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ABSTRACT 

 

II 

ABSTRACT 

 

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disease 

characterised by the loss of upper and lower motor neurons, resulting in progressive 

paralysis, muscular atrophy and eventual death, on average, within 2-5 years post-

diagnosis. In ∼5% of patients with familial ALS (fALS), causative mutations occur within 

the gene encoding the RNA-binding protein, Fused in Sarcoma (FUS). Normally, FUS 

is predominantly localised to the nucleus and has several known roles in transcription, 

splicing and mRNA transport. Yet, in ALS patients with mutant forms of FUS, the 

protein becomes dramatically mislocalised to the cytoplasm and abnormal 

proteinaceous inclusions of FUS in the cytoplasm are observed post-mortem. Several 

questions remain: How do large pathological inclusions of FUS form?  Is pathology 

induced via a gain or loss of protein function? Can aggregation in the cytoplasm of this 

normally nuclear protein be sufficient to produce toxicity? This thesis provides detailed 

characterisation of a novel pathway through which FUS may aggregate following its 

mislocalisation to the cytoplasm. This pathway is distinct from recruitment into stress-

induced stress granules and can lead to the formation of large RNA-based FUS 

aggregates in a concentration-dependent manner. It was demonstrated that reduced 

protein-RNA interaction through transcriptional inhibition resulted in the dissolution and 

reassembly of these FUS aggregates into higher order RNA-free structures, 

reminiscent of inclusions seen in ALS-FUS patients. We also show in vivo that an initial 

insult of FUS aggregation in the cytoplasm is sufficient to elicit ALS-like pathology. In 

addition, how loss of FUS from the nucleus could affect the nuclear architecture was 

investigated, highlighting an important role for FUS in the maintenance of a protective 

subnuclear body, the paraspeckle, the disruption of which may contribute to the 

pathogenesis of FUSopathies. As such, this thesis identifies several novel mechanisms 

involved in the development and progression of FUSopathy, which may be useful for 

future therapeutic strategies targeting ALS caused by FUS mutation.  
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  INTRODUCTION 

 

2 

1.1 Amyotrophic lateral sclerosis 

The third most common neurodegenerative disease worldwide, amyotrophic lateral 

sclerosis (ALS), also known as Lou Gehrig’s disease, has a reported incidence of 

between 1.5–2.5 per 100,000/year (Logroscino et al., 2008) and is the named cause of 

death on approximately 1 in 1000 death certificates in the UK (Talbot, 2009). This form 

of motor neuron disease, characterised by a loss of both upper (UMNs) and lower 

motor neurons (LMNs) is severely debilitating, resulting in increasing muscular atrophy 

and progressive paralysis (Figure 1.1). Although a highly heterogeneous disease, a 

diagnosis of ALS is always terminal and patients typically succumb to the disease 

between two and five years post-symptom onset (Logroscino et al., 2008). Further, the 

single currently licensed pharmacotherapy for ALS, Riluzole, delays disease 

progression by only a few months (Bensimon et al., 1994; Miller et al., 2003). As well 

as the severe physical and emotional impact that a diagnosis of ALS has for a patient 

and their family, with a lifetime risk of developing ALS at 1:400 (Hardiman et al., 2011) 

and prevalence of ∼5.2 per 100,000 (Worms, 2001), the economic cost to society must 

be considered. In a study determining the cost of brain disorders in Europe, an 

individual with neuromuscular disease, of which ALS is a subset, was found to cost 

around €30,000 per year (Gustavsson et al., 2011). Taken together, this highlights the 

essential need for better understanding and, in turn, improved therapeutics for the 

disease. 

 

1.2 Clinical features and diagnosis of ALS 

A diagnosis of ALS is often difficult to provide and is largely given following the 

elimination of similarly presenting neuromuscular diseases. Without a definitive test for 

ALS, there is usually a severe delay to diagnosis, often taking between 9 and 13 

months following initial symptom presentation (Cellura et al., 2012). For diagnosis, 

clinical examinations are used to determine the degree to which upper and lower motor 

neurons are affected. A key sign of UMN involvement, highlighting loss of normal 

corticospinal transmission, is muscular spasticity, or stiffness. The presence of the 

‘Babinski sign’, an abnormal dorsiflexion of the big toe following blunt stimulation to the 

sole of the foot, can also be used to indicate UMN involvement, as functional 

corticospinal transmission is normally required to suppress this. Muscle weakness, 

atrophy and fasciculations are instead indicative of LMN involvement. Frequently, there 

is a co-occurrence of UMN and LMN signs in a single region, e.g. arms or legs, and 

asymmetry of these signs is probable (Kiernan et al., 2011). Patients may also undergo 

more objective measures such as electromyography to monitor neuromuscular activity.  
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Figure 1.1. Representative schematic highlighting UMN and LMN projections that are degenerated in ALS. 

Primary motor cortex (PMC) is topographically mapped in columns, with different bodily movements 
assigned varying degrees of cortical area. UMNs, large pyramidal cells originating in layer 5 PMC project 

to either specific brainstem motor nuclei (green) or descend through spinal cord efferent tracts until 
reaching the required vertebral level and passing into the anterior horn of spinal cord (blue). Here, they 

synapse directly, or indirectly via interneurons, onto LMNs that innervate target muscles (red and purple). 
Both UMNs and LMNs are degenerated in ALS. Ach, acetyl choline. Figure created using images from 

Kandel (2013) and BrainConnection.com (2014). 
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Based upon the number of UMN and LMN signs of involvement, patients are classed 

as having clinically possible, clinically probable or clinically definite ALS. The currently 

favoured Awaji-shima criteria for diagnosis of ALS (de Carvalho et al., 2008) (Figure 

1.2), has evolved from the original El Escorial criteria (Brooks, 1994) to give an equal 

weighting to objective electromyography measures and clinical examinations, providing 

increased sensitivity of diagnosis compared to previous criteria (Douglass et al., 2010). 

 

The initial presentation of ALS is not uniform, further complicating diagnoses. Classical 

limb onset ALS is the most typical, occurring in approximately two thirds of patients and 

bulbar and respiratory onset patterns occur to a lesser extent (Wijesekera and Leigh, 

2009; Traynor et al., 2000). In bulbar onset patients, degeneration of motor neuronal 

populations may initially present as dysphagia or dysarthria. Although ALS may 

outwardly begin within a given region, it is unforgivingly progressive and symptoms 

‘spread’ to include other motor neuron groups, with limb onset patients also usually 

experiencing bulbar involvement eventually. In late stages of the disease, patients 

reach a ‘totally locked in’ state, where paralysis is widespread and loss of respiratory 

control is the major cause of death (Roche et al., 2012). Interestingly, innervation of 

oculomotor regions and pelvic floor muscles is rarely affected (Mannen et al., 1977).  

 

An average age of onset of between 50 and 60 years is typically accepted for ALS 

(Cleveland and Rothstein, 2001). Although age itself may be identified as a risk factor 

within this range, because prevalence decreases after 80 years of age, ALS is more 

likely a disease affecting a susceptible subgroup rather than simply an aged population 

(Logroscino et al., 2010). On an individual basis, age of onset is highly variable, with 

some forms of ALS diagnosed in teenage years and earlier (Turner et al., 2012). 

Further, gender is also considered to be a risk factor, with an increased occurrence in 

men, although this remains unexplained (Logroscino et al., 2010).  

 

Aside from Riluzole, treatment is mainly palliative. Alongside pain relief, patients are, 

where required, given the option of gastrostomy to facilitate feeding and respiratory 

ventilation to support breathing, either non-invasively or via tracheostomy, although the 

quality of life must be addressed in these individuals (Blackhall, 2012).  
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Figure 1.2. Schematic representation of the Awaji-Shima criteria for the diagnosis of ALS. Abbreviations: 
UMN, upper motor neuron(s); LMN, lower motor neuron(s). Adapted from (Douglass et al., 2010) 

 

 

In addition to motor symptoms, cognitive and/or behavioural symptoms are observed in 

∼50% of ALS patients and about 15% of these cases qualify for a diagnosis of 

frontotemporal dementia (FTD) (Ringholz et al., 2005; Lillo and Hodges, 2009). FTD 

results from frontal and temporal lobe degeneration (FTLD), and often presents as 

semantic dementia, lack of behavioral inhibition and speech disturbances (Seltman and 

Matthews, 2012). Inversely, a large fraction of patients with FTD are given a diagnosis 

of definite ALS or display initial motor symptoms (Lomen-Hoerth et al., 2002). 

Considerable clinical overlap of FTLD and ALS, combined with overlapping pathology 

and genetics have recently led to the understanding that ALS and FTLD are likely the 

opposite ends of a continuum of disease (Figure 1.3) (Goldstein and Abrahams, 2013; 

Robberecht and Philips, 2013).  
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Figure 1.3. Summary of the clinical signs of ALS and FTLD. Clinical signs associated with ALS and FTLD 
(green) result from the degeneration of specific neuronal populations (blue). Main affected areas are 

shown in light orange. Image adapted from Muscular Dystrophy Association (2014). 

 

1.3 Genetics of ALS 

A small fraction (∼10%) of ALS patients have familial ALS (fALS) following a clear 

Mendelian pattern of inheritance and accompanied by a family history of the disease. 

However, the majority of patients (∼90%) are instead thought to have sporadic ALS 

(sALS) with no observable family history. FALS and sALS are, however, clinically 

indistinguishable. In addition, an increasing number of genetic abnormalities and 

increased heritability are linked to supposedly sALS, which together with an often 

sparse family history, blurs the boundary between these two classifications (Al-Chalabi 

et al., 2010; Talbot, 2013). Genetic counseling and limited genetic testing is available 

for those with clear family history, although with a wealth of genes now known to 

harbor ALS-causing mutations and a degree of fALS not yet genetically explained, 

genetic testing may fail to provide a definitive conclusion in many instances.  

 

1.3.1 Genes with ALS-causing mutations 

Understanding of the genetic background of ALS has greatly accelerated over the past 

20 years, with ∼70% familial ALS now genetically accounted for and the list of ALS-

associated genes rapidly growing (Table 1.1) (Renton et al., 2014).  
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Table 1.1. Major genes known to carry ALS-causing mutations 

Gene/ 

protein 

Location Inheritance Estimated % 

accounted 

Protein 

functions 

Reference(s) 

fALS sALS 

       
SOD1/ 

SOD1 

21q22 AD & AR 20 1-2 Superoxide 

metabolism 

Rosen et al. 

(1993) 

TARDBP/ 

TDP-43 

1p36 AD 4 1 RNA 

metabolism 

Sreedharan et al. 

(2008) 

FUS/ FUS 16p11 AD & AR 4 1 RNA 

metabolism 

Kwiatkowski et al. 

(2009); Vance et 

al. (2009) 

VCP/ VCP 9p13 AD 1 1 Proteostatic 

protein 

Johnson et al. 

(2010) 

OPTN/ 

optineurin 

10p13 AD & AR <1 <1 Proteostatic 

protein 

Maruyama et al. 

(2010) 

UBQLN2/ 

ubiquilin 2 

Xp11 XD <1 <1 Proteostatic 

protein 

Deng et al. (2011) 

SQSTM1/ 

p62 

5q35 AD 1 <1 Proteostatic 

protein 

Fecto et al. (2011) 

C9ORF72/ 

C9orf72 

9p21 AD 40 7 DENN 

protein 

Renton et al. 

(2011); DeJesus-

Hernandez et al. 

(2011) 

PFN1/ 

profilin 1 

17p13 AD <1 <1 Cytoskeleton 

dynamics 

Wu et al. (2012) 

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; XD, X-linked 

dominant; DENN, differentially expressed in normal and neoplasia. Adapted from 

(Renton et al., 2014). 

 

 

SOD1 

The first known genetic cause of ALS was provided by Rosen et al. (1993) with their 

identification of 11 causal mutations in the gene encoding Cu/Zn superoxide dismutase 

1 (SOD1) in 13 families showing dominantly inherited fALS with high penetrance. 

Since, over 150 dominant ALS-causing mutations, predominantly missense, have been 
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observed across all 5 exons of SOD1 (Chen et al., 2013) and a single recessive 

substitution mutation, D90A, has been identified (Andersen et al., 1995). SOD1 

mutation is thought to account for ∼20% of fALS and ∼1-2% of sALS (Pasinelli and 

Brown, 2006). Altered speeds of progression have been linked to different mutations; 

patients homozygous for D90A show a much slower progression than those with the 

frequently occurring A4V mutation (Rosen et al., 1994), and although highly 

heterogeneous, there is a tendency for ALS-SOD1 patients to present mainly with LMN 

signs (Ravits et al., 2013). Present in the cytosol and the inner mitochondrial space, 

SOD1 polypeptide forms a functional homodimer that acts as a cellular defence 

mechanism against toxic superoxide, a by-product of oxidative phosphorylation, 

converting it to oxygen and hydrogen peroxide. Although discussed in more detail later, 

mutations in this protein have led to the implication of oxidative stress, amongst other 

mechanisms, in the pathophysiology of ALS (Barber and Shaw, 2010). However, the 

subsequent discovery of other genes with ALS-causing mutations is unveiling novel 

pathological mechanisms alongside those provided in the first instance by SOD1.  

 

TARDBP 

In recent years, defects in RNA metabolism and processing are being increasingly 

linked to ALS through the identification of mutations in genes encoding RNA-binding 

proteins. In 2008, ALS-causing mutations were discovered in TARDBP, encoding TAR 

DNA-binding protein-43 (TDP-43), a 43 kDa, predominantly nuclear protein involved in 

many cellular processes including transcription, mRNA transport and RNA processing 

(Sreedharan et al., 2008). Mutations in TARDBP are thought to account for ∼4% fALS 

and ∼1% sALS (Lagier-Tourenne et al., 2010). These mutations (>30) are largely 

missense and most commonly occur in exon 6, encoding the C-terminus of the protein, 

a glycine-rich region involved in protein-protein interactions (Figure 1.4). Mutations in 

TARDBP have shown a dominant pattern of inheritance and lead to a predominantly 

upper limb onset with slow progression (Corcia et al., 2012). 

 

FUS 

The identification of ALS-causing mutations in another gene, FUS, encoding a second 

RNA binding protein, Fused in Sarcoma (FUS), further implicated altered RNA 

processing in ALS (Kwiatkowski et al., 2009; Vance et al., 2009). Although many of its 

normal cellular functions remain unknown, FUS protein has been shown to shuttle 

between the nucleus and the cytoplasm and engage in mRNA transport, RNA 

metabolism, transcription and splicing events (Lagier-Tourenne et al., 2010; Zinszner 
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et al., 1997b). Approximately 50 mutations have been identified in ALS patients, the 

majority of which have been missense mutations occurring predominantly in exon 15, 

encoding the C-terminus, comprised of a nuclear localisation signal (NLS) and RNA-

binding domains (Figure 1.4). Variants in the 3’UTR of FUS have also been detected in 

ALS patients and were shown to result in overexpression of the protein (Sabatelli et al., 

2013). Rare C-terminal truncation mutations have also been identified. The R495X 

truncation, resulting in the loss of 31 C-terminal amino acids, has been associated with 

a severe clinical phenotype (Waibel et al., 2010). Additionally, a genomic variant 

(10747 A>G) at a splice site for intron 13 has been discovered, resulting in the skipping 

of exon 14 and the introduction of a premature stop codon, producing a FUS protein 

comprising only the first 466 amino acids (p.G466VfsX14). This patient was 20 years 

old with prominent bulbar signs and died following respiratory failure 22 months post 

symptom onset (DeJesus-Hernandez et al., 2010). In another kindred, a dominantly 

inherited truncation of the NLS (p.G504WfsX12) was also shown to produce an 

aggressive form of ALS (Kent et al., 2014). However, it must be noted that not all 

mutations to FUS are pathogenic. Whilst a number of small insertions and deletions 

(indels) have been identified in FUS in ALS patients, they have also been noted at a 

similar frequency in controls (Rutherford et al., 2012). 

 

 

 

 

 

Figure 1.4. Protein domains of the RNA-binding proteins FUS and TDP-43. Proposed prion-like domains of 

FUS indicated in below in blue (Cushman et al., 2010). Numbers indicate amino acid sequence residue at 

boundaries. NES, nuclear export sequence; RRM, RNA-recognition motif; ZF, zinc finger; NLS, nuclear 
localisation signal.  
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Like TARDBP, mutations in the FUS gene account for ∼4% fALS and ∼1% sALS. The 

vast majority are dominantly inherited, although one rare recessive mutation, G517Q, 

has been reported (Kwiatkowski et al., 2009). Patients with FUS mutations have mainly 

LMN and bulbar involvement with rapid progression (Al-Chalabi and Hardiman, 2013) 

and whilst the age of onset for these patients is highly varied, on average, FUS 

mutations lead to an extreme and aggressive, early-onset phenotype. Notably, there 

have been a number of cases of juvenile-onset ALS caused by FUS mutation (Baumer 

et al., 2010). 

 

In conjunction with TDP-43 and FUS, other RNA processing proteins are increasingly 

being implicated genetically in ALS pathogenesis. In 2013, mutations in the prion-like 

domains of hnRNPa1 and hnRNPa2b1 were identified as causative of multisystem 

proteinopathy and ALS (Kim et al., 2013) and in 2014, mutations in MATR3, encoding 

another RNA-DNA binding protein, matrin-3, were discovered (Johnson et al., 2014). 

More recently, missense and deleterious mutations were identified in GLE1, encoding 

the global mRNA processing factor, hGle1 (Kaneb et al., 2015), further substantiating 

the need to understand these RNA processing proteins in ALS.  

 

C9orf72 

In addition to the emerging picture of altered RNA metabolism in ALS, perhaps one of 

the biggest advances for the field of ALS genetics in recent years has been the 

identification of an intronic hexanucleotide repeat expansion in C9orf72 that accounts 

for ∼40% of fALS and ∼7% sALS (Majounie et al., 2012). Remarkably, whilst SOD1, 

TDP-43 and FUS mutations predominantly affect motor systems and are only rarely 

linked to FTLD (Borroni et al., 2009; Huey et al., 2012; Katz et al., 2012), this 

hexanucleotide repeat has not only been shown to account for a significant proportion 

of ALS cases, but can also cause FTLD and an ALS-FTLD syndrome (DeJesus-

Hernandez et al., 2011; Renton et al., 2011), firmly linking these disorders. This 

GGGGCC (G4C2) repeat sequence is usually present in the population as 2-19 repeats, 

but the pathogenic expansion range is, on average, 250-1500 repeats, although some 

small (20-22) repeats are also shown to be associated with a disease phenotype 

(Gomez-Tortosa et al., 2013) and much larger repeats have been identified (van 

Blitterswijk et al., 2013a). Interestingly, these G4C2 expansions have also been noted in 

other forms of neurodegenerative disease and surprisingly, repeat lengths of >400 

occur at a frequency of 1/600 in the UK population (Beck et al., 2013). With abnormally 
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expanded RNA being transcribed as a result of this mutation, this discovery again 

suggests that ALS may be a disease of disrupted RNA processing.   

 

It is therefore of great importance to understand how these genes, with clear roles in 

RNA processing, may be implicated in ALS, not simply with the aim to understand the 

mechanisms underlying specific genetic subsets of ALS, but to identify disease 

pathways that could be common to ALS as a whole.  

 

Additional genetic causes of ALS 

Although occurring to a lesser extent, each accounting for no more than 1% of fALS or 

sALS, mutations within genes encoding proteaostatic proteins have also been 

associated with ALS. These proteins include valosin-containing protein (VCP) 

(Johnson et al., 2010), optineurin (OPTN) (Maruyama et al., 2010), ubiquilin 2 

(UBQLN2) (Deng et al., 2011) and p62 (Fecto et al., 2011; Teyssou et al., 2013), 

highlighting a potential inability of cells to appropriately process and/or clear proteins 

as an additional pathogenic mechanism in ALS. Moreover, a recent study has 

confirmed that mutations in TBK1, in which variants have previously associated with 

increased risk of ALS (Cirulli et al., 2015), are causative of ALS (Freischmidt et al., 

2015). Largely evoking loss of function, these mutations rendered the tank-binding 

kinase 1 (TANK1) protein unable to bind optineurin, again providing evidence of altered 

protein clearance pathways in the pathophysiology of ALS.  

 

There are also a number of other genes that have been implicated to some degree in 

ALS. Mutations in the gene encoding the cytoskeleton regulating protein, profilin 1 

(PFN1) have been shown to cause some dominant cases of ALS (Wu et al., 2012) and 

mutations in the genes encoding alsin (Hadano et al., 2001), spatacsin (Orlacchio et 

al., 2010), senataxin (Chen et al., 2004) and sigma non-opioid receptor 1 (sigma 1) (Al-

Saif et al., 2011) have all been identified in juvenile forms of the disease. Mutations in 

the genes ELP3 (Simpson et al., 2009), FIG4 (Chow et al., 2009), DCTN1 (Munch et 

al., 2004), VAPB (Nishimura et al., 2004), NEFH (Al-Chalabi et al., 1999), ANG 

(Greenway et al., 2006) and CHCHD10 (Bannwarth et al., 2014) have also been 

identified in some ALS cases although their contribution to the disease is not well 

understood. Further, by screening ALS patients with unaffected parents, Chesi et al. 

(2013) uncovered an enrichment of de novo mutations in genes encoding chromatin 

regulating proteins, including crest protein.  
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1.3.2 Genetic risk of ALS 

Supplementary to identifying genes in which mutations are causal of ALS, individual 

genetic variants may be associated with the disease. Genome-wide association studies 

(GWAS), where the prevalence of common genetic variants is compared between ALS 

cases and healthy controls, have been invaluable in their identification of novel loci for 

further screening. Notably, the C9ORF72 locus was identified following a large hit on 

chromosome 9p21 that arose from a GWAS study of 405 ALS patients and 497 

controls (Laaksovirta et al., 2010). More recently, a number of exome sequencing 

studies have identified variants associated with ALS. Indeed, Smith et al. (2014) 

showed that rare variants in the tubulin alpha 4A (TUBA4A) gene were significantly 

enriched in ALS patients compared to controls, suggesting a disease association of 

this cytoskeletal-regulating protein. Meanwhile, as mentioned above, variants in TBK1 

were identified in a separate exome-wide association study (Cirulli et al., 2015).   

 

As well as the slight phenotypic variations that can be observed as a result of differing 

genetic causes of the disease, there are distinct differences in the pathology observed 

post-mortem between genetic subsets, providing further clues about the mechanisms 

of disease aetiology and progression.  

 

1.4 Pathology of ALS 

It is now almost 150 years since physiologist Jean-Martin Charcot first described ALS 

(Rowland, 2001). He was the first to link the observed spasticity of patients with the 

pathology seen in the lateral spinal cord and his terminology used in his naming of the 

disease reflected this, with ‘amyotrophic’ describing the weakening and atrophy of 

muscles and ‘lateral sclerosis’ reflecting the hardening of the anterior and lateral 

corticospinal tracts associated with the disease (Goetz, 2000; Wijesekera and Leigh, 

2009).  

 

1.4.1 Motor neuron loss 

Today, we know that this paralysis arises from the degeneration of upper and lower 

motor neurons, causing a loss of muscular innervation. The literature surrounding 

quantification of UMN loss is varied (Gredal et al., 2000; Maekawa et al., 2004). This is 

likely due to difficulties in classification of cell types, differences in cortical regions 

investigated and inter-study variation in methodology. However, the findings in 

brainstem nuclei have been consistent. A significant loss of motor neurons in 

trigeminal, facial, hypoglossal and ambiguous nuclei, all supplying skeletal muscle, is 

frequently seen (DePaul et al., 1988). Additionally, there is evidence of differential 
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susceptibility of motor neurons to degeneration, with oculomotor, abducens and 

trochlear brainstem motor nuclei unaffected in these patients (Reiner et al., 1995). In 

spinal cord, an average loss of ∼55% of LMNs has been described in the anterior 

horns, ranging between 8-90% (Ravits et al., 2007). Reflecting a spread of 

degeneration, in the same study, Ravits et al. (2007) identified increased losses (68%) 

of LMNs in the clinical region of onset compared to those in more remote regions 

(44%). A loss of myelination and axons in anterior spinal cord, and occurrence of 

fibrosis of anterior roots are also observed (Hughes, 1982). The onset of early clinical 

signs in ALS patients, specifically muscle weakness and atrophy, coincides with the 

initial loss of innervation from the muscle which has been suggested to precede 

neuronal death in a ‘dying back’ hypothesis (Fischer et al., 2004). On another note, the 

hardening observed in the spinal cord by Charcot has since been attributed to an 

infiltration of the region by glia. This occurs in response to the degeneration of motor 

neurons and is termed astrogliosis (Rowland and Shneider, 2001).  

 

1.4.2 Pathological inclusions 

Although the loss of motor neurons within ALS appears an obvious pathology 

considering the clinical signs of impaired muscular innervation, another key hallmark of 

ALS is perhaps more unexpected. A diverse array of pathological, cellular inclusions 

has been observed in the surviving motor neurons in ALS patients post-mortem (Figure 

1.5). Inclusion bodies, commonly foci of aggregated protein, are a typical feature of 

neurodegenerative diseases (Alves-Rodrigues et al., 1998; Kopito, 2000), yet their role 

in pathogenesis is not well understood. In early studies, identification and classification 

of these inclusions in ALS was based on their morphology, location and appearance 

following histological staining, but more recent advances in immunological techniques 

have provided increased understanding of their protein composition.  

 

Bunina bodies 

Bunina bodies are found within surviving motor neurons of the spinal cord in few fALS 

and almost all sALS patients (Bunina, 1962; Piao et al., 2003; Okamoto et al., 2008). 

These small (2-5 µm diameter) eosinophillic structures are localised to the cytoplasm 

and dendrites and although their composition is not well characterised, it has been 

revealed that they consist of electron dense material (Okamoto et al., 1993) and are 

frequently positive for cystatin C and transferrin (Okamoto et al., 1993; Mizuno et al., 

2006).  
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Axonal spheroids 

Axonal spheroids are distinct swellings of axons containing cytoskeletal components 

and organelles, and are common to the majority of diseases where neurons of the 

central nervous system are damaged (Coleman, 2005). In ALS they occur within both 

UMNs and LMNs and are often positive for neurofilament, ubiquitin, synaptophysin and 

peripherin (Corbo and Hays, 1992; Troost et al., 1992; Schiffer et al., 1995).  

 

Hyaline conglomerate inclusions 

Hyaline conglomerate inclusions (HCIs) are found predominantly within neurons of the 

motor cortex and, to a lesser degree, in spinal cord motor neurons in ALS patients 

post-mortem and comprise accumulations of cytoskeletal intermediate filament 

proteins, namely peripherin and hyperphosphorylated neurofilament subunits. These 

inclusions are largely identified within fALS caused by SOD1 mutation (Hays et al., 

2006) although identification of SOD1-immunoreactivity in these HCIs is varied (Shaw 

et al., 1997; Shibata et al., 1996). 

 

Ubiquitinated inclusions 

With improved immunological techniques came the identification of cytoplasmic and 

intranuclear, non-amyloid, ubiquitin-positive inclusions (UBIs) in surviving motor 

neurons and glia (Leigh et al., 1991). These inclusions are morphologically diverse and 

are often reported in the literature as being skein-like, round or Lewy body-like, tangled 

or even rod-like. These are the most widespread type of inclusion amongst ALS 

patients, seen in the surviving motor neurons or glia of ∼100% of sALS cases (Piao et 

al., 2003). As such, UBIs have become a major pathological hallmark of the disease 

and a key topic of investigation for understanding the underlying pathophysiological 

mechanisms. 

 

In fALS patients with SOD1 mutation, ubiquitinated inclusions are shown to be positive 

for SOD1 protein (Shibata et al., 1994; Jonsson et al., 2004). These inclusions are 

found in the cytoplasm of motor neurons and glia of the anterior spinal cord (Kato et al., 

1996; Bruijn et al., 1997). Electron microscopy has revealed these SOD1-positive 

structures to be composed of granule-coated fibrils (15-25 nm diameter) and to be 

commonly associated with accumulations of neurofilaments (Kokubo et al., 1999). 

SOD1 is also present in UBIs in some sporadic cases, highlighting a role for WT SOD1 

in ALS (Forsberg et al., 2010). However, in the majority of ALS patients without SOD1 
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mutation, UBIs are negative for SOD1 protein (Mackenzie et al., 2007), potentially 

exposing ALS-SOD1 as mechanistically distinct from other ALS subtypes.  

 

 

 

 

Figure 1.5. Proteinopathy in ALS. Examples from the literature of the diverse array of abnormal protein 

structures that are seen in the surviving motor neurons of ALS patients. (A) Bunina bodies visualised with 
haemotoxylin, luxol fast blue and eosin staining. (B) Axonal spheroids highlighted by peripherin 

immunohistochemistry. (C) Haemotoxylin, luxol fast blue and eosin staining of hyaline conglomerate 
inclusions (HCIs). (D) HGI as labelled by neurofilament immunohistochemistry. (A-D) from Xiao et al. 

(2006). (E) FUS-positive UBI (arrow) (Dormann and Haass, 2011). (F) SOD1-positive UBIs (Pokrishevsky 

et al., 2012). 

 

 

In 2006, prior to the discovery of its genetic link with ALS, the normally nuclear protein, 

TDP-43, was found to be a major component of SOD1-negative UBIs, present in ∼90% 

ALS patients (Arai et al., 2006; Neumann et al., 2006; Mackenzie et al., 2007). Aside 

from a single case study, TDP-43-positive UBIs are not seen in cases with SOD1 

mutation (Okamoto et al., 2011; Mackenzie et al., 2007). Mutations in TARDBP are, 

however, much less prevalent than the occurrence of TDP-43-positive UBIs in both 
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sALS and fALS, highlighting endogenous full-length TDP-43 in the pathophysiology of 

ALS (Lagier-Tourenne et al., 2010; Sreedharan et al., 2008). As well as their presence 

in surviving motor neurons, TDP-43-positive UBIs have been noted, albeit to a lesser 

extent, in the hippocampus and frontal and temporal lobes of ALS patients (Neumann 

et al., 2006). Upon biochemical analysis, TDP-43 in the disease state has been shown 

to be hyperphosphorylated and produce 25 kDa and 35 kDa fragments, since 

determined to be caused by cleavage of full length TDP-43 by caspases (Zhang et al., 

2007; Zhang et al., 2009). Together with this, TDP-43 positive UBIs in the brain and 

spinal cord are differentially enriched for C-terminal fragments; inclusions in the cortex 

display increased reactivity to C-terminal antibodies whereas those in the spinal cord 

show equal labelling with N- and C-terminus antibodies (Igaz et al., 2008). 

 

UBIs in ALS which are negative for TDP-43 and SOD1 instead comprise FUS, also 

genetically implicated in ALS (Fig. 1.5) (Kwiatkowski et al., 2009; Vance et al., 2009). 

These inclusions occur in both fALS, as a result of mutations in the FUS gene, and in 

sALS and non-SOD1 fALS that lack FUS mutation (Hewitt et al., 2010; Deng et al., 

2010). FUS-positive inclusions and TDP-43-positive inclusions are, for the most part, 

distinct, although some rare cases of inclusions positive for both proteins have been 

identified (Deng et al., 2010). Additionally, FUS-positive inclusions that lack ubiquitin 

staining are often present (Vance et al., 2009). FUS-positive inclusions have not been 

noted in ALS-SOD1, again highlighting mechanistic differences in the pathophysiology 

of ALS subtypes (Deng et al., 2010). Unlike ALS with TDP-43-positive inclusions, 

where most patients are diagnosed with late-onset sALS, most ALS patients with FUS-

positive inclusions suffer with earlier onset or juvenile ALS (Huang et al., 2010; Baumer 

et al., 2010).  

 

Interestingly, TDP-43- and FUS-positive inclusions are not limited to ALS. As well as 

the clinical and genetic overlap of ALS with FTLD, there is an established pathological 

overlap, with the presence of these inclusions in subtypes of FTLD. The inclusions 

seen in around half of FTLD patients comprise hyperphosphorylated tau protein (FTLD-

tau), yet in remaining cases, TDP-43- (FTLD-TDP43) or FUS-positive (FTLD-FUS) 

UBIs are observed (Urwin et al., 2010; Neumann et al., 2006; Arai et al., 2006). In 

FTLD, inclusions are found within the frontal and temporal cortices and are not 

restricted to motor neurons or glia as with ALS (Neumann et al., 2006). The 

composition of these UBIs also differs between the two disease classifications, with 

reactivity to other TET/FET family proteins, TATA-box binding protein associated factor 

15 (TAF15) and Ewing’s Sarcoma (EWS), being indicative of FTLD-FUS over ALS-FUS 
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(Neumann et al., 2011). FTLD-FUS UBIs also label with transportin, yet this is rare in 

ALS-FUS (Neumann et al., 2006). In addition to ALS and FTLD, UBIs comprised of 

these RNA-binding proteins are found within other neurological disorders. TDP-43-

positive UBIs have been observed in Alzheimer’s disease (Amador-Ortiz et al., 2007) 

and FUS-positive inclusions have also been noted in basophilic inclusion body disease 

(Munoz et al., 2009), neuronal intermediate filament disease (Neumann et al., 2009), 

Huntington’s disease (Doi et al., 2008) and spinocerebellar ataxia (Doi et al., 2010).  

 

Dipeptides in ALS-C9orf72 

Whilst TDP-43-positive inclusions are a major pathology in patients with C9orf72 

repeat expansion (Figure 1.6), short dipeptides produced from the G4C2 repeat, thought 

to be translated through a repeat-associated non-ATG initiated mechanism (RAN 

translation), have also been seen in aggregated forms (Mori et al., 2013).   

 

The presence of pathological inclusions of aggregated protein, both mutant and full 

length ‘wild type’ (WT), in ALS (Figure 1.6) and other neurological disorders raises 

many questions about the relationship of these proteins to the pathogenesis of 

disease. It will be important to understand how these pathological structures may be 

formed and the contribution that these proteins have to the disease process with the 

hope of revealing novel therapeutic targets.  
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Figure 1.6. The type of pathological inclusions and phenotype seen in ALS patients varies with their 
genetic background. Pathological compartments (cream) are sized based on their frequency in the ALS 

population. Underlying genetics of each of these pathologies are shown below (blue) and are also sized 

based on their frequency in each phenotypic instance. Abbreviations: TDP-43/TARDBP, TAR DNA binding 
protein; FUS, Fused in sarcoma; SOD1, superoxide dismutase 1; VCP, valosin-containing protein; 

UBQLN2, ubiquilin 2. Image taken from Al-Chalabi and Hardiman (2013). 
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1.6 Mechanisms of disease 

It is clear that ALS is as a highly complex and multifactorial disease. The proteins 

implicated in ALS display functionally diverse cellular roles and sometimes a seemingly 

non-integrative involvement in disease pathogenesis, highlighted by a predominant 

lack of co-occurrence of these proteins in pathological inclusions. The discovery of 

each ALS-linked protein has brought with it new understanding of potential disease 

mechanisms and, to date, some of these have included abnormal protein homeostasis, 

altered RNA metabolism, mitochondrial dysfunction, axonal transport defects, oxidative 

stress and immune activation, although the extent to which these mechanisms overlap 

remains largely unknown (Ling et al., 2013; Ferraiuolo et al., 2011). Whilst this thesis 

focused on the role of FUS protein in the pathogenesis of ALS, potential mechanisms 

of the disease implicated through other major genetic contributors will be briefly 

outlined to place this work into context for interested readers.  

 

1.6.1 SOD1 

As discussed previously, SOD1 is an abundant and ubiquitously expressed protein with 

a role in catalysing the conversion of toxic superoxides into water or hydrogen peroxide 

(McCord and Fridovich, 1969), although on a side note, more recently, an additional 

function for SOD1 in signaling the repression of cellular respiration has been proposed 

(Reddi and Culotta, 2013). Soon after its genetic link with ALS was established in 

1993, gain of toxic SOD1 function quickly became the focus of research, largely driven 

by findings in animal models (Turner and Talbot, 2008). Notably, mice overexpressing 

a human ALS-associated form of SOD1 (G93A), having little to no effect on its 

enzymatic activity, produced an ALS-like phenotype including reduced survival, 

paralysis and spinal cord motor neuron loss (Gurney et al., 1994). Further, mice 

expressing mutant mouse SOD1 at high levels also demonstrated a decline in motor 

function combined with motor neuron degeneration (Ripps et al., 1995). Conversely, 

mice lacking SOD1 displayed normal phenotypes and vulnerability to motor neuron 

loss was only observed following axonal trauma (Reaume et al., 1996). Cementing this, 

Bruijn et al. (1998) showed that mice expressing an ALS-associated mutant form of 

SOD1 were affected by the disease process equally, independent of whether they were 

on a high or low endogenous mouse SOD1 background. Although loss of SOD1 has 

been, for the most part, ruled out as a major pathological mechanism in ALS-SOD1, 

there is some support for loss of SOD1 function as a potential disease modifier 

(Saccon et al., 2013).  
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The misfolding of mutant SOD1 isoforms in ALS is well established (Robberecht and 

Philips, 2013). Misfolded SOD1 isoforms evade normal degradation pathways and 

instead oligomerise and coalesce into larger aggregates, which can be seen in both 

ALS-SOD1 patients and several SOD1 animal models (Watanabe et al., 2001). 

Interestingly, WT SOD1 may also misfold and become involved in the disease process 

(for review see Rotunno and Bosco (2013)).  

 

However, it remains unclear as to how these aggregated SOD1 forms are involved in 

the progression of disease. Mutant SOD1 isoforms do not appear to lose enzymatic 

function (Cleveland, 1999), indeed enzyme function was shown not to correlate with 

age of onset or progression of ALS (Cudkowicz et al., 1997), again suggesting that loss 

of normal function is not causative. Instead, several pathological mechanisms have 

been implicated through investigation of mutant SOD1. The ubiquitin proteasome 

system is thought to be overwhelmed by SOD1 isoforms (Robberecht and Philips, 

2013) and endoplasmic reticulum stress caused by processing masses of misfolded 

protein may lead to the activation of cell death pathways (Nishitoh et al., 2008; 

Lindholm et al., 2006). Mutant SOD1 also aggregates within mitochondria (Jaarsma et 

al., 2001; Pasinelli et al., 2004), which can result in mitochondrial damage (Higgins et 

al., 2003), again implicating a pathogenic role for oxidative stress within ALS (Barber 

and Shaw, 2010). Furthermore, there is evidence to suggest that because of mutant 

SOD1 in the mitochondria, motor neurons are more sensitive to glutamatergic 

excitotoxicity, which has itself been implicated in ALS (Van Den Bosch et al., 2006). 

Axonal transport deficits have been identified in animal models of ALS-SOD1 and, in 

particular, mitochondrial transport is reduced in the anterograde direction (De Vos et 

al., 2007). Neurofilament balance is also dysregulated in ALS-SOD1, uncovered by 

studies on patient-derived induced pluripotent stem cells (iPSCs), patient spinal cord 

motor neurons and stable motor neuron-like cell lines (Chen et al., 2014; Menzies et 

al., 2002). 

 

1.6.2  TDP-43  

In converging studies, several groups have shown that knocking out the RNA-binding 

protein, TDP-43, is embryonically lethal in mice (Wu et al., 2010; Sephton et al., 2010; 

Kraemer et al., 2010). Similarly, inducible TDP-43 knockouts succumb to postnatal 

death (Chiang et al., 2010), reinforcing the essential role of TDP-43 and suggesting 

that loss of TDP-43 may be pathogenic in ALS. Several TDP-43 mouse models have 

also been produced that express either WT or mutant TDP-43 at different levels, 

locations and time points, providing a wealth of information on a potential gain of toxic 
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function hypothesis (Wegorzewska and Baloh, 2011). In the majority of instances, 

overexpression of WT (Wils et al., 2010; Xu et al., 2010) or mutant TDP-43 (Stallings et 

al., 2010; Wegorzewska et al., 2009) at high levels within the nervous system of mice 

during development is overtly toxic, producing pathological aggregates, axonal 

degeneration and early lethality. Taken together, these findings suggest that both loss 

of normal TDP-43 function (for detailed review see Vanden Broeck et al. (2014)) and 

gain of toxic TDP-43 function may be involved in the development and progression of 

ALS. Although TDP-43 expression in mice produces toxicity, the majority of these 

studies (Wegorzewska and Baloh, 2011) failed to recapitulate the extensive TDP-43 

pathology, namely, the large TDP-43-positive aggregates in the cytoplasm that are a 

key feature of many subtypes of ALS (Arai et al., 2006; Neumann et al., 2006).  

 

Redistribution of TDP-43 to the cytoplasm was shown to be an early event in sporadic 

ALS pathogenesis (Giordana et al., 2010) and cytoplasmic mislocalisation of TDP-43 is 

required to confer neuronal toxicity (Barmada et al., 2010). Curiously, whilst TDP-43 

distribution to the cytoplasm is a key event, TARDBP mutations are not seen to lie 

within the NLS (Dormann and Haass, 2011), and given the low frequency of TARDBP 

mutations in relation to the high fraction of ALS patients with TDP-43 pathology, some 

of which with other gene mutations (Gitcho et al., 2009; Cooper-Knock et al., 2012), 

redistribution of WT TDP-43 must be a crucial feature. TDP-43 shuttles back and forth 

between the nucleus and cytoplasm (Ayala et al., 2008), yet is normally found 

predominantly in the nucleus. However, several origins of cellular stress, including 

oxidative and heat stress (Colombrita et al., 2009), ER stress (Walker et al., 2013) and 

osmotic stress (Dewey et al., 2011), are, amongst other mechanisms (Liu et al., 2015), 

known to cause its mislocalisation to the cytoplasm and may be important in early 

stages in the progression of ALS.  

Following mislocalisation to the cytoplasm, TDP-43, driven by these cellular stresses, 

is recruited to stress granules (SGs) in cell culture experiments (Colombrita et al., 

2009). SGs are dynamically assembled in response to a variety of cellular stresses and 

comprise densely packed mRNA and proteins, functioning to stall non-essential 

translation and instead focus energy on cellular survival (Figure 1.7) (Anderson and 

Kedersha, 2008). Interestingly, like TDP-43, many of the essential proteins required to 

form SGs comprise RNA binding proteins with prion-like domains (Li et al., 2013). 

PABP1, Ras GTPase-activating protein-binding protein 1 (G3BP1), T cell intracellular 

antigen 1 (TIA-1) and TIA-1 related protein (TIAR), along with others, are all found in 

SGs and have become markers of these structures (Anderson and Kedersha, 2006). 
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Figure 1.7. Stress granule formation and dynamics. During exposure to cellular stresses, translation of 

many mRNAs becomes stalled and these stalled pre-initiation complexes are directed to P bodies or 
stress granules (SGs). SGs, composed of several ‘marker’ proteins including G3BP, TIA-1, ataxin 2 and 

eiF-4G1/2, are highly dynamic and release pre-initiation complexes following the resolution of stress. TDP-
43 and FUS may also be recruited to SGs during stress. P bodies instead have a role in targeting mRNAs 

for degradation. Image taken from (Li et al., 2013). 

 

However, it remains debatable as to whether SGs act as precursors to seed 

aggregation of TDP-43 into larger pathological inclusions in a toxic gain of SG function, 

or whether pathological aggregation of TDP-43 disrupts normal and protective SG 

function (Dewey et al., 2012; Li et al., 2013). Intriguingly, TDP-43-positive inclusions 

have also been shown to colocalise with SG markers in post-mortem ALS patient 

tissues (Liu-Yesucevitz et al., 2010), although others did not find this to be the case 

(Colombrita et al., 2009). Although it is not clear how aggregated TDP-43 is formed, 

both the ubiquitin-proteasome and autophagy systems play a role in degradation of 

aggregated TDP-43, with failure of these mechanisms acting to promote aggregation 

(Brady et al., 2011; Thomas et al., 2013). Furthermore, ALS-linked mutations increase 
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the aggregation propensity of the already aggregate-prone protein, again supporting a 

gain of toxic aggregate function (Johnson et al., 2009). 

Aside from its interactions with SGs, TDP-43 is a normal component of neuronal RNA 

transport granules and it has been recently demonstrated that ALS-associated TDP-43 

mutants disrupt the normal mobility of these granules and may cause neuronal 

dysfunction, providing a mechanism through which loss of TDP-43 function may occur 

in the cytoplasm (Alami et al., 2014; Liu-Yesucevitz et al., 2014). Whilst disruptions to 

its normal roles in RNA metabolism in ALS have been well documented (Vanden 

Broeck et al., 2014), Arnold et al. (2013) also indicate that mutant TDP-43 can gain 

additional function within the nucleus leading to aberrant RNA processing, which may 

also contribute to ALS pathophysiology. Furthermore, TDP-43 is known to regulate its 

own mRNA levels through an autoregulation loop (Ayala et al., 2011), providing 

additional complication to hypotheses of loss versus gain of TDP-43 function in ALS, 

and indeed it is likely that an interplay of both are damaging.  

 

1.6.3 C9orf72  

Whilst C9orf72 protein remains largely uncharacterised, it has been identified through 

computational analysis as distant homolog of the ‘differentially expressed in normal 

and neoplastic cells’ (DENN) protein family, that have roles in membrane trafficking 

(Levine et al., 2013; Zhang et al., 2012). This is supported by the largely cytoplasmic 

localisation of C9orf72 protein in neurons (DeJesus-Hernandez et al., 2011) and a 

recent study providing a direct role of the protein in endolysosomal trafficking (Farg et 

al., 2014). Reduced levels of C9orf72 mRNA transcript have been reported in studies 

on lymphoblastoid cell lines and post-mortem brain tissue from ALS-C9orf72 patients 

compared to healthy controls (DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012). 

One mechanism proposed for this has been aberrant histone trimethylation leading to 

silencing of C9orf72 (Belzil et al., 2013). In addition to reductions in overall C9orf72 

transcript level, expression of C9orf72 protein has been shown to be reduced in the 

frontal cortex of patients with the pathological repeat expansion (Waite et al., 2014), 

which, taken together, suggests haploinsufficiency of C9orf72 as a possible disease 

mechanism. Additional support for a haploinsufficiency model of C9orf72 has arisen 

through zebrafish and C. elegans models that display motor deficits following C9orf72 

knockdown (Therrien et al., 2013; Ciura et al., 2013).  

 

Conversely, however, knockdown of C9orf72 in mice using viral-mediated anti-sense 

oligonucleotides (ASOs) failed to produce any observable motor phenotype (Lagier-
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Tourenne et al., 2013). Additionally, other studies have provided evidence that C9orf72 

mRNA expression level is not always altered between health and disease states 

(Cooper-Knock et al., 2013; Renton et al., 2011), and two more prominent features of 

C9orf72 pathology in ALS have instead dominated the field, namely the presence of 

abnormal RNA foci and dipeptide aggregates. Transcription in the sense and antisense 

direction of the G4C2 expansion produces long RNA transcripts that go on to form 

nuclear RNA foci in spinal cord and cortical tissue (DeJesus-Hernandez et al., 2011; 

Zu et al., 2013). As previously mentioned, RAN translation of these transcripts 

produces dipeptides, of which there are five possible isoforms, Pro-Arg, Pro-Ala, Gly-

Ala, Gly-Arg and Gly-Pro (Mori et al., 2013; Zu et al., 2013). However, the toxicity 

associated with these pathological features of ALS-C9orf72 is still unclear. RNA foci 

have been shown to sequester several RNA-binding proteins, likely disrupting RNA 

metabolism, and cellular toxicity has been observed in cells transfected with longer 

repeat RNA lengths (Cooper-Knock et al., 2014; Lee et al., 2013). Interestingly, a 

mouse model expressing an ‘RNA-only’ form of repeat expansion showed ubiquitin-

positive inclusions yet did not display any observable abnormal phenotype or cell loss 

(Hukema et al., 2014). 

 

Several lines of evidence suggest a toxic role for dipeptides. Cellular production of 

dipeptide sequences, in the absence of the G4C2 RNA repeat expansions, have 

resulted in apoptosis in primary neurons with Gly-Ala forms (May et al., 2014) and 

neurodegeneration in Drosophila models expressing arginine-rich dipeptides 

(Mizielinska et al., 2014). In particular, Gly-Arg and Pro-Arg forms have been shown to 

bind and clog the nucleoli leading to nucleolar stress and cell death (Kwon et al., 2014; 

Tao et al., 2015). Additionally, expression of Gly-Ala dipeptides has been linked with 

increased ER stress and impaired neurite outgrowth (Zhang et al., 2014). As such, it 

appears dipeptides are coming to the forefront of investigations into ALS-C9orf72.  

 

1.7 Fused in sarcoma 

As discussed, protein aggregation and altered RNA metabolism are recurring themes 

in ALS, implicated across several genetic subsets. Like TDP-43, the RNA-binding 

protein, FUS, is linked to ALS both genetically and pathologically and has several roles 

in RNA metabolism. Therefore, it will be of great importance to determine the 

mechanisms by which FUS may be involved pathophysiologically in ALS. To begin, it is 

important to first understand the normal cellular roles of FUS in order to appreciate how 

these processes may become disrupted.  
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1.7.1 Normal functions of FUS 

FUS is a 526 amino acid member of the FET (FUS, EWS, TAF15) family of RNA 

binding proteins (Crozat et al., 1993) which share a high degree of homology (Hoell et 

al., 2011). FUS has a ubiquitous expression and is predominantly localised to the 

nucleus (Aoki et al., 2012). Its primary sequence consists of a low complexity N-

terminus with domains rich in glutamine, glycine, serine and tyrosine (QGSY-rich 

domain) and glycine (gly-rich domain) followed by an RNA recognition motif (RRM) and 

a C-terminus comprising glycine-arginine-rich (RGG-rich) domains, a zinc finger (ZF) 

and an extreme C-terminal NLS (Figure 1.4). Significantly, this non-classical, 

hydrophobic proline-tyrosine NLS of FUS has previously been demonstrated as a 

substrate for transportin, facilitating its entry into the nucleus (Lee et al., 2006).  

 

Transcription and splicing 

FUS is known to bind both single- and double- stranded DNA (Baechtold et al., 1999). 

Recently, specific single-stranded DNA sequences in the promoter regions of a number 

of FUS-interacting candidate genes have been identified, which may now be thought of 

as putative FUS response elements. FUS affinity sequences identified included 

TCCCCGT, AAAGTGTC and AGGTTCTA (Tan et al., 2012). Additionally, altering the 

levels of FUS, either by overexpression or siRNA-mediated knockdown, altered the 

levels of mRNA expression of these FUS transcription targets (Tan et al., 2012). 

Although not evidenced, it is likely that the interaction of FUS with DNA is either 

through its ZF, a conserved region known to bind DNA, or possibly its RNA binding 

domains (Tan and Manley, 2009).  

 

In addition to directly binding DNA, FUS has been shown to interact with transcription 

regulating proteins (Wang et al., 2008) including RNA polymerases and transcription 

factor IID (TFIID) (Bertolotti et al., 1996). TFIID is a large protein complex that upon its 

interaction with transcription initiation sites begins a cascade of protein recruitment to 

form pre-initiation complexes (PICs) (Bieniossek et al., 2013). PICs then align RNA 

polymerase II (RNAP2) at the start site, allowing for initiation of transcription. Schwartz 

et al. (2012) have provided a scale for the interaction of FUS with RNAP2. They 

determined that FUS bound the C-terminal domain of RNAP2 at the site of transcription 

in >50% genes expressed in HEK-293 cells. This large-scale interaction of FUS with 

RNAP2 suggests a prominent role for FUS in transcriptional regulation. Schwartz et al. 

(2012) also demonstrated that FUS was critical for regulating the phosphorylation state 

of RNAP2, a feature that is linked to the progression of RNAP2 during transcription. 

Another mechanism by which FUS is suggested to regulate transcription comprises its 
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binding to the promoter antisense RNA strand, resulting in a downregulation of 

transcription of the coding strand (Ishigaki et al., 2012). As such, disruption to this 

transcriptional regulation by FUS, through mutation or otherwise, could have 

widespread effects on cellular function. More recently, this has been demonstrated by 

Yang et al. (2014), showing that ALS-associated mutants disrupted FUS-chromatin 

binding and transcriptional activation by FUS. In addition, FUS has been shown to 

repress transcription by RNA polymerase III (RNAP3), which is responsible for the 

synthesis of ribosomal and small RNAs (Tan and Manley, 2010). 

 

Transcription is not a stand-alone event but rather it is coupled to splicing (Kameoka et 

al., 2004; Das et al., 2007). Splicing is the process by which introns are removed from 

pre-mRNA to produce mature mRNA sequences. Further, alternative splicing provides 

increased sequence variation than that allowed by DNA alone. Splicing is carried out 

by the spliceosome, nuclear machinery comprised of protein-RNA complexes, termed 

small nuclear ribonucleic particles (snRNPs), and other proteins that assemble in a 

stepwise order on the pre-mRNA to facilitate intron removal (Will and Luhrmann, 2011). 

In addition to a likely role as a transcription factor, FUS has been shown to interact with 

a number of spliceosomal components, namely SC35, SRp75, hnRNP I and SRm160 

(Meissner et al., 2003) and was identified itself as a component of the spliceosome in 

an independent proteomic screen (Zhou et al., 2002). On top of this, FUS has been 

shown to bind thousands of pre-mRNAs, in addition to its DNA-binding capabilities 

(Lagier-Tourenne et al., 2012; Rogelj et al., 2012), although the presence of a given 

consensus binding sequence is contested. Lerga et al. (2001) highlighted in vitro that 

FUS can bind to GGUG-containing sequences. However, in an analysis of FUS-RNA 

binding in mouse and human tissues, Lagier-Tourenne et al. (2012) instead showed 

the occurrence of a GUGGU sequence in ∼60% RNA bound to FUS, although later 

found this sequence not to be necessary or sufficient for binding. Additionally, Ishigaki 

et al. (2012) and others (Zhou et al., 2013) were unable to determine a consensus 

binding sequence in their studies, but instead suggested that secondary structure of 

RNA was involved.  
 

Specifically, the MAPT transcript, encoding tau, has been identified as a direct target of 

FUS mediated splicing, with exons 3 and 10 unusually remaining included following 

knockdown of FUS in hippocampal neurons (Orozco et al., 2012). Recently, a number 

of independent CLIP-seq experiments, where intracellular cross-linking of RNA and 

RNA-binding proteins is followed by immunoprecipitation and subsequent high-
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throughput sequencing, have been performed to determine the RNA targets of FUS on 

a large scale (Nakaya et al., 2013; Rogelj et al., 2012; Lagier-Tourenne et al., 2012; 

Zhou et al., 2013; Ishigaki et al., 2012). These studies have highlighted that FUS binds 

thousands of RNAs, preferentially to long intronic regions, further supporting its role in 

splicing. Indeed, loss of FUS was shown to induce splicing alterations in over 370 

RNAs in embryonic mouse brain (Lagier-Tourenne et al., 2012), with others also 

reporting alterations following knockdown of FUS, albeit using a variety of approaches 

(Ishigaki et al., 2012; Nakaya et al., 2013; Rogelj et al., 2012). Interestingly, Zhou et al. 

(2013) observed that FUS is able to repress splicing of its own pre-mRNA, producing a 

transcript that is targeted for decay. This autoregulatory mechanism was found to be 

disrupted by ALS-linked mutation and has been further demonstrated in Drosophila 

melanogaster models (Machamer et al., 2014). When compiled, these CLIP-seq 

experiments revealed that the RNA targets of FUS converge largely on pathways of 

neurogenesis and gene expression regulation, with genes relating to DNA damage 

response also enriched (for further detail see Zhou et al. (2014)).  

 

The product of transcription, splicing and RNA processing events is the transcriptome, 

the collection of mRNAs present in a given cell or population of cells (Frith et al., 2005). 

The FUS-regulated transcriptome is not universal and instead varies between cell 

types and brain regions, potentially providing an explanation for specific cell 

vulnerability in ALS (Fujioka et al., 2013). Additionally, vast changes in the 

transcriptome have been identified following alterations in FUS expression levels, 

supporting its fundamental role in RNA metabolism. By functionally grouping 

differentially expressed mRNAs, van Blitterswijk et al. (2013b) observed altered 

regulation of ribosomal genes with overexpression of WT FUS, but a knockdown of 

FUS was instead shown to affect the expression of genes related to the spliceosome. 

Moreover, van Blitterswijk et al. (2013b) showed that the transcriptome of HEK-293 

cells overexpressing ALS-linked mutant FUS (R521G or R522G) more closely 

resembles that of WT FUS overexpression than that produced when FUS was 

silenced, although the extent to which these seemingly small differences could be 

pathological is unknown.  

 

FUS has also been shown to interact with the Drosha complex, involved in microRNA 

biogenesis (Gregory et al., 2004). Specifically, Drosha acts to crop primary microRNAs 

to form pre-microRNAs for further processing outside of the nucleus yet the role for 

FUS in this process is not clear. FUS has, however, been shown to stimulate the 

biogenesis of a subset of microRNAs involved in neuronal function, differentiation and 
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synaptogenesis which may be of particular importance given the neurodegenerative 

nature of ALS (Morlando et al., 2012). Although the scope of microRNA function still 

remains largely elusive, taken together with an involvement in transcription and 

splicing, it is obvious that FUS can have a global impact on the function of the cell.  

 

DNA repair and genome stability 

FUS knockout mice produced by disruption of exon 8 do not show survival deficits on a 

partially outbred background, yet these mice are ∼30% smaller than WT littermates and 

males show complete sterility (Kuroda et al., 2000). Additionally, embryonic fibroblasts 

from these mice, display enhanced radiation sensitivity and reduced ability of 

homologous pairing in extracts from the testes as a result of loss of FUS, pertaining to 

a role of the protein in repair following DNA damage. This sensitivity to ionising 

radiation was also seen at the level of the whole animal, with decreased survival 

following the challenge in FUS KO mice compared to WT. In a separate FUS knockout 

mouse model, instead produced by disruption of exon 12, mice displayed chromosomal 

instability and died within 16 hours of birth, indicating FUS is important for neonatal 

viability (Hicks et al., 2000). DNA damage, specifically single- and double-strand 

breaks, as induced by ionising radiation, may be repaired by homologous 

recombination events. Given its ability to bind single and double stranded DNA, 

recently, FUS has been shown to be recruited to sites of DNA damage via its RGG2 

domain in transfected human osteosarcoma cells (U2OS) and human embryonic 

kidney cells (HEK-293) (Mastrocola et al., 2013). Further, it was shown that this was 

dependent on poly(ADP-ribose) polymerase (PARP) ADP-ribosylation, providing a 

supportive framework to permit the localisation of FUS and other DNA repairing 

proteins to these damage sites (Mastrocola et al., 2013). Supporting findings from FUS 

KO mice, FUS was required for appropriate repair of double-strand breaks by 

homologous recombination, but also by non-homologous end-joining, although the 

mechanisms by which FUS acts in the repair of DNA are unknown (Mastrocola et al., 

2013). FUS may also act indirectly to modulate DNA repair via transcriptional 

regulation mechanisms (Wang et al., 2008) and through its aforementioned role in 

alternate splicing of mRNAs involved in DNA damage response (Zhou et al., 2014). 

Intriguingly, Deng et al. (2014) have shown that FUS is translocated to the cytoplasm 

following DNA damage, providing a plausible upstream mechanism by which full-length 

endogenous FUS may be mislocalised to the cytoplasm in ALS and other FUS-related 

diseases.   
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Subnuclear localisation of FUS 

Although the nucleus of a cell does not contain membrane-bound organelles, like the 

cytoplasm it is emerging as a highly organised structure, with distinct subnuclear 

compartments acting as designated foci for transcription, RNA processing, and the 

biogenesis, assembly and storage of spliceosomal components. Whilst lacking defining 

membrane boundaries, these compartments have specific morphology, characteristic 

protein compositions, and are thought to be functionally specialised (for review see 

Sleeman and Trinkle-Mulcahy (2014) and Dundr and Misteli (2001)).  

 

Although FUS is known to be a predominantly nuclear protein, its location within the 

nucleus is more ambiguous. First, FUS has been reported to be associated with 

survival of motor neuron (SMN) protein complexes using biochemistry (Yamazaki et al., 

2012; Sun et al., 2015; Groen et al., 2013). In the nucleus, SMN protein is localised to 

subnuclear bodies known as Gemini of Cajal Bodies or ‘gems’ (Liu and Dreyfuss, 

1996). SMN protein, in addition with other members of the SMN complex, gemin 

proteins 2-7, has been linked to biogenesis of small nuclear ribonucleic proteins 

(snRNPs), critical components of the spliceosome (Fischer et al., 1997; Liu et al., 

1997). Interestingly, mutations in the gene encoding SMN, SMN1, are causative of 

spinal muscular atrophy (SMA), a degenerative disease of lower motor neurons 

(Lefebvre et al., 1995). However, FUS in the nucleus does not appear to be localised to 

gems when investigated using immunocytochemistry (Yamazaki et al., 2012).  

 

Second, FUS is a known component of the paraspeckle (Nishimoto et al., 2013; Page 

et al., 2011; Naganuma et al., 2012). Named because of their proximity to nuclear 

splicing speckles, this subnuclear body is formed by the assembly of drosophila 

behaviour human splicing (DBHS) proteins, including p54nrb/NONO, PSPC1 and PSF, 

on the long non-coding RNA, NEAT1 (Fox et al., 2002; Clemson et al., 2009; Sasaki et 

al., 2009). Whilst the function of paraspeckles remains to be fully elucidated, it is 

thought that they play a role in the retention of adenosine-to-inosine (A-to-I) edited 

transcripts and in the cellular stress response (Zhang and Carmichael, 2001; Prasanth 

et al., 2005).  

 

Given the limited knowledge of the normal subnuclear localisation of FUS it is not 

surprising that the effect of ALS-associated FUS mutations on these structures is not 

clear. Curiously, there are reports of reduced gem numbers in ALS-FUS patient 

fibroblasts, motor neurons, transgenic mouse models of ALS-FUS and stable cell lines 

transfected with mutant FUS (Sun et al., 2015; Tsuiji et al., 2013; Yamazaki et al., 
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2012) although gem number is not reduced in sporadic ALS patients (Kariya et al., 

2014). Further, there is evidence to suggest that paraspeckle formation is increased in 

spinal motor neurons in the early stages of ALS (Nishimoto et al., 2013). However, it 

remains to be investigated whether ALS-associated FUS mutants affect paraspeckle 

formation and distribution and whether this could be an important pathological 

mechanism in ALS and other FUSopathies.  

 

FUS in the cytoplasm 

FUS has been shown to engage in nucleo-cytoplasmic shuttling of RNA, consistent 

with its capacity for RNA binding (Zinszner et al., 1997b) and was identified as a 

component of RNA transport granules isolated from mouse brain (Kanai et al., 2004). 

Supporting a role for FUS in local translation, FUS has been found at increased levels 

in the dendritic spines of hippocampal neurons in mice (Belly et al., 2005) and humans 

(Aoki et al., 2012). Accompanying this, FUS was identified in a proteomic analysis of 

NMDA receptors, present in dendritic spines, from mouse brain extracts (Husi et al., 

2000). In primary cultures of mouse hippocampal neurons, translocation of FUS in an 

RNA-transport complex to dendritic spines occurred upon activation of metabotropic 

glutamate receptor 5 (mGluR5) (Fujii et al., 2005). Specifically, mRNA encoding an 

actin-stabilising protein, Nd1-L, is associated with this RNA-transport complex (Fujii 

and Takumi, 2005) (Figure 1.8). The dynamic reorganization of actin, a cytoskeletal 

component, likely mediated through local translation of mRNAs, is required during 

spine remodeling (Okamoto et al., 2004). Consequently, primary cultures of 

hippocampal neurons from FUS knockout (KO) mice (Hicks et al., 2000) displaying 

lower levels of Nd1-L in spines, displayed abnormal dendritic spine morphology and 

reduced spine density (Fujii et al., 2005; Fujii and Takumi, 2005), supporting a normal 

role of FUS in neuronal maturation and regulation of dendritic spines.  
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Figure 1.8. FUS is present in hippocampal dendritic spines. (A) FUS is enriched in dendritic spines. (B) 
FUS was identified in a screen of NMDA receptors. (C) Activation of mGluR5 receptors results in (D) 

translocation of RNA-complexes containing FUS and mRNA for actin stabilisation to the dendritic spine.  

 

 

1.7.2 Loss of normal FUS function in disease? 

Dormann et al. (2010) showed that ALS-linked mutations in the NLS of FUS disrupt its 

nuclear import, leading to mislocalisation to the cytoplasm. The crystal structure of FUS 

NLS bound to transportin has been solved and ALS-causing mutations are shown to 

fall within three main epitopes (N-terminal PGKM hydrophobic motif, central arginine-

rich alpha-helix and C-terminal PY motif) that are required for this interaction with 

transportin (Zhang and Chook, 2012). Interestingly, in the same study, the extent to 

which mutation reduced the affinity of this binding was shown to correlate with the 

degree of cytoplasmic mislocalisation and the associated severity of patients harboring 

these mutations. Additionally, arginine methylation of the RGG domain adjacent to NLS 

has been shown to inhibit nuclear import by impairing binding of the RGG to transportin 

(Dormann et al., 2012) which together with hyperosmolar stress (Sama et al., 2013) 

and DNA damage (Deng et al., 2014) provides another possible mechanism of 

redistribution of FUS without mutation. 

 

This redistribution of FUS into the cytoplasm is thought to be a critical step in the 

development of FUS-related pathology and FUS depletion from the nucleus could 

affect the normal functions of FUS – a loss of function (LOF) hypothesis.  

 

Although knockout of FUS in mice has been hampered with difficulties regarding 

viability and breeding, reducing or eliminating FUS expression in other model 

organisms has been instrumental in not just unraveling the normal roles of the protein 

but also implicating a LOF hypothesis in FUS-related neurodegeneration. Global 
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disruption of the FUS gene homologue, Cabeza (CAZ), in the fruit fly (Drosophila 

melanogaster) has resulted in shortened life span, reduced locomotor speed and, like 

the FUS knockout mouse, decreased viability (Xia et al., 2012; Wang et al., 2011). In 

their model, Wang et al. (2011) showed that associated phenotypes were rescued by 

the expression of WT Caz or human WT FUS, but not ALS-associated FUS mutants, 

indicating that ALS-associated mutations may lead to a loss of normal FUS function. 

Corroborating a LOF mechanism, knockdown of Caz specifically in neurons has been 

shown to be sufficient to cause a reduced synaptic branch length in presynaptic motor 

neuron terminals, accompanied by a reduced climbing ability of the fly (Sasayama et 

al., 2012). This highlights that FUS is normally somehow involved in the maturation or 

regulation of pre-synaptic terminals.  

 

60% knockdown of FUS in zebrafish by ASOs has also been shown to cause abnormal 

motor axon projections and a motor phenotype comprised of reduced escape 

responses to touch 48 h post-fertilisation, recapitulating findings in Drosophila (Kabashi 

et al., 2011). This was rescued by co-injection of human WT but not ALS-linked mutant 

FUS mRNA, providing further evidence that ALS-associated mutation disrupts a 

physiological function of FUS in neuronal maturation and regulation at the synapse. 

Armstrong and Drapeau (2013) further investigated the impact of this ASO-mediated 

FUS knockdown, showing reductions in quantal transmission from neuromuscular 

junction (NMJ) synapses, leading to impaired motor activity. Again, these features were 

partially restored by expression of WT FUS but not ALS-linked mutant FUS, implicating 

LOF of FUS caused by ALS-linked mutation in disease pathogenesis. These 

reductions in evoked synaptic release from NMJs have also been identified in 

Drosophila, as a result of either knockdown of Caz or, conversely, expression of 

mutant R521C FUS (Shahidullah et al., 2013). Contrastingly, Machamer et al. (2014) 

show that loss of Caz results in increases in quantal transmission at the NMJ in 

Drosophila, although it is not clear why these results differ.  

 

Far from being fully understood, it is obvious that FUS plays a part not just post-

synaptically in the regulation of dendritic spines (see Section 1.7.1), but also pre-

synaptically in the maturation and function of motor neuron terminals at the NMJ. 

However, crucially, it remains to be seen whether the role of FUS in these processes is 

one of local importance in the cytoplasm, possibly acting via its RNA binding capacity, 

or rather that loss of FUS from the nucleus has a more global effect, resulting in 
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dysregulation of transcription and splicing of genes and mRNAs required for pre- and 

post-synaptic regulation.  

 

1.7.3 Aggregation of FUS: Pathological or physiological? 

The aggregation of proteins is a common feature associated with neurodegenerative 

disease (Ross and Poirier, 2004). Although cytoplasmic inclusions of mutant and/or 

WT FUS are seen in a proportion of patients with ALS, FTLD and other 

neurodegenerative diseases, the mechanisms by which these inclusions are formed 

and the role they play in disease is largely unknown. When the causal role for FUS in 

ALS was initially uncovered, Vance et al. (2009) noted the formation of small FUS-

positive aggregates in the cytoplasm of CV-1 cells transfected with plasmid constructs 

expressing green fluorescent protein (GFP)-tagged R521C or R521H mutant FUS. 

Similarly, Kwiatkowski et al. (2009) also noted the formation of insoluble, cytoplasmic 

aggregates of GFP-tagged mutant FUS (R521G or H517Q) in transfected cell lines in 

their coinciding report. In addition to a potential loss of function caused by FUS 

depletion in the nucleus, the aggregation of these mutant variants in the cytoplasm 

may also contribute to the pathogenesis of disease, either through a gain of toxic 

function, or perhaps by a sequestration and functional disruption of essential cellular 

molecules by these aggregates. However, the need to understand FUS aggregation 

stems not just from a need to uncover its role in disease but also one of elucidating its 

normal cellular functions. The evolutionary conservation of domains involved in the 

aggregation of FUS suggests that its aggregation is physiologically relevant and that 

these domains are not simply deleterious.  

 

Physiological aggregation of FUS 

Several lines of evidence have pointed towards a prion-like domain within the N-

terminus of FUS. The N-terminus of FUS is highly unstructured due to the prevalence 

of asparagine and glutamine residues, a common feature of prion domains in yeast 

prion proteins (Iko et al., 2004; Michelitsch and Weissman, 2000; Toombs et al., 2010). 

Additionally, FUS came 15th out of 27,879 human genome proteins in an in silico 

screen to find those most likely to contain a prion-related domain (Cushman et al., 

2010). Within FUS, this prion-like domain is thought to lie between N-terminus amino 

acids 1-239, with an additional region in the first RGG domain (amino acids 391-405) 

(Figure 1.4) (Cushman et al., 2010). Interestingly, TDP-43 and TAF15, also implicated 

in ALS, have also been shown to have prion-like domains (Couthouis et al., 2011). 

Prions are proteins which, following a conformational change, become self-templating 

and infectious. These misfolded proteins are responsible for a number of transmissible 
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spongiform encephalopathies affecting mammals, with human examples including 

Creutzfeldt-Jakob disease, kuru, fatal familial insomnia and Gerstmann-Staussler-

Schienker syndrome (Collinge, 2001). Although FUS itself is not a prion protein; it is 

not known to be infectious per se, the presence of a prion-like domain suggests the 

potential of FUS to undergo conformational changes and seed aggregation.  

 

On their own and at high concentrations, N-terminal low complexity domains of FUS 

are able to phase-transition into a hydrogel state shown to be composed of amyloid-

like fibres upon EM (Kato et al., 2012). Although recombinant WT FUS has been 

shown to be highly prone to aggregation in vitro, forming aggregates rapidly without 

agitation, this was dependent not only on its N-terminal prion-like domain but also on 

regions within the first RGG domain (Sun et al., 2011). Similarly to those seen in 

human tissue, these in vitro aggregates were revealed to be filamentous under electron 

microscopy (EM) and were not amyloid based. Interestingly, an ALS-linked N-terminal 

mutation, G156E, was found to increase the aggregation propensity of FUS, although 

the aggregates formed by this mutation in rat hippocampal neurons were unusual in 

their amyloid-like nature (Nomura et al., 2014).   

 

Recently, Schwartz et al. (2013) have provided a distinct physiological role for the 

aggregation of FUS. Previously, they had determined an RNA-dependent interaction of 

FUS with RNAP2 (Schwartz et al., 2012) but more recently have suggested a 

mechanism for this. Initially, multiple molecules of FUS bind along RNA, bringing the 

low complexity N-terminus domains of these FUS molecules closer together, 

enhancing their propensity to aggregate. This RNA-protein complex is then capable of 

seeding the aggregation of non-RNA-based FUS via protein-protein interactions of the 

N-terminus to form a fibrous higher-order assembly with the ability to bind the C-

terminal domain of RNAP2 (Schwartz et al., 2013). This has provided a compelling role 

for the aggregation of FUS, not just simply in disease, but also in fundamental 

physiological processes. Further, these readily reversible, physiological FUS 

interactions more than likely play an important role in the integrity of previously 

discussed paraspeckles and RNA transport granules.  

 

Gain of toxic FUS function 

In baker’s yeast (Saccharomyces cerevisiae), the NLS of FUS does not result in its 

nuclear localisation (Ju et al., 2011), making it a useful model for studying the 

properties of FUS in the cytoplasm. Sun et al. (2011) used this model to efficiently 

screen the cytoplasmic aggregation and toxic properties associated with mutant FUS 
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variants. Previously, this model was used to show a requirement of RRM2 and C-

terminal domains for the aggregation and toxicity of TDP-43 and to show that ALS-

linked mutations in TDP-43 exaggerated these properties (Johnson et al., 2009). As 

with in vitro findings, the N-terminus of FUS, together with the RGG domain, was 

shown to be sufficient for aggregation in yeast (Sun et al., 2011), although the 

cytoplasmic aggregation properties of shorter N-terminus fragments were not assessed 

due to their nuclear retention. Unlike TDP-43, Sun et al. (2011) also determined that 

ALS-linked mutations did not significantly affect the aggregation or toxicity of FUS 

compared to cytoplasmically localised WT protein. Notably, it has been seen in parallel 

studies that increased levels of WT FUS in the cytoplasm of yeast is toxic (Kryndushkin 

et al., 2011; Fushimi et al., 2011; Ju et al., 2011; Sun et al., 2011). This provides 

further evidence that the mislocalisation of FUS to the cytoplasm, even in full length 

form, is a critical first step leading to toxicity. Supporting this, the addition of a yeast-

compatible NLS and uptake to the nucleus removed the toxicity associated with WT 

FUS (Ju et al., 2011).  

 

In addition to the phenotypes seen in Drosophila associated with the loss of Caz, 

similar phenotypes have been noted with the overexpression of human WT FUS or 

ALS-linked mutant variants. Overexpression of human WT FUS has resulted in 

reduced lifespan, locomotor impairments and a mild degenerate eye phenotypes in 

some (Miguel et al., 2012; Xia et al., 2012; Chen et al., 2011; Lanson et al., 2011) but, 

interestingly, not all (Wang et al., 2011) Drosophila models. Similar, and sometimes 

more severe, phenotypes have been seen when mutant FUS variants have been 

overexpressed, hypothesised to be a gain of toxic function induced by mutation (Chen 

et al., 2011; Lanson et al., 2011; Xia et al., 2012). Recently, however, Machamer et al. 

(2014) have provided an explanation for the increased toxicity associated with mutant 

forms compared to WT FUS, noting that simply the level of expression of WT or mutant 

FUS in the cytoplasm correlated with lethality and locomotor phenotypes, and found in 

previous studies that mutants were expressed at higher levels compared to WT FUS. 

Although Wang et al. (2011) did not see similar detrimental effects of FUS mutant 

overexpression in their hands, they report that their mutant proteins were retained in 

the nucleus, providing a possible explanation for these findings. Together this suggests 

that mislocalisation of FUS, rather than mutation is important in conveying a gain of 

toxic function. Similarly, Murakami et al. (2012) show that in Caenorhabditis elegans, 

where overexpressed mutant FUS was localised to the cytoplasm, severe motor 

dysfunctions were observed together with a shortened lifespan. Overexpression of WT 
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FUS, localised to the nucleus, was not capable of rescuing these phenotypes, 

opposing findings that loss of nuclear FUS function plays a role in these phenotypes.     

 

In recent years, a number of transgenic rodent models of FUSopathy have been 

generated, allowing the investigation of FUS and ALS-associated mutations in higher-

order systems (Table 1.2). 

 



 

 

 

Table 1.2. Rodent models of FUSopathy 

Species Model Survival Additional features Gain of 

function 

Loss of 

function 

Reference 

Mouse Homozygous knockout of 
FUS by exon 8 interruption  
 

Unimpaired on partially 
outbred background 
(129svev x CD1) in 
specific-pathogen-free 
housing 
Rare animals survive until 
weaning on inbred 
background (129svev) 

Male sterility 
Increased sensitivity to ionising radiation 
Loss of homologous DNA pairing ability in vitro  

 ✓ (Kuroda et 

al., 2000) 

Mouse Homozygous knockout of 
FUS* by exon 12 
interruption on C57BL6 
background 
 
 

Death within 16 h of birth  Lymphocyte development defects 
B cell activation defects 
Chromosomal instability 
 
Primary hippocampal cultures have abnormal 
dendritic spine morphology and reduced spine 
density 

 ✓ (Hicks et 

al., 2000) 

 

 

(Fujii et al., 

2005) 

Rat Expression of human FUS 
cDNA (TRE promoter) on 
Sprague-Dawley 
background 
 
 

Normal lifespan Line 20 
(measured to 1 year) 
 
Line name refers to copy 
number 

Spatial memory and learning deficits at advanced 
ages (1 year) 
Loss of neurons in frontal cortex and hippocampus 
at advanced ages 
No FUS+ inclusions 
Ubiquitinated inclusions at advanced ages 

✓  (Huang et 

al., 2011) 



 

 

 

Rat Expression of human FUS 
R521C cDNA (TRE 
promoter) on Sprague-
Dawley background 
 
 

<5 weeks Line 22 
<10 weeks Line 16 
 
Line name refers to copy 
number 

Progressive paralysis onset <5 weeks Line 22, <8 
weeks Line 16 
Degenerating axons corticospinal tract, ventral 
roots, dorsal roots 
Loss of neurons in frontal cortex and hippocampus 
No FUS+ inclusions 
Ubiquitinated inclusions in spinal cord and brain at 
paralysis stages 

✓(?) ✓(?) (Huang et 

al., 2011) 

Mouse Expression of human FUS 
with N-terminus V5-tag in 
predominantly neurons of 
brain from few weeks after 
birth using SBT 

Sacrificed at 3 months Asymptomatic 
Low level of FUS in cytoplasm 
 

N/A N/A (Verbeeck 

et al., 2012) 

 

Mouse Expression of human FUS 
R521C with N-terminus V5-
tag in predominantly 
neurons of brain from few 
weeks after birth using 
SBT 

Sacrificed at 3 months Asymptomatic 
Increased level of FUS in cytoplasm 
No FUS+ aggregates 

N/A N/A (Verbeeck 

et al., 2012) 

Mouse Expression of human FUS 

Δ14 (aa.1-478) with N-
terminus V5-tag in 
predominantly neurons of 
brain from few weeks after 
birth using SBT 

Sacrificed at 3 months Asymptomatic 
Pronounced level of FUS in cytoplasm 
Some FUS+/ubiquitin+ neuronal cytoplasmic 
inclusions  

N/A N/A (Verbeeck 

et al., 2012) 

Mouse Expression of human FUS 
cDNA with N-terminal HA-
tag  (PrP promoter) on 
C57BL6 background 

10-13 weeks for 
homozygous 
Normal lifespan for 
hemizygous (measured to 

Tremor at 4 weeks 
Hind-limb paralysis at 7-8 weeks 
Increased FUS in cytoplasm in brain 
FUS+ inclusions in spinal cord 

✓  (Mitchell et 

al., 2013) 



 

 

 

20 weeks) Motor neuron loss in spinal cord 
Mouse Expression of human FUS 

R521C with N-terminus 
FLAG-tag (Syrian hamster 
prion promoter) 

50% N1F1 generation 
survived beyond 8 weeks 
Oldest monitored to >1 
year 
 
Similar survival for 
subsequent generations 

Motor behavioural abnormalities 
Low level FUS in cytoplasm motor neurons 
DNA damage in cortical and spinal motor neurons 
Loss of spinal motor neurons (55%) at 1-3 months 
Reduced dendritic branching 
Synaptic defects 
Transcription and splicing defects 

✓(?) ✓(?) (Qiu et al., 

2014) 

Mouse Expression of human FUS 
(CAG promoter) on C57Bl6 
background 

<4 weeks (Lines 629 and 
638) 

Gait abnormalities and grip strength reductions day 
10-14 
Defective neuromuscular synapses at juvenile age 
Increased expression of genes linked to DNA 
replication, recombination and repair, and regulation 
of cell proliferation. 

✓  (Sephton et 

al., 2014) 

Mouse Expression of human 
R521G FUS (CAG 
promoter) on C57Bl6 
background 

50% Line 682 <10 weeks 
70% Line 673 <10 weeks 

Subtle motor impairment 
Sociability deficits 
Defective neuromuscular synapses in mice with 
motor impairments 
Very few gene expression changes in spinal cord 
motor neurons 
Altered dendritic branching in spinal cord motor 
neurons and somatosensory cortex 
Reduced activity dependent FUS at synapses 

✓(?) ✓(?) (Sephton et 

al., 2014) 

* low levels of truncated FUS protein expressed. Abbreviations: CAG, cytomegalovirus immediate early enhancer-chicken β-actin hybrid; SBT, somatic brain transgenesis; 

Dox, Doxycline.
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Overexpressing human WT FUS under the control of a prion protein (PrP) promoter in 

a homozygous knock-in mouse model was shown to cause a redistribution of FUS into 

the cytoplasm (Mitchell et al., 2013). These mice developed tremor at 4 weeks, motor 

dysfunction by 8 weeks and rapid disease progression including paralysis by 10-13 

weeks. FUS-positive structures were seen in brain and spinal cord, although these 

were not generally ubiquitinated and there was loss of motor neurons in the spinal 

cord. Neuromuscular function was also impaired in these mice. Together this highlights 

redistribution of WT FUS into the cytoplasm above a threshold as sufficient to cause 

toxicity and degeneration of motor neurons leading to motor deficiencies, although it 

has not been explained why these features were not seen in heterozygous mice.   

 

More recently, others have also produced mouse models that express either WT or 

ALS-associated mutant FUS. Expressing low levels of WT or FUS R521C, with no FUS 

detected in the cytoplasm, was sufficient to cause reduced survival and defects at 

neuromuscular junctions that may represent early events prior to FUS mislocalisation 

and aggregation (Sephton et al., 2014). Further, another FUS R521C model, with a low 

level of FUS in the cytoplasm, displayed synaptic defects and neurodegeneration (Qiu 

et al., 2014), supporting a role for FUS in these processes. 

 

Prior to this, Huang et al. (2011) had developed the first rodent models of FUSopathy. 

These transgenic rats overexpressed either full length human FUS or human FUS 

harboring the R521C mutation, a relatively common mutation in ALS-FUS patients. The 

mutant FUS rats developed a progressive paralysis whereas rats overexpressing 

human WT FUS were phenotypically normal at this age but later displayed abnormal 

spatial learning and memory. In both models, loss of cortical and hippocampal neurons 

was observed and was accompanied by loss of motor axons but not motor neurons in 

the mutant FUS model. No typical FUS-positive inclusions were seen in these rats, 

likely due to the minimal cytoplasmic redistribution of FUS that was caused by R521C 

mutation or WT overexpression. Neurodegeneration was accompanied by aggregates 

of ubiquitin only in FUS-expressing cells and glial activation in both models. Huang et 

al. (2012) also showed in a separate model that inducing the expression of human 

R521C FUS specifically in the neurons of the rat forebrain at postnatal day 30 resulted 

in a spatial learning and memory deficit and neurodegeneration in the hippocampus 

and cortex, preceded by neurite loss. These rats demonstrated mislocalisation of FUS 

to the neurites and spines to varying degrees with neurons of the entorhinal cortex, 

part of the temporal lobe associated with FTLD, found to show the greatest 

accumulations. As with previous models, although ubiquitin aggregates were seen, 
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these did not colocalise with FUS. This work supports findings that altered regulation of 

FUS is capable of producing ALS-like and FTLD-phenotypes. However, with these 

mice failing to display FUS aggregation in the cytoplasm, as seen in FUSopathy 

patients, a better model that recapitulates this crucial aspect of pathology is needed.  

 

In day 0 mouse neonates, Verbeeck et al. (2012) used bilateral intracerebroventricular 

injection of recombinant adeno-associated virus carrying either WT or mutant human 

FUS cDNA (R522G or Δ14) to produce expression of these protein variants in neurons 

throughout the brain. This expression reached a maximum ∼3 weeks after birth and 

continued throughout their life. No phenotypic abnormalities were detected in these 

mice at 3 months when animals were sacrificed. Mice expressing human WT FUS 

showed a nuclear localisation of FUS and failed to demonstrate any signs of toxicity 

caused by its overexpression at this age. Like the aforementioned rat model, mice 

expressing R522G FUS showed a degree of cytoplasmic mislocalisation but this was 

not accompanied by FUS-positive NCIs. On the other hand, mice expressing Δ14 FUS, 

a mutant protein thought to arise from G466VfsX14 human FUS mutation, showed the 

greatest degree of FUS in the cytoplasm and displayed FUS-positive NCIs in cortical 

neurons. However, in these mice, expression was limited to the brain. As the ALS 

prominently affects lower motor neurons and skeletal muscle, a more ubiquitous 

expression of these constructs would be preferable to model these aspects of disease.  

 

Although providing valuable information about the progression of disease in ALS, toxic 

effects mediated by expressing full length forms of FUS may arise through several 

pathways. It is highly likely that by expressing full length forms of FUS, FUS-regulated 

RNA metabolism will be altered and, whilst some studies showed a degree of FUS 

aggregation, it is not possible to distinguish the contributions of these features to the 

disease process. This will be important in future models to decipher crucial pathological 

stages that may be pharmacologically targeted.  

 

In summary, following mislocalisation of FUS to the cytoplasm, two simplified scenarios 

emerge (Figure 1.9). Loss of FUS from the nucleus can disrupt its normal nuclear roles 

including transcription, RNA metabolism and DNA repair, whilst gain of FUS in the 

cytoplasm can produce toxicity, and, importantly, there are several lines of evidence 

described that support each possibility. To fully appreciate the pathological 

mechanisms involved in the development and progression of ALS-FUS, and to 

potentially understand themes that may be common to ALS or other FUSopathies as a 
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whole, it will be key to understand what happens to FUS following its mislocalisation to 

the cytoplasm and how this may convey toxicity. 

 

 

 

Figure 1.9. Hypotheses of the origins of toxicity in FUSopathies. (1) FUS is a predominantly nuclear 

protein, with evidence for increased presence at synapses and in transport granules (not shown). 

However, following certain pressures (purple), FUS can become largely mislocalised to the cytoplasm. 

Toxicity in these instances may arise from either (2) loss of normal nuclear function(s) of FUS and/or (3) 

toxic gain of function of FUS in the cytoplasm. (4) Additionally, large FUS-positive inclusions are formed in 

the cytoplasm of these patients, whilst the pathways preceding this are unknown. Finally, it remains to be 

seen whether these inclusions are toxic or instead represent a cytoprotective response of the cell.  

 

 

Interactions of FUS aggregates in the cytoplasm 

Similarly to TDP-43, mutant FUS localised to the cytoplasm as a direct result of 

mutation has been shown to reversibly accumulate in SGs in mammalian cell culture 

(Dormann et al., 2010; Bosco et al., 2010; Vance et al., 2013). The recruitment of FUS 

to SGs has been shown to be dependent upon its RNA-binding domains (Bentmann et 

al., 2012) although WT FUS is not necessary for SG formation and, unlike TDP-43, 

recruitment to SGs seems specific to mutant varieties. However, as is the case for 

TDP-43, the role for this interaction of FUS and SG proteins in ALS pathogenesis is 

debatable. Dormann et al. (2010) propose that SGs could be a precursor for the large 

FUS-positive inclusions seen in patients and that recruitment of FUS to these 

structures instigates the pathological accumulation of FUS in a gain of toxic function 

mechanism of the SGs themselves. However, this agglomeration of SGs has not been 

evidenced and as stress granules normally have a protective role, readily dissipating 

following the removal of stress, it is instead feasible that aggregating mutant FUS may 

disrupt the normal formation and/or dynamics of SGs (Baron et al., 2013). Indeed, 

supporting this disruptive hypothesis, proteins normally localised to SGs can colocalise 

with FUS-positive inclusions in ALS patients (Dormann et al., 2010). To understand 
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how FUS is aggregating within the cytoplasm in ALS it will be important to further 

investigate these interactions of FUS with SGs. 
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1.8 Aims 

Even in 2015, a diagnosis of ALS remains terminal, with current pharmacotherapies 

failing to provide an appropriate standard of treatment. Over the past 20 years, the 

ongoing discovery of the genetic, pathological and clinical features of the disease has 

been rapid, and although several themes have surfaced, these require further research 

with the hope of uncovering novel therapeutic targets.  

 

With the emergence of altered RNA metabolism as an underlying disease mechanism, 

and a growing body of evidence implicating RNA-binding proteins in the pathogenesis 

ALS, it is important to fully understand the functions of these proteins in normal and 

disease states.  

 

Mutations in the gene encoding the RNA-binding protein FUS are known to cause ALS 

and FUS it is frequently observed in large cytoplasmic inclusions in ALS-FUS, FTLD 

and in certain other neurodegenerative diseases. Whilst it is thought that FUS 

mislocalisation to the cytoplasm represents a key stage in disease pathogenesis, 

relatively little is known about its interactions once in the cytoplasm and the pathways 

that lead to its aggregation into the large inclusions identified post-mortem within the 

surviving motor neurons of patients. Therefore, the first two aims of this thesis were to: 

 

1) Explore the relationship between FUS aggregation in the cytoplasm and 

interactions with stress granules in the pathogenesis of disease 

 

2) Reveal how the RNA-binding capacity of FUS affects its propensity to 

aggregate both in vitro and in vivo 

 

For this, GFP-tagged mutant constructs of FUS, harbouring both ALS-associated and 

experimental mutations, were generated and expressed transiently in mammalian cell 

lines. The behaviour and interactions of these mutant proteins and their responses to 

various interventions, including oxidative stress, were assessed using 

immunocytochemistry and biochemical techniques. In addition, mice expressing a C-

terminally truncated form of FUS, lacking its major RNA binding domains, were 

generated and characterised to determine at the level of the whole organism whether 

initial insult of aggregation of FUS in the cytoplasm is toxic, irrespective of primary 

changes to RNA metabolism that would be expected following increased expression of 

full length forms. These studies were complemented with the characterisation of a 



  INTRODUCTION 

 

  45 

second transgenic model generated through the neuronal expression of a form of 

cytoplasm-targeted FUS that lacked the RNA-recognition motif.  

 

In addition to investigating the pathways that may lead to a gain of toxic function in the 

cytoplasm, this thesis aimed to investigate the effects that ALS-associated FUS 

mutants may have within the nucleus.  

 

Loss of normal FUS function in the nucleus has also been shown to be detrimental, 

notably, FUS KO is lethal. Yet, whilst evidence about the physiological roles of FUS in 

the nucleus is increasing, the sub-nuclear localisation of FUS and the effects of ALS-

associated mutations on this are not known. Therefore, this thesis also aimed to: 

 

3) Delineate the interactions of FUS with subnuclear compartments and 

determine the effects of FUS mislocalisation to the cytoplasm on these 

interactions  

 

For this, the location of FUS within the nucleus of cultured mammalian cells was 

revealed by immunocytochemical colocalisation studies with markers of known nuclear 

bodies and the domain requirements of FUS recruitment to these compartments was 

established. To ascertain how gain of FUS in the cytoplasm may affect these 

interactions, the localisation of FUS and marker proteins of subnuclear bodies  shown 

to contain FUS were assessed following expression of GFP-tagged ALS-associated 

mutant FUS. This was also investigated in our murine model of FUSopathy and in 

human ALS-FUS patient tissues. In a reversal of this, we also probed the effects that a 

reduction in the nuclear level of FUS can have on these subnuclear bodies by using 

FUS-targeting small interfering RNA (siRNA).  

 

Although the genetic background and pathology of ALS is diverse, notably, many 

patients have no obvious genetic component, increased understanding of individual 

RNA-binding proteins will not only be essential for understanding the relevant genetic 

subsets of the disease, but may highlight pathways common to ALS as a whole. 
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Unless stated otherwise, materials used for this thesis were sourced from Sigma-

Aldrich. 

 

2.1 Generation of mutant FUS cDNA constructs  

In addition to driving the expression of recombinant protein-coding sequences in 

mammalian cell lines, expression plasmids were used to add easily detectable tags to 

proteins of interest. Importantly, in addition to producing tagged full-length FUS, 

molecular cloning methods were used to create tagged FUS proteins harboring desired 

ALS-linked or experimental mutations. Further, these methods were employed to 

create a number of truncated and chimeric proteins to investigate the roles of various 

domains of FUS. Although described in detail in the following sections, briefly, human 

cDNA was used as a template for amplification of the sequence of interest using 

primers designed to add specific restriction enzyme sites to each end of the sequence. 

These additional restriction sites allowed for orientation specific insertion of the insert 

fragment into the expression plasmid in later steps. Blunt ended PCR fragments were 

then cloned into the pCR-Blunt II-TOPO vector (Invitrogen) that permits efficient and 

rapid cloning. The fragment of interest was digested from this plasmid using the 

chosen combination of restriction enzymes. Likewise, the vector plasmid was digested 

with corresponding restriction enzymes. Both vector and insert fragments, now with 

complementary ‘sticky ends’ were purified from agarose gel and ligated together to 

produce an expression plasmid that, upon entering a mammalian cell, drove the 

expression of the tagged recombinant protein (Figure 2.1).  
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The following constructs were used in this thesis: 

 

Protein Tag Fragment/ mutation PCR template Created by 

FUS 

N-terminal 
EGFP 

1-359 Human cDNA NN 

N-terminal 
EGFP 

359-526 (to create 
WT) 

Human cDNA NN 

N-terminal 
EGFP 

R522G FUS WT in pEGFP-C1 NN 

N-terminal 
EGFP 

1-513 (ΔNLS) FUS WT in pEGFP-C1 NN 

N-terminal 
EGFP 

1-466 (dRGG3) FUS WT in pEGFP-C1 HKR 

N-terminal 
EGFP 

ΔRRMcyt 
FUS R522G in pEGFP-
C1 

HKR 

N-terminal 
EGFP 

ΔRRM FUS WT in pEGFP-C1 NN 

N-terminal 
EGFP 

CT FUS WT in pEGFP-C1 HKR 

N-terminal 
EGFP 

RRM-CT FUS WT in pEGFP-C1 TAS 

N-terminal 
EGFP 

dRRM-RGG3 
FUS  ΔRRM  in pEGFP-
C1 

TAS 

N-terminal 

EGFP 
R518K FUS WT in pEGFP-C1 NN 

N-terminal 
EGFP 

R524T FUS WT in pEGFP-C1 NN 

P54nrb 
N-terminal 
EGFP 

WT Human cDNA TAS 

TDP-43 
N-terminal 
EGFP 

WT Human cDNA TAS 

MTAP 
N-terminal 
FLAG 

WT Human cDNA TAS 

Chimeric Proteins 

  

N-terminal 

EGFP 
Sup35-FUS Yeast cDNA HKR 

N-terminal 
EGFP 

FUS-TDP43-RRMs Human cDNA HKR 

N-terminal 
EGFP 

FUS-TDP43-RRMs-
3D 

Human cDNA HKR 

N-terminal 
EGFP 

FUS-Npl3 Yeast cDNA HKR 

HKR, Hannah Kirby Robinson (author of thesis); NN, Natalia Ninkina; TAS, Tatyana Shelkovnikova 

 

For detailed information on how these were created, including primers for amplification 

and restriction enzymes used see Appendix. 
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Figure 2.1. Overview of molecular cloning steps taken to create expression plasmids that drive the 

expression of tagged recombinant proteins of interest.   
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2.1.1 Expression plasmids 

Sequences of interest were inserted downstream and in frame with existing tag-

encoding sequences in the expression plasmid of choice. The cloning strategy for 

expression plasmids were designed as follows: 

 Restriction sites introduced 

with primers during 

amplification of insert 

Plasmid 

name 
Tags 

Plasmid 

digest 

enzymes 

Vector 

size 

produced 

(bp) 

5’ of 

sequenc

e 

3’ of 

sequence 

pEGFP-C1 N-terminus 

EGFP 

XhoI/BamHI 4684 XhoI BamHI 

pFLAG-

CMV4 

N-terminus 

FLAG 

HindIII/KpnI 6229 HindIII BamHI 

 

For expression plasmid maps and additional information including primers used for 

sequencing, see Appendix.  

 

2.1.2 RNA extraction and first-strand cDNA synthesis 

In some cases, human cDNA was used as a template for PCR amplification of insert 

fragments. For this, total RNA was isolated from cultured human neuroblastoma (SH-

SY5Y) cells using the RNeasy mini kit (Qiagen) according to manufacturer’s 

instructions. Briefly, cells were homogenized in RLT buffer, which contains a high 

concentration of the chaotropic agent, guanidine isothiocycanate. Together with the 

addition of β-mercaptoethanol, any RNases in the lysate were inactivated. The addition 

of ethanol then promoted the binding of RNA to a silica spin-column membrane. 

Following an extra DNase digestion step using the RNase-free DNase Set (Qiagen) 

and washing of the membrane, RNA was eluted in 50 µl RNase-free H2O (Ambion). 

RNA concentration and integrity were determined using a Nanodrop 1000 

Spectrophotometer (ThermoScientific). First-strand cDNA synthesis was carried out on 

500 ng total RNA using SuperScript III reverse transcriptase (Invitrogen) and random 

hexamers (Promega) according to manufacturer’s instructions. 

 

2.1.3 PCR 

Either pre-existing plasmid DNA or cDNA synthesised from total RNA was used as a 

template for PCR reactions. Custom synthesised primers were designed using A 

Plasmid Editor (ApE) v2.0.45 and Primer 3 software to amplify specific regions of 
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interest and to introduce mutations. In addition, primers were used to introduce 

restriction enzyme sites, compatible to those later required for orientation specific 

insertion of the sequence into the expression plasmid, both 5’ and 3’ to the sequence 

of interest.  

 

For the production of blunt ended PCR products for cloning, DNA sequences were 

amplified with high fidelity AccuPrime Pfx SuperMix (Invitrogen). To this, 0.2 µM 

forward and reverse primers and ~1 ng template DNA were added in a 25 µl reaction. 

For a complete list of all primer sequences and corresponding amplicon sizes, see 

Appendix. 

 

Typical cycling parameters: 

1 cycle 95ºC for 2 min (denaturing) 

44 cycles 95ºC for 15 sec (denaturing) 

50-60ºC for 30 sec (annealing) 

68ºC for 1 min/kb (extension) 

1 cycle 68ºC for 5 min (finish all extension) 

1 cycle 4ºC ∞ (storage until removed) 

 

For PCR where the product was diagnostic rather than for further cloning, typically, 

PCR reactions were carried out in 50 µl reactions using the following concentrations of 

components: 

 

Typical PCR reaction: 

10X Standard Taq reaction buffer (New 

England Biolabs (NEB)) 

1x 

dNTPs (Promega)  200 µM 

Forward & reverse primers 0.2 µM 

Template DNA  ~100 ng 

Taq polymerase (NEB) 1.25 units 

     

 

2.1.4 Agarose gel electrophoresis 

Agarose gels were prepared using 1X TAE (40 mM Tris, 20 mM acetic acid, 1 mM 

EDTA), agarose and ethidium bromide. Typically, to confirm the size of either PCR 

products or restriction digest products, loading buffer (Finnzymes) was added to the 
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reaction products and the mixture then loaded into a well of a 1% agarose gel 

alongside 5 µl ladder (HyperLadder 1kb, Bioline). Gels were run at 140 mA until 

desired separation was reached. In some instances, the percentage of gel and choice 

of ladder were adjusted for optimal separation and identification of either small (<200 

bp) or large (>3000 bp) DNA fragments. Following separation, the location of DNA 

fragments was visualised using UV light. For PCR reactions where the product’s 

intended use was in molecular cloning, only a sample of the reaction was added to 

loading buffer and subjected to gel electrophoresis to confirm the presence of a single 

product of the correct size. The remaining PCR product was set aside for cloning into 

pCR-Blunt II-TOPO plasmid.  

 

2.1.5 Isolation of DNA fragments  

In instances where PCR could not be optimised to produce a single product, the band 

corresponding to the correct size fragment was isolated from agarose gel. The gel was 

illuminated under long-wave UV light and the required band was excised using a clean, 

sharp scalpel. DNA was then purified from the excised agarose using the QIAquick Gel 

Extraction Kit (Qiagen). DNA fragments were eluted in dH2O. This method was also 

used to isolate the correctly sized fragment of interest from multiple fragments following 

restriction enzyme digestion of plasmids. 

 

2.1.6 Cloning into pCR-Blunt II-TOPO vector and transformation of cells 

Blunt ended PCR products, produced by amplification with AccuPrime Pfx SuperMix, 

were ligated into pCR-Blunt II-TOPO vector (Invitrogen) using the Zero Blunt TOPO 

PCR Cloning Kit (Invitrogen) according to manufacturer’s instructions. This technology 

utilises the ability of DNA topoisomerase I enzyme, from Vaccinia virus, attached to 

each 3’ end of the linearised pCR-Blunt II-TOPO plasmid at 5’-CCCTT-3’, to produce a 

phosphodiester bond, ligating blunt-ended PCR product into the vector in a 5 minute 

reaction (Figure 2.2) (Shuman, 1994; Shuman, 1991).   
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Figure 2.2. TOPO cloning ligation reaction utilises DNA topoisomerase I enzyme to introduce blunt-ended 

PCR products into the linearised pCR-Blunt II-TOPO vector. Upon cleavage of 5’-CCCTT-3’ by 

topoisomerase I, energy is conserved through covalent bonding of a 3’ phosphate (P) to the tyrosyl residue 

of the enzyme (Tyr-274). Conversely, this energy is then used for the ligation of PCR product into the 

vector. Image taken from the Zero Blunt TOPO PCR Cloning Kit manual (Invitrogen).  

 

For a complete map of pCR-Blunt II TOPO vector including sequencing primers, see 

Appendix.  

 

50µl aliquots of high efficiency NEB 5-alpha competent E.Coli (NEB) normally stored at 

-80ºC were defrosted on ice for 10 min prior to addition of ligation products. 2 µl of 

TOPO cloning reaction or T4 ligase ligation reaction was added to the competent cells, 

followed by further incubation on ice for 25 min. To permit uptake of plasmids by the 

cells, cells were subjected to heat shock at 42ºC for 30 s and incubated on ice for 2 

min. 500 µl SOC medium was added and the cells then incubated at 37ºC for 1 h with 

shaking. Bacterial cells were pelleted at 4500 rpm for 2 min, resuspended in 50 µl SOC 

medium (Invitrogen) and spread onto LB agar antibiotic selection plates. Plates were 

incubated overnight at 37ºC.  

 

2.1.7 Preparation of bacterial culture media 

To produce Luria broth (LB) for liquid bacterial cultures, 25 g LB base (Invitrogen) was 

added to 1 L dH2O. For Luria agar (LA), 1 g select agar (Invitrogen) was added per 100 

ml LB. Both LB and LA were autoclaved for sterilisation. For selection of transformed 

cells, the desired selection antibiotic was added at a final concentration of 50 µg/ml 

once the media had cooled below 50°C. Ampicillin or kanamycin were frequently used 

as selection antibiotics. Luria agar with added antibiotics (LA+) was then set in 10 cm 

diameter sterile dishes. Both LA+ dishes and Luria broth with added antibiotics (LB+) 

were stored at 4ºC.  
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2.1.8 Single bacterial colony culture 

Following overnight growth of colonies on antibiotic selection agar plates, single 

colonies were picked and grown overnight at 37ºC in 5 ml LB+ with vigorous shaking to 

maintain aeration.  

 

2.1.9 Colony PCR 

Colony PCR was used to quickly establish the possibility that the single colonies of 

transformed bacterial cells had taken up plasmid containing the desired fragment of 

DNA. For this, 0.5 ml overnight liquid culture was pelleted at 4500 rpm and cells were 

resuspended in 50 µl dH2O. To lyse the bacterial cell membrane, samples were 

incubated for 10 min at 95ºC. To clear cell debris, samples were centrifuged for 10 min 

at 13000 rpm and the supernatant taken for subsequent PCR reactions. If the correct 

fragment size was observed following agarose gel electrophoresis, plasmid DNA was 

purified from the remaining liquid culture.                                                                                                  

 

2.1.10 Purification of plasmid DNA from bacteria 

Plasmid DNA was purified from overnight bacterial cultures using a ZR Plasmid 

Miniprep kit (Zymogen) according to manufacturer’s instructions. This kit utilises an 

alkaline lysis protocol in combination with a spin column membrane that permits 

binding and washing of plasmid DNA in the presence of chaotropic salt and its 

subsequent elution under low salt conditions. Purified plasmid DNA was eluted in 30 µl 

dH2O. The concentration of purified plasmid DNA was determined using a NanoDrop 

1000 spectrophotometer (ThermoScientific). 

 

2.1.11 Restriction enzyme digest 

To further determine the likelihood of correct fragment insertion into the vector, 

diagnostic restriction enzyme digests were performed on purified plasmid DNA 

samples. To allow for variability in purity and quantity of DNA, manufacturers 

recommended performing digests in excess enzyme conditions. Typically, 10 units of 

restriction enzyme were used to digest 1 µg plasmid DNA in a 50 µl reaction, with the 

appropriate enzyme buffer (NEB) accounting for 10% final volume. Reactions were 

incubated at 37ºC for a minimum of 1 h. Agarose gel electrophoresis of digest products 

was performed to determine fragment sizes produced, allowing determination of 

correct insertion into the vector. Restriction digests were also used to isolate fragments 

of known DNA sequence for further use in subcloning. Following agarose gel 

electrophoresis, the desired fragment was isolated and purified from agarose gel.  
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2.1.12 Ligation 

Following digestion and isolation of both vector and desired insert(s), ligation was 

performed using T4 DNA ligase (Invitrogen) according to manufacturer’s instructions. 

To determine the concentration of fragments, 5 µl of each fragment was run alongside 

5 µl ladder with a band pattern of known concentration on an agarose gel. Typically 

ligations were performed using a insert:vector molar ratio of 3:1, although this was 

increased for multiple insert ligations. The following formula was used to achieve this 

ratio: 

 

 

 

 

 

Ligation reactions were incubated at 17ºC and slowly cooled to 4ºC overnight.  

 

2.1.13 Sequencing 

Plasmids were sequenced by the Cardiff University Sequencing Core facility using 

relevant primers (for details, see Appendix) to confirm correct sequence insertion and 

orientation. Analysis of sequences was carried out in SnapGene Viewer v1.4 (GSL 

Biotech) and ApE v2.0.45.  

 

2.1.14 Frozen bacterial stocks 

For long-term storage, liquid bacterial cultures transformed with plasmid containing 

desired sequence(s) were frozen in 25% glycerol and and maintained at -80ºC. When 

plasmid was required, a small sample of the frozen bacterial suspension was streaked 

onto an LA+ selection plate and incubated overnight at 37ºC. A single colony was then 

taken to produce overnight liquid cultures in LB+ media from which plasmid was 

isolated.  

 

2.2 Mammalian cell culture and biochemical investigations 

2.2.1 Maintenance of mammalian cell lines 

Human neuroblastoma (SH-SY5Y), African green monkey kidney fibroblast-like 

(COS7) or human breast cancer (MCF7) cell lines were cultured in a humidified 

atmosphere with 5% CO2 at 37°C in a 1:1 mixture of Dulbecco’s modified Eagle’s 

medium (Invitrogen) and Ham’s F-12 nutrient mixture (Invitrogen), supplemented with 

10% foetal bovine serum (Invitrogen), 1% L-glutamine (Invitrogen) and 1% penicillin 

and streptomycin solution (Invitrogen). The majority of in vitro work was performed in 

Insert mass required    =    vector mass (ng) x insert size (kb)    x      insert  ratio 

            (ng)                                       vector size (kb)                           vector 
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SH-SY5Y cell line due to its neuronal lineage. COS7 cells were at times used for 

immunoprecipitation or immunofluorescence as their larger size provided more material 

and easier visualisation of protein interactions. MCF7 cells were used in methylation 

studies for paraspeckles.  

 

2.2.2 Transfection of mammalian cell lines 

24 h after splitting and plating, cells were transfected with expression plasmids or small 

interfering RNA (siRNA) using Lipofectamine 2000 reagent (Invitrogen) according to 

manufacturer's instructions. Lipofectamine is a cationic lipid which, when combined 

with negatively charged nucleic acid, forms a transfection complex permitting 

endocytosis of the expression plasmid.  

 

2.2.3 Cell treatments 

To induce stress granule formation, heat shock or sodium arsenite was used. For heat 

shock, cells were incubated for 1 h at 43°C. Sodium arsenite was used at a final 

concentration of 0.5 mM diluted in normal growth medium for 1 h. For disruption of 

microtubules, nocodozole was applied at a final concentration of 0.5 or 1 µM for 4 h. 

For translational inhibition, emetine and cycloheximide were used at final 

concentrations of 10 and 20 µg/ml, respectively. For transcriptional inhibition, 5 µg/ml 

actinomycin D (Calbiochem) or 25 µg/ml 5,6-dichloro-1-beta-D-

ribofuranosylbenzimidazole (DRB) (Sigma-Aldrich) were applied for 2 h. To decrease 

levels of protein methylation, 5′-deoxy-5′-methylthioadenosine (MTA) was applied to 

SH-SY5Y cells in full medium at a final concentration of 750 µM for 24 h. For nucleolus 

staining living cells were exposed to 10 µg/ml of ethidium bromide for 2 h prior to 

fixation. 

 

2.2.4 Knockdown of FUS with siRNA 

To achieve knockdown of endogenous FUS, cells were transfected with a FUS-specific 

pool of siRNAs, SiGENOME SMART pool M-009497-02 (target sequences: 5′-

ccuacggacagcagaguua-3′, 5′-gauuauacccaacaagcaa-3′, 5′-gaucaauccuccaugagua-3′, 

5′-cgggacagcccaugauuaa-3′) (Thermo Scientific). Upon entry into the cell, this double 

stranded siRNA binds to the RNA-induced silencing complex (RISC). Here, the two 

RNA strands become separated, leaving a specific sequence-targeting activated RISC. 

This binds the complementary target mRNA sequence and cleaves it, reducing the 

pool of target mRNA and subsequently, level of the target protein itself (Elbashir et al., 

2001). As a control for off-target effects, non-specific scrambled siRNA sequences 
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(target sequence: 5′-ggacuaauaguugugcuccaauuua-3′) (Invitrogen) was used. Cells 

were analysed 72 h post-transfection to allow sufficient time for knockdown to take 

place. 

 

2.2.5 Primary mouse hippocampal cultures 

All primary hippocampal cultures were prepared by Dr Tatyana Shelkovnikova. 

Hippocampi were dissected from non-transgenic C57Bl6 pups at postnatal day 3. 

Hippocampal tissues were then digested in 0.1% trypsin in HBSS supplemented with 

10 mM Hepes and 1 mM pyruvate (Invitrogen) for 40 min. To free cells, hippocampi 

were mechanically dissociated by several passages through a flame-polished glass 

pipette in Neurobasal A medium (Invitrogen) with 50 U/ml penicillin/streptomycin, 0.2% 

b-mercaptoethanol (Sigma), 500 mM L-glutamine and 10% horse serum (Invitrogen). 

Following centrifugation at 1500 rpm for 5 min, pellets were resuspended in fresh 

medium and plated onto poly-L-lysine-coated glass cover slips. Medium was replaced 

with serum-free medium containing B27 after 24 h. On DIV7, mixed neuronal-glial 

cultures were transfected with Lipofectamine 2000 using an adapted protocol, whereby 

Lipofectamine-DNA complexes were left on cells for only 1 h and replaced with normal 

culture medium. Cells were fixed and stained 48 h after transfection.  

 

2.2.6 Live cell imaging 

To monitor localisation and interactions of GFP-tagged FUS constructs over time, 

COS7 cells or SH-SY5Y cells were plated on glass-bottomed tissue culture dishes and 

transfected with GFP-tagged FUS mutant constructs. 24 h post-transfection, growth 

culture media was replaced with HEPES-buffered media (10 mM HEPES-KOH, pH 7.5) 

to maintain physiological pH outside a CO2 incubator, with or without 0.5 mM sodium 

arsenite treatment. Still images were obtained every 8 minutes for ∼4 h using a Leica 

TCS SP2 MP confocal microscope, equipped with an on-scope incubator with 

temperature control (Leica Microsystems) under a Fluotar L 63x1.4 oil objective. Live 

cell imaging videos were created using Leica Application Suite AF software and still 

images, corresponding to every 15 min, were used to create 16-frame gallery images.  

 

2.2.7 Immunocytochemistry 

Immunocytochemistry was performed to identify the cellular localisation of various 

proteins of interest. For this, cells were plated on 10 mm diameter round glass 

coverslips (VWR international) pre-treated with poly-L-lysine. Following transfection, 

cells were fixed with 4% paraformaldehyde (PFA) for 15 min, permeabilised in ice cold 

methanol for 5 min and blocked for 1 h at RT in blocking buffer (1% TritonX-100, 5% 



MATERIALS & METHODS 

58 

goat serum in PBS). Cells were incubated overnight at 4ºC in primary antibodies 

diluted in blocking buffer (for list see Appendix). Following washes in PBS, Alexa-Fluor-

conjugated secondary antibodies (anti-mouse, anti-rabbit, and/or anti-chicken, 1:1000, 

Invitrogen) diluted in 1% TritonX-100 in PBS were applied for 1.5 h at RT. 4',6-

diamidino-2-phenylindole (DAPI) (Invitrogen), applied at a final concentration of 1 µg/ml 

during final washing step, was used to visualise nuclei. Cells were mounted with 

ImmuMOUNT (ThermoScientific) and imaged with a 100x objective using a BX61 

fluorescence microscope and Cell F software (Olympus).  

 

Fluorescence intensity measurements were performed 24 h post-transfection with 

GFP-tagged R522G. Following image capture using Cell F software, Image J software 

was used to measure fluorescence intensity in 3 non-overlapping 2.5 x 2.5 µm squares 

placed at random in the cell cytoplasm. From this, the mean fluorescence intensity 

measurement was calculated.  

 

2.2.8  RNA-fluorescent in situ hybridisation (RNA-FISH) 

RNA-FISH was used to determine the localisation of poly(A)+ mRNA within cultured 

cells. Cells were fixed and permeabilised as for immunocytochemistry. Following this, 

cells were incubated in 70% ethanol for 10 min followed by 1 M Tris pH 8.0 for 5 min. 

Cells were then incubated in fluorescently-labelled (Cy5) oligo(dT)30 probe, 

complementary to the poly(A) tail of mRNA, overnight at 37°C at a final concentration 

of 1 µM in hybridisation buffer (2X SSC, 25% formamide, 10% dextran sulphate, 

0.005% BSA, 1 mg/ml yeast tRNA). To prevent drying in the incubator, culture vessels 

were placed in a sealed bag containing a fibre cloth (VWR) soaked in DEPC-treated 

water. Where RNA-FISH was used in combination with immunodetection of a protein, 

cells were exposed to primary antibodies diluted in 2X SSC, 0.1% TritonX-100 for 3 h 

at RT, followed by incubation with Alexa Fluor-conjugated secondary antibodies 

(1:1000 in 2X SSC, 0.1% TritonX-100) and DAPI. To prevent degradation of RNAs, 

DEPC-treated water (Ambion) was used throughout. For RNA-FISH, images were 

taken using BX61 microscope and processed using Cell F software. 

 

2.2.9 Cellular fractionation 

Cellular fractionation was performed to isolate detergent soluble and insoluble 

aggregated fractions. Cells were collected in ice cold lysis buffer (0.1% Triton X-100, 

protease inhibitor cocktail (Roche) in PBS) and incubated on ice for 30 min with 

periodic vortexing to ensure appropriate lysis. Where RNase digestion was required, 

RNase A was added at a final concentration of 1 mg/ml for 25 min at RT. Lysates, with 
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or without RNase treatment, were then centrifuged at 17000 g for 20 min. Supernatant 

was recovered as the soluble fraction and the pellet was recovered as the insoluble 

fraction. For isolation of cellular fraction enriched for granules, following lysis cells were 

instead centrifuged at 1000 g for 10 min to remove nuclei and then 17000 g for 20 min 

to remove larger aggregates and organelles. Supernatant was further subjected to 

centrifugation at 100000 g for 20 min to produce the granule-enriched pellet and 

soluble supernatant. All centrifugation steps were performed at 4°C. 

 

2.2.10 SDS-PAGE and western blotting 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed to achieve separation of proteins according to molecular weight. Pore size 

within polyacrylamide gel is determined by the percentage of acrylamide and bis-

acrylamide. Casting SDS-PAGE gels at specific percentages allowed for optimal 

separation of proteins in differing molecular weight ranges. All gels were cast in two 

parts; a larger resolving gel of pH 8.8, topped with a smaller stacking gel of pH 6.8.   

 

Stacking gel  6% gel 

dH2O 1.65 ml 

30% Acrylamide/bis-acrylamide 0.5 ml 

1.25 M Tris Base (pH 6.8) 310 µl 

10% SDS 25 µl 

10% APS 25 µl 

TEMED 2.5 µl 

 

Protein samples for western blotting, either monolayer cell cultures or murine tissue, 

were homogenised directly in 2X Laemmli gel-loading buffer and then boiled for 5 min. 

To remove debris, samples were centrifuged at 13000 rpm and supernatant collected 

and used for SDS-PAGE.  

Resolving gel (for 2 gels) 8% gel 10% gel 14% gel 

dH2O 4.63 ml 3.97 ml 2.63 ml 

30% Acrylamide/bis-acrylamide 2.67 ml 3.33 ml 4.67 ml 

1.25 M Tris Base (pH 8.8) 2.5 ml 2.5 ml 2.5 ml 

10% SDS 100 µl 100 µl 100 µl 

10% APS 100 µl 100 µl 100 µl 

TEMED 10 µl 10 µl 10 µl 
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2X Laemmli gel-loading buffer: 

100 mM Tris-HCl (pH 6.8) 

20% glycerol 

4% SDS 

0.2% bromophenol blue 

200 mM 2-mercaptoethanol 

 

Equal amounts of sample in 2X Laemmli buffer were loaded into the wells of the 

stacking gel and were run alongside 5 µL Precision Plus Protein Dual Color standard 

(BioRad) to allow molecular weight to be determined. Gel electrophoresis was 

performed using 1X Running buffer (25 mM Tris, 200 mM glycine, 0.1% SDS) with a 

mini-PROTEAN 3 gel electrophoresis system (BioRad) at 200 V until the desired 

protein separation was reached.  

 

For determining the presence of known proteins, western blotting was performed using 

protein-specific antibodies. Proteins separated in polyacrylamide gel were transferred 

to a polyvinylidene difluoride (PVDF) membrane (Amersham Hybond-P, GE 

Healthcare) using a semi dry transfer block. Briefly, following SDS-PAGE, the gel was 

washed in 1X transfer buffer (25 mM Tris, 150 mM glycine, 20% methanol) for 10 min. 

The hydrophobic PVDF membrane was prepared by rinsing in 100% methanol followed 

by dH2O and then washed in 1X transfer buffer for 10 min. To transfer proteins from the 

gel to the membrane, the stack was arranged in the following order on the semi dry 

transfer block: 

 

 

 

Current was applied at 50 mA for 1.5 h.  

 

Anode&[+]&

Cathode&[.]&

Filter&paper&

Polyacrylamide&gel&

PVDF&membrane&

Filter&paper&
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Following transfer, membranes were washed in TBS-T and blocked in 4% non-fat milk 

(Marvel) in TBS-T for 1 h at RT. Membranes were incubated in primary antibodies 

overnight at 4°C (for list see Appendix). Following washes in TBS-T, membranes were 

incubated in anti-mouse or anti-rabbit horseradish peroxidase-conjugated secondary 

antibodies (GE Healthcare, 1:3000) for 1 h at RT and washed again in TBS-T. 

Immunoreactivity was visualised using chemiluminescent western blotting detection 

reagents (ECL Prime, Amersham) according to manufacturer’s instructions. All 

antibodies used for western blotting were diluted in 4% non-fat milk in TBS-T. As a 

loading control, membranes were re-probed with mouse anti-β actin primary antibody, 

1:3000 (Sigma-Aldrich) for 1 h at RT followed by secondary antibody and developing 

steps. For quantification of western blots, band intensity after ECL reaction and 

exposure to film was determined using a FluoroChem Q system and Alphaview Q 

software (ProteinSimple).  

 

10X TBS: 

0.5 M Tris base 

1.38 M NaCl 

0.027 M KCl 

Diluted to 1X working solution with dH2O and the addition of 

10% Electran Tween20 (VWR) to give 1x TBS-T 

 

2.2.11 Immunoprecipitation 

Immunoprecipitation was performed to elute specific proteins of interest and bound 

proteins from cell culture lysates. Cells were washed in PBS 24 h post-transfection and 

lysed in ice cold IP buffer (1% Triton X-100 in PBS) and incubated on ice for 20 min 

with periodic vortexing. Lysates were centrifuged at 13000 rpm for 20 min in a cold 

centrifuge to pellet any remaining whole cells and cellular debris and supernatant was 

collected for immunoprecipitation. Input sample was taken at this point to confirm 

original presence of proteins in the lysate. Where required, RNase A treatment was 

performed at RT for 30 min. Following this, lysates were pre-incubated with either anti-

GFP antibody (Protein Synthesis, clone 3A9) or anti-p54nrb antibody (Sigma-Aldrich) 

in IP buffer for 30 min followed by incubation with Protein A/G sepharose beads (GE 

Healthcare) for 2 h at 4°C with slow rotation. Alternatively, GFP-Trap agarose beads 

(ChromoTek) preloaded with anti-GFP antibody were used, avoiding the need to pre-

incubate lysates. Beads were then washed twice in ice cold IP buffer, and bound 

immunocomplexes were eluted from beads by boiling for 10 min at 100°C in SDS–
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PAGE loading buffer. In the case of Protein A/G sepharose beads, control samples 

were prepared by omitting the antibody step. To remove beads, samples were 

centrifuged at 2000 g for 2 min. Samples were then analysed by western blotting. For 

input, 10% of final IP sample was loaded. 

 

2.2.12 Quantitative reverse transcription PCR (RT-qPCR) 

RT-qPCR was used to quantify relative gene expression. Following reverse 

transcription of total RNA extracted from either RNA-later (Qiagen)-stabilised murine 

tissues or monolayer cell cultures, qPCR was carried out in a 20 µl reaction, combining 

2 µL cDNA (1:3 dilution) with 18 µl qPCR master mix (all ThermoScientific unless 

stated otherwise). qPCR master mix was prepared prior to each experiment as follows: 

 

qPCR mastermix: For 24 wells: Final concentration per 

well 

10X TrueStart PCR buffer  50 µl 1X 

25 mM MgCl2 50 µl 2.5 mM 

100 mM dNTPs  5 µl 1 mM  

15X SYBR green I stock 5 µl 0.15X 

50X ROX  5 µl 0.5X 

100 µM gene-specific primers 

(Sigma-Aldrich) 

5 µl 1 µM 

TrueStart hot start Taq polymerase 3 µl 0.15 units 

dH2O to 335 µl 

 

15X SYBR green I stock: 

10,000X SYBR green I nucleic acid gel stain (Invitrogen) 1 µl 

DMSO to 660 µl 

  

Reactions were run in triplicate on an ABI StepOne real-time PCR instrument (Applied 

Biosystems) using the following cycle parameters: 

 

1 cycle 95ºC for 10 min (denaturing & Taq activation) 

40 cycles 95ºC for 15 sec (denaturing) 

60ºC for 60 sec (annealing & extension) 
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Analysis was performed using StepOne v2.0 software (Applied Biosystems) according 

to the comparative CT method (Schmittgen and Livak, 2008) using GAPDH as a 

reference gene. For qPCR primer sequences, see Appendix. 

 

2.3  Transgenic mice 

2.3.1 Generation of transgenic mice 

In this thesis, two murine models neuronally expressing experimental forms of FUS 

were characterised. FUS 1-359 mice lacked the NLS and major RNA-binding domains, 

shown previously to be the RGG and ZF domains in an RNA-binding assay of varying 

domain deletion constructs (Bentmann et al., 2012) (See Figure 1.4 for domain 

information of FUS). RRM is not a major domain required for FUS to bind RNA, which 

distinguishes it from canonical RRM domains (Bentmann et al., 2012; Clery et al., 

2008; Liu et al., 2012; Zinszner et al., 1997b). Instead, RRM is thought to impart 

specificity of RNA binding (Lerga et al., 2001; Zinszner et al., 1997b) and to investigate 

this, FUS ΔRRMcyt mice, lacking RRM and harboring the R522G mutation for 

cytoplasmic-targeting of the protein were also characterised.  

 

Transgenic mice expressing human FUS 1-359 under control of the Thy-1 promoter 

were previously generated by our laboratory, with special mention to Dr Natalia 

Ninkina, in collaboration with Dr Alexey Deykin at the Institute of Gene Biology, 

Russian Academy of Sciences. Briefly, human FUS cDNA was amplified from a 

plasmid containing FUS cDNA (100004335/OCAA44 g1, Source BioScience) using the 

following primers: 

 

XhoI_transFUSup: 5’-AGCGGTGTTGGAACTTCGTTG-3’ 

transFUSdown_XhoI: 5’- AGAATTCTTACCATCAAACC-3’ 

 

This PCR fragment was cloned into pCR-Blunt II-TOPO vector and resulting plasmid 

was purified as described above. XhoI restriction digest was used to isolate FUS 1-359 

including 9 bp of 5’UTR. This was inserted between XhoI sites of the Thy-1 promoter 

plasmid, 323-pTSC21k (Luthi et al., 1997), resulting in insertion between exons II and 

IV of the Thy-1 gene. Correct orientation of insertion was confirmed by the specific 

pattern of fragment sizes following EcoRI restriction digest. NotI restriction digest of 

this plasmid was performed and the correct fragment containing FUS sequence of 

interest was isolated following excision and purification from agarose gel as described 

above. This fragment was randomly integrated into the genome following pronuclear 

microinjection of mouse oocytes derived from a C57Bl6/CBA mouse. Oocytes were 
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then transferred into a pseudopregnant female and transgenic offspring were identified 

by conventional PCR analysis from ear biopsies, confirming the insertion of the Thy-1 

cassette (see 2.3.3). Two founders were produced and used to establish hemizygous 

lines F19 and F6 by backcrossing with C57Bl6 mice for >7 generations.  

 

FUS mice expressing human FUS ΔRRMcyt mutant under control of the Thy-1 

promoter were also produced by our laboratory in collaboration with Dr Alexey Deykin 

at the Institute of Gene Biology, Russian Academy of Sciences. XhoI restriction sites 

were added either end of the FUS ΔRRMcyt mutant by amplification from N-terminally 

GFP-tagged FUS ΔRRMcyt mutant using the following primers: 

 

XhoI_transFUSup: 5’-AGCGGTGTTGGAACTTCGTTG-3’ 

hFUSdwnfullXho: 5’-GTCTCGAGTTAATACGGCCTCTCCCT-3’ 

 

Methodology from therein was the same as described for FUS 1-359 mice. Two female 

founders were produced but transgenic lines were unable to be established due to 

early deaths and a prominent tremor phenotype in TG F1 generation mice. As such, 

analysis of these mice was restricted because of limited availability.  

 

For quantification of neuromuscular junctions, FUS 1-359 transgenic mice were 

crossed with Thy1-YFP-16 mice (The Jackson Laboratory) producing offspring which 

all expressed yellow fluorescent protein (YFP) under control of the Thy-1 promoter, 

with half of these additionally expressing FUS 1-359 protein also under control of Thy-1 

promoter.  

 

2.3.2 Animal husbandry 

Mice were housed in 12 h-12 h light-dark cycles with ad libitum access to food and 

water. Mice were housed across two separate animal units with no more than 5 to a 

cage. All work carried out on animals was performed in accordance with the United 

Kingdom (Scientific Procedures) Act (1986) and European Directive EC 86/609.  

 

2.3.3 Genotyping 

Conventional PCR was used to detect the insertion of the FUS transgene (either 1-359 

or ΔRRMcyt) in genomic DNA. Genomic DNA was extracted from an ear biopsy using 

the Wizard SV genomic DNA purification kit (Promega) according to manufacturer’s 

instructions. The PCR reaction was set up as described above.  
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FUS forwards: 5’-TCTTTGTGCAAGGCCTGGGT-3’ 

FUS reverse: 5’-AGAAGCAAGACCTCTGCAGAG-3’ 

 

Cycling parameters: 

1 cycle 94ºC for 2 min (denaturing) 

30 cycles 94ºC for 15 sec (denaturing) 

58ºC for 30 sec (annealing) 

68ºC for 40 sec (extension) 

1 cycle 68ºC for 5 min (finish all extension) 

1 cycle 4ºC ∞ (storage until removed) 

 

To permit the distinction between mice expressing the transgene in a hemizygous or 

homozygous manner, i.e. the number of copies of the transgene, quantitative PCR 

(qPCR) was performed by Dr Natalia Ninkina. This was carried out in a 20 µl reaction, 

combining 2 uL genomic DNA with 18 ul freshly prepared qPCR master mix, as 

described above.  

 

2.3.4 Behavioural testing 

Gait analysis 

Mice were trained to run along a narrow ambiently lit Perspex corridor into a darkened 

area where they received a cereal reward. For each run, the floor of the corridor was 

lined with removable white paper. Blue and red inks (Pelikan) were used to cover the 

hind and forelimbs, respectively, of each mouse immediately prior to the trial run, 

allowing for the placement of these limbs during the run to be assessed. 

 

2.4 Histology 

2.4.1 Fixation of tissues 

Mice were sacrificed either by Schedule 1 method or were perfused with 4% PFA in 

PBS (pH 7.4). For perfusion, mice were given a lethal intraperitoneal injection of 

sodium pentobarbital (Euthetal, Merial) and transcardially perfused with an ice cold 

PBS pre-wash followed by 4% PFA in PBS. Tissues were dissected and collected into 

4% PFA in PBS. Duration of fixation was adjusted for the tissue type: 

 

Brain     4% PFA in PBS overnight at 4 °C  

Spinal cord    4% PFA in PBS overnight at 4 °C 
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Gastrocnemius    4% PFA in PBS 30 min at RT 

 

Fixed tissues were then processed and embedded for either paraffin or frozen 

sections.  

 

2.4.2 Preparation of paraffin sections 

PFA-fixed samples were dehydrated and then cleared by passage through the 

following series: 

 

PBS     15 min (x4) 

70% ethanol     3 h 

95% ethanol    5 min (x3) 

100% ethanol    40 min 

1:1 ethanol:chloroform  30 min 

chloroform    60 min 

chloroform    Overnight (4ºC) 

 

Following clearing in chloroform, tissues were infiltrated with molten paraffin wax 

(ThermoScientific) at 60ºC for 3 h. Tissues were then oriented in stainless steel 

moulds, surrounded with molten paraffin wax and left to set on a cold plate. 8 µm 

sections were cut from paraffin-embedded tissues using a microtome (Leica). Sections 

were floated on dH2O at 40ºC and collected onto polysine microscope slides. Sections 

were left to dry overnight prior to further applications. For stereological quantification, 

serial sections were taken and arranged in the following manner: 

 

 

 

 

 

 

This produced two sets of slides, A and B, with set B acting as a backup for repetition 

or permitting separate staining of the same region of tissue.  

 

 

2.4.3 Preparation of frozen sections 

PFA-fixed samples were cryoprotected by passage through a gradient of sucrose 

solutions (10-30% sucrose in PBS) at 4°C until tissues sank. Following infiltration of 

AA 
1       2       3      4       5 6       7       8       9     10 

11     12     13    14     15 16     17     18     19     20 

A B 
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sucrose, tissues were embedded in optimal cutting temperature (OCT) compound 

(ThermoScientific) in removable plastic moulds (VWR International) and flash-frozen 

on a 1:1 slurry of ethanol and dry ice. For quantification of neuromuscular junctions in 

gastrocnemius muscle, 35 µm longitudinal sections of OCT-embedded muscle were 

cut on a cryostat (Leica CM1850, Leica Biosystems) set to -20°C and transferred 

directly onto polysine-coated microscope slides (ThermoScientific). Sections were left 

to dry overnight prior to further applications or long term storage at –80°C.  

 

2.4.4  Human tissue samples 

For assessment of paraspeckle protein localisation in human patient tissues, human 

spinal cord paraffin sections from clinically and histopathologically characterised 

disease and control cases were obtained from the MRC London Neurodegenerative 

Diseases Brain Bank (Institute of Psychiatry, King’s College, London). Consent was 

obtained from all subjects for autopsy, histopathological assessment and research in 

accordance with local and national Ethics Committee approved donation. Histological 

experiments performed on human tissue samples were carried out by Dr Tatyana 

Shelkovnikova.  

 

2.4.5 Cresyl violet staining 

For visualisation and quantification of neuronal populations, 8 µm paraffin sections of 

mouse brain and spinal cord were stained with cresyl violet. Using this technique, 

motor neurons were identified by their distinctive staining pattern comprising of dark 

nucleolar staining and pale pink cytoplasm. First, sections were dewaxed in xylene and 

brought to water through a series of decreasing ethanol percentage. Once brought to 

water, samples were stained with 0.5% cresyl violet acetate in dH2O for 20 min. 

Staining was differentiated and tissues dehydrated through a series of increasing 

ethanol percentage followed by clearing in xylene prior to mounting in DPX mounting 

medium (RA Lamb). 

 

For stereological quantification of motor neurons in brainstem nuclei or ventral horns of 

spinal cord, serially sectioned paraffin sections were arranged as described above and 

a single set stained with cresyl violet. Motor neurons with visible nucleoli were counted 

in every 10th section at 40x magnification either over a 1 mm distance of ventral horn 

spinal cord or over the total length of a coronally sectioned brainstem nucleus.  

 

2.4.6 Haematoxylin and eosin 
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Paraffin embedded cross-sections of mouse gastrocnemius muscle were dewaxed in 

xylene and brought to water through a series of decreasing ethanol percentage. 

Sections were incubated in Gill’s haematoxylin (Leica) for 5 min and excess staining 

was removed in dH2O followed by 30 s incubation in acidified ethanol (1% glacial acetic 

acid in ethanol). Following washing in dH2O, sections were incubated in 1% eosin for 5 

min followed by further washing, dehydration to xylene and mounting in DPX mounting 

medium.  

 

2.5 Immunohistochemistry 

2.5.1 Standard immunohistochemistry 

For determining the location of specific proteins in mammalian tissue samples, 8 µm 

paraffin embedded sections were dewaxed in xylene and rehydrated through a series 

of decreasing ethanol percentage. Antigen retrieval was then performed using 

microwave irradiation of tissues in 10 mM sodium citrate (pH 6). Following cooling, 

background oxidase activity in the tissue was quenched using 3% hydrogen peroxide 

in methanol at 4°C for 30 min. Tissues were blocked for 30 min at RT in 10% goat 

serum/ 0.1% tween 20 in PBS. Primary antibodies were applied for either 1.5 h at RT 

or overnight at 4°C. Following washes with PBS, anti-mouse or anti-rabbit biotinylated 

secondary antibodies (Vector Labs) diluted 1:1000 in 0.1% tween in PBS were applied 

for 1 h at RT. Tissues were washed in PBS and avidin-biotin HRP complexes 

(VECTASTAIN ABC kit, Vector labs) were applied for 45 min. After washing, 3,3'-

diaminobenzidine (DAB) at a final concentration of 10 mg/ml was used as a substrate 

for HRP and applied until a dark brown pigment developed, usually between 5-7 min. 

Following DAB, tissues were washed in dH2O and dehydrated through a series of 

increasing ethanol percentage before being cleared in xylene and mounted in DPX 

mounting medium.  

 

2.5.2 Fluorescent immunohistochemistry 

Fluorescent immunohistochemistry was performed largely in instances where the 

localisation of two or more proteins at the same time in the same tissue sample was 

required. For this, 8 µm paraffin embedded sections were prepared in the same way as 

those used for standard DAB immunohistochemistry, minus quenching of background 

oxidases. Following incubation with primary antibodies and washes in PBS, Alexa 

fluor-conjugated secondary antibodies (1:1000 dilution in 0.1% tween 20 in PBS), anti-

mouse or anti-rabbit, were applied for 1 h at RT. Following washes, DAPI stain at a 
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final concentration of 1 µg/ml was applied for 5 min. Tissues were finally washed in 

dH2O and mounted in ImmuMOUNT.   

 

For proteinase K treatment, the proteinase K enzyme (Fermentas) was diluted in Tris 

buffer (10 mM Tris-HCl, pH 7.5, 5 mM EDTA) to a final concentration of 200 µg/ml. 

Sections were dewaxed, rehydrated, washed with PBS, and incubated in proteinase K 

solution for 1 h at 37ºC in a humidified chamber. After several thorough washes, anti-

FUS staining and DAPI staining were performed as above.  

 

For quantification of neuromuscular junctions, 35 µm frozen sections of gastrocnemius 

muscle were washed in PBS and incubated in blocking solution (0.4% tween 20, 10% 

goat serum in PBS) at RT for 1 h. To fluorescently label acetyl choline receptors 

present at the neuromuscular junction, sections were then exposed to Alexa 647-

conjugated alpha-bungarotoxin (1:1000, ThermoScientific) diluted in blocking solution 

for 1 h at RT. Following washes in PBS, sections were mounted in Immumount and left 

to dry. Images were taken using a laser scanning confocal DM6000B microscope 

(Leica Microsystems) and processed using the Leica confocal software.  

 

2.6 Statistics 

Statistical analysis was performed using IBM SPSS Statistics software (IBM). Data 

were tested for normality of distribution using the Shapiro-Wilk test, where p>0.05 

indicated normal distribution. Parametric testing was used when the assumption of 

normality was met and the size of data groups was sufficiently large. These included 

the Student’s t test for determining whether two groups were significantly different from 

each other, and analysis of Variance (ANOVA) with post-hoc testing for comparing 

three or more groups. Where the assumption of normality could not be met, often due 

to smaller sample size, the non-parametric equivalents of these tests were performed. 

Non-parametric Mann-Whitney test was used for comparing two groups and the non-

parametric Kruksal-Wallis test was performed for three or more groups.  Significance 

was assigned to p-values less than or equal to 0.05 (p<0.05), where rejection of a true 

null hypothesis, that is that two groups are not significantly different from each other, 

(type I error) occurs at a frequency of <5%.  
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3.1 Declaration and contributions 

Data included within this chapter have been published within the following open access 

articles: 

 

Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson HK, 

Ustyugov AA, Bachurin SO, Ermolkevich TG, Goldman IL, Sadchikova ER, 

Kovrazhkina EA, Skvortsova VI, Ling SC, Da Cruz S, Parone PA, Buchman VL, 

Ninkina NN. Fused in sarcoma (FUS) protein lacking nuclear localization signal 

(NLS) and major RNA-binding motifs triggers proteinopathy and severe motor 

phenotype in transgenic mice. J Biol Chem. (2013) Aug 30;288(35):25266-74. 

 

Robinson HK, Deykin AV, Bronovitsky EV, Ovchinnikov RK, Ustyugov AA, 

Shelkovnikova TA, Kukharsky MS, Ermolkevich TG, Goldman IL, Sadchikova 

ER, Kovrazhkina EA, Bachurin SO, Buchman VL, Ninkina NN. Early lethality 

and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that 

lacks the RNA recognition motif. Amyotroph. Lateral Scler. & Frontotemp. 

Demen. (2015). May 20:1-8. 

 

3.2 Overview: Part I 

In the General Introduction it was discussed that murine models of FUSopathy 

produced to date have largely focused on overexpressing either WT FUS or FUS 

carrying ALS-associated missense mutations, with neurodegenerative phenotypes 

noted to varying extents. However, many of these models have not been able to 

recapitulate the aggregation of FUS into large inclusions that is widespread in human 

ALS-FUS patients. Furthermore, expressing full length RNA-binding-competent forms 

of human FUS may cause toxicity by disrupting RNA metabolism homeostasis through 

aberrant RNA interactions produced by the exogenous protein. Given that there is 

conflicting evidence surrounding the pathological origins of FUS toxicity in ALS-FUS 

patients, we sought to investigate the effects that an initial insult of FUS aggregation, 

independent of primary disruption to RNA metabolism homeostasis, may have on the 

common tissue targets of ALS. Therefore, following our preliminary observations in cell 

culture, we generated, in collaboration with colleagues at the Institute of Gene Biology, 

Russian Academy of Sciences, a novel murine model of FUS aggregation through 

neuronal expression of a C-terminally truncated form of human FUS. This protein 

lacked major RNA-binding domains and the NLS (FUS 1-359), compromising its 

interactions with RNA. The first half of this chapter focused on the behavioural, 
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histological and biochemical analyses of these mice and the subsequent insights into 

FUS pathology that arose. 

 

3.3 Results: Part I 

3.3.1 Aggregation of FUS mutants in the cytoplasm of SH-SY5Y cells 

To first investigate the aggregation propensity of FUS isoforms associated with varying 

capacity for RNA interactions, a series of mutant FUS constructs, each tagged with a 

widely used reporter, GFP, to aid visualisation were produced through molecular 

cloning techniques and expressed transiently in human neuroblastoma (SH-SY5Y) 

cells (Figure 3.1A). GFP tags were placed at the N-terminus as this has previously 

been validated as a mechanism of modeling FUS localisation, whereas adding an GFP 

tag at the C-terminus has been shown itself to alter localisation of the protein (Kino et 

al., 2011). In addition to endogenous full length FUS (WT FUS) protein, ALS-linked 

mutant proteins were created, harboring either the missense mutation, R522G, or the 

proposed protein product of the G466VfsX14 mutation that is thought to result in a C-

terminal truncation leaving only amino acids 1-466 (DeJesus-Hernandez et al., 2010). 

To investigate the aggregation of isoforms with proposed disruption to their RNA-

binding capacity, additional experimental mutants were created, lacking either NLS 

(FUS 1-513), NLS, ZF and RGG domains (FUS 1-359), or lacking simply the RRM 

domain in conjunction with the R522G mutation to render the protein cytoplasmic (FUS 

ΔRRMcyt). Indeed, deletion of NLS, RGG and ZF domains in even a slightly longer 

FUS mutant construct (FUS 1-375) was previously shown to lack RNA-binding capacity 

(Bentmann et al., 2012). Western blotting of whole cell lysates from human 

neuroblastoma (SH-SY5Y) cells transfected with these expression plasmids using an 

anti-GFP antibody confirmed that the appropriate sized proteins were being expressed 

comparably in these cells (Figure 3.1B).  

 

As expected, GFP-tagged WT FUS maintained a nuclear localisation in these cells 

(Figure 3.1D). Early after transfection, between 4 and 12 h, ALS-associated mutant 

R522G, ΔNLS mutant 1-513, and cytoplasmic FUS lacking RRM domain all displayed a 

diffuse distribution in the cytoplasm (Figure 3.1C). This was also seen at later times in 

cells expressing low levels of the protein. However, even at this early stage, FUS 1-

359, lacking NLS, RGG domains and ZF, showed the formation of distinct small puncta 

in the cytoplasm (Figure 3.1C). By 36 h post-transfection, mutant FUS constructs had 

formed granule-like aggregates in the cytoplasm to varying extents (Figure 3.1D). 

However, whilst mutants 1-513, R522G, 1-466 all showed the formation of similar 
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structures, the pattern of FUS 1-359 was distinctive. In SH-SY5Y cells transfected with 

FUS 1-359, large juxtanuclear aggregates formed that appeared more similar to the 

large inclusions seen in ALS-FUS patient tissues. Interestingly, these were also seen in 

rarer instances in cells transfected with another RNA-binding-compromised form of 

FUS, FUS ΔRRMcyt (Figure 3.1D). Therefore, we sought to determine whether an 

initial insult of FUS aggregation, irrespective of introducing aberrant interactions with 

RNA, was sufficient to produce features of ALS pathology in vivo (Figure 3.2A).  

 

3.3.2 Expression of human FUS 1-359 in the murine nervous system  

Thy-1 promoter was chosen to express FUS 1-359 in these mice as this produces a 

neuronal expression pattern that has been used successfully in several other models 

(McGoldrick et al., 2013). Biochemical analysis by western blot confirmed that the C-

terminally truncated FUS 1-359 protein was expressed in the spinal cord, brainstem 

and cortex of TG but not non-transgenic, herein referred to as ‘WT’, littermates (Figure 

3.2B). Tissues were taken from 4 month old F19 hemizygous TG or WT mice. This 

shorter human truncated protein displayed a molecular weight of ∼55 kDa compared to 

the larger full length endogenous protein at ∼70 kDa, making it easily distinguishable. 

Both forms were readily detected by an antibody to the N-terminus of FUS, and in the 

neural tissues of transgenic mice FUS 1-359 was expressed at a low level compared to 

endogenous full length FUS (Figure 3.2B). Using an antibody that specifically detected 

human FUS, hemizygous F19 mice were shown to express FUS 1-359 protein at a 

higher level compared to hemizygous mice from a second line, also expressing FUS 1-

359 (F6) (Figure 3.2C).  

 

3.3.3 Phenotype, behaviour and survival 

FUS 1-359 F19 hemizygous mice were indistinguishable from WT littermates until 

around 2.5-4.5 months when they began to develop an obvious motor phenotype. An 

initial limb paresis, most often beginning asymmetrically in the hind limbs, progressed 

rapidly leading to complete limb paralysis (Figure 3.2D). This limb weakness was easily 

distinguished in gait analysis traces of these symptomatic mice compared to WT 

littermates (Figure 3.2E). This short window of ‘end-stage’ disease lasted no more than 

2 weeks, during which mice became emaciated and dehydrated, eventually losing their 

self-righting reflexes, resulting in reduced survival of these mice in two separate 

cohorts (Figure 3.2F and 3.6C). 

 



  RESULTS I 

 

74 

 
 

 

 

Figure 3.1. Mutant FUS constructs N-terminally tagged with GFP aggregate over time in the cytoplasm of 

SH-SY5Y cells. (A) Domain map of mutant FUS constructs used. The single thin line denotes deletion of 

this region in the ΔRRMcyt construct. (B) Western blot of total cellular lysates 24 h post-transfection with 

expression plasmids using anti-GFP antibody and reprobing with anti-β-actin antibody. (C) Early after 

transfection (4-12 h), R522G, 1-513 and ΔRRMcyt mutant FUS proteins showed a diffuse distribution, 

whereas even at this early stage, FUS 1-359 formed very small granular structures. (D) The degree of 

aggregation in the cytoplasm of FUS mutants was greater 36 h post-transfection. Unlike other mutants, 

FUS 1-359 and in FUS ΔRRMcyt  formed large and compact juxtanuclear structures (arrowheads). Green, 

GFP fluorescence; Blue, DAPI. Scale bars all panels; 15 µm. These data were produced by Dr. Tatyana 

Shelkovnikova and Dr. Natalia Ninkina. At least 3 biological replicates were performed and representative 

images are shown.  
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Figure 3.2. Neuronal expression of human FUS 1-359 results in paralysis and reduced survival. (A) A 

truncated form of WT human FUS (FUS 1-359) is inserted between exons II and IV of Thy-1 vector 

resulting in neuronal expression of the transgene. (B) Human FUS 1-359, with a molecular weight of 55 

kDa, is expressed at a comparatively lower level to endogenous FUS, with a molecular weight of 70 kDa, 

in FUS 1-359 TG (F19) mice and is absent in non-transgenic (WT) littermates as detected by an antibody 

recognising both endogenous and human mutant FUS (anti-h&mFUS). (C) FUS 1-359 mutant is 

expressed at a higher level in TG F19 than in TG F6 mice as detected by an antibody recognising only 

human FUS (anti-hFUS). All tissue samples were taken from 4 month old hemizygous mice. (D) 

Symptomatic-stage FUS 1-359 TG F19 mouse displaying hind and forelimb paralysis (arrowheads). (E) 

Gait analysis trace showing altered gait of symptomatic FUS 1-359 TG F19 mouse compared to WT 

littermate. Blue, forelimbs; Red, hindlimbs. (F) FUS 1-359 FUS TG F19 mice show reduced survival 

compared to WT mice. These data were generated by Dr. Owen Peters and Dr. Tatyana Shelkovnikova.  
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On the other hand, FUS 1-359 F6 hemizygous mice, expressing low levels of the 

transgene, did not display any obvious signs of muscle weakness or paralysis 

throughout their lifetime. FUS-positive inclusions were only seen in homozygous, aged 

FUS 1-359 F6 mice, and these were rare compared to those in hemizygous F19 mice 

(Figure 3.3H). For these reasons, the higher expressing hemizygous F19 TG mice 

were focused upon for the remainder of analysis and will herein be referred to as FUS 

1-359 TG mice.   

 

3.3.4 Proteinopathy in the cytoplasm  

To determine whether any FUS-positive structures were present in these TG mice, 

standard immunohistochemistry was performed on paraffin sections utilising an 

antibody that recognises the N-terminus of both human and mouse FUS. As expected, 

FUS maintained a predominantly nuclear localisation in cells of the spinal cord, 

brainstem and cortex in WT animals (Figure 3.3A-D). However, in end-stage FUS 1-

359 TG mice displaying paralysis, prominent FUS staining was observed in the 

cytoplasm and multiple FUS-positive inclusions were seen, predominantly in the lower 

motor neurons of the spinal cord and brainstem (Figure 3.3A’, B’). These were mainly 

found in the cytoplasm of these cells although in some populations, nuclear inclusions 

were observed (Figure 3.3A’).  

 

In brainstem neuronal tracts, FUS was redistributed to the axons of these neurons, 

where multiple spheroids formed (Figure 3.3B’,C’). Although observed less frequently, 

these TG mice at the end-stage of disease also displayed FUS-positive inclusions in 

cortical neurons (Figure 3.3D’). These findings were recapitulated using an antibody 

that recognised only human forms of FUS, showing that FUS 1-359 indeed formed 

these inclusions (Figure 3.3E-G). As with inclusions seen in human ALS patients, these 

inclusions were not amyloid in nature, indicated by their inability to be stained with 

either thioflavin S or Congo red (data not shown). These FUS-positive inclusions were 

also shown to persist following treatment of paraffin embedded tissues with proteinase 

K (Figure 3.4A), a feature also associated with inclusions in other neurodegenerative 

diseases (Neumann et al., 2002). As ubiquitinated inclusions are a key feature of ALS, 

symptomatic FUS 1-359 TG mice were also screened for the presence of these 

structures. Standard immunohistochemistry with anti-ubiquitin antibodies detected a 

number of ubiquitin-positive inclusions throughout the neural tissue of these TG mice, 

although these were seen less frequently compared to FUS-positive inclusions (Figure 

3.4B). To determine whether FUS-positive inclusions were ubiquitinated, fluorescent 

co-localisation studies were performed with anti-FUS and anti-ubiquitin antibodies. 
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FUS-positive inclusions were differentially positive for ubiquitin, with only a fraction of 

FUS-positive inclusions ubiquitinated and in some instances, non-overlapping FUS- or 

ubiquitin-positive aggregates were seen in the same cell (Figure 3.4C), similarly to 

what is known for human ALS-FUS patients.  

 

In several other neurodegenerative diseases, misfolded proteins of interest, for 

example α-synuclein in Parkinson’s disease and tau in Alzheimer’s disease, are able to 

seed aggregation of endogenous soluble forms, disrupting their normal functions (Luk 

et al., 2009; Clavaguera et al., 2013). To determine whether similar processes may 

also be involved in our FUS 1-359 model of FUSopathy, we investigated whether 

human FUS 1-359 aggregates were able to recruit endogenous FUS. This was done 

using FUS antibodies recognising epitopes within the C-terminus (absent in FUS 1-359 

and recognising only endogenous FUS) or N-terminus (common to both) in fluorescent 

immunohistochemistry experiments (Figure 3.4D, D’). This double fluorescent labelling 

showed that in some cells, nuclear FUS 1-359 aggregates in these mice were also 

positive for endogenous mouse FUS (Figure 3.4D’). Using an antibody that recognises 

only mouse endogenous FUS, cytoplasmic inclusions were identified in the nucleus of 

some cells and in rare cases the cytoplasm (Figure 3.4E, E’, E”), demonstrating that 

endogenous FUS was indeed sequestered into abnormal structures.  
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Figure 3.3. FUS 1-539 proteinopathy in the murine nervous system. Representative images following 

standard immunohistochemistry using antibodies recognising both mouse and human FUS (A-D) or 

human FUS alone (A’-D’ and E). Symptomatic FUS 1-359 TG mice displayed prominent cytoplasmic 

(arrowheads), and sometimes nuclear (inset), inclusions in (A’,G) cells of the anterior horn of the spinal 

cord and (B’,F) brainstem. (A-C) On the other hand, WT mice displayed a prominent nuclear localisation of 

FUS in these cells. (B’,C’) FUS 1-359 TG mice also displayed redistribution of FUS into axons (white 

arrows) of neuronal brainstem tracts where it formed spheroids (black arrows). (D-D’) Similar redistribution 

of FUS was also seen in cortical neurons (D’), whereas localisation remained nuclear in WT cortical 

neurons (D). (H) Example of FUS staining and formation of inclusion structures in FUS TG F6 mice. Scale 

bars; A-F, 50 µm; G, 30 µm; H, 15 µm. At least 3 transgenic mice and 3 WT mice were analysed and 

representative images shown.  
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Figure 3.4. Characterisation of FUS 1-359 inclusions. FUS 1-359 inclusions in symptomatic TG mice 

remained present following 200 µg/ml proteinase K treatment of paraffin sections for (A) 30 min or (A’) 1 h. 

(B) Ubiquitin-positive inclusions were also seen in these mice following standard immunohistochemistry. 

(C) Using fluorescent immunohistochemistry, approximately half of FUS-positive structures were shown to 

be positive for ubiquitin (arrowheads), whilst some ubiquitin-positive, FUS-negative structures were also 

seen (arrows). (D-D’) Immunoreactivity to endogenous full length FUS detected using an antibody 

recognising the C-terminus of FUS. Endogenous FUS was redistributed from its normal localisation shown 

in WT tissues (D) to nuclear inclusions of FUS 1-359 (arrowheads) but was not recruited to cytoplasmic 

inclusions (arrow) in ventral spinal cord of FUS 1-359 TG (D’). (E-E’’) Recruitment of full length FUS to 

cytoplasmic inclusions (arrowheads) was also seen in FUS 1-359 TG (E’, enlarged E’’) but not WT mice 

(E) using standard immunohistochemistry with an antibody that recognises only mouse FUS in the nucleus 

(*) or cytoplasm (**). Scale bars; A and A′, 50 µm; B–E′, 30 µm; E″, 10 µm. These data were produced by 

Dr. Tatyana Shelkovnikova. At least 3 transgenic mice and 3 WT mice were analysed and representative 

images shown. 

 

 

3.3.5 Effect of FUS 1-359 expression on spinal cord LMNs 

In ALS, in addition to the formation of proteinaceous inclusions, prominent loss of 

motor neurons occurs in the anterior/ventral horn of the spinal cord. Having observed 

the formation of FUS-positive inclusions in these mice, whether the neuronal 

expression of FUS 1-359 was sufficient to cause a loss of motor neurons in anterior 

horn of spinal cord was investigated. For this, motor neurons in the anterior horn 

across 1 mm of lumbar spinal cord length were quantified using a stereological 

counting technique performed on cresyl violet stained paraffin sections. The number of 

motor neurons (MNs) in lumbar spinal cord in symptomatic FUS TG mice was 

prominently reduced compared to the number of MNs across the same distance in WT 

littermates and pre-symptomatic mice (Figure 3.5B). In symptomatic FUS TG mice, 

surviving motor neurons in this region also displayed signs of damage, including 

chromatolysis, and visible shrinkage, although this was not quantified (Figure 3.5A).     

   

3.3.6 Effect of FUS 1-359 expression on skeletal muscle and its innervation  

Because end-stage TG mice rapidly developed an observable paralysis, skeletal limb 

muscles and any changes to their innervation caused by the expression of this C-

terminally truncated FUS mutant were investigated. As paralysis largely affected the 

hind limbs of these mice, this region was the focus of investigation. Gastrocnemius 

muscles of end-stage FUS 1-359 TG mice with hind limb paralysis were atrophied 

compared to healthy WT littermates, observed following dissection and weighing of the 

whole muscle (Figure 3.6A). Muscle fibres also appeared damaged following 

haematoxylin and eosin staining of gastrocnemius cross sections (Figure 3.6B).   
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Figure 3.5. Symptomatic FUS 1-359 TG mice display motor neuron loss in the ventral horn of spinal cord. 

(A) Representative images of cresyl violet stained ventral spinal cord from WT, pre-symptomatic and 

symptomatic mice, with higher magnification shown in lower panel. Surviving motor neurons of 

symptomatic mice display signs of degeneration including chromolysis and shrinking (inset). (B) 

Quantification (mean±S.E.M) of MNs in ventral horn per 1 mm of lumbar (L4-L6) spinal cord tissue in WT, 

pre-symptomatic and symptomatic mice. Numbers of animals for each group are indicated at the base of 

each bar. ***, p<0.001, Mann-Whitney test. Scale bars; A (upper), 100 µm; A (lower), 30 µm. 
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Neuromuscular innervation was also investigated in these mice. As immunostaining of 

axon terminals using a combination of anti-synaptophysin and anti-neurofilament-M 

antibodies was previously challenging, with antibodies having to be used at very high 

concentrations, we chose to cross these FUS 1-359 TG mice with a line of mice (thy-1-

YFP-16) where axons are fluorescently labelled with yellow fluorescent protein 

expressed in neurons under control of a Thy-1 promoter. By then counter staining 

gastrocnemius sections with fluorescently-labelled-α-bungarotoxin, which binds 

selectively to acetyl choline receptors present at the NMJ, the extent to which each 

NMJ is innervated can easily be established by observing the degree of overlap (Figure 

3.6D). Mice expressing YFP showed similar survival to those on a pure C57/Bl6 

background and expression of YFP was, alone, not sufficient to elicit degeneration of 

axon terminals, enabling the use of these mice to investigate our degenerative FUS 1-

359 phenotype without confound (Figure 3.6C, D). To investigate the influence of both 

the stage of progression (i.e. preceding or following the onset of paralysis) and age on 

NMJ innervation, quantification of NMJs was performed on WT mice and TG mice with 

(symptomatic) or without (pre-symptomatic) paralysis across a range of ages (2-5 

months old). No significant differences in NMJ innervation were identified between 

mice of different age groupings when collapsed across stage of progression/genotype 

(p>0.05, Kruksal-Wallis test). However, differences in NMJ innervation were observed 

between mice grouped by their stage of progression/genotype (p<0.05, Kruksal-Wallis 

test). Indeed, TG mice displaying paralysis (symptomatic) displayed a significant 

reduction in NMJ innervation compared to WT or non-symptomatic stage TG mice 

(p<0.05, Mann Whitney test) (Figure 3.6D, E). Whilst for this analysis percentage NMJ 

innervation was averaged across hind limbs, in the majority of cases, as with in 

humans, paralysis developed asymmetrically in these mice. Further analysis of 

symptomatic stage TG mice revealed that, somewhat surprisingly, in addition to the 

loss of innervation in the affected ‘paralysed’ limb (p<0.05, Mann Whitney test), the 

corresponding limb showing no outward signs of paralysis or weakness also showed 

significant reductions in percentage NMJ innervation compared to WT mice (p<0.05, 

Mann Whitney test), although there remained a small but significant difference between 

these two states (Figure 3.6F). 

 

Analysis of the sciatic nerve, which innervates the lower limb, was performed by lab 

member, Dr Owen Peters. This showed that only symptomatic FUS TG mice displayed 

significant loss of, and damage to, myelinated axons compared to WT littermates 

(Figure 3.7A, B, C). In additional experiments performed by Dr Owen Peters, dorsal 
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(sensory) roots showed less damage compared to the extensive damage to ventral 

(motor) roots in symptomatic stage mice (Figure 3.7A).  

 

3.3.7 Effect of FUS 1-359 expression on brainstem motor nuclei 

Although cytoplasmic FUS-positive inclusions were previously observed in the 

brainstem tracts of these mice (Figure 3.3C’), whether inclusions were also present in 

the cells of brainstem motor nuclei and whether there was any associated loss of motor 

neurons in these regions, was also investigated. Indeed, prominent FUS-positive 

inclusions were detected in the facial and motor trigeminal nuclei using standard 

immunohistochemistry with an anti-FUS antibody (Figure 3.8A). Loss of motor neurons 

from these nuclei was also observed following immunofluorescent labelling of neurons 

with neurospecific marker NeuN (Figure 3.8B) and quantified by stereological counting 

of neurons on cresyl violet stained paraffin sections (Figure 3.8C, D). A significantly 

reduced number of motor neurons was seen in facial (1518 ± 71.2), motor trigeminal 

(272 ± 45.8) and hypoglossal (1102 ± 51.6) nuclei in symptomatic FUS TG mice 

compared to WT littermates (1956 ± 88.0, 685 ± 43.6, 1743 ± 80.3, respectively). 

Interestingly, the abducens nucleus was spared in these mice and the total number of 

motor neurons within this nucleus in TG mice (167 ± 16.6) was not significantly 

different to that of WT littermates (154 ± 19.5). Surviving motor neurons within affected 

brainstem motor nuclei also showed morphological signs of damage on cresyl violet 

stained sections including, in some cases, vacuolisation of the cytoplasm (Figure 

3.8D’-F’). In sagittal brainstem sections taken from pre-symptomatic mice, the 

expression of human FUS 1-359 was similar across abducens and facial nuclei (Figure 

3.8G) and facial and hypoglossal nuclei (Figure 3.8H).  
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Figure 3.6. Symptomatic FUS 1-359 TG mice display muscular atrophy and loss of muscular innervation. 

(A) Representative whole gastrocnemius muscles taken from a symptomatic-stage FUS 1-359 TG and an 

age-matched WT mouse. (B) Cross-sections of gastrocnemius stained with haematoxylin and eosin reveal 

damage to muscle fibres in FUS 1-359 TG mice displaying paralysis. (C) FUS TG mice crossed with Thy-

1-YFP-expressing mice to investigate NMJ innervation displayed similar survival compared to those not 

expressing YFP. Instances where mice were removed for NMJ analysis are indicated as points on the line. 

(D) Denervation of NMJs was apparent in FUS TGxThy-1-YFP mice at symptomatic stage of disease 

using fluorescently labelled α-bungarotoxin to stain acetylcholine receptors at the NMJ and neuronally-

expressed YFP (blue). (E) The percentage of NMJs in gastrocnemius that were denervated, partially 

denervated or innervated was determined in WT-Thy-1-YFP (WT) mice and in FUS-TGxThy-1-YFP mice 

with (symp) or without (nonsymp) signs of limb weakness or paralysis. Bar chart shows mean of 

percentage of NMJs innervated/denervated/partially innervated ± S.E.M for percentage innervation. 500 

NMJs per gastrocnemius muscle were classified and averaged across limbs for each mouse. There was a 

significant effect of genotype/stage of progression on NMJ innervation (p<0.05, Kruksal-Wallis test). NMJ 

innervation was significantly reduced in symp mice compared to either WT mice or nonsymp mice (p<0.05, 

Mann Whitney test). Collapsing across genotype/stage of progression revealed that there were no 

significant differences in NMJ innervation between mice in different age groupings (p>0.05, Kruksal-Wallis 

test). Number of animals per group are indicated at the base of each bar. (F) Analysis of NMJs in 

asymmetrically affected mice (n=7) revealed that although paralysed limbs displayed a significant 

reduction in innervation of NMJs compared to non-paralysed limbs (p<0.5, Mann Whitney test) both non-

paralysed and paralysed gastrocnemius muscles in these mice showed significant reductions in 

innervation compared to WT limbs (both p<0.0001, Mann Whitney tests). Scale bar all panels; 50 µm.  
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Figure 3.7. Damage and loss of myelinated axons in symptomatic stage FUS 1-359 mice. (A) Semi-thin 

toluidine blue stained sections of sciatic nerve revealed prominent damage and demyelination of axons in 

FUS TG mice at the symptomatic, end stage of disease compared to pre-symptomatic and WT mice. (B) 

Quantitative analysis of semi-thin sections revealed that the number of myelinated fibres per 0.01 mm
2
 

sciatic nerve was significantly reduced in symptomatic, but not pre-symptomatic, FUS TG mice compared 

to WT mice. N numbers used for quantification are displayed at the base of each bar and bars represent 

mean±S.E.M. ***, p<0.001, Mann Whitney test. Scale bars; C–E, 30 µm. Panels A and B were produced 

by Dr Owen Peters. 
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Figure 3.8. FUS pathology and loss of motor neurons in brainstem motor nuclei in symptomatic FUS 1-359 

TG mice. (A) Standard immunohistochemistry of a sagittal brainstem section of FUS 1-359 symptomatic 

mice using anti-FUS antibody revealed the presence of FUS-positive inclusions (arrowheads) in facial and 

motor trigeminal nuclei. Low and high magnification images are shown. (B) Representative fluorescent 

immunohistochemistry with neuronal marker, NeuN, shows loss of neurons in facial and motor trigeminal 

nuclei in symptomatic FUS TG mice compared to WT mice. (C) Quantitative analysis of the number of 

surviving motor neurons in entire brainstem motor nuclei following stereological counts in symptomatic 

FUS TG mice compared to age-matched WT mice. Quantification was performed on cresyl violet stained 
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paraffin sections. N numbers for each group are indicated at the base of each bar and bars represent 

mean±S.E.M. ***, p<0.001, Mann Whitney test. (D-F’) Representative cresyl violet stained paraffin 

sections show loss and damage (arrowheads) to motor neurons in motor trigeminal (D,D’), facial (E,E’) and 

hypoglossal (F,F’) nuclei in symptomatic FUS TG (D’-F’) compared to WT mice (D-F). Vacuolization of the 

cytoplasm of motor neurons can also be seen in these TG mice (arrows). (G-H) Standard 

immunohistochemistry using an antibody recognising human FUS alone revealed that in pre-symptomatic 

mice, the levels of FUS in the cytoplasm of motor neurons were similar between nuclei in sections 

comprising facial and abducens nuclei (G) or facial and motor trigeminal nuclei (H). Scale bars: A, 250 µm 

for general plane image, 50 µm for images of entire nuclei, and 15 µm for increased magnification images; 

B, 75 µm; D-F, 20 µm; G-H, 50 µm. 

 

3.3.8 Neuroinflammation in FUS 1-359 TG mice 

Prominent reactive astrogliosis was observed in the spinal cord of symptomatic FUS 1-

359 TG mice, as visualised by increased reactivity to glial fibrillary acidic protein 

(GFAP) in immunohistochemically stained sections (Figure 3.9A’, A’’) compared to WT 

littermates (Figure 3.9A). This increase in GFAP in symptomatic FUS-TG mice was 

also detected by western blot analysis of spinal cord homogenates using anti-GFAP 

antibodies (Figure 3.9B). Microgliosis was also seen in symptomatic FUS TG mice 

(Figure 3.9D) but not WT littermates (Figure 3.9C), as indicated by staining with R. 

communis agglutinin I (RCAI), a lectin which is known to specifically detect CNS 

microglia (Mannoji et al., 1986; Colton et al., 1992). Although these glial events were 

prominent in spinal cord, they were seen to a much lesser extent in brainstem neuronal 

populations. This was evidenced by performing immunostaining on two adjacent 

sections of brainstem at the level of the hypoglossal nucleus (Figure 3.9E,F). By 

staining one section with NeuN and GFAP, it can be seen that there is limited 

astrogliosis accompanied by a loss of neurons in this region, whilst staining the 

adjacent section with RCAI, there is also no evidence of microgliosis in this nuclear 

region. However, it can be noted that there is prominent astro- and micro-gliosis in 

adjacent brainstem regions (Figure 3.9E,F). 
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Figure 3.9. Symptomatic FUS 1-359 TG mice display prominent neuroinflammation in the nervous system. 

(A) Immunohistochemistry reveals marked reactive astrogliosis detected with anti-GFAP antibody in the 

spinal cord of (A’,A’’) symptomatic FUS TG but not (A) WT littermates. (B) Homogenates of spinal cord 

show elevated levels of GFAP protein in symptomatic FUS TG mice compared to pre-symptomatic and 

WT mice detected by western blot. (C-D) Immunohistochemistry with R. communis agglutinin I (RCAI) in 

sections of spinal cord revealed microgliosis in symptomatic FUS 1-359 TG mice (D, inset, increased 

magnification), compared to WT littermates (C). (E-F) Limited astrogliosis is seen in brainstem motor 

nuclei. Staining two adjacent sections with either NeuN and GFAP (E) or RCAI (F) showed relatively little 

astrogliosis or microgliosis within hypoglossal nuclei (circled), although these were seen in surrounding 

areas. Cc; central canal. Scale bars: A, A′, C and D, 100 µm; A″, 50 µm; E and F, 75 µm. At least 3 

transgenic mice and 3 WT mice were analysed and representative images shown. 
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3.4 Discussion: Part I 

Perhaps one of the largest difficulties in understanding the mechanisms by which 

dysregulation of FUS can cause toxicity has been in trying to decipher between the 

effects caused by its aggregation in the cytoplasm and those caused as a result of 

altered RNA metabolism. Although there have been overexpression models produced 

(Mitchell et al., 2013; Huang et al., 2011), suggesting that excess FUS can indeed 

have a gain of toxic effect, it has not been made clear in these instances whether this 

is caused by toxic FUS in the cytoplasm or instead by augmenting the activities of FUS 

in the nucleus, perhaps altering processes such as transcription, splicing and RNA 

metabolism. Notably, these models have failed to recapitulate the formation of FUS-

positive inclusions to the same extent as seen in human disease. 

 

Here, a model of FUSopathy was developed by expressing an RNA-binding-

compromised form of FUS, lacking NLS, RGG and ZF domains, in the murine nervous 

system. In cultured SH-SY5Y cells, this C-terminally truncated form of FUS, N-

terminally tagged with GFP, readily aggregated, forming large juxtanuclear structures, 

although the nature of these structures and their involvement with toxicity remains to 

be investigated. By removing crucial RNA-binding domains of FUS, the effects of FUS 

aggregation were investigated independently of primary changes to RNA metabolism 

that may be directly induced in other models through expression of full length forms of 

the protein. However, it must be mentioned that later changes to RNA metabolism may 

arise, perhaps for example through disruption of endogenous FUS. This neuronal 

expression of FUS 1-359 protein, at a lower level than that of endogenous FUS, was 

sufficient to result in a severe motor phenotype in these hemizygous F19 mice that was 

in line with the progression of human ALS when the comparatively shorter lifespan of 

the mouse is taken into account. Further, several signs of ALS-like pathology were 

observed.  

 

In hemizygous symptomatic FUS TG F19 mice, significant degeneration and loss of 

motor neurons was seen in both the anterior horn of the spinal cord and in specific 

brainstem motor nuclei. In ALS, oculomotor nuclei, controlling eye movements, are 

spared (Reiner et al., 1995). This was also apparent in these FUS 1-359 TG mice, with 

no signs of motor neuron loss or degeneration in abducens nucleus, perhaps reflecting 

a decreased sensitivity to FUS aggregation of this neuronal population. In the anterior 

horn of the spinal cord of these mice, prominent reactive astrogliosis and microgliosis 

were detected, again recapitulating responses commonly seen to accompany motor 

neuron degeneration that are evident in ALS patient spinal cord and brain post-mortem 
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(Schiffer et al., 1996; Nagy et al., 1994). Similarly to brainstem motor nuclei, 

susceptibility of different neuronal populations to FUS aggregation was also seen 

between motor and sensory neurons, with the most extreme disturbances localised to 

the motor system, exemplified by the extensive damage to ventral root fibres over 

dorsal root sensory fibres. Further, these mice demonstrated NMJ denervation and 

muscular atrophy of gastrocnemius muscles that contributed to the development of 

paralysis, although the initial targets of FUS 1-359 aggregation in this instance remain 

unknown. Further analysis of this model could reveal important information with respect 

to progression of neurological disease associated with FUS protein aggregation.  

 

Together, this suggests that aggregation of FUS, in the absence of the direct effect of 

pathogenic protein on RNA metabolism that may otherwise be driven by expressing 

RNA-binding-competent full length forms, is sufficient to produce toxicity. This supports 

a gain of toxic FUS function hypothesis. However, unexpectedly, FUS 1-359 was also 

able to form nuclear aggregates. Removing the NLS of FUS has been shown to result 

in mislocalisation to the cytoplasm in cultured cells by ourselves and others (Dormann 

et al., 2010), and so, it is not understood why nuclear inclusions of an NLS-deficient 

FUS mutant would form. Perhaps, in these cells, interactions of mutant FUS with 

endogenous FUS could be responsible for the import of FUS which lacks the NLS into 

the cytoplasm. Additionally, it remains to be investigated how FUS import mechanisms 

are affected by the expression of this ectopic protein. 

 

Given it was demonstrated that endogenous FUS may also be recruited to these FUS 

1-359 inclusions in the nucleus and cytoplasm, however, loss of normal FUS function, 

perhaps downstream of FUS aggregation in the cytoplasm, cannot be excluded as a 

pathological contributor to the progression of FUSopathy. It will be interesting to 

investigate the mechanisms by which FUS 1-359 is aggregating in the cytoplasm and 

to determine whether this may be physiologically relevant for ALS-associated mutant 

forms.  

 

3.5 Overview: Part II 

To further investigate the effects of expressing FUS with compromised RNA-binding 

domains in a whole organism system, another mouse model was created, expressing 

ΔRRM FUS, targeted to the cytoplasm. This mutant, like FUS 1-359, was shown in 

vitro to form large juxtanuclear structures, albeit to a lesser frequency than FUS 1-359, 



  RESULTS I 

 

91 

although the toxic effects associated with expressing this RNA-binding compromised 

form of FUS were not known.  

 

Whilst the presence of a consensus binding sequence for FUS is disputed (Iko et al., 

2004; Ishigaki et al., 2012; Lagier-Tourenne et al., 2012), specificity of its RNA-binding 

is thought to arise from the cooperation of the RRM domain with the less structurally 

complex RGG domains (Lerga et al., 2001; Zinszner et al., 1997b). Unlike C-terminus 

RGG and ZF domains, which were absent in the previous transgene, the RRM domain, 

though thought to impart specificity, is not a major domain required for FUS to bind 

RNA, which distinguishes it from canonical RRM domains (Bentmann et al., 2012; 

Clery et al., 2008; Liu et al., 2012; Zinszner et al., 1997b). As such, we investigated the 

toxicity related to introducing this form of FUS with reduced specificity of RNA-binding.  

 

Although expression of this mutant in mice resulted in a severe neurological 

phenotype, preventing the development of a transgenic line of these mice, this 

phenotype warranted further investigation. The second half of this chapter was 

therefore focused on the characterisation of the tissues that were available from the F1 

generation of hemizygous mice that were produced.  

 

3.6 Results: Part II 

3.6.1 Phenotype, behaviour and survival 

Two transgenic female founders were generated and mated with C57/Bl6 males to 

produce offspring expressing a modified isoform of human FUS, ΔRRMcyt, which 

lacked amino acids 300-360 and harbored the cytoplasm-targeting mutation, R522G, 

under the control of a Thy-1 neuronal promoter (Figure 3.10A). The first female founder 

produced 5 litters and the transgene displayed a Mendelian pattern of inheritance. All 

transgenic FUS ΔRRMcyt offspring were substantially smaller (∼30% weight decrease) 

than WT littermates and exhibited very early lethality, with mice moribund at a mean 

age of 20 ± 1 days (n=17) (Figure 3.10B). Approximately 25% died suddenly, prior to 

the observation of any additional phenotype(s). Interestingly, however, the remainder 

of these mice developed pronounced tremor on average 2 days prior to death, with the 

survival duration following tremor onset never exceeding more than 5 days. Tremor 

was constant and vigorous, affecting the whole body and was not confined to the limbs. 

Likely as a direct result of tremor, mice displayed a lack of balance, however, they 

were able to move around the cage freely and signs of limb paralysis were not 

observed. Because of the rapid nature of disease progression in these mice, we were 
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unable to perform additional quantitative behavioural analyses. Although further 

breeding and production of TG lines was not possible as mice died prior to sexual 

maturation, we endeavored to characterise transgene expression and the associated 

pathology in this F1 generation. It is important to note that a second female founder 

gave four litters, which yielded two transgenic offspring. Again, both of these mice also 

died at the age of 3 weeks, with one developing a visually identical tremor to those 

from the initial founder. 

 

3.6.2 Expression of FUS ΔRRMcyt transgene in mice 

RNA samples extracted from tissues of TG mice sacrificed at moribund stage in 

parallel with WT littermates were used to determine the level of transgene expression 

in the brain and spinal cord in these mice. qPCR with a primer pair that detected both 

endogenous mouse FUS and the human ΔRRMcyt mutant FUS, showed that global 

FUS expression in the brain (9.8 ± 0.77 fold) and spinal cord (18.1 ± 2.07 fold) was 

significantly increased in TG mice compared to WT littermates (Figure 3.10C). As 

endogenous mouse FUS expression was not significantly altered from WT littermates 

in brain or spinal cord of TG mice, the increase in FUS RNA can be attributed directly 

to the expression of the transgene (Figure 3.10C). Further, expression of human 

ΔRRMcyt FUS protein was confirmed by western blotting of brain tissue with an 

antibody specifically recognising human FUS (Figure 3.10D). Using an antibody 

recognising both human and mouse isoforms, it was shown that FUS ΔRRMcyt protein 

is not massively accumulated in the brain of transgenic mice, having reduced band 

intensity compared to endogenous mouse FUS (Figure 3.10D). To confirm band 

identification in these western blots, a blot previously exposed to only anti-hFUS 

antibodies was reprobed with antibodies detecting human and mouse FUS (Figure 

3.10E). Indeed, with reprobing, the endogenous mouse FUS band appeared in TG 

sample above the previously revealed FUS ΔRRMcyt band, confirming our banding 

pattern. 
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Figure 3.10. Neuronal expression of cytoplasm-targeted FUS lacking RNA-recognition motif causes early 

lethality in mice. (A) Map of the DNA fragment used for pronuclear microinjection. Human FUS lacking 

RRM domain and targeted to the cytoplasm by the ALS-associated R522G mutation was inserted between 

exons II and IV of the Thy-1 gene. (B) Survival plot of the F1 generation of mice used in this study which 

originated from the initial founder. TG mice were either found dead or were sacrificed at moribund stage 

(TG, n=17; WT, n=18). (C) The bar chart shows the mean±S.E.M of FUS mRNA expression levels in the 

brain and spinal cord of moribund TG mice expressed as fold change from WT littermates (*p<0.05, 

**p<0.001, n=3, Mann-Whitney test). The dashed line indicates the relative WT baseline of 1. No 

significant difference in endogenous mouse FUS mRNA expression was found between TG and WT 

littermates in either the brain or spinal cord (p>0.05, n=3, Mann-Whitney test). (D) Expression of FUS 

protein in brain tissues from TG and WT mice, recognised with antibodies against either human FUS 

(hFUS) or human and mouse FUS (h&mFUS). Cell lysates from the human neuroblastoma cell line, SH-

SY5Y, were included as a positive control for endogenous human FUS. (E) Reprobing western membrane 

previously exposed to anti-hFUS with anti-h&mFUS confirmed the distinction between human or mouse 

FUS proteins. Blots were reprobed for β-actin as a loading control. Asterisk indicates presence of a 

nonspecific band. 
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3.6.3 Proteinopathy in the cytoplasm 

To determine the pattern of cellular FUS localisation, immunohistochemistry was 

performed on brains taken post-mortem from TG mice in conjunction with those from 

age-matched WT littermates. Indeed, by using a monoclonal antibody that detects both 

endogenous mouse FUS and the human mutant FUS, prominent staining was 

observed in the cytoplasm of the cortex and brainstem cells of TG mice expressing the 

human FUS ΔRRMcyt but not in WT mice where endogenous FUS was predominantly 

localised to the nucleus (Figure 3.11A). In most instances, FUS that was redistributed 

into the cytoplasm displayed a granule-like appearance, although frequently, round, 

dense inclusions, highly immunoreactive to FUS antibodies and resembling the 

pathological FUS inclusions seen in the neurons of ALS patients, were also observed, 

typically one per cell. This redistribution into the cytoplasm and pattern of FUS 

accumulation in TG mice was also confirmed using immunofluorescent staining of 

sections co-stained with the nuclear dye, DAPI (Figure 3.11B). The same pattern of 

FUS staining was also revealed by immunohistochemistry with a different antibody, this 

time polyclonal, also recognising mouse and human FUS (Figure 3.11C). Co-staining 

with a neuronal marker, NeuN, demonstrated that mislocalisation of FUS occurred in a 

large fraction of cortical neurons (Figure 3.11C). In cells with prominent cytoplasmic 

localisation of FUS, the nucleus often appeared depleted of this protein (Figure 3.11, 

3.12B). However, upon staining with an antibody specifically recognising mouse FUS, 

we observed that the majority of cells maintained a nuclear localisation of endogenous 

FUS, not dissimilar from WT littermates (Figure 3.12A). Moreover, cytoplasmic 

inclusions positive for endogenous mouse FUS were rare (Figure 3.12A, inset). Taken 

together with the unaltered expression of endogenous FUS RNA, this suggests that 

endogenous FUS was affected to a minimal degree. Surprisingly, immunoreactivity of 

FUS in the cytoplasm of cerebellar Purkinje cells was comparatively weak (Figure 

3.11A), although was detected more readily using an antibody highly specific to human 

FUS (Figure 3.12B). In these cells, FUS staining was predominantly nuclear and no 

FUS-positive inclusions or granule-like accumulations were observed (Figure 3.12A). In 

some rare instances, large FUS-positive inclusions were also found to be ubiquitinated 

(Figure 3.13). In addition to upper motor neurons in the cortex and brainstem motor 

nuclei, lower motor neurons in the spinal cord are also a key site of pathology in ALS, 

including FUS-ALS (Blair et al., 2010). However, all samples for histological analysis of 

FUS ΔRRMcyt mice were collected post-mortem and spinal cord tissues suffered from 

significant structural damage, preventing proper examination of FUS proteinopathy.  
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Figure 3.11. FUS mislocalisation in cortical and brainstem neuronal populations in FUS ΔRRMcyt mice. 

Mouse brain sections were immunostained with a mouse monoclonal antibody detecting both human 

mutant and mouse endogenous FUS proteins. (A) Cells of the cortex and brainstem in TG mice displayed 

prominent FUS immunoreactivity in the cytoplasm (white arrowheads). Large FUS-positive, round 

inclusions were also frequently observed in the cytoplasm of these cells (black arrowheads). Purkinje cells 

of the cerebellum (black arrows), however, displayed only very slight staining in the cytoplasm. In WT 

mice, the cellular localisation of FUS is predominantly nuclear. (B) Immunofluorescent staining for FUS 

and DAPI counterstaining of cell nuclei revealed a granular pattern (white arrows) and the presence of 

FUS-positive inclusions (white arrowhead) in the cytoplasm of cortical cells. (C) Double immunofluorescent 

staining for FUS and the neuronal nuclear marker, NeuN, demonstrated that cytoplasmic mislocalisation of 

FUS is widespread in cortical neurons of TG mice. Scale bars; A-B, 25 µm; C, 100 µm. 
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Figure 3.12. Localisation of mouse and human FUS in FUS ΔRRMcyt mice. (A) Brain sections 

immunostained with an antibody that recognises only mouse FUS (mFUS). Endogenous mouse FUS 

displays a predominantly nuclear localisation in the cortex, brainstem and cerebellar Purkinje cells in WT 

littermates. This pattern of FUS localisation is similar in mice expressing human FUS ΔRRMcyt, although 

in very rare instances, cytoplasmic inclusions positive for endogenous mouse FUS were observed (inset). 

(B) Brain sections immunostained with antibody that recognises only human FUS (hFUS). Immunostaining 

is prominent in the cytoplasm of cells of the cortex and brainstem (white arrowheads) of FUS ΔRRMcyt 

mice, with large hFUS-positive inclusions observed frequently in these cells (black arrowheads). Staining 

in the cytoplasm of cerebellar Purkinje cells (arrows) was comparatively weak. Non-specific background 

levels of hFUS staining are depicted in WT littermates. Scale bars; all panels, 25 µm. 

 

 

 

 

 

Figure 3.13. Ubiquitin staining in FUS ΔRRMcyt mice. Double immunofluorescent staining of mouse brain 

sections with a rabbit polyclonal antibody detecting both human mutant and mouse endogenous FUS 

proteins, and mouse monoclonal anti-ubiquitin antibody. Some FUS-positive inclusions (arrowhead) 

displayed immunoreactivity to ubiquitin. Scale bars; 15 µm. 

 

 

 

 

Merge%FUS%Ubiqui-n%DAPI%

TG%

C
o

rt
e

x
 

B
ra

in
s
te

m
 

C
e

re
b

e
llu

m
 

hFUS 

FUS ΔRRMcyt WT 

mFUS 

C
o

rt
e

x
 

B
ra

in
s
te

m
 

C
e

re
b

e
llu

m
 

FUS ΔRRMcyt WT 

A B 



  RESULTS I 

 

97 

3.6.4 Effect of FUS ΔRRMcyt expression on neuronal populations 

Although quantitative analysis was not carried out due to limited tissue availability, 

mice expressing FUS ΔRRMcyt did not display any obvious loss of motor neurons in 

motor trigeminal, facial or hypoglossal brainstem motor nuclei upon histological 

analysis. Additionally, no changes to the morphology or size of motor neurons in these 

nuclei were apparent compared to WT (Figure 3.14A). Additionally, standard 

immunohistochemistry with anti-GFAP or RCAI antibodies failed to reveal any 

indication of astro- or microgliosis, respectively, in these regions (Figure 3.14B and 

data not shown).  
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Figure 3.14. Brainstem motor nuclei of FUS ΔRRMcyt mice do not display obvious signs of 

neurodegeneration. (A) Motor trigeminal, facial and hypoglossal nuclei in TG and WT mice were stained 

with cresyl violet to permit identification of motor neurons. No morphological differences were identified in 

TG mice compared with WT littermates. (B) Immunoreactivity to glial fibrillary acidic protein (GFAP) and 

morphology of astrocytes are indistinguishable between FUS ΔRRMcyt mice and WT littermates. 

Representative images shown. Scale bars; A, 25 µm; B, 50 µm. 
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3.7  Discussion: Part II 

Neuronal expression of FUS lacking its RRM domain and targeted to the cytoplasm 

caused an abundant FUS pathology, a severe tremor phenotype and juvenile lethality 

in these transgenic mice. Although analysis of this F1 generation was restricted 

compared to that of FUS 1-359 mice, given that they died suddenly a few weeks after 

birth and that collection of tissues in many instances was post-mortem, we were able to 

successfully investigate the pattern of FUS pathology in brain and brainstem areas.  

 

In transgenic FUS ΔRRMcyt mice, dramatic mislocalisation of FUS to the cytoplasm of 

neuronal cells was detected in the cortex and in the brainstem. The occurrence of 

large, FUS-positive cytoplasmic inclusions in many of these cells was also seen, 

reminiscent of those observed in patients’ neurons and in FUS 1-359 mice. Although 

not quantified, interestingly, the extent of FUS pathology appeared greater in these 

mice compared to that seen in FUS 1-359 transgenics, with inclusions visibly more 

prevalent. However, in FUS ΔRRMcyt animals, unlike FUS 1-359 mice, 

immunostaining with mouse specific antibodies showed that endogenous mouse FUS 

maintained its nuclear localisation and did not appear depleted compared to WT 

littermates. Indeed, endogenous FUS was very rarely included in human FUS-positive 

inclusions in the cytoplasm. Perhaps endogenous FUS has reduced affinity to FUS 

ΔRRMcyt isoform than FUS 1-359 isoform resulting in its limited recruitment, or, 

moreover, perhaps recruitment of endogenous FUS to cytoplasmic structures 

represents a later stage of FUSopathy, which these mice did not reach, giving insights 

into the progression of FUSopathy.  

 

Despite a prominent proteinopathy, tremor and an early onset lethality caused by 

expression of FUS ΔRRMcyt in the cytoplasm, we were not able to detect any signs of 

neurodegeneration or accompanying inflammatory glial response within either the 

cortex or brainstem motor nuclei that are commonly affected in ALS. In a recent murine 

model where wild-type human FUS was overexpressed, homozygous mice also 

developed a visually similar early-onset tremor, in this case progressing into to limb 

paralysis and lethality at a young, although significantly older, age than in FUS 

ΔRRMcyt mice. Interestingly, although FUS-positive inclusions were widespread, loss 

of neuronal populations and neuroinflammatory response were not found in the brain of 

these mice (Mitchell et al., 2013), which is consistent with our observations.  
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The origins of pronounced tremor in these mice were not obvious. Though FUS 

mutation and/or pathology has been associated with cases of essential tremor (Merner 

et al., 2012; Rajput et al., 2014; Wu et al., 2013; Zheng et al., 2013) and cerebellar 

ataxias (Doi et al., 2010), we observed no signs of overt FUS pathology in cerebellar 

Purkinje cells, common targets of these disorders in humans (Xia et al., 2013) and 

mouse models (Sarna and Hawkes, 2011; Sawada et al., 2009). However, whilst FUS 

did not appear to be redistributed in these cells upon histological analysis, functional 

alterations to these cells cannot be ruled out.  

 

It is feasible that the interactions of FUS with RNAs were altered in cells expressing 

this modified protein. As the RRM domain is proposed to impart specificity, one would 

expect an increase in non-specific RNA interactions for this isoform of FUS. Therefore, 

in addition to a deleterious effect on function or metabolism of normal RNA targets of 

FUS, this isoform might have become engaged in interactions with, and compromise 

the normal functions of, novel RNA targets. Both of these mechanisms might have 

contributed to the development of the severe early onset phenotype observed in these 

transgenic mice. 

 

Although it was not possible to determine exact mechanism by which severe pathology 

developed in this model, it is tempting to hypothesise that the very early death of FUS 

ΔRRMcyt mice before or soon after developing tremor but prior to the potential onset of 

any motor symptoms reflects dramatic changes to intracellular regulatory/signaling 

processes that make neurons throughout the nervous system dysfunctional before any 

structural damage to these cells becomes evident. Such systemic dysregulation could 

have an insurmountable effect on bodily functions, for example by causing 

dysregulation of respiratory control, leading to death of the animal before changes 

more typical to ALS pathology occur in motor neurons.  

 

Taken together with our previous model of FUSopathy (FUS 1-359 mice), these data 

further support the notion that expression of cytoplasmically mislocalised FUS with 

compromised RNA-binding capacity causes particularly prominent and harmful FUS 

pathology in the mouse nervous system. 
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Aggregation of mutant FUS in the cytoplasm: Interactions with stress-

induced stress granules 
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4.1 Declaration 

Data included within this chapter have been published within the following open access 

article: 

 

Shelkovnikova TA, Robinson HK, Connor-Robson N, Buchman VL. Recruitment into 

stress granules prevents irreversible aggregation of FUS protein mislocalized to the 

cytoplasm. Cell Cycle. 2013 Oct 1;12(19):3194-202.  

 

4.2 Overview 

In the previous chapter, the effect of expressing FUS with compromised RNA-binding 

capacity in the murine nervous system was investigated using two transgenic models. 

In both instances, this caused pronounced effects on animal physiology with reduced 

survival and the formation of pathological FUS-positive inclusions. The severe 

phenotype associated with expression of a C-terminally truncated FUS isoform, FUS 1-

359, that lacked major RNA-binding domains, giving rise to several ALS-like signs, 

suggested that aggregation of FUS in the cytoplasm is a primary insult sufficient to 

confer pathology in the absence of initial widespread disruption to RNA metabolism 

homeostasis that may otherwise occur when expressing full length forms. However, the 

pathways through which this isoform of FUS that was mislocalised to the cytoplasm 

aggregated to form large FUS-positive inclusions, and the nature of these inclusions 

were not clear. Following stress insult, FUS mutants which have been mislocalised to 

the cytoplasm have been shown to interact with SGs (Bosco et al., 2010; Dormann et 

al., 2010; Vance et al., 2013), yet as FUS 1-359 lacks major RNA-binding domains and 

RNA-binding is thought to be required for SG interactions (Bentmann et al., 2012), it 

was unclear whether this isoform would act in a similar manner. Therefore, the aim of 

this chapter was to investigate the aggregation pathways of FUS 1-359 and the 

relationship of this isoform with SGs in the cytoplasm under basal and stress conditions 

to determine, in vitro, how large FUS-positive inclusions seen in our FUS 1-359 

transgenic model may be formed, and to elucidate the role of cytoplasmic FUS 

recruitment to SGs.  

 

4.3 Results 

4.3.1 Aggregation of FUS 1-359 in the cytoplasm of SH-SY5Y cells 

In the previous chapter, it was shown that GFP-tagged FUS 1-359 aggregated over 

time in the cytoplasm of SH-SY5Y cells, producing large juxtanuclear aggregates. Live 

cell imaging of this construct revealed that these large structures were formed by the 

agglomeration of small FUS 1-359 precursor aggregates over time (Figure 4.1A). 
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These large juxtanuclear structures were not uncommon in these cells and at 24 h they 

are seen in >40% of transfected SH-SY5Y cells, while some degree of aggregation 

was seen in ∼60% of these cells (Figure 4.1B).  

 

4.3.2 Characterisation of large juxtanuclear structures formed by FUS 1-359 

Lysosomes are membrane enveloped organelles containing acid hydrolases acting to 

degrade damaged and unwanted proteins in the cytoplasm. These structures are often 

located in the juxtanuclear region where they are formed from the fusion of endosomes 

arising from the cellular membrane and Golgi vesicles containing digestive enzymes 

(Luzio et al., 2007). Considering this, immunoreactivity of FUS 1-359 structures to 

endosomal and lysosomal markers was tested to determine whether FUS was targeted 

to these areas. Large juxtanuclear structures of FUS 1-359 were, however, negative for 

markers of endosomal and lysosomal compartments, LAMP-1 and LAMP-2 (Figure 

4.2A).  

 

Instead, these structures displayed features typical of aggresomes. Aggresomes are 

also found in a juxtanuclear location where they are organised around microtubule 

organising centres (MTOCs) (Garcia-Mata et al., 1999). They are formed by the 

retrograde trafficking of small aggregates along microtubules and it is hypothesised 

that this condensation of aggregates may act to facilitate targeting of these proteins to 

autophagic degradation pathways (Kopito, 2000). As with aggresomes (Bolhuis and 

Richter-Landsberg, 2010; Oakley, 1995), FUS 1-359 juxtanuclear structures were 

positive for chaperone protein, HSP-27 (Figure 4.2B) and were organised around 

MTOCs as visualised with an antibody to gamma-tubulin, a marker of this region 

(Figure 4.2C). Like aggresomes (Johnston et al., 1998), large FUS 1-359 structures 

were surrounded by a cage of redistributed intermediate filament, vimentin (Figure 

4.2D). Disruption of microtubules with nocodozole, that prevents the formation of 

aggresomes (Vasquez et al., 1997), also prevented the formation of these FUS-

positive structures (Figure 4.2E).  
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Figure 4.1. Small aggregates of FUS 1-359 mutant coalesce over time to form large juxtanuclear 

structures. (A) Stills from live cell imaging of SH-SY5Y cell transfected with GFP-tagged FUS 1-359 

beginning 24 h post transfection. (B) These large aggresome structures are seen in >40% SH-SY5Y cells 

at 24 h post-transfection with FUS 1-359 and some degree of aggregation is seen in ∼60% cells. Scale 

bar; 25 µm.  
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4.3.3 Interaction between FUS mutants and SG marker proteins  

Whilst FUS 1-359 was shown to form aggresomes, ALS-related mutant R522G and 

NLS deletion mutant 1-513 were instead shown to colocalise with markers of SGs, 

TIAR and G3BP1, in naïve cells without the addition of exogenous stress (Figure 4.3). 

Contrastingly, FUS 1-359 aggregates did not colocalise with occasional SG marker-

positive structures seen in these cells (Figure 4.3). Emetine, a polysome stabiliser, is 

known to cause the disassembly of SGs (Kedersha et al., 2000). Treatment of cells 

transfected with FUS R522G with emetine was sufficient to prevent the formation of 

FUS R522G foci. However, emetine treatment was not able to prevent the aggregation 

of FUS 1-359 (Figure 4.4).  

 

To induce SG formation, transfected cells were treated with 0.5 mM sodium arsenite 

for one hour or subjected cells to heat shock at 43°C for one hour. Whilst 

cytoplasmically localised FUS mutants, R522G, 1-513 and ΔRRMcyt are recruited to 

SGs induced by both methods, FUS 1-359 aggregates did not colocalise with SGs in 

either case (Figure 4.5). As expected, WT FUS remained nuclear and was not 

recruited into SGs (Figure 4.5A). Again, disruption of induced SGs with emetine or 

cycloheximide, also known to cause disruption of SGs by a similar mechanism to that 

of emetine (Kedersha et al., 2000), was sufficient to prevent the presence of ALS-

linked R522G FUS foci but not the presence of FUS 1-359 aggregates (Figure 4.6). 

Together with previous data, this confirms that FUS 1-359, lacking NLS, RGG and ZF 

domains is not capable of being recruited into SGs but forms small aggregates which 

are not easily dissipated and instead go on to form aggresomes.   
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Figure 4.2. Large juxtanuclear structures formed by FUS 1-359 in SH-SY5Y cells display features typical of 

aggresomes. (A) Large juxtanuclear agglomerations of FUS 1-359 do not colocalise with LAMP-1 or 

LAMP-2, markers of endosome and lysosome compartments but are positive for the chaperone protein, 

HSP-27 (B) These structures are formed around microtubule organising centres, as highlighted by anti-

gamma tubulin antibody (yellow arrowheads) (C), and are surrounded by a ‘vimentin cage’ (D). (E) 

Additionally, formation of these large juxtanuclear structures (arrow) is prevented by disrupting 

microtubules with nocodozole (0.5 µM or 1 µM). Scale bars; A, 20 µm; B-E, 15 µm. At least 3 biological 

replicates were performed and representative images are shown.  
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Figure 4.3. C-terminally truncated FUS mutant 1-359 is not recruited into SGs in naïve cells. Aggregates of 

ALS-linked FUS mutants R522G and 1-513, but not the C-terminal truncation 1-359, may colocalise with 

SG markers TIAR (A) or G3BP1 (B) in naïve SH-SY5Y cells. Scale bars; 15 µm. At least 3 biological 

replicates were performed and representative images are shown.  
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Figure 4.4. Disruption of SG formation is not sufficient to prevent the aggregation of FUS 1-359 into large 

juxtanuclear structures. SH-SY5Y cells were treated with emetine (10 µg/ml) to prevent SG formation. Anti-

TIAR staining was used to confirm that no SGs were formed. Scale bar; 15 µm. At least 3 biological 

replicates were performed and representative images are shown.  
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4.3.4 RNA-binding dependency of FUS recruitment to SGs 

To confirm that the recruitment of cytoplasmic FUS to SGs is indeed dependent upon 

the RNA-binding abilities of FUS, as is suggested by the inability of FUS 1-359, lacking 

crucial RNA-binding domains, to be recruited to these structures, a fusion protein was 

created to reinstate additional RNA-binding domains. This fusion protein was created 

through the addition of two RRMs, taken from the functionally similar human RNA-

binding protein, TDP-43, to the C-terminus of FUS 1-359 (FUS-1-359-TDP). An RNA-

binding deficient form of this fusion protein (FUS-1-359-TDP3D) was also created by 

inserting three missense mutations L106D, V108D and L111D (corresponding to 

positions in full length TDP-43) within the first RRM domain of TDP-43, which has 

previously been shown to severely disrupt the RNA-binding capacity of TDP-43 (Buratti 

and Baralle, 2001) (Figure 4.7A). These fusion constructs were expressed at a level 

comparable to that of FUS 1-359 in SH-SY5Y cells as detected by western blot of total 

cellular lysates 24 h post-transfection using an antibody recognising GFP (Figure 

4.7B). As expected, the addition of RNA-binding competent RRM domains to FUS 1-

359, but not those with RNA-binding disrupting mutations, was sufficient to prevent the 

aggregation of these proteins into large aggresome structures (Figure 4.7C) and permit 

their recruitment into sodium arsenite-induced SGs (Figure 4.7D).   
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Figure 4.5. FUS 1-359 is not recruited into bona fide, induced SGs. FUS mutants, R522G, 1-513 and 

ΔRRMcyt, but not C-terminal truncation mutant, FUS 1-359, are recruited into SGs, as visualised by anti-

TIAR antibody, upon the induction of SG formation by either 0.5 µM sodium arsenite treatment (A) or heat 

shock at 43°C for 1 h (B). Arrows, FUS granules; Arrowheads, SGs. Scale bar for all panels; 15 µm. At 

least 3 biological replicates were performed and representative images are shown.  

 

Figure 4.6. Induction of SG formation is prevented by translational inhibitors, yet this is not sufficient to 

prevent the formation of FUS 1-359 aggregates. Treatment with either cycloheximide (A) or emetine (B) 

was sufficient to disrupt induction of SG formation and the recruitment of FUS 1-513 to these structures 

although large FUS 1-359 structures persisted. Anti-TIAR staining was used to confirm the absence of 

SGs under these conditions. Scale bars; 15 µm. At least 3 biological replicates were performed and 

representative images are shown.  
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Figure 4.7. Addition of functional RNA-binding domains from TDP-43 prevents formation of large 

aggregates and restores recruitment of FUS 1-359 to induced SGs. (A) RRM domains from TDP-43 were 

added to the C-terminus of FUS 1-359. Fusion construct FUS 1-359-TDP 3D harbored 3 asparagine 

missense mutations (blue) to disrupt the RNA-binding capacity of the TDP-43 domains. (B) Fusion 

constructs were expressed at comparative levels as demonstrated by western blot from transfected SH-

SY5Y cells using anti-GFP antibody. Membranes were reprobed with anti-β-actin antibody to confirm equal 

loading. In all cells analysed, the addition of RRM domains (C,D), but not those harboring functionally 

disruptive mutations (C,E), from TDP-43 was sufficient to prevent the agglomeration of FUS 1-359 into 

larger structures (C) and permitted the recruitment of this fusion protein to sodium arsenite-induced SGs 

(D,E). Scale bars; 15 µm. At least 3 biological replicates were performed and representative images are 

shown.  
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4.3.5 Ability of FUS 1-359 to seed aggregation 

In the previous chapter, large inclusions of FUS 1-359 were shown to sequester 

endogenous FUS in transgenic mice, highlighting a potential seeding mechanism of 

this FUS isoform. To investigate this further, it was probed in vitro whether FUS 1-359 

was able to seed the aggregation of other FUS forms, importantly, endogenous FUS 

from the nucleus. FUS 1-359 was co-expressed with either R522G or WT FUS in SH-

SY5Y cells. Similarly to immunohistochemical studies in our transgenic mice, an 

antibody to the C-terminus of FUS was used to detect the localisation of other FUS 

forms independent of FUS 1-359, which is not recognised by this antibody (Figure 

4.8A). When coexpressed with FUS 1-359, R522G and WT FUS were both recruited to 

FUS 1-359 foci (Figure 4.8B). Recruitment of endogenous FUS to FUS 1-359 

aggregates was also detected although rarely and in small number (∼5%) of foci 

(Figure 4.8B).   
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Figure 4.8. FUS 1-359 is capable of seeding aggregation. (A) An antibody to C-terminus of FUS 

recognises other FUS variants but not FUS 1-359 lacking C-terminal domains (arrows). (B) FUS 1-513, 

WT FUS and endogenous FUS may all recruited into FUS 1-359 foci following co-transfection. 

Arrowheads; localisation of FUS independent of FUS 1-359. Scale bars; A (upper panel), 35 µm; A (lower 

panel), 45 µm; B, 15 µm. At least 3 biological replicates were performed and representative images are 

shown. Data generated by Dr. Tatyana Shelkovnikova.  

 

A 

 

B 



RESULTS II 

  116 

4.4 Discussion 

Cytoplasmically localised ALS-linked FUS mutant, R522G, was recruited to 

cytoplasmic structures positive for SG markers both in cells stressed by externally 

applied factors (heat shock, sodium arsenite) and untreated cells, potentially stressed 

by overexpression of the protein itself. This agrees with findings by others that suggest 

ALS-associated FUS variants in the cytoplasm can be incorporated into SGs induced 

by stressful cellular conditions (Vance et al., 2013; Bosco et al., 2010). This recruitment 

pattern was also seen with other cytoplasmically localised FUS variants, namely FUS 

1-513, which lacks the NLS, and ΔRRMcyt, a cytoplasmically targeted FUS variant with 

deleted RRM domain. However, the recruitment of WT FUS to induced SGs was not 

observed, recapitulating findings that a cytoplasmic localisation of FUS is key for 

recruitment to these structures (Dormann et al., 2010). In 2012, Bentmann et al. (2012) 

suggested that the major domains required for recruitment of FUS to SGs were the 

RGG and ZF domains and that the RRM was involved to a limited extent. Here, 

cytoplasmic FUS lacking the RRM domain was able to be recruited into SG marker-

positive structures, supporting that this domain is not necessary for this process, 

however, the degree to which deletion of this domain affects the dynamics of 

recruitment to these structures remains unknown.  

 

Supporting a previously suggested definite role for RGG and ZF domains in 

recruitment to SGs, FUS lacking NLS, RGG and ZF domains, unlike other FUS variants 

studied, was not recruited to SG marker-positive structures in naïve or exogenously 

stressed cells. Although proper SGs form in these cells in response to exogenous 

stresses, these SGs were negative for FUS 1-359. Instead, this FUS variant, with 

compromised RNA-binding, formed foci clearly distinct from SGs.  

 

Dormann et al. (2010) have previously suggested that SGs may be precursors to the 

large cytoplasmic FUS-positive inclusions seen in ALS and FTLD patients. However, at 

no point during our experiments was the agglomeration of FUS-positive SGs into larger 

structures detected. The RNA-binding capacity of FUS 1-359 is severely compromised 

given the removal of its major RNA-binding domains - the RGG, ZF and NLS domains. 

Supporting this, others have previously shown that even a slightly longer FUS 1-375 

construct, also lacking these domains failed to bind either UG12 or CCUC RNA probes 

in vitro (Bentmann et al., 2012). Given this diminished capacity, FUS 1-359 was unable 

to be recruited to SG marker-positive structures and was accompanied by a prominent 

and extreme aggregation of the protein. Over time, small dot-like aggregates of FUS 1-
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359, unable to be recruited into these structures, instead came together to form large 

juxtanuclear structures with features typical of aggresomes.  

 

Additionally, restoration of RNA-binding ability of FUS 1-359, through the generation of 

FUS-fusion proteins, restored its recruitment to proper, inducible SGs, preventing its 

irreversible aggregation into large aggresome structures. This supports evidence 

provided by others that recruitment into bona fide SGs is dependent on the ability of 

FUS to bind RNA (Daigle et al., 2013). Taken together, these findings suggest that 

rather than SGs being maladaptive and pathogenic precursors to the formation of 

inclusions, they instead prevent irreversible aggregation in the cytoplasm of stressed 

cells of FUS variants capable of binding to target RNA. This is likely a cytoprotective 

response of SGs. 

 

In ALS and FTLD, the appropriate protective response by SGs may be somehow 

disrupted and failure of SGs to sequester cytoplasmically mislocalised FUS, even 

forms with the intact ability to bind RNA, might lead to their irreversible aggregation. 

Perhaps even if disruption of SG function was transient, the initial aggregation of FUS 

outside of SGs could promote the seeding of larger FUS structures through a prion-like 

mechanism even following the restoration of SG function. The precise circumstances 

and mechanisms through which ALS-associated forms of RNA-binding competent FUS 

may aggregate aside from their sequestration into stress-induced SGs remain to be 

determined, but investigation of these pathways could provide improved understanding 

of how large FUS inclusions may be formed in FUSopathies.  
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5.1 Declaration 

Data included within this chapter have been published within the following open access 

article: 

 

Shelkovnikova TA, Robinson HK, Southcombe JA, Ninkina N, Buchman VL. Multistep 

process of FUS aggregation in the cell cytoplasm involves RNA-dependent and 

RNA-independent mechanisms. Hum Mol Genet (2014) Oct 1;23(19):5211-26 

 

5.2 Overview 

In the previous two chapters, it was shown that experimentally truncated FUS, with 

reduced ability to bind target RNAs due to the lack of major RNA binding domains, was 

unable to be sequestered into induced stress granules and, instead, aggregated to 

form large pathological inclusions, both in mice and cell culture, reminiscent of 

inclusions formed in ALS patient tissues. At the same time, it was observed that FUS 

variants carrying ALS-associated mutations and with intact RNA binding domains, 

readily associated with stress-induced stress granules, a feature also replicated by 

others (Baron et al., 2013; Bosco et al., 2010; Dormann et al., 2010). However, how 

ALS-linked FUS variants interacting with physiological RNP granules may give rise to 

pathological FUS inclusions was not clear. Indeed, it was not known whether the 

downstream aggregation of these FUS variants capable of entering physiological RNA 

granules may be similar to the mechanism of inclusion formation for RNA-binding 

incompetent forms of FUS. Given that understanding the pathways of FUS aggregation 

into pathological inclusions may be therapeutically relevant for patients with FUS 

pathology, we sought to characterise the aggregation of ALS-associated forms of FUS 

in the cytoplasm and determine how these structures may transform in response to 

cellular stress and attenuated transcription.  

 

5.3 Results 

5.3.1 Cytoplasmic FUS spontaneously aggregates in cultured cells in a 

concentration-dependent manner  

As previously demonstrated, GFP-tagged FUS harboring a common ALS-associated 

mutation, R522G, disrupting its NLS, accumulated in the cytoplasm of cultured 

neuroblastoma cells where it had the ability to form large granules (Figure 3.1). This 

was also seen for other FUS variants including FUS 1-466 and FUS 1-513 (Figure 3.1). 

Detailed characterisation of this phenomenon in both neuroblastoma cells and neurons 

from primary hippocampal cultures revealed that FUS R522G in the cytoplasm 

appeared either diffuse (Figure 5.1A) or as one of several accumulated forms, 
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including small granules (FUS granules, FGs) (Figure 5.1B), which further coalesced 

into clusters of granules (Figure 5.1C) and finally formed aforementioned larger 

granules (Figure 5.1D). This accumulation of diffuse FUS R522G into these granular 

forms occurred after a certain concentration threshold was reached, shown by 

fluorescence intensity measures for GFP in cells expressing either form (Figure 5.1E). 

Of cells containing accumulated forms of FUS, cells with FGs were most frequent, with 

clusters of granules and large aggregates less common (Figure 5.1F). As clusters of 

granules were immediate precursors to larger granules and represented the same 

structure, these two categories were combined for clarity into FUS aggregates (FAs).  

 

High resolution confocal microscopy was performed to determine structural differences 

between these FAs appearing in naïve cells that highly expressed FUS R522G, and 

the R522G-positive bona fide SGs induced by sodium arsenite seen in cells expressing 

low levels of the GFP-tagged protein. Under high magnification, induced SGs were 

distinct and compact structures, whereas similarly-sized FAs formed by accumulated 

FUS were non-compact, irregularly shaped accumulations of small round granules 

(Figure 5.2). Differences in the dynamics of these two structures were also noted. 

Where further fusion of mature SGs is not typical, this was a common feature for FAs, 

often coalescing to form larger FAs (Figure 5.1D), as visualised with live cell imaging of 

transfected cells (data not shown). Additionally, FGs, the precursors to FAs, persist for 

several hours in cell culture, as evidenced by the great proportion of cells bearing 

these structures after 24 h, whereas the formation of SGs following sodium arsenite or 

heat shock induction is rapid, beginning within 10 min and reaching peak formation 

after 20-30 min (Zhang et al., 2011). Immunocytochemistry for SG markers, TIAR and 

G3B1 (Figure 5.3A,B), revealed that a fraction of FAs were not positive for these 

proteins, and although this fraction was not quantified, the  formation of SG-marker 

negative FAs suggests that these proteins are not essential for the integrity of FAs. 

Again, another protein usually seen within SGs, the ribosomal protein S6 (Kimball et 

al., 2003), was not seen in FGs or FAs, confirming that stalled pre-initiation complexes 

were not major components of these FUS structures (Figure 5.3C). Together with this, 

P-bodies, involved in mRNA processing and turnover (Kedersha and Anderson, 2007), 

which are normally docked to induced SGs in neuroblastoma cells (Figure 5.4B,C), as 

visualised with anti-Dcp1a staining, were not docked to FAs (Figure 5.4A). 
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Figure 5.1. ALS-associated mutant FUS R522G accumulated in the cytoplasm and formed granule-like 

aggregates in a concentration-dependent manner. SH-SY5Y cells cells or primary hippocampal neurons 

were transfected with GFP-tagged FUS R522G. The protein either displayed diffuse distribution (A) or was 

found in multiple granule-like microaggregates (B) that in some cells formed clusters (C) or large compact 

aggregates (D). (E) Aggregation of FUS in the cytoplasm was concentration dependent. Arbitrary units of 

fluorescence intensity measures from the cytoplasm of individual cells 24 h after transfection with GFP-

tagged FUS R522G with diffuse only distribution or with already formed granules are plotted. Red dotted 

line indicates maximum fluorescence intensity at which diffuse staining was observed for the FUS R522G 

mutant. (F) Proportion of cells with each type of FUS R522G distribution in the population of expressing 

cells. Scale bars; 10 µm. 
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Figure 5.2. High magnification confocal imaging of FUS-positive structures. High magnification confocal 

maximum projection images of FUS R522G-positive SGs formed in low-expressing COS7 cells upon 

sodium arsenite treatment (left panel) versus similarly-sized FAs formed by the same protein in naïve 

COS7 cells (right panel). Scale bar; 2 µm. 
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Figure 5.3. FAs display several differences to stress-induced SGs that contain FUS. (A) Some FAs were 

strongly positive for a SG marker TIAR (arrows), whereas a fraction of FAs displayed only weak or no 

TIAR immunoreactivity (cell marked with an asterisk). (B)  Only a fraction of FAs formed in naïve SH-SY5Y 

cells were positive for the SG marker, G3B1 (arrow), while other FAs did not contain this protein (cell 

marked with an asterisk). (C) Ribosomal protein S6 was not accumulated in FGs or FAs. Scale bars; 10 

µm. 
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Figure 5.4. P body localisation in SH-SY5Y cells expressing FUS R522G. (A) In SH-SY5Y cells expressing 

FUS R522G, P bodies visualised with anti-Dcp1a antibody did not occur next to FAs. (B,C) In 

untransfected sodium arsenite-stressed SH-SY5Y cells, P bodies are located in the immediate vicinity of 

SGs visualised with anti-TIAR (B) or anti-G3B1 antibodies (C). Scale bars; 10 µm. 
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5.3.2 RNA is an important structural component of FAs required for their 

integrity and sequestration of SG-associated proteins  

Whilst the above data suggested that FAs were distinct from SGs, a significant 

proportion of FAs displayed immunoreactivity for SG markers (Figure 5.3B). To 

determine whether this could be due to secondary recruitment of SG proteins via RNA 

molecules trapped within FAs by RNA-binding competent FUS, it was first shown that 

mature RNA transcripts are components of FAs. This was determined using in situ 

hybridisation with a fluorescently labelled oligo(dT) probe that bound to poly(A)+ mRNA 

(Figure 5.5A).  Secondly, following mild methanol fixation of transfected cells, RNase A 

digestion was sufficient to remove TIAR staining of all FAs (Figure 5.5B, C). However, 

under the same treatment, sodium arsenite-induced SGs could still be detected with 

anti-TIAR antibodies (Figure 5.5D). Together this suggested that TIAR was weakly 

associated with FAs via an RNA interaction, possibly on the surface of FAs, that can 

readily be removed by RNase treatment even after mild fixation. Contrastingly, TIAR, 

an integral component of SGs, was not removed following RNase after methanol 

fixation, highlighting that TIAR may be fixed within the SGs as opposed to secondarily 

bound. However, as other explanations for these data are possible (perhaps relative 

abundance of FUS and TIAR is important in the fixing and sensitivity to RNase), this 

possibility needs to be further investigated in the future.  

 

Although TIAR staining was removed following RNase treatment post-fixation, FAs 

themselves persisted (Figure 5.5C, D). By isolating Triton-X-100 soluble and insoluble 

fractions from naïve cells expressing GFP-tagged FUS R522G, it was shown, as 

expected, that FUS R522G accumulated over time in this insoluble fraction (Figure 

5.6A). To further assess the role of RNA in FAs we sought to determine how the 

distribution of FUS between soluble and insoluble fractions changed following RNase A 

treatment. Upon RNase A treatment of lysates, a profound shift of the protein towards 

the soluble fraction was observed (Figure 5.6B, C). Note that in this instance, cells 

were not fixed prior to RNase treatment. Furthermore, and replicating 

immunocytochemical findings, the insoluble fraction was weakly positive to TIAR 

staining, which was removed following RNase treatment (Figure 5.5D).  

 

We sought to determine the source of the RNA that was required for FA integrity by 

quantifying the fraction of cells containing FAs following inhibition of either translation 

with emetine or transcription with actinomycin D. Treatment with emetine, which stalls 

pre-initiation complexes, reduced the proportion of cells with FAs and inhibition of 

transcription with actinomycin D, had a similar effect (Figure 5.6E). Together, this 
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suggested that transcripts running off polysomes, blocked by emetine, and newly 

synthesised transcripts, reduced by actinomycin D, contribute to integrity of FAs.  
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Figure 5.5. Poly(A)
+
 mRNA is incorporated into FAs and recruitment of SG protein, TIAR to these 

structures is RNase-sensitive. FAs formed by FUS R522G in SH-SY5Y cells were enriched in poly(A)
+
 

mRNA as revealed by RNA-FISH with fluorescently labeled oligo(dT) probe. (B–D) Some FAs were 

strongly positive for TIAR (B), but this protein was removed from all aggregates by RNase treatment on 

cover slips following mild methanol fixation (C) while sodium arsenite-induced SGs remained TIAR positive 

following this treatment (D). Scale bars; 15 µm. 
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Figure 5.6. RNA is important for the integrity of FAs. (A) Western blots show that FUS R522G 

progressively accumulated in Triton X-100 insoluble (ins) fraction of transfected SH-SY5Y cells. (B) RNase 

treatment of cell lysates prior to fractionation shifted GFP-tagged FUS R522G protein to the soluble (sol) 

fraction. Equal proportions of soluble and aggregated fractions were analysed on western blots. (C) 

Quantification of B. (D) TIAR was found only in soluble fraction in non-transfected cells, was partially 

recruited into insoluble fraction in cells expressing FUS R522G but could be re-solubilised by digestion of 

lysates with RNase A prior to fractionation. (E) Treatment with a translational inhibitor, emetine, or a global 

transcriptional repressor, actinomycin D (act D), for 2 h resulted in disintegration of a significant proportion 

of FAs and, consequently, a reduction in the fraction of transfected cells bearing these structures. For 

western blots, sizes of proteins (in kDa) are shown. Bar charts in C and H show means ± S.E.M, *p < 0.05, 

** p < 0.01. 
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5.3.3 N-terminal prion-like domain and the ability to bind to a specific pool of 

RNAs are both required for FUS aggregation in the cell cytoplasm  

As well as the integrity of FAs elicited by interactions with RNA arising from RNA-

binding domains of FUS, we wondered how the prion-like N-terminus of the protein 

might contribute to this aggregation, for example, whether it could have important roles 

in the formation or perhaps even growth of FAs. Removing the N-terminus domain from 

FUS R522G, giving rise to the truncated FUS proteins, CT or CT-RRM (Figure 5.7A), 

resulted in loss of visible aggregation of the protein in the cell cytoplasm (Figure 5.7B, 

C) and its disappearance from the insoluble fraction (Figure 5.7D). Addition of a known 

prion domain from the yeast protein, Sup35, to the N-terminus of FUS CT fragment 

was sufficient to restore this aggregation capacity (Figure 5.7B, D). To determine 

whether various pools of RNA were sufficient for FUS aggregation, the major RNA-

binding domains of FUS were replaced with non-homologous RNA recognition motifs 

from functionally similar human TDP-43 protein or an evolutionarily distant yeast 

protein Npl3 (Figure 5.7A). In SH-SY5Y cells, FUS-TDP-43 chimeric protein formed 

structures resembling those formed by FUS R522G and was present in the insoluble 

fraction (Figure 5.7B, C). Contrastingly, FUS-Npl3 chimeric protein was only observed 

in the soluble fraction and displayed diffuse staining, irrespective of its expression level 

(Figure 5.7B, C). This suggests that FUS aggregation within the cytoplasm requires 

both the prion-like activity of the N-terminus but also interactions with a specific pool of 

RNAs, although the exact nature of these RNAs remain to be determined. Note, the 

contribution of potential protein-protein interactions arising from these RNA-interacting 

domains is unknown.  

 

5.3.4 FGs are a novel type of RNA granule  

Next, we sought to further characterise the early precursor structures, FGs, to 

ascertain whether these may be nucleated by existing RNP granules known to contain 

FUS or whether they represent a separate entity yet to be described.  Upon high 

resolution microscopy, FGs were shown to be relatively uniform, round structures of 

approximately 150-200 nm diameter (Figure 5.8A). Therefore, comparison was carried 

out between FGs and a similarly sized (100-200 nm) granule observed in neurons and 

known to contain FUS, the kinesin-associated RNA transport granule (Kanai et al., 

2004). These transport granules are detergent-resistant and sensitive to RNase, so the 

following experiments were performed to see whether FGs also displayed similar 

features. 
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Figure 5.7. N-terminus prion-like domains and the ability to bind a specific pool of RNAs are both 

essential for FA formation. (A) Schematic representation of GFP-tagged experimental FUS constructs 

used. N-terminal domains of FUS were removed from CT-RRM and CT fragments, whereas in FUS-

Npl3 and FUS-TDP-43 the major RNA-binding domains within the C-terminus were replaced with 

ectopic RRM domains from either yeast Npl3 protein or TDP-43 protein, respectively. In Sup-35-FUS, 

the N-terminus domains of FUS were replaced with the prion domain (amino acids 1-125) of yeast 

protein, Sup35. (B) Sup35-FUS and FUS-TDP43 were able to recapitulate the formation of aggregates 

as seen in full length FUS with R522G mutation (FL), yet only diffuse distribution was seen for CT, CT-

RRM and FUS-Npl3. (C) Western blot analysis of proteins in fractionated lysates of transfected cells 

with anti-GFP antibody demonstrated that FUS-TDP-43 and Sup-35-FUS are recovered in Triton X-100 

insoluble fraction, while CT, CT-RRM and FUS-Npl3 are almost wholly soluble. Scale bar; 15 µm. 
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A fraction of cellular lysate from cells transfected with either FUS R522G or 1-466 

(dRGG3) that was enriched for FGs and depleted of FAs was isolated using a 

differential centrifugation protocol commonly used for preparation of RNA transport 

granule-enriched fraction. RNase treatment of lysates prior to fractionation resulted in a 

shift of the FUS proteins from particulate pellet to soluble supernatant fractions (Figure 

5.8B, D). Fragile X mental retardation protein (FMRP), a component of RNA granules, 

was used as a marker of RNA granules and was also efficiently dissipated following 

RNase treatment (Figure 5.8B), suggesting that RNAs are required for structural 

integrity of both types of granules. Similarly to experiments performed on FAs, 

treatment of transfected cells with emetine or actinomycin D were used to gauge the 

source of RNA required for integrity of FGs. Whist FGs also displayed a shift to the 

soluble fraction occurred following actinomycin D (Figure 5.8D), unlike FAs, FGs 

persisted following emetine treatment (Figure 5.8C). This suggested that FGs are most 

likely nucleated on newly synthesised transcripts exiting the nucleus.  

 

Immunocytochemistry with known markers for endogenous RNA transport granules 

was also performed to further investigate the possibility that FGs represented these 

structures. No overlap was seen between FGs and FMRP, a component of neuronal 

RNA granules (Figure 5.8E). Additionally, only partial overlap was observed for FGs 

with DEAD box helicase 5 (DDX5), also a common constituent of neuronal RNA 

transport granules (Kanai et al., 2004) (Figure 5.8F). Along with this, FAs were strongly 

positive for DDX5, whereas sodium arsenite-induced SGs were negative (Figure 5.9), 

providing a distinguishing marker between these two structures and also providing 

further evidence for FGs being precursors of FAs. Considering these findings together, 

it was concluded that FGs represented a novel RNP granule, which also had the ability 

to sequester some proteins that are constituents of physiological neuronal RNP 

structures.  
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Figure 5.8. FGs were assembled on newly synthesised RNA and shared some, but not other, features of 

RNA transport granules. (A) High-magnification confocal image of FGs formed by GFP-tagged FUS 

R522G in the cytoplasm of SH-SY5Y cells. (B) FGs were RNase-sensitive. Western blot of proteins from a 

granule-enriched fraction (P100K) and soluble (S100K) fraction isolated in the presence or absence of 

RNase A from cells transfected with GFP-tagged FUS 1-466 (dRGG3). The membrane was reprobed with 

antibodies against FMRP, a core protein of neuronal RNA transport granules, and soluble GAPDH protein. 

(C, D) Novel transcripts but not mRNAs from polysomes contributed to the stability of FGs. SH-SY5Y cells 

expressing GFP-tagged FUS R522G, were treated with translational elongation inhibitor, emetine (C) or 

transcriptional inhibitor, actinomycin D (D) for 2 h prior to lysis and fractionation to granule-enriched (100 

000 g pellet, P100k) and soluble (100 000 g supernatant, S100k) fractions. RNase A-treated sample was 

processed in parallel as an internal positive control. (E) FGs were negative for FMRP. (F) A a subset of 

FGs were DDX5-positive. In (B–D), three times more P100k fraction relative to S100k fraction was loaded; 

for western blots, sizes of proteins (in kDa) are shown. Scale bars; 15 µm.  
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Figure 5.9. DDX5 can be used as a selective marker of FAs, distinguishing them from induced SGs. (A) In 

SH-SY5Y cells, DDX5 was not recruited to sodium arsenite-induced SGs as revealed by co-staining with 

anti-DDX5 and anti-TIAR antibodies. (B) FAs formed in SH-SY5Y cells expressing GFP-tagged FUS 

R522G were strongly positive for DDX5. (C) In cells with a low level of FUS and lacking FGs/FAs, sodium 

arsenite treatment induced formation of FUS-positive SGs that were negative for DDX5 (cell marked with 

an asterisk). Scale bars; 10 µm. 
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5.3.5 FAs disrupt formation of stress granules and P-bodies  

In conditions of cellular stress, the level of free mRNA is dramatically increased as 

polysomes are dissociated and mRNA transcripts are run off (Kedersha et al., 2000; 

Bounedjah et al., 2014). As it was demonstrated that RNA is required for the formation 

and integrity of FAs, we predicted that conditions of cellular stress would favour FA 

assembly. Using live cell imaging, the response of FGs to sodium arsenite-induced 

stress was monitored over time. As predicted, following stress insult, FGs rapidly 

clustered and assembled into FAs, occurring on a much shorter timescale than 

transition from FGs into FAs in naïve cells, normally taking several hours to develop 

(Figure 5.10A and data not shown). As FAs indeed developed in a fraction of naïve 

cells (Figure 5.1D, F), it could indicate that a stress response had been initiated in this 

subpopulation. Supporting this, in cells with only FGs the level of phosphorylated 

eIF2α, a reliable marker of stress, was the same as in untransfected cells but was 

markedly higher in the majority of cells with FAs (Figure 5.10B, C).  

 

To determine whether this recruitment of RNA and SG proteins into FAs may disrupt 

the formation of SGs, the ability of cells to form stress-induced SGs was compared in 

cells expressing either diffuse FUS or FAs. Cells expressing diffuse FUS formed typical 

SGs strongly positive for G3BP1, which sequestered FUS, following sodium arsenite 

treatment (Figure 5.11A, asterisk, 5.12). On the other hand, those with pre-formed FAs 

or FGs generally failed to form SGs (Figure 5.11A, double asterisk) or displayed 

reduced SGs per cell compared to those formed in cells with diffuse FUS (Figure 

5.11C). 

 

It is also possible that FAs disrupt the formation of other RNP structures, including P-

bodies. P-bodies were abundant in SH-SY5Y cells (Figure 5.4) yet in cells displaying 

FGs or FAs, P-bodies were lost, with the majority of these cells displaying fewer than 

two P-bodies and often none at all (Figure 5.11D). Furthermore, FAs displayed 

differential immunoreactivity to P-body protein, Dcp1a, (Figure 5.11B) suggesting that 

FAs can disrupt P-body formation not only by RNA sequestration but by depletion of 

local pools of P-body protein components, e.g. Dcp1a.   
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Figure 5.10. Cellular stress promoted the formation of FAs. (A) Live cell imaging revealed rapid assembly 

of FGs into FAs in cells subjected to sodium arsenite (SA) within 1.5 h. (B and C) The majority of naïve 

cells with FAs displayed elevated levels phospho-eIF2alpha, a marker of activated cellular stress 

response, while levels of this protein were unaltered in cells with FGs only. Bar chart shows means ± 

S.E.M, Scale bars; 10 µm. 
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Figure 5.11. Formation of SGs and P-bodies in SH-SY5Y cells was attenuated in the presence of FAs. 

(A,C) FUS R522G-expressing cells with diffuse protein distribution formed regular looking SGs upon 

stressful exposure with sodium arsenite as revealed by staining for a SG marker, G3B1 (A, cell marked 

with one asterisk), while in cells with FUS accumulated in the form of FGs/FAs, formation of SGs was 

impaired (A, cell marked with two asterisks, and quantified in C). (B,D) Cytoplasmically accumulated FUS 

prevented formation of P-bodies, and Dcp1a was sequestered by a subset of FAs. Cells were considered 

as having P-bodies if at least two large P-bodies were evident. Asterisks in (B) indicate non-transfected 

cells possessing multiple P-bodies and arrows point to FAs positive for Dcp1a. Bar chart shows means ± 

S.E.M, * p<0.05. Scale bars; 10 µm. 
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Figure 5.12. Live cell imaging of typical SGs formed in cells with diffuse distribution of FUS R522G in the 

cytoplasm. COS7 cells were transfected with GFP tagged-FUS R522G. 24 h post-transfection, sodium 

arsenite was added to the culture medium to induce oxidative stress and live cell imaging was started 

(time 0 h 0 m) on 3 cells with diffuse distribution of the tagged protein and no observable FGs for 1.5 h.  

 

 

 

 

 

 

 

 

 

 

 

0"h"0"m" 0"h"10"m" 0"h"20"m"

0"h"30"m" 0"h"40"m" 0"h"50"m"

1"h"00"m" 1"h"10"m" 1"h"20"m"



RESULTS III 

  139 

5.3.6 Disruption of RNA-binding motifs of cytoplasmic FUS augments its 

aggregation  

Above it was demonstrated that the integrity of FAs formed by RNA-binding-competent 

forms of FUS accumulating in the cytoplasm was dependent upon the availability of 

non-polysomal RNA, highlighting a reversible nature of these structures. However, in 

previous chapters we showed that FUS, in which RNA-binding capacity is 

compromised due to lack of major RNA binding domains (FUS 1-359), was able to 

irreversibly accumulate forming aggresome-like structures in cultured cells. 

Furthermore, FUS 1-359 produced several ALS-like features, including the presence of 

large FUS cytoplasmic inclusions, when expressed neuronally in mice. As expected 

given its compromised RNA-binding capacity, we observed that neither aggregate 

structures formed by FUS 1-359 (NT-RRM, Figure 5.13A) nor their smaller precursors 

contained poly(A)+ RNA (Figure 5.13B). Moreover, these structures were resistant to 

treatment with RNase A (Figure 5.13C), suggesting that RNA was not required for their 

integrity. An even shorter C-terminally truncated variant that additionally lacked the 

RRM domain (NT), also displayed similar aggresome-like structures (Figure 5.13D).  

 

To further investigate how RNA-binding ability of FUS affected its propensity to 

aggregate, a series of GFP-tagged FUS deletion constructs were generated and their 

distribution within the cytoplasm of SH-SY5Y cells noted. Whilst dRGG3 (FUS 1-466), 

lacking the extreme C-terminus that included a portion of an RGG domain, displayed a 

similar aggregation profile across the population of transfected cells as seen with FUS 

R522G (Figure 5.13E), with increasing disruption of RNA binding domains a clear trend 

towards increased aggregation was seen. Deletion of the RRM domain (dRRM) led to 

an increased fraction of cells with FAs, which was further increased upon deletion of 

the RRM and RGG together (dRRM-dRGG3) (Figure 5.13E). Given these findings, it is 

clear that FUS with compromised RNA-binding capacity readily accumulates via a 

different mechanisms to that seen by FUS retaining its ability to bind target RNAs, 

where accumulation in RNA-based FGs progresses into formation of RNA-based FAs.
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Figure 5.13. FUS with disrupted RNA binding domains readily aggregated in SH-SY5Y cells. (A) Schematic representation of GFP-tagged FUS deletion constructs with 

disrupted domains involved in interactions of the protein with RNA. (B) FUS 1-359 (NT-RRM) lacking major RNA-binding domains formed aggresome like structures which 

were negative for poly(A)
+
 RNA as recognised by an oligo(dT) probe upon fluorescence in situ hybridisation. (C) Aggregates formed by FUS 1-359, present in the Triton-

X-insoluble fraction were resistant to RNase A treatment. Western membrane was reprobed with anti-β-actin antibodies as a loading control. (D) Both NT-RRM and NT 

fragments formed frequent aggresome-like structures 24 h after transfection. (E) In SH-SY5Y cells, progressive disruption of RNA-binding domains increased the 

propensity of cells to form FAs, with the greatest fraction of cells containing FAs following transfection with dRRM-RGG3. See Figure 5.1 for how structures were 

classified. Scale bars; 10 µm. 

FL#

dRRM#

dRGG3#

dRRM)dRGG3#

NT)RRM#

NT#

GFP$$$$$QGSY(rich$$$$$$$$$$$$$$$$$$$$$Gly(rich$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$RRM$$$$$$$$$$$RGG$$$$$$ZF$$$$$$$RGG$$$$$$$$NLS$

GFP$$$$$QGSY(rich$$$$$$$$$$$$$$$$$$$$$Gly(rich$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$RGG$$$$$$ZF$$$$$$$RGG$$$$$$$$NLS$

GFP$$$$$QGSY(rich$$$$$$$$$$$$$$$$$$$$$Gly(rich$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$RRM$$$$$$$$$$$RGG$$$$$$ZF$$$$$

GFP$$$$$QGSY(rich$$$$$$$$$$$$$$$$$$$$$Gly(rich$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$RGG$$$$$$ZF$

GFP$$$$$QGSY(rich$$$$$$$$$$$$$$$$$$$$$Gly(rich$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$RRM$

GFP$$$$$QGSY(rich$$$$$$$$$$$$$$$$$$$$$Gly(rich$$$$$$$$$$$$$$$$$$$$$$$$$$$$$



RESULTS III 

  141 

5.3.7 Inhibition of transcription triggers RNA-independent aggregation of RNA-

binding  

To investigate how ALS-associated full length FUS variants that retained their RNA-

binding domains would respond to reduced interaction with RNAs, the pool of newly 

synthesised transcripts on which FGs/FAs were formed, was reduced by transcriptional 

inhibition with actinomycin D. Above, this treatment reduced the proportion of cells with 

FAs and shifted FUS R522G from the granule-enriched insoluble fraction to the soluble 

fraction. Fluorescence in situ hybridisation experiments supported this, with FAs rapidly 

dissipated and almost all poly(A)+ RNA removed from small FUS-positive granules that 

were preserved in the cytoplasm after 2 h actinomycin D treatment (Figure 5.14A). 

However, strikingly, following prolonged inhibition of transcription with actinomycin D, 

these small RNA-depleted granules again fused and formed large aggregates in cells 

with a high level of FUS expression (Figure 5.14B). This was also recapitulated with 

FUS 1-466 and FUS ΔNLS and with another transcriptional inhibitor, DRB (data not 

shown). These large aggregates were structurally distinct from FAs, as they were 

negative for RNA and were resistant to treatment with RNase (Figure 5.14C). From 

herein, these large RNA-free aggregates formed after transcriptional arrest by RNA-

binding-competent forms of FUS will be referred to as FA(-)s. FA(-)s formed in a 

juxtanuclear position close to MTOC, similarly to those formed by FUS 1-359 (Figure 

5.14B, D). However, similarly to their precursors, these FA(-)s were positive for DDX5 

(Figure 5.14E). Contrastingly, protein markers of stress granules often found in FAs 

were dissociated from FA(-)s; G3B1 was lost from FA(-)s and they were only weakly 

positive for TIAR (Figure 5.14F). This highlighted the selectivity by which these RNA-

free FA(-)s form.  
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Figure 5.14. Inhibition of transcription in cells expressing cytoplasmically localised FUS R522G resulted in 

dissipation of FAs and FGs and subsequent RNA-independent FUS aggregation. (A) In situ hybridisation 

with a fluorescent oligo(dT) probe shows dynamics of poly(A)
+
 RNA loss from FAs and FGs and secondary 

aggregation leading to the formation of RNA-independent FAs (FA(-)s). Increased magnification of 

cytoplasmic FUS structures shown bottom right corner. Inserts in the left bottom corner represent enlarged 

nucleolar caps from a representative cell. Note changes in the morphology of FUS-positive nucleolar caps 

reflected the duration of transcriptional inhibition; several crescent-shaped caps after 1–2 h of actinomycin 

D treatment were replaced by dot-like FUS accumulation in their fibrillar center from 3 h onwards. (B) 

Products of secondary RNA-independent aggregation fused together producing large juxtanuclear 

aggregates after prolonged (9 h) exposure to actinomycin D. (C) Triton X-insoluble FUS species recovered 

from COS7 cells after 6 h actinomycin D treatment were not sensitive to RNase A. (D) Large FA(-)s 

(arrow) formed after prolonged (for 6 h) transcriptional repression in SH-SY5Y cells were found in the 

immediate vicinity of the centrosome (arrowheads) visualised by anti-γ-tubulin (g-tub) staining. DDX5 but 

not G3B1 co-aggregated with FUS R522G in small (E) and large (F) FA(-)s detected after 3 h of 

transcriptional inhibition with actinomycin D. Scale bars; A, B, D, E, 10 µm; F, 2.5 µm. 

 

 

5.3.8 Transcriptional inhibition results in pathological redistribution and 

aggregation of predominantly nuclear FUS mutants  

ALS-associated mutants tested to this point all displayed impaired nuclear import and 

increased presence in the cytoplasm, thought to be a key step in ALS-FUS 

progression. However, it was not known how a transcriptional inhibitory insult would 

affect other ALS-associated FUS mutants retaining nuclear localisation. GFP-tagged 

FUS R518K and R524T, although harboring mutations within the NLS, displayed 

prominent nuclear staining (Figure 5.15A, B). After 2 h treatment with actinomycin D, 

these variants displayed significantly increased presence in the cytoplasm (Figure 

5.15B). Furthermore, prolonged treatment with actinomycin D resulted in aggregation 

of mutant FUS within the cytoplasm (Figure 5.15C). Consequently, transcriptional 

inhibition may also be a trigger for cytoplasmic mislocalisation and aggregation of 

otherwise nuclear FUS.  
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Figure 5.15. ALS-associated full length forms of FUS normally residing in the nucleus aggregated in the 

cytoplasm following transcriptional inhibition. (A) Nuclear distribution of WT, R518K and R524T FUS 

variants 24 h post-transfection in naïve SH-SY5Y cells. (B) Nuclear distribution was seen in the majority of 

naïve cells expressing these variants, whereas 2 h actinomycin treatment shifted mutant variants to the 

cytoplasm in a large fraction of cells. (C) Prolonged (6 or 9 h) treatment with actinomycin D caused 

formation of cytoplasmic aggregates by FUS R524T and FUS R518K variants. Bar chart in B shows 

means ± S.E.M, ***p<0.005. Scale bars; 10 µm.  
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5.4 Discussion 

Here we aimed to understand the pathways leading to the final products of 

cytoplasmically accumulating full length ALS-associated FUS mutants, which are 

observed in these ALS patients’ tissues post-mortem. Indeed, in ALS, missense 

mutations in the C-terminus of FUS are some of the most frequently occurring within 

the protein (Lagier-Tourenne and Cleveland, 2009) and mislocalisation to the 

cytoplasm and subsequent formation into large pathological inclusions is thought to be 

a key, but little understood, event involved in FUS pathophysiology (Dormann et al., 

2010; Li et al., 2013). In earlier chapters we identified prominent aggregation in the 

cytoplasm of an experimental C-terminally truncated form of FUS with compromised 

RNA-binding capacity that was induced by the deletion of major RNA-binding domains. 

Unable to be recruited into physiological SGs, thought to provide a protective 

response, this protein formed higher order FUS structures and led to substantial ALS-

like pathology in mice. Here we evidenced that these large FUS aggregates were RNA-

free and wondered whether similar mechanisms of aggregation may occur for mutant 

full length forms of FUS that occur in ALS, or whether these were principally distinct.  

 

Ourselves and others (Bosco et al., 2010; Dormann et al., 2010; Vance et al., 2013) 

demonstrated that mutant FUS variants in the cytoplasm, with intact domains involved 

in binding target RNAs, could be taken up into physiological SGs formed upon the 

induction of cellular stresses, including heat shock or oxidative stress induced by 

sodium arsenite. However, intriguingly, we identified that these FUS variants may also 

aggregate in a concentration dependent manner in the absence of exogenously-

applied stress, warranting further investigation. These variants, with the ability to bind 

RNA, accumulated on newly synthesised transcripts into small granular-like structures 

(FGs) following nucleation of FUS, which occurred above a certain threshold. This 

could potentially be coupled with a conformational change in the structure of FUS, yet 

this remains to be investigated. It was concluded that FGs represented a novel RNP 

structure, as although they resembled RNA transport granules, they also displayed 

several distinct features, for example they were negative or displayed only partial 

overlap with key components of known RNA granules (FMRP and DDX5, respectively). 

 

Further, with live cell imaging it was shown that these FGs coalesced gradually over 

time to form large RNA-based FUS aggregates (FAs). This was greatly enhanced by 

exogenously applied cellular stress and increased presence of FAs occurred in naïve 

cells with elevated levels levels of phospho-eiF2α, indicating an activated stress 

response, probably arising from the accumulation of FUS itself. We identified that 
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increased availability of RNAs running off polysomes, a process that occurs under 

stressful cellular conditions, promoted FA formation. Moreover, interaction of FUS with 

a specific pool of these RNAs was required, as evolutionarily distant RNA binding 

domains from yeast, unlike those from the similar human protein, TDP-43, were unable 

to recapitulate these aggregation profiles. Additionally, the prion-like domain of FUS 

was also important in the formation of FAs. Previously, this domain has been shown to 

be physiologically important in forming higher order FUS structures following the 

assembly of FUS on RNA (Schwartz et al., 2013) and it may be that a similar 

mechanism underlies FA formation in vivo.  

 

Given the known association of FUS with induced SGs in conditions of cellular stress 

and the requirement of RNA for the formation of both SGs and FAs, we wondered 

whether SGs and FAs were distinct. Supporting this, we revealed structural and kinetic 

differences between FAs and induced SGs, with differing morphology and recruitment 

of proteins, even identifying DDX5 protein, a component of RNA transport granules 

(Kanai et al., 2004), as a differentiating marker for FAs over SGs. We also 

demonstrated that these large FAs could sequester not just RNA, but also key 

components of SGs and P-bodies and perturb the formation of these structures. 

Evidence from Takanashi and Yamaguchi (2014) supports this, also finding that 

spontaneously forming FUS aggregates recruited RNP granule components. 

Therefore, FAs may disrupt the protective function that SGs are thought to have and 

this could be an important step in the development of cellular toxicity in these cases.  

 

Perhaps the most surprising finding was that following prolonged transcriptional 

inhibition, FAs, which had initially dissipated early after transcriptional inhibition, re-

accumulated to form RNA-free aggregate structures (FA(-)s) that appeared similar to 

those formed by RNA-binding compromised forms of FUS, although FA(-)s retained 

features of their predecessors, e.g. remained positive for DDX5. This suggested that 

an insult of transcriptional inhibition may lead to the irreversible aggregation of RNA-

binding competent forms of FUS present in the cytoplasm. This provides an alternate 

mechanism for the irreversible aggregation of ALS-associated FUS variants into large 

inclusion-like aggregates, aside from the postulated coalescence of ‘pathological SGs’ 

(Wolozin, 2014). Furthermore, transcriptional inhibition was sufficient to also cause 

mislocalisation of normally nuclear ALS-associated FUS variants, e.g. FUS R518K and 

R524T. Notably, it has been shown previously that endogenous FUS and other FET 

family members also displayed a shift towards increased presence in the cytoplasm 

following inhibition of transcription (Zinszner et al., 1997a; Marko et al., 2012).  
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As FUS itself has been shown to be heavily involved with regulation of transcription 

(Schwartz et al., 2012; Schwartz et al., 2013; Tan et al., 2012; Yang et al., 2014) it is 

possible that its loss from the nucleus, occurring in ALS and other FUSopathies could 

be a physiological trigger for similar transcriptional disruption. Moreover, a state of 

transcriptional arrest may also be induced physiologically through ageing-induced DNA 

damage via oxidative stress or, more specifically, the increased DNA damage thought 

to occur in ALS (Hetman et al., 2010; Bogdanov et al., 2000). Therefore, transcriptional 

arrest and a subsequent reduction in the level of free RNA may induce an irreversible 

redistribution of RNA-based FUS aggregates into large RNA-free juxtanuclear 

structures. These large RNA-free structures, similar to those produced by RNA-

binding-compromised FUS that led to development of neuronal toxicity in mice, may 

ultimately be responsible for the development of human FUSopathies.   
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6.1 Declaration 

Data included within this chapter have been published within the following open access 

article: 

 

Shelkovnikova TA, Robinson HK, Troakes C, Ninkina N, Buchman VL. Compromised 

paraspeckle formation as a pathogenic factor in FUSopathies. Hum Mol Genet. (2014) 

May 1;23(9):2298-312. 

 

6.2 Overview 

Previous chapters centred on investigating the aggregation pathways of FUS once 

mislocalised to the cytoplasm, thought to be an early and critical event in ALS-FUS 

pathogenesis through a gain of toxic FUS function mechanism. However, conversely, 

FUS has several known roles within the nucleus, the disruption of which may also cause 

pathological changes in ALS.  

 

Recently, FUS has been identified as a component of the subnuclear body known as the 

paraspeckle (Naganuma et al., 2012; Nishimoto et al., 2013; Page et al., 2011). First 

described in 2002 (Fox et al., 2002), paraspeckles are assembled on the lncRNA, 

NEAT1, which is essential for formation and maintenance of these RNP structures 

(Clemson et al., 2009; Sasaki et al., 2009; Chen and Carmichael, 2009; Sunwoo et al., 

2009).  They are observed in virtually all cultured cells (Fox and Lamond, 2010), yet they 

are absent in embryonic stem cells, which lack NEAT1 expression, until differentiation 

(Chen and Carmichael, 2009), reflecting their dynamic nature. Given their dependency 

on NEAT1, in mammalian tissues paraspeckles are observed with greater prevalence in 

tissues highly expressing NEAT1, for example surface gastric epithelial cells (Nakagawa 

et al., 2011). In the nervous system, NEAT1 expression level is comparatively low and 

paraspeckles are not seen under basal conditions (Nakagawa et al., 2011). However, in 

addition to their role in retention of A-to-I hyperedited transcripts (Zhang and Carmichael, 

2001), paraspeckles are thought to have a role in the cellular response to stress. 

Notably, NEAT1 is greatly increased following exposure to immune stimuli such as Poly 

I:C. or viral infection (Imamura et al., 2014; Zhang et al., 2013; Saha et al., 2006). 

Intriguingly, paraspeckle formation has been shown to be increased during early stages 

of ALS development in parallel with increased NEAT1 level (Nishimoto et al., 2013). 

However, it is unclear how changes to FUS distribution observed in ALS-FUS may affect 

this subnuclear body. Therefore, this chapter focused on characterising the interactions 

of FUS with paraspeckle proteins and determining how these may be altered in ALS that 

is associated with FUS mutation.  
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6.3 Results 

6.3.1 Localisation of FUS within the nucleus 

In cultured neuroblastoma cells, staining for endogenous FUS protein demonstrated that 

the protein is predominantly localised to the nucleus with a diffuse pattern of distribution, 

but upon closer inspection, small puncta and variably-sized foci were observed amongst 

the diffuse pattern of staining. These small puncta were also recapitulated in cells where 

GFP-tagged full length human (WT) FUS was overexpressed and were noted in other 

cell lines tested, including COS7 cells (Figure 6.1A). To determine the nature of these 

nuclear FUS puncta, immunocytochemistry was performed with a panel of antibodies 

recognising core proteins of major subnuclear bodies in neuroblastoma cells. FUS was 

highly enriched in paraspeckles, as evidenced by colocalisation with core paraspeckle 

proteins, PSP1 and p54nrb, also known as NONO (Figure 6.1B). Further, FUS was 

excluded from nucleolar regions as recognised by ethidium bromide staining for DNA 

(Figure 6.2). FUS was not seen at detectable levels in coilin-positive Cajal bodies, SMN-

positive gems, or PML-positive PML bodies. On the other hand, FUS was moderately 

enriched in Sm antigen-positive nuclear splicing speckles (Figure 6.2). 
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Figure 6.1. FUS protein is enriched in paraspeckles. (A) Endogenous FUS or GFP-tagged human FUS is 

excluded from nucleolar regions (arrows) and forms small puncta (arrowheads) in the nucleus of SH-SY5Y 

cells and COS7 cells. (B) FUS puncta overlap with paraspeckles, as recognised with antibodies against core 

paraspeckle proteins, PSP1 and p54nrb. Scale bars all panels; 10 µm.  At least 3 biological repeats were 

performed and representative images are shown.  
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Figure 6.2. Association of FUS with additional subnuclear bodies in SH-SY5Y cells. FUS was excluded from 

nucleolar regions as recognised by ethidium bromide staining for DNA and was not seen at detectable levels 

in coilin-positive Cajal bodies, SMN-positive gems, or PML-positive PML bodies. FUS was moderately 

enriched in Sm antigen-positive nuclear splicing speckles. Scale bar all panels; 10 µm. At least 3 biological 

repeats were performed and representative images are shown. 
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6.3.2 FUS is recruited with other paraspeckle proteins into the same nucleolar 

caps 

In cells where active transcription is inhibited, core paraspeckle proteins, for example 

PSPC1, have been shown to redistribute to form perinucleolar caps (Fox et al., 2002). 

This has also been demonstrated for other nuclear proteins, albeit in caps distinct from 

those containing paraspeckle components (Shav-Tal et al., 2005). Intriguingly, this 

behaviour has also been demonstrated for FUS (Zinszner et al., 1997a), but it had not 

been investigated whether FUS and paraspeckle proteins are components of the same 

perinucleolar caps. In SH-SY5Y cells, upon global transcriptional inhibition with 

actinomycin D, canonical perinucleolar caps were formed by FUS (Figure 6.3A, B, FUS 

panels).  

 

To determine the overlap between perinucleolar caps formed by FUS, paraspeckle 

proteins and other nuclear proteins known to form distinct caps (p80 coilin, and RNA 

helicase p68), immunocytochemistry was performed using antibodies to these proteins 

following treatment of cells with actinomycin D.  In SH-SY5Y cells, perinucleolar caps 

formed by FUS were distinct from those formed by p80 coilin (Figure 6.3A), and only 

partially overlapped with p68-positive structures (Figure 6.3B). Partial overlap of FUS 

with p68, forming organised and spatially complex structures was even more 

pronounced in COS7 cells (Figure 6.3C). However, FUS was found to completely 

colocalise with paraspeckle proteins, PSPC1 and p54nrb, in the same perinucleolar caps 

(Figure 6.4A, B).  

 

To establish whether FUS was essential for this recruitment of paraspeckle proteins to 

these perinucleolar caps, endogenous FUS was knocked down in SH-SY5Y cells using 

siRNA targeted to FUS. Perinucleolar caps containing paraspeckles were still formed 

following transcriptional inhibition in these FUS-depleted cells, suggesting FUS is not 

required for this process (Figure 6.4C).  
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Figure 6.3. Characterisation of perinucleolar caps formed by FUS upon transcriptional inhibition. In SH-SY5Y 

cells, FUS is not a component of (A) p80 coilin perinucleolar caps but (B) partially colocalises with RNA 

helicase p68 caps. (C) FUS partial colocalisation with p68 is particularly evident in COS7 cells. Actinomycin 

D was added to the cells for 1.5 h prior to fixation in all experiments. Scale bars; 10 µm. At least 3 biological 

repeats were performed and representative images are shown. 
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Figure 6.4. Further characterisation of perinucleolar caps formed by FUS upon transcriptional inhibition in 

SH-SY5Y cells. (A-B) FUS completely colocalises with caps formed by PSP1 (A) and p54nrb (B). (C) PSP1-

positive perinucleolar caps still form in cells depleted of FUS (arrowheads) using siRNA. Actinomycin D was 

added to the cells for 1.5 h prior to fixation in all experiments. Scale bars; 10 µm. At least 3 biological 

repeats were performed and representative images are shown. 
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6.3.3 Interaction of FUS with paraspeckle protein p54nrb is RNA-dependent 

To investigate whether FUS and other paraspeckle proteins could be present in the 

same macromolecular complexes, co-immunoprecipitation experiments were performed 

with GFP-tagged FUS protein expressed in SH-SY5Y cells. Following western blot 

analysis of proteins from these immunoprecipitates, it was shown that GFP-tagged WT 

FUS efficiently pulled down endogenous p54nrb (Figure 6.5A). To determine whether 

this interaction was RNA-dependent, lysates were treated, with RNase A. Indeed, this 

abolished the pull down of endogenous p54nrb by GFP-tagged WT FUS (Figure 6.5A). 

Further, FUS NT, lacking major RNA-binding domains, was unable to pull down p54nrb 

(Figure 6.5A). This interaction with p54nrb was not observed following pull down by 

another RNA-binding protein similar to FUS, TDP-43 (Figure 6.5B). It was also 

demonstrated that endogenous FUS could be pulled down from lysates of COS7 cells 

with antibody against p54nrb, providing further confirmation of an interaction between 

these two endogenous proteins (Figure 6.5C). However, the cellular location of this 

interaction cannot be discriminated using this approach, as FUS and p54nrb may be 

interacting aside from paraspeckles, elsewhere in the cell. As p54nrb, like FUS, has also 

been implicated in transcription (Emili et al., 2002), the impact of transcriptional inhibition 

on the interaction observed between these two proteins was determined. DRB acts to 

prevent the assembly of transcriptional complexes, whereas actinomycin D stalls these 

complexes and prevents elongation. Pull down of p54nrb by GFP-tagged FUS was 

abolished following DRB treatment, but remained following global transcriptional 

inhibition with actinomycin D (Figure 6.5D).  
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Figure 6.5. FUS interacts with p54nrb via RNA and this interaction is regulated by ongoing transcription. (A 

and B) Immunoprecipitation revealed an RNase-sensitive interaction of GFP-tagged full length FUS protein 

(WT) with p54nrb that was not seen with either GFP-tagged FUS N-terminal fragment (NT) (A) or GFP-

tagged full length TDP-43 (B). SH-SY5Y cells were lysed for immunoprecipitation on anti-GFP antibody-

coated beads 24 h after transfection with GFP-tagged constructs. Asterisks indicate non-specific bands. 

Lysates were treated with RNase A for 30 min at RT prior to incubation with beads to determine the role of 

RNA in the interaction. (C) Endogenous FUS was pulled down by anti-p54nrb antibody-coated beads from 

COS7 cells. A portion of a very intense 50 kDa immunoglobulin heavy chain band is seen just under the 

p54nrb band as the same antibodies were used for immunoprecipitation and western blotting. (D) FUS 

remains associated with p54nrb in actinomycin D but not DRB treated cells. Protein complexes of full-length 

GFP-tagged FUS were immunoprecipitated from lysates of SH-SY5Y cells untreated or treated with 

inhibitors of transcription for 1.5 h. 10% input sample was loaded alongside 100% pull-down samples for 

western blot. These data were produced by Dr. Tatyana Shelkovnikova.  
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6.3.4 Level of FUS regulates paraspeckle assembly and maintenance 

FUS deficiency in the nucleus has been highlighted as a possible simplified scenario 

though which ALS pathology may arise. To investigate the impact of FUS depletion on 

paraspeckles, FUS was knocked down using siRNA. Using this approach, FUS mRNA 

level was reduced by ∼75% and FUS protein level, 50-70% at 72 h post-transfection 

compared to cells transfected with scrambled siRNA (Figure 6.6C, 6.7A). Whilst overall 

levels of paraspeckle proteins, PSP1 and p54nrb remained unchanged following FUS 

knockdown (Figure 6.6C), paraspeckles disappeared from FUS-depleted cells (Figure 

6.6A, B). To determine whether this may be because of an alteration in the level of 

NEAT1 lncRNA upon which paraspeckles are formed, qPCR was performed on these 

cells using primers that simultaneously detect both long (NEAT1_2) and short 

(NEAT1_1) isoforms of NEAT1. NEAT1 levels were significantly lower in cells treated 

with FUS siRNA compared with scrambled siRNA control (Figure 6.7A). Further, 

expression of GFP-tagged FUS led to a significant elevation of NEAT1 transcript level 

(Figure 6.7B). Therefore, it is likely that FUS contributes to the steady-state maintenance 

of NEAT1 transcript levels. In COS7 cells, expression of GFP-tagged p54nrb in cells with 

greatly depleted level of FUS appeared to rescue the formation of paraspeckles as 

several paraspeckle-like structures, positive for PSP1 formed (Figure 6.8A, B). As these 

structures were observed in FUS depleted cells expressing comparatively lower levels of 

GFP-p54nrb not known to aggregate in naïve cells, it suggests that these are true 

paraspeckle structures, and not simply small aggregations of overexpressed protein. 

This restoration cannot be attributed to restoration of NEAT1 levels as NEAT1 

expression was unaltered in cells expressing GFP-tagged p54nrb (Figure 6.9A) and 

NEAT1 level was not rescued by p54nrb expression in cells depleted of FUS (Figure 

6.9B). Therefore, p54nrb is a good candidate for substituting the architectural role of 

FUS in paraspeckles.  
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Figure 6.6. FUS knockdown with siRNA resulted in the loss of paraspeckles. (A) Representative images 

from SH-SY5Y and COS7 cells following knockdown of FUS with siRNA. Normal paraspeckles (arrows) 

remain in cells where FUS level is not depleted. (B) Quantification of the percentage of cells with 

paraspeckles following treatment with either scrambled or FUS-targeted siRNA. (C) Western blotting of 

cellular lysates following treatment with either scrambled or FUS-targeted siRNA. Whilst FUS level was 

depleted following knockdown with siRNA, levels of other core paraspeckle proteins, PSP1 and p54nrb 

remained unchanged. In all experiments, cells were transfected with either a pool of siRNA specifically 

targeting FUS protein (FUS siRNA) or scrambled siRNA (scrmb siRNA) and analysed 72 h post-transfection. 

***p<0.001, n=3, (Mann–Whitney test). Bar graph represents mean±S.E.M. Scale bars, 10 µm. For (A) at 

least 3 biological repeats were performed and representative images are shown.  
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Figure 6.7. Expression of NEAT1 lncRNA was dependent upon the level of FUS expression.  (A) qPCR 

following treatment of cells with either scrambled or FUS-targeted siRNA showed that NEAT1 transcript level 

was reduced following FUS knockdown. (B) qPCR following transfection of cells with either empty GFP 

vector or GFP-tagged FUS showed that NEAT1 level was elevated upon increased FUS expression. 

Western blotting with anti-FUS antibody showed approximately equal levels of FUS-GFP and endogenous 

FUS in total cell culture lysates, considering that efficiency of transfection was ∼25%, transfected cells 

expressed approximately 4 times more ectopic than endogenous FUS protein. In all experiments, cells were 

transfected with either a pool of siRNA specifically targeting FUS protein (FUS siRNA) or scrambled siRNA 

(scrmb siRNA) and analysed 72 h post-transfection. *p<0.05, n=6, (Mann–Whitney test). Bar graph 

represents mean±S.E.M. 
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Figure 6.8. p54nrb substituted for loss of FUS function required for paraspeckle formation. (A) GFP-tagged 

p54nrb expressed in FUS-depleted COS7 cells formed multiple paraspeckle-like structures in a dose-

dependent manner. (B) These paraspeckle-like structures were always positive for PSP1 (arrows). Scale 

bars, 10 µm. At least 3 biological repeats were performed and representative images are shown. 
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Figure 6.9. p54nrb expression level did not alter NEAT1 expression. (A) Overexpression of p54nrb did not 

alter NEAT1 levels in naïve cells or in (B) cells depleted of FUS protein by siRNA treatment. In A, cells were 

transfected with empty vector to express GFP only or with p54nrb-GFP construct; NEAT1 levels were 

measured 24 h post-transfection.  In B, cells were transfected with FUS siRNA in combination with either 

empty vector or p54nrb-GFP construct followed by analysis of NEAT1 expression 72 h post-transfection. 

Data is compiled from 6 biological repeats. 
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6.3.5 Cytoplasmic aggregates of FUS trap paraspeckle proteins in cultured cells 

In addition to loss of nuclear FUS function, gain of toxic function in the cytoplasm has 

been implicated as a possible mechanism of ALS, yet how ALS-associated mutants, 

which form cytoplasmic aggregates as described in previous chapters, impact the 

function of paraspeckles had not been investigated. In cells accumulating high levels of 

mutant FUS R522G protein, cytoplasmic aggregates formed and, surprisingly, these 

were consistently positive for p54nrb (in 80.3 ± 0.96% of all cells with aggregates) 

(Figure 6.10A). Likewise, this was also seen for aggregates formed by FUS ΔNLS or 

FUS 1-466 constructs (data not shown). Moreover, in a small fraction of cells, the 

presence of p54nrb in the cytoplasmic aggregates was accompanied by a strong 

reduction of p54nrb in the cell nucleus (Figure 6.10B). PSP1 and another core 

paraspeckle protein, PSF, also accumulated within the cytosolic FUS aggregates in SH-

SY5Y and COS7 cells (Figure 6.10C-E, arrows).  
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Figure 6.10. Cytoplasmic aggregates of ALS-associated FUS mutant R522G are positive for core 

paraspeckle proteins. (A) Cytoplasmic aggregates formed by GFP-tagged FUS harboring the ALS-

associated mutation, R522G, after 24 h were positive for p54nrb (arrows). (B) In some instances these 

p54nrb aggregates (arrowheads), were accompanied by a strong reduction of p54nrb in the nucleus. (C-E) 

Cytoplasmic aggregates of FUS R522G were also positive (arrows) for (C, in COS7 cells, D, in SH-SY5Y 

cels) PSP1 and (E) PSF. Scale bar all panels; 10 µm. At least 3 biological repeats were performed and 

representative images are shown. 
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6.3.6  FUS inclusions in FUS 1-359 transgenic model sequester p54nrb 

In addition to investigating the recruitment of p54nrb by FUS aggregates in vitro, given 

that we have a model of FUSopathy (FUS 1-359 mice) that develops pronounced FUS 

aggregates in the cytoplasm of neuronal cells, described in previous chapters, we sought 

to establish whether these in vivo aggregates could also sequester p54nrb.  Initial 

characterisation of p54nrb staining in mouse nervous tissue using standard 

immunohistochemistry revealed that the protein was predominantly localised to the 

nucleus, although in some larger motor neuronal cells displayed a degree of staining in 

the cytoplasm (Figure 6.11A). However, in symptomatic stage FUS TG mice, p54nrb-

positive aggregates were identified in the nucleus of these cells (Figure 6.11B). This 

method also allowed for the detection of cytoplasmic aggregates that were positive for 

p54nrb, although these were much rarer (Figure 6.11C, D). Using fluorescent 

immunohistochemistry, it was confirmed that these p54nrb-positive aggregates observed 

in transgenic mice directly overlapped with aggregates of FUS (Figure 6.11E-G). PSF, 

present predominantly in the nucleus of neurons in WT mice, was also present in a 

fraction of nuclear, but not cytoplasmic, FUS inclusions in FUS 1-359 mice (Figure 

6.12B, C). Contrastingly, although PSP1 was detected in the cytoplasm of neurons in 

WT mice, we failed to detect any aggregated form of the protein in symptomatic stage 

FUS transgenic mice (Figure 6.12A).  
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Figure 6.11. p54nrb accumulated in cytoplasmic FUS aggregates in vivo in spinal cord of a transgenic model 

of FUSopathy. (A) Standard immunohistochemistry with anti-p54nrb antibody in non-transgenic WT mouse 

nervous tissue revealed predominant nuclear localisation of the protein in small motor neurons and glia, 

although some immunoreactivity was noted in the cytoplasm of large motor neurons. (B-D) In symptomatic 

FUS 1-359 TG mice, p54nrb-positive aggregates (arrows) were observed in the nucleus (B), and more 

rarely, the cytoplasm of spinal cord motor neurons (C,D). (E-G) Fluorescent immunohistochemistry revealed 

colocalisation of almost all FUS-positive aggregates (arrows) in these mice with p54nrb (arrowheads). 

Antibodies used to recognise the N-terminus of FUS detected both truncated FUS 1-359 and endogenous 

FUS protein. Scale bars; A–D: 15 µm; E and F: 35 µm; G: 10 µm. Representative images are shown 

following analysis sections from at least 2 transgenic and 2 WT mice. Data were generated by Dr. Tatyana 

Shelkovnikova.  
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Figure 6.12. Immunoreactivity for PSP1 and PSF in spinal cord of a transgenic model of FUSopathy. (A) 

Although PSP1 displayed nuclear and cytoplasmic localisation in WT mice, it was not recruited into 

aggregates in either of these regions in FUS 1-359 mice visualised with standard immunohistochemistry 

using anti-PSP1 antibodies. (B) PSF was prominently localised to the nucleus in WT mice and was found in 

nuclear aggregates in symptomatic FUS 1-359 transgenic mice. (C)  Fluorescent colocalisation revealed that 

nuclear FUS-positive aggregates in FUS 1-359 transgenic mice were positive for PSF. Scale bars; A and B, 

30 µm; C, 20 µm. Representative images are shown following analysis sections from at least 2 transgenic 

and 2 WT mice. Data were generated by Dr. Tatyana Shelkovnikova.  

 

 

6.3.7 p54nrb-positive inclusions are abundant in spinal motor neurons in ALS-

FUS patients but not other ALS cases or healthy controls 

As p54nrb was recruited to FUS aggregates both in cell culture and our transgenic 

model of FUSopathy, we wondered whether p54nrb could also be a component of FUS 

aggregates seen in human ALS patients. To investigate the distribution of p54nrb in 

these cases, we collaborated with Dr Claire Troakes at the MRC London 

Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, King’s College London 

to obtain post-mortem spinal cord sections from patients with several types of ALS 

alongside healthy controls and patients with other neurodegenerative diseases. Upon 

standard immunohistochemistry, p54nrb displayed nuclear localisation in the majority of 

small neurons and glial cells but strikingly, displayed prominent cytoplasmic staining in 

many motor neurons from non-ALS individuals (Figure 6.13A), and in some of these 

neurons was completely excluded from the nucleus, for instance in a case of multiple 

sclerosis (MS) (Figure 6.13A, MS). Multiple p54nrb immunoreactive nuclear and 

cytoplasmic inclusions of various sizes were noted in surviving motor neurons but not 

glial cells in two ALS-FUS cases studied (Figure 6.13B). These structures were not 

detected in any of three control non-ALS subjects (Figure 6.13A), or in three sALS cases 
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including one with confirmed presence of TDP-43 inclusions (Figure 6.13C, sALS-TDP), 

or in an ALS-SOD1 case (Figure 6.13C, ALS-SOD1). 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13. p54nrb is a constituent of cytoplasmic and nuclear inclusions in human familial ALS-FUS. (A) p54nrb is confined to the nucleus in the majority of glial cells and 

small neurons in the spinal cord of non-ALS individuals (control#1). However, in spinal motor neurons p54nrb is present at considerable levels in the cytoplasm. Representative 

images of spinal motor neurons from two healthy individuals and one MS case stained with anti-p54nrb antibody are shown. (B) Multiple nuclear and cytoplasmic p54nrb-

positive inclusions are detected in two familial ALS cases with FUS mutations (ALS-FUS). (C) p54nrb is diffusely distributed in the nucleus and cytoplasm of sALS cases, 

including a case with confirmed TDP-43 inclusions (sALS-TDP), as well as in a case of fALS with SOD1 mutation (ALS-SOD1). Scale bars; 30 µm. These data were produced 

by Dr Tatyana Shelkovnikova.  
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6.4 Discussion 

In support of findings by Naganuma et al. (2012), Page et al. (2011) and Nishimoto et al. 

(2013) we confirmed that FUS is a component of the subnuclear body known as the 

paraspeckle. This interaction of FUS with paraspeckles demonstrated a degree of 

specificity, as a number of other subnuclear bodies did not demonstrate colocalisation 

with FUS. Indeed, subsequent studies have confirmed our observations that FUS was 

excluded from nucleolar regions (Yang et al., 2014) and whilst evidence suggests that 

there is a functional association between FUS and SMN, we did not observe FUS at 

detectable levels within gems, consistent with a previous report (Yamazaki et al., 2012). 

However, we did observe a moderate enrichment of FUS in nuclear splicing speckles, 

subnuclear bodies known to store splicing factors (Spector and Lamond, 2011). This was 

not surprising given the association of FUS with spliceosomal components and the 

proposed function of the protein in splicing regulation (Ishigaki et al., 2012; Meissner et 

al., 2003; Zhou et al., 2013).  

 

Upon global transcriptional inhibition with actinomycin D, paraspeckle proteins 

redistribute to form dark perinucleolar caps, distinct from perinucleolar caps formed by 

other nuclear components (Shav-Tal et al., 2005). We demonstrated that FUS was also 

recruited into canonical perinucleolar caps following treatment with actinomycin D. Using 

fluorescent immunocytochemistry, we confirmed that these were the same distinct caps 

as those formed by core paraspeckle proteins, strengthening the involvement of FUS 

with this dynamic subnuclear compartment.  

 

Further, we identified an RNase sensitive association of FUS with p54nrb. This 

interaction was maintained following global transcriptional inhibition with actinomycin D, 

yet perturbed following treatment with DRB. As both FUS and p54nrb are able to interact 

with the C-terminal domain of RNAP2 (Emili et al., 2002; Schwartz et al., 2012), a 

plausible explanation of these data is that while the FUS–p54nrb interaction remains 

intact when the intercalating agent actinomycin D stalls the RNA polymerase complex 

and prevents elongation, this interaction becomes impaired when the assembly of a 

transcription unit containing FUS and p54nrb is blocked by DRB, an inhibitor of Cdk9 

and other kinases that regulate integrity and activity of transcriptional complexes 

(Yankulov et al., 1995). Taken together, this suggests that these proteins are 

components of the same transcriptional complex(es) and come into contact co-

transcriptionally via interaction with RNAs present in these complexes. 

In previous chapters, the formation of pathological FUS aggregates has been 

demonstrated in cell culture following expression of ALS-associated mutant forms of 
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FUS and also in mice expressing a C-terminally truncated form of FUS (FUS 1-359). 

Here we see that inclusions formed by the ALS-associated FUS R522G mutant in cell 

culture, were positive for the core paraspeckle protein, p54nrb, suggesting FUS 

inclusions can sequester the protein. This was supported by data from our mouse model 

and in human ALS patient tissue, where p54nrb was also found in aggregated forms in 

the cytoplasm and nucleus of spinal cord motor neurons. P54nrb has several roles in 

addition to paraspeckle formation, including transcriptional regulation (Emili et al., 2002), 

splicing (Kameoka et al., 2004). By sequestering p54nrb into aggregated forms, these 

normal roles of p54nrb may be augmented or disrupted, and as such, this work 

highlights loss of p54nrb function as a possible mechanism contributing ALS pathology, 

although further work characterising this will be required in the future.  

 

Interestingly, PSF was only seen in nuclear, but not cytoplasmic aggregates in FUS 1-

359 transgenic mice. Since aggregation of truncated FUS occurs extremely rapidly and 

after reaching a certain concentration threshold, p54nrb and PSF were more efficiently 

recruited into aggregates in the nucleus where they predominantly reside, while their 

lower levels in the cytoplasm allowed formation of cytoplasmic inclusions only in a 

fraction of neurons. Potentially, paraspeckles formed in motor neurons of FUS-TG mice 

in response to damaging effects of accumulating exogenous protein might become 

seeding centres for aggregation of truncated FUS, which sequester endogenous FUS-

p54nrb-PSF complexes. These aggregation ‘cores’ may subsequently grow and fuse to 

each other to give rise to nuclear inclusions. The fact that unlike two other core 

paraspeckle proteins, PSP1 was not detected in final products of FUS aggregation in 

neurons of transgenic mice indicates selectivity of paraspeckle protein co-aggregation 

and not mere entrapment of entire paraspeckles. 

 

Additionally, we observed a clear relationship between FUS and NEAT1 expression. 

FUS knockdown resulted in a loss of paraspeckles and the downregulation of NEAT1 

expression in cultured cells. NEAT1 downregulation has previously been observed upon 

knockdown of p54nrb and PSF (Sasaki et al., 2009), and therefore, it is likely that FUS 

contributes to maintenance of the steady-state level of NEAT1 transcripts in the same 

way as these major paraspeckle proteins. Therefore, nuclear deficiency of FUS typical of 

FUSopathies may impede paraspeckle formation needed for an adequate response to 

stress. 

In this way, our data support a model whereby the protective function of paraspeckles 

may be overcome because of FUS mislocalisation and aggregation. Paraspeckles and 

NEAT1 expression are elevated in the early stages of ALS (Nishimoto et al., 2013), 
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reflecting a protective response of the cell to an early stressful insult. Indeed, several 

lines of evidence support a protective role of paraspeckles. However, where nuclear 

FUS deficiency occurs in FUSopathies, NEAT1 level would be unable to be sustained 

and in turn, paraspeckle assembly and maintenance, prohibited. Sequestration of 

paraspeckle proteins into FUS aggregates also depletes the available pool of these 

proteins, further hindering paraspeckle protective response. Together these factors may 

contribute to neuronal pathology in FUSopathies.  
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7.1 Overview 

Understanding of ALS has gained substantial ground over the past 20 years, in 

particular, thanks to the increased knowledge provided by the identification of novel 

genetic contributors to the disease (Renton et al., 2014). Although disruption to RNA-

binding proteins, for example TDP-43 and FUS, either through mutation and/or 

mislocalisation of these proteins to the cytoplasm is well documented in ALS (Lagier-

Tourenne et al., 2010), there are several key questions remaining. How do large 

pathological inclusions of RNA-binding proteins form?  Is pathology induced via a gain 

or loss of protein function? Can aggregation in the cytoplasm of these normally nuclear 

proteins be sufficient to produce toxicity? Answers to these questions will be useful in 

identifying pathways for targeting therapeutic interventions in the hope of improved 

outcome for patients.  

 

This thesis has centred on understanding these processes with respect to the RNA-

binding protein, FUS. We have described novel pathways through which mutant FUS 

can aggregate in the cytoplasm via both RNA-dependent and RNA-independent 

mechanisms, supporting a gain of function hypothesis elicited by the irreversible 

aggregation of FUS. Additionally, we sought to investigate how loss of FUS from the 

nucleus may affect the nuclear architecture, identifying a novel pathological 

mechanism of compromised paraspeckle formation that may additionally contribute to 

disease development and progression.  

  

7.2 Expression of readily-aggregating FUS in the cytoplasm is an initial hit 

sufficient to elicit ALS-like pathology 

In Chapter 3, a mouse model of FUSopathy, FUS 1-359 TG mice, was described 

where human FUS was experimentally C-terminally truncated to remove its NLS and 

major RNA-binding domains and then expressed under the control of a Thy-1 

promoter. By removing these domains, the interactions of FUS with RNA normally 

arising from these regions were disrupted. Therefore, we were able to assess the 

impact of an initial hit of FUS aggregation in the cytoplasm without incurring the likely 

major disruption to RNA homeostasis that overexpression of full length forms would 

otherwise elicit.  

 

These mice displayed several signs of ALS-like pathology, including progressive 

paralysis, shortened lifespan, denervation of neuromuscular junctions, muscular 

atrophy and degeneration of both spinal cord motor neurons and specific brainstem 

motor nuclei populations. Furthermore, we identified the presence of pathological FUS 
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inclusions within motor neurons of these mice both in the nucleus and the cytoplasm, a 

feature that has rarely been seen in other FUS-based models (McGoldrick et al., 2013). 

Together this demonstrated that an initial insult of FUS aggregation in the cytoplasm in 

the absence of primary alterations in RNA homeostasis, was sufficient to initiate 

pronounced pathology.  

 

Intriguingly, it has previously been deemed that the N-terminus prion-like domain, RRM 

and RGG domain are necessary to confer toxicity in yeast (Sun et al., 2011). As this 

RGG domain was removed from our C-terminally truncated protein, it is perhaps 

surprising in light of this information that ALS-like pathology would be elicited. 

However, upon closer inspection, unlike our fragment, the protein lacking RGG domain 

tested within the yeast study was retained wholly in the nucleus. Therefore, our murine 

model also provides novel evidence that the RGG domain may not be essential to 

initiate pathology induced by FUS once in the cytoplasm, although the involvement of 

endogenous FUS sequestered by these FUS inclusions cannot be ruled out. 

 

Our FUS 1-359 TG mouse model recapitulated several features of ALS and therefore 

allowed us to confirm that aggregation of FUS in the cytoplasm can elicit substantial 

pathology, largely supporting a gain of function hypothesis described within other FUS 

models (Huang et al., 2011; Mitchell et al., 2013). However, careful consideration will 

be required before these mice are used for answering future research questions. For 

mechanistic studies of physiological FUS interactions in the cytoplasm, it will likely be 

of increased relevance to use a model with improved construct validity, where the 

protein expressed is physiologically occurring in ALS. Whilst our mice were generated 

to answer our specific research question and it was not our intention to produce a 

‘model of ALS’, there could be future research indications. As these mice have strong 

face validity, i.e. they produced several ALS-like features, which have not been 

observed following WT or mutant FUS expression in other mice (McGoldrick et al., 

2013), these mice might be useful predictively to test novel pharmacotherapies 

targeting ALS, as it would be clear whether these ALS-like features could be slowed or 

reversed by treatments.  

 

7.3 A protective role of stress granules against pathological FUS aggregation 

In addition to determining whether FUS aggregation in the cytoplasm could initiate an 

ALS-like pathology, in Chapters 4 and 5 we sought to explore the relationship between 

aggregating forms of FUS and their interactions with SG proteins in the pathogenesis 

of disease. SGs are formed in response to several types of cellular stress (Anderson 
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and Kedersha, 2008) and SG marker proteins have been identified in human FUS-

positive inclusions post mortem (Dormann et al., 2010). Furthermore, others have 

shown that in response to cellular stress, ALS-associated FUS variants can be 

sequestered into induced SGs (Bosco et al., 2010). However, there are conflicting 

hypotheses regarding the nature of these interactions and further accumulation of 

FUS-positive stress-induced SGs into larger structures more typical of inclusion bodies 

has not been evidenced. Thus, questions remain about the origins of these FUS-

positive inclusions (Li et al., 2013). In Chapter 4 we showed that following oxidative 

stress induction with sodium arsenite that GFP-tagged mutant ALS-associated FUS 

variants could be sequestered into induced SGs in cultured neuroblastoma cells 

expressing relatively low levels of the ectopic protein, supporting previous findings by 

others (Bosco et al., 2010; Vance et al., 2013).  

 

However, we identified that FUS lacking major RNA binding domains was unable to 

enter these induced SGs and instead formed large RNA-free FUS inclusions in the 

cytoplasm with features typical of aggresomes. Given that this form of FUS resulted in 

severe pathology when expressed in our transgenic mice and that existing literature 

suggests SGs represent a protective response by the cell to promote its survival under 

stressful conditions (Buchan and Parker, 2009), we concluded that recruitment of FUS 

into reversible SGs is likely a protective response against its pathological self-

aggregation. This is contrary to ideas by some that SGs may act as precursors to large 

pathological inclusions, whereby these normally dynamic structures could undergo 

changes to become pathological entities (Wolozin, 2014; Droppelmann et al., 2014). 

However, this notion had been based simply upon the observation of SG markers in 

the final products of FUS aggregation, something which we provided an alternate 

explanation for in Chapter 5 (discussed shortly). Having found evidence pointing 

towards a protective role for the recruitment of ALS-associated FUS variants to 

induced SGs, we wondered whether ALS-associated FUS might also aggregate 

pathologically and independently of SGs. Indeed, we had already demonstrated that 

under basal conditions these FUS variants could accumulate over time in a 

concentration-dependent manner and chose to further investigate this in Chapter 5.  

 

In this chapter, whilst we observed the formation of stress-induced SGs which were 

able to sequester FUS mutants in cells expressing relatively low levels of the ectopic 

protein, we identified a novel and distinct FUS aggregation pattern in cells with a higher 

degree of ALS-associated FUS mislocalised to the cytoplasm. In these cells, nucleation 

of FUS occurred past a certain threshold independently of exogenously applied stress 
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where it associated with newly synthesised RNA to form small FUS granules. These 

clustered and formed larger RNA-based structures (FAs), a process we demonstrated 

to be enhanced by cellular stress. However, unlike physiological SGs, these FAs were 

less structurally uniform, and formed over a longer timescale compared to stress-

induced SGs. Further, they contained proteins not seen within SGs, e.g. DDX5. 

Intriguingly, we demonstrated that these structures may recruit SG marker proteins, 

which could disrupt protective formation of SGs, also potentially contributing to ALS 

pathogenesis. This also provides an explanation as to why both ourselves (Chapter 4, 

Figure 4.1) and others that reported spontaneous aggregate formation in the absence 

of exogenously-applied stress saw immunoreactivity of these structures for SG marker 

proteins (Gal et al., 2011; Ito et al., 2011). Further, as FUS granules and FUS 

aggregates sequestered RNA, this would disrupt the normal transport of transcripts to 

distal locations, and may therefore impede local translation at the synapse.  Thus, this 

RNA-based aggregation of FUS could also contribute towards impaired synaptic 

plasticity and function leading to neuronal dysfunction.  

 

Further accumulation of stress-induced SGs that contain FUS has not been evidenced 

and they have been shown to rapidly disperse following the attenuation of stress 

(Baron et al., 2013). Therefore, characterisation of this separate FUS aggregation 

pathway outlined in this thesis shines new light on how FUS may begin to aggregate 

pathologically and irreversibly in ALS.  

 

7.4 RNA-binding activity of FUS can alter the pathways to its aggregation 

Given that we had established a profound pathology in mice upon the expression of 

FUS that had a reduced capacity for RNA interactions, we wondered how altering the 

available pool of interacting RNAs might affect the aggregation of ALS-associated 

forms of FUS that had already formed FAs. In particular, might RNA-based aggregates 

of human ALS-associated mutants be transformed in response to reduced interactions 

with RNA? 

 

Large RNA-based FUS aggregates formed in cells with higher levels of RNA-binding 

competent FUS in the cytoplasm, were readily dissipated by the immediate reduction of 

freely available transcripts which arose through experimentally inhibiting transcription in 

these cells. Yet, unexpectedly, and one of the key findings within this thesis, these 

aggregates reassembled into large RNA-free structures following prolonged 

transcriptional inhibition (Figure 7.1). Maybe as the supply of RNA is reduced, the 

higher-order structure of the FUS aggregate is disrupted and so the structure  



     

 

 

Figure 7.1. Model of FUS aggregate formation via RNA-dependent and RNA-independent mechanisms. Under normal conditions, FUS is present predominantly within the 

nucleus, where it is involved in several processes including transcription. In the cytoplasm, FUS is a component of RNA transport granules. Under stress, RNA runs off 

polysomes and is sequestered by SGs along with other specific proteins, providing a protective response. However, in early FUSopathy, FUS becomes mislocalised to the 

cytoplasm where above a certain threshold it aggregates in a concentration-dependent manner to form RNA-based FGs that cluster together to form large RNA-based FAs, 

even in the absence of stress. Stress conditions exaggerate this agglomeration and FAs can sequester RNA running off polysomes as well as newly synthesised RNA, 

disrupting formation of protective SGs. Reduction in available transcripts, which could occur later in the disease possibly with increasing age and disruption to normal nuclear 

roles of FUS, promotes the dissolution of large RNA-based FAs. These components reassemble to form RNA-free granules that accumulate to form higher order structures. 

This stage corresponds to the advanced stage of FUSopathy development characterised by severe cellular dysfunction and formation of pathological FUS inclusion.
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collapses. Yet, the close proximity and abundance of FUS following this disruption is 

then sufficient to initiate self-templating, perhaps in a structurally different 

conformation, driven by protein-protein interactions arising from the N-terminus prion-

like domain. Indeed, this domain, and to some extent the C-terminus region (amino 

acids 423–526) have been shown to promote aggregation of pure recombinant FUS 

protein in vitro in the absence of RNA (Sun et al., 2011).  One of the important 

implications of this work will be to guide the development of pharmacotherapies aimed 

at targeting ALS. For example, others have previously imagined that blocking the 

uptake of FUS to stress-induced SGs by disrupting its interactions with RNA may 

mitigate disease (Li et al., 2013), yet here we demonstrate that SG formation is likely 

protective and provide evidence that reduced interactions with RNA promote the 

irreversible aggregation of FUS. Thus, it is with great caution that pharmacotherapies 

aimed at disrupting interaction of FUS with RNA should proceed. 

 

Having demonstrated that the balance of FUS interacting with RNA plays a large role in 

determining the mechanisms by which it may aggregate in vitro, it would be interesting 

in the future to pursue how the availability of transcripts might be altered in human 

ALS-FUS neurons. There is evidence to suggest that transcription may be perturbed 

with ageing (Lu et al., 2004), and as FUS is known to be directly involved with 

transcriptional control (Schwartz et al., 2012; Schwartz et al., 2013; Yang et al., 2014), 

its loss from the nucleus could further augment these processes. Moreover, there is a 

strong evidence of increased DNA damage in ALS (Bogdanov et al., 2000; Qiu et al., 

2014) and, more specifically, mislocalisation of FUS to the cytoplasm may disrupt its 

role in DNA repair (Mastrocola et al., 2013; Wang et al., 2013), both of which could 

reduce transcription. Furthermore, other potential regulators of transcription and 

translation have been implicated in ALS. For example, one theory of ALS pathogenesis 

suggests that cellular energy is disrupted and that motor neurons, with high energy 

demands, are highly susceptible to this. AMP-activated protein kinase (AMPK) is a 

major energy sensor regulating cellular energy homeostasis and abnormal activation of 

AMPK has been shown in the spinal cord and primary spinal cord neuronal cultures of 

a well-characterized ALS mouse model (Perera et al., 2014). This is interesting as 

AMPK has been well implicated in transcriptional regulation and provides another 

mechanism through which RNA availability might be altered in ALS (McGee and 

Hargreaves, 2008). 

 

Together, these features highlight that a state of reduced transcript availability is highly 

feasible in ALS. However, one of the limitations of this thesis is that this was not 
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directly evidenced. Determining the abundance of RNA transcripts in the cytoplasm of 

ALS patient neurons which contain FUS inclusions compared to cells displaying diffuse 

cytoplasmic localisation of FUS could confirm whether work outlined in this thesis 

directly relates to the formation of FUS-positive inclusions seen in human ALS tissues. 

One such option for this, although technically challenging, would be in situ hybridisation 

of a labelled oligo(dT) probe to recognise poly(A)+ mRNA abundance in human spinal 

cord motor neurons (Wilson et al., 1997). 

 

At the same time, we identified that not only the abundance of RNA but also the 

specificity of RNA interactions contributes to the aggregation propensity of FUS in the 

cytoplasm. Whilst replacing the C-terminus major RNA binding domains of FUS with 

RNA-binding domains from human TDP-43 protein with similar functionality (Honda et 

al., 2013) was sufficient to permit the formation of RNA-based FUS granules in the 

absence of stress, RNA-binding domains from an evolutionary distant protein from 

yeast were not sufficient to compensate for this loss.  

 

The interaction of FUS with RNA is complex and several groups have sought to identify 

a consensus binding sequence, albeit with differing outcomes (Iko et al., 2004; Ishigaki 

et al., 2012; Lagier-Tourenne et al., 2012). Moreover, in addition to sequence, it has 

been suggested that secondary structure of RNAs may be an important factor when 

determining their interaction with FUS (Ishigaki et al., 2012) and recent evidence has 

also shown that FUS binds RNA in a length-dependent manner, with longer RNA 

sequences preferentially bound (Wang et al., 2015).  To investigate how expressing 

FUS in the cytoplasm with altered specificity for RNA interactions might affect a model 

system, in Chapter 3 we characterised a murine model of FUS that neuronally 

expressed cytoplasm-mislocalised FUS lacking its RRM domain. Although the RRM 

domain of FUS is not one of the major RNA-binding domains of FUS, it has been 

proposed to impart specificity of interaction by its cooperation with RGG domains 

(Lerga et al., 2001; Zinszner et al., 1997b).  

 

Expression of this experimental construct resulted in a dramatic phenotype in the F1 

generation of transgenic mice, with severely reduced survival and an obvious tremor in 

a proportion of these mice. Although evidence of neurodegeneration was not observed 

within the brain of these mice, it is possible that dysfunction of neurons prior to cellular 

death may have produced the insurmountable phenotype seen in these mice. Indeed, 

we observed the dramatic presence of FUS RRMcyt in the cytoplasm and abundant 

FUS-positive inclusions in these FUS RRMcyt TG mice. This supports the notion that 
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disruption of FUS homeostasis can produce a significant pathology and that its 

interactions with RNA could also be critically important.  

 

There are several mechanisms that can be imagined to contribute to the formation of 

these FUS inclusions in mice. It was shown in Chapter 4 that FUS RRMcyt could be 

recruited to stress-induced SGs, which may suggest that at least some protection 

against its aggregation may arise. However, the dynamics of this interaction with 

induced SGs is not clear from our work and given that FUS RRMcyt likely has altered 

interactions with RNA, this could augment this sequestration. Furthermore, as with 

FUS 1-359, we demonstrated in Chapter 3 that FUS RRMcyt was able to form large 

juxtanuclear structures, suggesting that aggregation outside of SGs may also 

contribute to the end products of FUS aggregation seen in these mice.  

 

Whilst costly to achieve, it would be interesting to unveil the large-scale interactions of 

FUS mutants in the cytoplasm with RNA in the future. Using a similar method to a 

previous study (Colombrita et al., 2012), this could be done by RNA 

immunoprecipitation followed by chip analysis, whereby tagged FUS mutants 

expressed in cultured cells are precipitated out together with bound RNA. The protein 

is then digested and RNAs extracted, followed by determination of all RNA sequences 

through Illumina or similar chip-based technology. In such a manner, it would be 

possible to identify RNA targets which are bound differentially by FUS mutants. This 

could uncover important pathways which may be disrupted not only in our murine 

models, but potentially in human ALS patients with various FUS mutations.  

 

7.5 Loss of FUS function may also contribute to FUSopathy 

Investigating the aggregation pathways of cytoplasmically mislocalised FUS and 

observing the ALS-like pathology that a primary insult of FUS aggregation in the 

cytoplasm produced in mice pointed towards a gain of function mechanism in the 

pathogenesis of ALS-FUS. This conclusion was drawn as FUS gained new 

functionality in the cytoplasm, forming inclusions that could sequester RNA and other 

proteins, including FUS, although this may later lead to a possible loss of nuclear 

function. We also aimed to uncover how this loss of FUS from the nucleus might 

contribute to the toxicity seen in several models (Hicks et al., 2000; Kuroda et al., 2000; 

Sasayama et al., 2012). In particular, as FUS is predominantly a nuclear protein, how 

would loss of FUS disrupt the normal architecture of the nucleus and its functionality? 

The nucleus of a cell is thought to be highly-organised and whilst it does not contain 

lipid membrane-bound organelles, distinct and dynamic sub-compartments known as 
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subnuclear bodies provide discreet and specialised regions for a variety of processes 

including transcription, splicing and retention of transcripts (Dundr and Misteli, 2001; 

Wang et al., 2002; Schmitz and Herrmann, 2008). Intriguingly, alterations to subnuclear 

bodies in ALS have previously been observed by other groups. For example, several 

groups report ALS-related deficiencies in the formation and maintenance of gems, 

subnuclear bodies involved in the production of certain spliceosomal components 

(Gertz et al., 2012; Kariya et al., 2012; Shan et al., 2010; Yamazaki et al., 2012; 

Ishihara et al., 2013). Additionally, in SOD1-G93A mice, a model of ALS-SOD1, a 

fragment of excitatory amino acid transporter 2 (EAAT2) that is abnormally cleaved 

through oxidative stress, was shown to be conjugated with SUMO-1 and accumulated 

in PML bodies (Gibb et al., 2007). As PML bodies are focused sites of transcription 

(Zhong et al., 2000), abnormal accumulation of this fragment could disrupt their normal 

functions, providing a novel mechanism that may contribute to ALS. However, 

investigation into subnuclear bodies and their potential dysfunction in ALS remains in 

its infancy, highlighting the need for further research in this area.  

 

In Chapter 6, confirming previous findings by others (Naganuma et al., 2012; Nishimoto 

et al., 2013; Page et al., 2011), we demonstrated that under basal conditions full length 

WT FUS was enriched in the subnuclear body known as the paraspeckle and identified 

an interaction of FUS with the core paraspeckle protein, p54nrb. From previous work, it 

was not clear how loss of FUS from the nucleus, typical of FUSopathies, would impact 

paraspeckles. As such, we demonstrated that loss of FUS in vitro, elicited by its cellular 

knockdown with siRNA, caused a reduction in the level of NEAT1 lncRNA. FUS and 

NEAT1 are known to interact (Nishimoto et al., 2013) and so it is likely that FUS is 

directly important in the regulation of NEAT1 expression. Simultaneously, increased 

expression of GFP-tagged FUS resulted in increased NEAT1 expression, supporting 

this idea. In cells with knocked down FUS expression, paraspeckle formation and 

maintenance was disrupted suggesting FUS is essential for paraspeckle formation. 

Further, this work agrees with evidence that high levels of NEAT1 expression are 

required for their presence (Clemson et al., 2009). 

 

We also identified a second novel mechanism by which FUS, mislocalised in ALS to 

the cytoplasm, may disrupt paraspeckle formation. We showed that FUS aggregates in 

the cytoplasm can sequester p54nrb. This observation in vitro was then confirmed in 

our murine model of FUSopathy (FUS 1-359 TG mice) and in human ALS-FUS 

patients. This recapitulation in humans is one of the key strengths of this study, 

providing compelling evidence for the potential role of paraspeckle disruption in human 
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ALS-FUS. However, non-specificity of the antibodies used cannot be completely 

excluded. In particular, when working with challenging human tissues, is it possible that 

the antibody binds aggregates non-specifically given their aggregate-prone nature 

rather than the antibody binding the specific protein of interest present in the 

aggregate? 

 

Paraspeckles are not thought to be essential under normal conditions; they are not 

normally observed in neurons and NEAT1 knockout mice are healthy in the relative 

safety of the normal laboratory environment (Nakagawa et al., 2011). However, 

paraspeckles are thought to provide relief against cellular stress. This notion has arisen 

through the increased presence of paraspeckles following a number of cellular insults 

(Imamura et al., 2014; Zhang et al., 2013; Saha et al., 2006). Additionally, NEAT1 

levels are increased in the brain of heroin abusers, indicating a possible protective 

response to this stress insult (Michelhaugh et al., 2011). Thus, as FUS accumulates in 

the cytoplasm in conjunction with increased cellular stress, it is possible that the 

observed sequestration of core paraspeckle proteins and mislocalisation of FUS 

prevents the formation of paraspeckles, which may have otherwise provided a 

protective response to the stress insult (Figure 7.2). In such a way, therapies targeted 

to increase NEAT1 expression, may be therapeutically relevant and might prevent the 

exacerbation of cellular stress in ALS-FUS and other FUSopathies. Additionally, 

phosphorothioate-modified (PS) ASOs have been shown to be sufficient to nucleate 

paraspeckle-like structures in the absence of NEAT1 and so may be a viable 

alternative (Shen et al., 2014).  

 

In the future, it will be interesting to determine other proteins that are sequestered by 

FUS inclusions in the cytoplasm. Previous mass spectrometry experiments have been 

conducted to identify proteins interacting with detergent-insoluble TDP-43 

overexpressed in HEK293 cells (Dammer et al., 2012) or to determine the proteomic 

composition of human FTLD inclusions (Seyfried et al., 2012). Similar global 

approaches for FUS may identify additional proteins sequestered by human FUS 

inclusions and lead to the identification of further disrupted pathways that could be 

important in the development of FUSopathies.  

 

Furthermore, much of the work within this thesis has been based on in vitro cell culture 

systems utilising transient transfection protocols. These cell culture systems are a 

popular choice for early investigatory research because of their ease to work with, cost 

efficiency and carefully controlled environment. However, the next logical step will be to 
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determine whether the mechanisms outlined in this thesis are applicable to cells that 

stably express mutant forms of FUS. This work is ongoing in our laboratory, with a new 

PhD student, working to produce several CRISPR/Cas9 genome-engineered human 

cell lines, where the gene encoding the endogenous FUS protein has been 

hemizygously mutated. Future work could also incorporate the use of patient-derived 

induced pluripotent cells to more closely model the cellular environment in cases of 

human ALS.  
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Figure 7.2. Hypothetical model of how FUS aggregation may impair a protective paraspeckle response in 

FUSopathies. Normally, FUS resides predominantly within the nucleus of a neuron, which expresses low 

levels of NEAT1 under normal conditions. Upon stress, NEAT1 expression is increase and FUS interacts 

with other paraspeckle proteins to form paraspeckles which could be a protective response of the cell. 

However, in FUSopathy, FUS is dramatically mislocalised to the cytoplasm where it can aggregate and 

form large inclusions. These inclusions can sequester paraspeckle proteins and loss of nuclear FUS 

reduces NEAT1 expression. Therefore, upon stress insult, paraspeckle formation is perturbed. This 

highlights how compromised paraspeckle formation may contribute to FUSopathy.  
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7.6 N-terminus prion-like domain of FUS and its role in aggregation  

In addition to the role of FUS interactions with RNA, the contributions of the prion-like 

domain of FUS are key in the process of its aggregation.  We have shown that this 

prion-like domain, thought to occur between amino acids 1-239 (Cushman et al., 2010), 

together with RNA interaction was essential for FA formation. However, whilst 

preventing the pathological aggregation of FUS could be therapeutically valuable, 

disrupting the interactions of this prion-like domain to prevent its pathological 

aggregation will likely not be a viable strategy. In addition to its roles in pathological 

FUS aggregation, indeed others have also shown that this prion-like domain is 

essential for aggregation of FUS (reviewed in Gitler and Shorter (2011)), this domain is 

essential for mediating essential physiological roles of FUS protein. It is necessary for 

seeding a higher-order RNA-based assembly of FUS which enables its binding to, and 

regulation of, RNAP2 in transcription (Schwartz et al., 2013). Further, supporting work 

carried out by our laboratory (Shelkovnikova et al., 2014), the prion-like domain has 

been shown to be essential in the recruitment of FUS to paraspeckles (Hennig et al., 

2015). Disruption of the prion-like domain of FUS to augment its pathological 

interaction would therefore disturb both transcriptional regulation and paraspeckle 

formation, and potentially other important normal cellular functions of the protein, both 

of which may further contribute to progression of ALS.  

 

7.7 Implications for ALS  and concluding remarks 

This thesis supports both gain of toxic FUS function and loss of normal FUS function 

hypotheses in the development of ALS-FUS and other neurodegenerative diseases 

where FUS may become mislocalised to the cytoplasm. This is in line with the wealth 

of literature supporting each of these possibilities. Specifically, this thesis makes 

several significant and novel contributions to the understanding of these processes. 

We have provided the first detailed characterisation of a novel pathway of FUS 

aggregation in instances where ALS-associated mutant FUS is mislocalised and 

accumulated in the cytoplasm. This pathway is distinct from recruitment into stress-

induced SGs and can lead to the formation of large RNA-based FUS aggregates. 

Intriguingly, we demonstrated that reduced protein-RNA interaction through 

transcriptional inhibition resulted in the dissolution and reassembly of these FUS 

aggregates into higher order RNA-free structures. Alongside this, we developed a 

murine model of FUS aggregation by neuronal expression of an experimental form of 

FUS lacking major RNA-binding domains. These mice displayed pathological FUS 

inclusions and several additional ALS-like signs. Therefore, alterations in the 

interaction of FUS with RNA may augment its aggregation once mislocalised to the 
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cytoplasm and RNA-free FUS inclusions formed may represent similarly forming 

structures seen in human FUSopathy cases. This pathway, based on both RNA-

dependent and RNA-independent mechanisms, demonstrates for the first time how 

FUS may accumulate pathologically to form large inclusions. Disruption of this pathway 

may be relevant for mitigating progression of FUSopathies. Furthermore, we showed 

how recruitment of FUS into SGs may be protective against its irreversible aggregation, 

providing evidence which is contrary to the view that SGs may undergo some form of 

change to become pathogenic. As such, future therapies aimed at disrupting SG 

response may not be viable for slowing ALS caused by FUS mutation. Finally, we 

discovered a novel loss of function mechanism that may contribute to ALS pathology 

via perturbed subnuclear interaction of FUS in paraspeckles. This disruption of 

paraspeckles may reduce the ability of neurons to overcome cellular stress. Further 

research into the modulation of these pathogenic mechanisms could lead to the 

development of additional ALS therapeutics in the future, for example, promoting 

paraspeckle formation may act to enhance cellular survival, although this is yet to be 

tested. Whilst it remains to be seen whether similar mechanisms could be relevant for 

ALS as a whole, work described in this thesis is valuable for understanding what 

happens when FUS is mislocalised to the cytoplasm, and identifies several 

pathological mechanisms that may be relevant for future therapeutic strategies.   
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7.1 Plasmid profiles 

7.1.1 pEGFP-C1  

 

 

 

Sequencing primers (blue): 

 

Name Sequence (5’-3’) Length 

(bp) 

Tm (ºC) GC% 

pEGFPC1for GATCACTCTCGGCATGGAC 

 

19 58.8 58 

pEGFPc1rev CATTTTATGTTTCAGGTTCAGGG 

 

23 57.1 39 

 

Element(s) of interest:  EGFP (lime green) 

Antibiotic resistance:  kanamycin  

Supplier:    Clontech 

 

 



  APPENDIX 

 

190 

7.1.2 pCR-BLUNT II-TOPO 

 

 

 

Sequencing primers (blue): 

 

Name Sequence (5’-3’) Length 

(bp) 

Tm (ºC) GC% 

T7 TAATACGACTCACTATAGGG  
 

20 53.2 40 

Sp6   CATTTAGGTGACACTATAG 

 

19 50.2 37 

 

Antibiotic resistance:  kanamycin 

Supplier:    Invitrogen 
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7.1.3 pFLAG-CMV4 

 

 

Sequencing primers (blue) 

 

Name Sequence (5’-3’) Length 

(bp) 

Tm (ºC) GC% 

CMV for CGCAAATGGGCGGTAGGCGTG 

 
 

21 65.7 67 

CMV seq 

rev 

GTCAGACAAAATGATGCAACTTAAT%

  

 

25 54 32 

 

 

Element(s) of interest:  FLAG (red) 

Antibiotic resistance:  kanamycin 

Supplier:   A kind gift from Prof. Francisco Baralle 

 

 



       

 

7.2 Primers 

Protein Tag Fragment/ 

mutation 

Forward primer (5’-3’) Reverse primer (5’-3’) PCR 

template 

PCR 

fragment 

size (bp) 

Digest PCR 

product from 

TOPO vector 

Vector 

FUS N-terminal 

EGFP 

1-359 tctcgagctatggcctcaaacgattatac aggatccttagaattctttaccatcaaacc Human 

cDNA 

1096 XhoI/BamHI pEGFP-C1 

(XhoI/BamHI) 

N-terminal 

EGFP 

359-526 (to 

create WT) 

gctaaagcagctattgactg tggatccttaatacggcctctcct Human 

cDNA 

549 EcoRI/BamHI FUS-1-359 in 

pEGFP-C1 

(EcoRI/BamHI) 

N-terminal 

EGFP 

R522G gctaaagcagctattgactg tggatccttaatacggcctctccccgcg FUS WT in 

pEGFP-C1 

550 EcoRI/BamHI FUS-1-359 in 

pEGFP-C1 

(EcoRI/BamHI) 

N-terminal 

EGFP 

1-513 

(ΔNLS) 

gctaaagcagctattgactg tggatccttaggaatccatcttgccagg FUS WT in 

pEGFP-C1 

512 EcoRI/BamHI FUS-1-359 in 

pEGFP-C1 

(EcoRI/BamHI) 

N-terminal 

EGFP 

1-466 

(dRGG3) 

gctaaagcagctattgactg tggatccttaaccccccatgtgaga FUS WT in 

pEGFP-C1 

370 EcoRI/BamHI FUS-1-359 in 

pEGFP-C1 

(EcoRI/BamHI) 

N-terminal 

EGFP 

ΔRRMcyt cagtcaattgagtccggaaatcctatcaag

gtc 

 

gagtttggacaaaccacaac 

 

FUS R522G 

in pEGFP-

C1 

753 MfeI FUS R522G in 

pEGFP-C1 

(MfeI)  

N-terminal 

EGFP 

ΔRRM cagtcaattgagtccggaaatcctatcaag
gtc 

 

gagtttggacaaaccacaac 

 

FUS WT in 

pEGFP-C1 

753 MfeI FUS WT in 

pEGFP-C1 

(MefI) 

N-terminal 

EGFP 

CT tctcgagaagaattctccggaaatcctaat

caa 

tggatccttaatacggcctctcct FUS WT in 

pEGFP-C1 

523 XhoI/BamHI pEGFP-C1 

(XhoI/BamHI) 

N-terminal 

EGFP 

RRM-CT tctcgagctcaaggatcacgtcatgactcc tggatccttaatacggcctctcct FUS WT in 

pEGFP-C1 

786 XhoI/BamHI pEGFP-C1 

(XhoI/BamHI) 



      

 

 

 

 

 N-terminal 

EGFP 

NT tctcgagctatggcctcaaacgattatac      

 N-terminal 

EGFP 

dRRM-

RGG3 

tctcgagctatggcctcaaacgattatac tggatccttaaccccccatgtgaga FUS  ΔRRM  

in pEGFP-

C1 

1227 XhoI/BamHI pEGFP-C1 

(XhoI/BamHI) 

 N-terminal 

EGFP 

R518K gctaaagcagctattgactg tggatccttaatacggcctctccctgcgat

cctgtttgtg 

FUS WT in 

pEGFP-C1 

550 EcoRI/BamHI FUS-1-359 in 

pEGFP-C1 

(EcoRI/BamHI) 

 N-terminal 

EGFP 

R524T gctaaagcagctattgactg tggatccttaatacggcgtctccctgcg FUS WT in 

pEGFP-C1 

550 EcoRI/BamHI FUS-1-359 in 

pEGFP-C1 

(EcoRI/BamHI) 

P54nrb N-terminal 

EGFP 

WT tctcgagctatgcagagtaataaaactttta

ac 

tggatccttagtatcggcgacgtttgttt Human 

cDNA 

1416 XhoI/BamHI pEGFP-C1 

(XhoI/BamHI) 

MTAP N-terminal 

FLAG 

WT gacaagcttatggcctctggca cgggatccttaatgtcttggtaataa Human 

cDNA 

852 HindIII/BamHI pFLAG-CMV4 

(HindIII/BamHI) 

Chimeric Proteins 

 N-terminal 
EGFP 

Sup35-FUS tgtactcgagctatgtcggattcaaa 
 

tcagtgaattcagacataccttgagactg Yeast cDNA 398 XhoI/EcoRI FUS WT in 
pEGFP-C1 
(XhoI/EcoRI) 

 N-terminal 
EGFP 

FUS-TDP43-
RRMs 

gtgccgaatccacatccgatttaatagtgtt gctaggattcctaattgtgcttaggtt 
 

Human 
cDNA 

513 EcoRI/BamHI FUS  FUS WT in 
pEGFP-C1 

(EcoRI/BamHI) 

 N-terminal 
EGFP 

FUS-TDP43-
RRMs-3D 

agaattcgatgacatagacttgggtgaccc
atggaaaaca 
 

gctaggattcctaattgtgcttaggtt 
 

Human 
cDNA 

505 EcoRI/BamHI FUS  FUS WT in 
pEGFP-C1 
(EcoRI/BamHI) 

 N-terminal 
EGFP 

FUS-Npl3 tgtcacaattgaccagattgtttgttagacctt
t 

tgtaggatccttatctgattggtggaggatt
gtc 

Yeast cDNA 492 MfeI/BamHI FUS WT in 
pEGFP-C1 
(MfeI/BamHI) 
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7.3 Primary antibodies 

Name Type Company 

Anti G3BP1 Mouse monoclonal BD Laboratories 

Anti-β-actin Mouse monoclonal Clone AC-15, Sigma-Aldrich 

Anti-Dcp1a Rabbit polyclonal Sigma-Aldrich 

Anti-DDX5 Rabbit monoclonal Clone D15E10, Cell Signalling 

Anti-FLAG tag Rabbit polyclonal Clone M2, Sigma 

Anti-FMRP Rabbit polyclonal Clone F4055, Sigma-Aldrich 

Anti-FUS (human 

and mouse) 
Mouse monoclonal BD laboratories 

Anti-FUS (human) 

(1480) 
Rabbit polyclonal A kind gift from Prof. Don Cleveland 

Anti-FUS (mouse) 

(1482) 
Rabbit polyclonal A kind gift from Prof. Don Cleveland 

Anti-FUS C-term Mouse monoclonal Clone 4H11, Santa Cruz 

Anti-FUS N-term Rabbit polyclonal Abcam 

Anti-FUS N-term Mouse monoclonal Santa Cruz 

Anti-Gamma 

tubulin 
Mouse monoclonal Clone GTU-88, Sigma-Aldrich 

Anti-GAPDH Mouse monoclonal Clone 6C5, Santa Cruz 

Anti-GFAP Rabbit polyclonal Sigma-Aldrich 

Anti-GFP Mouse monoclonal Clone 3A9, Protein Synthesis 

Anti-GFP Rabbit polyclonal Living Colours, Clontech 

Anti-HSP27 Rabbit polyclonal Cell Signalling 

Anti-LAMP1 Mouse monoclonal Clone H4A3, BD Laboratories 

Anti-LAMP2 Mouse monoclonal Clone H4B4, BD Laboratories 

Anti-NeuN Mouse monoclonal Clone MAB377, Chemicon 

Anti-p54nrb Rabbit polyclonal Sigma-Aldrich 

Anti-p68 Rabbit monoclonal Clone D15E10, Cell Signalling 

Anti-p80 coilin Mouse monoclonal BD Laboratories 

Anti-phospho-

eIF2alpha 
Rabbit polyclonal Abcam 

Anti-PML Chicken polyclonal A kind gift from Prof. Ronald Hay 

Anti-PSF Rabbit polyclonal Clone AB2, Sigma 

Anti-PSP1 Rabbit polyclonal Sigma-Aldrich 
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Anti-S6 ribosomal 

protein 
Rabbit polyclonal Cell Signalling 

Anti-Sm antigen Rabbit polyclonal Clone Y12, Abcam 

Anti-SMN Mouse monoclonal BD Laboratories 

Anti-TIAR Mouse monoclonal Clone 6, BD Laboratories 

Anti-Ubiquitin Mouse monoclonal Clone N-19, Santa Cruz 

Anti-Vimentin Mouse monoclonal Clone RV202, BD Laboratories 
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