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EXPECTED VALUES OF EIGENFUNCTION PERIODS

SURESH ESWARATHASAN

Abstract. Let (M, g) be a compact Riemannian surface. Consider a family of L2 normal-
ized Laplace-Beltrami eigenfunctions, written in the semiclassical form −h2j∆gϕhj

= ϕhj
,

whose eigenvalues satisfy hh−1j ∈ (1, 1 + hD] for D > 0 a large enough constant. Let Ph
be a uniform probability measure on the L2 unit-sphere Sh of this cluster of eigenfunctions
and take u ∈ Sh. Given a closed curve γ ⊂ M , there exists C1(γ,M), C2(γ,M) > 0 and
h0 > 0 such that for all h ∈ (0, h0],

C1h
1/2 ≤ Eh

[∣∣ ∫
γ

u dσ
∣∣] ≤ C2h

1/2.

This result contrasts the previous deterministic O(1) upperbounds obtained by Chen-Sogge,
Reznikov, and Zelditch. Furthermore, we treat the higher dimensional cases and compute
large deviation estimates. Under a measure zero assumption on the periodic geodesics in
S∗M , we can consider windows of small width D = 1 and establish a O(h1/2) estimate.
Lastly, we treat probabilistic Lq restriction bounds along curves.

1. Introduction and Main Results

1.1. Introduction. Let (M, g) be a smooth compact Riemmanian manifold without bound-
ary and ϕh be an L2 normalized eigenfunction of the Laplace-Beltrami operator, written in
the semiclassical form −h2∆gϕh = ϕh. The quantities known as “periods” Iγ,h, where

Iγ,h =
∣∣ ∫

γ

ϕh dσ
∣∣ (1.1.1)

for γ a smooth closed curve on M with arclength measure dσ, have garnered much interest as
of late due to its connection with understanding nodal domains of eigenfunctions [JZ]. Such
quantities are a complement to the study of restricted Lp norms [BGT, Hu] and quantum
ergodic restriction [TZ, DZ], and give us information on the fluctuations of eigenfunctions
along a curve.

For perspective, let us recall the global Lp estimates of Sogge [So] in dimension 2: There
exists C > 0 such that ‖ϕh‖Lp(M) ≤ Ch−δ(p) where δ(p) = 1

2
− 2

p
for p ≥ 6 and δ(p) = 1

2
(1

2
− 1

p
)

for p ≤ 6. The results for Lp restriction along curves, due in full generality to Burq, Gérard,
and Tzvetkov [BGT], state: For any finite-length smooth curve γ, there exists C > 0 such
that ‖ϕh‖Lp(γ) ≤ Ch−η(p) where η(p) = 1

4
for 2 ≤ p ≤ 4 and η(p) = 1

2
− 1

p
for p ≥ 4.

The question of asymptotics of (1.1.1), which do not seem to follow trivially from L2

restriction bounds even though an eigenfunction period is the zeroth coefficient of the eigen-
function’s Fourier series expansion along the curve, was initially posed on compact hyperbolic
surfaces by Good and Hejhal [Go, Hej]. They showed, by using the Kuznecov trace formula,
that

Iγ,h ≤ Cγ (1.1.2)
1
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for some Cγ > 0 and all h ∈ (0, 1]. This demonstrates a stark constrast to the Lp results of
[So] and [BGT]. Subsequent work by Chen and Sogge [CS] generalized this bound to unit-
length geodesics γ on compact surfaces using the Hörmander parametrix, while Reznikov
[Rez] proved the bound in the case of arithmetic surfaces using representation theory. How-
ever, before these results were proved, Zelditch [Zel] generalized the Kuznecov trace formula
to compact manifolds and obtained (1.1.2) for any closed hypersurface using the full power
of the global symbol calculus for homogeneous Lagrangian distributions. It is this trace
formula that Zelditch established and the consequential asymptotic∑

h−1
j <h−1

∣∣∣∣ ∫
γ

ϕhj dσ

∣∣∣∣2 = Cγh
−1 +O(1), (1.1.3)

along with an idea used by Burq and Lebeau [BL] (see also [SZ, V]) that play key roles in
our main probabilistic result. As the Weyl law tells us the number of terms in the sum of
(1.1.3) is on the order of h−2, it follows that “most” of the terms should be on the order of
h.

Using a simple application of Chebyshev’s inequality and the asymptotic (1.1.3), Jung and
Zelditch were able to obtain the following upper bound:

Theorem. [JZ] For any compact surface M and closed curve γ ⊂ M , and any g(t) such
that limt→∞ g(t) = ∞, there exists a subsequence of eigenfunctions ϕhj of density one such
that ∣∣∣∣ ∫

γ

ϕhj dσ

∣∣∣∣ = O
(
(g(h−1

j )hj)
1/2
)
. (1.1.4)

We would like to mention that without using the Kuznecov trace formula, we can replace
the estimate (1.1.4) with the little-o estimate o(1) just by assuming a generic condition on γ
and using the “quantum ergodic restriction” result of Toth and Zelditch [TZ, DZ]. Chen and
Sogge [CS] were also able to prove that the constant in (1.1.2) can be replaced with o(1) in
the strictly negative curvature setting via a refined analysis with the Hadamard parametrix.
Both of these estimates are reminiscent of consequences of the “Random wave conjecture”
of Berry [Berr]. Please see our remarks section and the discussion below.

1.2. Main Results. Let Sh denote the L2 unit sphere of the space Eh = {u ∈ L2(M) =∑
hh−1
j ∈[1,1+hDM ) zjϕj(x), zj ∈ C} endowed with a uniform probability measure Ph, defined

in Section 2, for some large enough constant D > 0 that is independent of h.
Also, let “f(h) ' g(h)” be the notation that there exists constants C1, C2 > 0 independent

of h and an h0 > 0 such that for h ∈ (0, h0], we have C1g(h) ≤ f(h) ≤ C2g(h).
In this note, we prove the following theorem:

Theorem 1.2.1. Let (M, g) be a compact Riemannian manifold of dimension n and S be a
closed submanifold of dimension d with the induced measure dσ. Then for a positive integer
p and u ∈ Sh, there exists h0 > 0 such that

Eh

[∣∣ ∫
S

u dσ
∣∣p] ' h

dp
2

for h ∈ (0, h0], where Eh is taken with respect to Ph.
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Furthermore, for M1,h being the median value of the random variable |
∫
S
u|,

Ph

[∣∣| ∫
S

u dσ| −M1,h

∣∣ > r

]
≤ C exp

(
− h−dr2

)
,

where C > 0 is independent of h.

That is, we are able to prove for random linear combinations of eigenfunctions u in the
spectral window [1, 1 +hD), (1.1.4) is improved to a h1/2 upperbound and lowerbound when
p = d = 1 and n = 2, and that the random variable concentrates around the median with
h. Moreover, we can set D = ε for any fixed ε > 0 under a measure zero assumption for
the set of periodic geodesics in S∗M , but must settle for a h1/2 upperbound only; please see
Section 2.2 for the precise measure 0 assumption and Corollary 4.0.19. We also establish a
deviation estimate for renormalized random variables when p > 1. However, due to the fact
that our pth moments are just the pth powers of our random variables, the most meaningful
deviation estimate occurs when p = 1.

As a simple justification for this estimate, consider the normalized plane waves on T2 =
(R/Z)2 of the form ϕh = 1√

Nh

∑
ξ∈E aξ exp(iξ · x) for |ξ|2 = h−2. Here, Nh is equal to the

dimension of the eigenspace E = {ξ ∈ Z2 : |ξ|2 = h−2} and the coefficients aj are chosen such
that ‖ϕh‖2 = 1. These planes waves are a deterministic model for the random eigenfunction
packets we consider. Taking γ to be a circle of radius 1 centered at the origin and using the
standard estimates on the decay rates of Fourier transforms of measures demonstrates our
upper bound. Setting aξ = 1 and using Bessel function asymptotics demonstrates our lower
bound.

For the purpose of comparison, let us observe other deterministic cases. Take S2 and let
Zh be a zonal harmonic associated to the eigenvalue h−2 and γ be a small segment going
through the north pole that is also part of a great circle; then |

∫
γ
Zhdσ| = O(h1/2). In a

large contrast however, letting γ be the equator saturates the Chen-Sogge bound (1.1.2).
Now, on the 2-torus T2 with eigenfunctions of the form einx2 , taking γ to be a small segment
of a vertical geodesic gives |

∫
γ
einx2dσ| = O(n−1). And similarly to the spherical case, for a

given closed geodesic γ on T2, there exist a sequence of eigenfunctions ϕj such that ϕj|γ = 1
and therefore saturates the corresponding period bound (1.1.2) as well. It is clear that
among these two manifolds, which have diametrically opposite spectral theoretic settings,
there exists a large range of decay rates.

Our probabilistic results can be interpreted as saying a “typical” eigenfunction cluster
should oscillate enough in order to induce a decaying period on a closed curve, along which
the deterministic bounds seemed to be saturated, and that decay better/worse than h1/2 is
“atypical”.

It is worth mentioning that the methods in [BL] were inspired by the articles of Shiffman
and Zelditch [SZ] where upperbounds for the Lp norms of random sequences of holomorphic
sections of positive line bundles over compact Kähler manifolds are computed, and Van-
derkam [V] where upperbounds for L∞ norms of random spherical harmonics are computed.
More recently, Poiret, Robert, and Thomann [PRT] pushed these methods further and ap-
plied them towards the case of harmonic oscillators on Rn. In fact, [PRT] gives precise large
deviations estimates for random variables given by general linear forms, with a special case
of theirs given in the second part of our Theorem 1.2.1.
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We spend a majority of our note proving Theorem 1.2.1, but also give the following related
result on restricted Lq norms along finite-length smooth curves. The result essentially follows
from Theorem 4 in [BL] after making a simple observation.

Theorem 1.2.2. Given the same setup as Theorem 1.2.1 in the 2-dimensional case with
Lq,h being the median value of the random variable ‖u‖Lq(γ) for q ∈ [2,∞), we have that for
all h ∈ (0, 1]

Ph

(∣∣‖u‖Lq(γ) − Lq,h
∣∣ > r

)
≤ Ce−cqh

−δ(q)r2

where C, cq > 0 and δ(q) > 0. Moreover, given q ∈ [2,∞) there exists h0 such that for all
h ∈ (0, h0], we have that

Lq,h ' 1.

We would like to mention that [BL] also treats the case of probabilistic L∞ bounds on
M , from which the restricted L∞ bounds on γ follow immediately. Independently and using
different methods, Canzani and Hanin [CH] are able to retrieve these same L∞ upperbounds
over aperiodic manifolds M with more precise constants.

Acknowledgements. The author would like to thank John Toth for suggesting the problem
of eigenfunction periods and numerous helpful discussions. Furthermore, the author would
like to thank Nicolas Burq for the suggestion to look at the paper [BL], from which this article
was inspired, Stéphane Nonnenmacher for his valuable comments on previous versions of this
paper and useful perspective on quantum ergodic restriction, Zeev Rudnick for informing
us about a useful example, Boris Hanin for his comments on the exposition, and Laurent
Thomann for informing us of an important reference. Finally, the author would like to thank
the IHÉS, where the writing of this article took place.

2. Probability and measure concentration on spheres

The probabilistic setup, and following exposition in the first two sections, we use is pat-
terned after that in [BL].

2.1. Measure concentration on spheres. In this section, we define the probability mea-
sures used in our note.

As we are dealing with CN but using standard Euclidean measure, the only property of
CN that is important for our analysis is that it is a vector space. Therefore we can write our
formulas with respect to R2N . For simplicity of exposition in this section, let us establish
our general framework over RN first and then later modify things accordingly.

Take the standard Lebesgue measure dx = Π1≤j≤Nd xj on RN , and consider the uniform
probability measure on the unit sphere SN−1 ⊂ RN of dimension N − 1. This probabil-
ity measure PN on S(N) := SN−1 is exactly the pushforward of the Gaussian probability
measure

Π1≤j≤N
1√
2π
e−|xj |

2/2d xj

on RN via the projection map

π : x→ x

|x|
,

where |x| is the standard Euclidean norm. The main idea is to consider large N and use
these Gaussian probability measures on the corresponding spheres.
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For our purposes, we want to compute the corresponding distribution functions explicitly
and utilize the concentration of measure phenomenon (to be described more precisely below).
In order to do this, let us fix M ≥ 1 and group the variables on a large sphere S(N) into

M parts. For Nj ≥ 1, we consider N =
∑M

j=1Nj. Using this decomposition of N , we can

rewrite the coordinates on RN as (x1, ..., xM), with each component xj having the polar
decomposition xj = ρjωj ∈ RNj for ρj > 0 and ωj ∈ SNj−1.

Keeping in mind that CN can be identified with R2N and as we need a particular represen-
tation of the distribution function P2N , we consider the decomposition of 2N = 2+(2N −2)
where M = 2. An explicit calculation shows that the mass carried in the first coordinate is
given by

P2N(|x1| > t) = 1t∈[0,1)(1− t2)N−1, (2.1.1)

where (x1, x2) ∈ S(2N) with N1 = 2 and N2 = 2N − 2. Equation (2.1.1) will prove to be
useful in Section 4.

Furthermore, after returning to the setting of RN from R2N , we have the following deviation
formula.

Proposition 2.1.2. Suppose F is a Lipschitz function on the sphere SN−1 = S(N), endowed
with the uniform probability measure PN given above, with respect to the natural geodesic
distance. For the median value M(F ), we have that for all r > 0

PN(|F −M(F )| > r) ≤ 2e
−(N−2) r2

2‖F‖2
Lip . (2.1.3)

This large deviation estimate is more commonly referred to as the “concentration of measure
phenomenon”.

The factors in the exponential essentially say that the width of the distribution for F is on

the order of
‖F‖Lip√

N
for N large. Please see [Led] for further results on measure concentration.

2.2. Probabilistic decomposition of L2(M). Although the results we present are inspired
by the eigenfunction treatment in [BL], these results are mainly intended for probabilistic
applications towards the damped and non-linear wave equations. The probabilistic treat-
ment in [BL] uses the dyadic Littlewood-Paley decomposition in harmonic analysis through
eigenfunction clusters. For more on the relationship between Littlewood-Paley theory and
probabilistic methods, please see [BL].

General manifolds. Take two h dependent sequences ah and bh (with limits a and b, respec-
tively) with the relation that ah < bh for all h ∈ (0, 1] and

0 ≤ lim
h→0

ah ≤ lim
h
bh.

Furthermore, in the case that a = lim ah = b = lim bh exist, we impose a > 0 and that the
rate of decay cannot be too fast, i.e.

Dh ≤ bh − ah
for some large constant D > 0 that we will specified shortly.

As (M, g) is a compact manifold with the semiclassical relation −h2
j∆gϕj = ϕj and L2

orthonormal basis of eigenfunctions {ϕj}∞j=1, we can consider the set

Ih := {k ∈ N : hh−1
k ∈ (ah, bh]}
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and the spectral cluster

Eh = {u =
∑
k∈Ih

zkϕk(x), zk ∈ C},

which is independent of the choice of eigenbasis. Lastly, set Nh = dimCEh. The Weyl
formula, in its semiclassical form (please see [Zw]) where λ−1 = h, states that there exists a
constant C > 0 independent of h such that∣∣Nh − cn

V ol(M)

(2π)n
(
(h−1bh)

n − (h−1ah)
n
)∣∣ ≤ Ch−(n−1). (2.2.1)

A further calculation shows that Nh is asymptotic to either cn
V ol(M)
(2π)n

h−n(bnh − anh) when

0 ≤ a < b or cnna
n−1 V ol(M)

(2π)n
h−n

(
(bh − ah) + O(h + (bh − ah)

2 + (bh − ah)|a − ah|)
)

when

0 < a = b.
In either case, there exists DM > 0 and constants 0 < α < β such that for DMh ≤ bh− ah

and h ∈ (0, 1],

αh−n(bh − ah) ≤ Nh ≤ βh−n(bh − ah) (2.2.2)

which implies Nh ≥ 2. We choose the constant DM > 0 in this particular way in order to
guarantee that Nh properly goes to infinity with h, which is important for our asymptotic
results. Otherwise, we may be in a geometrical setting where this is not the case. For
instance, choosing DM = 1

2
in the case of the S2 with the round metric would give us Nh = 0

for infinitely many h.
Although we can consider windows of growing size, we will be primarily concerned with the

case bh = 1 + DMh and ah = 1, with the spaces Eh ⊂ L2(M) corresponding to the spectral
window (1, 1 + hDM ]. Moreover, it follows that the quantity Nh ' h−(n−1), suggesting to
us that it should be thought of as the remainder term in the semiclassical form of the Weyl
law.

Aperiodic manifolds. As the case of small-length spectral windows (1, 1 + hD], for D > 0
arbitrarily small but fixed, is also of interest, we must make a further dynamical assumption
on M in order to obtain (2.2.2). First, we will review some important results. For the
boundaryless situation, Duistermaat and Guillemin [DG] proved that if the set of periodic
geodesics forms a set of measure zero in S∗M , then for any ε > 0∣∣#{k : hλk ∈ (ah, bh]} − cn

V ol(M)

(2π)n
(
(h−1bh)

n − (h−1ah)
n
)∣∣ ≤ εh−(n−1),

for all h ≤ h0(ε). This is equivalent to saying that the remainder term R(λ) in the Weyl law is
o(λn−1). Compact manifolds with this assumption will be referred to as being “aperiodic”. In
the case of manifolds with boundary, Weyl conjectured that there exist two-term asymptotics
with R(λ) = o(λn−1); this was proved in the 1980s by Ivrii [Ivr] under the same measure
zero assumption for the billiard flow (this result was also proved independently by Melrose
[Mel] using some stronger assumptions involving convexity) .

Hence, choosing ε0 > 0 small enough implies there exists β > α > 0 such that

αh−(n−1) ≤ Nh ≤ βh−(n−1) (2.2.3)

for h ∈ [0, h0(ε0)) in the case of small-length D spectral windows.
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Probability measure. We are able to endow the unit sphere Sh ⊂ Eh, with respect to the
L2 norm, with the uniform probability measure PNh defined in the previous section. An
important set of random variables we will consider, for u ∈ Sh, are defined in the following
way:

evx(u) = u(x) =
∑

hλk∈(ah,bh]

zkϕk(x) = 〈z, bx,h
|bx,h|

〉|bx,h| (2.2.4)

for bx,h = (ϕk(x))Nhk=1. Clearly, the above representation only holds for x such that bx,h 6= 0,
and is the only situation of relevance to our results as we will be computing probabilites of
positive quantities. Notice that |bx,h|2 = Nh

V ol(M)
+O(h−(n−1)) by the pointwise Weyl law [Ho].

For the simplicity of notation, we will abbreviate PNh by using the symbol Ph in the later
sections.

3. Generalized Kuznecov trace formulas

The tool of trace formulas has a rich history and has deeply influenced the spectral theory
of automorphic forms, as well as spectral geometry. Even to today, microlocal analysts are
finding new ways to use trace formulas to derive spectral data on manifolds via dynamical
information. For an extensive survey on the far-reaching effects of semiclassical trace for-
mulae and their applications towards the spectral theory of the Laplace-Beltrami operator,
please see the survey [CdV] of Colin de Verdiere.

For our purposes, we will be concentrating only on the Kuznecov trace formula [Ku], whose
original formulation was∫

Y1

∫
Y2

U(t, x, y) dµ1(x) dµ2(y) =
∑

[σ]∈ΓY1\(Γ/ΓY2 )

It([σ]),

where U(t, x, y) is the full half-wave kernel e−it
√

∆ on a compact quotient M = Γ/D of a
non-compact symmetric space D, Yi are closed geodesics for i = 1, 2 on M , ΓYi is the isotropy
group in Γ of Yi, and It([σ]) is a distribution on R that is invariantly associated to [σ]. This
notation was generalized to compact Riemannian manifolds by Zelditch [Zel].

We now provide the spectral asymptotics that were computed in [Zel] from the Kuznevoc
trace formula. The following is a key estimate in the proof of Theorem 1.2.1.

Proposition 3.0.5. For a closed submanifold S of dimension d with surface measure dσ,
we have ∣∣∣∣ ∑

{j:h−1
j ≤h−1}

∣∣ ∫
S

ϕj(s) dσ(s)
∣∣2 − cnV ol(S(N∗S))h−(n−d)

∣∣∣∣ ≤ cSh
−(n−d)+1

for N∗S denoting the normal bundle over S and S(N∗S) denoting its unit sphere bundle.

Now, let us set

E(h, S) :=
∑

j:h−1
j ≤h−1

|
∫
S

ϕj(s)dσ(s)|2,

which is also independent of the choice of eigenbasis. We can consider an analogous quantity
to Nh, which we will label as N(S)h and set it as

N(S)h := E(h−1bh, S)− E(h−1ah, S).
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Moreover,∣∣N(S)h − cnV ol(S(N∗S))
(
(h−1bh)

n−d − (h−1ah)
n−d)∣∣ ≤ CSh

−((n−d)−1) (3.0.6)

for h ∈ (0, 1]. Furthermore, we set bS,h := (
∫
S
ϕj(s)dσ(s))j∈Ih ∈ CNh . Similarly to the

pointwise Weyl law after (2.2.4), N(S)h = |bS,h|2.

Following the calculations after (2.2.1), we see that there exists D̃S > 0 and constants
0 < α < β such that for D̃Sh ≤ bh − ah and h ∈ (0, 1],

αh−(n−d)(bh − ah) ≤ N(S)h ≤ βh−(n−d)(bh − ah). (3.0.7)

4. Proof of main theorem

The main idea in the article [BL] is that by having spectral asymptotics associated to a
summation formula (in our case, the eigenvalue counting function and the Kuznecov sum
formula), we can obtain explicit expected values and deviation estimates. Therefore, let us
consider the random variable defined by∫

S

u(s)dσ(s) =

∫
S

∑
k∈Ih

zkϕk(s)dσ(s) = 〈z, bS,h〉 = 〈z, bS,h
|bS,h|

〉|bS,h|, (4.0.8)

where dσ is the surface measure on S. Once again, we note that the above representation
only holds for |bS,h| 6= 0, which is exactly our case since we will compute Ph[|

∫
S
u| > λ] for

λ ≥ 0. As we computing with measures on spheres of large dimension, it is natural that
we choose to express our random variable in this polar-coordinate type decomposition. It is
important to note that as we are using real probability measures on complex vector spaces,
the quantities Nh and N(S)h will be multiplied by 2 once we begin to use the formulas in
Section 2.

We note again that it is useful to view N(S)h = |bS,h|2 as sort of remainder term for the
asymptotics of E(h−1bh, S). For instance, if we again consider the spectral window of large
size D, i.e. bh = 1 + hD and ah = 1 where D is the supremum of the constants in (2.2.2)
and (3.0.7), then it is clear that N(S)h ' h−((n−d)−1). Notice that for n = 2 and d = 1,
N(S)h ' 1.

Lemma 4.0.9. For an integral p ≥ 1 and u ∈ Sh, there exists Cp > 0 such that for h ∈ (0, 1],
we have

‖Fp(u)‖Lip ≤ Cp(N(S)h)
p/2

where Fp(u) = |
∫
S
u(s)dσ(s)|p = F1(u)p.

Proof. We have, after (4.0.8) with u =
∑

k∈Ih zkϕk and v =
∑

k∈Ih wkϕk, that∣∣∣∣∣∣ ∫
S

u
∣∣p − ∣∣ ∫

S

v
∣∣p∣∣∣∣ =

∣∣∣∣∣∣〈z, bS,h|bS,h|〉|bS,h|∣∣p − ∣∣〈w, bS,h|bS,h|〉|bS,h|∣∣p
∣∣∣∣.
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Using the fact that u, v ∈ Sh gives us

|bS,h|p ·
∣∣∣∣∣∣〈z, bS,h|bS,h|〉∣∣− ∣∣〈w, bS,h|bS,h| 〉∣∣

∣∣∣∣·( p−1∑
j=0

∣∣〈z, bS,h
|bS,h|

〉
∣∣p−1−j ·

∣∣〈w, bS,h
|bS,h|

〉
∣∣j),

≤ p|bS,h|p ·
∣∣〈z − w, bS,h

|bS,h|
〉
∣∣.

Also |bS,h|p = N(S)
p/2
h , and applying the Cauchy-Schwarz inequality once more shows∣∣∣∣∣∣ ∫

S

u
∣∣p − ∣∣ ∫

S

v
∣∣p∣∣∣∣ ≤ p ·N(S)

p/2
h ‖u− v‖L2(M).

Finally, as ‖u−v‖L2(M) = |z−w| ≤ C ·distS2Nh−1(z, w) = C ·distS(2Nh)(u, v), our proposition
is proved. �

Theorem 4.0.10. (Average value Ap,h)

Ap,h = Eh

[
|
∫
S

u|p
]

= p ·N(S)
p/2
h β(

p

2
, Nh),

which as h→ 0 gives us the asymptotic

Ap,h = Cp ·
(N(S)h

Nh

)p/2
(1 + o(1))

for some Cp > 0.

Proof. It is known that

Eh

[
|
∫
S

u|p
]

=

∫ ∞
0

pλp−1Ph

[∣∣ ∫
S

u
∣∣ > λ

]
dλ.

Furthermore, after using (4.0.8) we obtain

Ph

[∣∣ ∫
S

u
∣∣ > λ

]
= Ph

[∣∣〈z, bS,h
|bS,h|

〉
∣∣ > λ

|bS,h|

]
.

It is here that we take advantage of the polar-coordinate type decomposition with respect to
a sphere of large real dimension, namely S(2Nh), and use the formulas for spheres established
in Section 2.1. Therefore, after we recall that our probability measures are defined on R2Nh

and then use (2.1.1), we see that

Eh

[
|
∫
S

u|p
]

= p

∫ ∞
0

λp−1 · 1 λ
|bS,h|

∈[0,1] · (1−
λ2

|bS,h|2
)Nh−1 dλ

= p · |bS,h|p
∫ 1

0

ηp−1 · (1− η2)Nh−1 dη

= p · |bS,h|p · β(
p

2
, Nh).

Recalling that the beta function has the closed form β(p
2
, Nh) = Γ(p/2)Γ(Nh)

Γ((p/2)+Nh
, and as Nh →∞

we have the following well-known asymptotic for fixed p:

β(
p

2
, Nh) = Γ(p/2)N

−p/2
h (1 + oh(1)).
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Using N(S)h = |bS,h|2 completes our proof. �

Theorem 4.0.11. (Estimation of the median Mp,h and large deviation)
For all p ∈ Z+ and h ∈ [0, 1),

0 ≤Mp,h ≤ 2p/2(A2,h)
p/2 (4.0.12)

and the following deviation estimates hold in the range p < n
n−d and h ∈ (0, h0]:∣∣∣∣Ap,h −Mp,h

∣∣∣∣ ≤ π

2
·
(2p+1N(S)ph

Nh − 1

) 1
2 (4.0.13)

and

Ph

(
|Fp(u)−Mp,h| > r

)
≤ 2 exp

(
− Nh − 1

p2p−1(N(S)h)p
r2
)
. (4.0.14)

Proof. Equation (4.0.12) follows immediately from properties of the median and Chebyshev’s
inequality. Then, equation (4.0.13) is just another direct calculation after applying (2.1.3).
Observe that (4.0.14) comes from the Lipschitz estimate on Fp(u) and (2.1.3). Hence∣∣∣∣Ap,h −Mp,h

∣∣∣∣ =

∣∣∣∣‖Fp(u)‖L1(S(Nh) − ‖Mp,h‖L1(S(Nh))

∣∣∣∣
≤
∥∥Fp(u)−Mp,h

∥∥
L1(S(Nh))

=

∫ ∞
0

Ph

[∣∣Fp(u)−Mp,h

∣∣ > λ
]
dλ

≤ 2

∫ ∞
0

e
− Nh−1

2pN(S)
p
h

λ2

dλ. (4.0.15)

Hence, we obtain that (4.0.15) is equal to

π

2

(2p+1N(S)ph
Nh − 1

) 1
2 .

For the purpose of obtaining a nontrivial deviation estimate, we must have that limh→0
N(S)ph
Nh−1

= 0, which is only possible if p < n
n−d after using (2.2.2) and (3.0.7). �

Corollary 4.0.16. Let M̃p,h be the median value for the renormalized random variable

F̃p(u) := Fp(u)

pN(S)
p/2
h

. Then for all p ∈ Z+, there exists C > 0 such that for all h ∈ [0, 1),

Ph

(
|F̃p(u)− M̃p,h| > r

)
≤ C exp

(
−Nhr

2
)
. (4.0.17)

Remark 4.0.18. Notice the deviation estimate (4.0.14) is meaningful only in the case p = 1,
as the deviation is larger than the average for p > 1 because Fp(u) = F1(u)p. This is our
reasoning for renormalizing in Corollary 4.0.16.

Using the asymptotics in (2.2.2) and (3.0.7), along with Theorems 4.0.10 and 4.0.11,
immediately gives us

Corollary 4.0.19. For a spectral window of large enough constant size D,

Ap,h ' hdp/2.

Furthermore, the random variable F1(u) concentrates around the median M1,h.
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Remark 4.0.20. Under the aperiodicty assumption on M , we can consider windows of small
constant length D > 0, but the asymptotic in Corollary 4.0.19 becomes only a O(hpd/2)
bound as we are unable to refine the estimate (3.0.6) further at this time. However, the
deviation estimate continues to hold.

Remark 4.0.21. Based on the analysis made in the proofs of Theorems 4.0.10 and 4.0.11, we
see that obtaining actual asymptotics with error terms for the eigenfunction periods comes
down to deducing more precise asymptotics for the remainders of both the Weyl law and
Kuznecov sum formula. Given the various works that improve on the remainder estimate
under different assumptions (for instance [DG, Ivr] and the references therein), it is clear
that this problem is difficult.

5. Proof of restricted versions of the Burq-Lebeau asymptotics

We now present probabilistic restricted Lq estimates in the spectral window [1, 1 + Dh)
with D > 0 large in the general case and with D > 0 small in the aperiodic case, for which
the even periods

∫
γ
u2l dσ for l ∈ Z+ follow immediately. Before beginning, we want to make

note that the proofs for the global Lq bounds in Section 2.3 of [BL] go through with minor
changes, such as establishing the new Lipschitz estimate and the new deviation estimate.

For the sake of simplicity, we write our theorems in the case of finite-length smooth curves
in surfaces γ ⊂ M . Using the general theorems in Burq, Gérard, and Tzvetkov [BGT] that
give the corresponding Lipschitz estimates for lower dimensional submanifolds, the higher
dimensional formulations of our theorems follow similarly.

Proposition 5.0.22. [BGT] For the spectral window [1, 1 + Dh) with D > 0 large enough
in the general case, and [1, 1 + h) in the aperiodic case, there exists Cq > 0 such that for
q ∈ [2,∞) and u ∈ Sh, we have( ∫

γ

|u|q dσ
)1/q

= ‖u‖Lq(γ) ≤ Cqh
−δ(q) · ‖u‖L2(M),

where

δ(q) =

{
1
2
− 1

q
, for q ≥ 4

1
4
, for 2 ≤ q ≤ 4.

Moreover, the function Fq(u) = ‖u‖Lq(γ) has Lipschitz norm Cq · h−δ(q).

The proof of this proposition is similar to that of Lemma 4.0.9. Now, using (2.1.3) and
the above estimate results immediately in

Theorem 5.0.23. Consider u ∈ Sh. For any q ∈ [2,∞), there exists c1,q > 0 such that for
h ∈ (0, h0] with Lq,h being the median value of Fq(u) = ‖u‖Lq(γ),

Ph

(∣∣‖u‖q − Lq,h∣∣ > r
)
≤ 2e−c1,qG(h)r2 ,

where G(h) = h−2/q for q ≥ 4 and G(h) = h−1/2 for 2 ≤ q ≤ 4.

Theorem 5.0.24. For Bq,h = Eh[‖u‖qq]1/q and q ∈ [2,∞), there exists h0 > 0 such that for

h ∈ (0, h0] and C(γ, q,M) = Γ(q/2)1/q(V ol(γ))1/q

21/q
√

2eV ol(M)
> 0 we have

Bq,h ' C. (5.0.25)
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It follows that for a given q ∈ [2,∞), there exists c1(q, γ,M) > 0 such that for all h ∈ (0, 1],

Lq,h ≤ c1. (5.0.26)

And, there exists c2(q, γ,M) > 0 and h0 > 0 such that for all h ∈ (0, h0],

c2 ≤ Lq,h. (5.0.27)

Remark 5.0.28. The constants c1(q, γ,M) and c2(q, γ,M) can be computed in terms of
C(q, γ,M); please see the following proof.

Proof. We re-do the proof of Theorem 4 in [BL], with the necessary modifications, for the
facility of the reader. Notice that

Eh

[
|g|q
]

= q

∫ ∞
0

λq−1Ph(|g| > λ) dλ,

and we obtain, after applying Fubini and (2.1.1), that

Eh(‖u‖qq) =

∫
γ

∫
Sh

|u(s)|q dσ(s) dPh = q

∫
γ

∫ ∞
0

λq−1Ph(|u(s)| > λ) dλ dσ(s)

= q

∫
γ

∫ |bs,h|
0

λq−1(1− λ2

|bs,h|2
)Nh−1 dλ dσ(s)

= q
( ∫

γ

|bs,h|q dσ(s)
) ∫ 1

0

zq−1(1− z2)Nh−1 dz = (Bq,h)
q.

We note that∫ 1

0

zq−1(1− z2)Nh−1 dz = (1/2)β(q/2, Nh) =
1

2
· Γ(q/2) ·N−q/2h (1 + o(1))

for h ∈ (0, h0] when q is fixed using basic beta function asymptotics, while∫
γ

|bs,h|q dσ(s) ' V ol(γ)

V ol(M)q/2
N
q/2
h for h ∈ (0, h0]

as |bx,h|2 = Nh
V ol(M)

+O(h−(n−1)) for all x ∈M by the pointwise Weyl law on M (see [Ho] for the

case of length D windows and [DG, Ivr] for the case of small-length windows with o(h−(n−1))
remainder estimate) and proceeding similarly as to obtaining (2.2.1). Using Stirling’s formula
for the gamma function Γ(t) and the pointwise Weyl law once more, it follows that

Bq
q,h ≤ qCq

1

( 2Nh

2Nh + (q/2)

)Nh+(q/2)−(1/2)
Γ(q/2) (5.0.29)

for C1 > 0 and all h ∈ [0, 1). Hence Bq,h ≤ C2,q for any q ∈ [2,∞) and h ∈ [0, 1), where
C2,q > 0. Furthermore, we have that

Bq,h '
Γ(q/2)1/q

21/q
√

2eV ol(M)
(V ol(γ))1/q (5.0.30)

as h→ 0 and (5.0.25) follows.
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The inequality (5.0.26) now follows from Chebyshev’s inequality in the following way.
Clearly,

Ph[‖u‖q > t] ≤ 1

tq
Eh[‖u‖qq] = (Bq,h/t)

q.

Setting t = Lq,h and using properties of the median, we obtain Lq,h ≤ 21/qBq,h and (5.0.26)
follows. We will use (5.0.30) to prove our last inequality (5.0.27).

Observe that

|Bq,h − Lq,h|q = | ‖Fq‖Lq(S(2Nh)) − ‖Lq,h‖Lq(S(2Nh)) |q ≤ ‖Fq − Lq,h‖qLq(S(2Nh)).

In our case, as opposed to that in [BL], our Lipschitz estimate for Fq is Cq · h−δ(q). Hence,
after using Corollary 5.0.23, we obtain

‖Fq − Lq,h‖qLq(S(2Nh)) =q

∫ ∞
0

λq−1Ph(|Fq − Lq,h| > λ) dλ

≤ 2q

∫ ∞
0

λq−1 exp(−c1h
−δ(q)λ2) dλ =

2q

c
q/2
1

hqδ(q)/2Γ(q/2).

Taking qth roots shows the right-hand side is bounded above by C3,qh
δ(q)/2 for C3,q > 0,

which converges to 0 as h→ 0 for q fixed. This convergence along with the estimate (5.0.30)
concludes the proof of (5.0.27).

�

6. Remarks

Remark 6.0.31. We will now provide a simple argument that gives a o(1) estimate for (1.1.4)
without using the Kuznecov trace formula. Let us recall the quantum ergodic restriction
(i.e. “QER”) result of [TZ].

Theorem 6.0.32. Let (M, g) be a compact surface with ergodic geodesic flow, γ ⊂ M be a
closed curve which is microlocally asymmetric with respect to the geodesic flow, and {ϕj}j∈N
be eigenfunctions of the Laplace-Beltrami operator in semiclassical form. Then there exists
a density-one subset S of N such that for a ∈ S0,0(T ∗γ × [0, h0)),

lim
j→∞ j∈S

〈Ophj(a)ϕj, ϕj〉L2(γ) = ω(a)

where

ω(a) =
4

vol(S∗γ)

∫
B∗γ

a0(s, σ)(1− |σ|2)−1/2 dsdσ.

Here, S∗γ is the unit cotangent bundle over γ and B∗γ is the unit ball bundle over γ with
measure dsdσ, which is the projection of the Liouville measure dxdξ on the unit cotangent
bundle S∗M .

For the definition of microlocal asymmetry, and further details, please see [TZ]. The defini-
tions for the standard symbol classes S0,0 and quantizations Oph can be found in [Zw], as
well as [TZ].

Now, let us assume γ satisfies the microlocal asymmetry assumption with {ϕj}∞j=1 being a
quantum ergodic sequence of eigenfunctions on M , i.e. an entire sequence of eigenfunctions
for which quantum ergodicity holds. Take ε > 0. Notice that

∫
γ
ϕjdσ = 〈1, ϕj〉L2(γ). Set
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(s, τ) to be the coordinates on B∗γ. Since WFh(1) ⊂ γ × {0}, we have that for a smooth
cutoff χε where χε(τ) = 1 on (−ε, ε) and χε(τ) = 0 outside (−(3/2)ε, (3/2)ε),

〈1, ϕj〉L2(γ) = 〈Ophj(χε)1, ϕj〉L2(γ) +O(h∞), (6.0.33)

by semiclassical wavefront set calculus (see [Zw] for more details) for the corresponding hj-
pseudodifferential cutoffOphj(χε). Applying the QER result to the quantity 〈1,Ophj(χε)

∗ϕj〉L2(γ)

after using the Cauchy-Schwarz inequality shows that there exists h0(ε) such that (6.0.33)
is O(ε) for all hj ≤ h0(ε). This proves our estimate.

Heurisitically speaking, if we were to express ϕj as an “ergodic” one-dimensional Fourier
series on the curve, then the above calculation suggests that the mass of the “period” arises
from the constant mode of the series. It is interesting to ask how one can formalize this
notion and apply it to periods of odd powers of ergodic eigenfunctions. A similar idea is
used in [Rez].

As we can see, using quantum ergodicity assumptions along with asymmetry allows us to
retrieve the o(1) bound of Chen-Sogge [CS] (proved under negative curvature assumptions)
without the use of any trace formula. The “Random wave conjecture” of M. Berry [Berr]
states that the behavior of Gaussian random waves accurately models that of eigenfunctions
when the underlying classical dynamics is chaotic. If we assume classical ergodicity, then our
above estimate holds for a density one subsequence of eigenfunctions. Following calculations
with Gaussian random waves and comparing the resulting asymptotics to our o(1) estimate
shows some consistency with Berry’s conjecture.

Remark 6.0.34. As mentioned above, the analogous question for |
∫
S
u2l+1dσ| for l ∈ Z+ is

still of interest but is more subtle. It is not entirely clear that the same methods using
Weyl-type formulas will work. Furthermore, it is not known if we have analogues of (1.1.2)
in the case of all odd powers. We hope to address these questions in future work.
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