 1883 562-3683

Table 5.8: WindowDiff scores (using Lamprier et al.’s correction) on the novels
dataset. Processing times are given between parentheses.

C99 BayesSeg Our algorithm Uniform Random

Clarissa N/Aa N/Aa 0.294 (5322s) 0.212 0.531

Dracula 0.394 (42s) 0.522 (6562s) 0.425 (70s) 0.566 0.582

Iliad 0.419 (33s) 0.513 (3673s) 0.351 (36s) 0.396 0.570

Metamorphosis 0.427 (1s) 0.328 (30s) 0.127 (5s) 0.088 0.304

Monte Cristo N/Aa N/Aa 0.344 (118s) 0.550 0.533

War and Peace N/Aa N/Aa 0.340 (1451s) 0.402 0.421

a Execution failure due to insufficient memory (tested with 12GB of RAM).

As expected, the average WindowsDiff scores increase again (i.e., the algorithm
accuracies decrease) with this dataset. Other than this, the experimental results validates
most of the observations made on the short stories dataset.

Once again, our algorithm yields good results and seems pretty stable; only C99

slightly outperforms it once (omitting the Uniform baseline for the moment). We do not
see obvious reasons explaining why BayesSeg performs worse in the current setting.

C99 and BayesSeg fail to finish on 3 of the input documents which are notoriously
long novels, making our algorithm the only one that finishes on these inputs. However,
it should be pointed out that our algorithm becomes slow as the average segment size
(i.e., the window size) increases. For example, the segmentation of "Clarissa" into
volumes takes more than one hour whereas the segmentation of "The Count of Monte
Cristo" into chapters is much faster, despite the lengths of the two books being of the
same order of magnitude. The reason is simple: as the window size (in number of

5.4 Experimental results 71

sentences) increases, the number of unique words appearing in each window increases
so the computational time per window also increases. A number of modifications could
make the algorithm run faster, for example:

• optimizing the current Python implementation.

• re-implementing the algorithm in a performance oriented language, like C++ or
Java.

• parallelizing the computations.

• shifting the moving windows by k sentences or by a paragraph/section/etc. instead
of moving it by one sentence at a time (see Algorithm 5.1, page 57). If the number
of windows used decreases by a factor k, then the running time of the algorithm
will also essentially be divided by k.

• filtering stop-words to reduce the input size as well as the vocabulary size.

It is also interesting to note that the Uniform baseline outperforms all "real" seg-
mentation algorithms twice. This is simply due to the fact the corresponding documents
have segments of relatively uniform sizes. It should be noted that our algorithm, due to
the use of periodic boundary conditions, does not have any notion of start and end of
a document, as opposed to the Uniform baseline. But more importantly, this emphas-
izes the importance of extrinsic evaluation for particular applications and in practical
systems.

Evaluating an algorithm extrinsically means evaluating its performance on the
system’s end results. For example, if segmentation is used as a preprocessing step
to improve the accuracy of a classifier (like in the case of classifying documents into
sensitivity levels, e.g., top-secret), the best segmentation algorithm may not be the
one that has the smallest WindowDiff score but instead the one that yields the highest
classification accuracy. So, despite the Uniform baseline sometimes outperforming the
segmentation algorithms in our intrinsic evaluation, real segmentation algorithms create
segments that are ultimately much more topically consistent and thus that are likely to
yield better results in practical systems.

Experimenting with common Western European languages

As a final experiment, let us investigate the behaviour of our algorithm on documents
in foreign languages. To this end, we will rely on the book "Alice in Wonderland"

5.4 Experimental results 72

written by Lewis Carroll. Given its wide popularity, public domain versions of this book
are available in many languages. More precisely, we use the original version (Gutenberg
book #11), a French translation (from Wikisource3), a German translation (Gutenberg
book #19778), an Italian translation (Gutenberg book #28371) and a Spanish transla-
tion (from Wikisource4). Statistics on these different versions are available in Table 5.9
and the numerical results in Table 5.10.

Table 5.9: Alice in Wonderland dataset statistics. The reference segmentation is
given by the 12 chapters. Document and segment sizes are given in number of
sentences.

Document Average Segment size

size segment size range

English 1627 136 85-177

French 1720 143 104-191

German 1033 86 65-103

Italian 1588 132 89-173

Spanish 1881 157 99-218

Table 5.10: WindowDiff scores (using Lamprier et al.’s correction) on the Alice in
Wonderland dataset. Processing times are given between parentheses.

C99 BayesSeg Our algorithm Uniform Random

English 0.470 (3s) 0.522 (88s) 0.463 (3s) 0.515 0.549

French N/Aa N/Aa 0.405 (4s) 0.435 0.475

German N/Aa N/Aa 0.428 (2s) 0.214 0.462

Italian N/Aa N/Aa 0.306 (5s) 0.504 0.490

Spanish N/Aa N/Aa 0.397 (4s) 0.473 0.525

a Implementation not adapted to languages other than English.

The only modification required by our algorithm to deal with the different languages
is the stemming algorithm used internally, and stemmers for many languages are easily
available thanks to the Snowball language [108]. The good results in Table 5.10 show
that our algorithm can be easily and quickly adapted to a variety of languages as long
as stemming algorithms as well as tokenization algorithms are available. Tokenization

3Downloaded from https://fr.wikisource.org/wiki/Alice_au_pays_des_
merveilles

4Downloaded from https://es.wikisource.org/wiki/Las_aventuras_de_
Alicia_en_el_Pa%C3%ADs_de_las_Maravillas

https://fr.wikisource.org/wiki/Alice_au_pays_des_merveilles
https://fr.wikisource.org/wiki/Alice_au_pays_des_merveilles
https://es.wikisource.org/wiki/Las_aventuras_de_Alicia_en_el_Pa%C3%ADs_de_las_Maravillas
https://es.wikisource.org/wiki/Las_aventuras_de_Alicia_en_el_Pa%C3%ADs_de_las_Maravillas

5.4 Experimental results 73

is easy for most European languages but can prove very difficult in some others. For
example, Chinese is notoriously hard to tokenize since words are not white-space
separated.

Figure 5.10 shows the gap scores obtained when segmenting "Alice in Wonderland"
and its various translations, and it highlights two interesting facts.

First, one can see that both the gap scores and the output segmentations look very
similar in the different languages available, despite some obvious translation differences
(e.g., the number of sentences in the German translation is about two-thirds the number
of sentences in the other versions of the book). This further strengthens the claim
that our algorithm can easily be adapted to many languages, and this with an accuracy
similar to the one obtained on English documents.

Second, the plots also explain why relatively poor results are obtained, that is,
WindowDiff scores in the range 0.3− 0.5. Indeed, the end of the first chapter seems to
be a region of high lexical cohesion and the segmentation algorithm consistently outputs
a segment boundary in the middle of the second chapter... Why such a discrepancy?
Reading the book provides an answer. The first chapter ends rather abruptly in the
middle of Alice’s time in the rabbit hole, without any big change in the storyline.
However, our algorithm outputs a boundary later when Alice, still in the rabbit hole,
starts crying, her tears forming a pool that allows her to enter the fantasy garden. And
the location of the boundary seems quite sensible as the vocabulary suddenly changes
at this time. The decision of an author to start and end chapters might take into account
other aspects than just the story, which strengthens again the argument in favour of
extrinsic evaluation whenever possible.

5.4 Experimental results 74

(a) Working with the original English version

(b) Working with the French translation

(c) Working with the German translation

(d) Working with the Italian translation

(e) Working with the Spanish translation

Figure 5.10: Gap score plots of "Alice in Wonderland" and European transla-
tions, obtained with our algorithm.

5.5 Conclusion 75

5.5 Conclusion

Automatic text segmentation algorithms can be used to improve the performance of
many text mining tasks, by splitting long documents into topically consistent segments
and thus allowing subsequent mining algorithms to work at a finer and more sensible
scale.

In this chapter, we introduced a novel text segmentation algorithm that is completely
unsupervised. This algorithm takes a single input parameter, the desired number
of segments, which allows to segment a document at different scales, from small
paragraphs to large sections. All this is done by looking only at the document at hand
without requiring any training or any external source of knowledge.

We performed an extensive evaluation and compared our algorithm with several state-
of-the-art approaches. On small synthetic documents, our algorithm gives performances
that are similar to the state-of-the-art. On longer and more realistic documents, our
algorithm clearly outperforms the other algorithms on a wide range of inputs. Indeed, we
showed that our algorithm has excellent accuracy and that it is both fast and extremely
robust to stop-words, making it generic and able to deal with different genres, domains
and jargons. Easy adaptation to several other Western European languages was also
demonstrated.

Finally, our evaluation hinted at the limits of intrinsic evaluation; in any concrete
system, it is always better to measure the performance of a segmentation algorithm as
the impact on the system’s end results rather than on a given standard metric. However,
we believe that the algorithm we proposed is a strong candidate for a wide range of
inputs and applications.

76

Chapter 6

Automatic Summarization

The goal of automatic summarization is to condense large documents into concise
forms that retain the most important information. Summarization is a widespread need
in text mining, so summarization algorithms found their way into many systems. The
most common use of summaries is for rapid relevance assessment, as users often need
to be able to quickly decide whether a document, or set of documents, is relevant to their
need and worth reading. Summarization can go further and sometimes even seeks to
replace the original documents, since with information overload it is not always possible
to read large quantities of text. Examples include the creation of executive summaries
and summaries for technology intelligence (that is, to keep track of what competitors
do). But summarization can also be used as a pre-processing step, to improve the speed
or performance of subsequent algorithms such as document clustering [55].

In this chapter, we extend the automatic summarization algorithm introduced by
Balinsky et al. in [24, 25] and perform an extensive evaluation of the new algorithm.
The chapter starts with a review of the state-of-the-art approaches to summarization in
Section 6.1. The proposed summarization algorithm is then presented in Section 6.2.
The evaluation methodology is introduced in Section 6.3 and Section 6.4 presents and
discusses the empirical results. Section 6.5 concludes the chapter.

A summarization library has been developed as part of this work so that the proposed
algorithm can be easily integrated in any text mining system. A Graphical User Interface
(GUI) has also been designed to make experimentation easy. Both are described in
Appendix A.3, page 113.

6.1 A brief literature review

Information overload is an ancient issue so very naturally, research on summarization
has started early along with the development of computers. It has been a large research

6.1 A brief literature review 77

area ever since; let us briefly review it.

First and foremost, several intersecting categories of summaries exist depending on
the systems and users requirements:

• A generic summary is aimed at a broad readership and does not focus on any
particular aspect of the text, as opposed to a query-focused summary which takes
into account specific information requirements to specialize the output summary.
As an illustration, a query-focused summary of an encyclopedic article on William
Shakespeare could concentrate on the critical reception of the author’s work while
a generic summary would incorporate all important aspects of his life and work.

• A summary can be created from one or several input documents. Those two tasks
are respectively referred to as single-document and multi-document summariza-
tion. Combining several sources of information, such as a cluster of news articles
about the same event, allows summaries to be more comprehensive. However,
the main difficulty arising in this setting is the need to filter highly redundant
information.

• Extractive summarization returns the concatenation of the most important parts
from the input text as the resulting summary. These "parts" are most of the
time sentences, but most algorithms can also work with clauses or paragraphs.
Abstractive summarization is a more complex process that paraphrases the input
to create summaries that are both more natural and more compact. However, due
to the difficulties of understanding and generating natural language, abstractive
systems are in practice usually limited to relatively shallow post-processing of
extractive summaries, as in [53].

In this chapter, our attention will be focused on the simplest type, namely generic,
single-document, extractive summarization. One of the earliest approaches to this
problem was proposed by Luhn in 1958 [82]. It relies on the intuitive idea that frequent
words in a document are important since they are descriptive of the document topics.
The set of such "topic words" is determined by removing both rare and non-content
words. To this end, two pre-determined thresholds can be used, for low and very high
frequency words, as illustrated in Figure 6.1. Alternatively, a list of stop-words can be
used in place of the high frequency threshold. Sentences that contain many topic words
are then used to build the summary. This simple approach has inspired many recent
algorithms. For example, rather than using raw frequencies, the SumBasic algorithm
[100] estimates word probabilities from the input text. Each sentence is then associated

6.1 A brief literature review 78

Figure 6.1: The use of frequency thresholds to determine topic words [82]. Such
topic words are then used to identify important sentences. The x-axis represent
words ranked in decreasing order of frequency.

a score equal to the average probability of the words it contains. When corpus statistics
are available, the use of statistical hypothesis testing [76] or measures inspired from
TF-IDF [54, 110] are also popular to determine important words and, in turn, important
sentences.

Those frequency-based approaches perform a shallow analysis. Many algorithms
doing a deeper and richer semantic analysis have been proposed. A relatively simple
way to incorporate semantic knowledge is to group conceptually related words together.
For example, the words "cell", "biology" and "organism" are very closely related but
a simple frequency analysis will miss their semantic relation. Barzilay and Elhadad
[28] proposed the use of lexical chains (i.e., sequences of related words). Semantic
relations between words are determined using the WordNet thesaurus [94] and lexical
chains are assigned a score based on their lengths and on the number of distinct words
they contain. The summary is built by including one sentence from each highly scored
chain, thus minimizing the redundancy of information. Gong and Liu [54] proposed the
use of Latent Semantic Analysis (LSA) to determine semantic relations automatically.
The algorithm constructs a matrix A, in which entries Aij are TF-IDF weights for the
word i in the sentence j (for computing IDF terms, each sentence is considered as
a "document"). Using Singular Value Decomposition (SVD), each column of A is
projected into the singular vector space, where each dimension is a linearly independent
latent feature which captures relations between terms and, hopefully, a topic from the
input document. The magnitude of the singular value associated with each dimension
can be considered as a measure of its importance (i.e., the importance of the associated
latent feature). Finally, the most representative sentence for each of the most important
latent features is included in the summary.

6.1 A brief literature review 79

A third important class of algorithms creates graph representations of the input
documents. TextRank [92] and LexRank [49], which are relatively similar, are two
popular examples. In both algorithms, the first step constructs a highly connected
graph from the input document, where each sentence is a vertex in the graph and edges
represent the similarity between pairs of sentences. The measure of similarity for
TextRank is a normalized measure of content overlap:

SimTextRank(si, sj) =
|si ∩ sj|

log(|si|) + log(|sj|)
(6.1)

where si and sj are two sentences, defined in this context as sets of words. The
preprocessing steps are not mentioned explicitly but they are likely to contain stop-
words filtering and/or syntactic filtering to avoid the similarity scores from being
dominated by non-important words. LexRank uses a more traditional cosine similarity
with TF-IDF weights:

SimLexRank(si, sj) =

∑
w∈si,sj

TF-IDF(w, si)× TF-IDF(w, sj)√∑
w∈si

TF-IDF(w, si)2
√∑

w∈sj

TF-IDF(w, sj)2
(6.2)

where si and sj are the bag-of-words for the two sentences. Then, a centrality measure
is used to rank the nodes of the graphs (i.e., sentences) by order of importance and the
most important sentences are used as summary. Both algorithms use an adaptation of
the PageRank algorithm [32] invented by Page and Brin for determining the importance
of pages on the web.

Finally, supervised learning algorithms can also be trained to compute sentence
importance. Features such as position of the sentence in the original text, position of
the sentence in the paragraph, sentence length and presence of predefined cue phrases
are popular and often effective [71, 120, 135]. Measures of word importance are also
usually incorporated in the models, using for example one of the methods discussed
above. However, the need for gold-standard summaries [120, 35] makes supervised
learning more difficult than traditional approaches, while not always leading to superior
performance. More precisely, machine learning approaches have been shown to work
best for domain or genre specific summarization [98].

6.2 Proposed algorithm 80

6.2 Proposed algorithm

In this section, we extend the summarization algorithm introduced by Balinsky et
al. in [24, 25]. It is a graph-based algorithm that follows the most common approach
to summarization: after preprocessing, the first step consists in identifying important
words in the document. These keywords are then used to build a graph, which is in
turn used to identify the most important sentences. Let us start by briefly reviewing the
keyword and sentence extraction procedures proposed in [24, 25].

6.2.1 Preprocessing

Input documents may be given as lists of sentences, especially for evaluation
purposes, in which case sentence tokenization is not necessary. When it is not the case,
a simple regex-based tokenizer can be used, considering the characters ".", "!" and "?"
as sentence boundaries. Then, each sentence is split into a list of words. A regex-based
tokenizer can also be used, taking all non-alphabetical characters as word delimiters.
Then all words are downcased and the Porter stemming algorithm is applied. In [24, 25],
Balinsky et al. verified that the Helmholtz principle approach automatically filters most
stop-words on long documents, or said differently, that stop-words filtering was not
necessary. As this may not hold on shorter documents, the effect of stop-words on
shorter inputs will be carefully studied in this chapter.

6.2.2 Keyword extraction

Once the input document is preprocessed, the most important words are then identi-
fied. Keywords extraction is performed in an unsupervised way using only the document
to summarize. Let P denote a family of parts of a document D. Elements of P can
be paragraphs or sections of D (possibly computed with the segmentation algorithm
described in Chapter 5) if such logical units are available or, more generally, several
consecutive sentences. In the latter case, these elements can be overlapping. The
meaningfulness score meaning(w,P,D) (see Equation (3.11), page 22), derived from
the Helmholtz principle, is used as a measure of local word importance; here w denotes
a word and P an element of P .

But more than these local keywords, a set of keywords for the entire document D is

6.2 Proposed algorithm 81

required. To define these global keywords, let us start by defining ε-meaningfulness:

w is ε-meaningful inside P ⇔ meaning(w,P,D) ≥ ε (6.3)

Now, a word w is considered a global keyword for the document if this word is ε-
meaningful in at least one part P ∈ P . This set of global keywords is denoted by
MeaningfulSet(D, ε) and it is thus defined as:

MeaningfulSet(D, ε) = {w : max
P∈P

meaning(w,P,D) > ε} (6.4)

ε is a parameter used to vary the size of this global keywords set, typically chosen
strictly positive as we are only interested in meaningful words. Note that it is possible
to rank the words from MeaningfulSet(D, ε) by order of importance, according to
their maxP∈P meaning(w,P,D) value, as illustrated in Table 6.1.

Table 6.1: Ranking words of a fictitious document D according to their
maxP∈P meaning(w,P,D) value. The set MeaningfulSet(D, ε = 0) corresponds
the top part of the table, up to the stem ’find’.

Porter stem w maxP∈P meaning(w,P,D) Importance Original words

art 4.591 Most art, arts

claim 4.275 claims, claimed

.

find 0.021 finding, findings

data 0.000 data

.

year -8.375 Least years

6.2.3 Sentence extraction

The next step in the document modelling from [24, 25] is the construction of a
small-world graph. The term small-world refers to the qualities observed on social
networks (in particular the small average path length) and was popularized by Milgram’s
experiment in 1967 [93]. More precisely, a network is said to be a small-world if it has
the following three properties (see Chapter 20 in [44] for more details):

• a small number of edges: small-world graphs are sparse. Intuitively, individuals
in a social network typically know a few hundreds of people, which is a very

6.2 Proposed algorithm 82

small number in comparison to the size of the network, typically in millions of
individuals.

• a high level of transitivity: transitivity is best translated in words by the phrase
"the friend of my friend is likely to also be my friend". A high transitivity
expresses the tendency to observe strong local communities and relatively few
long distance connections.

• a short average distance: despite being sparse and essentially made of local
communities, small-world graphs have the surprising property that randomly
selected pairs of nodes are, on average, at a small distance from each other. This
property was first shown by Milgram [93] and gave rise to the famous phrase
"the six degrees of separation". This property has been empirically verified on a
number of more recent social graphs, such as Facebook [129].

Small-world networks have recently received a lot of attention from researchers as a
large number of natural, technological and social networks were found to exhibit such
properties [133, 132].

In our case, such a small-world graph can be built based on the extracted keywords
as follows. Let us denote by s1, s2, . . . , sn the sequence of consecutive sentences in the
document D. The graph Gr(D, ε) has the sentences {si : i ∈ [1..n]} as its vertex set.
Sentences usually create a flow of information in a text, so an edge is added between
every pair of consecutive sentences (si, si+1); this ensures connectivity of the graph, as
shown in Figure 6.2a. An edge is also added between every pair of sentences sharing a
least one common keyword, that is to say a word from MeaningfulSet(D, ε). This
has the effect of creating many short-distance and a few long-distance references. Hence
ε also controls the number of edges in the graph: when ε is too big, the set of keywords
is empty and the graph degenerates to a path graph; when it is too small, the graph
becomes a large random graph. In between these two extreme cases and for some
carefully chosen set of keywords, the graph exhibits a small-world topology. Balinsky
et al. empirically determined that the transition into a small world occurs, for large
documents, when the number of edges is between 3n and 4n [23]. We consider the
target number of edges (say, 3n or 4n) as a parameter of the algorithm. To build such a
small-world graph with a predefined target number of edges, the set of all meaningful
words MeaningfulSet(D, ε = 0) is first computed and sorted by decreasing level
of meaningfulness. Then, each keyword is considered in turn, starting with the most
meaningful one, and an edge is added between every pair of sentences containing that

6.2 Proposed algorithm 83

(a) Initial path graph (b) After adding a few edges (c) Final small-world graph

Figure 6.2: Small-world building procedure.

keyword. The procedure stops when the target number of edges in the graph is reached
(see Figure 6.2c).

Finally, the most important sentences (i.e., the most central vertices) are extracted
from the graph. Graph and social network theories provide many centrality measures
in order to identify the most important, or central, nodes in a graph [101]. Common
examples include the degree, betweenness and eigenvector centrality measures; these
and several more measures will be described in more details in Section 6.2.6.

6.2.4 Complete description of the original algorithm

Algorithm 6.1 gives the pseudo-code for the complete algorithm proposed by Balin-
sky et al [24, 25].

Algorithm 6.1: Original summarization algorithm [24, 25].
P r e p r o c e s s t h e document D .

Compute MeaningfulSet(D, ε = 0) [s e e E q u a t i o n (6.4) page 81] and

s o r t i t by d e c r e a s i n g l e v e l o f m e a n i n g f u l n e s s .

C r e a t e a g raph G wi th n v e r t i c e s .

While t h e t a r g e t number o f edges i n G i s n o t r e a c h e d and n o t

a l l keywords have been used :

P i ck t h e n e x t keyword i n t h e s o r t e d MeaningfulSet(D, 0) .

For each p a i r o f s e n t e n c e s t h a t bo th c o n t a i n t h i s keyword :

Add an edge between t h e two c o r r e s p o n d i n g v e r t i c e s .

Rank t h e s e n t e n c e s by d e c r e a s i n g i m p o r t a n c e u s i n g a c e n t r a l i t y

measure .

Re tu rn t h e most i m p o r t a n t s e n t e n c e s as summary .

6.2 Proposed algorithm 84

6.2.5 Extending the original algorithm using affiliation networks

Balinsky et al. [24, 25] justified their graph construction procedure using affiliation

networks, which were introduced by Lattanzi and Sivakumar [73]. Affiliation networks
are bipartite graphs with two types of nodes: actors and societies. Each actor can be
affiliated to any number of societies and edges of the graph denote the membership of
an actor to a society, as illustrated in Figure 6.3a. One can then create a social graph
based on society co-membership as follows. Let us start by defining the affiliation

matrix A as the binary matrix where the coefficients Aij denote the membership of the
i-th actor to the j-th society. An example affiliation matrix is shown in Figure 6.3b. The
adjacency matrix of the corresponding co-membership social graph is simply computed
as M = A× AT as illustrated in Figure 6.3d. Thus the coefficient Mij is the result of
the dot product between the i-th and j-th rows of A, which respectively contain the
membership information of the i-th and j-th actors. As a result, the edge weights from
the co-membership graph correspond to the number of societies that actors have in
common. An example social graph is shown in Figure 6.3c. We will keep denoting
by A and M , respectively, the affiliation and co-membership adjacency matrices in the
remainder of the chapter.

(a) Affiliation network

A =

so1 so2 so3

a1 1 1 0

a2 1 1 0

a3 0 1 1

a4 0 0 1

(b) Affiliation matrix

(c) Co-membership graph

M = A× AT =

a1 a2 a3 a4

a1 2 2 1 0

a2 2 2 1 0

a3 1 1 2 1

a4 0 0 1 1

(d) Co-membership adjacency matrix

Figure 6.3: An example of affiliation network and the corresponding social graph.
ais represent actors and sojs represent societies.

Coming back to summarization, sentences play the role of actors and the keywords

6.2 Proposed algorithm 85

identified by MeaningfulSet(D, ε) represent the societies. All sentences that share a
keyword belong to the same society and thus are linked by edges (in other words, they
form a clique). The construction of the initial path graph is not directly explained by
affiliation networks, though it can be seen as adding n− 1 societies, one for each pair of
consecutive sentences (n denoting the number of sentences in the input document). For
simplicity, the adjacency matrix M is computed in practice from the affiliation matrix A
without these additional societies. Then, all off-diagonal coefficients (i.e., of the form
Mi,i−1 and Mi,i+1) that are 0 are simply set to 1.

In the original summarization algorithm proposed by Balinsky et al. [24, 25], the
graph is unweighted and undirected so its adjacency matrix M is a symmetric binary
matrix. In the framework of affiliation networks, this corresponds to using a binary
affiliation matrix A, where Aij coefficients denote whether the keyword wj appears
in sentence si, and then binarizing the adjacency matrix computed as M = A × AT .
However, the affiliation and adjacency matrices do not need to be binary. A number of
alternatives can potentially be used and we propose to extend Balinsky et al.’s model by
defining new affiliation matrices:

• The binary matrix Abin, where Abinij denotes whether the keyword wj appears in
sentence i.

• The local score matrix Alocal where Alocalij is the local meaningfulness score
meaning(wj, P,D) of the keyword wj inside P , where P is the part encom-
passing the sentence si. If meaningfulness scores are computed using sliding
windows, the local score is the maximum score got over all windows (i.e., parts P)
encompassing si. Also, if the meaningfulness score is negative or if the keyword
wj does not appear in the sentence si, Alocalij is set to 0.

• The global score matrix Aglobal where Aglobalij is the "global" meaningfulness score
of the keyword wj inside the sentence si, defined as:

Aglobalij =

max
P∈P

meaning(w,P,D) if wj appears in si

0 otherwise.
(6.5)

Based on the affiliation matrices Abin, Alocal and Aglobal, we can create several new
models for building small-world graphs. Multiplying any of the proposed affiliation
matrix by its transpose yields a symmetric matrix because (A×AT)T = (AT)T ×AT =

A × AT . Since by convention the (i, j)-th coefficient of any adjacency matrix is the
weight of the edge going from the i-th vertex to the j-vertex, a symmetric adjacency

6.2 Proposed algorithm 86

matrix corresponds to an undirected graph because edges weights between any pair
of vertices are the same in both directions. But we can also multiply two different
affiliation matrices together, which in most cases results in a non-symmetric adjacency
matrix and thus a directed graph.

We propose the five small-world models described below. For interpreting these, it
helps to keep in mind that if M = A1 × A2

T , then the (i, j)-th coefficient of M is the
dot product of the i-th row of A1 (describing the keywords appearing in the sentence si)
and the j-th row of A2 (describing the keywords appearing in sj).

1. Undirected Counts (UC): this model is computed asMUC = Abin×AbinT . Coef-
ficients of MUC denote the number of (unique) keywords in common between
pairs of sentences. The more keywords two sentences share, the higher the asso-
ciated edge weight is. To ensure the graph is connected, off-diagonal coefficients
that are 0 are set to 1.

2. Undirected Binary (UB): this is the original model with binary weights [24, 25],
the adjacency matrix MUB being obtained by binarizing MUC .

3. Undirected Local Meaning (ULM): this undirected model is computed as
MULM = Alocal × Alocal

T . Thus the (i, j)-th coefficient of MULM is equal
to:

MULM
ij =

|MeaningfulSet(D,ε)|∑
k=1

Alocalki × Alocalkj . (6.6)

In words, each keyword shared between two sentences contributes to the weight
of the corresponding edge by adding the product of their local meaningfulness
scores. The rationale behind this model is that the more locally meaningful a
keyword is, the more it should contribute to the edge weights of the associated
neighbourhood of the graph. Note that keywords must be locally meaningful in
both sentences in order to contribute to the corresponding edge weight.

To ensure the graph is connected, consecutive sentences that are not connected
are given an edge weight set to the lowest admissible value: the square of the
smallest strictly positive entry of Alocal.

4. Undirected Global Meaning (UGM): this undirected model is computed as

6.2 Proposed algorithm 87

MUGM = Abin × AglobalT . Thus the (i, j)-th coefficient of MUGM is equal to:

MUGM
ij =

|MeaningfulSet(D,ε)|∑
k=1

1
[
wk ∈ si

]
Aglobalkj

=

|MeaningfulSet(D,ε)|∑
k=1

1
[
wk ∈ si ∩ sj

]
max
P∈P

meaning(w,P,D), (6.7)

where 1
[
p
]

is an indicator function that is equal to 1 if the predicate p is true and
0 otherwise. Despite being the result of the product of two different matrices,
MUGM is symmetric as clearly visible in Equation (6.7) and therefore it represents
an undirected graph. The rationale behind this model is that the more a keyword
is globally meaningful, the more it should contribute to the edge weights of the
graph.

To ensure the graph is connected, off-diagonal coefficients that are 0 are set
to the lowest admissible value, which is the smallest strictly positive entry
of Aglobal or the smallest global meaningfulness value from any keyword in
MeaningfulSet(D, ε).

5. Directed Local Meaning (DLM): the last model builds a directed graph, which
is computed as MDLM = Abin × Alocal

T . As such, the (i, j)-th coefficient of
MDLM , indicating the weight of the edge from si to sj , is equal to:

MDLM
ij =

|MeaningfulSet(D,ε)|∑
k=1

1
[
wk ∈ si

]
Alocalkj . (6.8)

In words, this is the sum of the local scores in the sentence sj , over keywords that
appear in both si and sj . The intuition behind this model is that shared keywords
between a pair of sentences create two references, one in each direction, which
strengths depend on local meaningfulness scores. A sentence that has high local
meaningfulness values will have strong incoming weights.

To ensure the graph is connected, off-diagonal coefficients that are 0 are set to the
lowest admissible value, which is the smallest strictly positive entry of Alocal.

Now that we have proposed several ways to build small-world graphs from a
document, we finally turn our attention to centrality measures, which we use in order to
identify the most central (i.e., important) sentences to include in the summary.

6.2 Proposed algorithm 88

6.2.6 Centrality measures

There are many possible ways to define node importance in a graph and very
naturally, many different centrality measures exist (see Chapter 10 in [59]). However,
most centrality measures are defined for unweighted and undirected graphs as these are
the simplest and most prevalent type of graphs. So let us start by presenting these.

Centrality measures for unweighted and undirected graphs

The centrality measures for unweighted and undirected graphs that we use in this
chapter are [59]:

• Number of keywords: this is not a centrality measure per se, but the simplest
possible way to rank sentences is by counting the number of keywords each
sentence contains. This is a rather intuitive idea that is commonly found in a way
or another in the summarization literature [82, 100].

• Degree centrality: the degree centrality is simplest centrality measure where the
importance of a vertex v is simply given by its degree:

CD(v) = degree(v). (6.9)

This centrality formalizes the idea that vertices with a large number of neighbours
are the most important. Note that given our graph construction procedure, this
is not the same as counting the number of keywords in each sentence. Indeed, a
keyword appearing in ns sentences adds ns − 1 to the degree of each of these
sentences (i.e., nodes).

Though intuitive, the degree centrality is a purely local measure that completely
ignores the wider topology of the network; the following other centrality measures
build on more global notions of importance.

• Closeness centrality: the closeness centrality is the inverse of the average distance
of a node to all other nodes in the network. With this definition of centrality, the
most important nodes are the ones that can broadcast information to the entire
network in a fast way.

CC(v) =
|V | − 1∑

s 6=v∈V distance(s, v)
(6.10)

6.2 Proposed algorithm 89

where distance(s, v) denotes the distance (given by the shortest path) between
s and v. Closeness is sometimes understood as independence [50], as the nodes
closest to all other nodes are less dependent to intermediaries to get access to the
information flow.

• Betweenness centrality: the betweenness centrality of a vertex v quantifies the
control that a node has to manipulate information in a network:

CB(v) =
∑

s 6=t6=v∈V

σst(v)

σst
(6.11)

where V denotes the vertex set, σst the number of shortest paths between s and t,
and σst(v) the number of shortest paths between s and t going through v. Thus,
degrees with high betweenness centrality are on a large number of shortest paths
and can easily alter information circulating in the network.

• Eigenvector centrality: the eigenvector centrality value of a node is proportional
to the weighted average of the centrality values of its neighbours:

CE(vi) =
1

λ

∑
j∈{1,n}

MijCE(vj) (6.12)

where λ is a constant [101]. In matrix form, the problem can be rewritten as
Mx = λx, where x is the centralities vector. It is easy to see that x is an
eigenvector of the adjacency matrix M , and from the Perron-Frobenius theorem,
it must be the eigenvector associated to the largest eigenvalue [101]. Intuitively,
the eigenvector centrality takes into account the number of neighbours of a node
but also the importance of those neighbours in the entire graph. Iterative methods
are usually used for computations.

Adapting the centrality measures for weighted and/or directed graphs

Since some of the small-world models we proposed are weighted and/or directed
small-world graphs, the centrality measures we just introduced need to be adapted to
these types of graphs.

Before attempting to do so, it is important to understand the meaning given to edge
weights. In all our models, large weights represent either high meaningfulness values
or large numbers of shared keywords, and thus represent high similarities between
sentences. Thus, the degree centrality can be naturally extended to weighted graphs,

6.2 Proposed algorithm 90

the weighted degree of a vertex being simply the sum of weights of all its adjacent
edges. The most important sentences are therefore the ones with the highest degrees.
Similarly, eigenvector centrality considers weights as a measure of importance and
extends naturally to work with a weighted adjacency matrix. However, this is not the
case for betweenness and closeness centralities which require some adaptation. Indeed,
both rely on distances and shortest paths between vertices. Intuitively, our weights are
the opposite of distances: high weights, or high similarities between vertices, should
represent small distances. This is why edge weights need to be adapted for these two
centralities. A number of monotonically decreasing transformations can be used. We
choose the inverse function:

distance(w) = 1/w (6.13)

wherew denotes an edge weight. Thus high weights are transformed into small distances
and vice versa. This function also transforms 0 weights (i.e., missing edges) into infinite
distances, which is the expected behaviour.

Regarding directed graphs, the degree centrality can be computed as the sum of
in-degrees (either weighted or unweighted). Betweenness and closeness centralities do
not require adaptation other than taking into account edge directions while computing
shortest paths. Finally, as important nodes have strong incoming links, the left eigen-
vector centrality must be used; that is, x must be a solution of the system xM = λx

(see Chapter 21 in [86] for details).

6.2.7 Complete algorithm description

Let us conclude the section by presenting the high-level pseudocode for our complete
algorithm.

6.3 Evaluation methodology 91

Algorithm 6.2: Complete summarization algorithm.
P r e p r o c e s s t h e document D .
Compute MeaningfulSet(D, ε = 0) [s e e E q u a t i o n (6.4) page 81] and
s o r t i t by d e c r e a s i n g l e v e l o f m e a n i n g f u l n e s s .
C r e a t e a g raph G wi th n v e r t i c e s .
C r e a t e two empty a f f i l i a t i o n m a t r i c e s A1 and A2 .
While t h e t a r g e t number o f edges i n G i s n o t r e a c h e d and n o t
a l l keywords have been used :

P i ck t h e n e x t keyword i n t h e s o r t e d MeaningfulSet(D, 0) .
Add one row t o each a f f i l i a t i o n ma t r ix , w i th w e i g h t s s e t
a c c o r d i n g t o t h e chosen model .
Add t h e newly c r e a t e d edges t o G .

Compute t h e a d j a c e n c y m a t r i x M = A1 ×A2 .
S e t t h e edge w e i g h t s i n G a c c o r d i n g t o t h e c o e f f i c i e n t s o f M.
Add edges between c o n s e c u t i v e s e n t e n c e s i f n e c e s s a r y t o e n s u r e
t h e g raph i s c o n n e c t e d .
Rank t h e s e n t e n c e s by d e c r e a s i n g i m p o r t a n c e u s i n g a c e n t r a l i t y
measure .
Re tu rn t h e most i m p o r t a n t s e n t e n c e s as summary .

6.3 Evaluation methodology

6.3.1 Evaluation procedure

Summaries of different lengths can be created and as such, the desired length need to
be an input to the summarization algorithm. Lengths can be a fixed number of sentences
(say 5 or 10 sentences), or for comparison purposes, an approximate number of words
since sentence lengths can range from a single word to several dozens. In the latter case,
100 and 200 words targets are common [75]. Some tolerance around that target number
is obviously necessary to include only complete sentences but most evaluation metrics
penalize summaries that deviate too much from the target number of words.

We will evaluate our algorithm on a variety of documents, both in genre and length.
Balinsky et al. have tested their model on large documents [24, 25], made of several
hundreds of sentences. However, short documents are extremely common (emails, web
pages, etc.) and since small-world graphs are typically large, the concept of small-world
becomes ill-defined in this setting. Therefore, one should check whether the algorithm
still works on short documents.

Also, the algorithm will be compared with two state-of-the-art summarization
algorithms:

6.3 Evaluation methodology 92

• TextRank [92], an unsupervised approach fully described in Section 6.1, and

• CCS-NSA-v2 [120], a supervised learning algorithm based on Hidden Markov
Models.

A popular baseline that simply outputs the first few sentences at the beginning of
the document [2] will also be used. We denote it First. The reason for using this
baseline is simple: it is often common to discuss the main points of a document in the
introduction. For example, in the case of research publications, abstracts are actually
short summaries created by the authors. Unsurprisingly, abstracts are good baseline
summaries. Similarly, this baseline was shown to be very effective for news stories [2],
as the main ideas are often briefly mentioned at the very beginning of such documents
before being developed in the body of the story.

6.3.2 Evaluation metrics

Evaluating the quality of a summary is a complex task [85]. Most methods focus on
content selection and work by comparing a candidate (automatic) summary to human
summaries serving as references. However, creating such reference summaries is
both expensive and time-consuming. Furthermore, several references are required for
unbiased algorithm comparisons as there is no "best" summary; different human experts
will create different, but equally good, summaries. The need for reference summaries
also means that evaluating summaries at different lengths (say 50 words and 200 words)
requires a set of references for each length, yet adding to the difficulty of creating a
good evaluation corpus.

Historically, sentence recall, precision and F-measure have played an important
role in summarization evaluation [28, 76]. However, the sentence granularity captures
very little of the actual summary informativeness. In an attempt to solve this issue,
Nenkova and Passonneau proposed an appealing alternative called the Pyramid method
[99]. However this method requires a lot of manual work to identify the so-called
"Summary Content Units", which are somewhat fuzzily defined as the important pieces
of information that appear in the reference summaries. Fully automatic methods are
therefore usually preferred.

Currently, the standard set of evaluation measures is called ROUGE and was de-
veloped by Lin [75]. ROUGE includes several measures based on overlapping units
between a candidate summary and a set of gold-standards. ROUGE measures are

6.3 Evaluation methodology 93

fully automatic, work at the sub-sentential level and were shown to give excellent
correlations with human judgments (Pearson’s correlations up to 0.99) [75] on the
Document Understanding Conference 2002 (DUC 2002) data [2]. Note that by working
at the sub-sentential level (e.g., with word n-grams), ROUGE measures are suitable for
evaluating both extractive and abstractive summaries.

We use the most common measure, ROUGE-N, that relies on word N -grams (i.e.,
sequences of N contiguous words) to compare a candidate summary c and a set of
gold-standard summaries R = {r1, . . . }. The formulae for the recall and precision
versions of ROUGE-N are respectively presented on Equations (6.14) and (6.15).

ROUGE-Nrecall(c, R) =

∑
r∈R

∑
ngram∈r

min
(
f(ngram, r), f(ngram, c)

)
∑
r∈R

∑
ngram∈r

f(ngram, r)
(6.14)

ROUGE-Nprecision(c, R) =

∑
r∈R

∑
ngram∈r

min
(
f(ngram, r), f(ngram, c)

)
|R| ×

∑
ngram∈c

f(ngram, c)
(6.15)

where f(ngram, s) is the frequency of the N -gram ngram in the summary s. In plain
words, the numerator of both formulae computes the number of overlapping N -grams
between the candidate summary and the references. The denominators are simply
normalization terms, included to scale values between 0 and 1. Note that it is easy to
get higher recall and precision scores by using respectively longer and shorter candidate
summaries. The F-measure version of ROUGE-N also exists and is the harmonic mean
between recall and precision:

ROUGE-Nfscore(c, R) = 2
ROUGE-Nprecision(c, R)× ROUGE-Nrecall(c, R)
ROUGE-Nprecision(c, R) + ROUGE-Nrecall(c, R)

(6.16)

This is often the preferred version in order to penalize candidate summaries that are
either too long or too short.

In the following, we use the F-score version of the ROUGE-1 metric, that is to say
ROUGE-Nfscore working with unigrams (N = 1), as it was found to be robust on a
variety of datasets [75] and it is the most commonly used metric in the literature. Note
that ROUGE scores can be computed after stemming and/or stop words removal but it
has been have shown to have minor impact on correlations with human judgements [75].

6.4 Experimental results 94

Therefore, all scores presented in this chapter are computed without any stemming or
removal of stop words.

6.4 Experimental results

6.4.1 Comparative evaluation on the DUC 2002 dataset

In this section, we evaluate our algorithm on the standard evaluation dataset for
summarization: DUC 2002 [2]. This dataset is made of 567 short news articles and we
focus on the single-document generic summarization task, consisting in the creation of
a 100-word summary for each news article.

In the original DUC competition, the summaries created by all competing systems
were manually evaluated by comparison with two abstractive human-written summaries
considered as gold-standards. However, no system was able to beat the baseline made
of the first sentences of each article, so the single-document generic summarization task
has been discontinued after 2002 [97].

More recently, research on evaluation has had significant progress and the evalu-
ation framework ROUGE [75] introduced in 2004 helped to better compare systems
performance so it has become the preferred evaluation tool. Therefore, the DUC 2002
dataset is still the standard dataset for such evaluations, despite its shortcomings. We
use this dataset as a way to:

• perform a comparative evaluation with state-of-the-art algorithms.

• study the effect of the different parameters on the summarization results.

• study the behaviour of our algorithm with small documents. Indeed, small world
networks are typically large graphs but the evaluation documents are a few tens of
sentences long (only 3 documents, out of 567, that are longer than 100 sentences).

The numerical results are summarized in Table 6.2.

The best system according to the ROUGE-1 metric is CCS-NSA-v2 [120] (referred
as System 28 in the original DUC 2002 competition) trained on a corpus of 119
documents. The First baseline remains a very good performer as only 3 systems from
the original competition, out of 13, scored better. Precise numerical comparison with
TextRank [92] is not possible as only the recall version of ROUGE-1 is reported in the

6.4 Experimental results 95

Table 6.2: Results on the DUC 2002 dataset, using ROUGE-1 F-score.

F-Score

Automatic summarization systems:
CCS-NSA-v2 (DUC 2002 winner) 0.4652

Our algorithm 0.4254

Baseline:
First (sentences at beginning of document) 0.4577

Human experts:
Best (expert G) 0.5379a

Worst (expert C) 0.4580a

a Expert summaries are evaluated against the other expert summary for
the same document. Therefore, only one gold-standard is available
when evaluating experts.

original article. The problem with recall is that longer summaries tend to get higher
scores.

The effects of the parameters on our algorithm are presented in Table 6.3. In the
remainder of this section, we present and analyze these experimental results.

On stop-words filtering

One of the main strengths of the Helmholtz approach to keywords extraction is
the simplicity and speed of preprocessing, allowing fast treatment of large amounts of
data. On large documents, the only preprocessing step performed is stemming, since
stop-words are automatically excluded from the set of keywords on large documents,
unless they are actually meaningful [22]. For example, in a chapter on determiners of an
English grammar book, words like "the" and "a" are important and will be considered
as such by our algorithm. This may not be true for short documents. Indeed, if a
stop-word occurs frequently, but only locally as it may be common in short documents,
our algorithm considers this as unusual behaviour; thus this word becomes a keyword.
We can hypothesize that considering such non important words as keywords may have
adverse effects on the results.

To check whether stop-words are problematic with short documents, we compare
the results with and without stop-words filtering. In the first case, we do not remove
stop-words at preprocessing time so that levels of meaningfulness are computed with

6.4 Experimental results 96

Table 6.3: Effect of our algorithm’s parameters on the results on the DUC 2002
dataset, using ROUGE-1 F-score. The first row indicates the best set of paramet-
ers; in all other rows, the value of the parameter under study appears in blue.

Stop-words Window size Nb. of edges Centrality Modela F-Score

127 4 ∞ Degree UB 0.4254
None

4 ∞ Degree UB
0.4172

3479 0.4206

127
2

∞ Degree UB
0.4219

3 0.4244
5 0.4224

127 4
2n

Degree UB
0.4138

3n 0.4227
4n 0.4245

127 4 ∞

Nb. keywords

UB

0.4199
Betweenness 0.4107
Closeness 0.4218
Eigenvector 0.4186

127 4 ∞ Degree

UC 0.4218
ULM 0.3842
UGM 0.4000
DLM 0.4047

a UB: Undirected Binary
UC: Undirected Counts
ULM: Undirected Meaning
UGM: Undirected Meaning
DLM: Directed Meaning.

all words; otherwise stop-words filtering would affect the size of the parts P ∈ P and
thus the parameter Nadapt of the meaningfulness scores (see Equation (3.8) on pages
20 for the definition). Instead, stop-words are filtered only when building the graph,
discarding all keywords belonging to a predefined list. Delaying stop-words filtering
as such also prevents certain sentences from having all their constituent words filtered
(e.g., "To be or not to be."). The stop-words list we use is minimized, with 127 words,
mainly determiners and pronouns. It results that stop-words filtering has a big impact
on the results: it improves the final F-score by almost 1%, from 0.4172 to 0.4254 (see
Table 6.3).

Since stop-words removal is important and given that there is no universal list
of stop-words, we also investigate whether we can use levels of meaningfulness to
automatically create our own a list of stop-words. We proceed by concatenating all
567 documents of the DUC 2002 dataset, considering each news article as a container

6.4 Experimental results 97

and running a modified keywords extraction procedure. We simply compute the set of
non-meaningful words:

{w : max
P∈P

Meaning(w,P) < 0} (6.17)

We extract a list of 3479 words that are not meaningful in any document and consider
them as stop-words; "the", "of", "a", "drive" and "practic" are a few examples of
extracted words. Using these words as stop-words slightly improves the F-score to
0.4206, compared to a F-score of 0.4172 without stop-words filtering, but the results
are still inferior to the ones when we use the predefined list of 127 words (F-score of
0.4254). However, we can expect much better improvements when dealing with non
natural language processing applications, where non-content words are easier for an
algorithm to identify (e.g., instructions like "SELECT" or "INSERT" for log files of
SQL queries).

Parameter selection

We have two important parameters to set, namely the window size (that is to say the
number of consecutive sentences used to define the family of parts P for each news
article) and the target number of edges (i.e., the number of edges to insert in the graph).
Additionally, we study the effect of the small-world model and centrality measure on
the performance.

Window size: Ideally, the window size should be adapted to the logical progression
of ideas in the text, and sentences about a particular topic should be grouped into a
single window. However, DUC 2002 documents are not divided into logical units such
as paragraphs so we define the window size as a fixed number of sentences. A window
size of one sentence is too small to capture topics but the window size should remain
small relative to the number of sentences in the document to be able to capture the
progression of ideas and topics. For large documents, such as the State of the Unions
corpus [15] in which most speeches are hundreds of sentences long, a window size of
4 has shown good performance [23]. For short news articles of at most a few tens of
sentences (not to mention emails, instant messaging and tweets, which tend to be even
shorter), we can expect the information to be much more compact and decreasing the
window size might be preferable. As shown in Table 6.3, the optimal window size for
the DUC 2002 dataset is again 4 sentences, which therefore looks like a good default
value for any small or medium input sizes. However, our experiments showed that the

6.4 Experimental results 98

impact of the window size is not very big. This is rather good news as it suggests that
choosing the optimal window size is not crucial for obtaining good results.

Target number of edges: Next we investigate the target number of edges. As already
pointed out, small-world graphs are typically large graphs; however, the news articles
are at most a few tens of sentences long. The concept of small-world is therefore
ill-defined with such small graphs. For example, 10-sentence documents are common
in the DUC 2002 dataset; in this case, the target number of edges (let us choose, say,
3n; see page 82 for details) is 30 and a complete graph with 10 vertices contains 45
edges. Hence our graphs are not sparse anymore, unlike small-world graphs. This is
why we need to investigate the effect of the target number of edges on small documents
and the applicability of the concept of small-world altogether. Optimal results are
obtained when no limitation on the number of edges is set (denoted by ∞ in Table
6.3); said differently, it is best to use all keywords from MeaningfulSet(D, ε = 0)

when building the graph with short documents. Moreover, Table 6.3 shows that the
performance consistently increases as the number of keywords used increases. The
reason is probably that small documents do not provide enough data to robustly perform
the statistical analysis done by our keywords extraction algorithm. These additional
words seem to provide more information that can be exploited successfully by our
summarization algorithm.

Small-world models: Regarding the newly introduced small-world models, Table
6.3 shows that the best model on the DUC 2002 dataset is the UB (Undirected Binary)
model, which corresponds to the original and simplest model. The UC (Undirected
Counts) model also gives good results. The other three models assigning more weight
to the words with high meaningfulness values perform significantly worse. This is
somewhat surprising and we do not see obvious explanations for this behaviour, but
these models might still prove effective with longer documents.

Centrality measure: We now study the performance of several centrality measures.
We also investigate the simple ranking function defined as the number of meaningful
words inside each sentence. First, despite the fact that the different centrality measures
are quite strongly correlated [131], the various measures have a relatively high impact
on the performance of the algorithm. The best results are obtained with degree centrality,
though closeness centrality gives relatively similar results (see Table 6.3). The simple
ranking function also performs quite well, followed by the eigenvector centrality. The

6.4 Experimental results 99

betweenness centrality give significantly worse results. The fact that degree centrality
outperforms the simple ranking function indicates that benefits can be obtained even
from "degenerated" small worlds. Degree centrality also has a large advantage over
more indirect centrality measures: its low computational cost.

Discussion

First, it is worth mentioning that our main goal in this section is to study the
applicability of our algorithms to small documents and the effect of their parameters.
As opposed to many systems in the original competition, we did not try to tune our
algorithms for this specific dataset as we did not want to introduce any kind of bias
into our system. Indeed, the simple baseline performed very well, which is why most
systems in the original DUC 2002 competition were using the sentence index as a
feature. This makes sense for news articles as the first sentences usually introduce
the main facts and the remaining develop those facts. However, we do not think that
such a feature is a good indicator of the importance on a sentence if we do not make
any assumptions on the dataset. For example, the first few sentences of a novel do not
summarize the remainder of the book.

Regarding processing times, our unoptimized implementation in Python ran in 16.4
seconds for the entire DUC 2002 dataset on an Intel Core 2 E8400 processor (3.0 GHz)
with 3 GB of RAM. This represents an average of 28 ms per document, including file
opening and parsing, preprocessing, keywords and sentence extraction. The proposed
technique allows fast processing of large amounts of data, and thus can be easily adapted
to any type of data such as emails and log-files; so it can be used for many real-time
applications.

So despite our experimental results being slightly lower than the ones of state-of-
the-art summarizers for short documents, our method is both computationally very
cheap and language independent. Most importantly, we also showed that small-world
modeling, despite being somewhat ill-defined on short documents, remains effective for
summarization with appropriate sets of parameters.

6.4.2 Experiments with longer documents

Next, we would like to evaluate our algorithms on longer documents. Indeed,
summarization is probably most useful with more substantial documents, where sum-
marization can be utilized to (inter alia):

6.4 Experimental results 100

• help users significantly reduce the time it would take to look through a document
in order to decide whether it is worth reading it more carefully,

• build a summary that is comprehensive enough to make reading unnecessary,

• significantly speed-up computations, when used as a preprocessing step.

However, there is no evaluation dataset for long documents, to the best of our know-
ledge. Indeed, the need for reference summaries would make the creation of such a
corpus very expensive. Furthermore, the number of possible summaries increases expo-
nentially as the document size grows and there would probably be little overlap between
the different summaries produced by experts. Most of the workshops and research since
DUC 2002 have instead been directed towards query-focused and/or multi-document
summarization, as in the Text Analysis Conferences (TAC) competitions [11] that
replaced DUC in 2008.

Some efforts were made to circumvent some of the problems making summarization
evaluation difficult. For example, methods that do not require the use of human models,
but rather directly compare the summaries to the original text, were recently investigated.
The Jensen-Shannon divergence was shown to have relatively good correlations with
pyramid scores and ROUGE-N measures when averaged over many documents [80].
However, none of the studied measures provide a reliable indication of quality for
individual documents and those metrics have not been tested on longer documents, so
their effectiveness in this setting is unknown.

This highlights, once again, the need for extrinsic evaluation in practical systems.
However, since our objective is to build a generic algorithm and in order to show the
effectiveness of our algorithm on long documents, we have little choice but to leave the
reader judge for himself whether the summaries give a good idea of the contents of the
original documents. This also means that comparative evaluation is not possible.

A few examples of summaries from the State of the Union corpus are presented
below. The State of the Union speech is an annual address from the President of the
United States of America to the US Congress. To make judging easy, only major historic
years are used:

• State of the Union by President Truman, during the final months of World War II,
and

• State of the Union by President Obama, during the recession following the 2008
subprime’s crisis.

6.4 Experimental results 101

The original documents are, respectively, 118 and 291 sentences long.

In these experiments, summary sizes are set to 5 sentences. A target number of
edges of 3n is used and no stop-words filtering is performed. All small-world models
and centrality measures are tested, the window size is varied between 3 and 5, and the
best summary is somewhat subjectively chosen.

• President Truman, April 1945 - Best summary
Parameters: Counts Undirected, degree centrality, window size of 5 sentences.

At a time like this, words are inadequate.

Yet, in this decisive hour, when world events are moving so rapidly, our

silence might be misunderstood and might give comfort to our enemies.

In bitter despair, some people have come to believe that wars are inevit-

able.

During the dark hours of this horrible war, entire nations were kept going

by something intangible - hope!

If wars in the future are to be prevented the nations must be united in

their determination to keep the peace under law.

• President Obama, February 2009 - Best summary
Parameters: Binary Undirected, closeness centrality, window size of 5 sentences.

That is what my economic agenda is designed to do, and that is what I’d

like to talk to you about tonight.

I want to speak plainly and candidly about this issue tonight, because

every American should know that it directly affects you and your family’s

well-being.

It’s a plan that won’t help speculators or that neighbor down the street

who bought a house he could never hope to afford, but it will help millions of

Americans who are struggling with declining home values; Americans who

will now be able to take advantage of the lower interest rates that this plan

has already helped to bring about.

It’s not about helping banks; it’s about helping people.

[Applause] It’s not about helping banks; it’s about helping people.

Overall, these experiments agree in most part with the results from the previous
section: the two models "Undirected Binary" and "Undirected Counts" (respectively
UB and UC in Table 6.3), together with the degree and closeness centrality measures,
provide the best results. A window size of 5 sentences seemed to be slightly superior
over window sizes of 3 and 4 sentences. We also generally found the summaries to

6.4 Experimental results 102

be quite similar with the various models. However the betweenness and eigenvector
centralities seemed to provide relatively different, and seemingly worse, summaries. It
may be that more direct definitions of centralities are to prefer for both short and long
input documents. For example, changing the closeness centrality for the betweenness
centrality with the last example yields:

• President Obama, February 2009 - Visibly worse summary
Parameters: Binary Undirected, eigenvector centrality, window size of 5 sentences

That is what my economic agenda is designed to do, and that is what I’d

like to talk to you about tonight.

Because of this plan, 95 percent of working households in America will

receive a tax cut; a tax cut that you will see in your paychecks beginning on

April 1st.

I want to speak plainly and candidly about this issue tonight, because

every American should know that it directly affects you and your family’s

well-being.

The ability to get a loan is how you finance the purchase of everything

from a home to a car to a college education, how stores stock their shelves,

farms buy equipment, and businesses make payroll.

Now, let me be clear–let me be absolutely clear, because I know you’ll

end up hearing some of the same claims that rolling back these tax breaks

means a massive tax increase on the American people: if your family earns

less than $250, 000 a year, a quarter million dollars a year, you will not see

your taxes increased a single dime.

In this summary, tax breaks are emphasized but the economic crisis of 2008 and its
roots are less apparent. Finally, let us conclude this section with the summary created
by the First baseline. The result is a very concrete illustration of its shortcomings:

• President Obama, February 2009 - First baseline

Madam Speaker, Mr. Vice President, Members of Congress, the First

Lady of the United States – she’s around here somewhere: I have come here

tonight not only to address the distinguished men and women in this great

Chamber, but to speak frankly and directly to the men and women who sent

us here.

I know that for many Americans watching right now, the state of our

economy is a concern that rises above all others, and rightly so.

If you haven’t been personally affected by this recession, you probably

know someone who has: a friend, a neighbor, a member of your family.

6.5 Conclusion 103

You don’t need to hear another list of statistics to know that our economy

is in crisis, because you live it every day.

It’s the worry you wake up with and the source of sleepless nights.

6.5 Conclusion

Summarization of textual documents and messages is an important problem in many
text mining systems, with applications ranging from quick relevance assessment to
speeding up subsequent mining algorithms. Real-life input documents will be varied in
genres and lengths (emails, IM conversations, news articles, business reports, etc.), so
fast, generic and robust summarization algorithms are needed.

In this chapter, we extended a summarization algorithm that was presented in
[24, 25]. Relying on affiliation networks, we proposed several ways to introduce
weights to small-world models for textual documents.

Because the algorithms were originally designed for large documents, we demon-
strated that, through extensive evaluation, they can be adapted to much shorter inputs
and still give good performance. More precisely, we showed that stop-words are no
longer automatically removed by the keywords extraction algorithm. Using a standard
list of stop-words improves performance; if no such list is available, we introduced an
algorithm to automatically generate one (a list of non meaningful words to be precise)
from a corpus of documents. We have also shown that the choice of centrality measure
is important. Degree centrality performs much better for small documents than other
centrality measures. Also, the window size does not have a crucial impact and a size
of 4 sentences seems optimal for most inputs. Finally, increasing the target number of
edges in the graph was also shown to improve the results.

We also attempted to tune our algorithms for longer inputs by manually checking
the resulting summaries. This subjective evaluation showed that degree and closeness
centralities give the best results, confirming our previous observations. The graph
models didn’t seem to have a large impact on the results, so simpler models are preferred.
Finally, no stop-words filtering was necessary in this case.

Overall, our models provide a number of ways to efficiently create extractive
summaries. Drawing definite conclusions on which model performs best was not
possible due to evaluation difficulties. But once again, the solution may lie in extrinsic
evaluation, that is, taking into account the specific context for using a summarization
algorithm as part of a text mining system.

104

Chapter 7

Conclusion

Given the complexity of natural language, the task of building text mining systems
is difficult. In fact, many natural language processing and understanding problems
will require strong AI to be fully solved. In other words, they will require significant
progress in artificial intelligence; for example, having a complete and accurate com-
puterized representation of the world will be required to allow advanced reasoning
and disambiguation. In the meantime, much simpler approaches have been proposed;
among these, the bag-of-words model remains widely popular for many tasks. Ignoring
the order of words may seem naive but it has proven time and time again to be extremely
effective in practice. Furthermore, thanks to the simplicity of the model, the resulting
algorithms can remain computationally cheap.

Numerous ways to derive features from bags-of-words have been proposed over
the past several decades, but a recent approach to keywords extraction based on the
Helmholtz principle [21, 22] proved appealing for its solid mathematical foundation but
also for its ability to distinguish important words from all other words in a parameter-
free fashion. In this thesis, we relied on this new approach in order to build novel text
mining algorithms which aim at being robust, fast and scalable, as well as theoretically
sound.

The resulting algorithms rely on a straightforward preprocessing step that most of
the time only consists of word tokenization and stemming. This simplicity allows our
algorithms to be readily applicable to many different domains and even languages, as
long as a tokenizer and a stemmer are available. Also, by avoiding the reliance on any
high complexity steps, our algorithms remain computationally efficient.

More precisely, a new term weighting scheme for information retrieval was proposed
in Chapter 4. Its competitiveness with the popular TF-IDF and BM25 schemes has been
established and a full system for enterprise search was designed around it. Since current
information retrieval algorithms are already robust and fast, the main achievement in

7 Conclusion 105

this chapter was to establish a theoretically sound and somewhat simpler term weighting
scheme that is on par (on the TREC datasets for enterprise search) with current state-of-
the-art schemes that are the results of decades of research and fine tuning.

In Chapter 5, a novel algorithm for text segmentation was proposed. Standard
evaluation techniques showed its excellent accuracy, especially when stop-words are
not removed, as well as a low computational cost that makes it applicable to large
documents. As such, it improves on the state-of-the-art algorithms by being faster
but also more robust to different genres, domains and languages. This is particularly
impressive since speed and robustness were shown to be mutually exclusive with the
algorithms evaluated.

Finally in Chapter 6, we generalized and extended the summarization algorithm
from [24]. In particular, we relied on the generative model of affiliation networks
to propose several ways to introduce weights in textual networks and thus to model
documents. Through extensive evaluation, we showed that the algorithm provides good
performance on a variety of inputs when used with appropriate sets of parameters.
Because it is entirely unsupervised and relies only on straightforward preprocessing
steps, our algorithm is relatively generic; and even though it was not explicitly studied
in this work, the algorithm can be trivially extended to many western languages in a
way similar to our segmentation algorithm. Finally, we also showed that the algorithm
is fast.

One can note that the measure of meaningfulness can be adapted to be used as
input for a number of other applications; we leave this for future work. As this thesis
was being written, we have started working on document categorization and clustering
applications. In any case, it is our hope that this research will encourage the development
of similarly rigorous approaches to text mining.

Even though little emphasis has been given to software development in this thesis,
significant efforts have been directed towards the creation of programs for our industrial
partner HP; some of these are presented in the appendices. Thanks to cross functional
collaboration with other researchers, program managers, graphic designers and software
engineers, the work presented in this thesis has also lead to several successful internal
and external pilots.

106

Appendix A

Demos and pilot projects

A.1 Enterprise Search

The outcome of our information retrieval research, described in Chapter 4, is a full
search engine for enterprise search. A pilot has been led with a large business unit
inside HP and several other units have since shown interest.

Figure A.1, page 107, shows the landing page of the search engine, which access
can be optionally restricted by a login step. The user is invited to type a query and click
the "Search" button. Advanced search functionalities allow to:

• restrict the document sources when several document repositories are indexed,

• search for documents that were created and/or modified in specific date ranges,
and

• filter for particular authors.

Figure A.2, page 108, shows examples of search results. Related terms suggestions
are displayed to help users refine their query if necessary. Relevant results can be
previewed individually or in bulk.

Figure A.3, page 109, shows a document preview. A navigation bar at the top allows
to navigate through the results and the user can leave relevance feedback, as well as rate
and add comments to documents. This feedback can then be used to improve the search
results with learning-to-rank.

A
.1

E
nterprise

Search
107Figure A.1: Search engine landing page.

A
.1

E
nterprise

Search
108Figure A.2: Search results for the query "capacitors".

A
.1

E
nterprise

Search
109Figure A.3: Previewing a relevant document.

A.2 Segmentation 110

A.2 Segmentation

A segmentation library has been written as part of the research described in Chapter
5. A graphical user interface has been created around it for demonstration purposes. Let
us present it.

The user can open a text document or choose one from a large pre-selection of
documents of different lengths, genres and languages. Once a document is opened,
information and statistics on the input document are displayed, as shown in Figure A.4,
page 111. The user can then choose a desired number of segments, select from several
state-of-the-art segmentation algorithms and start the segmentation process.

Once the segmentation algorithms have finished to run, each segment found by the
algorithm is shown with a different color, as can be seen in Figure A.5, page 112. If a
reference segmentation is available, it is also shown using whitespace. On the image,
the algorithm has slightly misplaced the true boundary, off by one sentence.

A
.2

Segm
entation

111Figure A.4: Segmentation GUI and parameter selection.

A
.2

Segm
entation

112Figure A.5: Segmentation results.

A.3 Summarization 113

A.3 Summarization

A summarization library has been developed as part of the research described in
Chapter 6. This library has been used for on-demand summarization, as part of a
web-service available for HP employees. A stand-alone demonstration program, that
we briefly describe here, has also been built.

After starting the program, the user can open a text document or choose one from
a number of public corpora. The full document is then displayed, as shown in Figure
A.6, page 114. After that, the user can choose the summarization parameters such as
the window size, the small-world model and the centrality measure (see Chapter 6 for
details).

Once the summarization algorithm has been run, the summary is displayed in place
of the full document, as shown in Figure A.7, page 115. The small-world graph and
associated statistics are also available to make the algorithm easy to visualize and
understand.

A
.3

Sum
m

arization
114

Figure A.6: Summarization GUI and parameter selection.

A
.3

Sum
m

arization
115

Figure A.7: Summarization results.

116

List of Figures

2.1 Simplified, high-level architecture of a text mining system 3

3.1 Illustrations of the main grouping principles from the Gestalt theory . 15

3.2 Illustration of the balls-and-bins experiment, with K balls thrown uni-
formly at random into N bins . 18

3.3 Using the adaptive number of containers Nadapt to cope with containers
of varying lengths . 21

4.1 Impact of the number of top documents re-ranked on various metrics
and on the computational cost . 48

5.1 Cosine similarity computation between adjacent blocks of 120 words,
in the TextTiling algorithm [61] . 51

5.2 Main steps of the C99 algorithm [36] 52

5.3 The graph G for an example document of 5 sentences in TextSeg [130] 54

5.4 Segmenting is finding which of the n− 1 gaps between sentences best
separate the topics inside the documents 56

5.5 Activity stretch of a word . 57

5.6 Unsmoothed gap scores and ground truth boundaries 58

5.7 Effect of the parameter σ for smoothing the gap score curve 59

5.8 Smoothed gap scores and final boundaries identified by our algorithm 60

5.9 Comparison of the boundaries from the ground truth segmentation and
from the output of our algorithm . 60

List of Figures 117

5.10 Gap score plots of "Alice in Wonderland" and European translations,
obtained with our algorithm . 74

6.2 Small-world building procedure. 83

6.3 An example of affiliation network and the corresponding social graph 84

A.1 Search engine landing page. 107

A.2 Search results for the query "capacitors". 108

A.3 Previewing a relevant document. 109

A.4 Segmentation GUI and parameter selection. 111

A.5 Segmentation results. 112

A.6 Summarization GUI and parameter selection. 114

A.7 Summarization results. 115

118

List of Tables

4.1 A simple inverted index . 24

4.2 Query-document features. 32

4.3 Document features. 34

4.4 Query features. 35

4.5 Comparison of term weighting formulae for initial ranking 41

4.6 Impact of filtering non-meaningful words on initial rankings. 43

4.7 Impact of the learning-to-rank algorithm on re-ranking, with top 25
documents re-ranked . 45

4.8 Impact of the number of top documents on re-ranking, using a pairwise
AdaBoost algorithm . 47

5.1 Composition of Choi’s synthetic dataset [36]. 64

5.2 WindowDiff scores on the synthetic datasets with stop-words removal 65

5.3 WindowDiff scores on the synthetic datasets without stop-words removal 65

5.4 WindowDiff scores on the synthetic datasets with different stop-words list 66

5.5 Short stories dataset statistics . 68

5.6 WindowDiff scores on the short stories dataset 68

5.7 Novels dataset statistics . 70

5.8 WindowDiff scores on the novels dataset 70

5.9 Alice in Wonderland dataset statistics 72

List of Tables 119

5.10 WindowDiff scores on the Alice in Wonderland dataset 72

6.1 Ranking words of a fictitious document D according to their maxP∈P

meaning(w,P,D) value . 81

6.2 Results on the DUC 2002 dataset, using ROUGE-1 F-score. 95

6.3 Effect of our algorithm’s parameters on the results on the DUC 2002
dataset, using ROUGE-1 F-score . 96

120

List of Algorithms

4.1 Initial ranking computations. 31

5.1 Gap scores calculation. 57

6.1 Original summarization algorithm [24, 25]. 83

6.2 Complete summarization algorithm. 91

121

Index

ε-meaningful event, 16

Affiliation matrix, 81
Affiliation network, 80

Directed graph, 82
Undirected graph, 82

Anomaly detection, 10

Bag-of-words, 8

Categorization, 10
Classification, 10
Clustering, 10

Dimensionality reduction, 8

Entity
extraction, 6
recognition, 6

Gestalt, 13, 14

Helmholtz principle, 15

Index, 23
inverted, 23

Information filtering, 10
Information retrieval, 9, 22

Algebraic models, 24
Boolean models, 24
Probabilistic models, 26
Set-theoretic models, 24
Vector space models, 24

Inverse Document Frequency (IDF), 25

Keyword, 18

Learning-to-Rank, 26
listwise approach, 27
pairwise approach, 27
pointwise approach, 27

Meaningful event, 16
Meaningful Set, 78

Normalization
word, 5

Normalized Discounted Cumulative Gain
(nDCG), 35

Number of False Alarms (NFA), 16

Parsing
syntactic, 6

Part-of-speech
tagging, 6

Perception
visual, 13

Precision
Average Precision (AP), 35

Preprocessing, 4

Reciprocal Rank (RR), 35
Retrieval model, 24
ROUGE, 89

ROUGE-N, 90

Index 122

Semantic analysis, 11
Small-world, 78
Stemming, 6
Stop-word, 5

filtering, 5
removal, 5

Summary, 10
abstractive, 74
extractive, 74
generic, 74
multi-document, 74
query-focused, 74
single-document, 74

Term Frequency (TF), 25
Text Analytics, 3
Text mining, 7
TF-IDF, 24
Time series, 10
Tokenization, 5

Unstructured data, 9

Weighting scheme, 8

123

Bibliography

[1] CSIRO. http://www.csiro.au. Accessed October 1, 2015.

[2] Document Understanding Conference (DUC). http://duc.nist.gov. Ac-
cessed October 1, 2015.

[3] Google Books: N-Gram Viewer. https://books.google.com/ngrams. Ac-
cessed October 1, 2015.

[4] Hausdorff distance. https://en.wikipedia.org/wiki/Hausdorff_

distance. Accessed October 1, 2015.

[5] List of stop-words. http://www.jmlr.org/papers/volume5/lewis04a/

a11-smart-stop-list/english.stop. Accessed October 1, 2015.

[6] Natural Language ToolKit. http://www.nltk.org. Accessed October 1, 2015.

[7] Project Gutenberg: Free eBooks. https://www.gutenberg.org. Accessed
October 1, 2015.

[8] RankLib. http://sourceforge.net/p/lemur/wiki/RankLib/. Accessed Oc-
tober 1, 2015.

[9] scikit-learn: Machine Learning in Python. http://scikit-learn.org. Ac-
cessed October 1, 2015.

[10] SVMRank: Support Vector Machine for Ranking. http://www.cs.cornell.

edu/people/tj/svm_light/svm_rank.html. Accessed October 1, 2015.

[11] Text Analysis Conference (TAC). http://www.nist.gov/tac/. Accessed
October 1, 2015.

[12] The Machine: A new kind of computer. http://www.hpl.hp.com/research/
systems-research/themachine/. Accessed October 1, 2015.

http://www.csiro.au
http://duc.nist.gov
https://books.google.com/ngrams
https://en.wikipedia.org/wiki/Hausdorff_distance
https://en.wikipedia.org/wiki/Hausdorff_distance
http://www.jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://www.jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://www.nltk.org
https://www.gutenberg.org
http://sourceforge.net/p/lemur/wiki/RankLib/
http://scikit-learn.org
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://www.nist.gov/tac/
http://www.hpl.hp.com/research/systems-research/themachine/
http://www.hpl.hp.com/research/systems-research/themachine/

Bibliography 124

[13] The Penn Treebank Project, Treebank tokenization. http://www.cis.upenn.

edu/~treebank/tokenization.html. Accessed October 1, 2015.

[14] UK Government Security Classifications, April 2014. https:

//www.gov.uk/government/uploads/system/uploads/attachment_data/

file/251480/Government-Security-Classifications-April-2014.pdf.
Accessed October 1, 2015.

[15] Union Addresses from 1709. http://stateoftheunion.onetwothree.net.
Accessed October 1, 2015.

[16] Wikipedia, the free encyclopedia. https://www.wikipedia.org. Accessed
October 1, 2015.

[17] Wikisource, the free library. https://www.wikisource.org. Accessed October
1, 2015.

[18] G. Amati and C. J. Van Rijsbergen. Probabilistic models of information retrieval
based on measuring the divergence from randomness. ACM Transactions on

Information Systems, 20(4):357–389, 2002.

[19] P. Bailey, N. Craswell, I. Soboroff, and A. P. de Vries. The CSIRO enterprise
search test collection. SIGIR Forum, 41(2):42–45, 2007.

[20] P. Bailey, A. P. D. Vries, N. Craswell, and I. Soboroff. Overview of the TREC
2007 enterprise track. In Proceedings of the 14th Text REtrieval Conference

(TREC), 2007.

[21] A. Balinsky, H. Balinsky, and S. Simske. On the Helmholtz principle for doc-
uments processing. In Proceedings of the 10th ACM Symposium on Document

Engineering, 2010.

[22] A. Balinsky, H. Balinsky, and S. Simske. On the Helmholtz principle for data
mining. In Proceedings of the Conference on Knowledge Discovery, 2011.

[23] A. Balinsky, H. Balinsky, and S. Simske. Rapid change detection and text mining.
In Proceedings of the 2nd IMA Conference on Mathematics in Defence, 2011.

[24] H. Balinsky, A. Balinsky, and S. Simske. Automatic text summarization and
small-world networks. In Proceedings of the 11th ACM Symposium on Document

Engineering, 2011.

http://www.cis.upenn.edu/~treebank/tokenization.html
http://www.cis.upenn.edu/~treebank/tokenization.html
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251480/Government-Security-Classifications-April-2014.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251480/Government-Security-Classifications-April-2014.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251480/Government-Security-Classifications-April-2014.pdf
http://stateoftheunion.onetwothree.net
https://www.wikipedia.org
https://www.wikisource.org

Bibliography 125

[25] H. Balinsky, A. Balinsky, and S. Simske. Document sentences as a small world.
In Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, 2011.

[26] H. Balinsky and B. Dadachev. Automatic Text and Data Stream Segmentation
using Principles of Human Perception. In Proceedings of the HP Imaging and

Color Symposium, 2013.

[27] K. Balog, I. Soboroff, P. Thomas, N. Craswell, A. P. de Vries, and P. Bailey.
Overview of the TREC 2008 enterprise track. In Proceedings of the 17th Text

REtrieval Conference Proceedings (TREC), 2008.

[28] R. Barzilay and M. Elhadad. Using lexical chains for text summarization. In
Proceedings of the ACL Workshop on Intelligent Scalable Text Summarization,
pages 10–17, 1997.

[29] R. E. Bellman. Adaptive control processes - A guided tour. Princeton University
Press, 1961.

[30] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag,
2006.

[31] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Machine Learning

Research, 3:993–1022, 2003.

[32] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Computer Networks and ISDN Systems, pages 107–117, 1998.

[33] V. Bruce, P. Green, and M. Georgeson. Visual Perception: Physiology, Psycho-

logy, & Ecology. Psychology Press, 2003.

[34] A. Carstairs-McCarthy. An Introduction to English Morphology: Words and

Their Structure. Edinburgh University Press, 2002.

[35] Y. Chali, S. A. Hasan, and S. R. Joty. Do automatic annotation techniques
have any impact on supervised complex question answering? In Proceedings

of the Annual Meeting of the Association for Computational Linguistics, pages
329–332, 2009.

[36] F. Choi. Advances in domain independent linear text segmentation. In Pro-

ceedings of the North American Chapter of the Association for Computational

Linguistics Conference, pages 26–33, 2000.

Bibliography 126

[37] E. Clark and K. Araki. Text normalization in social media: Progress, problems
and applications for a pre-processing system of casual English. Procedia - Social

and Behavioral Sciences, 27(0):2–11, 2011.

[38] M. Collins. Discriminative training methods for hidden Markov models: The-
ory and experiments with perceptron algorithms. In Proceedings of the ACL

Conference on Empirical Methods in Natural Language Processing, pages 1–8,
2002.

[39] C. D. Corley, D. J. Cook, A. R. Mikler, and K. P. Singh. Text and structural data
mining of influenza mentions in web and social media. International journal of

environmental research and public health, 7(2):596–615, 2010.

[40] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

[41] B. Dadachev, A. Balinsky, and H. Balinsky. On Automatic Text Segmentation.
In Proceedings of the 14th ACM Symposium on Document Engineering, 2014.

[42] B. Dadachev, A. Balinsky, H. Balinsky, and G. Forman. Automatic Text and
Data Stream Segmentation using Weighted Feature Extraction. In Proceedings

of the 3rd IMA Conference on Mathematics in Defence, 2013.

[43] B. Dadachev, A. Balinsky, H. Balinsky, and S. Simske. On the Helmholtz
Principle for Data Mining. In Proceedings of the 3rd IEEE Conference on

Emerging Security Technologies, 2012.

[44] E. David and K. Jon. Networks, Crowds, and Markets: Reasoning About a

Highly Connected World. Cambridge University Press, 2010.

[45] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[46] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41(6):391–407, 1990.

[47] A. Desolneux, L. Moisan, and J.-M. Morel. From Gestalt Theory to Image

Analysis: A Probabilistic Approach. Springer, 2008.

[48] J. Eisenstein and R. Barzilay. Bayesian unsupervised topic segmentation. In
Proceedings of the ACL Conference on Empirical Methods in Natural Language

Processing, pages 334–343, 2008.

Bibliography 127

[49] G. Erkan and D. R. Radev. LexRank: Graph-based lexical centrality as salience
in text summarization. Journal of Artificial Intelligence Research, 22(1):457–479,
2004.

[50] L. C. Freeman. Centrality in social networks: conceptual clarification. Social

Networks, 1:215–239, 1978.

[51] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Science,
55(1):119–139, 1997.

[52] M. Galley and K. McKeown. Improving word sense disambiguation in lexical
chaining. In Proceedings of the 18th International Joint Conference on Artificial

Intelligence, pages 1486–1488, 2003.

[53] K. Ganesan, C. Zhai, and J. Han. Opinosis: A graph-based approach to abstract-
ive summarization of highly redundant opinions. In Proceedings of the 23rd

International Conference on Computational Linguistics, pages 340–348, 2010.

[54] Y. Gong and X. Liu. Generic text summarization using relevance measure
and latent semantic analysis. In Proceedings of the 24th ACM Conference on

Research and Development in Information Retrieval, pages 19–25, 2001.

[55] M. V. C. Guelpeli, A. Garcia, and A. Branco. The process of summarization in the
pre-processing stage in order to improve measurement of texts when clustering. In
Proceedings of the Conference for Internet Technology and Secured Transactions,
pages 388–395, 2011.

[56] Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In Proceedings of the

1st International Workshop on Adversarial Information Retrieval on the Web,
pages 39–47, 2005.

[57] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data.
IEEE Intelligent Systems, 24(2):8–12, 2009.

[58] M. A. Halliday and R. Hasan. Cohesion in English. Longman, 1976.

[59] R. A. Hanneman and M. Riddle. Introduction to social network methods. 2005.

[60] C. Havasi, R. Speer, and J. Alonso. Conceptnet 3: a flexible, multilingual
semantic network for common sense knowledge. In Recent advances in natural

language processing, pages 27–29, 2007.

Bibliography 128

[61] M. Hearst. TextTiling: segmenting text into multi-paragraph subtopic passages.
Computational Linguistics, 23(1):33–64, 1997.

[62] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd

ACM Conference on Research and Development in Information Retrieval, pages
50–57, 1999.

[63] M. Y. Ivory and M. A. Hearst. Statistical profiles of highly-rated web sites. In
Proceedings of the ACM Conference on Human Factors in Computing Systems,
pages 367–374, 2002.

[64] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings

of the 8th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 133–142, 2002.

[65] T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 217–226, 2006.

[66] A. Joly and O. Buisson. Logo retrieval with a contrario visual query expansion.
In Proceedings of the 17th ACM International Conference on Multimedia, pages
581–584, 2009.

[67] F. Katamba. English Words. Routledge, 1994.

[68] T. Kiss and J. Strunk. Unsupervised multilingual sentence boundary detection.
Computational Linguistics, 32(4):485–525, 2006.

[69] D. Klein and C. D. Manning. Fast exact inference with a factored model for
natural language parsing. Advances in Neural Information Processing Systems,
15:3–10, 2003.

[70] J. Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of the

8th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 91–101, 2002.

[71] J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. In
Proceedings of the 18th ACM Conference on Research and Development in

Information Retrieval, pages 68–73, 1995.

[72] S. Lamprier, T. Amghar, B. Levrat, and F. Saubion. On evaluation methodologies
for text segmentation algorithms. In Proceedings of the Conference on Tools

with Artificial Intelligence, pages 19–26, 2007.

Bibliography 129

[73] S. Lattanzi and D. Sivakumar. Affiliation networks. In Proceedings of the 41st

Annual ACM Symposium on Theory of Computing, pages 427–434, 2009.

[74] H. Li. A short introduction to learning to rank. IEICE Transactions, 94-
D(10):1854–1862, 2011.

[75] C.-Y. Lin. ROUGE: a package for automatic evaluation of summaries. In
Proceedings of the Workshop on Text Summarization Branches Out, 2004.

[76] C.-Y. Lin and E. Hovy. The automated acquisition of topic signatures for text sum-
marization. In Proceedings of the 18th Conference on Computational Linguistics,
pages 495–501, 2000.

[77] T. Lindeberg. Scale-Space Theory in Computer Vision. Springer, 1993.

[78] D. Litman and R. Passonneau. Combining multiple knowledge sources for
discourse segmentation. In Proceedings of the 33rd Annual Meeting of the

Association for Computational Linguistics, pages 108–115, 1995.

[79] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR: Benchmark dataset for
research on learning-to-rank for information retrieval. In Proceedings of the

Workshop on Learning-to-Rank for Information Retrieval, pages 3–10, 2007.

[80] A. Louis and A. Nenkova. Automatically evaluating content selection in sum-
marization without human models. In Proceedings of the ACL Conference on

Empirical Methods in Natural Language Processing, pages 306–314, 2009.

[81] D. G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic
Publishers, 1985.

[82] H. P. Luhn. The automatic creation of literature abstracts. IBM Journal of

Research & Development, 2(2):159–165, 1958.

[83] C. Macdonald, R. L. Santos, and I. Ounis. On the usefulness of query features
for learning to rank. In Proceedings of the 21st ACM International Conference

on Information and Knowledge Management, pages 2559–2562, 2012.

[84] I. Malioutov and R. Barzilay. Minimum cut model for spoken lecture segment-
ation. In Proceedings of the 21st International Conference on Computational

Linguistics, pages 25–32, 2006.

[85] I. Mani. Summarization evaluation: An overview. Technical report, The MITRE
corporation, 2001.

Bibliography 130

[86] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2008. Also available as http://nlp.
stanford.edu/IR-book/pdf/irbookprint.pdf.

[87] M. Mathioudakis and N. Koudas. TwitterMonitor: trend detection over the twitter
stream. In Proceedings of the ACM International Conference on Management of

data, pages 1155–1158, 2010.

[88] A. McCallum and W. Li. Early results for named entity recognition with con-
ditional random fields, feature induction and web-enhanced lexicons. In Pro-

ceedings of the 7th Conference on Natural Language Learning, pages 188–191,
2003.

[89] W. Metzger. Gesetze des Sehens. Kramer, 1975.

[90] W. Metzger. Was ist gestalttheorie? Gestalttheorie und Erziehung, 508:1–17,
1975.

[91] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P.
Pickett, D. Holberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak,
and E. L. Aiden. Quantitative analysis of culture using millions of digitized
books. Science, 331(6014), 2010.

[92] R. Mihalcea and P. Tarau. TextRank: Bringing order into texts. In Proceedings

of the ACL Conference on Empirical Methods in Natural Language Processing,
pages 404–411, 2004.

[93] S. Milgram. The Small World Problem. Psychology Today, 2:60–67, 1967.

[94] G. A. Miller. WordNet: A lexical database for English. Communications of the

ACM, 38(11):39–41, 1995.

[95] J. Morris and G. Hirst. Lexical cohesion computed by thesaural relations as an
indicator of the structure of text. Computational Linguistics, 17(1):21–48, 1991.

[96] P. Moulon, P. Monasse, and R. Marlet. Adaptive structure from motion with a
contrario model estimation. In Proceedings of the Asian Conference in Computer

Vision, pages 257–270. 2013.

[97] A. Nenkova and K. McKeown. Automatic summarization. Foundations and

Trends in Information Retrieval, 5(2-3):103–233, 2011.

http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf

Bibliography 131

[98] A. Nenkova and K. McKeown. A survey of text summarization techniques. In
Mining Text Data, pages 43–76. Springer, 2012.

[99] A. Nenkova and R. J. Passonneau. Evaluating content selection in summarization:
The pyramid method. In Proceedings of the North American Chapter of the

Association for Computational Linguistics Conference, pages 145–152, 2004.

[100] A. Nenkova and L. Vanderwende. The impact of frequency on summarization.
Technical report, Microsoft Research, 2005.

[101] M. E. Newman. The mathematics of networks. The new Palgrave encyclopedia

of economics, 2:1–12, 2008.

[102] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, 1999.

[103] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10), 2010.

[104] L. Pevzner and M. Hearst. A critique and improvement of an evaluation metric
for text segmentation. Computational Linguistics, 28(1):19–36, 2002.

[105] O. Phelan, K. McCarthy, and B. Smyth. Using twitter to recommend real-time
topical news. In Proceedings of the 3rd ACM Conference on Recommender

Systems, pages 385–388, 2009.

[106] J. M. Ponte and W. B. Croft. A language modeling approach to information
retrieval. In Proceedings of the 21st ACM Conference on Research and Develop-

ment in Information Retrieval, pages 275–281, 1998.

[107] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[108] M. F. Porter. Snowball: A language for stemming algorithms. 2001. Available at
http://snowball.tartarus.org/texts/introduction.html.

[109] T. Qin and T.-Y. Liu. Introducing LETOR 4.0 Datasets. Computing Research

Repository (CoRR), 2013.

[110] D. R. Radev, H. Jing, M. Styś, and D. Tam. Centroid-based summarization of
multiple documents. Information Processing & Management, 40(6):919–938,
2004.

[111] S. Robertson. Understanding inverse document frequency: On theoretical argu-
ments for idf. Journal of Documentation, 60:2004, 2004.

http://snowball.tartarus.org/texts/introduction.html

Bibliography 132

[112] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi
at TREC-3. In Proceedings of the 3rd Text REtrieval Conference (TREC), pages
109–126, 1996.

[113] S. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25
and beyond. Foundations and Trends in Information Retrieval, 3(4):333–389,
2009.

[114] S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple
weighted fields. In Proceedings of the 13th ACM International Conference on

Information and Knowledge Management, pages 42–49, 2004.

[115] S. E. Robertson and K. Sparck Jones. Relevance weighting of search terms. In
Document Retrieval Systems, pages 143–160. 1988.

[116] F. B. Rogers. Medical subject headings. Bulletin of the Medical Library Associ-

ation, 51:114–116, 1963.

[117] G. Salton. The SMART Retrieval System - Experiments in Automatic Document

Processing. Prentice-Hall, 1971.

[118] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5):513–523, 1988.

[119] G. Salton, E. A. Fox, and H. Wu. Extended Boolean information retrieval.
Communications of the ACM, 26(11):1022–1036, 1983.

[120] J. D. Schlesinger, M. E. Okurowski, J. M. Conroy, D. P. O’Leary, A. Taylor,
J. Hobbs, and H. T. Wilson. Understanding machine performance in the context
of human performance for multi-document summarization. In Proceedings of

the Document Understanding Conference, 2002.

[121] J. Silla, Carlos N. and C. A. Kaestner. An analysis of sentence boundary detection
systems for English and Portuguese documents. Lecture Notes in Computer

Science: Computational Linguistics and Intelligent Text Processing, pages 135–
141, 2004.

[122] R. Sproat, A. W. Black, S. F. Chen, S. Kumar, M. Ostendorf, and C. Richards.
Normalization of non-standard words. Computer Speech & Language, 15(3):287–
333, 2001.

Bibliography 133

[123] M. Steinbach, G. Karypis, V. Kumar, et al. A comparison of document clustering
techniques. In Proceedings of the KDD Workshop on Text Mining, pages 525–526,
2000.

[124] J. Su, J. S. Shirab, and S. Matwin. Large scale text classification using semi-
supervised multinomial naive Bayes. In Proceedings of the 28th International

Conference on Machine Learning, pages 97–104, 2011.

[125] D. R. Swanson. Information Retrieval as a Trial-and-Error Process. Library

Quarterly, 47(2):128–148, 1977.

[126] V. Tahani. A conceptual framework for fuzzy query processing - a step toward
very intelligent database systems. Information Processing & Management,
13(5):289–303, 1977.

[127] T. Tao and C. Zhai. An exploration of proximity measures in information retrieval.
In Proceedings of the 30th ACM Conference on Research and Development in

Information Retrieval, pages 295–302, 2007.

[128] E. C. Tolman. Cognitive maps in rats and men. Psychological review, 55(4),
1948.

[129] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the
Facebook social graph. Computing Research Repository (CoRR), 2011.

[130] M. Utiyama and H. Isahara. A statistical model for domain-independent text
segmentation. In Proceedings of the 39th Annual Meeting on Association for

Computational Linguistics, pages 499–506, 2001.

[131] T. W. Valente, K. Coronges, C. Lakon, and E. Costenbader. How correlated are
network centrality measures? Connections, 8:16–26, 2008.

[132] X. F. Wang and G. Chen. Complex networks: small-world, scale-free and beyond.
IEEE Circuits and Systems Magazine, 3(1):6–20, 2003.

[133] D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684):440–442, 1998.

[134] M. Wertheimer. Untersuchungen zur lehre von der gestalt. ii. Psychologische

Forschung, 4(1):301–350, 1923.

[135] K.-F. Wong, M. Wu, and W. Li. Extractive summarization using supervised and
semi-supervised learning. In Proceedings of the 22nd International Conference

on Computational Linguistics, pages 985–992, 2008.

Bibliography 134

[136] S. K. M. Wong, W. Ziarko, and P. C. N. Wong. Generalized vector spaces model
in information retrieval. In Proceedings of the 8th ACM Conference on Research

and Development in Information Retrieval, pages 18–25, 1985.

[137] H. C. Wu, R. W. P. Luk, K.-F. Wong, and K.-L. Kwok. Interpreting tf-idf
term weights as making relevance decisions. ACM Transactions on Information

Systems, 26(3), 2008.

[138] J. Xu and H. Li. AdaRank: A boosting algorithm for information retrieval.
In Proceedings of the 30th ACM Conference on Research and Development in

Information Retrieval, 2007.

[139] J. Yamron, I. Carp, L. Gillick, S. Lowe, and P. Van Mulbregt. A Hidden Markov
model approach to text segmentation and event tracking. In Proceedings of the

Conference on Acoustics, Speech and Signal Processing, pages 333–336, 1998.

[140] D. Yarowsky and R. Wicentowski. Minimally supervised morphological ana-
lysis by multimodal alignment. In Proceedings of the 38th Annual Meeting on

Association for Computational Linguistics, pages 207–216, 2000.

[141] S.-C. Zhu. Embedding gestalt laws in Markov random fields. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 21(11):1170–1187, 1999.

	Introduction
	Background: Text Mining
	Preprocessing
	Pre-requisites
	Preprocessing tasks and techniques
	Discussion
	Our approach to preprocessing

	Text mining algorithms and applications
	Numerical representation of documents
	Common mining algorithms and applications
	Current research challenges and discussion
	Our approach to text mining

	Background: the Helmholtz principle
	Gestalt theory and Helmholtz principle for computer vision
	Visual perception and Gestalt theory
	The Helmholtz principle for computer vision

	Helmholtz principle for data and text mining
	NFA for m-tuples in a balls-and-bins experiment
	Practical adaptation of the balls-and-bins model to keywords extraction

	Information Retrieval and Enterprise Search
	A brief literature review
	Indexing
	Retrieval models
	Learning-to-Rank

	Proposed algorithm
	Preprocessing
	Term weighting scheme
	Augmenting the system with Learning-to-Rank

	Evaluation methodology
	Evaluation procedure
	Evaluation metrics

	Experimental results on the TREC datasets
	The CERC collection and associated TREC datasets
	Initial ranking evaluation
	Re-ranking top results with learning-to-rank

	Conclusion

	Text Segmentation
	A brief literature review
	Proposed algorithm
	Preprocessing
	Gap scores calculation
	Identification of segment boundaries

	Evaluation methodology
	Evaluation procedure
	Evaluation metrics

	Experimental results
	Synthetic datasets
	Towards more realistic datasets

	Conclusion

	Automatic Summarization
	A brief literature review
	Proposed algorithm
	Preprocessing
	Keyword extraction
	Sentence extraction
	Complete description of the original algorithm
	Extending the original algorithm using affiliation networks
	Centrality measures
	Complete algorithm description

	Evaluation methodology
	Evaluation procedure
	Evaluation metrics

	Experimental results
	Comparative evaluation on the DUC 2002 dataset
	Experiments with longer documents

	Conclusion

	Conclusion
	Appendices
	Demos and pilot projects
	Enterprise Search
	Segmentation
	Summarization

