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1. Introduction

Hypercholesterolemia is one of the major risk factors 
driving the development of cardiovascular disease (CVD) 
which accounts for more global mortalities than any other 
ailment (WHO, 2015) and costs UK healthcare systems 
more than £ 8.6 billion per annum (Townsend et al., 2012). 
One of the most effective disease prevention approaches 
currently available is the routine use of statins which 
specifically inhibit the de novo synthesis of cholesterol 
(Buckley and Ramji, 2015; McLaren et al., 2011; Michael et 
al., 2012; Taylor et al., 2013). However, adverse side effects 
(Banach et al., 2015) and only an overall 25% reduction in 
fatal and non-fatal CVD-related events (Taylor et al., 2013) 
indicate the need for additional approaches to reduce the 
burden of CVD. The lack of evidence correlating cholesterol 
consumption with serum cholesterol levels (Christie, 2015) 
has raised questions about the validity of a cholesterol 

restricted diet as a preventative measure suggesting that 
lifestyle changes alone cannot reduce susceptibility to the 
development of CVD. There is now growing evidence that 
some probiotic organisms (components of the indigenous 
microbiota) have the capacity to impact multiple aspects 
of the cholesterol metabolism of the host (Gorenjak et al., 
2014; Huang and Zheng, 2010; Huang et al., 2010, 2013; 
Pereira and Gibson, 2002a,b; Yoon et al., 2011, 2013) 
resulting in reduced serum cholesterol levels (Fuentes 
et al., 2013; Mann, 1974; Pereira and Gibson, 2002b; 
Rerksuppaphol and Rerksuppaphol, 2015) and positive 
CVD-related outcomes (Sun and Buys, 2015).

A complex symbiotic relationship exists between the host’s 
intestinal epithelium and the resident microbiota. The 
cholesterol lowering ability of some probiotics, which are 
defined as ‘live organisms which when administered in 
adequate amounts confer a health benefit to the host’ (FAO/
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WHO, 2006), can be attributed to bile salt hydrolase (BSH) 
activity and/or the ability to assimilate cholesterol, that 
allows them to promote the removal of cholesterol from 
the intestinal lumen (Kumar et al., 2012). It is also emerging 
from numerous in vitro and in vivo studies that probiotics, 
including strains of Lactobacillus plantarum, can impart 
cholesterol lowering effects by modulating key mechanisms 
responsible for cholesterol absorption in the intestines of 
the host (Gorenjak et al., 2014; Huang and Zheng, 2010; 
Huang et al., 2013; Yoon et al., 2013).

Niemann-Pick C1-like 1 (NPC1L1) is a cholesterol 
transporter critical for the uptake of cholesterol and is highly 
expressed on the brush border of intestinal epithelial cells 
(Altmann et al., 2004). Disruption of NPC1L1 expression in 
genetically modified mice renders them almost completely 
resistant to diet induced hypercholesterolemia (Davis et 
al., 2007) and pharmacological inhibition of NPC1L1 
function using ezetimibe is an effective strategy for the 
reduction of serum cholesterol level in humans (Cannon 
et al., 2015; Sudhop et al., 2002). ATP-binding cassette 
sub-family G member (ABCG)-5 and ABCG-8 are also 
key cholesterol transporters that are highly expressed on 
the apical surface of intestinal epithelial cells and mediate 
the efflux of intracellular cholesterol to bile salts back into 
the intestinal lumen (Tachibana et al., 2007; Vrins et al., 
2007). Abolishment of ABCG-5/8 gene expression in mice 
results in the rapid accumulation of plasma cholesterol 
(Yu et al., 2002) and functional mutations of these genes 
cause sitosterolemia; a genetic disorder characterised by 
the accumulation of sterols in blood and tissues (Berge et 
al., 2000). ATP-binding cassette transporter-1 (ABCA-1) is 
also involved in the efflux of intracellular cholesterol from 
intestinal epithelial cells but is predominantly expressed 
on the basolateral membrane and preferentially utilises 
apolipoprotein-AI (Apo-AI) as a cholesterol acceptor 
(Ohama et al., 2002; Tachibana et al., 2007). Genetic 
deletion of ABCA-1 expression in mice results in reduced 
absorption of dietary cholesterol from the intestine 
(Drobnik et al., 2001).

In this study, the cholesterol lowering abilities of the strain 
L. plantarum CUL66 (NCIMB 30280) isolated from a 
healthy human have been determined and a more detailed 
assessment of the molecular mechanisms revealed its ability 
to reduce cholesterol uptake in an in vitro model of the 
intestinal epithelium.

2. Materials and methods

Reagents

All chemicals were purchased from Sigma-Aldrich (Poole, 
UK) unless otherwise stated.

Bacterial strain and growth condition

Bacterial isolate L. plantarum CUL66 (NCIMB 30280) 
was stored at -20 °C on Cryo-beads (Pro-Lab Diagnostics, 
Wirral, UK) until use and initial cultures were grown in De 
Man-Rogosa-Sharpe (MRS) broth (Oxoid, Basingstoke, UK) 
for 18 h at 37 °C under anaerobic conditions (10% carbon 
dioxide, 10% hydrogen, 80% nitrogen).

Bile salt hydrolase activity

BSH activity was tested using a modified plate assay. Briefly, 
MRS agar plates or MRS agar plates supplemented with 
0.5% (w/v) taurodeoxycholic acid (TDCA) were pre-reduced 
by incubation under anaerobic conditions at 37 °C for 24 h. 
Filter discs (6 mm) present on the agar surface were then 
inoculated with approximately 107 cfu/ml L. plantarum 
CUL66. BSH activity was indicated by the development 
of a white precipitate around or on the colonies after 48 h 
incubation under anaerobic conditions at 37 °C. MRS agar 
plates lacking TDCA were also inoculated and served as 
negative controls in each experiment.

Cholesterol assimilation

The ability of L. plantarum CUL66 to assimilate cholesterol 
was assessed according to a modified version of a method 
described elsewhere (Pereira and Gibson, 2002a). Ten ml 
aliquots of sterile MRS broth supplemented with 0.3% (w/v) 
ox-bile and 1 mg/ml polyoxyethanyl-cholesteryl sebacate 
(delivering approximately 200 µg/ml cholesterol) were left 
uninoculated (control) or inoculated with approximately 
108 cfu/ml L. plantarum CUL66. All cultures were then 
incubated for 18 h at 37 °C under anaerobic conditions. 
Following incubation, bacterial cells were removed by 
centrifugation (1000×g, 20 min) and the culture supernatant 
was assayed for cholesterol content. In addition, the dry 
weight of the remaining bacterial pellets were determined 
following 2 h drying at 100 °C and the amount of cholesterol 
removed expressed as mg of cholesterol removed (compared 
to the uninoculated control) per g of bacteria (dry weight).

Cholesterol assay

Total lipid was extracted from the culture supernatant and 
assayed for cholesterol content according to a modified 
version of a previously described method by Rudel and 
Morris (1973). Briefly, 2 ml of pure ethanol and 2 ml of 33% 
(w/v) potassium hydroxide were added to a 1 ml sample of 
culture supernatant and mixed thoroughly. Samples were 
then incubated at 37 °C for 15 min and cooled before 2 ml 
deionised water and 3 ml n-hexane were added and the 
mixing repeated. Samples were then incubated at ambient 
temperature for 15 min to allow phase separation before 
a 1 ml sample of the upper clear phase was removed into 
a clean tube for rapid evaporation under nitrogen. Two 
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ml of o-phthaldaldehyde solution (0.5 mg/ml in glacial 
acetic acid) was then added to each tube and 0.5 ml of 
concentrated sulphuric acid was then carefully added by 
slow pipetting down the side of the tube. Each sample was 
then mixed thoroughly and incubated for a further 10 min 
at ambient temperature. The absorbance of each sample was 
read at 550 nm using a UV-V spectrophotometer (Agilent 
Technologies, Santa Clara, CA, USA) and cholesterol 
concentration was determined by comparison with a 
standard curve composed of identically processed samples 
of known cholesterol concentration (0, 31.25, 62.5, 125, 250 
and 500 µg/ml, R2=0.9975).

Caco-2 cell culture

Caco-2 cells were obtained from American Type Culture 
Collection (ATCC, Middlesex, UK) and grown in Dulbecco’s 
Modified Eagle’s medium (DMEM) supplemented with 
4,500 mg/l glucose, 1% (v/v) non-essential amino acids, 10% 
(v/v) heat inactivated foetal bovine serum (Labtech, Sussex, 
UK), penicillin (100 U/ml) and streptomycin (100 U/ml) 
at 37 °C in 5% CO2 and 95% humidity. Caco-2 cells were 
seeded at 5×105 cells/cm2 into standard tissue culture 
coated 24 well plates (Costar, Cambridge, UK) for real-
time quantitative polymerase chain reaction (RT-qPCR) 
analysis and cholesterol uptake assays or polycarbonate 
semi-permeable transwell membranes (0.4 µM pores; 
Costar, Cambridge, UK) for cholesterol efflux assays. 
Caco-2 cells were maintained for 18 to 21 days to allow 
complete polarisation (Natoli et al., 2012) and used when 
the trans-epithelial electrical resistance exceeded 900 
Ω/cm2 (Supplementary Figure S1A).

Caco-2/Lactobacillus plantarum CUL66 co-incubation

Overnight cultures of L. plantarum CUL66 were centrifuged 
(1000×g, 10 min) and the resultant pellet washed, by 
centrifugation and re-suspension, with antibiotic free 
DMEM supplemented with 4,500 mg/l glucose, 1% (v/v) 
non-essential amino acids and 10 mM N-(2-hydroxyethyl)
piperazine-N'-(2-ethanesulfonic acid) (HEPES) and adjusted 
to 1×107 or 1×108 cfu/ml before application to Caco-2 cells. 
For gene expression studies, 70 µg/ml cholesterol was added 
to all cells (including controls). Prior to co-incubation with 
L. plantarum CUL66, Caco-2 monolayers were washed 
three times with warm phosphate buffered saline (PBS) 
to remove all traces of antibiotic.

Real-time quantitative polymerase chain reaction

Caco-2 monolayers were washed three time with warm 
PBS and total RNA was isolated using Ribozol (Amresco 
LLC, Solon, OH, USA) and was reverse transcribed 
into cDNA using the High Capacity cDNA reverse 
transcription Kit (Life Technologies, Paisley, UK) in 
accordance with manufacturer protocols. RT-qPCR was 

performed on 10 ng cDNA using the iTag Universal 
SYBR Green SuperMix (Bio-Rad, Hemel Hempstead, 
UK) in combination with 50 nM each of the following 
gene specific primers (Eurofins Genomics, Ebersberg, 
Germany): 5’-TCTTCCCCTTCCTTGCCATT-3’ and 
5’-CGGCAGGGTAATTGTTGAGG-3’ for NPC1L1; 
5’-CCCAAGGGACTCCGGGGTCA-3’ and 5’-GACCC-
ATGGACCCTCCGGGG-3’ for ABCG-5 (Alemany et al., 
2013); 5’-GCCGCCCTCTTGTTCATG-3’ and 5’-TAACA-
TTTGGAGATGACATCCAGAA-3’ for ABCG-8 (Kim et 
al., 2013); 5’-TTTCTCAGACAACACTTGACCAAGTA-3’ 
and 5’-GGTTTTTGTGTAATGAGAGGTCTTTTAA-3’ 
f o r  A B C A- 1  ( K i m  e t  a l . ,  2 0 1 3 ) ;  5 ’ - G AC C-
T T T C C A G A G C A A G C A C - 3 ’  a n d 
5 ’ - T C A A C A A G A G C AT C G A G G G T - 3 ’  f o r 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) 
and 5’-ACTCTTCCAGCCTTCCTTCC-3’ and 5’-CGT-
ACAGGTCTTTGCGGATG-3’ for β-actin. Initial melting 
(95 °C for 5 min) followed by 40 cycles of melting (94 °C 
for 15 s), annealing (60 °C for 15 s) and extension (72 °C 
for 30 s) was performed using a CFX Connect™ Real-Time 
Instrument (Bio-Rad) and fold changes in transcript level 
were determined using 2-(ΔCt1 – ΔCt2), where ΔCt represents 
the difference between the threshold cycle (CT) for each 
target gene and β-Actin mRNA transcript levels. In order 
to eliminate amplification from contaminating genomic 
DNA all primer sets spanned an exon boundary and 
reverse transcriptase negative controls were included in 
each experiment. The amplicon sizes of each primer set 
were confirmed by agarose gel electrophoresis.

Cholesterol uptake assay

Cholesterol uptake was measured using a previously 
described method with minor adaptations (Huang et 
al., 2013). Polarised Caco-2 cells were left untreated or 
incubated with L. plantarum CUL66 (1×108 cfu/ml) 
for 6 h. One hour before the end of incubation, 0.5 µCi 
[4-14C]-cholesterol (Amersham Plc, Amersham, UK) was 
added to each well. At the end of the incubation, the cells 
were washed three times with cold DMEM to remove 
unincorporated radiolabelled cholesterol. Intracellular 
lipids were extracted by incubation with 1.0 ml of ice cold 
hexane:isopropyl alcohol:water (3:2:0.1, v/v/v) for 30 min 
and radioactivity (disintegrations per min (DPM)) was 
measured using a liquid scintillation counter. Meanwhile, 
the remaining Caco-2 cell fraction was solubilised by 
incubation with 1 ml of 0.2 M NaOH for 30 min at 37 °C 
and total cellular protein levels determined using the 
BCA protein assay kit (Life Technologies, Paisley, UK) in 
accordance with the manufacturer’s instructions. DPM 
were normalised to protein levels and cholesterol uptake 
expressed as a percentage of the untreated control that has 
been arbitrarily set as 100%.
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Cholesterol efflux assay

Cholesterol efflux was assessed using a method adapted 
from a previous study (Tachibana et al., 2007). Briefly, 
21-day polarised Caco-2 cell monolayers grown on semi-
permeable transwell inserts were incubated with [4-14C]-
cholesterol (0.5 µCi/well) in supplemented DMEM for 
24 h. Excess cholesterol was then removed with three 
rounds of washing with warm PBS. Apical intracellular 
cholesterol efflux was initiated by the addition of 1 mM 
TDCA micelles alone or in combination with L. plantarum 
CUL66 (1×108 cfu/ml) to the apical compartment while 
basolateral cholesterol efflux was simultaneously initiated 
by the addition of 10 µg/ml Apo-AI to the basolateral 
compartment. After 6 h incubation the media in both the 
apical and basolateral compartments was removed and 
retained for analysis. The remaining Caco-2 cells were 
washed once with warm PBS and solubilised by incubation 
with 1 ml 0.2 M NaOH for 30 min at 37 °C. DPM was 
measured in the apical, basolateral and cell fractions 
using a liquid scintillation counter and the percentage 
of intracellular cholesterol effluxed from the cells was 
determined by dividing the radioactivity of the apical media 
or basolateral media by the combined radioactivity in the 
apical media, basolateral media and cell fraction.

Preparation of taurodeoxycholic acid micelles

TDCA micelles were prepared as described elsewhere 
(Ikeda et al., 2002). Briefly, 0.6 mM phosphatidylcholine, 
1.0 mM of oleic acid and 6.6 mM of TDCA were thoroughly 
mixed in a glass vial and solvents evaporated under a flow 
of nitrogen. The resultant lipid film was then resolved in 
DMEM supplemented with 4,500 mg/l glucose, 1% (v/v) 

non-essential amino acids and 10 mM HEPES and filtered 
through a 0.4 µM acetate filter before use.

Statistical analysis

All data are presented as the mean ± standard deviation 
(SD) of the assigned number of independent experiments. 
Prior to significance testing, the normality of the data and 
the equality of group variance was confirmed using the 
Shapiro-Wilk and Levene’s tests respectively. All data 
transformations are outlined in the figure legends. For 
single comparisons, values of P were determined using 
Student’s t-test. For multiple comparisons, values of P were 
determined using one-way analysis of variance (ANOVA) 
with Tukey’s post-hoc analysis. All statistical tests were 
performed using SPSS statistical software package version 
22 (IBM, New York, NY, USA). Significance was defined 
when P<0.05.

3. Results

BSH and cholesterol removal activity of Lactobacillus 
plantarum CUL66

In three independent experiments a white precipitate was 
observed in the presence of 0.5% TDCA (Figure 1B), that 
was absent from the control (Figure 1A), indicating that L. 
plantarum CUL66 has BSH activity and this observation 
was confirmed on streak plates (Figures 1C and 1D). L. 
plantarum CUL66 also removed 28.3±15.2% of available 
cholesterol from MRS broth when compared to uninoculated 
control cholesterol levels (P=0.009, Figure 1E) that equates 
to 3.35±1.98 mg cholesterol per g of dry weight bacteria. The 
average pH of 18 h broths of L. plantarum CUL66 was 4.1.
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Figure 1. Bile salt hydrolase activity and ability to remove cholesterol from culture media by Lactobacillus plantarum CUL66. (A-
D) MRS agar plates (control, A, C) or MRS agar plates containing 0.5% taurodeoxycholic acid (TDCA) (B and D) were inoculated 
with L. plantarum CUL66 on filter discs (A and B, n=3) or as bacterial streaks (C and D, n=1) for 48 h under anaerobic conditions 
and assessed for the development of a white precipitate. (E) Cholesterol concentration in MRS broth containing 0.3% (w/v) 
ox-bile and 200 µg/ml cholesterol (control) or in MRS broth containing 0.3% (w/v) ox-bile and 200 µg/ml cholesterol inoculated 
with L. plantarum CUL66 for 18 h under anaerobic conditions. Data are presented as the mean ± standard deviation from three 
independent experiments. Statistical analysis was performed using Student’s t-test, where ** P<0.001.
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Expression of genes involved in Caco-2 cell cholesterol 
transport and metabolism

As shown in Figure 2A, co-incubation of polarised Caco-2 
cells with cholesterol (70 µg/ml) and L. plantarum CUL66 
(1×108 cfu/ml) resulted in a 19% (P=0.015) reduction in the 
expression of NPC1L1 when compared to cells treated with 
cholesterol alone (Control). Under the same experimental 
conditions the expression of ABCG-5 (Figure 2B) and 
ABCG-8 (Figure 2C) were significantly increased by 3.19-
fold (P<0.001) and 2.18-fold (P=0.004), respectively, while 
ABCA-1 transcript levels (Figure 2 D) were significantly 
reduced (45%; P<0.001). Analysis of HMGCR transcript 
levels (Figure 2E) revealed a 63% (P=0.039) induction in 
response to 1×108 cfu/ml L. plantarum CUL66 when 
compared to the control. No significant changes in 

expression were observed for any of the genes tested in 
response to 1×107 cfu/ml L. plantarum CUL66 suggesting 
that a threshold number of viable organisms is required. 
There were indications of a dose-response in expression for 
most of the genes at the two doses tested. The viability of 
both Caco-2 cells and L. plantarum CUL66 were retained 
throughout the duration of the experiment (Supplementary 
Figures S1B and S1C, respectively). The average pH of the 
6 h co-culture supernatants was 6.3.

Cholesterol uptake by Caco-2 cells inhibition by 
Lactobacillus plantarum CUL66

Reduced transcript levels of NPC1L1 (Figure 2A) suggest 
that L. plantarum CUL66 may have the ability to inhibit the 
uptake of cholesterol by intestinal epithelial cells. Polarised 
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Figure 2. Gene transcript levels of (A) Niemann-Pick C1-like 1 (NPC1L1), (B) ATP-binding cassette sub-family G member (ABCG)-
5, (C) ABCG-8, (D) ATP-binding cassette transporter-1 (ABCA-1) and (E) 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) in 
polarised Caco-2 cells treated with 70 µg/ml cholesterol (Control) or cholesterol (70 µg/ml) and Lactobacillus plantarum CUL66 
(1×107 or 1×108 cfu/ml) for 6 h. Data are presented as the mean ± standard deviation from at least four independent experiments. 
Statistical analysis was performed using a one-way ANOVA with Tukey’s post-hoc analysis (on log-transformed data for ABCG-5, 
ABCG-8 and HMGCR), where * P<0.05, ** P<0.01 and *** P<0.001.
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Caco-2 cells were incubated with L. plantarum CUL66 for 5 h 
before radiolabelled cholesterol was added for 1 h. As shown 
in Figure 3, incubation with L. plantarum CUL66 significantly 
reduced the uptake of radiolabelled cholesterol by Caco-2 
cells by 16.52% (P<0.001) when compared to the untreated 
control. The magnitude of reduction of uptake (16%) is in 
line with the reduced gene expression of NPC1L1 (19%).

Inhibition of cholesterol efflux into Caco-2 basolateral 
compartments by Lactobacillus plantarum CUL66

Caco-2 cells were grown on semi-permeable transwell 
inserts that allowed assessment of intracellular cholesterol 
efflux into the apical or basolateral compartments. The 
inoculation of polarised Caco-2 cells with L. plantarum 
CUL66 (1×108 cfu/ml) had no significant effect on the apical 
efflux of cholesterol (Figure 4A), while a significant 51.97% 
(P<0.001) reduction in the proportion of cholesterol moved 
to the basolateral compartment was observed in response 
to L. plantarum CUL66 when compared to untreated cells 
(Figure 4B). This is in line with the observed reduction in 
gene expression of ABCA-1 (45%).

4. Discussion

These studies have focused on the impact of L. plantarum 
CUL66 (NCIMB 30280) on cholesterol uptake/metabolism 
by Caco-2 epithelial cells. L. plantarum CUL66 was shown 
to remove nearly 30% of the cholesterol component 
from culture medium over a 24 h incubation period 
and was found to possess significant BSH activity. After 
5 h incubation with L. plantarum CUL66, uptake of 
radiolabelled cholesterol by Caco-2 cells was significantly 

lower than in cells exposed to radiolabelled cholesterol 
without prior exposure to L. plantarum CUL66. L. 
plantarum CUL66 caused a significant decrease in NPC1L1 
mRNA expression by the epithelial cells which is likely to 
contribute to these observations. The expression of both 
ABCG-5 and ABCG-8 was increased in Caco-2 cells in the 
presence of L. plantarum CUL66 which would favour the 
apical efflux of cholesterol from the intestinal epithelium 
into the intestinal lumen, however, no differences in the 
amount of radiolabelled cholesterol were observed in 
the apical compartment of the transwell model after 6 
h exposure to L. plantarum CUL66. In contrast, a clear 
reduction in the amount of cholesterol efflux from Caco-
2 cells into the basolateral compartment was observed 
after 6 h exposure to L. plantarum CUL66 and occurred 
alongside reduced expression of cholesterol transporter 
ABCA-1. Significantly elevated transcript levels of HMGCR; 
the rate limiting enzyme during the de novo synthesis of 
cholesterol, were also observed in Caco-2 cells exposed to 
L. plantarum CUL66.
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Figure 3. Lactobacillus plantarum CUL66 inhibits the uptake of 
cholesterol by polarised Caco-2 cells. Polarised Caco-2 cells 
were untreated (Control) or incubated with L. plantarum CUL66 
(1×108 cfu/ml). Intracellular radioactivity was normalised to total 
protein content and presented as a percentage of the control 
that has been arbitrarily assigned as 100%. Data are presented 
as the mean ± standard deviation from three independent 
experiments. Statistical analysis was performed using Student’s 
t-test, where *** P<0.001.
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Figure 4. Influence of Lactobacillus plantarum CUL66 on 
the efflux of (A) intracellular radiolabelled cholesterol to 
taurodeoxycholic acid micelles in the apical compartment 
and (B) apolipoprotrein-Al in the basolateral compartment of 
polarised Caco-2 cells. Polarised Caco-2 cells were untreated 
(Control) or incubated with L. plantarum CUL66 (1×108 cfu/
ml). Data are presented as mean ± standard deviation from at 
least three independent experiments. Statistical analysis was 
performed using Student’s t-test, where *** P<0.001. 
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The cholesterol lowering activities of probiotic bacteria have 
been demonstrated and a diversity of bacterial strains have 
been identified (Fuentes et al., 2013; Guo et al., 2011; Sun 
and Buys, 2015). BSH activity has been observed in various 
strains of L. plantarum and cholesterol lowering activity 
has been identified in a diversity of probiotic organisms at 
levels comparable with L. plantarum CUL66 (Gorenjak et 
al., 2014; Pereira and Gibson, 2002a; Tanaka et al., 1999; 
Tomaro-Duchesneau et al., 2014). Variations in the levels of 
cholesterol uptake were observed with L. plantarum CUL66 
as was seen by Pereira and Gibson for a range of bacterial 
strains (Pereira and Gibson, 2002a). In our L. plantarum 
CUL66 study the pH was not controlled (final pH of 4.1) 
and it has been found that cholesterol can precipitate out of 
culture media with conjugated bile salts when the pH drops 
below 5.5 (Klaver and Van der Meer, 1993) which could 
have potentially made some contribution to the outcome. 
It is generally accepted that in vitro cholesterol assimilation 
can be used as an important predictor of in vivo cholesterol 
lowering ability although Madani et al. (2013) found little 
correlation to support this assumption. However, work by 
Mahenthiralingam et al. (2009) has clearly demonstrated 
the ability of lactic acid bacteria to survive transit through 
the human gut suggesting that L. plantarum CUL66 could 
be expected to be viable in the intestine, and non-viable 
bacteria have been shown to take up cholesterol (Liong 
and Shah, 2005; Wang et al., 2014; Zeng et al., 2010) which 
may suggest the involvement of other probiotic-mediated 
cholesterol lowering mechanisms.

To this end, we have shown that L. plantarum CUL66 can 
inhibit NPC1L1 gene expression and reduce cholesterol 
uptake by polarised Caco-2 cells. These observations are 
corroborated by in vitro and in vivo studies that report 
similar changes in NPC1L1 gene expression in response 
to L. plantarum strains PCS20, PCS26, NR74 or Lp27 
(Gorenjak et al., 2014; Huang et al., 2013; Yoon et al., 
2013) that manifest as reduced cholesterol uptake by 
NR74 treated Caco-2 cells (Yoon et al., 2013) and reduced 
plasma cholesterol levels in Lp24 fed hypercholesteremic 
rats (Huang et al., 2013). The ability of L. plantarum 
CUL66 to regulate cholesterol transport by Caco-2 cells 
may also extend to the regulation of cholesterol efflux 
in light of the increased levels of ABCG-5 and ABCG-8 
transcripts observed in our system. Similar observations 
have been made in response to L. plantarum strains PCS20, 
PSC26 or NR74 in numerous intestinal epithelial cell types 
(Gorenjak et al., 2014; Yoon et al., 2011) that, in the case 
of L. plantarum NR74, correlated with a clear increase in 
apical cholesterol excretion from non-polarised Caco-2 
cells (Yoon et al., 2011). While we did not observe similar 
changes in cholesterol efflux into the apical compartment 
of our transwell model we did observe clear reductions in 
ABCA-1 expression and cholesterol efflux from Caco-2 
cells to the basolateral compartment in response to L. 
plantarum CUL66 and are therefore the first to suggest 

that the ABCA-1/ApoA-I pathway can be regulated by 
such bacteria in enterocytes.

In addition, we also observed an increase in the expression 
of HMGCR in response to L. plantarum CUL66 that 
contrast the findings of another study showing reduced 
HMGCR expression in Caco-2 cells exposed to a mixed 
culture of Escherichia coli 6-1 and L. plantarum (ATCC 
202195) (Panigrahi et al., 2007). Interestingly, increased 
intestinal expression of HMGCR has also been observed 
in numerous in vivo experiments examining the molecular 
event associated with ezetimibe-mediated inhibition of 
cholesterol absorption (Catry et al., 2015; Engelking et al., 
2012; Repa et al., 2005; Telford et al., 2007; Valasek et al., 
2008) and is thought to form part of a sterol regulatory 
element-binding protein-dependent compensatory 
mechanism by the host to maintain cholesterol levels (Catry 
et al., 2015; Engelking et al., 2012; Telford et al., 2007).

In summary, this study reports the ability of L. plantarum 
CUL66 to beneficially regulate multiple in vitro models 
associated with intestinal cholesterol absorption and 
therefore implicates it as a holistic approach to reduce 
serum cholesterol levels via the intestine. To date, no other 
studies have reported the ability of L. plantarum CUL66 
to deconjugate bile salts and assimilate cholesterol in vitro, 
nor its ability to beneficially regulate cholesterol transport 
across polarised Caco-2 cells through the coordinated 
inhibition of intestinal cholesterol uptake and basolateral 
cholesterol efflux. This study provides adequate evidence 
of efficacy for the inclusion of L. plantarum CUL66 in 
future in vivo studies.

Supplementary material

Supplementary material can be found online at http://
dx.doi.org/10.3920/BM2015.0146.

Figure S1. Trans-epithelial electrical resistance of cultured 
Caco-2 cells and the cell viability under experimental 
conditions.

Conflict of interest

This study was supported by Cultech Ltd, Port Talbot, 
UK. DRM, DLC, IG and SFP are employees of Cultech 
Ltd. JWEM is a PhD student funded by a joint studentship 
from the School of Biosciences, Cardiff University and 
Cultech Ltd.

Acknowledgements

The authors would like to acknowledge Annalise S. Hooper, 
Kathryn A. Turner and Hedda L. Köhling of Cultech Limited 
for their technical assistance during the study.

ht
tp

://
w

w
w

.w
ag

en
in

ge
na

ca
de

m
ic

.c
om

/d
oi

/p
df

/1
0.

39
20

/B
M

20
15

.0
14

6 
- 

T
ue

sd
ay

, J
un

e 
07

, 2
01

6 
4:

24
:1

9 
A

M
 -

 I
P 

A
dd

re
ss

:1
31

.2
51

.2
54

.1
49

 

http://dx.doi.org/10.3920/BM2015.0146
http://dx.doi.org/10.3920/BM2015.0146


D.R. Michael et al.

450� Beneficial Microbes 7(3)

References

Alemany, L., Laparra, J.M., Barberá, R. and Alegría, A., 2013. 
Relative expression of cholesterol transport-related proteins and 
inflammation markers through the induction of 7-ketosterol-
mediated stress in Caco-2 cells. Food and Chemical Toxicology 
56: 247-253.

Altmann, S.W., Davis, H.R., Zhu, L.J., Yao, X., Hoos, L.M., Tetzloff, G., 
Iyer, S.P., Maguire, M., Golovko, A., Zeng, M., Wang, L., Murgolo, 
N. and Graziano, M.P., 2004. Niemann-Pick C1 Like 1 protein is 
critical for intestinal cholesterol absorption. Science 303: 1201-1204.

Banach, M., Rizzo, M., Toth, P.P., Farnier, M., Davidson, M.H., Al-
Rasadi, K., Aronow, W.S., Athyros, V., Djuric, D.M., Ezhov, M.V., 
Greenfield, R.S., Hovingh, G.K., Kostner, K., Serban, C., Lighezan, 
D., Fras, Z., Moriarty, P.M., Muntner, P., Goudev, A., Ceska, R., 
Nicholls, S.J., Broncel, M., Nikolic, D., Pella, D., Puri, R., Rysz, J., 
Wong, N.D., Bajnok, L., Jones, S.R., Ray, K.K. and Mikhailidis, 
D.P., 2015. Statin intolerance – an attempt at a unified definition. 
Position paper from an International Lipid Expert Panel. Archives 
of Medical Science 11: 1-23.

Berge, K.E., Tian, H., Graf, G.A., Yu, L., Grishin, N.V., Schultz, J., 
Kwiterovich, P., Shan, B., Barnes, R. and Hobbs, H.H., 2000. 
Accumulation of dietary cholesterol in sitosterolemia caused by 
mutations in adjacent ABC transporters. Science 290: 1771-1775.

Buckley, M.L. and Ramji, D.P., 2015. The influence of dysfunctional 
signaling and lipid homeostasis in mediating the inflammatory 
responses during atherosclerosis. Biochimica et Biophysica Acta 
1852: 1498-1510.

Cannon, C.P., Blazing, M.A., Giugliano, R.P., McCagg, A., White, J.A., 
Theroux, P., Darius, H., Lewis, B.S., Ophuis, T.O., Jukema, J.W., De 
Ferrari, G.M., Ruzyllo, W., De Lucca, P., Im, K., Bohula, E.A., Reist, 
C., Wiviott, S.D., Tershakovec, A.M., Musliner, T.A., Braunwald, 
E., Califf, R.M. and the Improve-It Investigators, 2015. Ezetimibe 
Added to statin therapy after acute coronary syndromes. New 
England Journal of Medicine 372: 2387-2397.

Catry, E., Pachikian, B.D., Salazar, N., Neyrinck, A.M., Cani, P.D. 
and Delzenne, N.M., 2015. Ezetimibe and simvastatin modulate 
gut microbiota and expression of genes related to cholesterol 
metabolism. Life Sciences 132: 77-84.

Christie, C., 2015. Proposed Dietary Guidelines 2015 and implications 
for cardiovascular disease and diabetes. Journal of Cardiovascular 
Nursing 30: 375-378.

Davis, H.R., Hoos, L.M., Tetzloff, G., Maguire, M., Zhu, L.J., Graziano, 
M.P. and Altmann, S.W., 2007. Deficiency of Niemann-Pick C1 
Like 1 prevents atherosclerosis in ApoE-/- mice. Arteriosclerosis, 
Thrombosis and Vascular Biology 27: 841-849.

Drobnik, W., Lindenthal, B., Lieser, B., Ritter, M., Christiansen Weber, 
T., Liebisch, G., Giesa, U., Igel, M., Borsukova, H., Büchler, C., 
Fung-Leung, W.P., Von Bergmann, K. and Schmitz, G., 2001. ATP-
binding cassette transporter A1 (ABCA1) affects total body sterol 
metabolism. Gastroenterology 120: 1203-1211.

Engelking, L.J., McFarlane, M.R., Li, C.K. and Liang, G., 2012. Blockade 
of cholesterol absorption by ezetimibe reveals a complex homeostatic 
network in enterocytes. Journal of Lipid Research 53: 1359-1368.

Food and Agriculture Organization of the United nations/World 
Health Organization (FAO/WHO), 2006. Probiotics in food. Health 
and nutritional properties and guidelines for evaluation. FAO Food 
and Nutritional paper no. 85. FAO, Rome, Italy. Available at: http://
tinyurl.com/8bccc3r.

Fuentes, M.C., Lajo, T., Carrión, J.M. and Cuñé, J., 2013. Cholesterol-
lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 
7529 in hypercholesterolaemic adults. British Journal of Nutrition 
109: 1866-1872.

Gorenjak, M., Gradišnik, L., Trapečar, M., Pistello, M., Kozmus, 
C.P., Škorjanc, D., Skok, P., Langerholc, T. and Cencič, A., 2014. 
Improvement of lipid profile by probiotic/protective cultures: 
study in a non-c arcinogenic small intestinal cell model. New 
Microbiologica 37: 51-64.

Guo, Z., Liu, X.M., Zhang, Q.X., Shen, Z., Tian, F.W., Zhang, H., Sun, 
Z.H., Zhang, H.P. and Chen, W., 2011. Influence of consumption of 
probiotics on the plasma lipid profile: a meta-analysis of randomised 
controlled trials. Nutrition, Metabolism, and Cardiovascular 
Diseases 21: 844-850.

Huang, Y. and Zheng, Y., 2010. The probiotic Lactobacillus acidophilus 
reduces cholesterol absorption through the down-regulation of 
Niemann-Pick C1-like 1 in Caco-2 cells. British Journal of Nutrition 
103: 473-478.

Huang, Y., Wang, J., Cheng, Y. and Zheng, Y., 2010. The 
hypocholesterolaemic effects of Lactobacillus acidophilus American 
type culture collection 4356 in rats are mediated by the down-
regulation of Niemann-Pick C1-like 1. British Journal of Nutrition 
104: 807-812.

Huang, Y., Wu, F., Wang, X., Sui, Y., Yang, L. and Wang, J., 2013. 
Characterization of Lactobacillus plantarum Lp27 isolated 
from Tibetan kefir grains: a potential probiotic bacterium with 
cholesterol-lowering effects. Journal of Dairy Science 96: 2816-2825.

Ikeda, I., Matsuoka, R., Hamada, T., Mitsui, K., Imabayashi, S., Uchino, 
A., Sato, M., Kuwano, E., Itamura, T., Yamada, K., Tanaka, K. and 
Imaizumi, K., 2002. Cholesterol esterase accelerates intestinal 
cholesterol absorption. Biochimica et Biophysica Acta 1571: 34-44.

Kim, B., Park, Y., Wegner, C.J., Bolling, B.W. and Lee, J., 2013. 
Polyphenol-rich black chokeberry (Aronia melanocarpa) extract 
regulates the expression of genes critical for intestinal cholesterol flux 
in Caco-2 cells. Journal of Nutritional Biochemistry 24: 1564-1570.

Klaver, F.A. and van der Meer, R., 1993. The assumed assimilation of 
cholesterol by lactobacilli and Bifidobacterium bifidum is due to 
their bile salt-deconjugating activity. Applied and Environmental 
Microbiology 59: 1120-1124.

Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., 
Chakraborty, C., Singh, B., Marotta, F., Jain, S. and Yadav, H., 2012. 
Cholesterol-lowering probiotics as potential biotherapeutics for 
metabolic diseases. Experimental Diabetes Research 2012: 902917.

Liong, M.T. and Shah, N.P., 2005. Acid and bile tolerance and 
cholesterol removal ability of lactobacilli strains. Journal of Dairy 
Science 88: 55-66.

Madani, G., Mirlohi, M., Yahay, M. and Hassanzadeh, A., 2013. How 
much in vitro cholesterol reducing activity of lactobacilli predicts 
their in vivo cholesterol function? International Journal of Preventive 
Medicine 4: 404-413.

ht
tp

://
w

w
w

.w
ag

en
in

ge
na

ca
de

m
ic

.c
om

/d
oi

/p
df

/1
0.

39
20

/B
M

20
15

.0
14

6 
- 

T
ue

sd
ay

, J
un

e 
07

, 2
01

6 
4:

24
:1

9 
A

M
 -

 I
P 

A
dd

re
ss

:1
31

.2
51

.2
54

.1
49

 

http://tinyurl.com/8bccc3r
http://tinyurl.com/8bccc3r


� L. plantarum CUL66 can impact cholesterol homeostasis in vitro

Beneficial Microbes 7(3)� 451

Mahenthiralingam, E., Marchbank, A., Drevinek, P., Garaiova, I. and 
Plummer, S., 2009. Use of colony-based bacterial strain typing for 
tracking the fate of Lactobacillus strains during human consumption. 
BMC Microbiology 9: 251.

Mann, G.V., 1974. Studies of a surfactant and cholesteremia in the 
Maasai. American Journal of Clinical Nutrition 27: 464-469.

McLaren, J.E., Michael, D.R., Ashlin, T.G. and Ramji, D.P., 2011. 
Cytokines, macrophage lipid metabolism and foam cells: 
implications for cardiovascular disease therapy. Progress in Lipid 
Research 50: 331-347.

Michael, D.R., Ashlin, T.G., Buckley, M.L. and Ramji, D.P., 
2012. Macrophages, lipid metabolism and gene expression in 
atherogenesis: a therapeutic target of the future? Clinical Lipidology 
7: 37-48.

Natoli, M., Leoni, B.D., D’Agnano, I., Zucco, F. and Felsani, A., 2012. 
Good Caco-2 cell culture practices. Toxicology In Vitro 26: 1243-1246.

Ohama, T., Hirano, K., Zhang, Z., Aoki, R., Tsujii, K., Nakagawa-
Toyama, Y., Tsukamoto, K., Ikegami, C., Matsuyama, A., Ishigami, 
M., Sakai, N., Hiraoka, H., Ueda, K., Yamashita, S. and Matsuzawa, 
Y., 2002. Dominant expression of ATP-binding cassette transporter-1 
on basolateral surface of Caco-2 cells stimulated by LXR/RXR 
ligands. Biochemical and Biophysical Research Communications 
296: 625-630.

Panigrahi, P., Braileanu, G.T., Chen, H. and Stine, O.C., 2007. Probiotic 
bacteria change Escherichia coli-induced gene expression in cultured 
colonocytes: Implications in intestinal pathophysiology. World 
Journal of Gastroenterology 13: 6370-6378.

Pereira, D.I. and Gibson, G.R., 2002a. Cholesterol assimilation by 
lactic acid bacteria and bifidobacteria isolated from the human gut. 
Applied and Environmental Microbiology 68: 4689-4693.

Pereira, D.I. and Gibson, G.R., 2002b. Effects of consumption of 
probiotics and prebiotics on serum lipid levels in humans. Critical 
Reviews in Biochemistry and Molecular Biology 37: 259-281.

Repa, J.J., Turley, S.D., Quan, G. and Dietschy, J.M., 2005. Delineation of 
molecular changes in intrahepatic cholesterol metabolism resulting 
from diminished cholesterol absorption. Journal of Lipid Research 
46: 779-789.

Rerksuppaphol, S. and Rerksuppaphol, L., 2015. A randomized double-
blind controlled trial of Lactobacillus acidophilus plus Bifidobacterium 
bifidum versus placebo in patients with hypercholesterolemia. Journal 
of Clinical and Diagnostic Research 9: KC01-04.

Rudel, L.L. and Morris, M.D., 1973. Determination of cholesterol 
using o-phthalaldehyde. Journal of Lipid Research 14: 364-366.

Sudhop, T., Lütjohann, D., Kodal, A., Igel, M., Tribble, D.L., Shah, S., 
Perevozskaya, I. and von Bergmann, K., 2002. Inhibition of intestinal 
cholesterol absorption by ezetimibe in humans. Circulation 
106: 1943-1948.

Sun, J. and Buys, N., 2015. Effects of probiotics consumption on 
lowering lipids and CVD risk factors: a systematic review and 
meta-analysis of randomized controlled trials. Annals of Medicine 
47: 430-440.

Tachibana, S., Hirano, M., Hirata, T., Matsuo, M., Ikeda, I., Ueda, 
K. and Sato, R., 2007. Cholesterol and plant sterol efflux from 
cultured intestinal epithelial cells is mediated by ATP-binding 
cassette transporters. Bioscience Biotechnology and Biochemistry 
71: 1886-1895.

Tanaka, H., Doesburg, K., Iwasaki, T. and Mierau, I., 1999. Screening 
of lactic acid bacteria for bile salt hydrolase activity. Journal of Dairy 
Science 82: 2530-2535.

Taylor, F., Huffman, M.D., Macedo, A.F., Moore, T.H., Burke, M., 
Davey Smith, G., Ward, K. and Ebrahim, S., 2013. Statins for the 
primary prevention of cardiovascular disease. Cochrane Database 
of Systematic Reviews 1: CD004816.

Telford, D.E., Sutherland, B.G., Edwards, J.Y., Andrews, J.D., Barrett, 
P.H. and Huff, M.W., 2007. The molecular mechanisms underlying 
the reduction of LDL apoB-100 by ezetimibe plus simvastatin. 
Journal of Lipid Research 48: 699-708.

Tomaro-Duchesneau, C., Jones, M.L., Shah, D., Jain, P., Saha, S. and 
Prakash, S., 2014. Cholesterol assimilation by Lactobacillus probiotic 
bacteria: an in vitro investigation. Biomed Research International 
2014: 380316.

Townsend, N., Wickramasinghe, K., Bhatnagar, P., Smolina, K., Nichols, 
M., Luengo-Fernandez, R. and Rayner, M., 2012. Coronary heart 
disease statistics 2012 edition. British Heart Foundation, London, UK.

Valasek, M.A., Repa, J.J., Quan, G., Dietschy, J.M. and Turley, S.D., 2008. 
Inhibiting intestinal NPC1L1 activity prevents diet-induced increase 
in biliary cholesterol in Golden Syrian hamsters. American Journal of 
Physiology – Gastrointestinal and Liver Physiology 295: G813-G822.

Vrins, C., Vink, E., Vandenberghe, K.E., Frijters, R., Seppen, J. and 
Groen, A.K., 2007. The sterol transporting heterodimer ABCG5/
ABCG8 requires bile salts to mediate cholesterol efflux. FEBS 
Letters 581: 4616-4620.

Wang, S.C., Chang, C.K., Chan, S.C., Shieh, J.S., Chiu, C.K. and Duh, 
P.D., 2014. Effects of lactic acid bacteria isolated from fermented 
mustard on lowering cholesterol. Asian Pacific Journal of Tropical 
Biomedicine 4: 523-528.

World Health Organization (WHO), 2015. Cardiovascular diseases 
(CVDs). Fact sheet 317. WHO, Geneva, Switzerland. Available at: 
http://tinyurl.com/br89ujf.

Yoon, H.S., Ju, J.H., Kim, H., Lee, J., Park, H.J., Ji, Y., Shin, H.K., Do, 
M.S., Lee, J.M. and Holzapfel, W., 2011. Lactobacillus rhamnousus 
BFE 5264 and Lactobacillus plantarum NR74 promote cholesterol 
excretion through the up-regulation of ABCG5/8 in caco-2 cells. 
Probiotics and Antimicrobial Proteins 3: 194-203.

Yoon, H.S., Ju, J.H., Kim, H.N., Park, H.J., Ji, Y., Lee, J.E., Shin, H.K., Do, 
M.S. and Holzapfel, W., 2013. Reduction in cholesterol absorption 
in Caco-2 cells through the down-regulation of Niemann-Pick C1-
like 1 by the putative probiotic strains Lactobacillus rhamnosus 
BFE5264 and Lactobacillus plantarum NR74 from fermented foods. 
International Journal of Food Sciences and Nutrition 64: 44-52.

Yu, L., Hammer, R.E., Li-Hawkins, J., Von Bergmann, K., Lutjohann, 
D., Cohen, J.C. and Hobbs, H.H., 2002. Disruption of Abcg5 and 
Abcg8 in mice reveals their crucial role in biliary cholesterol 
secretion. Proceedings of the National Academy of Sciences of 
the USA 99: 16237-16242.

Zeng, X.Q., Pan, D.D. and Guo, Y.X., 2010. The probiotic 
properties of Lactobacillus buchneri P2. Journal of Applied 
Microbiology 108: 2059-2066.

ht
tp

://
w

w
w

.w
ag

en
in

ge
na

ca
de

m
ic

.c
om

/d
oi

/p
df

/1
0.

39
20

/B
M

20
15

.0
14

6 
- 

T
ue

sd
ay

, J
un

e 
07

, 2
01

6 
4:

24
:1

9 
A

M
 -

 I
P 

A
dd

re
ss

:1
31

.2
51

.2
54

.1
49

 

http://tinyurl.com/br89ujf


ht
tp

://
w

w
w

.w
ag

en
in

ge
na

ca
de

m
ic

.c
om

/d
oi

/p
df

/1
0.

39
20

/B
M

20
15

.0
14

6 
- 

T
ue

sd
ay

, J
un

e 
07

, 2
01

6 
4:

24
:1

9 
A

M
 -

 I
P 

A
dd

re
ss

:1
31

.2
51

.2
54

.1
49

 


