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For most people, adolescence is synonymous with emotional turmoil and it has been shown that early difficulties
with emotion regulation can lead to persistent problems for some people. This suggests that intervention during
development might reduce long-term negative consequences for those individuals. Recent research has
highlighted the suitability of real-time fMRI-based neurofeedback (NF) in training emotion regulation (ER) net-
works in adults. However, its usefulness in directly influencing plasticity in the maturing ER networks remains
unclear. Here, we used NF to teach a group of 17 7-16 year-olds to up-regulate the bilateral insula, a key ER re-
gion. We found that all participants learned to increase activation during the up-regulation trials in comparison to
the down-regulation trials. Importantly, a subsequent Granger causality analysis of Granger information flow
within the wider ER network found that during up-regulation trials, bottom-up driven Granger information
flow increased from the amygdala to the bilateral insula and from the left insula to the mid-cingulate cortex, sup-
plementary motor area and the inferior parietal lobe. This was reversed during the down-regulation trials, where
we observed an increase in top-down driven Granger information flow to the bilateral insula from mid-cingulate
cortex, pre-central gyrus and inferior parietal lobule. This suggests that: 1) NF training had a differential effect on
up-regulation vs down-regulation network connections, and that 2) our training was not only superficially con-
centrated on surface effects but also relevant with regards to the underlying neurocognitive bases. Together these
findings highlight the feasibility of using NF in children and adolescents and its possible use for shaping key social

cognitive networks during development.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

For most people, adolescence is synonymous with emotional turmoil
(Guyer et al., 2012; Moor et al., 2010; Sebastian et al., 2011), which goes
along with an increased risk for developing psychiatric disorders
(Kessler et al., 2005; Paus et al., 2008). Yet the current scientific evi-
dence suggests that emotional reactivity per se does not change much
in the transition from childhood to adulthood (McRae et al., 2012).
Rather, most research up to date has shown that the observed change
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in emotional behaviour is due to continuous developmental improve-
ment in the control and regulation of emotional responses (McRae
et al,, 2012; Silvers et al,, 2012). The improvements in emotion control
abilities are only part of a general programme of development in that
they go along with substantial cognitive and physiological maturation
(Blakemore, 2008; Burnett et al., 2011). At the brain level, the on-
going development is reflected in both grey and white matter changes
(Giedd et al., 1999; Harris et al., 2011; Lebel and Beaulieu, 2011;
Petanjek et al., 2011; Tamnes et al., 2013), as well as increased function-
al connectivity in default and resting state brain networks (Fair et al.,
2007, 2008). All these changes affect not only the brain structure, but
also the functional responsiveness and processing abilities of the devel-
oping brain. It has been suggested that the timing of this transforma-
tional process, which coincides with a period of significant social
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cognitive change, could help explain the increased risk for developing
certain mental disorders (Haller et al., in press-a,b; Keshavan et al.,
2014, Paus et al., 2008).

With regard to emotion regulation, a handful of developmental
functional magnetic resonance imaging (fMRI) studies have consistent-
ly found changes in subcortical emotion regulation regions, such as the
amygdala (Scherfet al., 2012, 2013) as well as anterior and lateral func-
tional subdivisions of the prefrontal cortex (PFC) in response to emo-
tional stimuli across childhood and adolescence (Guyer et al., 2012;
Moor et al.,, 2010; Sebastian et al., 2011). These have been interpreted
as improved recruitment of prefrontal regions in order to effectively
down-regulate subcortical arousal (Nelson et al., 2005). Further support
for this interpretation comes from data showing that functional regula-
tory connections between PFC and subcortical regions continue to ma-
ture throughout childhood and adolescence (Crone, 2014; Hare et al.,
2008; Perlman and Pelphrey, 2011; Pitskel et al., 2011). For example, a
recent study by Gee et al. (2013) reported a shift towards negative con-
nectivity in the amygdala-medial PFC network (with decreasing amyg-
dala responsivity corresponding to an increase in medial PFC activity)
during the viewing of negative faces from the age of 10 years onwards.
We note however that a mere focus on maturational changes in subcor-
tical emotion processing regions, such as the amygdala (Scherf et al.,
2013) and prefrontal cortex regions neglects substantial concurrent
changes in social cognitive processes and peer interactions, all of
which are likely to shape emotion processing to a similar extent
(Blakemore and Mills, 2014; Crone and Dahl, 2012; Pfeifer and Allen,
2012).

In view of the prolonged developmental trajectories of the
neurocognitive bases of emotion regulation abilities, it seems plausible
that neuro-behavioural plasticity - and hence the window for successful
interventions - is also extended (Cohen Kadosh et al., 2013;
Thompson-Schill et al., 2009). For example, one could imagine that
while emotion regulation networks are being set-up, they may also be
more amenable to interventions that aim to shape both cognitive pro-
cessing strategies as well as functional responsiveness in the emerging
brain regions (Cohen Kadosh et al., 2013; Gogtay et al., 2004; Tamnes
et al., 2013; Thompson-Schill et al., 2009). One such intervention ap-
proach is real-time fMRI-based neurofeedback (NF). NF is a newly
emerging technique that utilises the latest developments of real-time
data processing and pattern analysis in order to train participants in
the self-modulation of neural networks. It has been suggested that
fMRI-based NF could be used to help influence brain responses at crucial
developmental junctures (Cohen Kadosh et al., 2013; Haller et al,, in
press-a,b; Platt et al., 2013). Specifically, it could be used as a tool to ex-
plore response plasticity in the developing cortical networks for emo-
tion regulation and, most importantly, to help shape these networks
in the most optimal way (Cohen Kadosh et al., 2013).

In fMRI-based NF studies, participants are presented with real-time
brain activation in specific regions of interest (for example through a
visually-presented thermometer) and they learn to reliably regulate
their online brain response with high spatial precision (deCharms,
2007; deCharms et al., 2005; Johnston et al., 2010; Weiskopf et al.,
2004a,b). NF has proven particularly useful for up- or down-regulating
the brain regions involved in healthy adults’ emotional responses
(Johnston et al., 2010, 2011; Paret et al., 2014; Zotev et al., 2011,
2013).In addition, it has been used to change brain responses in clinical
populations, such as participants with schizophrenia (Ruiz et al., 2013)
depression (Linden et al., 2012; Young et al., 2014; Yuan et al.,, 2014) or
Parkinson's (Subramanian et al., 2011). One particular advantage of
fMRI-based (compared to EEG-based) NF lies in its high spatial resolu-
tion, which can be used to directly target and train brain networks rath-
er than single regions. For example, in two recent studies by Zotev et al.
(2011, 2013), where healthy adults learned to successfully up-regulate
their left amygdala, they also observed significant increases in function-
al connectivity between different regions of the amygdala network
comprising the right medial frontal polar cortex, the bilateral

dorsomedial prefrontal cortex, the left anterior cingulate cortex, and bi-
lateral superior frontal gyri. This is important, as it shows that NF does
not only affect brain responses within a specific brain region (i.e. the
left amygdala), but also the processing flow within a larger network of
regions.

NF may be particularly useful in targeting brain regions that are un-
dergoing maturational change — and which may be more responsive to
external interventions. Moreover, the network-based effect is important
from a developmental perspective, as it would allow us to time
interventive approaches to coincide with a period of substantial brain
and cognitive development such as adolescence. In addition, it seems
likely that any changes to neurocognitive circuitry will have knock-on
effect on behaviour that is stronger and more persistent than at other
developmental stages (Cohen Kadosh et al., 2013). However, up until
now, all NF-based research on emotion regulation networks has been
conducted with healthy (Caria et al., 2010; Johnston et al., 2010, 2011;
Paret et al., 2014; Zotev et al., 2011) or clinical (Linden et al., 2012;
Ruiz et al., 2013; Young et al., 2014; Yuan et al., 2014) adult populations.
The current study aimed to establish the feasibility of using NF in
children and adolescents. Our main aim was to teach children and
adolescents to gain control over the insula region in a simple NF up-
regulation task in comparison to a rest condition. In the up-regulation
condition, participants were given NF information with an instruction
to keep activation levels high using a specific strategy. In the rest condi-
tion, participants also received NF information and an instruction to
keep the signal low but with no specific strategy. We therefore subse-
quently refer to this rest condition as the down-regulation condition.
We chose the right insula region, as it is a key region in the emotion reg-
ulation network (Kohn et al., 2014; Wager and Feldman-Barrett, 2004).
It is also functionally well connected with the amygdala and PFC re-
gions, which are all relevant for improving emotion regulation abilities
during development (Gee et al., 2013; Pitskel et al., 2011). In addition,
previous studies have shown that the insula responds reliably to modu-
lation interventions (Pitskel et al.,2011), and particularly NF-based ones
where the NF-intervention does have a more wide-spread effect on the
emotion regulation network (Ruiz et al., 2013). A second aim of the
study was therefore to assess the wider effect of NF training on the
developing emotion regulation network, and particularly on changes
in bottom-up and top-down Granger information flow between the
different brain regions for the two task conditions (up-regulation vs
down-regulation).

Methods
Participants

Nineteen children and adolescents (average age = 11.6 years, SD =
2.5, range 7-16 years, 8 females) were recruited from the local Cardiff
community via word-of-mouth. We specifically chose to recruit across
a large age-range to establish the feasibility of this research approach
for children and adolescents. All participants had normal or corrected-
to-normal vision and reported no history of neurological or psycholog-
ical illness (as determined via self-report). Informed consent was ob-
tained from the primary caregiver and informed assent was obtained
from the child/adolescent prior to testing. Participants received an Am-
azon voucher (£20) for participating in the experiment. The study was
approved by the local ethics committee (School of Psychology, Cardiff
University).

Experimental task and stimuli

Localiser task. We use a modified version of the Overlap task (Bindemann
et al,, 2005; Cohen Kadosh et al., 2014) to localise the target region for the
subsequent NF runs (Fig. 1). The Overlap task consists of a stimulus set of
9 colour photographs of female faces (3 women x 3 emotional expres-
sions (fearful, happy, and neutral)) that were selected from the NimStim
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Fig. 1. Top: Experimental procedure. During the neurofeedback runs (4 in each of the 4 sessions), participants alternated between 20 s periods of down-regulation and 20 s periods where
they had to up-regulate activity in the target area. The level of activation was fed back in real time (updated for each TR of 2 s) through the thermometer display. Bottom: Two sample trials
in the localiser task. A fixation cross was replaced by an emotional face + fixation cross flanked by two bars. A red fixation cross indicated a NoGo trial, where no action was required. A
green fixation cross indicated a Go trial, where participants had to disengage from the face as quickly as possible in order to detect the horizontal target bar.

set.! All pictures were cropped to show the face in frontal view and to ex-
clude the neck and haircut of the person. For the face + target stimuli, a
fixation cross was superimposed onto the face between the two eyes,
and two black peripheral lines were presented on each side of the face.
In total, 36 different stimuli (3 women x 3 expressions x target right or
left of the face x green/red fixation cross (go/no-go trials)) were created.
Note that we used only female faces in the current study in order to keep
any task-irrelevant stimulus variation at a minimum. This approach was
chosen, as it has been shown that facial identity serves a reference
frame for interpreting emotional expressions (Cohen Kadosh, 2011;
Ganel and Goshen-Gottstein, 2004) and that sex changes influence iden-
tity processing (Ganel and Goshen-Gottstein, 2002).

Procedure

We used a 3 Tesla 3T GE (General Electric) HDx MR system to
acquire MRI and fMRI data at the Cardiff University Brain Research
Imaging Centre. Each participant first underwent a localiser scan,
which was followed by four NF runs, using a single shot echo-planar im-
aging sequence (TR = 2 s, TE = 35 ms, 30 slices, 3 mm slice thickness,
inplane resolution 2 mm x 2 mm). Following the functional scans, a
T1-weighted structural image (1 mm? resolution) was acquired for
co-registration and display of the functional data. Two participants,
one female and one male did not continue on to participate in the NF
runs and 1 male completed only 2 NF runs. Immediately following the
scanning session, participants were asked to complete the Moods and
Feelings questionnaire (Angold et al., 1995) and the Cognitive Emotion
Regulation Questionnaire (CERQ) (Garniefski et al., 2001).

Localiser task

Each trial began with a central black fixation cross on a white back-
ground, being presented for 1500 ms. The fixation cross was then re-
placed for 500 ms by the face + target stimulus, with a red or green
fixation cross super-imposed onto a face flanked by two peripheral
black lines. The colour of the fixation cross indicated whether the trial

! Development of the NimStim Face Stimulus Set was overseen by Nim Tottenham and
supported by the John D. and Catherine T. MacArthur Foundation Research Network on
Early Experience and Brain Development.

was a go trial (green colour) or a no-go trial (red colour). During the
go trials, the participant's task was to indicate which of the two lines
on either side of the face was presented horizontally. Participants
were instructed to indicate the location of the target stimulus via a but-
ton press on a response box, with the right button corresponding to a
target on the right side of the face and the left button corresponding
to a target on the left side of the face. During no-go trials, participants
were instructed not to respond and to wait for the next trial to begin.
The face + target stimulus was followed by a white screen with black
fixation cross, which was displayed for 2000-4000 ms, or until a re-
sponse was registered (Fig. 1 bottom). Each session began with 12 prac-
tice trials (6 go trials, 6 no-go trials), with each emotional expression
being shown 4 times. The practice was followed by 4 blocks of 36 trials
with a ratio of 2:1 go (24) to no-go (12) trials, with each facial expres-
sion (fearful/neutral/happy) being shown an equal number of times in
the trials. Additionally, we created three pseudo-randomised variations
of the task to ensure that each emotional expression and trial type var-
ied systematically throughout the blocks.

Neurofeedback task

The localiser task was followed by four NF runs. We used
TurboBrainvoyager (Brainlnnovations, Maastricht, Netherlands) for
the online analysis during the NF runs. Each run consisted of 5 20
second down-regulation blocks and 4 20 second up-regulation
blocks (Fig. 1 top). Each participant's target area (right anterior
insula) was identified based on an average effect contrast across all
conditions (2 trial types x 3 emotional expressions) in the preceding
localiser task. The participant's task was to increase activity in the insula
region during the regulation blocks and to keep activation low during
the down-regulation blocks. For the up-regulation runs the thermome-
ter was superimposed on a green background and participants were
instructed to ‘think happy thoughts’ (to induce activation), i.e. to try
and think of something that would ‘make them feel happy’. During
the down-regulation runs, the thermometer was superimposed on a
yellow background and they were told ‘to relax’, almost like ‘turning
off a car engine’, and to keep the thermometer low. During the runs, a
continuous signal from the target area (updated every TR and thus
every 2 s) was displayed using the picture of a thermometer whose
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dial indicated the amplitude of the fMRI signal in the target area (Fig. 1
top). We note that the thermometer provided feedback on real-time
brain responses in both conditions. Changes in the amplitude were indi-
cated as the percent of signal change, calculated using the current signal
intensity value and comparing it with the average value determined
from the down-regulation period immediately preceding each up-
regulation block. The scaling of the thermometer was in steps of
0.05%, with a maximum value of 0.5%. This range was chosen based on
previous, successful NF studies in both healthy and clinical populations
(e.g., Linden et al.,, 2012). A change of background colour every 20 s in-
dicated to participants whether their task was to up-regulate (green
background) or to down-regulate activation (yellow background).

The online GLM was computed with one predictor for the regulate
state, convolved with a haemodynamic reference function. The top
one-third (defined by the t value for the contrast between the regulate
predictor and baseline) of the voxels from the target region (the right
insula for all participants) was used to compute the feedback signal. Par-
ticipants were also instructed to keep head movement to a minimum
and fixate the middle of the display during both, the localiser and the
NF in order to avoid eye movements.

FMRI analyses

Data were analysed using SPM8 (Wellcome Department of Imaging
Neuroscience; http://www.filion.ucl.ac.uk/spm). The pre-processing
analysis was identical for the localiser and NF runs. First, a slice-scan
time correction was applied to all runs. Then, EPI volumes were spatially
realigned to correct for movement artifacts, normalised to the Montreal
Neurological Institute (MNI) standard space (Ashburner and Friston,
2003a,b) and smoothed using an 8-mm Gaussian kernel. We note that
in order to maintain high levels of comparability across the entire par-
ticipant age range (7-17 years), we chose to use the same template
for spatial normalisation in all subjects. Further, there is also good evi-
dence that brain scans from participants aged 5 years and onwards
can be reliably mapped onto adult space (Kang et al., 2003).

For the localiser run, a general linear model was computed with 6
regressors, one for each condition in the design (2 trial types x 3 emo-
tional expressions). In addition, a covariate was included with the
mean accuracy rates for each participant (collapsed across emotional
expressions, as the main effect of expression or the interaction between
trial type x expression was not significant) to prevent the possibility of
proficiency-dependent differences affecting the fMRI results. We note
that participants across the age range achieved good accuracy levels
(accuracy rates (mean/standard deviation): fear: 83%/15%; happy trials:
85%/13%; neutral: 78%/19%). To account for (linear) residual movement
artifacts, the model also included 6 further regressors representing the
rigid-body parameters estimated during realignment (note that none
of the participants included in this data set exhibited greater than
3-mm deviation in the centre of mass in any direction). Voxelwise
parameter estimates for these regressors were obtained by restricted
maximume-likelihood estimation using a temporal high-pass filter
(cutoff = 128 s) to remove low frequency drifts, and modelling tem-
poral autocorrelation across scans with an AR(1) process. Images of
these parameter estimates comprised the data for a second GLM
that treated participants as the only random effect. This GLM included
the 6 conditions of interest, using a single pooled error estimate, whose
nonsphericity was estimated using restricted maximume-likelihood esti-
mation as described in Friston et al. (2002). Note that apart from the re-
gion of interest (ROI) analyses, the results from the localiser task will not
be reported here.

For the NF runs, each block was modelled as an epoch of 20 s and
convolved with a canonical hemodynamic response function. Voxel-
wise parameter estimates for these regressors were obtained by restrict-
ed maximum likelihood estimation (ReML), using a temporal high-pass
filter (cut-off 128 s) to remove low-frequency drifts, and modelling tem-
poral autocorrelation across scans with an Auto-regression (1) process.
Finally, to obtain the areas for the ROI analyses and the subsequent

Granger causality analyses, eight 10-mm ROIs were localised based on
group local maxima for an average effect contrast in the localiser task,
as well as two 10-mm ROIs based at the peak voxel coordinates in the bi-
lateral insula in the individual, using the same contrast. This independent
analysis approach was chosen to avoid the issue of double dipping
(Kriegeskorte et al., 2009; Vul et al., 2009). For the NF ROI analyses, we
first extracted the BOLD time series in the bilateral insula in each partic-
ipant individually (mean and standard deviation of the coordinates are
for peak voxel location, X, y, and z, in MNI space): left insula (1INS):
—37(6), 9(7), 4(3); right insula (rINS): 39(4), 8(8), 1(4). These insula
clusters correspond to the individual NF target areas. In addition, for
the Granger causality analysis, we extracted the time-series of BOLD ac-
tivations in 8 core emotion regulation network regions. The selection of
these 8 regions was based on a recent meta-analysis of 23 studies
(Kohn et al., 2014), which used fMRI or PET to investigate cognitive emo-
tion regulation in adults, as well as a recent fMRI-based-NF study on
emotion regulation in patients with schizophrenia (Ruiz et al., 2013),
who were taught to gain control over the bilateral insula regions. The
following ROIs were selected for the Granger Causality Analysis: left
amygdala (IAMY): —21, —3, —7; lINS: —39, 14, 3; rINS: 36, 15, 3;
left mid-cingulate cortex (MCC): —6, 18, 39; left middle frontal gyrus
(IMFG): — 38, 34, 27; left medial frontal gyrus/supplementary motor
area (ISMA): —2, 16, 50; left intra-parietal lobule (1IPL): — 60, —48,
35; left precentral gyrus (IPreG): —48, 2, 32. (See also Table S4 and
Fig. S2 for a whole-brain analysis of the NF runs).

Granger causality analysis

Following the ROI of our NF target regions, we conducted a Granger
causality analysis (GCA) to assess the extended effect of NF-induced
changes on the extended emotion regulation network. GCA is a widely
used research approach that allows us to investigate how changes in
brain activation over time in different brain regions relate to each
other (Palaniyappan et al., 2013; Wen et al., 2012; Hamilton et al.,
2011; Ge et al., 2012; Guo et al., 2008; Luo et al., 2011; Luo et al.,
2013a,b). Crucially, GCA also can provide insights into the directional
Granger information flow between brain regions, also known as effec-
tive connectivity, which is currently impossible to explore experimen-
tally (Park and Friston, 2013). For the current fMRI study, we adopted
a previously successful GCA analysis approach (Wen et al., 2013),
which included several important pre-processing steps (Smith et al.,
2012), such as outlier removal, baseline correction and an analysis of
the percent signal change within blocks (see also supplementary
Tables S2-3).

However, the assumption that the time series models during the up-
regulation blocks in different sessions would stay the same is likely to be
an oversimplification, as fluctuations in the model coefficients are
almost as certain as the physiological oscillations in the BOLD signal.
As discussed in detail previously (Luo et al.,, 2013b), assuming a static
model to a time-varying casual structure usually leads to misleading
estimation of Granger causality. We proposed and demonstrated the re-
liability of an averaged Granger causality (avGC), which was a new
framework to tackle the time-varying causal structure (Luo et al.,
2013Db). Basically, the Granger causality for a pair of brain regions was
estimated at each up-regulation/down-regulation block, and then the
avGC was established by averaging the estimated Granger causality dur-
ing up-regulation/down-regulation blocks across different sessions.
Here, we used the avGC to measure the directed Granger information
flow between brain regions.

To detect significant differences in the directed Granger information
flow as a function of the two task conditions (up-regulation vs down-
regulation), the avGC during up-regulation/down-regulation were test-
ed against the null hypothesis of non-causality by the distribution of
sum of many independent F statistics (Luo et al., 2013b). The results
that survived the false discovery rate correction (FDR, p < 0.05) were re-
ported for the different conditions at the group level. After the Granger
information flow (i.e., the avGC) estimated at each direction between
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brain regions for each subject during down-regulation and during up-
regulation separately, the paired ¢t test was applied to compare the
avGC during up-regulation with that during down-regulation at each
The resulting p-values were FDR (p < 0.05) corrected for multiple
comparisons.

Last, in order to understand the functional meaning of the directed
Granger information flow detected by the avGC, we computed Pearson's
correlation coefficients across subjects between the two experimental
conditions (defined by contrast map given by SPM8) in the bilateral
insula with age and sex in each subject as covariates.

Results
Successful insular cortex self-regulation during NF

To assess the effect of the NF training on the BOLD signal increase in
the left insula and right insula in each NF session, we computed a Fisher
score (FS) (Ruiz et al., 2013), which measures the discriminability be-
tween BOLD signals of two conditions (in this case “down-regulation”
and “up-regulation” blocks). A FS-based analysis allows us to take into
account both, the variance and the mean BOLD signal change between
two conditions, rather than just the mean difference between the two
conditions, as is done conventionally (Ruiz et al., 2013). The FS is
defined as the ratio of the square of the difference between the mean
BOLD values in each time-series to the sum of the variance in the
time-series. In order to assess whether the NF training was successful,
we conducted one-sample t-tests on the Fisher scores to assess whether
the up-regulation was statistically significant for all sessions in the
bilateral insula. After applying Bonferroni correction for multiple
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comparisons, we found that participants were able to up-regulate the
left insula in session 2 [(t(15) = 3.0, p = .01, bootstrapped CI
95%|.100, .426]) and 3 (t(15) = 3.1, p = .008, bootstrapped CI
95%[.113, .420]), but not in the first and last session where effects
were trending only [session 1: (t(15) = 2.29, p = .044, bootstrapped
CI%[.042, .328]); session 4: (t(15) = 2.0, p = .066, bootstrapped
CI%[.030,.322])]. For the right insula however the picture looked dif-
ferent, with successful up-regulation in all four sessions [session 1:
(¢(15) = 2.7, p = .016, bootstrapped CI 95%[.087, .400]); session 2:
(t(15) = 3.0, p = .009, bootstrapped CI 95%[.051, .192]); session 3:
(t(15) = 2.93, p = .010, bootstrapped CI 95%[.103, .417]); session
4: (t(15) = 2.53, p = .023, bootstrapped CI 95%[.077, .443])].
(Fig. 2a, see also supplementary Fig. S1 for individual regulation suc-
cess). We also conducted a one-factorial ANOVA with session as the
within-subject factor (4 levels) to assess whether up-regulation dif-
fered between the four sessions to look at possible learning effects.
We found that up-regulation did not differ significantly across the
four sessions in both the left insula [(F(3, 45) = .427, p = .725) and
the right insula (F(3, 45) = 474, p = .688)].

Immediately following the scanning session, we debriefed partici-
pants on their subjective strategies and experiences with the NF
training. We found that on a scale from one (easy) to four (difficult),
participants found the task on average fairly easy to fairly difficult
(average score: 2.75, SD: 0.80). Participants were then asked in greater
detail about their approach to generating happy thoughts by ticking one
or several out of 4 possible answers. We found that 12 subjects thought
of things that happened in the past, 11 subjects thought of things they
would like to happen in the future, 2 tried not thinking about something
that had been making them unhappy, and 6 thought about someone.

ROI

IAMY IINS (INS MCC IMFG ISMA IIPL IPreG
ROI

Fig. 2. Results from the fMRI-based neurofeedback training: a). Fisher score (+ 1 standard error of the mean (SEM)) indicating the group BOLD-signal change in the left (top) and right
(bottom) insula in the up-regulation vs the down-regulation blocks in the 4 neurofeedback sessions. Stars indicated a significant up-regulation effect vs down-regulation. b-c). Granger
causality analysis of the directed Granger information flow in the emotion regulation network insula during the up-regulation condition (b) and the down-regulation condition (c). Ab-
breviations: IAMY = amygdala; lINS = left insula; rINS = right insula; IPL = left inferior parietal lobule; MCC = mid cingulate cortex; IMFG = left middle frontal gyrus; MNI = Montreal
Neurological Institute template; IPreG = left precentral sulcus; ISMA = left supplementary motor area.
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Last, we found that neither the participant's age, the perceived task
difficulty, the Mood & Feelings correlated with up-regulation success
in the bilateral insula [participant's age x left insula: (r5(16) = .190,
p = 480, CI1 95% [—.363, .649]); x right insula: (r;(16) = —.263,p =
326, CI 95% [—.837, .337]) (see also Fig. S3); perceived task
difficulty x left insula: (r5(16) = .003, p = .991, CI 95% [—.459,
496]); x right insula: (rs(16) = .122, p = .652, C1 95% [—.417, .602]);
Mood & Feelings score x left insula: (r5(16) = .296, p = .267, CI 95%
[—.251, .710]); x right insula: (r(16) = .118, p = .663, CI 95%
[—.558, .476])]. This was different for the correlation of average
left insula up-regulation x CERQ (trend-level) where (r5(14) = .552,
p = .044, C1 95% [—.011, .887), however the CERQ x right insula up-
regulation was not significant: (rg(14) = —.367, p = .197, CI 95%
[—.802, .255], see also Fig. S4).

GCA reveals differential NF effect on information flow within the emotion
regulation networks

We then used GCA to assess the effect of the NF training in the two
task conditions on information in- and out-flow in the 8 emotion regu-
lation network regions. For the up-regulation condition, we found a
significant information in-flow from the IAMY, MCC, IMFG, IIPL, ISMA,
IPreG to the bilateral insula (see Fig. 2b/c for all directed Granger infor-
mation flow during up-regulation vs down-regulation). In contrast,
during the down-regulation blocks, no bottom-up in-flow from the
IAMY to rINS, and no significant in-flow from IIPL to rINS. To detect
the significant change in Granger information flow during regulating,

a) Left insula MNI ((x, v, z): -39, 14, 7)

Up-regulate

D) Right insula MNI ((x, y, 2): 38, 15, 3)

Up-regulate

we statistically compared the Granger information flow at each direc-
tion between up-regulation and down-regulation conditions by paired
t test, and the differences in Granger information flows at two direc-
tions, IAMY->1INS (t = 3.97, p = 0.0011) and IPreG=>IMFG (t = 4.51,
p = 0.0004), survived the multiple comparison correction (FDR,
p < 0.05). The Granger information flows increased at both directions
during up-regulation compared with down-regulation.

NEF-dependent changes information flow to and from the bilateral insula

We then assessed whether the in- and out-flow of information in the
bilateral INS regions correlated with the INS percent signal change acti-
vation (Figs. 3a,b, Table 1).

Right insula

Asignificant positive correlation (r = 0.25, p = 0.045) was found be-
tween the directed Granger information flow from the IAMY to the rINS,
GCADy "e8M4%e) and the brain activity in the rINS in the up-regulation
condition, but not for the down-regulation condition. Interestingly, dur-
ing the down-regulation blocks, we observed a reversal in the Granger
information flow from the rINS to the IAMY, GC{0%"™ [, 1e€"at) \which
was also positively correlated with the brain activity at rINS (r = 0.30,
p = 0.015). That is, the stronger the bottom-up Granger information
flow from the IAMY to the rINS, the stronger the activity in the rINS in
the up-regulation condition, a finding which suggests an effective
bottom-up control during these blocks. Crucially, this effect was re-
versed for the down-regulation condition, with a more directed Granger

Down-regulate

Down-regulate

Fig. 3. Granger causality analysis of the effective connectivity in the emotion regulation network as a function of percent signal change in the bilateral insula during the up-regulation con-
dition a) and the down-regulation condition b). All arrows indicate significant correlations, whereas the red arrows indicate significant differences in amygdala-insula regulation (see
Fig. 4) Abbreviations: IAMY = amygdala; lINS = left insula; rINS = right insula; IPL = left inferior parietal lobule; MCC = mid cingulate cortex; MFG = left middle frontal gyrus;

Pre = left precentral sulcus; SMA = left supplementary motor area.
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Table 1

Comparison of correlations between directed Granger information flow and brain activity at insula for the two conditions. Only significant (p < 0.05, uncorrected) correlation were listed

between the brain activities at bilateral insula and the directed Granger information flow in different directions among the brain regions of interest (i.e., GC, (condition) ).

ROI, —RO,

The correlation was calculated by conditioning on both age and sex of each subject. In the brackets, we listed the correlation between the brain activity and the change in directed Granger

information flow for the down-regulation condition to the up-regulation condition (i.e., GC;«;’I‘ —»ROI’Zf )—

GC;;),‘ RO, '), Abbreviation: | = left; r = right; SMA = supplementary motor

area.

Up-regulation condition

Down-regulation condition

Left Insula r= p= Left Insula r= p=
Amygdala — 1 Insula 0.28 (0.27) 0.02 (0.03) 1Insula - r Insula 0.31 (—0.32) 0.01 (0.01)
Amygdala — r Insula 0.34 (0.38) 0.01 (0.01) Mid Cingulate Cortex — I Insula 0.32 0.01
I Insula — Mid Cingulate Cortex 0.27 0.03 Mid Cingulate Cortex — r Insula 0.25 0.05
I Insula —» [ SMA 0.26 0.04 Mid Cingulate Cortex — Inferior parietal lobule 0.34 0.01
1 Insula — Inferior parietal lobule 0.26 0.03 Middle frontal gyrus — Inferior parietal lobule 0.30 0.02
Mid Cingulate Cortex — r Insula 0.26 (—0.26) 0.04 (0.04) Precentral gyrus — 1 Insula 0.32 0.01
1 SMA - r Insula 0.31 0.01
Right Insula r= p= Right Insula r= p=
Amygdala - r Insula 0.25 (0.26) 0.05 (0.04) r Insula - Amygdala 0.31 0.01
Mid Cingulate Cortex — r Insula 0.31 0.01 Mid Cingulate Cortex — I Insula 0.32 0.01
1 SMA - r Insula 0.28 0.03 Mid Cingulate Cortex — r Insula 0.25 0.05
Mid Cingulate Cortex — Inferior parietal lobule 0.34 0.01
Precentral gyrus — | Insula 0.35 0.01
Precentral gyrus — SMA 0.27 0.03
Precentral gyrus — Inferior parietal lobule 0.30 0.02

information flow from the rINS to the IAMY predicting stronger activity
of the rINS.

The positive correlation between the brain activity of the rINS and
the directed Granger information flow was observed for several other
directions, including MCC-=>1INS and ISMA-TINS in the up-regulation
condition, and the MCC-rINS and IPreG-rINS in the down-regulation
condition. The bottom-up Granger information flow from IAMY to 1INS
was also found to increase the activity of IINS (r = 0.28, p = 0.024) dur-
ing the up-regulation condition but not during the down-regulation
condition.

Left insula

For the 1INS, a few out-flows of 1INS, including those from IINS to
MCC, ISMA, and IIPL, positively correlated with the activity at 1INS in
the up-regulation condition, while a few in-flows, including those
from MCC and IPreG to IINS were positively correlated with the activity.

NF training significantly increases amygdala-insula connectivity in the up-
regulation condition

We compared the magnitudes of the directed Granger information
flow for the two experimental conditions, the difference between the
Granger causality during the up-regulation condition and that during
the down-regulation condition at each direction.

Right insula

We found that the directed Granger information flow from the IAMY
to the rINS as measured by Granger causality was significantly increased
(t =3.97,p = 0.001) for the up-regulation condition in comparison to
the down-regulation condition (Fig. 4a), whereas the out-flow from bi-
lateral insula to the other regions of interest did not differ for the two
task conditions.

We then assessed the functional meaning of the change in the di-
rected Granger information flow from the down-regulation condition
to the up-regulation condition, by looking at task performance, i.e. the
successful up-regulation of the insula region. To this end, we computed
the partial correlation coefficient between the change in the directed
Granger information flow and the brain activity at insula as a func-
tion of age and sex in each subject. The significantly change in the
bottom-up Granger information flow from the IAMY to the rINS,
GClp,~ resulate) _ coldown = reaulate) \as found to be positively correlated
(r =0.26, p = 0.035) with the brain activity in the rINS.

Left insula

The change in the directed Granger information flow from the IAMY
to the 1INS from the up-regulation to the down-regulation condition
was also positively correlated (r = 0.27, p = 0.028) with the brain activ-
ity in the 1INS (Fig. 4b). That is, the stronger the increase in directed
Granger information flow from the 1INS to the rINS, the less activity
was observed at lINS in the up-regulation condition. Moreover, a signif-
icant negative correlation (r = —0.32, p = 0.009) was observed be-
tween the causality change in this direction from down-regulation to
up-regulation and the brain activity of the IINS.

Discussion
The current study had two main aims: 1) to show the feasibility of

using fMRI-based neurofeedback (NF) in children and adolescents
and 2) to assess the differential effect of NF training on the wider

a) b)
014F ¥ T.stats=397 a} r=026
p-value=0.001 = p-value=0.035
0.12 =
2
£ 01 = 2
a S
3 0.08 ®
5 z
S s
5 g
O 0.04 ®
8
0.02 8
0

Up-regulate Down-regulate -4 -2 0 2 4

GC (IAMY —= rINS) (GC up-reg GC down-reg)

IAMY-+rINS IAMY->rINS

Fig. 4. Change in bottom-up Granger information flow and its correlation with brain activ-
ity of rINS. a) Comparison of Granger causality between the average brain response in the
up-regulation condition and the down-regulation condition. b) The correlation between
the change in the directed information flow from IAMY to rINS and the brain activity at
rINS. For each session, the brain activity was plotted against the change in the Granger
causality at IAMY->TINS. The red line is the linear fitting. See also Fig. 3b.
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emotion regulation network. Our results allowed us to fulfil both
aims.

NF training enhances insula activation in children and adolescents

We found that all participants were able to up-regulate activation in
the bilateral insula during the up-regulation blocks in comparison to
down-regulation blocks, which supports the feasibility of using fMRI-
based NF with children and adolescents. We note though that up-
regulation of BOLD signal is not the same as up-regulating neuronal
firing as it is a vascular measure.

The important role of the right insula in self-relevant affect has been
repeatedly shown in previous research (Craig, 2003; Wager and
Feldman-Barrett, 2004) and this result is particularly striking given
our simple task instruction to “think happy thoughts”. The NF success
in the current study opens up possibilities for new, brain-based inter-
vention approaches, which take into account the developmental chang-
es in the developing brain (Cohen Kadosh et al., 2013). For example,
within the context of emotion regulation, NF could be used to both
increase and decrease the responsiveness of age-appropriate brain net-
works at critical developmental stages (Paret et al., 2014). Similarly,
such an approach could be useful for enhancing helpful brain network
connections in at-risk populations, such as for example high socially-
anxious children and adolescents (Haller et al., in press-a,b). However
in order to identify these network connections, a better understanding
of the wider effects of insula regulation on the emotion regulation net-
work is necessary.

NF training increase bottom-up driven Granger information flow in the
emotion regulation network

In the present study, we also found that NF training had a differential
effect on the Granger information flow within the emotion regulation
network. That is the bottom-up driven Granger information flow from
the amygdala to the bilateral insula and from the left insula to the
MCC, SMA and the IPL during the up-regulation blocks contrasted
with more top-down driven Granger information flow to the bilateral
insula from MCC and PreG and IPL during the down-regulation blocks.
This finding validates the effectiveness of our ‘increase’ instruction to
affect brain regions beyond the NF target region. It also shows that the
two task conditions had a qualitatively different effect on the brain
network. We note however, that we cannot rule out at this point that
participants would not have been able to achieve similar effects without
the live feedback in both conditions. With regard to overall network
changes, we found that by using a simple task instruction, we were
able to change Granger information flow along previously established
emotion regulation routes in the brain (e.g., Ruiz et al., 2013). The
more widespread effect of NF training has been previously shown in
both healthy adults (Rota et al., 2011; Zotev et al., 2011), as well as
patients with schizophrenia (Ruiz et al., 2013), but this is, to the best
of our knowledge, the first study to document NF-induced regulation
effects in the developing emotion regulation network and across a
wide age range. We also note that our participants did all activate the
same regions of the emotion regulation network and the general NF
success was not affected by age or gender, which further highlights
the feasibility of this research approach. What we cannot predict
however, based on the current sample of 17 participants, whether
directional Granger information flow also varied as a function of age,
which is a critical question for the development of future intervention
approaches — especially those aimed to particular developmental
junctures. Finally, as we did not obtain puberty measures for the current
sample, the present study cannot assess how puberty-induced hor-
monal changes may have affected the results, a shortcoming, which
should be addressed in future studies.

Increased bottom-up Granger information flow from amygdala to insula
correlates with NF success

We also found that increased bottom-up Granger information flow
from the left amygdala to the right insula correlated with NF success
in the up-regulation blocks. This effects runs in line with the research
reported in a recent review, which highlighted the role of the left
amygdala in increasing positive affect (Silvers et al., 2014). There is
also evidence of amygdala-insula co-activation in humans, albeit more
within the context of negatively-valenced emotions (Carlson et al.,
2011; Phelps et al., 2001). Similarly, within the context of anxiety, a re-
cent study found effective connectivity in a resting state analysis, as well
as structural connectivity (Baur et al., 2013). In the current study, we did
not find any evidence for top-down emotion regulation in the insula
from ventromedial prefrontal cortex regions, as shown in previous
studies (e.g. Hare et al., 2008; Perlman and Pelphrey, 2011; Pitskel
et al,, 2011). There are two possible explanations as to why this may
be the case. The first has to do with the task itself and the fact that all
observed effects are based on significant differences in Granger con-
nectivity between the two conditions. Namely, our participants were
not asked to control their emotions during the comparison down-
regulation condition, but rather to lower insula response in these
blocks. This would also reduce any top-down regulation effects during
these blocks. Another possible explanation might be the considerable
age range in our sample, which, given the prolonged maturational tra-
jectory of the prefrontal cortex (Gogtay et al., 2004; Tamnes et al.,
2013), is likely to have introduced considerable variance amongst our
participants, which prevented us from finding a significant effect.

While the results from this study are certainly encouraging, many
open questions remain concerning for example the longevity of the
observed effect, and particularly the specificity and sustainability of
any changes to the functional architecture of the emotion regulation
network. Similarly, whereas the current design adapted training time
for a sample of children and adolescents, future studies should focus
on extending training time (by increasing the number of sessions),
and could also include transfer runs to assess the generalisability of
training effects in the brain.

In previous NF studies, some designs have also included a sham con-
dition, where feedback is provided from a non-task-related brain region
(deCharms et al., 2004). In the current study, we chose not to adopt such
as design as we believe that it comes with its own, serious ethical and
scientific problems particularly in the context of paediatric samples.
For example, we were concerned with the ethical implications of incor-
rect or incoherent feedback, when our participants are trying to estab-
lish a strategy that works for them. We believe that this is particularly
problematic for participants like our children and adolescents, whose
emotion regulation strategies, not to mention the underlying brain net-
works are still very plastic and shaping up (Cohen Kadosh et al., 2013;
Haller et al., in press-a,b). For example, we would be concerned that par-
ticipants might be encouraged to abandon an otherwise successful
strategy, simply because the feedback does not seem to support using
it. Moreover, from a developmental perspective, brain regions that are
used at an earlier developmental stage would not be necessarily rele-
vant at a later stage and it would be extremely difficult to find a sham
brain region that would support a comparable function at different
ages. Specifically as it has been shown that brain networks undergo con-
siderable restructuring throughout development (Fair et al., 2009;
Johnson et al., 2009, 2015). Given these scientific and ethical reasons
we believe that another way forward might be to provide authentic
feedback during the up-regulation conditions and to compare the regu-
lation success against a resting baseline (where feedback is still given)
and to focus more on the transfer effects (e.g. behavioural emotion
regulation abilities before and after training intervention, or mood
assessments via questionnaires). This would still allow us to work to-
wards establishing NF as a tool for brain-targeted interventions, while
avoiding the pitfalls of interfering with a developing (or atypical)
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network. Another approach to establishing specificity of the NF inter-
vention could be to target a different brain region within the same un-
derlying brain network (such as the amygdala or the mid cingulate
cortex) to compare the specificity of training for these regions both for
up- vs down-regulation conditions and at rest. This would allow us to
not only differentiate the directionality of the NF effect depending on
task instruction, but also whether the different brain regions respond
equally well. See also Arns et al. (2014) for a review of training protocols
in the ERP-based NF literature.

It remains to be determined how NF relates to overt behaviour
changes. Previous research in clinical populations has made some
progress into this question by showing a reduction in chronic pain
symptoms after 6 months (deCharms et al., 2005) or improved motor
fluency in Parkinson's disease (Subramanian et al.,, 2011). A better un-
derstanding of the underlying mechanisms of the translational effects
of NF would go a long way towards developing effective interventions
during development. Finally, while our simple task instruction proved
effective for the current study, we nevertheless found that in some
cases this only lasted for a couple of runs, with participants failing to
up-regulate in the last runs. Whether this was due to general fatigue
or the lower effectiveness of our task instruction remains to be deter-
mined. Understanding these individual differences is important, if we
want to enhance the effectiveness of these procedures by combining
them with a more established cognitive training programme, such as at-
tention/or cognitive bias modification (Bar-Haim, 2010; MacLeod and
Holmes, 2011). Future studies are now needed to explore these individ-
ual differences in larger samples.

Conclusions

The current study provided proof-of-concept for using fMRI-based
neurofeedback with children and adolescents. Within the context of
an emotion regulation network, we were also able to show that NF
training had a differential effect of up- and down-regulation connec-
tions within the network, suggesting that our training was not only su-
perficially concentrated on surface effects but actually relevant with
regard to the underlying neurocognitive bases of a key social cognitive
ability. More research is now needed to investigate the longevity of
the effects and to explore the possible combination of NF with cognitive
training programmes, in particular with view of future intervention in
clinical populations.
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