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ABSTRACT

Scientific background. The inherent resistance of breast cancer stem cells (CSCs) to
existing therapies has largely hampered effective treatments for advanced breast cancer.
My research aimed at establishing novel immunotherapy approaches efficiently targeting
CSCs by harnessing human yd T cells as non-MHC-restricted killer cells and

simultaneously as APCs to induce tumour-specific CD8" T cell responses.

Approach. An experimental model allowing reliable distinction of CSCs and non-CSCs
was set up to study their interaction with y§ T cells and CD8" T cells. FluM1 and
CMVpp65 viral epitopes were used as surrogates for yet-to-be-discovered CSC-associated

antigens.

Results. Stable sublines with characteristics of CSCs and non-CSCs were generated from
ras-transformed human mammary epithelial (HMLER) cells as confirmed by their (i)
distinct expression profiles of CD24, CD44 and GD2, (ii) mesenchymal- and epithelial-
like characteristics, (iii) differential growth patterns in mammosphere culture and (iv)
distinct tumourigenicity, self-renewal and differentiation in NSG mice. The resistance of
both CSCs and non-CSCs to yd T cells could be overcome by inhibition of FPPS through
pretreatment with zoledronate or FPPS-targeting shRNA, resulting in increased
cytotoxicity and APC function of yo T cells. CSCs presenting FluM1 or CMVpp65
exhibited stronger resistance to antigen-specific CD8" T cells as compared to their non-
CSC counterparts. Of note, pretreatment of Flu M1- or CMVpp65-presenting CSCs with
v0 T cell conditioned supernatant significantly increased surface expression of MHC class
I and ICAM-1 by both CSCs and non-CSCs as well as their susceptibility to CD8" T cell-
mediated killing. Moreover, using the humanised anti-GD2 monoclonal antibody,
Hul4.18K322A, a specific direction of yo T cell responses against CSCs could be
achieved. In addition to their direct cytotoxicity and ability to modulate the susceptibility
of CSCs and non-CSCs to CD8" T cell-mediated killing, y§ T cells concomitantly

functioned as APCs to initiate de novo tumour-specific cytotoxic CD8" T cell responses.

Conclusions. My findings identify a powerful synergism between MHC-restricted and
non-MHC-restricted T cells in the eradication of both CSCs and non-CSCs, thus
establishing a powerful positive feedback loop for the eradication of residual cancer cells

survived from killing by yd6 T cells. My research suggests that novel immunotherapies



may benefit from a two-pronged approach combining y8 T cell and CD8" T cell targeting

strategies that triggers effective innate-like and tumour-specific adaptive responses.
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Chapter 1. Introduction

1.1. Breast Cancer

1.1.1. Epidemiology of breast cancer

According to GLOBOCAN 2012 (Ferlay et al., 2015), breast cancer is currently the
second most common cancer in the world. Growing from an estimated 1.38 million new
cancer cases diagnosed in 2008 to an estimated 1.67 million new cancer cases diagnosed
in 2012, which accounts for 25.2% of estimated total new cancer cases diagnosed in 2012,
breast cancer remained the most common cancer diagnosed in women. The incidence
rates of breast cancer vary considerably across the globe, ranging from 27 per 100,000
population in Middle Africa and Eastern Asia to 96 per 100,000 in Western Europe. In
the UK, the incidence rate increased from less than 60 per 100,000 in the 1980s to about
90 per 100,000 in 2010. A similar increasing trend can be observed all over the world,
especially in more developed regions, indicating that breast cancer as a growing problem
in the UK and other more developed countries. With 522,000 deaths in 2012 worldwide,
breast cancer ranks as the fifth most frequent cause of death from all cancers. In the UK,
breast cancer accounted for 7% of all deaths from cancer and thus ranked 3rd most
common cause of cancer in 2012 (Cancer Research UK). Despite the alarming increase in
incidence rates, the mortality rate in the UK dropped from around 30 per 100,000 in 1985
to 15.2-18.1 per 100,000 in 2008, reflecting encouraging advances in early detection and
adjuvant therapy over past decades. However, although overall survival of breast cancer
patients is improving and has doubled in the last 40 years, the survival of breast cancer
patients dropped significantly, depending on the stage of disease when diagnosed, with the
S-year survival rate of patient diagnosed with stage IV breast cancer during 2002-2006
being as low as only 15% (Cancer Research UK). These numbers indicate that there
remains an unmet need for the development of more efficient treatments for patients with

breast cancer, especially those at advanced stages.

1.1.2. Heterogeneity of breast cancer and clinical classification

Most breast tumours originate from epithelial and glandular epithelial tissue and thus are
denoted as carcinoma and adenocarcinoma, respectively. However, some breast cancers
may also present as sarcoma, which are derived from cells of muscle, fat or connective

tissue. The development and progression of breast tumours have been described as a



linear process with multiple steps (Bombonati and Sgroi, 2011). Derived from the
epithelium in the milk ducts, mutated cells with clear abnormality in the morphology of
nucleus and cytoplasm, which is extensively used in the diagnoses for distinguishing
neoplastic cell from normal cells, begin to grow rapidly without control and build up a
compact mass restricted within the lumen by surrounding intact basal membranes. This
progress has been characterised as a sequential transition typically from epithelial ductal
hyperplasia (UDH), flat epithelial atypia (FEA) and atypical ductal hyperplasia (ADH),
and eventually to ductal carcinoma in situ (DCIS). Similarly in the lobules, the
transformation starts from atypical lobular hyperplasia (ALD) and subsequently progress
to lobular carcinoma in situ (LCIS). As DCIS and LCIS keep accumulating more
mutations and may thus evolve to acquire further malignant transformations, they develop
to break out from the constraining basal membranes for invasion into surrounding tissues,
and are then characterised as invasive ductal and lobular carcinoma, respectively.
Together, lobular and ductal subtypes contribute to the majority of patients diagnosed with
invasive breast cancer. Particularly, the ductal subtype accounts for 80% of diagnosed

preinvasive and invasive breast cancers (Bombonati and Sgroi, 2011).

Breast cancer can be further classified into different subtypes for the purpose of prognosis
by immunohistochemistry (IHC) examinations for the expression of estrogen receptor
(ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2)
(Nielsen et al., 2004). Currently, IHC staining of ER, PR and Her2 is used in routine
diagnosis to classify breast tumour subtypes and provide prognostic and predictive
information. Depending on the expression of ER, PR and Her2, breast cancers can be
categorised into three major subtypes, namely ER'/PR" (hormone receptor positive; HR"),
HR /Her2" and triple negative (ER /RP /Her2; TN). Each subtype is characterised by
different histopathological features, prognosis and responses to different breast cancer

therapies.

Exceeding this histological classification, the molecular and biological complexity of
breast cancer with tremendous inter- and intra-tumour heterogeneity was further revealed
by gene expression profiling (Perou ef al., 2000). In the human mammary gland, there are
two distinct lineages of epithelial cells; the basal (and/or myoepithelial) cells that
constitute the outer layers of the mammary ducts, and the luminal epithelial cells that line

the insides of the mammary ducts. Through a large microarray study of 65 breast tumour



samples collected from 42 patients, Perou ef al. introduced the concept of cell lineage on
top of the traditional ER classification, and demonstrated that heterogeneous breast
tumours could be precisely classified into four molecular subtypes: (i) luminal A, (ii)
luminal B, (iii) Her2", and (iv) basal-like tumours (Perou et al., 2000; Sorlie et al., 2001;
Sorlie et al., 2003; Sotiriou ef al., 2003; Hu et al., 2006).

Most breast cancers are luminal tumours, in which luminal A and B tumours account for
40% and 20% of breast cancer, respectively. While sharing similar characteristics in
overexpression of ER, ER-responsive genes and a gene expression signature
representative for luminal epithelial cells, luminal A and B tumours are distinct in their
expression of Her2 and proliferation-related genes. ER’ luminal A tumours are
characterised by their high level expression of ER- and PR-associated genes, low level
expression of proliferation-related genes and lack of Her2 expression (Perou ef al., 2000;
Sorlie et al., 2001; Loi et al., 2007; Voduc et al., 2010). Oppositely, luminal B tumours
show strong expression of Her2 and proliferation-associated markers, e.g. Ki67, with
decreased ER expression and absence of PR expression (Carey et al., 2006). Her2
tumours account for 10-15% of breast cancer and show a characteristic lack of expression
of both ER and PR (Carey et al., 2006; Voduc et al., 2010). Basal-like tumours share
large similarities with TN tumours in terms of their genetic makeup and tumour
behaviours (Nielsen et al., 2004; Cleator ef al., 2007; Foulkes et al., 2010). Together they
account for around 15-20% of breast cancers, and both show a poorly differentiated and

aggressive feature histologically with necrosis often being observed in these tumours.

1.1.3. Treatment of breast cancer and current obstacles

By defining the molecular subtype of the tumour, the treatment for each patient can be
personalised with precision by choosing the most suitable and effective therapy currently
available. For example, patients with tumour expressing ER and PR are likely to benefit
from hormone therapy with tamoxifen and aromatase inhibitors (Ignatiadis and Sotiriou,
2013). Although carrying a generally worse prognosis with higher risk of recurrence and
metastasis as compared to luminal tumours, Her2" breast cancer patients may benefit from
therapies directly targeting Her2 such as trastuzumab (Herceptin) and lapatinib, but less so
from endocrine-based therapies. Most importantly, TN and basal-like tumours, which

lack expression of all three receptor targets and are therefore insensitive to standard drugs,



have significantly poorer clinical prognosis compared to the estrogen receptor-positive
luminal A and luminal B tumours, and targeted therapy is currently limited (Rouzier et al.,
2005). In the absence of better options, patients with TN and basal-like tumours are
currently treated with a combination of surgery, radiation therapy and chemotherapy using
standard cytotoxic agents such as doxorubicin and paclitaxel, and hence suffer from
associated short-term and long-term side effects. Although novel approaches are urgently
needed for treating such resilient cancers, only few potential targets for TN and basal-like
tumours including EGF receptor, aB-crystallin and cyclin E have been identified so far

(Yehiely et al., 2006).

Besides the need for better targeted therapies for TN and basal-like tumours, metastasis
and recurrence after therapy remain major setbacks in improving outcomes. Nearly 30%
of all patients with early stage breast cancer develop recurring disease, which in most
cases 1s metastatic (Gonzalez-Angulo et al., 2007). Treatment options for both metastasis
and recurrence are very limited, and therapeutic efficacies are mostly disappointing. In
addition, frequent drug resistance represents a major obstacle in treating breast cancer
patients. For example, a substantial proportion of patients with localised disease, and
most patients with advanced disease who initially respond to tamoxifen, subsequently
develop de novo or acquired resistance (Early Breast Cancer Trialists' Collaborative, 2005;
Chang, 2012). However, the mechanisms underlying the development of drug resistances
in breast cancer are yet totally clear. Recently, the emerging concept of cancer stem cells
(CSC) has linked this minor subset of pluripotent cells within the bulk tumour to the
initiation of primary tumours and distant metastasis, disease relapse and recurrence as well
as drug resistance (Pinto et al., 2013; Luo et al., 2015; Mitra et al., 2015). Thus, novel
approaches specifically targeting CSCs, including immunotherapies harnessing immune
cells against CSCs, may provide a safe and effective way to treat breast cancer patients

and improve outcomes.



1.2. Cancer stem cells

1.2.1. Heterogeneity of tumour

To explain the heterogeneity observed within a tumour, the classical clonal expansion
model for carcinogenesis proposed that normal cells may become transformed by
stochastically accumulating distinct combinations of gene mutations during the process of
tumourigenesis. These transformed and malignant cells may share equal or similar
tumourigenicity and expand clonally, thereby giving rise to a heterogeneous tumour
(Nowell, 1976). The more recent cancer stem cell hypothesis arose from the similarities
observed between normal stem cells and tumourigenic cells with regard to their unique
ability to divide asymmetrically for self-renewal, and to give rise to different daughter
cells, a non-tumourigenic differentiated cells and a tumourigenic CSC retaining its
pluripotency, by asymmetric division. In contrast to the clonal expansion model, the CSC
hypothesis applies and emphasises the hierarchy within a tumour based on the concept that
not all transformed cells are equally tumourigenic (Reya et al., 2001; Campbell and
Polyak, 2007). However, these two models are not mutually exclusive. During the long
period of tumourigenesis, it is conceivable that the initial CSC may further diverse into
different subsets by acquiring new sets of distinct gene mutations, which allows the
maintenance of CSC properties with further modification in their malignancies, and
subsequently contribute to the diversity within a tumour by clonal expansion of these

different CSC-like subsets (Visvader and Lindeman, 2008; Beck and Blanpain, 2013).

1.2.2. Phenotypical and functional characterisation of breast cancer stem cells

Bonnet and Dick provided the first experimental evidence for the existence of CSCs in a
human acute myeloid leukaemia xenotransplantation model in NOD/SCID mice by
defining surrogate markers for potential CSCs (Bonnet and Dick, 1997). A minor
population of cells with a CD34" CD38 phenotype was identified to exhibit superior
tumourigenic capacity as compared to the bulk of the leukaemia cells (Bonnet and Dick,
1997). In extension of this pioneering work, serial transplantation of specific cell
populations in immunodeficient mice comprehensively encompasses the most important
CSC-like properties including tumourigenicity, self-renewal and pluripotency in a single
experiment, and is now considered as the golden standard for the identification and
characterisation of CSCs from different haematological malignancies and solid tumours of

different origins, including breast cancer (Smalley et al., 2013; Kreso and Dick, 2014).



Using this standard approach, Al Hajj ef al., were the first to identify a small population of
highly tumourigenic cells from breast cancer lesions as CD44" CD24 ESA ™ lineage cells
(Al-Hajj et al., 2003). Following from this observation, similar highly tumourigenic CSC
populations have been identified in different malignancies such as brain (Singh et al.,
2004), colon (O'Brien et al., 2007; Ricci-Vitiani ef al., 2007), melanoma (Schatton et al.,
2008) and pancreatic cancer (Hermann et al., 2007), by the use of a broad panel of
putative markers for CSCs, reflecting the huge diversity of CSCs across different types of
tumours. In addition to the definition as CD44" CD24 cells, CSCs within breast tumours
have been characterised phenotypically by the use of cell surface markers such as CD90
(Luetal., 2014), CD133 (Wright et al., 2008) and GD2 (Battula ef al., 2012; Liang et al.,
2013), and functionally by specific enzyme activity, e.g. aldehyde dehydrogenase 1
(ALDH1) (Ginestier et al., 2007), alone or in combination. Wright et al. showed that both
CD44" CD24 and CD133" cell populations derived from BRCAI deficient mouse
mammary tumours exhibited comparable tumourigenicity and stem cell-associated gene
expression profiles, suggesting the existence of heterogeneous CSC populations within
tumours (Wright et al., 2008). Similarly, Hwang-Verslues et al. showed that the
specificity of proposed markers including CD44/CD24, ESA, CDI133, CXCR4 and
PROCR for the identification of CSCs varied considerably across a panel of human breast
cancer cell lines and specimen (Hwang-Verslues et al., 2009). Furthermore, Ginestier et
al. showed that ALDH" and CD44" CD24 lineage populations overlapped minimally by
only 0.1-1.2% in four breast cancer samples examined (Ginestier et al, 2010).
Functionally, ALDH' and CD44" CD24 lineage populations showed distinct
tumourigenicity, with the minor population of cells with overlapping expression profiles
exhibiting strongest tumourigenicity, suggesting that at least two inter-converting CSC
populations may co-exist within a tumour and subsequently contribute to intra-tumour
heterogeneity.  Putative CSC subpopulations were further linked to epithelial-
mesenchymal transition (EMT), a phenomenon governing embryogenesis, development
and organogenesis (Kalluri, 2009; Thiery ef al., 2009). While breast CSCs typically show
a mesenchymal-like (EMT-like) morphology with a CD44" CD24 EpCAM CD49f"
expression profile and are functionally more quiescent but more invasive, CSCs with an
epithelial-like (MET-like) morphology and a distinct ALDH' EpCAM’ CD49f"
expression profile appear to be functionally more active and possess the capacity for self-
renewal (Biddle ef al., 2011; Liu et al., 2012). This interpretation is supported by the

observation that MET-like CSCs are found to reside predominantly in the centre of a



tumour, whereas EMT-like CSCs typically sit at the invasive front where they may drive

tumour dissemination and metastasis (Liu et al., 2012).

Taken together, these findings reveal that there is no universally applicable CSC marker
for all subtypes of breast cancer. Given the substantial heterogeneity within every single
breast tumour, it is likely that more than one population of tumourigenic CSCs,
concomitantly exist intra-tumourally, with different levels of tumourigenicity and
differentiation. Moreover, breast CSCs between different tumours are indeed distinct and
thus contribute to inter-tumour heterogeneity. Notwithstanding these obstacles, different
subpopulations of breast CSCs share functional similarities, which provides us with a
window of opportunities to study the biology of CSCs and CSC-like cells and their

interaction with the immune system.

1.2.3. Cancer stem cells, epithelial-mesenchymal transition and metastasis

Metastasis is a complex process involving both genetic and epigenetic changes when cells
derived from the primary tumour translocate to a new distant site (Hanahan and Weinberg,
2011). During this process, cancer cells have to overcome numbers of hurdles. First, in
response to stresses such as hypoxia (Yang et al., 2008) and inflammation (Wu et al.,
2009a), some tumour cells residing at the invasive front of the primary tumour may lose
their cell-cell adhesion capacity and dissociate themselves from the bulk tumour through
EMT. Once receiving environmental cues like TGF-B, such cells may eventually lose
their surface expression of E-cadherin, which is involved in the formation of adheren
junctions between cells, and instead acquire expression of N-cadherin, vimentin and
fibronectin, which participate in the determination of cellular polarity and rearrangement
of the cytoskeleton (Xu ef al, 2009a). This series of events subsequently leads to a
distinct change from cells with apical-basal polarity and cuboidal-like morphology to cells
with asymmetric polarity and enhanced motility and invasiveness (Vincent-Salomon and
Thiery, 2003). In addition, EMT has been proposed to concomitantly induce stem cell-
like properties in procuring differentiated cells (Mani ef al., 2008; Morel et al., 2008;
Scheel and Weinberg, 2012). Acquisition of the stemness could largely benefit the
survival of disseminated cells in the circulation and seeding at distant sites (Medema,
2013). These EMT-like malignant cells can then invade into the nearby basement

membrane and blood/lymphatic vessels by degradation of extracellular matrix (ECM)



through releasing a variety of enzymes including diapeptidases, arginases, acid
phosphatases, cathepsin, and matrix metalloproteinases (MMPs) (Deryugina and Quigley,
2006; Struckmann et al., 2008). Circulating tumour cells frequently can protect
themselves from the attack of immune cells (Chouaib ef al., 2014) and the fluid pressure
caused by the blood flow through strategies including induction of platelet aggregation to
form a tumour-platelet complex (Tsuruo and Fujita, 2008). During this process, only a
few circulating tumour cells penetrating through the wall of a blood vessel (extravasation)
or the lymphatic system will successfully be transported to an appropriate organ site,
where they colonise to form a new metastatic mass by inducing angiogenesis and adapting
to the new microenvironment (Hanahan and Weinberg, 2011). This new soil is now
known as “pre-metastatic niche”, which is believed to be prepared ahead of time for
metastatic deposition of tumour cells (Psaila ef al., 2006). The acquisition of stem-like
properties through EMT endows CSCs with a great plasticity to adapt to, and colonise, the

new microenvironment (Medema, 2013).

1.2.4. Intrinsic resistance of CSCs to chemotherapy, radiotherapy and immune

surveillance

CSCs have been as well characterised for their innate resistance to chemotherapeutic
drugs (Dean et al., 2005), radiation (Rich, 2007) and immune surveillance (Kawasaki and
Farrar, 2008; Schatton and Frank, 2009; Chouaib ef al., 2014) and may thus be a major

driver of disease recurrence after treatment.

Conventional stem cells and CSCs share many properties including their expression of
ATP-binding cassette (ABC) transporters, active DNA repair capacity and intrinsic
resistance to apoptosis, which in combination lead to their resistance to cancer therapies.
Goodell et al. found that ABCG2, also termed BCRP (breast cancer resistance protein),
which was originally identified in mitoxantrone-resistant cells, has the ability to pump out
the dye Hoechst 33342, resulting in a characteristic unlabelled ‘“side population” detected
by flow cytometry, which predominantly consists of CSCs (Goodell et al, 1997).
ABCBS, another ABC transporter, was also found to have the ability to mediate
chemoresistance in stem-like tumour cell populations in human malignant melanoma
(Schatton et al., 2008). By expression of these ABC transporters, CSCs obtain a unique

capacity to export a wide range of cytotoxic drugs and thus acquire multidrug resistance



(MDR). Increased activation of the DNA damage checkpoint has been characterised in
CSCs derived from human glioblastoma. Although having similar susceptibility to
ionising radiation compared to non-CSCs, CSCs respond to these double stranded DNA
damages more efficiently by their elevated basal expression of active checkpoint kinases
such as CDKI1, CDK 2 and radl7 (Bao et al., 2006). Piggott et al. showed that
suppression of the apoptosis inhibitor cellular FLICE-Like Inhibitory Protein (c-FLIP), an
antagonist of caspase-8 and caspase-10, preferentially sensitises breast CSCs to the anti-
cancer agent tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL),
suggesting enhanced endogenous resistance of breast CSCs to apoptosis and their potential

to escape from immune surveillance (Piggott ez al., 2011).

In addition, similarly to mesenchymal stem cells (Le Blanc and Ringden, 2007; Uccelli ef
al., 2008), CSCs also exhibit a suppressive immunomodulatory nature (Schatton and
Frank, 2009). Schatton et al. showed that malignant melanoma-initiating cells (MMICs)
characterised by ABCBS5 expression (Schatton et al., 2008) significantly suppress
secretion of interleukin-2 (IL-2) by mitogen-stimulated PBMCs and skewed the normal T-
cell mediated response by inducing the secretion of the suppressive cytokine IL-10 by
autologous PBMCs in co-culture (Schatton et al., 2010b). Similarly, glioblastoma CSC-
like cells suppress the proliferation and IL-2 and interferon (IFN)-y secretion by T cells
upon non-antigen-specific stimulation with mitogen and anti-CD3/CD28 (Di Tomaso et
al., 2010; Wet et al., 2010b). By the secretion of immunosuppressive cytokines and
growth factors such as TGF- and VEGF, CSCs isolated from different type of tumours
including breast cancer (Shipitsin ef al., 2007), glioblastoma (Bao ef al., 2006; Wei et al.,
2010a) and melanoma (Schatton ef al., 2010b) can thus induce anergy of antigen-reactive
lymphocytes. Expression of programmed death-ligand 1 (PD-L1) and secretion of
galectin-3 allows CSCs to directly suppress antitumour immunity by inducing apoptosis of
cancer-reactive T cell clones (Wei ef al., 2010b). In addition to direct suppression of
immune responses, MMICs showed the capacity to induce functional regulatory T (Treg)
cells (in terms of IL-10 secretion) from PBMCs in co-culture via their potent expression of
B7.2 and 4-1BBL (Schatton et al., 2010b). Similar induction of Treg cells was observed
in co-culture of PBMCs with CSC-like cells derived from glioblastoma (Wei et al.,
2010b).



Apart from suppressing immune responses, CSCs may develop strategies to escape from
immunosurveillance. Through down-regulated expression of tumour-associated antigens,
e.g. MART-1 and NY-ESO-1, as well as of MHC class I and II and co-stimulatory
molecules such as CD80, CD86 and CD40, CSCs can escape from MHC-restricted T cells
(D1 Tomaso et al., 2010; Schatton et al., 2010b). Similarly, CSCs can down-regulate their
expression of NKG2D ligands to evade cytotoxicity by non-MHC-restricted NK cells and
v0 T cells (Todaro et al., 2009; Di Tomaso et al., 2010).

Selective eradication of CSCs by different therapeutic strategies has been reported to
effectively inhibit experimental tumour growth (Bao et al., 2006; Schatton ef al., 2008;
Chan et al., 2009; Gupta et al., 2009; Majeti et al., 2009). Thus, it is conceivable that
successful therapy of breast cancer requires complete eradication of CSCs within a tumour
by rebalancing the tumour microenvironment with adequate sensitising strategies and/or
adjuvants to recreate effective and specific anti-CSC immunity. Such CSC-targeting
therapies are likely to lead to better outcomes by efficiently preventing disease relapse and
harnessing long-lasting anti-tumour immunity. For this purpose, yo T cells, which can
function effectively as both non-MHC-restricted innate-like killer cells and professional
APCs, are particularly attractive targets to complement and restore the MHC-restricted

surveillance and boost anti-CSC adaptive immune responses.
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1.3. y0 T cells

1.3.1. yd T cells as the third arm for immune protection

Set aside from conventional aff T cells and B cells, y0 T cells constitute an
“unconventional” lymphocyte population with distinct functions that are complementary
to those of B cells and aff T cells. y0 T cells comprise different subsets defined by the
expression of different combinations of y chains and 6 chains of the TCR. These different
vo T cell subsets exhibit distinct features with regard to tissue tropism, anatomical
location, antigen specificity and function (Bonneville et al., 2010; Vantourout and
Hayday, 2013). Uniquely, y6 T cells exhibit both specified adaptive features for the
expression of rearranged (yet non-MHC-restricted) T cell receptors (TCRs), and innate-
like functions of NK cells and myeloid cells (Bonneville et al., 2010; Vantourout and
Hayday, 2013). Functionally, they show surprising plasticity (Bonneville et al., 2010;
Vantourout and Hayday, 2013; Lafont et al., 2014) to act as (i) efficient killer cells
recognising a broad spectrum of infected cells and cancer cells through their TCR and
innate receptors such as NKG2D (Bonneville et al., 2010; Vantourout and Hayday, 2013;
Lafont et al., 2014); (ii) as immune modulators providing help to B cells, DCs, monocytes
and neutrophils for their specialised functions (Tyler et al., 2015); (iii) as APCs to polarise
helper CD4 T cells and initiate cytotoxic CD8 T cell responses (Moser and Eberl, 2007,

2011); and (iv) as regulatory cells suppressing immune responses (Wesch et al., 2014).

1.3.2.  y9 T cell subsets as defined by combination of TCR 7y and 6 chains

During their development in the thymus, yd T cells acquire their TCR diversity through
V(D)J recombination mediated by recombination activating gene (RAG). As compared to
afy T cells and B cells, y0 T cells have a relatively simple repertoire of Variable (V) gene
segments available for rearrangement of both Vy and V4 chains (Adams ef al., 2015). In
humans, rearrangement of the Vy chain is restricted to seven functional Vy gene segments
(Vy2, Vy3, Vy4, Vy5, Vy8, VY9 and Vyll) out of total twelve Vy gene segments on
chromosome 7pl5. Similarly, only three (V61, Vo2 and V&3) out of eight Vo gene
segments are frequently used for the rearrangement of the Vo chain. As the Vo6 gene locus
sits within the Va gene locus on chromosome 14pl1-12, the remaining five V3 gene
segments (Vo4, Vo5, Vo6, Vo7 and Vo8,) are shared for the use in rearrangement of both
Va and V9 chains, possibly explaining their less frequent usage in rearranged Vo chains.

Of note, a pairing bias of Vy with V9§ chains has been observed in yo T cells localising to

11



different peripheral tissues in both mice and humans (Tablel.1) (Pereira and Boucontet,
2004; Bonneville et al., 2010). In the mouse, Y0 T cells constitute only a minor fraction of
thymocytes and circulating lymphocytes in the spleen, lymph nodes and peripheral blood,
but are significantly enriched in epithelial tissues including epidermis and mucosa of the
digestive and reproductive tracts (Goodman and Lefrancois, 1988; Borst ez al., 1991). In
contrast, human yd T cells constitute only a relatively small population of up to 10-20% of
total T cells in the intestinal epithelium (Borst ez al., 1991). While human y6 T cells in
most peripheral tissues, especially epithelial tissues, majorly express a Vol chain, yo T
cells in blood predominantly express a V32 chain preferentially paired with a Vy9 chain
(Triebel et al., 1988a; Triebel et al., 1988b; Borst et al., 1989; Casorati ef al., 1989; Borst
etal., 1991). This apparent link between unique tissue distribution by different subset of
v0 T cells led to the hypothesis that yo TCRs with each specific combination of Vy and Vo
chain may be restricted to recognise conserved (self-) antigens of only low variability, as
opposed to the broad specificities of af TCRs and immunoglobulins (Janeway et al.,
1988). The tissue tropism of different yo T cell subsets may thus largely depend on the

prevalence of different target antigens in different tissues.
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Table 1.1. Distribution and repertoire of Y6 T cells in humans and mice

Peripheral location

Predominant usage (and pairing, if applicable)

of Vy and Vo gene segments

Human

Blood Vy9/Vo2*

Dermis Vol

Gut epithelia V61 and Vo3

Liver V41 and Vo3

Spleen Vol

Thymus Vol

Mouse

Adult thymus Diverse

Dermis Vy4lli

Epidermis Vy5/Vsl

Gut epithelia Vy7/Vo4, Vy7/V5, Vy7/Vyd6 and Vy7/VydT
Liver Vy1/V66.3, Vy4 and Vy6
Lung Vv4 and Vy6

Lymph nodes Diverse

Spleen Vy1 and Vy4
Uterovaginal epithelia Vy5/Vol

*Lefranc and Rabbitts’ nomenclature for human yd TCR; 1¢Heilig and Tonegawa’s

nomenclature for mouse y0 TCR. Adapted from (Hayday, 2000; Bonneville ef al., 2010)

13



1.3.3. Antigen recognition by different subsets of Y6 T cells

Most yd T cell antigens remain obscure, which severely impinges on our progress in
understanding y0 T cell responses. However, significant advances have been made in
identifying ligands for human y6 T cells. Vy9/V32 T cells recognise phosphoantigens
(Constant et al., 1994; Tanaka ef al., 1994), which have been studied extensively. Other
human V82" and V82" T cells have been described to recognise foreign antigens derived
from bacteria and virus as well as self-antigens expressed on stressed and transformed
cells (Table 1.2). Some V31" T cells have been reported to exhibit alloreactivity to certain
polymorphism of MHC molecules including HLA-A2, HLA-A24 and HLA-B27 (Ciccone
et al., 1989; Spits et al., 1990), and to recognise MHC class I chain-related proteins, e.g.
MICA and MICB (Groh ef al., 1998; Xu et al., 2011). In addition, some V&1' T cells
show autoreactivity to CDIc and CD1d molecules and recognise CD1d tetramers loaded
with a-galactosylceramide (aGalCer) (Uldrich et al., 2013) or sulfatides (Bai et al., 2012;
Luoma et al., 2013). Interestingly, although the exact ligand(s) is currently unknown,
V32" T cells (including V81°, V83" and V385 T cells) were observed to expand
extensively in patients with cytomegalovirus (CMV) infection and exhibit strong cross-
reactivity against CMV-infected cells and intestinal tumour cells (Halary ef al., 2005). A
Vy4/V35" T cell clone established from PBMCs of a CMV-infected patient showed
specificity for endothelial protein C receptor (EPCR), a protein that resembles CD1d in its
capacity to bind phospholipids (Willcox et al., 2012). Interestingly, the recognition site of
EPCR by Vy4/Vd5 TCR is outside the potential lipid binding pocket, suggesting that
EPCR itself rather than lipid as the ligand for Vy4/V35 TCR. In mouse, a broad diversity
of antigens for the recognition by different subset of Y& TCRs has been reported (Table
1.3). Despite these advances, only a small number of proposed yo T cell ligands have

actually been confirmed biochemically and/or structurally.
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Table 1.2. Antigens recognised by Y6 TCR in human and mouse

vo T cells Origin Antigen Reference
h o1 ; X
Va1* IELs MICA and MICB (Groh e al,, 1998; Xu
etal,2011)
V&1 and Clones and primary (Ciccone et al., 1989;
HLA-A2, -A24 and -B27 .
Vy4/V1 cells from blood ’ an Spits et al., 1990)

Vy1.4/V51 and

Clones and primary

CDlc

(Porcelli et al., 1989;
Faure et al., 1990;

Vy2/Val 1Is from blood
Y cells Tom Hleo Spada et al., 2000)
Primary cells from
V61 and blood and clone CD1d tetramers loaded
ldrich ., 201
Vy5/Val transduced with with aGalCer (Uldrich et al., 2013)
Vy5/V31 TCR
D1 1 Bai ., 2012;
V51 Blood C. d tetra@ers oaded (Bai et al., 2012;
with sulphatide Luoma et al., 2013)
Cl from L
Vol on.eé rom .yme ) Lipohexapeptides (Vincent ef al., 1998)
arthritis synovial fluid
Blood, TILs and T-
Vo2 lymphoma cell line ULBP4 (Kong et al., 2009)
transduced with yo TCR
Pri 1ls fi
V52 rimaty cetls from hMSH2 (Dai et al., 2012)
blood
. . (Constant et al., 1994;
1 Phosph IPP
Vy9/V52 Seﬁ:i“ioiidbigzary Hl\‘/’ISBp P‘;a)n“gens (PP, Tonaka ef al., 1995;
Hintz et al., 2001)
F,-ATPase associated (Scotet et al., 2005;
VvO/VED Clones and primary with apolipoprotein A-I, Mookerjee-Basu ef al.,
Y cells from blood Apppl or phosphoantigens 2010; Vantourout et
as nucleotide derivatives  al., 2010)
Clones and primary . (Kozbor et al., 1989;
2 T
VY9/ve cells from blood etanus toxoid Holoshitz et al., 1992)
VYOVED Clones and primary OXY, DXS2 or Rv2272 Xietal,2011; Xiet
v cells from blood peptides al.,2013)
T hybridoma cell line .
1. 2 H I-tRNA h B ., 2012
Vy1.3/Vd transduced with y5 TCR istidyl-tRNA synthetase  (Bruder ef al., 2012)
Vy4/Va5 Clone from blood EPCR (Willcox et al., 2012)

*Lefranc and Rabbitts’ nomenclature; adapted from (Vantourout and Hayday, 2013; De Libero et
al.,2014).
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Table 1.3. Antigens recognised by Yo TCR in mouse

vo T cells Origin Antigen Reference
Cardiolipin and
V}(llli (clones) ar ,10 e a.n (Born et al., 2003)
apolipoprotein H
V1 (clones) Insulin peptide (B:9-23) (Zhang et al., 2010)
Vy1-Jy4/V35 Phycoerythrin (Zeng et al., 2012)
Vyl1/Vé8 NX6 Cyanine 3 (Zeng et al., 2014)
Vy2/V55 Hybridoma LBK5 I-E¥ (Matis et al., 1989)
Vy2/V38 (clone) HSV glycoprotein I (Johnson et al., 1992)
4-hydoxy-3-
4/V54 1 Z ., 2014
Vy4/ve 69 nitrophenylacetyl (Zeng et al., 2014)
i 1 ., 1997,
Various Hybridomas G8 and H2-T10, -T22 and -T27 (Crowley et al., 1997,

KN6

Shin et al., 2005)

*Heilig and Tonegawa’s nomenclature for y8 TCR. Adapted from (Vantourout and Hayday, 2013;
De Libero et al., 2014).
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1.3.4. Phosphoantigens as ligands for recognition by Vy9/V42 T cells via TCR

Due to their preferential localisation in blood, circulating human V82" T cells are much
easier to obtain than predominantly tissue-residing V82"* T cells, and the early
identification of phosphoantigens as specific agonists that induce activation and expansion
of V52" T cells has allowed extensive studies of this yd T cell subset in vitro and in vivo.
Phosphoantigens are by far the best characterised class of agonistic molecules activating
vo6 T cells in human and non-human primates (Eberl et al., 2003; Riganti et al., 2012;
Harly et al., 2014), starting from the observation that Vy9/V32 T cells expand rapidly and
considerably in the peripheral blood of patients infected with Mycobacterium tuberculosis.
By the use of mycobacterial extracts, which is highly active in stimulating Vy9/V62 T
cells in vitro, the actual reactive ligand of Vy9/Vo2 T cells within these extracts was
narrowed down to a small lectin-binding compound resistant to proteases (Pfeffer et al.,
1992) but sensitive to periodic acid oxidation and to alkaline phosphatase treatment
(Constant ef al., 1994). In addition, the bioactivity of this compound was found to depend
essentially on the presence of phosphate moieties (Schoel ef al., 1994). Following from
these findings, isopentenyl pyrophosphate (IPP), a product of isoprenoid biosynthesis, and
its derivative dimethylallyl pyrophosphate (DMAPP) were the first identified
phosphoantigens produced both in microbial and mammalian cells (Tanaka et al., 1995).
However, microbial IPP levels often do not reach the minimum required for effective T
cell activation in vitro, which ruled out a major role for IPP itself in infections (Jomaa ef
al., 1999). Instead, it became apparent that only extracts from bacteria possessing a newly
discovered, alternative pathway of IPP synthesis were capable of stimulating Vy9/Vo2 T
cells but not extracts from bacteria utilising the classical mevalonate pathway of IPP
synthesis. The final demonstration that the non-mevalonate pathway was indeed the
source of the natural Vy9/Vo62 T cell ligand came from genetically engineered E. coli
strains (Eberl et al., 2003), which ultimately led to the identification of a novel microbial
metabolite, the IPP precursor (E)-4-hydroxy-3-methyl-2-butenyl pyrophosphate (HMB-
PP), as the most potent agonistic ligand for Vy9/V62 T cells (Hintz et al., 2001).

Apart from bacterial extracts, a broad spectrum of tumour cells, mainly lymphoma, was
observed to be stimulating Vy9/V62 T cells both in vitro (Fisch et al., 1990; De Libero et
al., 1991) and in vivo (Malkovska et al., 1992). Based on the observation that the
mevalonate pathway is frequently dysregulated with increased expression of rate limiting

enzyme, HMG-CoA reductase, in haematological malignancies (Harwood et al., 1991)
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and mammary carcinoma (Asslan et al., 1999), Gober et al hypothesised that
accumulation of IPP in tumour cells might be the target for Vy9/Vo2 T cells (Gober et al.,
2003). Indeed, manipulation of the mevalonate pathway in normal and malignant cells
with statins that inhibit HMG-CoA reductase or with aminobisphosphonates (nBPs,
analogues of pyrophosphates) such as pamidronate and zoledronate that inhibit farnesyl
pyrophosphate synthase (FPPS) significantly abrogates or enhances, respectively,
Vy9/V62 T cell responses to different cancer targets (Kunzmann et al., 1999; Kunzmann
et al., 2000; Gober ef al., 2003). The concept of intracellular IPP accumulation as signal
for Vy9/Vo2 T cells was eventually experimentally proven by elegant approaches based
on mass spectrometry (Monkkonen et al., 2007; Roelofs et al., 2009; Benzaid et al., 2011).
By screening in vitro a large panel of cancer cell lines derived from haematological
malignancies and carcinomas of different origins, Idrees et al. further confirmed that
inhibition of FPPS by pretreatment of cancer cells with zoledronate at sub-lethal doses is
sufficient for effective enhancement of their potential to stimulate Vy9/Vo2 T cell

responses, including cytotoxicity and cytokine secretion (Idrees et al., 2013).

With their potent anti-resorptive effects, nBPs such as alendronate (Fosamax),
pamidronate (Aredia) and zoledronate (Zometa/Aclasta) have been widely us