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ABSTRACT 
 

Scientific background.  The inherent resistance of breast cancer stem cells (CSCs) to 

existing therapies has largely hampered effective treatments for advanced breast cancer.  

My research aimed at establishing novel immunotherapy approaches efficiently targeting 

CSCs by harnessing human γδ T cells as non-MHC-restricted killer cells and 

simultaneously as APCs to induce tumour-specific CD8+ T cell responses. 

Approach.  An experimental model allowing reliable distinction of CSCs and non-CSCs 

was set up to study their interaction with γδ T cells and CD8+ T cells.  FluM1 and 

CMVpp65 viral epitopes were used as surrogates for yet-to-be-discovered CSC-associated 

antigens. 

Results.  Stable sublines with characteristics of CSCs and non-CSCs were generated from 

ras-transformed human mammary epithelial (HMLER) cells as confirmed by their (i) 

distinct expression profiles of CD24, CD44 and GD2, (ii) mesenchymal- and epithelial-

like characteristics, (iii) differential growth patterns in mammosphere culture and (iv) 

distinct tumourigenicity, self-renewal and differentiation in NSG mice.  The resistance of 

both CSCs and non-CSCs to γδ T cells could be overcome by inhibition of FPPS through 

pretreatment with zoledronate or FPPS-targeting shRNA, resulting in increased 

cytotoxicity and APC function of γδ T cells.  CSCs presenting FluM1 or CMVpp65 

exhibited stronger resistance to antigen-specific CD8+ T cells as compared to their non-

CSC counterparts.  Of note, pretreatment of Flu M1- or CMVpp65-presenting CSCs with 

γδ T cell conditioned supernatant significantly increased surface expression of MHC class 

I and ICAM-1 by both CSCs and non-CSCs as well as their susceptibility to CD8+ T cell-

mediated killing.  Moreover, using the humanised anti-GD2 monoclonal antibody, 

Hu14.18K322A, a specific direction of γδ T cell responses against CSCs could be 

achieved.  In addition to their direct cytotoxicity and ability to modulate the susceptibility 

of CSCs and non-CSCs to CD8+ T cell-mediated killing, γδ T cells concomitantly 

functioned as APCs to initiate de novo tumour-specific cytotoxic CD8+ T cell responses.  

Conclusions.  My findings identify a powerful synergism between MHC-restricted and 

non-MHC-restricted T cells in the eradication of both CSCs and non-CSCs, thus 

establishing a powerful positive feedback loop for the eradication of residual cancer cells 

survived from killing by γδ T cells.  My research suggests that novel immunotherapies 
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may benefit from a two-pronged approach combining γδ T cell and CD8+ T cell targeting 

strategies that triggers effective innate-like and tumour-specific adaptive responses. 
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Chapter 1. Introduction 

1.1. Breast Cancer 

1.1.1. Epidemiology of breast cancer 

According to GLOBOCAN 2012 (Ferlay et al., 2015), breast cancer is currently the 

second most common cancer in the world.  Growing from an estimated 1.38 million new 

cancer cases diagnosed in 2008 to an estimated 1.67 million new cancer cases diagnosed 

in 2012, which accounts for 25.2% of estimated total new cancer cases diagnosed in 2012, 

breast cancer remained the most common cancer diagnosed in women.  The incidence 

rates of breast cancer vary considerably across the globe, ranging from 27 per 100,000 

population in Middle Africa and Eastern Asia to 96 per 100,000 in Western Europe.  In 

the UK, the incidence rate increased from less than 60 per 100,000 in the 1980s to about 

90 per 100,000 in 2010.  A similar increasing trend can be observed all over the world, 

especially in more developed regions, indicating that breast cancer as a growing problem 

in the UK and other more developed countries.  With 522,000 deaths in 2012 worldwide, 

breast cancer ranks as the fifth most frequent cause of death from all cancers.  In the UK, 

breast cancer accounted for 7% of all deaths from cancer and thus ranked 3rd most 

common cause of cancer in 2012 (Cancer Research UK).  Despite the alarming increase in 

incidence rates, the mortality rate in the UK dropped from around 30 per 100,000 in 1985 

to 15.2-18.1 per 100,000 in 2008, reflecting encouraging advances in early detection and 

adjuvant therapy over past decades.  However, although overall survival of breast cancer 

patients is improving and has doubled in the last 40 years, the survival of breast cancer 

patients dropped significantly, depending on the stage of disease when diagnosed, with the 

5-year survival rate of patient diagnosed with stage IV breast cancer during 2002-2006 

being as low as only 15% (Cancer Research UK).  These numbers indicate that there 

remains an unmet need for the development of more efficient treatments for patients with 

breast cancer, especially those at advanced stages.  

 

1.1.2. Heterogeneity of breast cancer and clinical classification 

Most breast tumours originate from epithelial and glandular epithelial tissue and thus are 

denoted as carcinoma and adenocarcinoma, respectively.  However, some breast cancers 

may also present as sarcoma, which are derived from cells of muscle, fat or connective 

tissue.  The development and progression of breast tumours have been described as a 
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linear process with multiple steps (Bombonati and Sgroi, 2011).  Derived from the 

epithelium in the milk ducts, mutated cells with clear abnormality in the morphology of 

nucleus and cytoplasm, which is extensively used in the diagnoses for distinguishing 

neoplastic cell from normal cells, begin to grow rapidly without control and build up a 

compact mass restricted within the lumen by surrounding intact basal membranes.  This 

progress has been characterised as a sequential transition typically from epithelial ductal 

hyperplasia (UDH), flat epithelial atypia (FEA) and atypical ductal hyperplasia (ADH), 

and eventually to ductal carcinoma in situ (DCIS).  Similarly in the lobules, the 

transformation starts from atypical lobular hyperplasia (ALD) and subsequently progress 

to lobular carcinoma in situ (LCIS).  As DCIS and LCIS keep accumulating more 

mutations and may thus evolve to acquire further malignant transformations, they develop 

to break out from the constraining basal membranes for invasion into surrounding tissues, 

and are then characterised as invasive ductal and lobular carcinoma, respectively.  

Together, lobular and ductal subtypes contribute to the majority of patients diagnosed with 

invasive breast cancer.  Particularly, the ductal subtype accounts for 80% of diagnosed 

preinvasive and invasive breast cancers (Bombonati and Sgroi, 2011).   

 

Breast cancer can be further classified into different subtypes for the purpose of prognosis 

by immunohistochemistry (IHC) examinations for the expression of estrogen receptor 

(ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2) 

(Nielsen et al., 2004).  Currently, IHC staining of ER, PR and Her2 is used in routine 

diagnosis to classify breast tumour subtypes and provide prognostic and predictive 

information.  Depending on the expression of ER, PR and Her2, breast cancers can be 

categorised into three major subtypes, namely ER+/PR+ (hormone receptor positive; HR+), 

HR−/Her2+ and triple negative (ER−/RP−/Her2−; TN).  Each subtype is characterised by 

different histopathological features, prognosis and responses to different breast cancer 

therapies.   

 

Exceeding this histological classification, the molecular and biological complexity of 

breast cancer with tremendous inter- and intra-tumour heterogeneity was further revealed 

by gene expression profiling (Perou et al., 2000).  In the human mammary gland, there are 

two distinct lineages of epithelial cells; the basal (and/or myoepithelial) cells that 

constitute the outer layers of the mammary ducts, and the luminal epithelial cells that line 

the insides of the mammary ducts.  Through a large microarray study of 65 breast tumour 
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samples collected from 42 patients, Perou et al. introduced the concept of cell lineage on 

top of the traditional ER classification, and demonstrated that heterogeneous breast 

tumours could be precisely classified into four molecular subtypes: (i) luminal A, (ii) 

luminal B, (iii) Her2+, and (iv) basal-like tumours (Perou et al., 2000; Sorlie et al., 2001; 

Sorlie et al., 2003; Sotiriou et al., 2003; Hu et al., 2006).   

 

Most breast cancers are luminal tumours, in which luminal A and B tumours account for 

40% and 20% of breast cancer, respectively.  While sharing similar characteristics in 

overexpression of ER, ER-responsive genes and a gene expression signature 

representative for luminal epithelial cells, luminal A and B tumours are distinct in their 

expression of Her2 and proliferation-related genes.  ER+ luminal A tumours are 

characterised by their high level expression of ER- and PR-associated genes, low level 

expression of proliferation-related genes and lack of Her2 expression (Perou et al., 2000; 

Sorlie et al., 2001; Loi et al., 2007; Voduc et al., 2010).  Oppositely, luminal B tumours 

show strong expression of Her2 and proliferation-associated markers, e.g. Ki67, with 

decreased ER expression and absence of PR expression (Carey et al., 2006).  Her2 

tumours account for 10-15% of breast cancer and show a characteristic lack of expression 

of both ER and PR (Carey et al., 2006; Voduc et al., 2010).  Basal-like tumours share 

large similarities with TN tumours in terms of their genetic makeup and tumour 

behaviours (Nielsen et al., 2004; Cleator et al., 2007; Foulkes et al., 2010).  Together they 

account for around 15-20% of breast cancers, and both show a poorly differentiated and 

aggressive feature histologically with necrosis often being observed in these tumours.   

 

1.1.3. Treatment of breast cancer and current obstacles 

By defining the molecular subtype of the tumour, the treatment for each patient can be 

personalised with precision by choosing the most suitable and effective therapy currently 

available.  For example, patients with tumour expressing ER and PR are likely to benefit 

from hormone therapy with tamoxifen and aromatase inhibitors (Ignatiadis and Sotiriou, 

2013).  Although carrying a generally worse prognosis with higher risk of recurrence and 

metastasis as compared to luminal tumours, Her2+ breast cancer patients may benefit from 

therapies directly targeting Her2 such as trastuzumab (Herceptin) and lapatinib, but less so 

from endocrine-based therapies.  Most importantly, TN and basal-like tumours, which 

lack expression of all three receptor targets and are therefore insensitive to standard drugs, 
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have significantly poorer clinical prognosis compared to the estrogen receptor-positive 

luminal A and luminal B tumours, and targeted therapy is currently limited (Rouzier et al., 

2005).  In the absence of better options, patients with TN and basal-like tumours are 

currently treated with a combination of surgery, radiation therapy and chemotherapy using 

standard cytotoxic agents such as doxorubicin and paclitaxel, and hence suffer from 

associated short-term and long-term side effects.  Although novel approaches are urgently 

needed for treating such resilient cancers, only few potential targets for TN and basal-like 

tumours including EGF receptor, αB-crystallin and cyclin E have been identified so far 

(Yehiely et al., 2006).   

 

Besides the need for better targeted therapies for TN and basal-like tumours, metastasis 

and recurrence after therapy remain major setbacks in improving outcomes.  Nearly 30% 

of all patients with early stage breast cancer develop recurring disease, which in most 

cases is metastatic (Gonzalez-Angulo et al., 2007).  Treatment options for both metastasis 

and recurrence are very limited, and therapeutic efficacies are mostly disappointing.  In 

addition, frequent drug resistance represents a major obstacle in treating breast cancer 

patients.  For example, a substantial proportion of patients with localised disease, and 

most patients with advanced disease who initially respond to tamoxifen, subsequently 

develop de novo or acquired resistance (Early Breast Cancer Trialists' Collaborative, 2005; 

Chang, 2012).  However, the mechanisms underlying the development of drug resistances 

in breast cancer are yet totally clear.  Recently, the emerging concept of cancer stem cells 

(CSC) has linked this minor subset of pluripotent cells within the bulk tumour to the 

initiation of primary tumours and distant metastasis, disease relapse and recurrence as well 

as drug resistance (Pinto et al., 2013; Luo et al., 2015; Mitra et al., 2015).  Thus, novel 

approaches specifically targeting CSCs, including immunotherapies harnessing immune 

cells against CSCs, may provide a safe and effective way to treat breast cancer patients 

and improve outcomes. 
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1.2. Cancer stem cells 

1.2.1. Heterogeneity of tumour 

To explain the heterogeneity observed within a tumour, the classical clonal expansion 

model for carcinogenesis proposed that normal cells may become transformed by 

stochastically accumulating distinct combinations of gene mutations during the process of 

tumourigenesis.  These transformed and malignant cells may share equal or similar 

tumourigenicity and expand clonally, thereby giving rise to a heterogeneous tumour 

(Nowell, 1976).  The more recent cancer stem cell hypothesis arose from the similarities 

observed between normal stem cells and tumourigenic cells with regard to their unique 

ability to divide asymmetrically for self-renewal, and to give rise to different daughter 

cells, a non-tumourigenic differentiated cells and a tumourigenic CSC retaining its 

pluripotency, by asymmetric division.  In contrast to the clonal expansion model, the CSC 

hypothesis applies and emphasises the hierarchy within a tumour based on the concept that 

not all transformed cells are equally tumourigenic (Reya et al., 2001; Campbell and 

Polyak, 2007).  However, these two models are not mutually exclusive.  During the long 

period of tumourigenesis, it is conceivable that the initial CSC may further diverse into 

different subsets by acquiring new sets of distinct gene mutations, which allows the 

maintenance of CSC properties with further modification in their malignancies, and 

subsequently contribute to the diversity within a tumour by clonal expansion of these 

different CSC-like subsets (Visvader and Lindeman, 2008; Beck and Blanpain, 2013).  

 

1.2.2. Phenotypical and functional characterisation of breast cancer stem cells 

Bonnet and Dick provided the first experimental evidence for the existence of CSCs in a 

human acute myeloid leukaemia xenotransplantation model in NOD/SCID mice by 

defining surrogate markers for potential CSCs (Bonnet and Dick, 1997).  A minor 

population of cells with a CD34+ CD38− phenotype was identified to exhibit superior 

tumourigenic capacity as compared to the bulk of the leukaemia cells (Bonnet and Dick, 

1997).  In extension of this pioneering work, serial transplantation of specific cell 

populations in immunodeficient mice comprehensively encompasses the most important 

CSC-like properties including tumourigenicity, self-renewal and pluripotency in a single 

experiment, and is now considered as the golden standard for the identification and 

characterisation of CSCs from different haematological malignancies and solid tumours of 

different origins, including breast cancer (Smalley et al., 2013; Kreso and Dick, 2014).  
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Using this standard approach, Al Hajj et al., were the first to identify a small population of 

highly tumourigenic cells from breast cancer lesions as CD44+ CD24− ESA− lineage− cells 

(Al-Hajj et al., 2003).  Following from this observation, similar highly tumourigenic CSC 

populations have been identified in different malignancies such as brain (Singh et al., 

2004), colon (O'Brien et al., 2007; Ricci-Vitiani et al., 2007), melanoma (Schatton et al., 

2008) and pancreatic cancer (Hermann et al., 2007), by the use of a broad panel of 

putative markers for CSCs, reflecting the huge diversity of CSCs across different types of 

tumours.  In addition to the definition as CD44+ CD24− cells, CSCs within breast tumours 

have been characterised phenotypically by the use of cell surface markers such as CD90 

(Lu et al., 2014), CD133 (Wright et al., 2008) and GD2 (Battula et al., 2012; Liang et al., 

2013), and functionally by specific enzyme activity, e.g. aldehyde dehydrogenase 1 

(ALDH1) (Ginestier et al., 2007), alone or in combination.  Wright et al. showed that both 

CD44+ CD24− and CD133+ cell populations derived from BRCA1 deficient mouse 

mammary tumours exhibited comparable tumourigenicity and stem cell-associated gene 

expression profiles, suggesting the existence of heterogeneous CSC populations within 

tumours (Wright et al., 2008).  Similarly, Hwang-Verslues et al. showed that the 

specificity of proposed markers including CD44/CD24, ESA, CD133, CXCR4 and 

PROCR for the identification of CSCs varied considerably across a panel of human breast 

cancer cell lines and specimen (Hwang-Verslues et al., 2009).  Furthermore, Ginestier et 

al. showed that ALDH+ and CD44+ CD24− lineage− populations overlapped minimally by 

only 0.1-1.2% in four breast cancer samples examined (Ginestier et al., 2010).  

Functionally, ALDH+ and CD44+ CD24− lineage− populations showed distinct 

tumourigenicity, with the minor population of cells with overlapping expression profiles 

exhibiting strongest tumourigenicity, suggesting that at least two inter-converting CSC 

populations may co-exist within a tumour and subsequently contribute to intra-tumour 

heterogeneity.  Putative CSC subpopulations were further linked to epithelial-

mesenchymal transition (EMT), a phenomenon governing embryogenesis, development 

and organogenesis (Kalluri, 2009; Thiery et al., 2009).  While breast CSCs typically show 

a mesenchymal-like (EMT-like) morphology with a CD44+ CD24− EpCAM− CD49f+ 

expression profile and are functionally more quiescent but more invasive, CSCs with an 

epithelial-like (MET-like) morphology and a distinct ALDH+ EpCAM+ CD49f+ 

expression profile appear to be functionally more active and possess the capacity for self-

renewal (Biddle et al., 2011; Liu et al., 2012).  This interpretation is supported by the 

observation that MET-like CSCs are found to reside predominantly in the centre of a 
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tumour, whereas EMT-like CSCs typically sit at the invasive front where they may drive 

tumour dissemination and metastasis (Liu et al., 2012).   

 

Taken together, these findings reveal that there is no universally applicable CSC marker 

for all subtypes of breast cancer.  Given the substantial heterogeneity within every single 

breast tumour, it is likely that more than one population of tumourigenic CSCs, 

concomitantly exist intra-tumourally, with different levels of tumourigenicity and 

differentiation.  Moreover, breast CSCs between different tumours are indeed distinct and 

thus contribute to inter-tumour heterogeneity.  Notwithstanding these obstacles, different 

subpopulations of breast CSCs share functional similarities, which provides us with a 

window of opportunities to study the biology of CSCs and CSC-like cells and their 

interaction with the immune system. 

 

1.2.3. Cancer stem cells, epithelial-mesenchymal transition and metastasis  

Metastasis is a complex process involving both genetic and epigenetic changes when cells 

derived from the primary tumour translocate to a new distant site (Hanahan and Weinberg, 

2011).  During this process, cancer cells have to overcome numbers of hurdles.  First, in 

response to stresses such as hypoxia (Yang et al., 2008) and inflammation (Wu et al., 

2009a), some tumour cells residing at the invasive front of the primary tumour may lose 

their cell-cell adhesion capacity and dissociate themselves from the bulk tumour through 

EMT.  Once receiving environmental cues like TGF-β, such cells may eventually lose 

their surface expression of E-cadherin, which is involved in the formation of adheren 

junctions between cells, and instead acquire expression of N-cadherin, vimentin and 

fibronectin, which participate in the determination of cellular polarity and rearrangement 

of the cytoskeleton (Xu et al., 2009a).  This series of events subsequently leads to a 

distinct change from cells with apical-basal polarity and cuboidal-like morphology to cells 

with asymmetric polarity and enhanced motility and invasiveness (Vincent-Salomon and 

Thiery, 2003).  In addition, EMT has been proposed to concomitantly induce stem cell-

like properties in procuring differentiated cells (Mani et al., 2008; Morel et al., 2008; 

Scheel and Weinberg, 2012).  Acquisition of the stemness could largely benefit the 

survival of disseminated cells in the circulation and seeding at distant sites (Medema, 

2013).  These EMT-like malignant cells can then invade into the nearby basement 

membrane and blood/lymphatic vessels by degradation of extracellular matrix (ECM) 
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through releasing a variety of enzymes including diapeptidases, arginases, acid 

phosphatases, cathepsin, and matrix metalloproteinases (MMPs) (Deryugina and Quigley, 

2006; Struckmann et al., 2008).  Circulating tumour cells frequently can protect 

themselves from the attack of immune cells (Chouaib et al., 2014) and the fluid pressure 

caused by the blood flow through strategies including induction of platelet aggregation to 

form a tumour-platelet complex (Tsuruo and Fujita, 2008).  During this process, only a 

few circulating tumour cells penetrating through the wall of a blood vessel (extravasation) 

or the lymphatic system will successfully be transported to an appropriate organ site, 

where they colonise to form a new metastatic mass by inducing angiogenesis and adapting 

to the new microenvironment (Hanahan and Weinberg, 2011).  This new soil is now 

known as “pre-metastatic niche”, which is believed to be prepared ahead of time for 

metastatic deposition of tumour cells (Psaila et al., 2006).  The acquisition of stem-like 

properties through EMT endows CSCs with a great plasticity to adapt to, and colonise, the 

new microenvironment (Medema, 2013).  

 

1.2.4. Intrinsic resistance of CSCs to chemotherapy, radiotherapy and immune 

surveillance   

CSCs have been as well characterised for their innate resistance to chemotherapeutic 

drugs (Dean et al., 2005), radiation (Rich, 2007) and immune surveillance (Kawasaki and 

Farrar, 2008; Schatton and Frank, 2009; Chouaib et al., 2014) and may thus be a major 

driver of disease recurrence after treatment. 

 

Conventional stem cells and CSCs share many properties including their expression of 

ATP-binding cassette (ABC) transporters, active DNA repair capacity and intrinsic 

resistance to apoptosis, which in combination lead to their resistance to cancer therapies.  

Goodell et al. found that ABCG2, also termed BCRP (breast cancer resistance protein), 

which was originally identified in mitoxantrone-resistant cells, has the ability to pump out 

the dye Hoechst 33342, resulting in a characteristic unlabelled “side population” detected 

by flow cytometry, which predominantly consists of CSCs (Goodell et al., 1997).  

ABCB5, another ABC transporter, was also found to have the ability to mediate 

chemoresistance in stem-like tumour cell populations in human malignant melanoma 

(Schatton et al., 2008).  By expression of these ABC transporters, CSCs obtain a unique 

capacity to export a wide range of cytotoxic drugs and thus acquire multidrug resistance 
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(MDR).  Increased activation of the DNA damage checkpoint has been characterised in 

CSCs derived from human glioblastoma.  Although having similar susceptibility to 

ionising radiation compared to non-CSCs, CSCs respond to these double stranded DNA 

damages more efficiently by their elevated basal expression of active checkpoint kinases 

such as CDK1, CDK 2 and rad17 (Bao et al., 2006).  Piggott et al. showed that 

suppression of the apoptosis inhibitor cellular FLICE-Like Inhibitory Protein (c-FLIP), an 

antagonist of caspase-8 and caspase-10, preferentially sensitises breast CSCs to the anti-

cancer agent tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL), 

suggesting enhanced endogenous resistance of breast CSCs to apoptosis and their potential 

to escape from immune surveillance (Piggott et al., 2011).   

 

In addition, similarly to mesenchymal stem cells (Le Blanc and Ringden, 2007; Uccelli et 

al., 2008), CSCs also exhibit a suppressive immunomodulatory nature (Schatton and 

Frank, 2009).  Schatton et al. showed that malignant melanoma-initiating cells (MMICs) 

characterised by ABCB5 expression (Schatton et al., 2008) significantly suppress 

secretion of interleukin-2 (IL-2) by mitogen-stimulated PBMCs and skewed the normal T-

cell mediated response by inducing the secretion of the suppressive cytokine IL-10 by 

autologous PBMCs in co-culture (Schatton et al., 2010b).  Similarly, glioblastoma CSC-

like cells suppress the proliferation and IL-2 and interferon (IFN)-γ secretion by T cells 

upon non-antigen-specific stimulation with mitogen and anti-CD3/CD28 (Di Tomaso et 

al., 2010; Wei et al., 2010b).  By the secretion of immunosuppressive cytokines and 

growth factors such as TGF-β and VEGF, CSCs isolated from different type of tumours 

including breast cancer (Shipitsin et al., 2007), glioblastoma (Bao et al., 2006; Wei et al., 

2010a) and melanoma (Schatton et al., 2010b) can thus induce anergy of antigen-reactive 

lymphocytes.  Expression of programmed death-ligand 1 (PD-L1) and secretion of 

galectin-3 allows CSCs to directly suppress antitumour immunity by inducing apoptosis of 

cancer-reactive T cell clones (Wei et al., 2010b).  In addition to direct suppression of 

immune responses, MMICs showed the capacity to induce functional regulatory T (Treg) 

cells (in terms of IL-10 secretion) from PBMCs in co-culture via their potent expression of 

B7.2 and 4-1BBL (Schatton et al., 2010b).  Similar induction of Treg cells was observed 

in co-culture of PBMCs with CSC-like cells derived from glioblastoma (Wei et al., 

2010b).  
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Apart from suppressing immune responses, CSCs may develop strategies to escape from 

immunosurveillance.  Through down-regulated expression of tumour-associated antigens, 

e.g. MART-1 and NY-ESO-1, as well as of MHC class I and II and co-stimulatory 

molecules such as CD80, CD86 and CD40, CSCs can escape from MHC-restricted T cells 

(Di Tomaso et al., 2010; Schatton et al., 2010b).  Similarly, CSCs can down-regulate their 

expression of NKG2D ligands to evade cytotoxicity by non-MHC-restricted NK cells and 

γδ T cells (Todaro et al., 2009; Di Tomaso et al., 2010).  

 

Selective eradication of CSCs by different therapeutic strategies has been reported to 

effectively inhibit experimental tumour growth (Bao et al., 2006; Schatton et al., 2008; 

Chan et al., 2009; Gupta et al., 2009; Majeti et al., 2009).  Thus, it is conceivable that 

successful therapy of breast cancer requires complete eradication of CSCs within a tumour 

by rebalancing the tumour microenvironment with adequate sensitising strategies and/or 

adjuvants to recreate effective and specific anti-CSC immunity.  Such CSC-targeting 

therapies are likely to lead to better outcomes by efficiently preventing disease relapse and 

harnessing long-lasting anti-tumour immunity.  For this purpose, γδ T cells, which can 

function effectively as both non-MHC-restricted innate-like killer cells and professional 

APCs, are particularly attractive targets to complement and restore the MHC-restricted 

surveillance and boost anti-CSC adaptive immune responses.  
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1.3. γδ T cells 

1.3.1. γδ T cells as the third arm for immune protection 

Set aside from conventional αβ T cells and B cells, γδ T cells constitute an 

“unconventional” lymphocyte population with distinct functions that are complementary 

to those of B cells and αβ T cells.  γδ T cells comprise different subsets defined by the 

expression of different combinations of γ chains and δ chains of the TCR.  These different 

γδ T cell subsets exhibit distinct features with regard to tissue tropism, anatomical 

location, antigen specificity and function (Bonneville et al., 2010; Vantourout and 

Hayday, 2013).  Uniquely, γδ T cells exhibit both specified adaptive features for the 

expression of rearranged (yet non-MHC-restricted) T cell receptors (TCRs), and innate-

like functions of NK cells and myeloid cells (Bonneville et al., 2010; Vantourout and 

Hayday, 2013).  Functionally, they show surprising plasticity (Bonneville et al., 2010; 

Vantourout and Hayday, 2013; Lafont et al., 2014) to act as (i) efficient killer cells 

recognising a broad spectrum of infected cells and cancer cells through their TCR and 

innate receptors such as NKG2D (Bonneville et al., 2010; Vantourout and Hayday, 2013; 

Lafont et al., 2014); (ii) as immune modulators providing help to B cells, DCs, monocytes 

and neutrophils for their specialised functions (Tyler et al., 2015); (iii) as APCs to polarise 

helper CD4 T cells and initiate cytotoxic CD8 T cell responses (Moser and Eberl, 2007, 

2011); and (iv) as regulatory cells suppressing immune responses (Wesch et al., 2014).   

 

1.3.2. γδ T cell subsets as defined by combination of TCR γ and δ chains 

During their development in the thymus, γδ T cells acquire their TCR diversity through 

V(D)J recombination mediated by recombination activating gene (RAG).  As compared to 

αβ T cells and B cells, γδ T cells have a relatively simple repertoire of Variable (V) gene 

segments available for rearrangement of both Vγ and Vδ chains (Adams et al., 2015).  In 

humans, rearrangement of the Vγ chain is restricted to seven functional Vγ gene segments 

(Vγ2, Vγ3, Vγ4, Vγ5, Vγ8, Vγ9 and Vγ11) out of total twelve Vγ gene segments on 

chromosome 7p15.  Similarly, only three (Vδ1, Vδ2 and Vδ3) out of eight Vδ gene 

segments are frequently used for the rearrangement of the Vδ chain.  As the Vδ gene locus 

sits within the Vα gene locus on chromosome 14p11-12, the remaining five Vδ gene 

segments (Vδ4, Vδ5, Vδ6, Vδ7 and Vδ8,) are shared for the use in rearrangement of both 

Vα and Vδ chains, possibly explaining their less frequent usage in rearranged Vδ chains.  

Of note, a pairing bias of Vγ with Vδ chains has been observed in γδ T cells localising to 
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different peripheral tissues in both mice and humans (Table1.1) (Pereira and Boucontet, 

2004; Bonneville et al., 2010).  In the mouse, γδ T cells constitute only a minor fraction of 

thymocytes and circulating lymphocytes in the spleen, lymph nodes and peripheral blood, 

but are significantly enriched in epithelial tissues including epidermis and mucosa of the 

digestive and reproductive tracts (Goodman and Lefrancois, 1988; Borst et al., 1991).  In 

contrast, human γδ T cells constitute only a relatively small population of up to 10-20% of 

total T cells in the intestinal epithelium (Borst et al., 1991).  While human γδ T cells in 

most peripheral tissues, especially epithelial tissues, majorly express a Vδ1 chain, γδ T 

cells in blood predominantly express a Vδ2 chain preferentially paired with a Vγ9 chain 

(Triebel et al., 1988a; Triebel et al., 1988b; Borst et al., 1989; Casorati et al., 1989; Borst 

et al., 1991).  This apparent link between unique tissue distribution by different subset of 

γδ T cells led to the hypothesis that γδ TCRs with each specific combination of Vγ and Vδ 

chain may be restricted to recognise conserved (self-) antigens of only low variability, as 

opposed to the broad specificities of αβ TCRs and immunoglobulins (Janeway et al., 

1988).  The tissue tropism of different γδ T cell subsets may thus largely depend on the 

prevalence of different target antigens in different tissues.  
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Table 1.1. Distribution and repertoire of γδ T cells in humans and mice 

Peripheral location 
Predominant usage (and pairing, if applicable)  

of Vγ and Vδ gene segments 

Human 

Blood Vγ9/Vδ2* 

Dermis Vδ1 

Gut epithelia Vδ1 and Vδ3 

Liver Vδ1 and Vδ3 

Spleen Vδ1 

Thymus Vδ1 

Mouse 

Adult thymus Diverse 

Dermis Vγ4♯ 

Epidermis Vγ5/Vδ1 

Gut epithelia Vγ7/Vδ4, Vγ7/Vδ5, Vγ7/Vγδ6 and Vγ7/Vγδ7 

Liver Vγ1/Vδ6.3, Vγ4 and Vγ6 

Lung Vγ4 and Vγ6 

Lymph nodes Diverse 

Spleen Vγ1 and Vγ4 

Uterovaginal epithelia Vγ5/Vδ1 

*Lefranc and Rabbitts’ nomenclature for human γδ TCR; ♯Heilig and Tonegawa’s 

nomenclature for mouse γδ TCR.  Adapted from (Hayday, 2000; Bonneville et al., 2010) 

 

  



 14 

1.3.3. Antigen recognition by different subsets of γδ T cells 

Most γδ T cell antigens remain obscure, which severely impinges on our progress in 

understanding γδ T cell responses.  However, significant advances have been made in 

identifying ligands for human γδ T cells.  Vγ9/Vδ2 T cells recognise phosphoantigens 

(Constant et al., 1994; Tanaka et al., 1994), which have been studied extensively.  Other 

human Vδ2+ and Vδ2neg T cells have been described to recognise foreign antigens derived 

from bacteria and virus as well as self-antigens expressed on stressed and transformed 

cells (Table 1.2).  Some Vδ1+ T cells have been reported to exhibit alloreactivity to certain 

polymorphism of MHC molecules including HLA-A2, HLA-A24 and HLA-B27 (Ciccone 

et al., 1989; Spits et al., 1990), and to recognise MHC class I chain-related proteins, e.g. 

MICA and MICB (Groh et al., 1998; Xu et al., 2011).  In addition, some Vδ1+ T cells 

show autoreactivity to CD1c and CD1d molecules and recognise CD1d tetramers loaded 

with α-galactosylceramide (αGalCer) (Uldrich et al., 2013) or sulfatides (Bai et al., 2012; 

Luoma et al., 2013).  Interestingly, although the exact ligand(s) is currently unknown, 

Vδ2neg T cells (including Vδ1+, Vδ3+ and Vδ5+ T cells) were observed to expand 

extensively in patients with cytomegalovirus (CMV) infection and exhibit strong cross-

reactivity against CMV-infected cells and intestinal tumour cells (Halary et al., 2005).  A 

Vγ4/Vδ5+ T cell clone established from PBMCs of a CMV-infected patient showed 

specificity for endothelial protein C receptor (EPCR), a protein that resembles CD1d in its 

capacity to bind phospholipids (Willcox et al., 2012).  Interestingly, the recognition site of 

EPCR by Vγ4/Vδ5 TCR is outside the potential lipid binding pocket, suggesting that 

EPCR itself rather than lipid as the ligand for Vγ4/Vδ5 TCR.  In mouse, a broad diversity 

of antigens for the recognition by different subset of γδ TCRs has been reported (Table 

1.3).  Despite these advances, only a small number of proposed γδ T cell ligands have 

actually been confirmed biochemically and/or structurally. 
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Table 1.2. Antigens recognised by γδ TCR in human and mouse 

γδ T cells Origin Antigen Reference 

Vδ1*  IELs MICA and MICB 
(Groh et al., 1998; Xu 
et al., 2011) 

Vδ1 and 
Vγ4/Vδ1 

Clones and primary 
cells from blood 

HLA-A2, -A24 and -B27 
(Ciccone et al., 1989; 
Spits et al., 1990) 

Vγ1.4/Vδ1 and 
Vγ2/Vδ1 

Clones and primary 
cells from blood 

CD1c  
(Porcelli et al., 1989; 
Faure et al., 1990; 
Spada et al., 2000) 

Vδ1 and 
Vγ5/Vδ1  

Primary cells from 
blood and clone 
transduced with 
Vγ5/Vδ1 TCR 

CD1d tetramers loaded 
with αGalCer 

(Uldrich et al., 2013) 

Vδ1  Blood 
CD1d tetramers loaded 
with sulphatide 

(Bai et al., 2012; 
Luoma et al., 2013) 

Vδ1  
Clones from Lyme 
arthritis synovial fluid 

Lipohexapeptides (Vincent et al., 1998) 

Vδ2 
Blood, TILs and T-
lymphoma cell line 
transduced with γδ TCR 

ULBP4 (Kong et al., 2009) 

Vδ2 
Primary cells from 
blood 

hMSH2 (Dai et al., 2012) 

Vγ9/Vδ2  
Clones and primary 
cells from blood 

Phosphoantigens (IPP, 
HMB-PP) 

(Constant et al., 1994; 
Tanaka et al., 1995; 
Hintz et al., 2001) 

Vγ9/Vδ2  
Clones and primary 
cells from blood 

F1-ATPase associated 
with apolipoprotein A-I, 
ApppI or phosphoantigens 
as nucleotide derivatives 

(Scotet et al., 2005; 
Mookerjee-Basu et al., 
2010; Vantourout et 
al., 2010) 

Vγ9/Vδ2  
Clones and primary 
cells from blood 

Tetanus toxoid 
(Kozbor et al., 1989; 
Holoshitz et al., 1992) 

Vγ9/Vδ2  
Clones and primary 
cells from blood 

OXY, DXS2 or Rv2272 
peptides 

(Xi et al., 2011; Xi et 
al., 2013) 

Vγ1.3/Vδ2  
T hybridoma cell line 
transduced with γδ TCR 

Histidyl-tRNA synthetase (Bruder et al., 2012) 

Vγ4/Vδ5 Clone from blood EPCR (Willcox et al., 2012) 

*Lefranc and Rabbitts’ nomenclature; adapted from (Vantourout and Hayday, 2013; De Libero et 

al., 2014). 
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Table 1.3. Antigens recognised by γδ TCR in mouse 

γδ T cells Origin Antigen Reference 

Vγ1♯ (clones)  
Cardiolipin and  
apolipoprotein H 

(Born et al., 2003) 

Vγ1 (clones)  Insulin peptide (B:9-23) (Zhang et al., 2010) 

Vγ1-Jγ4/Vδ5  Phycoerythrin (Zeng et al., 2012) 

Vγ1/Vδ8 NX6 Cyanine 3 (Zeng et al., 2014) 

Vγ2/Vδ5  Hybridoma LBK5 I-Ek (Matis et al., 1989) 

Vγ2/Vδ8 (clone)  HSV glycoprotein I (Johnson et al., 1992) 

Vγ4/Vδ4 1G9 
4-hydoxy-3-
nitrophenylacetyl 

(Zeng et al., 2014) 

Various 
Hybridomas G8 and 
KN6 

H2-T10, -T22 and -T27 
(Crowley et al., 1997; 
Shin et al., 2005) 

♯Heilig and Tonegawa’s nomenclature for γδ TCR.  Adapted from (Vantourout and Hayday, 2013; 

De Libero et al., 2014). 
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1.3.4. Phosphoantigens as ligands for recognition by Vγ9/Vδ2 T cells via TCR 

Due to their preferential localisation in blood, circulating human Vδ2+ T cells are much 

easier to obtain than predominantly tissue-residing Vδ2neg T cells, and the early 

identification of phosphoantigens as specific agonists that induce activation and expansion 

of Vδ2+ T cells has allowed extensive studies of this γδ T cell subset in vitro and in vivo.  

Phosphoantigens are by far the best characterised class of agonistic molecules activating 

γδ T cells in human and non-human primates (Eberl et al., 2003; Riganti et al., 2012; 

Harly et al., 2014), starting from the observation that Vγ9/Vδ2 T cells expand rapidly and 

considerably in the peripheral blood of patients infected with Mycobacterium tuberculosis.  

By the use of mycobacterial extracts, which is highly active in stimulating Vγ9/Vδ2 T 

cells in vitro, the actual reactive ligand of Vγ9/Vδ2 T cells within these extracts was 

narrowed down to a small lectin-binding compound resistant to proteases (Pfeffer et al., 

1992) but sensitive to periodic acid oxidation and to alkaline phosphatase treatment 

(Constant et al., 1994).  In addition, the bioactivity of this compound was found to depend 

essentially on the presence of phosphate moieties (Schoel et al., 1994).  Following from 

these findings, isopentenyl pyrophosphate (IPP), a product of isoprenoid biosynthesis, and 

its derivative dimethylallyl pyrophosphate (DMAPP) were the first identified 

phosphoantigens produced both in microbial and mammalian cells (Tanaka et al., 1995).  

However, microbial IPP levels often do not reach the minimum required for effective T 

cell activation in vitro, which ruled out a major role for IPP itself in infections (Jomaa et 

al., 1999).  Instead, it became apparent that only extracts from bacteria possessing a newly 

discovered, alternative pathway of IPP synthesis were capable of stimulating Vγ9/Vδ2 T 

cells but not extracts from bacteria utilising the classical mevalonate pathway of IPP 

synthesis.  The final demonstration that the non-mevalonate pathway was indeed the 

source of the natural Vγ9/Vδ2 T cell ligand came from genetically engineered E. coli 

strains (Eberl et al., 2003), which ultimately led to the identification of a novel microbial 

metabolite, the IPP precursor (E)-4-hydroxy-3-methyl-2-butenyl pyrophosphate (HMB-

PP), as the most potent agonistic ligand for Vγ9/Vδ2 T cells (Hintz et al., 2001).   

 

Apart from bacterial extracts, a broad spectrum of tumour cells, mainly lymphoma, was 

observed to be stimulating Vγ9/Vδ2 T cells both in vitro (Fisch et al., 1990; De Libero et 

al., 1991) and in vivo (Malkovska et al., 1992).  Based on the observation that the 

mevalonate pathway is frequently dysregulated with increased expression of rate limiting 

enzyme, HMG-CoA reductase, in haematological malignancies (Harwood et al., 1991) 
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and mammary carcinoma (Asslan et al., 1999), Gober et al. hypothesised that 

accumulation of IPP in tumour cells might be the target for Vγ9/Vδ2 T cells (Gober et al., 

2003).  Indeed, manipulation of the mevalonate pathway in normal and malignant cells 

with statins that inhibit HMG-CoA reductase or with aminobisphosphonates (nBPs, 

analogues of pyrophosphates) such as pamidronate and zoledronate that inhibit farnesyl 

pyrophosphate synthase (FPPS) significantly abrogates or enhances, respectively, 

Vγ9/Vδ2 T cell responses to different cancer targets (Kunzmann et al., 1999; Kunzmann 

et al., 2000; Gober et al., 2003).  The concept of intracellular IPP accumulation as signal 

for Vγ9/Vδ2 T cells was eventually experimentally proven by elegant approaches based 

on mass spectrometry (Monkkonen et al., 2007; Roelofs et al., 2009; Benzaid et al., 2011).  

By screening in vitro a large panel of cancer cell lines derived from haematological 

malignancies and carcinomas of different origins, Idrees et al. further confirmed that 

inhibition of FPPS by pretreatment of cancer cells with zoledronate at sub-lethal doses is 

sufficient for effective enhancement of their potential to stimulate Vγ9/Vδ2 T cell 

responses, including cytotoxicity and cytokine secretion (Idrees et al., 2013).   

 

With their potent anti-resorptive effects, nBPs such as alendronate (Fosamax), 

pamidronate (Aredia) and zoledronate (Zometa/Aclasta) have been widely used in treating 

postmenopausal osteoporosis and tumour-induced osteolysis, including metastatic breast 

cancer.  Kunzmann et al. first described an expansion of Vγ9/Vδ2 T cells in patients with 

multiple myeloma, hyperparathyroidism or osteoporosis receiving intravenous injections 

of nBPs (Kunzmann et al., 1999), and proposed a role for these cells in mediating the flu-

like acute phase responses frequently seen in nBP-treated individuals (Reid et al., 2010). 

Indeed, activation of Vγ9/Vδ2 T cells and monocytes, which serve as efficient APCs for 

the presentation of nBPs to Vγ9/Vδ2 T cells (Roelofs et al., 2009), were found to be key 

determinants of the acute phase response in osteoporosis patients (in the absence of 

infection and cancer as confounding conditions) treated with zoledronate (Thompson et al., 

2011; Welton et al., 2013b).   
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Figure 1.1. Mevalonate and MEP pathways of isoprenoid biosynthesis and their implication 

in activation of Vγ9/Vδ2 T cells.  Mevalonate and MEP pathways are vital for the biosynthesis of 

isoprenoid products such as cholesterol.  The two pathways are mutually exclusive (except in 

Listeria monocytogenes).  The MEP pathway is found in many bacteria, in chloroplasts of plants 

and plastids of apicomplexan protozoa (e.g. malaria parasites).  Instead, the mevalonate pathway 

is used by all eukaryotic cells in their cytoplasm, and by those bacteria that do not use the MEP 
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pathway.  While HMB-PP is the most potent agonistic ligand of Vγ9/Vδ2 T cells, IPP and DMAPP 

as well serve as ligands for activation of Vγ9/Vδ2 T cells but with lower bioactivity.  Thus, statins 

and nBPs, which inhibit HMG-CoA reductase and FPPS, respectively, provide a good opportunity 

for therapeutically modulating the susceptibility of cancer cells to Vγ9/Vδ2 T cell-mediated 

cytotoxicity.   

 

 

1.3.5. Presentation of phosphoantigens to Vγ9/Vδ2 T cells by BTN3 

Although the first phosphoantigens were already identified more than 20 years ago, the 

molecular mechanisms of how they actually stimulate Vγ9/Vδ2 T cells is only now 

becoming clear.  Morita et al. initially showed that stimulation of Vγ9/Vδ2 T cells by 

exogenous phosphoantigens required an extracellular presentation machinery that does not 

involve antigen uptake, classical MHC class I and II pathways and CD1 family proteins 

(Morita et al., 1995).  Later, this unknown phosphoantigen-presenting molecule on the cell 

surface was characterised to be species-specific to humans and higher primates 

(Miyagawa et al., 2001; Kato et al., 2003; Green et al., 2004).  The first interesting 

candidate proposed was mitochondrial F1-ATPase, which translocates to the cell surface 

for the presentation of exogenous and endogenous phosphoantigens in the form of 

nucleotide conjugates (Scotet et al., 2005; Mookerjee-Basu et al., 2010).  This model 

provided an intriguing notion of how damaged and transformed cell possibly convert 

metabolic stress signals to activate Vγ9/Vδ2 T cells.  However, the fact that 

phosphoantigens need to be conjugated to ATP to become ”presented” by F1-ATPase 

(Vantourout et al., 2010) suggests that this molecule may not be directly involved in 

presenting phosphoantigens to Vγ9/Vδ2 T cells and may rather play a role in shuttling 

phosphoantigens across the cell membrane.   

 

More recently, butyrophilin 3A1 (BTN3A1; CD277) was identified as the molecule that is 

likely to present both exogenous and endogenous phosphoantigens to Vγ9/Vδ2 T cells 

(Harly et al., 2012; Vavassori et al., 2013; Sandstrom et al., 2014; Rhodes et al., 2015).  

With three isoforms (A1, A2 and A3), BTN3A proteins share a highly conserved B7-

family immunoglobulin-like extracellular domain composed of an IgV domain at the N-

terminus and a membrane-proximal IgC domain at the C-terminus, connected to a single 

transmembrane domain.  This transmembrane domain links to a cytoplasmic B30.2 

(PRYSPRY) domain in BTN3A1 and BTN3A3 but not BTN3A2 (Rhodes et al., 2001; 

Palakodeti et al., 2012).  BTN3A proteins are widely expressed by tissue-resident 
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macrophages, monocytes, lymphocytes, NK cells, endocrine tissues, epithelial cells in 

breast, colon, intestine and kidney, and endothelial cells stimulated by DCs (Compte et al., 

2004; Rhodes et al., 2015).  Interestingly, enhanced expression of BTN3A was observed 

in tumours such as breast and colon cancer, suggesting their possible involvement in the 

recognition of cancer cells by Vγ9/Vδ2 T cells (Rhodes et al., 2015).  Functionally, 

BTN3A and related butyrophilin-like proteins have been reviewed to exhibit diverse roles 

in modulation of immune responses by either activating or inhibiting immune cells 

(Abeler-Dorner et al., 2012; Arnett and Viney, 2014).  The first line of evidence showing 

the role of BTN3A in presenting phosphoantigens to Vγ9/Vδ2 T cells came from the 

observation that an agonistic mouse anti-BTN3A antibody (clone 20.1) induced a 

conformational change of BTN3, which triggered an intracellular signalling cascade 

mimicking phosphoantigen-mediated activation of Vγ9/Vδ2 T cells (Figure 1.2) (Harly et 

al., 2012; Palakodeti et al., 2012; Decaup et al., 2014).  In contrast, an antagonistic anti-

BTN3A antibody (clone 103.2) was found to abrogate the activation of Vγ9/Vδ2 T cells 

by stabilising the inactive conformation of the BTN3A molecule on the cell surface 

(Figure 1.2) (Harly et al., 2012; Palakodeti et al., 2012).   

 

 

 

 

 

 

 

 

 

 
 

Figure 1.2. Proposed action model for agonist 20.1 and antagonist 103.2 anti-BTN3A 

antibodies in stimulating Vγ9/Vδ2 T cells (Gu et al., 2014).  Without stimulation, BTN3 

molecules form an inactive head-to tail dimer conformation.  20.1 antibodies disrupt this inactive 

conformation and induce the mutimerisation of BTN3 molecules by linking each BTN3 molecule at 

the IgV domain to form an active conformation, which activates Vγ9/Vδ2 T cells.  On the contrary, 

103.2 antibodies efficiently abrogate the activation Vγ9/Vδ2 T cells by stabilising the inactive 

conformation and blocking the formation of the active conformation.   
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Currently, there are two conflicting models proposed to explain how BTN3 molecules 

actually present phosphoantigens to Vγ9/Vδ2 T cells (Figure 1.3) (De Libero et al., 2014; 

Gu et al., 2014; Harly et al., 2014).  Vavassori et al. firstly described that for the 

recognition of phosphoantigens by the Vγ9/Vδ2 TCR, BTN3A1 molecules bind IPP and 

HMB-PP on their extracellular groove, similarly to classical antigen presentation via 

MHC or CD1 molecules (Vavassori et al., 2013).  However, observations from other 

laboratories have contradicted this direct presentation model by showing that instead of 

binding to the outer groove of the extracellular IgV domain as reported by Vavassori et al., 

IPP and HMB-PP actually bind to the intracellular B30.2 domain (Wang et al., 2013; 

Hsiao et al., 2014; Sandstrom et al., 2014; Rhodes et al., 2015).  Of note, the binding 

affinity of HMB-PP to the purified B30.2 domain was found to be at least 1,000 fold 

higher than that of IPP, in close agreement with the 10,000 fold higher bioactivity of 

soluble HMB-PP on cultured Vγ9/Vδ2 T cells compared to IPP (Hsiao et al., 2014; 

Sandstrom et al., 2014; Rhodes et al., 2015).  Similarly to the 20.1 agonistic antibodies, 

binding of phosphoantigens to the B30.2 domain is believed to induce the active 

conformation change responsible for the stimulation of Vγ9/Vδ2 T cells through the 

extracellular domain, and concomitantly to reduce the mobility of BTN3A1 at the cell 

surface for stable presentation to Vγ9/Vδ2 T cells (Harly et al., 2012; Sandstrom et al., 

2014).  These two models may seem contradictory but actually are not necessarily mutual 

exclusive.  As negative charged phosphoantigens are unlikely to cross the cell membrane 

in a passive manner, an unknown transporter on the cell surface is required to internalise 

exogenous phosphoantigens for the binding to intracellular B30.2 domain.  In this case, 

although with low affinity, direct binding to the extracellular IgV domain might 

compromise the internalisation of phosphoantigens in certain situations and provide more 

rapid screening of infected or transformed cells by Vγ9/Vδ2 T cells (De Libero et al., 

2014).   

 

Apart from BTN3A1 itself as the main protein that directly interacts with phosphoantigens, 

additional molecules may be required and contribute to the activation of Vγ9/Vδ2 T cells 

by phosphoantigens.  Riano et al. showed that a human-specific molecule(s) encoded on 

chromosome 6 is essential for successful activation of Vγ9/Vδ2 T cells in the presence of 

phosphoantigens (Riano et al., 2014).  However, it will be challenging to narrow down 

this list of potential candidates, given the extensive number of immune-related genes on 

chromosome 6 including the MHC locus with MHC class I and class II, MHC-like genes 
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(MICA, MICB), genes involved in antigen processing (e.g. TAP and TAP binding protein, 

cytokines (TNF-α, LT-α) and the BTN family.  By yeast-two-hybrid screenings, Rhodes et 

al. demonstrated that binding of periplakin, a cytoskeletal adaptor, to a region upstream 

the B30.2 domain is necessarily involved in the presentation of phosphoantigens by 

BTN3A molecules to Vγ9/Vδ2 T cells, possibly by recruiting and stabilising the 

dimerisation of BTN3A molecules on the cell surface (Rhodes et al., 2015).  These 

findings suggest that the presentation of phosphoantigens by BTN3A molecules is 

complex and involves additional molecules that remain to be identified. 
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Figure 1.3. Currently proposed models for the presentation of phosphoantigens to Vγ9/Vδ2 

TCR by BTN3A molecules on the cell surface (Harly et al., 2014).  (A) Endogenous 

phosphoantigens and exogenous phosphoantigens internalised by unknown membrane 

transporter(s) bind to the intracellular B30.2 domain of BTN3A1 and induce conformational 

changes at the extracellular domain, which may modify the distribution and multimerisation of 

active BTN3A molecules on the cell surface in association with currently unidentified molecular 

partner(s).  (B) Exogenous phosphoantigens and endogenous phosphoantigens translocated by 

unknown membrane transporter(s) are loaded onto the extracellular IgV domain of BTN3 

molecules for classical MHC-like presentation to Vγ9/Vδ2 T cells.  (C) Combining the hypotheses 

described in (A) and (B), endogenous phosphoantigens firstly bind to the B30.2 domain for 

induction of BTN3A1 reactivity and then become exported by unknown membrane transporter(s) 

and loaded onto the extracellular IgV domain.  
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1.3.6. Stimuli activating Vγ9/Vδ2 γδ T cells  

In addition to stimulation of phosphoantigens through the TCR, γδ T cells also express a 

wild range of innate-like receptors recognising stress-induced surface markers, pathogen-

associated molecular patterns (PAMPs) and damage-associated molecular patterns 

(DAMPs) (Rey et al., 2009).   

 

Most γδ T cells express the C-type lectin family receptor nature killer group 2D (NKG2D), 

often in conjunction with other NK receptors including NKp30, NKp44 or NKp46, which 

allow them to recognise a broad range of stressed and transformed cells in a TCR-

independent fashion (Hudspeth et al., 2013). The importance of NKG2D for γδ T cell 

mediated immune surveillance is particularly apparent in mouse models of carcinogenesis 

(Girardi et al., 2001) and cytotoxicity against human cancer cells (Corvaisier et al., 2005; 

Viey et al., 2005; Nedellec et al., 2010b), although there is increasing evidence that 

NKG2D also plays a role in the detection of infected cells (Qin et al., 2009; Bessoles et al., 

2011).  As an activatory receptor, human NKG2D recognises and binds MHC class I 

related proteins (MICA and MICB) and UL16-binding proteins (ULBP1-4) and induces 

the cytotoxicity and cytokine secretion of γδ T cells in response to infected and 

transformed cells (Groh et al., 1998; Corvaisier et al., 2005; Wrobel et al., 2007; Kong et 

al., 2009; Xu et al., 2011).  Like NK cells, γδ T cells also express NKG2A and 

immunoglobulin-like transcript 2 (ILT2), which both deliver inhibitory signals upon 

recognition and binding to MHC class I molecules, allowing them to recognise 

transformed cells with defective MHC class I expression (Nedellec et al., 2010a).  This 

action greatly complements the frequent failure of MHC-restricted surveillance mediated 

by cytotoxic CD8+ T cells.  The expression of DNAX Accessory Molecule-1 (DNAM-

1/CD226) allows γδ T cells to recognise PDGF- and VEGF-related receptors (PVR/CD96) 

and Nectin-2 expressed by myeloid leukaemia blasts (Gertner-Dardenne et al., 2012) and 

Necl-like-5 expressed by hepatocarcinoma cells (Toutirais et al., 2009), and exhibit potent 

cytotoxicity. 

 

1.3.7. Memory of Vγ9/Vδ2 T cells  

Although γδ T cells function in an innate-like manner, the observation that they respond 

and expand more rapidly and in stronger magnitude to secondary mycobacterial infection 

suggests the existence of memory-like adaptive immunity in Vγ9/Vδ2 T cells (Shen et al., 
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2002; Chen and Letvin, 2003).  Indeed, like αβ T cells, Vγ9/Vδ2 T cells can be classified 

into four different subsets including naïve T cells (Tnaive), central memory T cells (TCM), 

effector memory T cells (TEM) and terminally differentiated effector memory T cells 

(TEMRA), according to their CD45RA+ CD27+, CD45RA− CD27+, CD45RA− CD27− and 

CD45RA+ CD27− phenotype, respectively (Dieli et al., 2003).  Each of these Vγ9/Vδ2 T 

cell memory subsets exhibits distinct functions in response to stimulation by 

phosphoantigens (Table 1.4) (Dieli et al., 2003; Angelini et al., 2004; Battistini et al., 

2005).  Upon stimulation, Vγ9/Vδ2 T cells are believed to differentiate sequentially from 

Tnaive, to TCM, TEM and finally TEMRA cells (Dieli et al., 2003).  Functionally, Tnaive cells 

display a lymph node (LN) homing phenotype and are predominantly found in LN; TCM 

cells are thought to represent an antigen-primed subset predominantly found in peripheral 

blood with the ability to respond rapidly to restimulation in the draining LNs; TEM and 

TEMRA cells represent functionally matured subsets that patrol peripheral inflammatory 

sites and exert immediate cytotoxicity or cytokine secretion.  Of these effector cells, TEM 

cells exhibit a strong ability to secrete IFN-γ but not cytotoxic molecules, and their lack of 

NCR expression suggests that this subset is mainly activated through the TCR.  As 

opposed to TEM cells, TEMRA cells show only low levels of IFN-γ secretion and 

proliferation upon stimulation but release abundant amounts of cytotoxic molecules.  The 

broad expression of NCRs by TEMRA cells leads to the speculation that this subset 

differentiates to acquire a wider spectrum for recognising targets at inflammatory sites.  

Of note, different from effector αβ TEMRA cells, which have a short life span and are 

typically only found during ongoing inflammatory responses, cytotoxic γδ TEMRA cells 

exhibit surprising persistence in vivo and are largely enriched in inflammatory tissues 

(Dieli et al., 2003).  This enhanced survival suggests the potential of potent efficacy in 

adoptive transfer of effector γδ T cells or in vivo expansion of γδ TEMRA and TEM cells in 

cancer patients treated with zoledronate and IL-2 (Dieli et al., 2007; Santini et al., 2009; 

Meraviglia et al., 2010; Welton et al., 2013a). 
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Table 1.4. Phenotypic and functional characteristics of different Vγ9/Vδ2 T cell 
memory subsets 

 Tnaive TCM TEM TEMRA 

Memory 
phenotype 

CD45RA+ 
CD27+; 

CD45RO− 

CD45RA− 
CD27+; 

CD45RO+ 

CD45RA− 
CD27−; 

CD45RO+ 

CD45RA+ 
CD27−; 

CD45RO+ 

Chemokine and 
homing 
receptors 

CCR7 and 
CD62L 

CCR7 and 
CD62L; 25% 
positive for 
CCR5 and 
CXCR3 

CCR7lo and 
CD62Llo; CCR2, 
CCR5, CCR6 and 

CXCR3 

CCR5 and 
CXCR3 

Localisation in 
periphery  

Predominant 
subset in LN 

Predominant 
subset in blood 

Inflammatory 
sites 

Inflammatory 
sites 

Function upon 
stimulation: 

    

• Proliferation Intermediate High Low None 

• IFN-γ 
secretion 

None Low High Low 

• BLT esterase None Minimal Low High 

• Perforin − − Low High 

• NK receptors − − 
NKG2Alo and 

CD94lo 

CD16+, CD94+, 
NKG2A+, 
CD158+, 
NKAT2+ 

−: Data not provided in the references listed 
Table summarised from data shown in (Dieli et al., 2003; Angelini et al., 2004; Battistini et al., 
2005) 
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1.3.8. Functional plasticity of effector Vγ9/Vδ2 T cells against cancer 

Depending on the culture conditions, γδ T cells can be polarised to function as (i) 

cytotoxic effector clearing infected and transformed cells, (ii) immune modulators 

secreting pro-inflammatory cytokines such as IFN-γ and TNF-α and interacting with other 

immune cells for induction and enhancement their maturation and specific function, and 

(iii) APCs to prime and induce adaptive CD4+ and CD8+ T cell immunity (Lafont et al., 

2014; Tyler et al., 2015).   

 

γδ T cells have been well documented for their profound ability against a wide spectrum 

of solid tumours and haematological malignancies including breast cancer (Beck et al., 

2010; Meraviglia et al., 2010; Benzaid et al., 2011; Capietto et al., 2011), bladder cancer 

(Yuasa et al., 2009), colon cancer (Corvaisier et al., 2005; Devaud et al., 2009; Devaud et 

al., 2013), lung cancer (Kang et al., 2009; Dokouhaki et al., 2010; Nakajima et al., 2010; 

Sakamoto et al., 2011), melanoma (Kabelitz et al., 2004; Dudley et al., 2005; Cordova et 

al., 2012), ovarian cancer (Deniger et al., 2014; Parente-Pereira et al., 2014), pancreatic 

cancer (Kabelitz et al., 2004; Oberg et al., 2014), prostate cancer (Dieli et al., 2007; 

Santolaria et al., 2013), renal cell carcinoma (Viey et al., 2005; Kobayashi et al., 2007; 

Bennouna et al., 2008; Kobayashi et al., 2011; Lang et al., 2011; Kunzmann et al., 2012), 

skin cancer (Devaud et al., 2009), acute myeloid leukaemia (Kunzmann et al., 2012), 

chronic myelogenous leukaemia (D'Asaro et al., 2010), Epstein-Barr virus-induced B cell 

lymphoproliferative disease (Xiang et al., 2014), acute lymphoblastic leukaemia (Deniger 

et al., 2013), lymphoma (Kunzmann and Wilhelm, 2005) and multiple myeloma 

(Kunzmann et al., 2000; Abe et al., 2009; Kunzmann et al., 2012).   

 

The direct cytotoxicity of γδ T cells is majorly mediated through the granule exocytosis 

pathway and the death receptor dependent pathway.  Contained within the cytotoxic 

granules secreted by activated immune effector cells, perforin and granulysin initiate 

cytotoxicity by creating holes in the membrane of target cancer cells, thereby allowing the 

entry of granzyme A/B for the induction of caspase-dependent apoptosis.  γδ T cells 

stimulated via the TCR by phosphoantigens or through the NK-like receptor DNAM-1 

efficiently secrete cytotoxic granules containing perforin and granzyme B for the killing of 

target cancer cells (Viey et al., 2005; Gertner et al., 2007; Gertner-Dardenne et al., 2012).  

In addition, γδ T cells activated by cancer cells via TCR or NKG2D recognition can also 

produce TRAIL and/or FasL in soluble and membrane-bound form (Xiang et al., 2014).  
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Stimulation of Vγ9/Vδ2 T cells with phosphoantigens plus IL-2 and IL-21 efficiently 

induces the secretion of perforin and granzyme A/B concomitantly with an up-regulation 

of NKG2D, NKG2A and ILT2 on cell surface, suggesting a possible synergy between 

NKG2D and TCR in the activation of Vγ9/Vδ2 T cells (Thedrez et al., 2009).  However, 

in a model of TRAIL-mediated lysis of H460 lung cancer cells by γδ T cells upon 

recognition of ULBP2 via NKG2D (Dokouhaki et al., 2013), concomitant NKG2D and 

TCR triggering did not lead to increased TRAIL secretion, arguing against a synergism 

between the NKG2D and TCR pathways in this model (Dokouhaki et al., 2013). The 

question of whether NKG2D acts independently from the TCR in mediating tumour 

recognition and cytotoxicity, or plays a rather co-stimulatory role likely depends on the 

context and requires further clarification, especially with regard as to how these pathways 

can be manipulated for novel therapies (Chen et al., 2013).   

 

Amongst the cytotoxic molecules secreted by γδ T cells, TRAIL was originally identified 

as a novel γδ T-cell expressed cytotoxic effector molecule, in a set of microarray analyses 

of human peripheral blood γδ T cells stimulated under different conditions, and which 

showed that activated γδ T cells displaying a pro-inflammatory profile express substantial 

levels of TRAIL alongside IFN-γ and TNF-α (Dieli et al., 2007; Vermijlen et al., 2007).  

Of note, these studies also implied a role for TRAIL in vivo in cancer patients receiving 

intravenous zoledronate in combination with low dose IL-2, whereby improved clinical 

outcome was associated not only with higher numbers of effector/memory γδ T cells but 

also with serum levels of TRAIL (Dieli et al., 2007).  TRAIL predominantly acts on 

tumour cells whilst sparing most healthy tissues and is thus a promising candidate for 

targeted cancer therapy, which is receiving substantial attention for the treatment of 

colorectal, cervical, pancreatic, liver, lung, breast and ovarian cancer as well as lymphoma 

and multiple myeloma.  In fact, the selective efficacy of certain compounds such as 

histone deacetylase inhibitors and retinoids against cancer cells involves TRAIL, thus 

identifying the TRAIL signalling pathway as a major drug-responsive tumour defence 

system (Nebbioso et al., 2005).  Consequently, clinical trials are being conducted using 

recombinant TRAIL itself or agonistic monoclonal antibodies acting on either TRAIL-R1 

or TRAIL-R2, with excellent safety profiles (den Hollander et al., 2013).  However, 

clinical efficacy has so far been comparatively modest, possibly in part due to the relative 

resistance of many cancer cells to TRAIL-induced apoptosis, and sensitisation strategies 

are hence being developed to widen the therapeutic potential (Bucur et al., 2006).  Of 
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note, resistance to TRAIL can be overcome by IFN-γ (Taieb et al., 2006), which is 

produced in high amounts by activated T cells including pro-inflammatory γδ T cells 

(Dieli et al., 2007; Vermijlen et al., 2007), and which is positively reinforced by signalling 

via TRAIL, and vice versa (Chou et al., 2001).  Indeed, the combination of an agonistic 

anti-TRAIL receptor antibody and the induction of IFN-γ producing T cells has been 

shown to eradicate established tumours in mice (Uno et al., 2006).  Other advances 

include combination therapies of TRAIL-receptor targeting agents with standard 

chemotherapy or radiotherapy as well as synergistic approaches to specifically interfere 

with the NF-κB, Akt or MAPK pathways, the proteasome, or key pro- and anti-apoptotic 

players such as c-FLIP, p53 and Bcl-2 family members (den Hollander et al., 2013).  In 

this context, Piggott et al. recently demonstrated that genetic suppression of c-FLIP not 

only efficiently sensitises breast cancer cells to TRAIL-mediated killing but also 

selectively eliminates the functional pool of breast cancer stem cells (Piggott et al., 2011).  

These findings open new avenues for targeted combination therapies specifically directed 

at the stem cell population to prevent disease recurrence and distant metastases, and 

ultimately reduce morbidity and mortality.   
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1.4. Human γδ T cells as professional antigen presenting cells 

1.4.1. Antigen presentation  

Efficient antigen presentation is the key to successful and potent adaptive immune 

responses against infection and cancer.  Dendritic cells (DCs), macrophages and B cells 

have been well-characterised as professional antigen-presenting cells (APCs) for their 

unique ability to stimulate antigen-specific functional differentiation of naïve αβ T cells 

and to induce rapid responses of memory αβ T cells against infected, stressed and 

transformed cells expressing cognate antigens.  These professional APCs patrol peripheral 

tissues in homeostasis and are rapidly recruited to sites of infection and inflammation.  

Apart from the APCs circulating around the body, there is another subset of tissue-resident 

APCs permanently inhabit in peripherals for immediate sensing of infections and tissue 

damages.  Upon stimulation at inflammatory sites, APCs efficiently process endogenous 

antigens and acquire exogenous antigens by endocytosis or phagocytosis and process them 

into peptides of appropriate size for loading onto MHC class I and class II molecules and 

subsequent presentation to CD8 and CD4 T cells, respectively.  In addition, they actively 

process endogenous antigens for cross-presentation to CD8 T cells through MHC class I.  

While all nucleated cells express MHC class I and many cells in the body are able to 

express MHC class II, only professional APCs are unique in providing a second signal 

through co-stimulatory molecules on their cell surface, e.g. B7 family molecules 

CD80/CD86, CD40, CD70 and CD83, in conjunction with a third signal through secretion 

of different instructive cytokines polarising T cell differentiation.  In addition, APCs are 

able to acquire a specific chemokine expression profile for homing to secondary lymphoid 

organs (CCR7) and subsequent priming of naïve T cells in the draining lymph node. 

 

Antigen presentation can be classified into three main categories depending on the origin 

of antigens and the recipient cell subsets to antigen presentation: (i) presentation of 

endogenous antigens to CD8 T cells by MHC class I molecules, (ii) presentation of 

exogenous antigens to CD4 T cells by MHC class II molecules, and (iii) cross-

presentation of exogenous antigens to CD8 T cells by MHC class I molecules.  The 

process of antigen presentation and cross-presentation have been extensively described 

and reviewed (Harding and Boom, 2010; Neefjes et al., 2011; Joffre et al., 2012).  For 

antigen presentation to CD8 T cells (Neefjes et al., 2011), endogenous proteins (including 

cellular or viral proteins, cancer neoantigens and mis-folded proteins) are fragmented into 
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small peptides by the proteasome under homeostasis or by the immunoproteasome under 

inflammatory conditions.  Generated peptides in the cytosolic pool are then sampled and 

modified to appropriate sizes for transportation into the ER via the transporter associated 

with antigen processing (TAP), followed by assembly with MHC class I molecules.  

Loaded MHC class I molecules with stable structure are subsequently transported to the 

cell membrane for presentation to CD8 T cells.  In contrast, for antigen presentation to 

CD4 T cells (Harding and Boom, 2010; Neefjes et al., 2011), exogenous material is taken 

up by APCs mainly via phagocytosis and endocytosis and then degraded into small 

peptides by proteases in the acidic environment generated during a series of fusions 

between phagosomes and endosomes with lysosomes.  At the same time, MHC class II 

molecules stabilised by invariant chain are transported from the ER into phagolysosome 

and endolysosome, where exogenous antigens are properly processed.  The invariant 

chains on MHC class II molecules are then exchanged by antigenic peptides, and mature 

peptide-MHC class II complexes are delivered to the cell membrane for presentation to 

CD4 T cells. 

 

Cross-presentation of exogenous material to CD8 T cells is a relatively new concept and 

not completely understood.  However, the observations so far have demonstrated that 

cross-presentation can proceed via two main pathways: the vacuolar pathway and the 

cytosolic pathway (Joffre et al., 2012).  After being taken up by phagocytosis, exogenous 

antigens in phagosomes may directly enter the vacuolar pathway and become degraded 

into peptides for assembly with MHC class I molecules in the phagosomes.  Otherwise, 

through cytosolic pathway, exogenous antigens in phagosomes are released into the 

cytosol from phagosomes, where they are degraded into peptides by the proteasome or 

immunoproteasome.  These peptides are then transported to the ER via TAP or back into 

phagosomes for assembly with MHC class I molecules.  Assembled peptide-MHC class I 

complexes from both vacuolar pathway and cytosolic pathway are eventually transported 

to the cell surface for presentation to CD8 T cells.   

 

In addition to the classical APCs such as DCs and macrophages, human γδ T cells were 

recently identified as another cell type capable of acting as professional APC (Brandes et 

al., 2005; Moser and Eberl, 2007, 2011).  In the following sections, I will review the 

evidences supporting the APC features of γδ T cells in triggering CD4 and CD8 T cell 

responses through antigen presentation by MHC class II molecules and cross-presentation 
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by MHC class I molecules, respectively.  

 

1.4.2. Acquisition of APC characteristics by γδ T cells 

The first evidence showing the possibility that human γδ T cells, specifically Vγ9/Vδ2 T 

cells, isolated from peripheral blood of healthy donors can function as APCs came from 

the observation of their up-regulation of APC-associated markers including antigen 

presenting molecules, MHC class I and II; co-stimulatory molecules, CD40, CD80/86, 

CD83, CDw137L (4-1BBL); and adhesion molecules CD11a/b/c and CD54, upon 

stimulation with HMB-PP, IPP or zoledronate (Brandes et al., 2005; Landmeier et al., 

2009; Wu et al., 2009b; Himoudi et al., 2012; Schneiders et al., 2014; Muto et al., 2015).  

Different from DCs, which constitutively express MHC class II molecules, γδ T cells only 

start to produce and express MHC class II molecules on their surface when activated 

(Brandes et al., 2005).  Expression or up-regulation of APC-associated markers was also 

observed in γδ T cells isolated from tonsils (Brandes et al., 2005) and in blood from 

patients with rheumatoid arthritis (Hu et al., 2012), melanoma (Khan et al., 2014a) and 

gastric cancer (Mao et al., 2014), with or without ex vivo re-stimulations by 

phosphoantigen, supporting the physiological relevance of the APC function of γδ T cells 

in different diseases.  However, apart from the expression of APC-associated markers, 

direct evidence of antigen uptake, processing and presentation by γδ T cells is necessary to 

prove their APC function.   

 

1.4.3. Uptake of exogenous antigens by γδ T cells 

The ability of γδ T cells to take up exogenous materials by endocytosis is demonstrated by 

uptake of soluble BSA (Meuter et al., 2010) and OVA (Muto et al., 2015) conjugated with 

different fluorochromes.  The abrogation of fluorochrome-conjugated BSA uptake by 

dimethyl amiloride but not cytochalasin D indicates that this uptake of exogenous BSA is 

specifically mediated by macropinocytosis rather than phagocytosis, which largely involve 

actin polymerisation and rearrangement (Meuter et al., 2010).  This ability to take up 

extracellular material by macropinocytosis is supported by the observation of dendrite-like 

formations upon γδ T cell stimulation (Brandes et al., 2005; Wu et al., 2009b), which is a 

classic morphology of mature DCs functionally contributing to their ability to sample 

antigens in the surrounding microenvironment.  In addition to soluble proteins, γδ T cells 

have been shown to take up influenza virions and exogenous debris of cells infected by 
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influenza virus (Meuter et al., 2010) as well as material released by killed tumour cells 

(Brandes et al., 2005; Wu et al., 2009b).  Phagocytosis is one of the main functional 

characteristics of APCs such as tissue resident DCs and macrophages and non-APC 

scavenger cells like neutrophils, allowing them to sample pathogenic antigens in 

peripheral tissues (Rabinovitch, 1995).  Wu et al. showed that γδ T cells are able to 

phagocytose Escherichia coli bacteria and synthetic latex beads with a size of 1 µm (Wu 

et al., 2009b), indicating that macropinocytosis as well as phagocytosis may be used for 

antigen uptake by γδ T cells depending on the size of foreign material.  In addition, γδ T 

cells express the scavenger receptor CD36 (Muto et al., 2015), which is essentially 

involved in the phagocytosis of apoptotic cells by immature DCs and macrophages (Albert 

et al., 1998; Greenberg et al., 2006).  Furthermore, γδ T cells have been shown to obtain 

membrane fragments from other cells during the formation of cell-cell contacts by 

trogocytosis (Poupot et al., 2005; D'Asaro et al., 2010; Himoudi et al., 2012; Mao et al., 

2014; Schneiders et al., 2014).  These studies clearly demonstrate the ability of γδ T cells 

to acquire exogenous material from the local microenvironment.  

 

1.4.4. Intracellular trafficking and processing of exogenous antigens in γδ T cells 

Direct evidence showing the processing of endocytosed antigens by γδ T cells came from 

the laboratory of Prof. Bernhard Moser.  Meuter et al. elegantly elucidated the passage of 

endocytosed BSA from early to late endosomes/lysosomes in γδ T cells using confocal 

microscopy by co-staining for markers associated with early endosome, late endosome, 

lysosome and recycling endosomes (Meuter et al., 2010).  Furthermore, by tracing the 

translocation and retention of BSA conjugated with pH-sensitive or pH-independent 

fluorochromes in the presence of specific inhibitors of the proteasome, endosomal 

acidification and serine/cysteine proteases, they demonstrated a delayed lysosomal 

acidification in γδ T cells that prevents proteolysis and in turn enhances export of antigens 

from lysoendosomes into the cytosol for further degradation (Meuter et al., 2010).  This 

efficient export into the cytosol was not seen in conventional monocyte-derived DCs 

serving as control.  The treatment of γδ T cells with cytochrome c (cyt c) induced 

significant apoptosis, indicating the export of exogenous cyt c from endosomes to cytosol, 

where it functionally triggers apoptosis (Meuter et al., 2010).  In addition, the synthesis 

and translocation of MHC class I molecules from the Golgi complex to the cell membrane 

were traced in γδ T cells upon stimulation with IPP presented by feeder cells.  De novo 
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synthesised MHC class I molecules co-localised with the trans-Golgi network throughout 

the course of activation, indirectly showing the loading of processed peptides on MHC 

class I molecules for antigen presentation on the cell surface (Brandes et al., 2009).  These 

results suggest that γδ T cells favour the cytosolic pathway for cross-presentation of 

exogenous antigens to CD8 T cells.  With regard to the processing of antigens for loading 

onto MHC class II molecules, inhibition of endosomal and lysosomal acidification by 

chloroquine efficiently abrogated the presentation of tetanus toxoid (TT) and 

Mycobacterium tuberculosis-purified protein derivate (PPD) to CD4 T cells by γδ T cells 

(Brandes et al., 2005). 

 

1.4.5. Antigen presentation to CD4 T cells by γδ T cells 

The professional antigen-presentation function of human Vγ9/Vδ2 T cells was firstly 

revealed by mixed lymphocyte reactions of CD4 T cells, where IPP-stimulated γδ T cells 

and LPS-matured DCs as APCs induced similar levels of proliferation of alloreactive CD4 

T cells (Brandes et al., 2005).  Cross-linking of MHC class II molecules on the surface of 

APCs with the Vβ2 TCR expressed by subpopulation of CD4 T cells using the 

superantigen toxic shock syndrome toxin (TSST-1) revealed that both IPP-stimulated γδ T 

cells and LPS-matured DCs were able to induce the proliferation of naïve Vβ2+ CD4 T 

cells and their functional differentiation into Th1 and Th2 subsets (Brandes et al., 2005).  

These findings indicate that the expression of co-stimulatory molecules by activated γδ T 

cells supports antigen presentation by MHC class II molecules and thus stimulates potent 

CD4 responses.  While expression of MHC class II is a common feature of activated T 

cells and may play a role in amplifying memory responses (Barnaba et al., 1994), the 

capacity to prime naive T cell responses has only been reported for Vγ9/Vδ2 T cells so far, 

indicating that only those γδ T cells may be able to act as true professional APCs.   

 

1.4.6. Antigen-presentation to CD8 T cells by γδ T cells 

Mixed lymphocyte reactions also demonstrated that IPP-stimulated γδ T cells could 

induce proliferation of alloreactive CD8 T cells and their differentiation into cytotoxic 

effector T cells at similar levels as LPS-matured DCs (Brandes et al., 2005).  Following 

this initial observation, successful presentation of a series of immunodominant peptides of 

viral (Brandes et al., 2009; Meuter et al., 2010; Altvater et al., 2012) and tumour antigens 

(Altvater et al., 2012), which are directly loaded onto surface MHC class I molecules, 
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showed that the surface expression of MHC class I molecules by γδ T cells is functional.  

Furthermore, transduction of γδ T cells for the expression of Epstein Barr virus latent 

membrane protein-2 (LMP2) showed that γδ T cells could present endogenous antigens to 

CD8 T cells and induce their cytotoxicity (Landmeier et al., 2009).  As described above, 

γδ T cells also showed a substantial ability to present exogenous defined antigens such as 

TT and influenza M1 as well as complex antigens such as PPD for cross-presentation to 

both naïve and memory CD8 T cells.  Indeed, γδ T cells are able to cross-present antigens 

from exogenous, larger particles antigens such as debris of cells infected by influenza 

viruses and whole virions (Meuter et al., 2010), and beads coated with Flu M1 in a CD16 

(FcγR)-dependent manner (Wu et al., 2009b).  The ability of γδ T cells to cross-present 

Flu M1 from influenza-infected cells (Meuter et al., 2010); and tumour antigens from 

antibody-opsonised cancer cells (Himoudi et al., 2012) to CD8 T cells indicates the 

physiological relevance of these findings and suggests an important role in the immune 

response against infection and cancer.   

 

1.4.7. Antigen-presentation to invariant natural killer T (iNKT) cells by γδ T cells 

Set aside from the professional antigen presentation to CD4 and CD8 T cells as discussed 

in the preceding sections, it was recently shown that upon stimulation by phosphoantigens, 

γδ T cells can also obtain APC-associated molecules from the membrane of target cells in 

a process called trogocytosis (Schneiders et al., 2014).  This direct acquisition of 

membrane material from other cells was described earlier for γδ T cells and other cells 

(Poupot et al., 2005; D'Asaro et al., 2010) and may equip γδ T cells with additional 

features.  Indeed, acquisition of CD1d by trogocytosis allows γδ T cells to present 

synthetic glycolipid α-galactosylceramide (αGalCer) to iNKT cells (Schneiders et al., 

2014). 

 

1.4.8. Homing of γδ T cells for antigen presentation 

The expression profile of chemokine receptors that are specific for homeostatic and 

inflammatory chemokines defines the tissue tropism of immune cells and their migratory 

potential (Moser et al., 2004).  Resting γδ T cells freshly isolated from blood of healthy 

donors readily express the inflammatory chemokine receptors CCR5, CCR2 and CXCR3, 

and efficiently migrate in vitro toward the corresponding chemokines CCL5/RANTES, 

CCL2/MCP-1 and CXCL11/I-TAC, respectively. This expression profile indicates that 
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Vγ9/Vδ2 T cells are likely to patrol through the circulation and are well-equipped to sense 

and translocate to sites of inflammation (Brandes et al., 2003).  The lack of expression for 

the homeostatic chemokine receptor CCR7, which is pivotal for recruiting naïve and 

central memory T cells to lymph nodes (Sallusto et al., 1999; Weninger et al., 2001), by 

circulating Vγ9/Vδ2 T cells prevents them from recirculating through secondary lymphoid 

organs, which indirectly confirms their tendency to home to inflammatory sites (Brandes 

et al., 2003).  In rapid response to simulation with phosphoantigens in vitro, γδ T cells 

transiently switch off the expression of CCR5 and start to express CCR7 in conjunction 

with other homeostatic chemokine receptors such as CCR4 and CXCR4.  Indeed, IPP-

activated γδ T cells migrate efficiently in vitro toward the corresponding homeostatic 

ligands CCL21/SLC, CCL22/MDC and CXCL12/SDF-1, respectively, but not any more 

toward the inflammatory CCR5 ligand CCL5 (Brandes et al., 2003).  This switch in their 

migratory properties suggests that upon stimulation at inflammatory sites by 

phosphoantigens, activated γδ T cells are rapidly re-programmed for migration toward 

secondary lymphoid organ.  This is in striking resemblance to DCs, which rapidly up-

regulate CCR7 in response to microbial compounds such as LPS, further supporting a role 

for activated γδ T cells in antigen presentation and priming of naïve CD4 and CD8 T cells 

responses.  
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1.5. Animal models: Adoptive transfer of human γδ T cells for targeting 

human tumour xenografts in immunodeficient mice  

Human tumour xenotransplantation models have been established using a range of 

immunodeficient mice to test the efficacy of human γδ T cell adoptive transfer in 

controlling development of different types of malignancies including breast cancer (Beck 

et al., 2010; Benzaid et al., 2011; Capietto et al., 2011), bladder cancer (Yuasa et al., 

2009), chronic myelogenous leukaemia (D'Asaro et al., 2010), melanoma (Kabelitz et al., 

2004), lung cancer (Dokouhaki et al., 2010), prostate cancer (Santolaria et al., 2013), 

pancreatic cancer (Kabelitz et al., 2004; Oberg et al., 2014), colon cancer (Devaud et al., 

2009; Devaud et al., 2013), skin cancer (Devaud et al., 2009), ovarian cancer (Lai et al., 

2012; Deniger et al., 2014; Parente-Pereira et al., 2014), AML (Gertner-Dardenne et al., 

2012), Epstein-Barr virus-induced B cell lymphoproliferative disease (Xiang et al., 2014), 

and leukaemia (Deniger et al., 2013) (Table. 1.5).  These models broadly fall into one of 

two main categories: (i) cancer prevention model and (ii) therapeutic model.  The cancer 

prevention models were designed to investigate the protective effects of γδ T cell in 

preventing tumour initiation and development.  These models involve reconstitution of 

immunodeficient mice with human γδ T cells before xenotransplantation of human cancer 

cells and co-injection of cancer cells with γδ T cells in immunodeficient mice.  The 

therapeutic model on the other hand focus on the control of established tumour by 

administered γδ T cells.  These studies using cancer prevention and therapeutic models 

demonstrated that expanded γδ T cells, mostly Vδ2+ T cells stimulated with 

phosphoantigens or nBPs, exhibit potent cytotoxicity to a wide spectrum of cancer cells, 

albeit with limited efficacy.  In particular, single administration of γδ T cells usually has 

only very limited effects on tumour growth, and hence repeated administrations are 

necessary to obtain efficient and persistent control of tumour development.  Adjuvants 

sensitising the target cancer cells to γδ T cells, e.g. nBPs, monoclonal antibodies against 

tumour antigens and bispecific chimeric antibodies, are needed to obtain optimal 

therapeutic effects.  Besides, polyclonal γδ T cells genetically engineered to express anti-

CD19 CAR showed enhanced cytotoxicity to CD19+ tumours in vitro as compared to wild 

type γδ T cells and the ability to inhibit the growth of CD19+ tumour xenografts in NSG 

mice (Deniger et al., 2013), suggesting that apart from sensitisation with biological 

immune modulators, genetic modification of γδ T cells with artificial specificity provides 

a new approach for controlling tumour development.  Other potential sensitising strategies 

include the use of cytokines other than IL-2 as different combinations of cytokine can 
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significantly polarise the function of γδ T cells (Vermijlen et al., 2007; Caccamo et al., 

2013; Lafont et al., 2014).  For example, IL-21, which has been shown to enhance the 

cytotoxicity and degranulation of γδ T cells (Thedrez et al., 2009), would be a good 

candidate for enhanced control of tumour growth.   

 

Gertner-Dardenne et al., established an elegant and powerful in vivo tracing system 

studying the homing of γδ T cells and their control of AML development in NOG mice 

(Gertner-Dardenne et al., 2012).  The labelling of γδ T cells with Xenolight DiR and AML 

with luciferase allows distinguishing and co-localising the effector and target cells in 

different peripheral tissues.  This model will benefit largely our understanding of the 

migration of γδ T cells in vivo and their potential functions and efficacy in control primary 

tumour and metastases in different tissues. 
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Table. 1.5. Adoptive transfer of human γδ T cells for targeting human tumour xenografts in immunodeficient mice 

Cancer type 
γδ T cell subset and 
expansion 

Tumour xenografts, γδ T cell adoptive transfer and 
sensitising strategies 

Efficacy Reference 

Melanoma and 
pancreatic 
cancer 

Vγ9/Vδ2 T cells: 
200nM BrHPP or 5 µM 
alendronate with  
100 U/ml IL-2 

5 × 106 MeWo cells/mouse (SCID), i.p. 
• 2 × 107 γδ T cells, i.p., at day 0  
• 2 × 107 γδ T cells, i.p., at day 0 + 10 µg/ml alendronate at 

day 0, 4, 11, 18, 25, 32 and 39 
• 2 × 107 γδ T cells, i.p., at day 0 + 10 µg/ml alendronate and 

300 ng IL-2 at day 0, 4, 11, 18, 25, 32 and 39 
 

5 × 106 MeWo or PancTU-1 cells/mouse (SCID), i.p. 
300 ng IL-2 and 10 µg/ml alendronate were given at day 0, 4, 11, 
18, 25, 32 and 39 for following groups: 
• 2 × 107 γδ T cells, i.p., at day 0 + 5 × 106 γδ T cells, i.p., at 

day 4 
• 2 × 107 γδ T cells, i.p., at day 0 + 5 × 106 γδ T cells, i.p., at 

day 4 + 6 × 106 γδ T cells, i.p, at day 10 
• 2 × 107 γδ T cells, i.p., at day 0 + 5 × 106 γδ T cells, i.p., at 

day 4 + 6 × 106 γδ T cells, i.p, at day 10 + 107 γδ T cells, i.p., 
at day 20 

• 2 × 107 γδ T cells, i.p., at day 0 + 5 × 106 γδ T cells, i.p., at 
day 4 + 6 × 106 γδ T cells, i.p, at day 10 + 107 γδ T cells, i.p., 
at day 20 + 107 γδ T cells, i.p, at day 30 

• Adoptive transfer of γδ T cells alone 
showed no significant benefits 

• Supplement of γδ T cells with 
alendronate significant prolonged the 
survival of mice with 
xenotransplantation of MeWo 
melanoma cells. 

• Only limited additive effect of IL-2 on 
prolonging survival of diseased 
animal was observed 

• With supplements of IL-2 and 
alendronate, repeated application of 
γδ T cells showed enhanced inhibition 
on tumour growth in both melanoma 
and pancreatic cancer models. 

• Administration of γδ T cells decreased 
the development of metastases and 
ascites 

(Kabelitz et 
al., 2004) 

Bladder cancer 
Vγ9/Vδ2 T cells: 
5 µM ZA with  
50 U/ml IL-2 

107 UM-UC-3Luc cells/mouse (SCID), intravesical  
5 cycles of: 
• 5 µM ZA, 
• 107 γδ T cells (intravesical) or  
• 107 γδ T cells (intravesical) + 5 µM ZA daily started from 

day 3 or from day 8  

• Repeated application of ZA had no 
effect on tumour growth. 

• Repeated application of γδ T cells 
inhibited the tumour growth and the 
therapeutic effect can be enhanced by 
co-administration with ZA 

(Yuasa et 
al., 2009) 
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Colon cancer 
and skin 
cancer 

Vδ2neg (Vγ4/Vδ5; both 
clones 4-29 and 4-13) 
γδ T cells and Vδ2+  γδ 
T cell clones were sorted 
from PBMCs of children 
with a neonatal CMV-
infection using relevant 
anti-Vδ chain mAbs and 
then expanded with 1 
µg/ml PHA, irradiated 
allogeneic 
PBMCs and 1000 IU/mL 
IL-2 (Halary et al., 2005) 

Concomitant injection model: 
5 × 105 HT29 cells/mouse (Rag-/-γc-/-), s.c., + 
• 2 × 106 Vδ2neg γδ T cells (clone 4-29) + 1000 U/ml IL-2 
• 2 × 106 Vδ2neg γδ T cells (clone 4-13) + 1000 U/ml IL-2 
105 HT29 cells/mouse (Rag-/-γc-/-), s.c., + 
• 2 × 106 Vδ2neg γδ T cells (clone 4-29) + 1000 U/ml IL-2 
• 2 × 106 Vδ2+ γδ T cells + 1000 U/ml IL-2 
 
Therapy model: 
105 HT29 cells/mouse (Rag-/-γc-/-), s.c.  
experiment 1 
• Single i.p. 2 × 106 Vδ2neg γδ T cells (clone 4-29) at day 0 
• 4 cycles of i.p. 2 × 106 Vδ2neg γδ T cells (clone 4-29) at day 

0, 2, 4 and 7 
experiment 2 
• 4 cycles of i.p. 2 × 106 Vδ2neg γδ T cells (clone 4-29) at day 

0, 2, 4 and 7; each injection with 5000 U/ml IL-2 
• 4 cycles of i.p. 2 × 106 Vδ2neg γδ T cells (clone 4-29) at day 

0, 2, 4 and 7; each injection with 100 U/ml IL-2 
experiment 3 
• 4 cycles of i.p. 2 × 106 Vδ2neg γδ T cells (clone 4-29) at day 

7, 9, 11 and14 
experiment 4 
• 4 cycles of i.p. 2 × 106 Vδ2+ γδ T cells (clone 4-29) at day 0, 

2, 4 and 7 
105 A431 cells/mouse (Rag-/-γc-/-), s.c., + 
• 4 cycles of i.p. 2 × 106 Vδ2+ γδ T cells (clone 4-29) at day 0, 

2, 4 and 7 

• Cross reactivity of Vδ2neg T cell 
derived from CMV-infected 
transplantation patients in killing 
CMV-infected cells and HT-29 colon 
cancer cells  

• Only Vδ2neg γδ T cells but not Vδ2+ 
 γδ T cells showed protection to delay 
initiation and development of colon 
cancer in concomitant injection model 

• Repeated administration of Vδ2neg 
γδ T cells is necessary to reach 
considerable control of HT29 tumour 
growth 

• Supplements with IL-2 in repeated co-
injection of Vδ2neg γδ T cells did not 
show significant improvement on 
inhibition of HT29 tumour growth 

• Repeated transfer of Vδ2+  γδ T cells 
did not exhibit any benefit in control 
of both HT29 and A431 tumour 
growth  

(Devaud et 
al., 2009) 
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Chronic 
myelogenous 
leukemia 

Vγ9/Vδ2 T cells 
expanded from PBMCs of 
healthy donors and CML 
patients: 
0.5 µM ZA or 1 nM 
BrHPP with 
50 U/ml IL-2  

106 MM1 cells/mouse (NOD/SCID), i.v.  
experiment 1 
• i.p. 2 × 107 γδ T cells + 2 µg ZA every 14 days from day 1 

(at day 1, 15, 29) with 30000 IU IL-2 weekly at day 1, 8, 15, 
22, 29 and 36 

• γδ T cells + ZA  
• γδ T cells + IL-2 
• ZA + IL2 

• The only adoptive transfer model so 
far using γδ T cells expanded from 
PBMCs of cancer patients  

• Repeated applications of γδ T cells 
with IL-2 or ZA showed no inhibition 
in development of CML 

• Repeated applications of γδ T cells 
with both IL-2 or ZA exhibited 
effective therapeutic benefits on 
clearance of CML development 

(D'Asaro et 
al., 2010) 

Lung cancer 

Pan γδ T cells: 
γδ T cells were expanded 
from PBMCs depleted 
with CD4 and CD8 T 
cells in the presence of 
anti-CD3 mAbs (OKT3), 
250 U/ml rhIL-2 and 0.1 
ng/ml rhIL-4. 

Co-injection of 106 H460 cells/mouse (SCID), s.c., with 
• γδ T cells or 
• bulk CD8 T cells at E/T ratio of 5:1 

 

• Presence of CD8 T cells in co-
injection barely showed any inhibition 
on tumour development while  

(Dokouhaki 
et al., 2010) 

Breast cancer 

Pan γδ T cells: 
1000 U/ml IFN-γ, 10 
U/ml rhIL-12 and 1 – 10 
 µg/ml α-CD2 mAbs 
(S5.2) at day 0; 10 ng/ml 
 α-CD3 mAbs (OKT3) 
and 300 U/ml rhIL-2 at 
day 1 (Lopez et al., 2000) 

106 2LMP/Luc (MDA-MB-231) cells/mouse (nude), s.c. 
• 2 × 107 γδ T cells, i.v. at day 6, 9,13, 16, 20 and 23 

• Repeated applications of γδ T cells 
showed potent therapeutic potential in 
inhibiting tumour growth 

(Beck et al., 
2010) 
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Breast cancer 
Vγ9/Vδ2 T cells: 
3 µM BrHPP and 
300 U/ml IL-2 

2 × 106 SK-BR-3 cells/mouse (SCID Beige), s.c.  
experiment 1 
• i.p. 10 mg/kg TTZ 
• i.v. 107 γδ T cells  
• i.v. 107 γδ T cells + i.p10 mg/kg TTZ 
twice a week for two weeks started when tumour size reached 
around 140 mm3 at day 56 (exponential growth phase) 
experiment 2 
• Same settings to experiment 1 but with treatments started 

earlier at day 41 
experiment 3 
• i.p. 10 mg/kg TTZ 
• i.v. 2 × 107 γδ T cells  
• i.v. 2 × 107 γδ T cells + i.p. 10 mg/kg TTZ 
twice a week for four weeks; start date of treatment was not 
specified in the paper  

• Repeated treatment with γδ T cells 
alone showed no control in tumour 
growth 

• Repeated treatment with TTZ alone 
exhibited limited benefits in inhibiting 
tumour growth 

• Repeated treatment with both γδ T 
cells and TTZ showed reasonable 
therapeutic benefits in inhibiting 
tumour growth and the therapeutic 
effects can be enhanced by earlier 
start of treatment, by increased 
number γδ T cells administrated and 
by prolonged treatment from two 
weeks to 4 weeks 

• Combination with TTZ did not 
enhance the infiltration of γδ T cells 
into tumour.  The enhancement of γδ 
T cells in controlling tumour growth 
was likely due to the opsonisation of 
tumour cells.  

(Capietto et 
al., 2011) 
 

Breast cancer 

Vγ9/Vδ2 T cells: 
10 µM ZA and 
100 U/ml IL-2 (for use in 
in vitro assays) 

5 × 106 B02 or T47D cells/mouse (NOD/SCID), s.c. 
• 30 µg/kg ZA 
• 3.5 × 107 PBMCs + 100000 U/ml IL-2 
• 3.5 × 107 PBMCs + 100000 U/ml IL-2 + 30 µg/kg ZA 
Treatments started from week 4 with single dose of PBMCs. ZA 
and IL-2 were administrated repeatedly every 2 days for 14 days 
in the relevant groups.  

• No inhibition on tumour growth was 
observed by any treatment in B02 
model 

• The treatment with PBMCs, IL-2 and 
ZA blocked the tumour growth since 
the start of treatment for 2 weeks until 
the end of experiment  

(Benzaid et 
al., 2011) 
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Ovarian cancer 
Vγ9/Vδ2 T cells: 
10 mM MEP and 
40 U/ml IL-2 

Co-injection (s.c.) of 500 SK-OV-3 sphere cells with 50 γδ T 
cells into flanks of nude mice in both two sides 

• Co-injection of SK-OV-3 sphere cells 
with γδ T cells at E/T ratio of 1/10, 
which is very low, sufficiently 
reduced the incidence of tumour 
initiation and inhibited the growth of 
developed tumour 

(Lai et al., 
2012) 

Acute myeloid 
leukemic 
blasts 

γδ T cells were expanded 
with 3 µM BrHPP, 100 
U/ml IL-2 and 10 ng/ml 
IL-15 
• Expanded γδ T cells 

(42% CD3+Vδ2+) 
• Purified γδ T cells 

(98% CD3+Vδ2+) 
 

Homing study: 
(A) 2 × 105 U937 cells/mouse (NSG), i.v. 
• Single dose of 4 × 107 expanded γδ T cells (i.v.) 6 hours after 

injection of U937 cells at day 0 
• Blood, spleen and BM were harvest at day 17 to check the 

homing of γδ T cells into these tissues 
•  
(B) 2 × 105 U937 cells/mouse (NSG), i.v. 
• Single dose of labelled 107 purified γδ T cells (i.v.) at day 14 
• Homing of γδ T cells into different tissues were examined by 

in vivo live imaging and imaging at the end of experiment 
with harvested tissues 

 
Cancer control study: 
2 × 105 U937 cells/mouse (NSG), i.v. 
• Single dose of labelled 107 purified γδ T cells (i.v.) at day 14 
 

• γδ T cells can home to spleen, liver, 
lung and BM for the killing of local 
AML cells and thus prolong the 
survival of treated mice 

(Gertner-
Dardenne et 
al., 2012) 
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Colon cancer 

Vδ1 T cells: 
Sorted from PBMCs of 
children with a neonatal 
CMV-infection using anti-
Vδ1 mAbs and then 
expanded with 1 µg/ml 
PHA, irradiated 
allogeneic 
PBMCs and 1000 IU/mL 
IL-2 (Halary et al., 2005) 

Co-injection (s.c.) of 105 HT29 luc cells with 107 γδ T cells per 
mouse 
 
105 HT29 luc cells/mouse (NSG), orthotopic microinjection in 
caecum 
• 3 times a week of injection with 4 × 106 γδ T cells (i.p.), 

from day 0 to day 36 

• Co-injection of γδ T cells delayed the 
development of HT29 tumour 

• Continuous treatment with γδ T cells 
inhibited orthotopic tumour 
development and metastases to lung 
and liver 

(Devaud et 
al., 2013) 

Prostate cancer 
Vγ9/Vδ2 T cells: 
200 µM pamidronate and 
60 ng/ml rhIL-2 

107 PC3 cells/mouse (NSG), s.c. 
• 50 µg/kg pamidronate (i.v. at day 14) + 106 γδ T cells (i.v. at 

day 15) 
• 50 µg/kg pamidronate (i.v. at day 14) + 106 γδ T cells (i.v. at 

day 15) followed by 50 µg/kg pamidronate weekly for 3 
more cycles (i.v. at day 21, 28 and 35) 

• 50 µg/kg pamidronate (i.v. at day 14) + 106 γδ T cells (i.v. at 
day 15) followed by 106 γδ T cells weekly for 3 more cycles 
(i.v. at day 21, 28 and 35) 

• Combination of 50 µg/kg pamidronate (i.v.) and 106 γδ T 
cells (i.v., one day after pamidronate) weekly from day 14 for 
4 cycles 

• Single dose of pamidronate with γδ T 
cells showed limited control of 
tumour growth 

• Repeated treatments with both 
pamidronate with γδ T cells are 
necessary to enhance and prolong 
efficacy in controlling tumour growth 

(Santolaria 
et al., 2013) 
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Acute 
lymphoblastic 
leukemia 

γδ T cells were isolated 
from PBMCs transduced 
with CD19-specific CAR 
(CD19RCD28) by 
negative selection and 
then expanded in co-
culture with aAPCs 
(Singh et al., 2011) in the 
presence of 50 IU/ml IL-2 
and 30 ng/ml IL21. 

105 NALM-6-ffLuc-eGFP cells/mouse (NSG), i.v. 
• 3 administration of 107 CAR+ γδ T cells with 6 ×104 U IL-2 

at day 1, 8, 15 in supplement with another two injections of 6 
×104 U IL-2 at day 2, 9 and 16 

• Repeated application of CAR+ γδ T 
cells in supplement with IL-2 reduced 
the dissemination of leukemia and 
tumour burden in bone marrow, 
spleen and peripheral blood. 

(Deniger et 
al., 2013) 

B cell 
lymphoprolifer
ative disease 

Vγ9/Vδ2 T cells: 
200 µM pamidronate and 
60 ng/ml rhIL-2 

105 GFP-LCL cells/mouse (Rag2-/-γc-/-), s.c. 
• 107 Vγ9/Vδ2 T cells (i.v.) at day 0, 7, 14 and 21 
• 107 Vγ9/Vδ2 T cells (i.v.) at day 21, 28, 35 and 42 
 
105 GFP-LCL cells/mouse (humanised Rag2-/-γc-/-), s.c. 
• 100 µg pamidronate/mouse (i.p.) at day 0, 7, 14, 21 and 28 
 
100 µg pamidronate/mouse (i.p.) at day 0, 7, 14, 21 and 28 
• 105 GFP-LCL cells/mouse (s.c.) in Rag2-/-γc-/- mice 

humanised with whole human PBMCs  
• 105 GFP-LCL cells/mouse (s.c.) in Rag2-/-γc-/- mice 

humanised with Vγ9/Vδ2 T cell-depleted human PBMCs  

• Repeated treatments of Vγ9/Vδ2 T 
cells from the date of cancer cell 
challenge efficiently prevent the 
tumour initiation and inhibited the 
growth of established tumours 

• Repeated treatments of established 
LCL tumours with Vγ9/Vδ2 T cells 
significantly prolonged the survival of 
diseased mice, inhibited the tumour 
growth and even decreased the tumour 
size 

• Specific activation of Vγ9/Vδ2 T cells 
in humanised mice with repeated 
administration of pamidronate 
efficiently prolonged survival, 
decreased tumour incidence and 
inhibited the growth of tumour in 
diseased animals  

(Xiang et al., 
2014) 
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Pancreatic 
cancer 

Vγ9/Vδ2 T cells: 
300 nM BrHPP 

1.5 × 106 PancTu-1 cells/mouse (SCID Beige), s.c. 
• 2.5 ×106 γδ T cells (s.c. at day 15) + 8 ×106 γδ T cells (s.c. at 

day 7) + 4.5 ×106 γδ T cells (s.c. at day 14) + 2.5 ×106 γδ T 
cells (s.c. at day 23) alone and with:  
o 15 µg/kg (25 × 104 U) IL-2 + 2.5 mg/kg ZA or 
o 15 µg/kg (25 × 104 U) IL-2 + 1.25 mg/kg [(Her2)2×Vγ9] 

bispecific antibodies for each injection of γδ T cells 

• Repeated adoptive transfer of γδ T 
cells with [(Her2)2×Vγ9] bispecific 
antibodies but not with ZA showed 
control of tumour growth 

(Oberg et 
al., 2014) 

Ovarian cancer 

Vγ9/Vδ2 T cells: 
1 µg/ml ZA, 
100 U/ml IL-2 and 10 
ng/ml IL-15 

106 SKOV-3-luc cells/mouse (SCID Beige), i.p. 
• 1 µg ZA (i.p. at day 4) +107 γδ T cells (i.p. at day 5) 
• 1 µg ZA (i.p. at day 6) +107 γδ T cells (i.p. at day 7) 

 
5 × 105 IGROV-luc cells/mouse (SCID Beige), i.p. 
• 1 µg ZA (i.p. at day 17) + 5 µg ZA (i.p. at day 18)  

+ 107 γδ T cells (i.p. at day19) 
 

• 30 µg AA (i.p. at day 14) + 100 µg AA (i.p. at day 15) + 2 × 
107 γδ T cells (i.p. at day 16) 

• 150 µg AA (i.v. at day 9) + 107 γδ T cells (i.p. at day 10, 12 
and 14) 

• Strong toxicity of L-ZA 
• No significant control of tumour 

growth by γδ T cell with L-ZA  
• Efficient tumour growth control 

observed by adoptive transfer of γδ T 
cells with AA and L-AA as sensitiser  

• Optimal tumour control observed 
when mice were given i.v. L-AA 
followed with multiple dose of γδ T 
cells 

• Benefit of constituting ZA and AA 
with liposome in sensitising tumour to 
γδ T cells 

(Parente-
Pereira et 
al., 2014) 
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Ovarian cancer 

γδ T cells were isolated 
from CD56+ cell-depleted 
PBMCs by negative 
selection and then 
expanded in co-culture 
with aAPCs (Singh et al., 
2011) in the presence of 
50 IU/ml IL-2 and 30 
ng/ml IL21.  Vδ1 T cells 
(Vδ1+ Vδ2neg), 
Vδ2 T cells (Vδ1neg 
Vδ2+) and Vδ1neg Vδ2neg 
T cells were isolated from 
the expansion by FACS 
for functional assays. 

3 × 106 CAOV3-effLuc-mKate cells/mouse (NSG), i.p. 
4 i.p. administrations of  
• Vδ1 T cells, 
• Vδ2 T cells, 
• Vδ1neg Vδ2neg T cells or 
• Polyclonal γδ T cells 
at day 8 (3 × 106 cells), 15 (6 × 106 cells), 22 (107 cells) and 29 
(1.5 × 107 cells) 
 

• Repeated treatments of all different 
types of γδ T cells show potent 
therapeutic effects in decreasing 
tumour burden (decreased reporter 
signal) and prolonging survival. 

(Deniger et 
al., 2014) 

aAPC: artificial antigen-presenting cell; MEP: monoethyl phosphate 
i.p.: intraperitoneal; i.v.: intravenous; s.c.: subcutaneous   
BLI: bioluminescence 
ZA: Zoledronic acid; L-ZA: liposomal zoledronic acid; AA: alendronic acid; L-AA: liposomal alendronic acid 
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1.6. Hypothesis and aims 

 

Hypothesis: 

γδ T cells can function to bridge innate and adaptive immunity specifically against breast 

CSCs.  

 

Aims: 

• To establish a CSC model system available both in vitro and in vivo for the study of 

their susceptibility to MHC-restricted and non-MHC-restricted immune cells and for 

the test of therapeutic efficacy of T cell adoptive transfer in controlling xenografted 

human breast tumour in immunodeficient mice. 

• To identify effective sensitisation strategies in enhancing γδ T cell-mediated immunity 

targeting breast CSCs. 

• To provide in vivo experimental evidence showing the APC function of γδ T cells in 

breast tumour. 
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Chapter 2. Materials and Methods 

2.1. Cell Culture Media and Buffers 

2.1.1. Cell culture media 

Complete RPMI medium 

RPMI-1640 (Invitrogen) medium supplemented with 10% foetal calf serum (FCS; 

Invitrogen), 50 mg/ml penicillin-streptomycin (Invitrogen), 2 mM L-glutamine 

(Invitrogen), 1% sodium pyruvate and 100 µM non-essential amino acids (NEAA; 

Invitrogen). 

 

Complete HMLER medium 

DMEM (Invitrogen) and F12 (Invitrogen) medium mixed at 1:1 ratio and supplemented 

with 10% FCS (Invitrogen), 50 mg/ml penicillin-streptomycin (Invitrogen), 10 µg/ml 

insulin (Sigma), 10 ng/ml recombinant human EGF (Peprotech), 0.5 µg/ml hydrocortisone 

(Sigma) and 1 µg/ml puromycin (Sigma). 

 

Mammosphere culture medium 

MEBM serum-free epithelial growth medium (Lonza) supplemented with B27 (Life 

Technologies), 20 ng/ml EGF (Peprotech), 5 µg/ml insulin (Sigma), 0.1 µM β-

mercaptoethanol (Sigma), 1 µg/ml hydrocortisone (Sigma) and 20 µg/ml gentamycin 

(Sigma). 

 

Complete DMEM medium 

DMEM medium (Invitrogen) supplemented with 10% FCS (Invitrogen), 50 mg/ml 

penicillin-streptomycin (Invitrogen), 2 mM L-glutamine (Invitrogen), 1% sodium 

pyruvate and 100 µM NEAA. 

 

2.1.2. Buffers 

Fluorescence activated cell sorting (FACS) buffer 

FACS buffer was prepared by adding 2% FCS (Invitrogen) into sterile PBS and passing 

through 0.22 µm filter. 
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Magnetic-activated cell sorting (MACS) buffer 

MACS buffer was prepared by adding 2% FCS (Invitrogen) and 5 mM EDTA into sterile 

PBS and passing through 0.22 µm filter. 

 

2.2. Tumour Cells 

2.2.1. Transformed mammary epithelial cells 

The transformed mammary epithelial cell line HMLER (Elenbaas et al., 2001) was kindly 

provided by Prof Robert Weinberg (MIT Ludwig Center for Molecular Oncology, 

Cambridge, MA), and maintained in normal culture with specific HMLER medium at 

37°C in 5% CO2.  The CSC-like and non-CSC sublines established from HMLER cells by 

FACS sorting were maintained as parental HMLER cell line. 

 

2.2.2. Generation and maintenance of CSC-like and non-CSC sublines from 

HMLER cell line  

HMLER cells were harvested by trypsinisation and then stained with FITC-conjugated 

anti-CD24 mAbs (ML5; BD Biosciences) and PE-Cy7-conjugated anti-CD44 mAbs (G44-

26; BD Biosciences) for the separation of CD44hi/CD24lo CSC-like cells and 

CD44lo/CD24hi non-CSCs by BD FACS Aria III cell sorter (BD Biosciences) to purities 

>97%.  Sorted CSC-like cells and non-CSCs were maintained in adherent culture with 

complete HMLER medium.  CSC-like cells and non-CSCs were further transduced with 

lentiviral particles for stable expression of influenza M1 or Gaussia luciferase with 

tdTomato as fluorescent reporter (for detail, see section 2.6 and 2.7), and maintained under 

the same conditions as the parental cells.  
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2.3. Immune Effector Cells 

2.3.1. Isolation of peripheral mononuclear cells (PBMCs) 

PBMCs were isolated either from blood bags supplied by the Welsh Blood Service, 

Velindre, or from venous blood collected locally from healthy volunteers.  Blood bags was 

diluted at 1:1 ratio with PBS, and venous blood was heparinised with anti-coagulant buffer 

consisting of 20 U/ml heparin and 15 mM EDTA (Fisher Scientific UK Ltd) for 

subsequent Ficoll-Paque (Axis-Shield) separation.  Processed blood was layered on top of 

Ficoll-Paque and then centrifuged at 1680 rpm (687 xg), at 18°C for 20 minute without 

break at the end of spin.  The mononuclear cells within the buffy coat were collected and 

washed twice with PBS for the isolation of γδ T cells and monocytes and for the 

expansion of CD8+ T cells or γδ T cells. 

 

2.3.2. Isolation of γδ T cells from PBMCs 

γδ T cells were isolated by MACS (Miltenyi) from PBMCs.  PBMCs were incubated with 

PE-Cy5-conjugated anti-Vγ9 mAbs (Immu360; Beckman Coulter) at 4°C for 20 minute 

and washed with sterile MACS buffer (PBS supplemented with 2% FCS, 5 mM EDTA), 

followed by incubation with anti-PE microbeads (Miltenyi) on ice for 20 minutes.  

Labelled cells were positively selected over two LS columns (Miltenyi).  Resulting 

purities were >98% as determined by flow cytometry. 

 

2.3.3. Isolation of monocytes from PBMCs 

Monocytes were purified by MACS (Miltenyi) from Vγ9-depleted PBMCs incubated with 

anti-CD14 microbeads (Miltenyi) on ice for 20 minutes.  Labelled cells were positively 

selected over two LS columns (Miltenyi) to purities >98% as determined by flow 

cytometry.  

 

2.3.4. Expansion of Vγ9/Vδ2 T cells from PBMCs 

γδ T cells were expanded from PBMCs of healthy donors with 100 U/ml IL-2 (Proleukin; 

Novartis) and 1 µM zoledronate (Zometa; Novartis) for around 14 days.  Zoledronate was 

added to the culture at the beginning of expansion at day 0, whereas IL-2 was added to the 

culture every 2-3 days starting from day 5 until the end of expansion.  After 14 days, γδ T 
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cells with purities <90% were enriched further by negative selection using a customised γδ 

T cell purification kit (Stem Cell Technologies) removing αβ T cells, B cells, NK cells, 

dendritic cells, stem cells, granulocytes, monocytes without depletion of CD56+ and 

CD16+ cells, to a final purity > 98% (Figure 2.1).  

 

 

 

 

 

 

 

 

 

 
Figure 2.1. Expansion of γδ T cells.  (A) The purity of expanded γδ T cells was evaluated by 

staining with fluorochrome-conjugated monoclonal antibodies against CD3 and Vγ9 TCR, and 

analysed by flow cytometry.  (B) For γδ T cell lines reaching <90%, γδ T cells were enriched 

further to a purities >98% using a customised γδ T cell purification kit (Stem Cell Technologies).  

All analyses were performed by a series of gates on single cells and live cells. 

 

 

2.3.5. Generation of Vγ9/Vδ2 T cell conditioned supernatants  

For the collection of γδ T cell conditioned medium, purified γδ T cells were co-cultured 

with autologous monocytes for 5 days in the presence of 100 U/ml IL-2 and 10 µM 

zoledronate.  Alternatively, expanded γδ T cells were re-stimulated overnight with 10 nM 

synthetic HMB-PP (kindly provided by Dr. Hassan Jomaa, University of Giessen, 

Germany).  Supernatants were stored at −80°C until further use. 

 

2.3.6. Expansion of Flu M1- and CMV pp65-specific CD8+ T cells  

HLA-A2-restricted CD8+ T cell lines with specificity to Flu M1 p58-66 and to CMV pp65 

p495-503, respectively, were established from PBMCs of healthy donors with the help 

from Dr. Wajid Khan in the laboratory.  Flu M1-specific CD8+ T cells were expanded 

from PBMCs with 20-40 U/ml IL-2, 20 ng/ml IL-15 (Miltenyi) and 0.1 µM Flu M1 p58-

66 peptide. Cells attained positive for p58-66 MHC tetramer (kindly provided by Andrew 
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Thomas in the laboratory) were sorted and further expanded with 1 µg/ml PHA, 100 U/ml 

IL-2 and 20 ng/ml IL-15 in the presence of irradiated PBMCs as feeder cells (Khan et al., 

2014a).  At the end of expansion, cells were stained with antibodies against CD3, CD4, 

CD8 and p58-66 MHC tetramer to make sure the purity of Flu M1-specific CD8+ T cells 

was > 99% (Figure 2.2).  The CMV pp65-specific CD8+ T cells were kindly provided by 

Dr. Wajid Khan in our laboratory. 

 

 

Figure 2.2. Generation of Flu M1-specific CD8+ T cells.  

The purity of expanded Flu M1-specific CD8+ T cells was 

evaluated by staining with PE-conjugated MHC tetramers 

loaded with Flu M1 p58-66 peptide, and analysed by flow 

cytometry.  Analysis was performed by a series of gates 

on single cells, live cells and CD3+/CD8+ cells.  FMO, 

Fluorescence Minus One control. 
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2.4. Flow cytometry 
Generally for all flow cytometric measurements, cells were firstly stained with Live/dead 

fixable Aqua dead cell stain kit (Life Technologies) to distinguish live cells from dead 

cells and subsequently treated with intravenous immunoglobulin (IvIg) (Kiovig; Baxter) at 

1:100 dilution in order to block Fc receptors.   

 

For the staining of cell surface markers, IvIg-blocked cells were incubated for 20 minutes 

on ice with a panel of monoclonal antibodies conjugated with different fluorochromes.  

The antibodies used in this study and the appropriate dilutions are summarised in Table 

2.1.  For intracellular staining, surface stained cells were fixed for 20 minutes at room 

temperature with fixation buffer (eBioscience) and permeabilised with permeabilisation 

buffer (eBioscience).  Such treated cells were then incubated for 20 minutes at room 

temperature with fluorochrome-conjugated monoclonal antibodies diluted in 

permeabilisation buffer.  In each case, stained cells were washed with FACS buffer and 

acquired using a FACS Canto II (BD Biosciences).  All analyses of data were performed 

using FlowJo (version 9.3.2; TreeStar Inc.), by gating on intact cells (FSC-A/SSC-A), 

single cells (FSC-A/FSC-H), live cells (Aqua−) and expression of markers of interest 

according to appropriate isotype controls.   
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Table 2.1. Antibodies used in this study 

Antigen Clone Conjugate 
Dilution  

(conc.) 
Manufacturer Application 

CD3 UCHT1 PB 1/100 BD Flow cytometry 

CD4 SK3 APC-Cy7 1/80 BD Flow cytometry 

CD8 HIT8a PE 1/50 Pharmingen Flow cytometry 

CD8 SK1 PE-Cy7 1/300 BD Flow cytometry 

CD11c S-HCL-3 PE 1/25 BD Flow cytometry 

CD14 MOP9 FITC 1/20 BD Flow cytometry 

CD16 3G8 FITC 1/20 Pharmingen Flow cytometry 

CD19 SJ25C1 APC 1/20 eBioscience Flow cytometry 

CD24 ML5 FITC 1/5 BD Flow cytometry 

CD24 ML5 BV421 1/20 BD Flow cytometry 

CD25 M-A251 APC-Cy7 1/20 BD Flow cytometry 

CD27 M-T271 FITC 1/40 Pharmingen Flow cytometry 

CD27 M-T271 PE 1/40 Pharmingen Flow cytometry 

CD40 5C3 PE 1/20 Coulter Flow cytometry 

CD44 G44-26 APC 1/5 BD Flow cytometry 

CD44 G44-26 PE-Cy7 1/40 BD Flow cytometry 

CD44 DF1485 − 1 µg/ml Santa Cruz IF 

CD45RA HI100 APC 1/10 eBioscience Flow cytometry 

CD56 B159 PE-Cy7 1/20 Pharmingen Flow cytometry 

CD69 FN50 FITC 1/20 Pharmingen Flow cytometry 

CD80 2D10.4 FITC 1/5 eBioscience Flow cytometry 

CD86 IT2.2 APC 1/10 BioLegend Flow cytometry 

CD107a H4A3 PE 1/20 BD Flow cytometry 

CD277 103.2 − 10 mg/ml Dr. Daniel Olive Neutralisation 

HLA-ABC W6/32 PE 1/10 BioLegend Flow cytometry 

HLA-DR L243 APC-Cy7 1/40 BD Flow cytometry 

Vγ9 TCR Immu360 PerCP-Cy5 1/400 Beckman Coulter Flow cytometry 

Vγ9 TCR 7A5 − 10 µg/ml Biolegend Neutralisation 

GD2 14.G2a PE 1/20 BD Flow cytometry 

GD2 Hu14.18K322A − 10 µg/ml Dr. Fariba Navid Opsonisation 

IFN-γ B27 FITC 1/100 BD Flow cytometry 

IFN-γ B27 − 10 µg/ml Biolegend Neutralisation 

IF: immunofluorescent microscopy; -: purified non-conjugated antibody; 
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Table 2.1. Antibodies used in this study (continued) 

Antigen Clone Conjugate 
Dilution  

(conc.) 
Manufacturer Application 

NKG2D 1D11 − 10 µg/ml Biolegend Neutralisation 

α-SMA 1A4 − 1 µg/ml Santa Cruz IF 

N-cadherin 8C11 − 1 µg/ml eBioscience IF 

CK14 LL001 − 1 µg/ml Santa Cruz IF 

CK18 RGE53 − 1 µg/ml Santa Cruz IF 

EDA-Fibronectin IST-9 − 1 µg/ml Santa Cruz IF 

Vimentin V9 − 1 µg/ml Santa Cruz IF 

IF: immunofluorescence microscopy; −: purified antibody without any conjugates; 
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2.5. In vitro characterisation of CSC-like cells and non-CSCs  

2.5.1. Mammosphere formation assays 

For mammosphere cultures, cells were harvested by treatment with 0.05% trypsin and 

0.25% EDTA.  Dissociated cells were resuspended and plated in ultra-low attachment 

plates (Corning Life Sciences) at a density of 2.5 × 104 cells/ml in serum-free 

mammosphere medium.  After seven days, mammospheres were collected by 

centrifugation (400 xg for 5 minutes) and dissociated into single cell suspensions with 

0.05% trypsin and 0.25% EDTA.  Live cells were identified and counted after trypan blue 

staining, and re-seeded back into ultra-low attachment plates at the same density of 2.5 × 

104 cells/ml for secondary mammosphere formation.   

 

2.5.2. Proliferation analysis  

HMLER cells were labelled with CellVue (Sigma-Aldrich) according to the 

manufacturer’s instruction, washed, and maintained under mammosphere-forming 

conditions for 5 days.  Cells were harvested form cultures for live/dead staining cell 

surface staining for CD44 and CD24, intracellular staining for proliferation markers Ki67, 

phospho-histone H3 (pHH3) and incorporation of propidium iodide (PI).  Stained cells 

were acquired using a FACS Canto II. 

 

2.5.3. Immunofluorescence (IF) microscopy 

Isolated CSC-like cells and non-CSCs were grown in Nunc Lab-Tek cover-slip chamber 

slides to sub-confluency.  The cells were washed twice with PBS prior to fixation in ice-

cold acetone/methanol at 1:1 v/v ratio, and fixed slides were blocked overnight at 4°C with 

1% BSA in HBSS buffer (w/v).  The slides were then washed twice with 1% BSA in 

HBSS buffer and incubated individually with a panel of primary antibodies against CD44, 

alpha-smooth muscle actin (α-SMA), N-cadherin, cytokeratin-14 (CK14), CK18, extra 

domain A (EDA)-fibronectin or vimentin for 2 hours at room temperature.  The slides 

were washed twice with 1% BSA in HBSS buffer and then incubated with 1 µg/ml AF-

488-cojugated secondary antibodies, followed by counterstaining with DAPI (Sigma) for 

10 minutes.  Slides were analysed using a Zeiss AxioVert fluorescence microscope 

(Webber et al., 2010).  
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2.6. Functional T cell assays 

2.6.1. Cytotoxicity assay using mixed target cell populations 

For the comparison of their susceptibilities to γδ T cell or CD8+ T cell-mediated 

cytotoxicity, two different target cell populations were labelled separately with different 

lipophilic dyes (PKH26, PKH67 or CellVue; all from Sigma-Aldrich), and mixed at 1:1 

ratio for the subsequent co-culture with effector T cells at different Effector/Target (E/T) 

ratios.  After 4 hours at 37°C, cultures were harvested, stained by Live/dead® fixable Aqua 

dead cell stain kit and acquired on a FACS Canto II.  As shown in Figure 2.3, the analysis 

was performed by serial gating on single cells (FSC-A/FSC-H) and distinctively stained 

targets (for example, CellVue+ PKH67− or CellVue− PKH67+), and the proportion of dead 

cells was determined for each target population.  The rate of specific killing was 

calculated using the formula:  
 

% !"#$%&%$ !"##"$% =  (% !"#! !"##$ !"#ℎ ! !"##$) − (% !"#! !"##$ !"#ℎ!"# ! !"##!)
100% −  (% !"#! !"##$ !"#ℎ!"# ! !"##$)  ! 100% 

 

For antigen-specific killing by Flu M1- or CMV pp65-specific cytotoxic CD8+ T cells, 

target cells were transduced with lentiviral vectors expressing specific Flu M1 antigen, or 

pulsed with 1 µM Flu M1 peptide (p58-66, GILGFVFTL) or 1 µM CMV pp65 peptide 

(p495-503, NLVPMVATV) (kindly provided by Prof. Per thor Straten, Denmark) prior to 

the labelling with lipophilic dyes. 
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Figure 2.3. In vitro cytotoxicity assay.  Two separate 

target cell populations were individually labelled with 

different lipophilic dyes, for example CellVue and PKH67, 

and mixed together at 1:1 ratio in a 96-well plate.  T cells 

were added into the culture at different effector/target ratios 

for a further 4-hour incubation.  After the co-culture, all 

floating and adherent cells were harvested, washed in PBS 

and subsequently stained by Live/dead Aqua.  Data shown 

illustrate preferential killing of CellVue+ target cells by 

human T cells, compared to PKH67+ target cells in the 

same culture. 

 

 

 

 

2.6.2. CD107a degranulation assay 

γδ T cells or CD8+ T cells were stimulated under different conditions in the presence of 

monensin (Golgi-Stop; BD) and PE-conjugated anti-CD107a monoclonal antibodies for 5 

hours and stained for cell surface makers to distinguish different cell subsets.  10 nM 

HMB-PP was used as positive control for the activation of γδ T cells, whereas 100 ng/ml 

PMA and 100 ng/ml ionomycin were used as positive control for the activation of CD8+ T 

cells.    
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2.6.3. IFN-γ production 

Flow cytometry analysis of intracellular IFN-γ  

γδ T cells or CD8+ T cells were stimulated under different conditions in the presence of 5 

µg/ml brefeldin A (Biolegend) for 5 hours and stained for cell surface makers to 

distinguish different cell subsets in co-culture, and then stained intracellularly for their 

production of IFN-γ as described above. 

 
Enzyme-linked immunosorbent assay (ELISA)  

Supernatants from γδ T cell or CD8+ T cell cultures were harvested as indicated in the 

figure legends, and the level of IFN-γ  was measured by ELISA (eBioscience or Biolegend) 

according to manufacturers’ instruction. 

 

2.6.4. Endocytosis assay 

Expanded γδ T cells and freshly purified γδ T cells from PBMCs were tested for their 

ability to uptake fluorescent proteins or fluorochrome-conjugated antigen.  Expanded γδ T 

cells were used in antigen uptake assays directly without further re-stimulation, whereas 

freshly purified γδ T cells were stimulated with 10 nM HMB-PP and 100 U/ml IL-2 for 

three days to serve as APCs.  γδ T-APCs were incubated with different 10 mg/ml lysate 

prepared from tdTomato/M1-expressing CSC-like cells, 0.5 mg/ml BSA-DQ (Molecular 

Probes), or both, either at 4°C or 37°C for 4-5 hours.  Pulsed γδ T-APCs were stained with 

Live/dead Aqua followed by fluorochrome-conjugated antibodies against CD3 and Vγ9, 

and analysed by flow cytometry. 

 

2.6.5. Antigen cross-presentation assay 

Expanded γδ T cells from HLA-A2+ or HLA-A2− donors were cultured overnight with 

0.01, 0.1 or 1 µM recombinant Flu M1 protein of Influenza A virus 

(A/goose/Guangdong/1/1996(H5N1)), which was kindly provided by Andrew Thomas in 

the laboratory, to serve as APCs.  Antigen-treated γδ T-APCs were then washed 

extensively to remove unbound protein and co-cultured for 5 hours with HLA-A2 

restricted, Flu M1 p58-66 specific CD8+ αβ T cell lines at an APC:responder ratio of 1:1, 

in the presence of 5 µg/ml brefeldin A.  Intracellular expression of IFN-γ by CD8+ T cell 

responders was assessed by flow cytometry.   
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2.7. Generation of lentiviral vectors expressing tdTomato and Flu M1 

2.7.1. Lentiviral vectors and cloning strategies 

The lentiviral packaging, envelop and transfer plasmids used in this study are listed in 

Table 2.2.  The lentiviral transfer vector, pELNSxv, was kindly provided by Dr. James 

Riley (University of Pennsylvania, PA) and used as backbone for the constructs 

expressing tdTomato together with firefly luciferase, Gaussia luciferase or Flu M1 

through a T2A-regulated bi-cistronic expressing system.  The tdTomato-T2A-firefly 

luciferase (ffluc) and tdTomato-T2A-Gaussia luciferase (Gluc) cassettes were individually 

cloned into the pELNSxv transfer vector by Dr. John Bridgeman (Cardiff University).  Flu 

M1 of Influenza A virus (A/Puerto Rico/8/34(H1N1)) was then cloned out from 

pMA_MPT_MATRX_PROTEIN kindly provided by Dr. Mai Ping Tan at Cardiff 

University, and subsequently put into pELNSxv transfer vector by substituting ffluc from 

pELNSxv-tdTomato-T2A-ffluc plasmids through a traditional cloning strategy as 

described in following sections.  Although the M1 gene used for this construct was 

derived from a different strain of Influenza A virus as the recombinant Flu M1 protein 

used in APC assay, the antigenic peptide region (GILGFVFTL) of M1 proteins is identical 

in these two strains.  The cloning strategy and the sequence of the final tdTomato-T2A-

M1 construct are illustrated in Figure 2.4. 

 

 

Table 2.2. Lentiviral plasmids used in this study 

Plasmid Type Products Reference 

pELNSxv Transfer 

• tdTomato-T2A-ffluc 

• tdTomato-T2A-Gluc 

• tdToamto-T2A-M1 

 

pMDLg/pRRE Packaging Gag and Pol (Dull et al., 1998) 

pRSV-REV Packaging Rev (Dull et al., 1998) 

pCMV-VSVG Envelope VSVG (Dull et al., 1998) 
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Figure 2.4. Generation of pELNSxv-tdTomato-M1 lentiviral transfer vector.  The pELNSxv-

tdTomato-T2A-M1 lentiviral transfer vector was constructed by substituting the firefly luciferase 

(ffluc) gene fragment of pELNSxv-tdTomato-ffluc (constructed by Dr. John Bridgeman) with M1 

gene fragment cloned out from the pMA_MPT_MATRX_PROTEIN plasmid (provided by Dr. Mai 

Ping Tan) by PCR.  Both pELNSXv-tdTomato-T2A backbones and M1 PCR fragments were firstly 

trimmed by restriction enzymes SalI and XmajI for the following ligation reaction with T4 DNA 

ligase.  As illustrated, the sequence of the final tdTomato-T2A-M1 construct is shown with 

tdTomato marked in red, T2A in green and M1 in blue.   

  

Flu M1 tdTomato T2A 3’�EF-1 5’�
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Firefly luciferase construct 
(provided by Dr. Bridgeman)�

M1 construct 
to be made Substitution of ffluc with 

Flu M1 PCR fragment  

promoter 

T4 DNA ligase 

XmajI SalI 

5’#ATGGTGAGCAAGGGCGAGGAGGTCATCAAAGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCATGAACGGCC(
ACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGG
GCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCATGTACGGCTCCAAGGCGTACGTGAAGCACCCCGCCG
ACATCCCCGATTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGTCTG
GTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCACGCTGATCTACAAGGTGAAGATGCGCGGCACCAACTTCCCCCC
CGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTG
AAGGGCGAGATCCACCAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGACCATCTACATGGCCA
AGAAGCCCGTGCAACTGCCCGGCTACTACTACGTGGACACCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATC
GTGGAACAGTACGAGCGCTCCGAGGGCCGCCACCACCTGTTCCTGGGGCATGGCACCGGCAGCACCGGCAGCGGCAGCT
CCGGCACCGCCTCCTCCGAGGACAACAACATGGCCGTCATCAAAGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCC
ATGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAG
GTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCATGTACGGCTCCAAGGCGTACGTGAA
GCACCCCGCCGACATCCCCGATTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGG
ACGGCGGTCTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCACGCTGATCTACAAGGTGAAGATGCGCGGCAC
CAACTTCCCCCCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCG
ACGGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGCTGAAGGACGGCGGCCGCTACCTGGTGGAGTTCAAGACCAT
CTACATGGCCAAGAAGCCCGTGCAACTGCCCGGCTACTACTACGTGGACACCAAGCTGGACATCACCTCCCACAACGAGG
ACTACACCATCGTGGAACAGTACGAGCGCTCCGAGGGCCGCCACCACCTGTTCCTGTACGGCATGGACGAGCTGTACAAG
AGATCTGGCAGCGGAGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTAGGATGAGC
CTGCTGACCGAGGTGGAGACATACGTGCTGAGCATCATCCCCAGCGGCCCTCTGAAGGCCGAGATCGCCCAGCGGCTGG
AAGATGTGTTCGCCGGCAAGAACACCGACCTGGAAGTGCTGATGGAATGGCTGAAAACCCGGCCCATCCTGAGCCCTCTG
ACTAAGGGGATTTTAGGATTTGTGTTCACGCTCACCGTGCCCTCTGAGCGGGGCCTGCAGCGGAGAAGATTCGTGCAGAA
CGCCCTGAACGGCAACGGCGACCCCAACAACATGGACAAGGCCGTGAAGCTGTACCGGAAGCTGAAGCGGGAGATCAC
CTTCCACGGCGCCAAAGAGATCAGCCTGAGCTACTCTGCCGGCGCTCTGGCCAGCTGCATGGGCCTGATCTACAACCGGA
TGGGCGCCGTGACCACAGAGGTGGCCTTTGGCCTGGTGTGCGCCACATGCGAGCAGATCGCCGACAGCCAGCACCGGTC
CCACAGACAGATGGTGACCACCACCAACCCCCTGATCCGGCACGAGAACCGGATGGTGCTGGCTTCTACCACAGCCAAGG
CCATGGAACAGATGGCCGGCAGCAGCGAACAGGCCGCCGAAGCCATGGAAGTGGCCAGCCAGGCCAGGCAGATGGTGC
AGGCCATGCGGACCATCGGCACCCACCCTAGCAGCAGCGCCGGACTGAAGAACGACCTGCTGGAAAATTTGCAGGCCTA
CCAGAAACGGATGGGCGTGCAGATGCAGCGGTTCAAGTGA#3’((
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2.7.2. PCR amplification of M1 gene fragment 

PCR reactions were carried out using Phusion High-Fidelity PCR Kit (NEB) according to 

the manufacturer’s instruction with customised primers (Eurofins) for the specific 

amplification of M1 cDNA from pMA_MPT_MATRX_PROTEIN.  The primers were 

originally designed to amplify M1 fragments to allow both for infusion reactions with an 

appropriate plasmid backbone and for traditional enzymatic restriction and ligation using 

sticky ends.  The sequences of both forward and reverse primers are listed below, with the 

enzymatic restriction sites (XamjI in forward primer and SalI in reverse primer) marked in 

blue.  

 

Forward: GAATCCCGGCCCTAGGATGAGCCTGCTGACCGAGGT 

Reverse: GAGGTTGATTGTCGACTCACTTGAACCGCTGCATCT 

 

PCR reactions were carried out for 30 cycles as followed: 

 

• Initial denaturation: 98°C for 30 seconds 

• Denaturation: 98°C for 10 seconds 

• Annealing: 60°C for 30 seconds 

• Extension: 72°C for 30 seconds 

• Final extension: 72°C for 10 minutes 

 

The final PCR product with a size of 791 bps was separated from the PCR reaction by gel 

electrophoresis and extracted using the NucleoSpin Gel and PCR Clean-up kit (Macherey-

Nagel) according to the manufacturer’s instructions.  The purified M1 inserts were then 

examined quantitatively and qualitatively using a NanoDrop ND1000 (Thermo Scientific) 

for DNA concentration and purity (ratios of OD at wavelength of 230, 260 and 280 nm).  

 

2.7.3. Digestion of M1 gene fragments and ligation into pELNSxv 

The purified M1 inserts and pELNSxv-tdToamto-T2A-ffluc plasmids were digested by 

FastDigest SalI and XmajI (Life Technologies) in Green buffer (Life Technologies) at 

37°C for 40 minutes.  The digested products were then separated from unwanted 

fragments in the reaction mixtures by gel electrophoresis and extracted from the gel using 

the NucleoSpin Gel and PCR Clean-up kit.  The purified M1 inserts and vector backbones 
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were examined quantitatively and qualitatively using a NanoDrop ND1000.  Ligation 

reactions were performed by incubating 200 ng of the SalI/XmajI-digested pELNSxv-

tdTomato-T2A vector with SalI/XmajI-digested M1 inserts at vector:insert molecule ratios 

of 1:5 and 1:10 in the presence of T4 DNA ligase (NEB) overnight at 16°C. 

 

2.7.4. Transformation and identification of positive clones 

The product of the ligation reaction was used for transformation of XL10-Gold 

Ultracompetent Cells (Agilent Technologies) by heat shock.  Briefly, the ligated product 

was added into 100 µl XL10-Gold Ultracompetent Cells and incubated on ice for 1 hour.  

The plasmid/competent cell mixture was then placed on a heat block for 45 seconds at 

42°C followed immediately by a 5-minute recovery on ice.  After the recovery, 200 µl 

SOC medium (Invitrogen) were added and the mixture was cultured in an Orbi-Safe New 

Orbit incubator (Sanyo) at 37°C for 1 hour with shaking at a speed of 220 rpm.  The 

bacterial cell culture was then spread and grown on a LB plate supplemented with 100 

µg/ml carbenicillin for the selection of transformed cells at 37°C for overnight. 

 

Resulting colonies were picked and cultured overnight at 37°C in 5 ml LB broth 

supplemented with 100 µg/ml carbenicillin.  3 ml bacterial cultures were then sampled for 

preparation of plasmids using the Zyppy™ Plasmid Miniprep Kit (Zymo Research) 

according to the manufacturer’s instructions.  The purified plasmids were examined by 

NanoDrop ND1000 for their DNA concentration and quality.  To check if the M1 insert 

incorporated correctly into the vector, the purified plasmids were digested by FastDigest 

SalI and XbaI (Life Technologies) in Green buffer (Life Technologies) for 20 minutes at 

37°C and analysed by gel electrophoresis.  

 

2.7.5. DNA sequencing of construct region  

The plasmids of five positive clones that passed the selection procedures described above 

were sequenced at the M1 region to make sure the construct was correct without any point 

mutation.  Plasmids of each clone were sequenced starting from each end of the M1 gene 

with the forward or reverse primers used for the PCR reaction to make sure the sequence 

of M1 at the primer binding regions were correct.  The plasmids were mixed with 2 pM 
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forward or reverse primers and sent to Eurofins for sequencing.  The resulting sequences 

were analysed by using CLC Genomics Workbench 5 (CLC Bio). 

 

2.7.6. Maxi-prep of plasmids 

250 µl bacterial culture of a positive clone with correct sequence being confirmed were 

expanded in 250 ml LB broth (MP Biomedicals) supplemented with 100 µg/ml 

carbenicillin (Sigma) at 37°C for overnight at a shaking speed of 220 rpm.  Plasmids were 

extracted from bacterial cultures using the PureLink HiPure Plasmid Filter Maxiprep Kit 

(Invitrogen) according to the manufacturer’s instructions.  The purified pELNSxv-

tdTomato-T2A-M1 plasmids were examined by NanoDrop ND1000 for DNA 

concentration and quality and stored at −20°C for later use. 

 

2.7.7. Packaging of lentiviral particles  

For the production of lentiviral particles containing pELNSxv-tdToamto-T2A-M1 or 

pELNSxv-tdToamto-T2A-Gluc vectors, 293T cells were seeded overnight in T175 flasks 

at a density of 15-20 × 106 cells/flask before transient transfection with lentiviral 

packaging, envelop and transfer plasmids (Table 2.2) by CaCl2 precipitation.  All four 

lentiviral plasmids – 15 µg pELNSxv containing genes of interest, 18 µg pMDLg/pRRE, 

18 µg pRSV-PEV and 7 µg pCMV-VSVg – were mixed evenly with 50 µM CaCl2 in 3ml 

DMEM supplemented with 10 mM HEPES (pH adjusted to 7.1) for 30 minutes.  The 

spent medium of the 293T culture was replaced with 12 ml fresh DMEM medium 

supplemented with 10% FCS and 10 mM HEPES (pH 7.9) before the plasmid mixtures 

were added.  The 293T cells were cultured overnight at 37°C, before replacing the 

medium with fresh complete DMEM medium.  Lentiviral particles were collected 48 

hours and 72 hours post-transfection, and pooled.  All collected lentiviral particles were 

then spun at 1200 rpm for 5 minutes to remove debris of 293T cells, clear supernatants 

containing lentiviral particles were passed through 0.45 µm filters.  The filtered 

supernatants with lentiviral particles were centrifuged in polyallomer tubes at a speed of 

26,000 × g for 2 hours at 4°C using an OptimaTM L-100 XP Ultracentrifuge (Beckman 

Coulter) with SW28 rotor and corresponding buckets.  The pellets of lentiviral particles 

were resuspended in 1 ml complete RPMI and stored at −80°C. 
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2.7.8. Infection of CSC-like cells and non-CSCs with lentiviral particles 

For the transfection with lentiviral particles, CSC-like cells and non-CSCs were seeded 

overnight into 24-well plate at a density of 1 × 105 cells/well.  The lentiviral suspension 

was mixed with fresh complete HMLER medium at a 1:1 ratio.  Polybrene was then added 

into lentiviral supernatant at a final concentration of 4 µg/ml.  The spent HMLER medium 

in cultures of CSC-like cells and non-CSCs was then replaced by the lentiviral particle and 

polybrene mixture, and the cells were incubated overnight at 37°C.  On the next day, 500 

ml fresh HMLER medium were added to the cell cultures, and the cells were eventually 

harvested 48 hours post-infection and analysed by flow cytometry.  

 

2.7.9. Identification and selection of transduced CSC-like cells and non-CSCs 

Transduced cells with the highest expression levels of tdTomato upon transfection with 

lentiviral particles were sorted using a FACS Aria III cell sorter (BD Biosciences) to 

purities >98%, based on their tdTomato expression.  The sorted cells were regularly 

monitored throughout passages to ensure the stability of the tdTomato expression, their 

CD44/CD24 expression profiles and their general morphology.  

 

Sorted M1-expressing CSC-like cells and non-CSCs were assessed for their M1 

expression by intracellular staining using purified mouse anti-M1 mAbs (clone GA2B, 

Abcam) followed by FITC-conjugated goat anti-mouse IgG secondary Abs (DAKO).   

 

Gluc-expressing CSC-like cells and non-CSCs were lysed by 5 freeze/thaw cycles using 

liquid nitrogen and a 37°C water bath.  Expression of Gaussia luciferase in the cell protein 

lysate was examined using the BioluxTM Gaussia Luciferase Assay Kit (NEB) according 

to the manufacturer’s instruction.  Optical densities were measured on a Dynex MRX II 

reader (Dynex Technologies). 
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2.8. Establishment of breast cancer model in immunodeficient mice 

2.8.1. Tumour development induced by CSC-like cells and non-CSCs in NSG mice 

Transduced CSC-like cells and non-CSCs co-expressing Flu M1 and tdTomato were 

resuspended in a 1:1 mixture of DMEM/F12 medium and Matrigel Matrix to doses of 2 × 

106 and 103 cells/100 µl.  The cell suspensions were xenotransplanted s.c. into the 

mammary fat pads of 6-8 week old NSG mice (Charles River), with each group consisting 

of 6 mice.  Tumour growth was monitored by weekly live imaging of tdTomato using a 

Kodak Fx-Pro imager (Kodak) and by biweekly caliper measurements of the tumour size, 

for up to 182 days after injection.  The volume of palpable tumour nodules was calculated 

using the formula, tumour volume (mm3) = 0.52 × a × b2, where a is the major tumour 

diameter (in mm) and b is the minor diameter perpendicular to the major one (in mm) 

(O'Reilly et al., 1997).  Fluorescence signals were analysed using the Carestream 

Molecular Imaging software (Carestream Health, Inc.).  Animals were sacrificed when the 

tumours reached 1000 mm3, in accordance with Home Office regulations (PPL 30/2891 

and PIL 30/9936).  The tumours and organs (draining and non-draining lymph nodes, liver, 

lung, brain) were taken out and imaged separately using the Kodak Fx-Pro to detect 

micro-metastases.  The harvested tumours were cut into three pieces with two each being 

preserved in 4% paraformaldehyde (Fisher) or OCT embedding matrix (CellPath), 

respectively, for histological analyses, and one piece dissociated immediately into single 

cell suspensions for immunophenotyping by flow cytometry.  The remaining dissociated 

cell suspensions from each tumour were aliquoted and frozen in liquid nitrogen. 

 

2.8.2. Cross-presentation of Flu M1 antigen by γδ T-APCs in tumour-bearing NSG 

mice 

Transduced CSC-like cells co-expressing tdTomato with either Flu M1 or Gluc were 

xenotransplanted into the mammary fat pads of 6-8 week old NSG mice (Charles River) at 

a dose of 2 × 106 cells/mouse with Matrigel.  Tumour growth was monitored by live 

imaging and caliper measurements, and the resulting tumours were used as targets for γδ 

T-APCs when their diameter reached 0.5 cm (around 65 mm3).  The tumours were 

sensitised by intravenous (i.v.) injection with 1 mg/kg zoledronate or with saline as control 

(kindly performed by Dr. Garry Dolton), and 24 hours later 5 × 106 expanded γδ T-APCs 

(suspended in 50 µl saline) were injected directly into the tumours.  18-20 hours after the 
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injection with γδ T-APCs, the tumours were harvested and dissociated into single cell 

suspensions by cutting thoroughly with a scalpel and careful passing through 0.7 µm and 

0.4 µm cell strainers using the rubber plunge of a syringe.  The resulting single cell 

suspensions were then stained using the Live/dead Aqua dead cell stain kit, followed by 

surface staining of CD3 and Vγ9 TCR.  Live γδ T-APCs were analysed for their 

expression of tdTomato by flow cytometry, or isolated by BD FACS Aria III cell sorter 

for functional assays.  Sorted γδ T-APCs were then co-cultured with M1-specific CD8+ 

responder T cells in the presence of brefeldin A for 5 hours.  After the co-culture, the cells 

were stained with Live/dead Aqua and stained for surface expression of CD3, Vγ9 TCR 

and CD8+; and intracellularly for IFN-γ.  Antigen cross-presentation assays using in vitro 

generated γδ T-APCs (see section 2.6.5) were performed in parallel as internal controls for 

these ex vivo experiments.  
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2.9. Statistical analysis 
Statistical analysis was carried out by the use of GraphPad Prism 6 software (GraphPad 

Software, Inc., CA, USA).  Column statistics were performed at the first place to check 

the distribution of each data set and to determine whether datasets were parametric or non-

parametric.  Student’s t test (parametric data), Mann-Whitney U test (non-parametric data) 

and Wilcoxon matched-pairs signed rank test (paired non-parametric data) were used to 

compare two variables, whereas ordinary one-way ANOVA and RM one-way ANOVA 

were performed for the comparison of multiple variables within the parametric and non-

parametric data sets, respectively.  Two-way ANOVA was performed to compare multiple 

variables within two different groups.  Cumulative survival curves were generated using 

the Kaplan-Meier approach.  Descriptive statistics are expressed as means ± standard 

deviation of the mean (SD) in all figures.  All statistical tests were performed as two-tailed 

tests, and the resulting statistical significances of difference indicated in the figures and 

tables as *, p < 0.05; **, p < 0.01; ***, p < 0.001.  
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Chapter 3. Functional and Phenotypical Characterisation of Breast 

Cancer Stem-like Cells  

3.1. Introduction 
Cancer stem cells (CSCs) comprise a minor cell population responsible for the initiation 

and relapse of tumours due to (i) their potential to self-renew and differentiate (Reya et al., 

2001; Pardal et al., 2003), (ii) their resistance to chemotherapy (Dean et al., 2005) and 

radiation (Rich, 2007), and (iii) their ability to escape from immunosurveillance (Schatton 

et al., 2010a).  In this study, I aimed to develop an appropriate experimental model for the 

investigation of therapeutic strategies targeting CSCs efficiently and specifically in vitro 

and in vivo by harnessing γδ T cells with or without prior sensitisation or adjuvants.  To 

achieve this aim, I first sought to establish a well-defined cellular model, which allows a 

reliable phenotypical distinction of CSC-like cells and non-CSCs.  This work took 

advantage of a well-established cell line originally described by Prof. Robert Weinberg’s 

laboratory at the Whitehead Institute for Biomedical Research, Cambridge, MA. 

 

To study how mammary epithelial cells transform and become malignant during 

carcinogenesis of breast cancer, the Weinberg laboratory isolated primary human 

mammary epithelial (HMLE) cells from a patient undergoing breast reduction surgery and 

immortalised these cells by transduction with human telomerase reverse transcriptase 

(hTERT) and co-expression of simian virus 40 (SV40) large T (LT) and small T (ST) 

antigens, which inhibit the p53 and retinoblastoma protein (pRB) signalling pathways 

(Elenbaas et al., 2001).  The tumourigenicity of HMLE cells in immunodeficient mice was 

very limited but could be enhanced by additional transformation with an oncogenic H-

RasV12 mutant (Elenbaas et al., 2001).  Although being artificially generated, this 

experimental model allowed to study the malignant transformation of residual mammary 

stem cells originally sat within the isolated mammary epithelial cells after ras 

transformation.  CSCs were firstly identified and isolated in breast cancer with a CD44hi 

CD24−/lo ESA+ phenotype while lacking lineage markers (lin−) (Al-Hajj et al., 2003).  Of 

note, both non-tumourigenic HMLE and tumourigenic HMLER cells constitute an intra-

tumour heterogeneity with a predominantly CD44lo CD24hi phenotype and features of 

differentiated cells, and a minor but stable and distinct population of CD44hi CD24lo cells 

with putative CSC-like nature that typically comprises 0.4-2% of all cells when cultured 

under normal adherent conditions (Mani et al., 2008).  Interestingly, induction of 

epithelial-to-mesenchymal transition (EMT) by treatment with TGF-β (Mani et al., 2008; 
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Morel et al., 2008) or by over-expressing the transcription factors snail, twist (Mani et al., 

2008) or slug alone or in combination with FoxC2 (Hollier et al., 2013) trigger a 

phenotypic and morphological change from a CD44lo CD24hi epithelial-like phenotype to 

a CD44hi CD24lo mesenchymal-like phenotype concomitantly with the acquisition of 

CSC-like properties.  The tight link between EMT and stemness led to a conceptual 

hypothesis that the induction of EMT by environmental cues, e.g. by oxidative stress, 

growth factors and cytokines, may elicit disease progression and metastasis (May et al., 

2011; Velasco-Velazquez et al., 2011; Tsai and Yang, 2013).  The acquisition of enhanced 

mobility and invasiveness upon EMT could contribute to the systemic dissemination of 

malignant cells that enter from the primary tumour site into the vasculature and later 

extravasate from the circulation to distant sites.  Thus, the generation of an easy-to-use 

and reliable CSC-like model derived from HMLER cells might allow investigations into 

the control of tumour progression at different disease stages by immune cells.   

 

In this chapter, I aimed to establish a cellular CSC-like model by sorting CD44lo CD24hi 

and CD44hi CD24lo cells from the original HMLER cell line.  The isolated CD44lo CD24hi 

and CD44hi CD24lo cells were characterised (i) for their long-term stability in cell culture; 

(ii) phenotypically for their expression of CSC-associated and EMT markers; (iii) 

morphologically for their epithelial- or mesenchymal- like appearance under different 

culture conditions; (iv) functionally for their self-renewal and plasticity in vitro using a 

mammosphere formation assay (Dontu and Wicha, 2005; Liao et al., 2007); and (v) for 

their ability to initiate heterogeneous tumours in immunodeficient mice in vivo.  In 

addition, HMLER-derived CSC-like cells and non-CSCs were further transformed to 

express luciferase and/or tdTomato fluorescent reporters (Winnard et al., 2006) in order to 

facilitate in vivo imaging for future adoptive transfer studies using human T cells. 

 

 

3.2. Aim  

• To validate and establish a cellular model, which mimics most features typically 

associated with CSCs, and which can be manipulated easily both in vitro and in vivo, 

to study their interaction with human T cells. 
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3.3. Phenotypical and functional characterisation of CD44hi/CD24lo and 

CD44lo/CD24hi HMLER cells  

3.3.1. Characterisation of HMLER subpopulations with differential expression of 

classical CSC markers 

A panel of well-characterised CSC-associated markers including CD44 and CD24 (Al-

Hajj et al., 2003; Mani et al., 2008) and GD2 (Battula et al., 2012) was used to 

characterise the parental HMLER cell line by flow cytometry.  Figure 3.1 shows that the 

HMLER cell line comprises two distinct cell subpopulations, with the majority (~99%) 

displaying a CD44lo/CD24hi phenotype and the remainder (~1%) a CD44hi/CD24lo 

phenotype (Figure 3.1).  Expression of GD2 was restricted to cells with a CD44hi/CD24lo 

phenotype and was absent on cells with a CD44lo/CD24hi phenotype (Figure 3.1).  To 

further dissect the nature of these two CD44lo/CD24hi and CD44hi/CD24lo cell populations, 

a series of in vitro functional analyses was performed, as described in the following 

sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Expression of CSC markers by HMLER cells cultured under normal, adherent 

conditions.  HMLER cells were examined for their expression of CD44, CD24 and GD2 by flow 

cytometry analysis. 
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3.3.2. Enrichment of CD44hi/CD24lo cells in mammosphere cultures  

Mammosphere culture has been well established and widely used as surrogate assay to 

examine the self-renewal of breast cancer cells (Dontu and Wicha, 2005; Liao et al., 2007).  

To define the actual self-renewing cell population within the parental HMLER cell line, 

we cultured the cells in an anchorage-independent manner in mammosphere medium in 

the absence of FCS.  After seven days, mammospheres were collected and dissociated into 

single cell suspensions and stained for CD44 and CD24 expression on the cell surface. 

Under these culture conditions, the CD44hi/CD24lo cell population was significantly 

enriched, increasing from 0.4-2% of total live cells within parental HMLER cells to 20-

50% after primary culture under mammosphere-forming conditions, and to > 70% after 

secondary culture (Figure 3.2).  Accordingly, the proportion of CD44lo/CD24hi cells 

within HMLER cells dropped significantly along extended passages under mammosphere-

forming conditions.  Of note, a population of cells with an unusual CD44hi/CD24hi 

phenotype emerged in mammosphere cultures.  Whether this population was in transition 

(differentiation or de-differentiation) between CD44hi/CD24lo and CD44lo/CD24hi cells is 

currently unknown.  The origin of this population and the direction of cell transition both 

need further examination.  
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Figure 3.2. Enrichment of CD44hi/CD24lo HMLER cells cultured under mammosphere-

forming conditions.  HMLER cells maintained in normal adherent culture, or from primary or 

secondary mammosphere cultures were examined for the proportion of CD44hi/CD24lo and 

CD44lo/CD24hi cells.  (A) For analysis, gates were sequentially set on intact, single and live cells. 

Representative FACS plots for the expression of CD44 and CD24 by HMLER cells under each 

culture condition are shown in (B).  Data collected from three independent cultures were shown as 

mean ± SD in (C).  
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3.3.3. Survival and proliferation of CD44hi/CD24lo cells but not CD44lo/CD24hi cells 

in mammosphere cultures 

To further dissect how CD44hi/CD24lo cells became enriched under mammosphere-

forming conditions, the viability and proliferation of CD44hi/CD24lo and CD44lo/CD24hi 

cells were examined after seven days in culture.  

 

CD44hi/CD24lo cells adapted well to mammosphere-forming conditions with no significant 

reduction of viability.  In contrast, the viability of CD44lo/CD24hi cells dropped 

significantly from 96% under normal adherent conditions to 42% in mammosphere 

cultures (Figure 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3. Differential viability of CD44hi/CD24lo cells and CD44lo/CD24hi cells in 

mammosphere cultures of HMLER cells.  (A) For analysis, gates were sequentially set on intact 

and single cells.  (B) Data are pooled from four independent experiments and are shown as mean 

± SD.  The significance of difference was analysed by Ordinary two-way ANOVA (****p ≤ 0.0001).  
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Two complementary assays were carried out to identify the cell population(s) that actually 

proliferate and expand in mammosphere cultures.  HMLER cells were labelled with 

CellVue to track the cell divisions of CD44hi/CD24lo and CD44lo/CD24hi cells.  As shown 

in Figure 3.4A, CD44hi cells proliferated as confirmed by dilution of their surface 

labelling, whereas CD44lo cells did not proliferate and retained their original labelling.  

Staining for the cell proliferation markers Ki67 and phospho-histone H3 (pHH3) showed 

that in mammosphere culture only CD44hi/CD24lo but not CD44lo/CD24hi cells 

proliferated (Figure 3.4B).  

 

These results show that within HMLER cells, only CD44hi/CD24lo cells but not 

CD44lo/CD24hi cells exhibit CSC-like properties including the capacity to self-renew and 

differentiate in an anchorage-independent manner.    

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. Proliferation of CD44hi/CD24lo cells but not CD44lo/CD24hi cells in mammosphere 

cultures of HMLER cells.  The proliferation of CD44hi/CD24lo and CD44lo/CD24hi cells within 

HMLER cells maintained in normal adherent culture or from primary mammospheres were 

examined by (A) dilution of CellVue labelling and (B) Ki67 and pHH3 expression.  Representative 

FACS plots of two independent experiments are shown. 
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3.4. Isolation and maintenance of CD44hi/CD24lo and CD44lo/CD24hi cells 

from the parental HMLER cell line  

3.4.1. Phenotypical characteristics of CSC-like and non-CSC sublines 

To investigate the nature of CD44hi/CD24lo and CD44lo/CD24hi cells within the HMLER 

cell line further, these two cell populations were purified by FACS (Figure 3.5A).  In 

long-term culture under normal adherent conditions, both CD44hi/CD24lo and 

CD44lo/CD24hi cells stably retained their phenotype over at least 32 days (Figure 3.5B).  

However, a minor population of sorted CD44hi/CD24lo CSC-like cells showed signs of 

CD24 up-regulation, giving rise to CD44hi/CD24+ cells as observed in mammosphere 

cultures.  Similarly, long-term culture of CD44lo/CD24hi non-CSCs revealed the presence 

of a minor contamination with CD44hi/CD24lo CSC-like cells (~0.05%).  In accordance 

with the expression profile of parental HMLER cell line (Figure 3.1), GD2 expression was 

restricted to sorted CSC-like cells and was not found on sorted non-CSCs (Figure 3.5C). 
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Figure 3.5. Isolation of CD44hi/CD24lo CSC-like cells and CD44lo/CD24hi non-CSCs from the 

parental HMLER cell line by FACS.  HMLER cells were labelled with PE-Cy7-conjugated anti-

CD44 mAbs and FITC-conjugated anti-CD24 mAbs and then sorted using a BD FACS Aria cell 

sorter.  CD44/CD24 expression profiles of the sorted cell populations were determined  (A) right 

after the sort and (B) after culturing them for 32 days under normal adherent culture conditions.  

(C) GD2 expression of both cell populations maintained in normal adherent culture as examined 

by flow cytometry 
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3.4.2. Morphological and epithelial-mesenchymal transition (EMT) characteristics 

of CSC and non-CSC sublines 

Sorted CD44hi/CD24lo and CD44lo/CD24hi cells were cultured in normal HMLER medium 

or with mammosphere medium, which lack of FCS supplement, to examine their potential 

to differentiate in vitro depending on the culture conditions.  As shown in Figure 3.6, 

sorted CD44hi/CD24lo and CD44lo/CD24hi cells exhibited distinct mesenchymal-like and 

epithelial-like morphologies, respectively, in adherent culture with normal HMLER 

medium.  Surprisingly, neither CD44hi/CD24lo nor CD44lo/CD24hi cells showed signs of 

differentiation and maintained their characteristic morphology and CD44/CD24 phenotype 

stably over a period of at least 14 days (Figure 3.6) and up to 32 days (Figure 3.5B) in this 

culture condition.  In contrast to the morphological and phenotypical stability of both cell 

populations in standard culture, sorted CD44hi/CD24lo CSC-like cells gradually gave rise 

to a population with CD44lo/CD24hi phenotype and formed epithelial-like patches when 

cultured in mammosphere medium.  Strikingly, CD44lo/CD24hi non-CSCs failed to 

expand and eventually died under these culture conditions.  
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Figure 3.6. Differentiation of CD44hi/CD24lo CSC-like cells but not CD44lo/CD24hi non-CSCs 

dependent on the culture conditions.  Sorted cells were maintained in adherent cultures with 

complete HMLER medium or with mammosphere culture medium for up to 14 days and examined 

by flow cytometry.  
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In the HMLE/HMLER model, induction of EMT triggers the acquisition of CSC-like 

properties (Mani et al., 2008; Morel et al., 2008; Hollier et al., 2013).  As sorted 

CD44hi/CD24lo and CD44lo/CD24hi cells exhibited distinct mesenchymal-like and 

epithelial-like morphologies in adherent culture, I next examined their expression of 

EMT-associated markers by immunofluorescence microscopy.  As shown in Figure 3.7, 

CSC-like cells stained positively for the mesenchymal markers vimentin and (albeit less 

prominently) for fibronectin extra domain A (EDA fibronectin) while only a small fraction 

of non-CSCs expressed these markers.  Although this small fraction of the non-CSCs was 

stained positive for these makers, these cells exhibited an epithelial-like morphology 

rather than mesenchymal-like morphology.  Of note, there is about 0.05% contaminant 

CD44hi/CD24lo cells sitting in the culture of non-CSCs. Thus, the possibility that these 

cells are actually contaminant residual CD44hi/CD24lo cells with an epithelial-like 

morphology still cannot be excluded.  For the expression of epithelial markers cytokeratin-

14 (CK-14) as marker for basal/myoepithelial lineage and cytokeratin-18 (CK-18) as 

marker for luminal lineage, CSC-like cells showed no expression of CK-14 and only 

intermediate levels of CK-18, whereas non-CSCs expressed comparatively higher level of 

CK-14 and CK-18, suggesting a more differentiated states of non-CSCs.  Both CSC-like 

and non-CSCs stained negative for N-cadherin and α-smooth muscle actin (α-SMA).  In 

summary, the phenotype and morphology of non-CSCs is consistent with epithelial 

characteristics, whereas CSC-like cells shows signs of an incomplete EMT with 

predominantly mesenchymal characteristics.  

 

These findings suggest that under certain culture condition without sufficient supply of 

nutrients and growth factors, differentiation could only be induced in CD44hi/CD24lo but 

not in CD44lo/CD24hi cells.  Mammosphere forming assays were thus carried out to 

further functionally characterise the self-renewal and pluripotency of these two cell 

populations. 
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Figure 3.7. Expression of epithelial- and mesenchymal-associated markers by 

CD44hi/CD24lo CSC-like cells and CD44lo/CD24hi non-CSCs.  The isolated CSC-like cells and 

non-CSCs were seeded on cover-slip chamber slides and labelled with purified antibodies against 

CD44, epithelial markers CK14 and CK18, and fibroblastic markers EDA fibronectin and vimentin.  

AF-488-conjugated secondary antibodies were used to visualise stained cells by fluorescent 

microscopy.   
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3.5. Functional characteristics of CSC-like and non-CSC sublines in vitro 

3.5.1. Self-renewal of CSC-like and non-CSC sublines in vitro 

The self-renewal capacity of CSC-like cells and non-CSCs was judged from their ability 

to survive and proliferate under mammosphere-forming conditions.  As shown in Figure 

3.8, CSC-like cells were far superior quantitatively and qualitatively in forming 

mammospheres as compared to their non-CSC counterparts.  Quantitatively, CSC-like 

cells contained a greater number of mammosphere-forming cells as compared to non-

CSCs, and this difference increased further upon passaging cells into secondary 

mammosphere cultures.  Qualitatively, CSC-like cells consistently gave rise to substantial, 

round and compact mammospheres, whereas the mammospheres derived from non-CSCs 

were small and loose with aberrant shapes (deformity).  Of note, mammospheres derived 

from sorted CSC-like cells were larger and better differentiated than mammospheres 

derived from the parental HMLER cell line, indicating that the mammosphere-forming 

potential of HMLER cells resides within the CD44hi/CD24lo CSC-like subpopulation. 
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Figure 3.8. Self-renewal of CD44hi/CD24lo CSC-like cells and CD44lo/CD24hi non-CSCs.  

Sorted CSC-like cells and non-CSCs were seeded in ultralow-attachment 96-well plate at a 

density of 5000 cells/well in mammosphere medium for 7 days.  (A) The mammospheres 

generated under these conditions were counted.  (B) The results and pictures shown are 

representative for three independent experiments taken at a 10X magnification.  Data are shown 

as mean ± SD and analysed with Ordinary one-way ANOVA (*p ≤ 0.05; ***p ≤ 0.001; ****p ≤ 

0.0001).  
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During repeated passaging of non-CSCs under mammosphere-forming conditions, the 

proportion of CD44hi/CD24lo cells gradually increased (Figure 3.9).  Further analysis 

showed that under these culture conditions, regardless of their origin from CSC-like cells 

of non-CSCs, only CD44hi/CD24lo but not CD44lo/CD24hi cells survived (Figure 3.10).  

This selective outgrowth of CD44hi/CD24lo cells from non-CSC cultures is likely due to 

preferential survival and proliferation of minor contaminations of non-CSC with CSC-like 

cells due to insufficient purities from the cell sorting.  However, this increase of 

CD44hi/CD24lo cells may also reflect reversion/dedifferentiation of non-CSCs back to 

CSCs as a result of phenotypical plasticity, which needs further investigation with cell 

lineage tracking (Chaffer et al., 2011).  In contrast to non-CSCs, CSC-like cells were very 

stable in mammosphere culture and only gave rise to a very small population of 

CD44lo/CD24hi cells, indicative of the potential of CSC-like cells to differentiate in vitro 

and give rise to non-CSCs.  Moreover, only CSC-like cells but not non-CSCs proliferated 

and expanded in mammosphere culture during the two passages examined (Figure 3.11). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.9. Distribution of CD44hi/CD24lo and CD44lo/CD24hi cells in mammosphere cultures 

of CSC-like cells and non-CSCs.  Sorted CSC-like cells and non-CSCs were maintained in 

mammosphere culture over two passages, and their phenotype was examined by flow cytometry. . 

The results shown are representative for three independent experiments.  
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Figure 3.10. Survival of CD44hi/CD24lo CSC-like cells but not CD44lo/CD24hi non-CSCs in 

mammosphere culture.  Sorted CSC-like cells and non-CSCs were maintained in mammosphere 

culture over two passages, and their phenotype was examined using Live/dead fixable Aqua 

staining and analysed by flow cytometry.  Representative FACS plots for two independent 

experiments are shown in (A). Data shown were pooled from two independent (B) 1st and (C) 2nd 

mammosphere cultures and shown as mean ± SD.  Ordinary two-way ANOVA was applied for the 

analysis of differences between each group (*p ≤ 0.05). 
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Figure 3.11. Proliferation of CD44hi/CD24lo CSC-like cells but not CD44lo/CD24hi non-CSCs in 

mammosphere culture.  Sorted CSC-like cells and non-CSCs were maintained in mammosphere 

culture over two passages, and their proliferation was examined by counting the live cells 

harvested from the culture under haemocytometer in the presence of trypan blue for the 

distinguish and exclusion of dead cell from counting.  The results shown are pooled from two 

independent experiments and shown as mean ± SD.  RM one-way ANOVA was applied for the 

analysis of differences between each group (*p ≤ 0.05; **p ≤ 0.01).  The dash line shows the 

number of cells seeded in the beginning of culture.  
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3.5.2. Differentiation of purified GD2+ CSC-like cells in culture 

It has been documented that GD2 expression distinguishes a population of cells with CSC-

like characteristics from a panel of breast cancer cell lines including HMLER cells and 

from biopsies of breast cancer patients (Battula et al., 2012; Liang et al., 2013).  As shown 

in Figures 3.1 and 3.5C, consistent with the report, only a proportion of (i) CD44hi/CD24lo 

cells within HMLER cells and (ii) HMLER-derived CSC-like cells expressed the CSC-

associated marker GD2.  In order to test whether GD2 expression identifies further true 

CSCs within the CSC-like cell line, GD2+ cells were sorted from CSC-like cells to a 

purity of 99.9% and then maintained in normal adherent culture.  GD2 expression by the 

sorted cells was checked by flow cytometry every three days.  As shown in Figure 3.12, 

expression of GD2 by sorted GD2+ cells was gradually lost and dropped to approximately 

40% at the end of the experiment, which was comparable to the GD2 expression level of 

the parental CD44hi/CD24lo CSC-like cells.  These results indicate that potentially the true 

CSCs are harboured exclusively within CSC-like cells but not within non-CSCs.  

 

 

 

 
Figure 3.12. GD2 expression by sorted GD2+ cells and parental CD44hi/CD24lo CSC-like cells 

over extended culture periods.  (A) GD2+ cells were isolated from CSC-like cells by MACS.  (B) 

GD2 expression by GD2+ cells and parental CSC-like cells over 21 days in culture as analysed by 

flow cytometry.  The results shown are representative for two independent experiments. 
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3.6. Functional characteristics of CSC-like and non-CSC sublines in vivo 

3.6.1. Generation of CSC-like cells and non-CSCs co-expressing red fluorescent 

protein reporter and a viral model antigen 

To further examine the tumourigenicity of CSC-like cells and non-CSCs in vivo, we 

transduced these two cell sublines with lentiviral particles delivering a T2A gene cassette 

bicistronically expressing tdTomato as a fluorescent reporter for repeated and non-

invasive in vivo live imaging and influenza virus matrix protein M1 (Flu M1) as surrogate 

tumour-specific antigen for subsequent cellular adoptive transfer studies.  As internal 

control for expression of an irrelevant antigen, Gaussia luciferase (Gluc) was used instead 

of Flu M1.   

 

CSC-like cells and non-CSCs transduced with the tdTomato-T2A-Gluc control gene 

cassette were isolated by FACS sorting twice according to their high expression level of 

tdTomato to purities >99% (Figure 3.13A).  The CD44/CD24 phenotype of transduced 

CSC-like cells (CSC-tdTomato-T2A-Gluc, or in short CSC-Gluc) and non-CSCs (non-

CSC-tdTomato-T2A-Gluc, or in short non-CSC-Gluc) remained stable in culture, as 

assessed by flow cytometry (Figure 3.13B).  The transduced Gluc protein was functionally 

expressed in both CSC-Gluc cells and non-CSC-Gluc cells as confirmed using the 

BioluxTM Gaussia Luciferase Assay Kit (NEB) (Figure 3.13C).  
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Figure 3.13. Generation of CD44hi/CD24lo CSC-like cells and CD44lo/CD24hi non-CSCs co-

expressing tdTomato fluorescent reporter and Gaussian luciferase.  (A) CSC-like cells and 

non-CSCs were transduced with lentiviral particles delivering bicistronic tdTomato-T2A-Gluc gene 

cassette.  Successfully transduced tdTomatohi cells were sorted twice to reach purities higher than 

99% by FACS.  (B) tdTomato expression and CD44/CD24 phenotype of purified transduced CSC-

like cells and non-CSCs as assessed by flow cytometry.  (C) Luciferase activity within the lysate of 

CSC-like cells and non-CSCs with or without transduction.  Data are shown as mean ± SD. 
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Similarly, CSC-like cells and non-CSCs were transduced with lentiviral particles 

delivering a tdTomato-T2A-M1 gene cassette.  Successfully transduced cells were sorted 

to purities >99% according to their high expression levels of tdTomato (Figure 3.14A).  

As already seen for CSC-Gluc and non-CSC-Gluc cells, the CD44/CD24 phenotype of 

M1-transduced CSC-like cells (CSC-tdTomato-T2A-M1, or in short CSC-M1 cells) and 

non-CSCs (non-CSC-tdTomato-T2A-M1, in short non-CSC-M1 cells) remained stable in 

culture as assessed by flow cytometry (Figure 3.14B).  As shown in Figure 3.14C, the 

positive staining of both CSC-M1 cells and non-CSC-M1 cells with M1-specific 

antibodies for intracellular M1 confirmed successful expression of the viral antigen in 

these transduced lines.  Staining with appropriate isotype control antibodies as well as 

with parental (i.e. M1-deficient) CSC-like cells was included as negative controls for the 

flow cytometry analysis.  

 

Importantly, these lentivirally transduced CSC-like cells and non-CSCs were 

indistinguishable from the corresponding non-transduced parental cell lines with respect to 

phenotype, morphology and long-term stability in culture, demonstrating that co-

expression of Flu M1 and tdTomato, or Gluc and tdTomato, did not affect their viability 

nor behaviour in cell culture.  The CSC-M1 cells and non-CSC-M1 cells were 

consequently used for orthotopic xenotransplantation in immunodeficient NSG mice. 
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Figure 3.14. Generation of CD44hi/CD24lo CSC-like cells and CD44lo/CD24hi non-CSCs 

expressing tdTomato fluorescent reporter and M1.  (A) CSC-like cells and non-CSCs were 

transduced with lentiviral particles delivering a bicistronic tdTomato-T2A-M1 gene cassette.  

Successfully transduced tdTomatohi cells were sorted to purities >99% by FACS.  (B) tdTomato 

expression and CD44/CD24 phenotype of transduced CSC-like cells and non-CSCs as assessed 

by flow cytometry.  (C) Intracellular expression of M1 by transduced CSC-like cells and non-CSCs 

as assessed by flow cytometry.  
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3.6.2. Tumourigenicity of CSC-like cells and non-CSCs in immunodeficient NSG 

mice 

CSC-M1 cells and non-CSC-M1 cells were orthotopically implanted into 

immunodeficient NSG mice by injecting a high (2 × 106 cells/mouse) or low dose (103 

cells/mouse) of either cell type subcutaneously (s.c.) into mammary fat pad in the presence 

of matrigel.  Each group consisted of 6 mice.  The development of tumours arising from 

each injection was monitored closely by live imaging of tdTomato reporter using a Kodak 

Fx-Pro imager (representative images as shown in Figure 3.15; and measurements as 

shown in Figure 3.16A) and by measurement of palpable tumours using calipers (Figure 

3.16B).  In accordance with Home Office regulations, mice were sacrificed by Schedule 1 

method before tumours reached 1.5 cm in the longest dimension (maximum size permitted 

in the license is 1.7 cm in diameter) or when any signs of (i) discharge, (ii) redness of skin 

surrounding lesion or (iii) development of a crater-like appearance (indicative of erosion 

of deeper layers of the skin) at the site of the lesion were observed.   

 

For survival analyses, development of tumours was as positive when any dimension of the 

tumour reached 1 cm in length (Figure 3.17).  All six NSG mice receiving 2 × 106 CSC-

M1 cells developed tumours while only one of six mice (16.7%) receiving 2 × 106 non-

CSC-M1 cells developed a tumour.  The tumours derived from injections of 2 × 106 CSC-

M1 cells grew rapidly, with the fastest one reaching a size of >1 cm as early as day 46 and 

the slowest one reaching that size at day 63.  With a much slower growth rate, the only 

tumour derived from injection of 2 × 106 non-CSC-M1 cells reached a size of >1 cm at 

day 91, i.e. 1-2 months later than the CSC-M1-derived tumours.  

 

In contrast to the rapid development of tumours in NSG mice receiving CSC-M1 cells at a 

high dose, injection of CSC-M1 cells at a low dose of 103 cells per animal only reached 

tumour sizes of >1 cm at much later time points, ranging from day 95 to day 154.  Despite 

the bigger variation as compared to the injection with CSC-M1 cells at a high dose, 

tumours developed in all six treated mice, demonstrating the striking tumour-forming 

potential of HMLER-derived CSC-like cells in vivo.  Of note, the first tumour developing 

upon injection of 103 CSC-M1 cells reached >1 cm in size at day 95, which is very close 

to the time point when the only tumour derived from injection of 2 × 106 non-CSC-M1 

cells developed, indicating the potential that this tumour may actually derived from the 

very minor contamination of non-CSCs with CSC-like cells (< 0.1% of all live cells as 
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determined by flow cytometry analysis; Figure 3.5 and 3.6) rather than non-CSCs.  

However, the actual origin of the tumour derived from the injection of 2 × 106 non-CSC-

M1 cells remains unclear at this stage.  Finally, no palpable tumour had developed in any 

of the six NSG mice receiving103 non-CSC-M1 cells by day 183, i.e. one month after the 

last tumour derived from low dose CSC-M1 cells was confirmed.   

 

The tumourigenicity of CSC-like cells was further confirmed by similar results obtained in 

a second, independent experiment assessing tumour development upon orthotopic 

injection of 2 × 106 CSC-M1 or CSC-Gluc cells into NSG mice (data not shown). 
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Figure 3.15. Representative live imaging pictures of tumours using the Kodak Fx-Pro 

system.  Mice receiving injections of CSCs or non-CSCs at (A) high or (B) low dose were 

monitored twice a week using a Kodak Fx-Pro imager detecting expression of the reporter 

tdTomato.  Mice were anaesthetised using isoflurane, shaved on the abdomen to reduce 

background autofluorescence, and examined under both white light (emission filter at 700 nm for 

0.5 seconds) and DsRed (excitation filter at 550 nm and emission filter at 600 nm for 20 seconds) 

settings.  Pictures were taken under both settings and overlaid by using the Carestream Molecular 

Imaging software. 
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Figure 3.16. Development of tumours derived from CSC-like cells and non-CSCs expressing 

tdTomato fluorescent reporter and Flu M1.  CSC-like cells or non-CSCs were xenotransplanted 

with matrigel into the mammary fat pad of NSG mice at two different doses; at a high dose with 2 × 

106 cells/mouse and at a low dose with 103 cells/mouse (n=6 per group).  Tumour development 

and growth were monitored (A) by live imaging of tdTomato using then Kodak Fx-Pro system and 

(B) by caliper measurements. 
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Figure 3.17. Tumour take of mice upon injection of CSC-like or non-CSCs at high and low 

dose.  Mice receiving low doses of CSCs or non-CSCs were monitored for up to 98 days after 

injection, while mice receiving high doses of CSCs or non-CSCs were monitored for up to 180 

days after injection.  The end point of monitoring was determined as no further increase in the 

tdTomato signal over at least two weeks.  Disease was defined as tumour with longest diameter 

reaching 1 cm.  The disease-free survival curves were plotted using the Kaplan-Meier method.  

 

 

Of note, quantification of the tdTomato reporter signal acquired by in vivo live imaging 

resulted in similar growth curves as the caliper measurements, yet with larger variation 

(Figure 3.15B).  Despite this variability between the two methods, linear regression 

analysis showed that the caliper measurements and live imaging data were highly 

correlated and comparable in all tumours regardless of the cell type or dose (Figure 3.18).  

 

In conclusion, the CSC-M1 cells exhibited significantly stronger ability to initiate and 

develop tumours in NSG mice compared to their non-CSC-M1 counterparts.  
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Figure 3.18. Correlation of caliper measurements with tdTomato imaging data.  The results 

of the two approaches to monitor the growth of tumours derived from injections of (A) low dose 

CSCs or (B) high dose CSC-like cells or non-CSCs were compared by linear regression 

correlation.  In (B), mice 1 to 6 were injected with CSCs, whereas mouse 7 was the only mouse 

developing a tumour upon injection of non-CSCs.   
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3.6.3. Metastases derived from CSC-like cells and non-CSCs in immunodeficient 

NSG mice 

To determine the metastatic potential of CSC-like cells and non-CSCs, all mice sacrificed 

were examined thoroughly for signs of macro-metastasis by autopsy or for micro-

metastasis by imaging of tdTomato from the harvested organs including draining and non-

draining lymph nodes (dLNs), spleen, liver, lung and brain (Figure 3.19A and B).  In 

agreement with their poor ability to generate tumours in NSG mice as observed in the 

previous section, there was no metastasis found in any mouse receiving either high dose or 

low dose non-CSCs-M1 cells.  In striking contrast, reporter tdTomato signal was detected 

in 4 of 6 (66.7%) dLNs harvested from mice receiving high doses of CSC-M1 cells, and 2 

of 5 (40%) dLNs harvested from mice receiving low dose CSC-M1 cells.  Distant 

metastases to the lung were detected in 1 of 6 (16.7%) mice receiving high dose CSC-M1 

cells as well as in 1 of 6 (16.7%) mice receiving low dose CSC-M1 cells.  Interesting, the 

spleens of mice with injection of CSC-like cells were observed to be significantly larger 

then those of mice with injection of non-CSCs, indicating stronger inflammation and 

immune responses in correspondence to more advanced disease, e.g. possibly systemic 

dissemination, in the mice with injection of CSC-like cells (Figure 3.19C).  In conclusion, 

the CSC-like cells exhibited a stronger metastatic potential compared to their non-CSC 

counterparts. 
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Figure 3.19. Metastasis status of mice upon xenotransplantation of CSCs or non-CSCs. (A) 

Representative live imaging pictures of organs including draining and non-draining lymph nodes, 

spleen, liver, lung and brain, which were harvested from one of the CSC tumour-bearing mice. (B) 

Summary of the status of tumour metastasis to lung and to draining lymph nodes in each group of 

mice.  (C) The spleens of mice receiving low dose CSCs or non-CSCs were harvested at the end 

of the experiment and measured for their length.  Significance of difference was calculated by 

Mann-Whitney test (**p ≤ 0.01).  
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3.6.4. Differentiation of CSC-like cells and non-CSCs in vivo 

To investigate whether CSC-like cells have the ability to differentiate into non-CSCs in 

vivo, and vice versa, the primary tumours generated in the preceding section were 

subjected to a phenotypical analysis of CD44 and CD24 expression by flow cytometry and 

to histological and pathological examinations.  In total, 13 tumours (six each derived upon 

injection of 2 × 106 and 103 CSCs, respectively, and one derived upon injection of 2 × 106 

non-CSCs) were dissociated into single cell suspensions and analysed by flow cytometry.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.20. Gating strategy for the analysis of CD44/CD24 expression by dissociated CSC-

M1 and non-CSC-M1 tumours.  The tumours derived from injection of CSC-M1 or non-CSC-M1 

cells were harvested and dissociated into single cell suspension for flow cytometry analysis.  The 

dissociated tumour cells were stained with Live/dead Aqua and fluorochrome-conjugated 

antibodies against CD44, CD24 and HLA class I.  Analysis was conducted by setting sequential 

gates on intact cells (FSC-A/SSC-A), single cells (FSC-A/FSC-H), live cells (Aqua−) and engrafted 

human cells (tdTomatohi HLA-ABC+).  
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The initial analysis was conducted according to the gating strategy as shown in Figure 

3.20 with a series of gates excluding cell debris, dead cells and murine cells to determine 

the CD44 and CD24 expression profile of live human tumour cells defined by their Aqua− 

HLA-ABC+ tdTomatohi phenotype.  Although the results showed minimal differentiation 

of original CSCs during the development of tumours derived upon injection of 2 × 106 

CSC-M1 cells, an intermediate cell population with lower CD44 expression and 

marginally higher CD24 expression could be observed in two out of six tumours examined 

(Figures 3.21A).  However, this apparent down-regulation of CD44 expression and up-

regulation of CD24 by dissociated tumour cells did not reach statistical significance 

(Figure 3.21B), indicating only marginal differentiation of injected CSC-like cells in vivo.  

As opposed to this marginal differentiation of CSCs into non-CSCs in vivo, the only one 

tumour derived upon injection of 2 × 106 non-CSC-M1 cells showed signs of a possible 

de-differentiation in vivo, with the appearance of a distinct CD44hi/CD24dim population 

and a minor population (~10%) with an actual CD44hi/CD24lo CSC-like phenotype 

(Figure 3.21C).  However, it is not clear from these data whether the non-CSCs did indeed 

de-differentiate in vivo and gave rise to CSCs, or whether this was due to outgrowth of a 

minor contamination of CSC-like cells present in the original non-CSC preparation.    
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Figure 3.21. CD44 and CD24 expression by dissociated tumours derived from injection of 

high dose CSC-M1 or non-CSC-M1 cells.  Tumours derived from injection of 2 × 106 (A) CSC-

M1 or (C) non-CSC-M1 cells were harvested for analysis of their CD44/CD24 phenotype when 

their sizes reached 1000 mm3 at the time points indicated in the lower left corner of each plot.  The 

CD44/CD24 expression profile of each tumour was shown as zebra plots, whereas the 

CD44/CD24 expression profile of parental HMLER cells in culture was shown as red dots as 

internal control. (B) The expression levels of CD44 and CD24 by dissociated tumour cells were 

compared with cultured CD44hi/CD24lo CSC-like cells within the parental HMLER cell line serving 

as control.  Data shown are mean fluorescence intensities for each tumour cell preparation and 

cells in culture.  Data were analysed by Wilcoxon matched-pairs signed rank test. 
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Even clearer evidence of an apparent transition in vivo was obtained from the phenotyping 

of tumours derived upon injection of 1 × 103 CSC-M1 cells (Figure 3.22A), with the 

difference in CD44 expression reaching statistical significance (Figure 3.22B).  Of note, 

these tumours generated by injections of low dose CSC-like cells were harvested at much 

later time points (81 days longer on average) compared to the tumours derived upon 

injection of high dose CSC-like cells.  These results indicate that CSC-like cells injected 

at a low dose may have differentiated more, possibly due to the longer growth period in 

vivo. 
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Figure 3.22. CD44 and CD24 expression by dissociated tumours derived from injection of 

low dose CSC-M1 cells.  Tumours derived from injection of 1 × 103 (A) CSC-M1 cells were 

harvested for analysis of their CD44/CD24 phenotype when their sizes reached 1000 mm3 at the 

time points indicated in the lower left corner of each plot.  The CD44/CD24 expression profile of 

each tumour was shown as zebra plots, whereas the CD44/CD24 expression profile of parental 

HMLER cells in culture was shown as red dots as internal control. (B) The expression levels of 

CD44 and CD24 by dissociated tumour cells were compared with cultured CD44hi/CD24lo CSC-like 

cells within the parental HMLER cell line serving as control.  Data shown are mean fluorescence 

intensities for each tumour cell preparation and cells in culture.  Data were analysed by Wilcoxon 

matched-pairs signed rank test.  
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 Of note, the loss in fluorescence of transduced tumour cells expressing reporter proteins 

such as tdTomato and GFP is a useful indicator of cell death (Steff et al., 2001).  In 

agreement, I discovered that the live/dead gating excluded a considerable fraction of cells, 

which were still positive for tdTomato but at a reduced level.  As revealed by back gating, 

non-CSCs were much more fragile and exhibited substantial cell death during 

experimental procedures such as FACS sorting (data not shown) and in this case, 

mechanical dissociation (Figure 3.23A) as compared to CSC-like cells.  Within 

dissociated non-CSCs tumour, CD44hi/CD24lo cells showed a tdTomatohi Aqua− 

phenotype, whereas CD44lo/CD24hi cells showed a decreased tdTomato expression and 

were positive for Aqua (Figure 3.23A).  As the overall viability of the cells was low (in 

average 10.6% live cells of total dissociated single cells with the majority of the cells 

being positive for Aqua; Figure 3.20), live/dead may actually exclude a considerable 

fraction of cells with decreased tdTomato expression but that are not yet dead (Figure 

3.23B), and may thus mask the true composition of tumours by CSC-like cells and non-

CSCs.  I therefore introduced an alternative gating strategy for the analysis of the 

phenotyping data as outlined in Figure 3.23C.  
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Figure 3.23. Alternative gating strategy for the analysis of CD44/CD24 expression by 

dissociated CSCs.  (A) The tdTomato expression and Aqua staining of CD44hi/CD24lo and 

CD44lo/CD24hi cells derived from tumours established upon injection of non-CSCs-M1 cells were 

analysed by backgating.  Red dots represent for CD44hi/CD24lo (lower panel) and CD44lo/CD24hi 

(upper panel) cells and grey dots shown as background stand for total cells within previous gate. 

The serial gates are showed on the right while arrows show the direction of backgating.  (B) Cells 

with different levels of tdTomato expression (tdTomatohi in red and tdTomatodim in blue) were 

analysed for their viability using Aqua.  (C) The new analysis for dissociated tumours was 

conducted by setting sequential gates set on intact cells (FSC-A/SSC-A), single cells (FSC-

A/FSC-H), and engrafted human cells (tdTomato+ HLA-ABC+; including both tdTomatohi and 

tdTomatodim cells) for their CD44/CD24 expression profile, while disregarding the live/dead 

staining.  
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Using this alternative gating strategy, the CD44/CD24 expression profiles were re-

determined for all HLA-ABC+ tdTomato+ cells, irrespective of the tdTomato expression 

levels and their live/dead staining, to account for the fact that non-CSCs may have rapidly 

undergone apoptosis during the experimental procedure.  As shown in Figures 3.24 and 

3.25, the tumours analysed with this modified gating strategy derived from injections of 2 

× 106 or 103 CSCs showed much clearer signs of differentiation into non-CSCs as 

compared to the observations in the previous section.  A distinct CD44lo/CD24hi cell 

population could be identified in 2 out of 6 high dose CSC tumours and in 5 out of 6 low 

dose CSC tumours.  In summary, HMLER-derived CSCs showed a strong ability to 

initiate tumours in vivo as well as some degree of plasticity to differentiate and give rise to 

non-CSCs, especially in the case of low starting cell numbers and long tumour growth 

periods, which most likely provided the most favourable conditions for tumour cell 

growth and differentiation. 

 

Of note, and distinct from what was found using the original gating strategy (Figure 3.21), 

the single tumour derived upon injection of 2 × 106 non-CSCs showed a nearly 

homogenous CD44lo/CD24hi non-CSC phenotype but with a very limited number of 

CD44hi/CD24lo cells (~0.02%) (Figure 3.24B).  This phenotype is nearly identical to the 

phenotype of sorted non-CSCs-M1 in culture, which included a tiny population (~0.05%) 

of contaminating CD44hi/CD24lo cells.  Intriguingly, the growth of the tumour derived 

upon injection of 2 × 106 non-CSCs (which therefore can be estimated to have contained 

approximately 1 × 103 contaminating CD44hi/CD24lo CSC-like cells), was very similar to 

the growth curve of tumours derived upon injection of 1 × 103 CSC-like cells, supporting 

the notion that this tumour may have derived in fact from the small contamination of 

highly tumourigenic CSC-like cells and not from the non-tumourigenic non-CSC 

population.  However, the CD44/CD24 phenotype of the cells harvested from this non-

CSC-derived tumour was clearly distinct from the tumours derived from low dose CSC-

like cells.  While it is unclear whether the differentiation status of CSC-like cells might be 

affected by the presence of excess non-CSCs, these observations lead to the general 

conclusion that non-CSCs have a very limited ability to initiate tumours in vivo.  
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Figure 3.24. CD44 and CD24 expression by dissociated tumours derived from injection of 

high dose CSC-M1 and non-CSC-M1 cells.  Tumours derived from injection of 2 × 106 (A) CSC-

M1 or (C) non-CSC-M1 cells were harvested for analysis of their CD44/CD24 phenotype when 

their sizes reached 1000 mm3 at the time points indicated in the lower left corner of each plot.  The 

CD44/CD24 expression profile of each tumour was shown as zebra plots, whereas the 

CD44/CD24 expression profile of parental HMLER cells in culture was shown as red dots as 

internal control.  (B) The expression levels of CD44 and CD24 by dissociated tumour cells were 

compared with cultured CD44hi/CD24lo CSC-like cells within the parental HMLER cell line serving 

as control.  Data shown are mean fluorescence intensities for each tumour cell preparation and 

cells in culture.  Data were analysed by Wilcoxon matched-pairs signed rank test. 
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Figure 3.25. CD44 and CD24 expression by dissociated tumours derived from injection of 

low dose CSC-M1 cells.  Tumours derived from injection of 1 × 103 (A) CSC-M1 cells were 

harvested for analysis of their CD44/CD24 phenotype when their sizes reached 1000 mm3 at the 

time points indicated in the lower left corner of each plot.  The CD44/CD24 expression profile of 

each tumour was shown as zebra plots, whereas the CD44/CD24 expression profile of parental 

HMLER cells in culture was shown as red dots as internal control.  (B) The expression levels of 

CD44 and CD24 by dissociated tumour cells were compared with cultured CD44hi/CD24lo CSC-like 

cells within the parental HMLER cell line serving as control.  Data shown are mean fluorescence 

intensities for each tumour cell preparation and cells in culture.  Data were analysed by Wilcoxon 

matched-pairs signed rank test.   
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3.7. Discussion 

In this Chapter, I have shown that within the transformed mammary epithelial cell line 

HMLER a minor but distinct population of cells with a CD44hi CD24lo phenotype could be 

identified while the majority of HMLER cells showed a CD44lo CD24hi phenotype.  

Whereas CD44lo CD24hi HMLER cells died under non-adherent mammosphere-forming 

conditions, CD44hi CD24lo cells displayed a significant ability to self-renew, proliferate 

and generate mammospheres with heterogeneous cell composition when cultured in 

suspension.  This Chapter demonstrates that the two cell subsets could be isolated from 

parental HMLER cells by FACS and maintained in culture with their original CD44hi 

CD24lo and CD44lo CD24hi phenotypes remaining stable at least a month.  In the absence 

of FCS, only CD44hi CD24lo CSC-like cells but not CD44lo CD24hi non-CSCs had the 

ability to differentiate and give rise to both cell subsets, indicating that only CSC-like cells 

but not non-CSCs possessed cellular plasticity.  Phenotypically, only CSC-like cells 

expressed the novel CSC-associated marker GD2 on the cell surface, and further isolation 

of GD2+ cells from the pool of CSC-like cells showed the capacity of these purified GD2+ 

cells to differentiate into GD2− cells.  This loss of GD2 expression by GD2+ CD44hi 

CD24lo cells in culture indicated that GD2 may serve as a more precise marker for the 

identification of breast CSCs and confirmed that CSC-like cells may in fact contaminated 

with non-CSCs to certain degree, which allows the maintenance of their phenotype under 

self-sufficient nutrient supply and balance by the co-existence and cross-talk of CSCs and 

non-CSCs as seen in parental HMLER cells.  However, these observations were restricted 

by the use of CD44, CD24 and GD2 as phenotypic markers, and it is unclear whether 

HMLER-derived CSC-like cells or non-CSCs may give rise to other cell populations not 

being revealed by the characterisation with these markers.  Morphologically, CSC-like 

cells showed a mesenchymal-like appearance with expression of markers including EDA-

fibronectin and vimentin in adherent culture, whereas non-CSCs had a epithelial 

morphology and expressed CK14 and CK18 indicative of a combination of basal and 

luminal features.   

 

In vivo, CSC-like cells showed a strong capacity to initiate tumours in NSG mice at a dose 

as low as 1,000 cells per mouse as opposed to their non-CSC counterparts, which showed 

very limited tumourigenicity with only 16.7% (1/6) mice developing a tumour at a high 

dose of 2 × 106 cells/mouse.  Of note, the tumours developing upon injection of CSC-like 
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cells recapitulated a heterogeneous cellular composition with both CD44hi CD24lo and 

CD44lo CD24hi cells present in the tumour mass.  In contrast, the single tumour developing 

upon injection of non-CSCs showed a homogenous CD44lo CD24hi phenotype comparable 

to non-CSCs in culture, indicating a differentiation of CSC-like cells but not non-CSCs in 

vivo.  Moreover, only CSC-like cells but not non-CSCs exhibited the ability to develop 

distant metastases in the lung, further supporting the CSC-like nature of HMLER-derived 

CD44hi CD24lo cells. 

 

However, I have not been able to address the descendant ability of tumour-derived CD44hi 

CD24lo cells to seed new tumours during serial passages in mice, which marks one of the 

pivotal criteria defining true CSCs (Al-Hajj et al., 2003; Kreso and Dick, 2014), thus 

leaving certain doubts regarding the real stemness of HMLER-derived CD44hi CD24lo 

cells.  Nevertheless, the present study establishes HMLER-derived CSC-like cells as a 

valid experimental model that fulfils most (albeit not all) features of bona fide CSCs and 

that can be manipulated easily in vitro and in vivo to (i) study the differential 

susceptibilities of CSCs and non-CSCs to T cell mediated killing and possibly other 

treatment including chemotherapy and radiation therapy, and (ii) identify molecular 

targets and pathways specifically present in CSCs for novel therapies specifically targeting 

the cells responsible for tumour initiation and progression.  Any findings obtained using 

this initial model can then be validated using primary CSCs from breast cancer biopsies 

defined by appropriate markers such as ALDHA1 (Ginestier et al., 2007) and GD2 

(Battula et al., 2012), alone or in combination with CD44 and CD24.   

 

The observation that the HMLER-derived CSC-like and non-CSC populations described 

in this Chapter could be maintained stably in culture offered an opportunity to manipulate 

and modify their antigenicity by lentiviral transduction to study possible interactions of 

CSCs and non-CSCs with different immune cells, in particular with MHC-restricted 

antigen-specific CD8+ T cells.  Transduction with reporter proteins such as tdTomato or 

luciferase allowed to establish a convenient, sensitive and non-invasive in vivo imaging 

system in NSG mice, and also provided a useful tool to identify micro-metastases in 

distant organs such as the lung. 
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In summary, although compromised in some aspects, we conclude that these CSC-like 

cells and non-CSCs therefore represent a powerful experimental model system for initial 

attempts on the targeting of true CSCs by human T cells both in vitro and in vivo. 
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Chapter 4. Synergistic Targeting of Breast Cancer Cells by γδ T cells 

and Cytotoxic CD8+ T Cells  

4.1. Introduction 

Cancer stem cells (CSCs) comprise a minor cell population responsible for the initiation 

and relapse of tumours due to their potential to self-renew and differentiate (Reya et al., 

2001) and their intrinsic resistance to currently used cancer treatments such as 

chemotherapy drugs (Dean et al., 2005) and radiation (Rich, 2007), as well as their ability 

to escape from the immunosurveillance by both MHC-restricted and non-MHC-restricted 

immune cells (Kawasaki and Farrar, 2008; Schatton and Frank, 2009; Chouaib et al., 

2014).  We previously demonstrated that genetic suppression of c-FLIP, followed by 

treatment with TRAIL, a potent effector molecule produced by activated effector cells 

including human γδ T cells (Dieli et al., 2007; Vermijlen et al., 2007), selectively 

diminishes the functional breast CSC pool in vitro and in vivo (Piggott et al., 2011).  It is 

therefore interesting to evaluate whether γδ T cells can specifically recognise and kill 

CSCs efficiently, which may inform novel γδ T cell-based immunotherapies to efficiently 

eradicate CSCs and prevent cancer relapse.  This may involve direct killing of CSCs by γδ 

T cells, or else require a strategy that can sensitise CSCs to γδ T cell-mediated 

cytotoxicity.  As an innate-like effector, γδ T cells are activated and expand rapidly upon 

stimulation, and are believed to infiltrate inflammatory sites including sites of infection 

and tumours.  Onsite, they serve as a major early source of pro-inflammatory cytokines 

such as IFN-γ and IL-17A, which may modulate the αβ T cell response and subsequently 

lead to tumour control (Gao et al., 2003; Ma et al., 2011).  In this aspect, it is intriguing to 

investigate how non-MHC-restricted γδ T cells cooperate with MHC-restricted cytotoxic 

CD8+ T cells to eradicate CSCs in a synergistic manner relying on the recognition of 

different ligands by these two cytotoxic effector populations.   

 

In this chapter, I aimed to develop strategies harnessing both innate-like γδ T cells and 

adaptive cytotoxic CD8+ T cells to target efficiently and specifically breast CSCs by the 

use of the model established in Chapter 3.  
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4.2. Aims 

• To examine the susceptibility of CSCs and non-CSCs to killing by MHC-restricted 

cytotoxic CD8+ T cells and by non-MHC-restricted γδ T cells. 

 

• To show that γδ T cells can kill CSC-like cells and non-CSCs sensitised by 

zoledronate and modulate the immunogenicity of surviving target cells to cytotoxic 

CD8+ T cell-mediated killing. 

 

• To explore the underlying mechanism of the synergistic effects between γδ T cells 

and cytotoxic CD8+ T cells in the inhibition of tumour growth by targeting CSC-like 

cells and non-CSCs. 
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4.3. Ex vivo expansion of Vγ9/Vδ2 T cells 

4.3.1. Characterisation of ex vivo expanded γδ T cells 

γδ T cells were expanded from PBMCs of healthy donors with zoledronate in the presence 

of IL-2 to 83.95±9.44% of total live cells (n=11).  As shown in Figure 4.1, the activation 

marker CD69 was strongly expressed by expanded γδ T cells at day 14, whereas 

expression of CD25 was not detectable.  As CD25 expression by γδ T cells is rapidly up-

regulated during the first few days of expansion but gradually down-modulated afterwards 

(data not shown) (Lafont et al., 2001), these results indicate that at this stage the expanded 

γδ T cells were not fully activated any more and had become less responsive to IL-2 due 

to lack of CD25 (IL-2R) expression.  

 

It has been shown that γδ T cells can be activated by cancer cells opsonised with 

humanised antibodies via CD16 (Fcγ receptor) expression (Gertner-Dardenne et al., 2009; 

Capietto et al., 2011; Himoudi et al., 2012).  However, in our hands the expression of 

CD16 by expanded γδ T cells is low and largely fluctuated between individual donors 

from 5.82% to 73.7% with around 70% of expanded γδ T cells tests having expression 

level <25% (Figure 4.1).  The expression of CD56, which defines the lineage of cytotoxic 

γδ T cells (Alexander et al., 2008; Urban et al., 2009), as well varied predominantly in 

expanded γδ T cells  (Figure 4.1). 

 

For functional experiments, expanded γδ T cells were further enriched to purities >97% 

using a custom-made modified γδ T cell negative selection kit (StemCell Technologies; 

proprietary information part of a non-disclosure agreement) that depletes red blood cells, 

platelets, B cells, αβ T cells, NK cells, dendritic cells, hematopoietic stem cells, 

granulocytes, and monocytes.  As expression levels of CD16, CD25 and CD56 on 

activated and expanded γδ T cells vary between donors (Figure 4.1), antibodies against 

these makers were excluded from the antibody cocktail used for negative selection of γδ T 

cells.  The expanded and enriched cells were aliquoted and preserved in liquid nitrogen for 

later use in functional assays.   
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Figure 4.1. Phenotypic characterisation of expanded γδ T cells.  (A) Expression of CD56, 

CD16 and activation markers CD25 and CD69 by γδ T cells were measured by FACS after 14 

days of expansion from PBMCs with zoledronate and IL-2 (n = number of donors used for γδ T cell 

expansion).  (B) Representative density plots of different cell surface makers expressed by 

expanded γδ T cells.  Isotype controls are shown as grey zebra and the stained markers are 

shown as red dots with the name of maker on top of plot.  
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The memory status of the expanded γδ T cells was examined next, to check the potential 

persistency and efficacy of these cells after adoptive transfer.  As shown in Figure 4.2, the 

majority of expanded γδ T cells showed a CD45RA−/CD27− effector memory phenotype 

as described firstly by (Dieli et al., 2003).  All cultures showed very limited number of 

residual Tnaive (CD45RA+/CD27+) cells and only one expansion included a small 

proportion (~10%) of TCM (CD45RA−/CD27+) cells. 

 

 

 

 

 

 

 

 

 

 
Figure 4.2. Memory status of expanded γδ T cells.  The proportion of Tnaive (CD45RA+/CD27+), 

TCM (CD45RA−/CD27+), TEM (CD45RA−/CD27−) and TEMRA (CD45RA+/CD27−) cells was examined 

by FACS analysis.  Data shown were derived from independently expanded γδ T cell populations 

derived from seven healthy individuals.  A representative density plot of one γδ T cell lines shown 

on the right, with the isotype control shown as grey zebra plot and the stained sample shown as 

red dots.  
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4.3.2. Re-stimulation of expanded γδ T cells 

Expanded γδ T cells were treated with HMB-PP to examine their responsiveness to re-

stimulation and to increase their cytolytic potential.  As shown in Figure 4.3, treatment of 

expanded γδ T cells with HMB-PP induced significant levels of degranulation and IFN-γ 

secretion.  These results indicate that expanded γδ T cells retain the ability to respond to 

re-stimulation via the T cell receptor and thus can potentially serve as potent effectors in 

targeting cancer cells, especially those with aberrant accumulation of intracellular IPP 

upon sensitisation with zoledronate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3. Responsiveness of expanded γδ T cells to re-stimulation with HMB-PP.  (A) 

Expanded γδ T cells were re-stimulated with 10 nM HMB-PP in the presence GolgiSTOP and PE-

conjugated antibodies against CD107a for 5 hours, followed by Live/dead staining and surface 

staining for CD3 and Vγ9 TCR.  (B) Expanded γδ T cells were re-stimulated with 10 nM HMB-PP 

in the presence brefeldin A for 5 hours and followed by Live/dead staining, surface staining for 

CD3 and Vγ9 TCR and intracellular staining of IFN-γ.  (C) Expanded γδ T cells were re-stimulated 

with 10 nM HMB-PP overnight, and the amount of IFN-γ in the culture supernatants was assessed 

by ELISA.  Statistical significances were determined using paired Student’s t tests (*p < 0.05; ***p 

< 0.001)  
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4.4. Non-MHC-restricted killing of CSC-like cells and non-CSCs by γδ T cells  

4.4.1. Sensitisation of CSC-like cells and non-CSCs to γδ T cell-mediated 

cytotoxicity by zoledronate 

Human γδ T cells are increasingly appreciated as promising effectors for novel 

immunotherapy strategies (Tyler et al., 2015), not least due to their ability to recognise 

stress-induced changes in transformed cells, including breast cancer cells, in a non-MHC-

restricted manner (Bonneville et al., 2010; Fisher et al., 2014; Lo Presti et al., 2014).  

Thus, I next examined the susceptibility of CSC-like cells and non-CSCs to γδ T cell-

mediated cytotoxicity.  As shown in Figure 4.4, both CSC-like cells and non-CSCs 

exhibited strong resistance to γδ T cell-mediated killing, even at effector/target (E/T) 

ratios as high as 20/1.  

 
Figure 4.4. Cytotoxicity of HMLER-derived CSC-like 

cells and non-CSCs established by γδ T cells.  

CSC-like cells and non-CSCs were labelled with 

CellVue and PKH26 membrane dyes, respectively, and 

then mixed at 1:1 ratio as targets for γδ T cell-mediated 

killing.  Data were pooled from two independent 

experiments with γδ T cells expanded from PBMCs of 

three healthy individuals.  Significance of differences 

was calculated by non-parametric two-way ANOVA. 
 

 

 

4.4.2. Sensitisation of CSC-like cells and non-CSCs to γδ T cell-mediated 

cytotoxicity by zoledronate 

I next sought to establish strategies that could efficiently activate γδ T cells to harness 

them against CSC-like cells.  It has been shown that cancer cells in general (Beck et al., 

2010; Meraviglia et al., 2010; Benzaid et al., 2011; Capietto et al., 2011) and even CSCs 

of colon cancer (Todaro et al., 2009) can be sensitised to γδ T cell-mediated killing by 

zoledronate, which stimulates γδ T cells via induction of intracellular accumulation of IPP 

(Monkkonen et al., 2007; Roelofs et al., 2009; Benzaid et al., 2011) and binding to 

BTN3A1 (Wang et al., 2013; Hsiao et al., 2014; Sandstrom et al., 2014; Rhodes et al., 

2015).  Consistently, overnight treatment of both CSC-like cells and non-CSCs with 
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zoledronate significantly enhanced their susceptibility to γδ T cell-mediated killing 

(Figure 4.5).  Treatment of both CSC-like cells and non-CSCs with zoledronate also 

enhanced the activation of γδ T cells in co-culture as judged by mobilisation of CD107a 

(Figure 4.6) and by their secretion of IFN-γ (Figure 4.7).  Taken together, these findings 

show that treatment of CSC-like cells and non-CSCs with zoledronate enhances the 

activation of γδ T cells and leads to better killing of sensitised targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5. Sensitisation of CSC-like cells and non-CSCs to γδ T cell-mediated killing by 

pretreatment with zoledronate.  CSC-like cells and non-CSCs were sensitised overnight with 10 

mM zoledronate and then mixed 1:1 with their untreated counterparts, respectively, for the 

analysis of their susceptibilities to γδ T cell-mediated killing.  Mixtures of sensitised CSC-like cells 

and non-CSCs (1:1) were analysed as control for possible interactions between CSC-like cells and 

non-CSCs.  Data were pooled from two independent experiments with γδ T cells expanded from 

PBMCs of three healthy individuals.  Significance of differences was calculated by two-way 

ANOVA. (***p ≤ 0.001; ****p ≤ 0.0001)  
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 Figure 4.6. Degranulation of γδ T cells in response to CSC-like cells and non-CSCs 

sensitised with zoledronate.  (A) CSC-like cells and non-CSCs were pretreated overnight with or 

without zoledronate and co-cultured with γδ T cells for a further 5 hours, in the presence of 

GolgiSTOP and PE-conjugated antibodies against CD107a.  Representative FACS plots of 

CD107a expression are shown in (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. IFN-γ secretion of γδ T cells in co-culture with CSCs and non-CSCs sensitised 

with zoledronate.  (A) CSC-like cells and non-CSCs were pretreated overnight with or without 

zoledronate and co-cultured with γδ T cells for a further 5 hours, in the presence of brefeldin A.  

The intracellular IFN-γ expression by γδ T cells was analysed by flow cytometry.  (B) Secretion of 

IFN-γ by activated γδ T cells in different co-culture conditions for 24 hours was examined by 

ELISA.  
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4.4.3. Sensitisation of CSC-like cells and non-CSCs to γδ T cell-mediated 

cytotoxicity by shRNA targeting farnesyl pyrophosphate synthase 

To mimic the action of zoledronate in inducing γδ T cell activation, both CSC-like cells 

and non-CSCs were transduced with lentiviral vectors delivering a specific shRNA 

targeting farnesyl pyrophosphate synthase (FPPS), together with eGFP as reporter.  The 

successful transduction with FUTG-SR22 vector established a doxycycline-inducible, 

FPPS-specific shRNA expression system under control of the tet repressor protein (Figure 

4.8) (Li et al., 2009).  All transduced CSC-like cells and non-CSCs were enriched by 

FACS sorting according to their eGFP expression to purities >98% (Figure 4.9A).  

Examination of CD44, CD24 and GD2 expression levels by transduced CSC-like cells and 

non-CSCs confirmed the stability of their phenotypical features upon transduction (Figure 

4.9B).  As shown in Figure 4.10, under the pretreatment with doxycycline, induction of 

FPPS-specific shRNA in both CSC-like cells and non-CSCs transduced with FUTG-SR22 

expressing vector enhanced their susceptibility to γδ T cell-mediated killing as compared 

to their counterparts transduced with control FUTG-INSR vector.  These results indicate 

that similar to the action of zoledronate, knock down of FPPS can sensitise both CSC-like 

cells and non-CSCs to γδ T cell-mediated killing, possibly as well through the intracellular 

accumulation of down-stream metabolite IPP. 
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Figure 4.8. Generation of CSC-like cells and non-CSCs with inducible FPPS knockdown 

controlled by the tet operon.  CSC-like cells and non-CSCs were transduced with lentiviral 

particles delivering the FH1tUTG vector (Li et al., 2009), which contains two cassettes for the 

establishment of an inducible shRNA expressing system controlled by the presence of 

doxycycline. The FUTG-SR22 vector contains one gene cassette expressing a shRNA targeting 

FPPS located downstream the tet operon (tetO) under the control of the H1 promoter, and a 

second bicistronic cassette expressing tet repressor (tetR) in conjunction with eGFP under the 

control of the ubiquitin C promoter (Ub-p).  TetR and eGFP sequences are linked by the self-

splicing 2A cleaving site of Thosea asigna virus (T2A). (A) In the absence of doxycycline, tetR is 

constitutively expressed by the second cassette and binds to tetO in the first cassette, thereby 

blocking the transcription of the downstream shRNA.  (B) In the presence of doxycycline, tetR 

preferentially binds to doxycycline and is released from tetO, thus facilitating the onset of shRNA 

expression.  Of note, under either condition, with or without doxycycline present, the eGFP 

reporter gene is expressed constitutively at the same level as tetR due to its linkage by T2A as a 

self-cleavage site. 
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Figure 4.9. Generation of CSC-like cells and non-CSCs with regulatory FPPS knockdown. 

CSC-like cells and non-CSCs were transduced with lentiviral particles delivering control FUTG-

INSR control vectors or FUTG-SR22 vector targeting FPPS with shRNA under control of the tet 

operon.  (A) The transduced cells were sorted to purities >98% according to their expression of 

eGFP.  (B) The transduced cells were examined for their expression of CD44, CD24 and GD2 by 

flow cytometry.   

 

Note: Vector construction and cell transduction was carried out by Prof. Thomas Herrmann and his 

team at the University of Würzburg, Germany.  Sorting of eGFP+ cells and their phenotypical 

characterisation was performed by myself in Cardiff. 
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Figure 4.10. Sensitisation of CSC-like cells and non-CSCs to γδ T cell-mediated killing by 

FPPS knockdown. CSC-like cells and non-CSCs transduced with FUTG-INSR control vector or 

FUTG-SR22 vector were pretreated overnight with 0.1 mg/ml doxycycline to induce the expression 

of shRNA targeting FPPS in cells with FUTG-SR22 expression.  After overnight pretreatment, 

CSC-like cells transduced with FUTG-INSR or FUTG-SR22 vector were mixed at 1:1 ratio as 

targets for the comparison of their susceptibility to γδ T cell-mediated killing.  In parallel, non-CSCs 

similarly transduced with FUTG-INSR or FUTG-SR22 vector were mixed at 1:1 ratio as targets to 

examine the preferential killing of these two populations by γδ T cells.  Results shown are from a 

duplicate experiment. 
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4.4.4. Mechanism underlying the sensitisation of CSC-like cells and non-CSCs to 

γδ T cell-mediated cytotoxicity by zoledronate 

To confirm the involvement of γδ T cell receptor and/or other activating receptor(s) in the 

recognition of zoledronate-sensitised CSC-like cells and non-CSCs by γδ T cells, I next 

explored the possible mechanism using a panel of blocking antibodies.  As shown in 

Figure 4.11, degranulation of γδ T cells in response to zoledronate-pretreated CSC-like 

cells and non-CSCs could readily be blocked by treatment of γδ T cells with neutralising 

antibodies against Vγ9 TCR or by treatment of target cancer cells with neutralising 

antibodies against BTN3A.  Treatment of γδ T cells with neutralising antibodies against 

NKG2D showed only partial blocking effect on the activation of γδ T cells in response to 

zoledronate sensitised CSC-like cells and non-CSCs.  Similar results were observed in 

experiments using IFN-γ secretion instead of CD107a translocation as readout of γδ T cell 

activation (Figure 4.12).  These data are in line with previous findings (Thedrez et al., 

2007; Li et al., 2009; Riganti et al., 2012; Rhodes et al., 2015) and confirm that 

zoledronate-treated target cells are predominantly recognised via the TCR-BTN3A axis, 

with NKG2D playing only a minor role. 
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Figure 4.11. Blocking the degranulation of γδ T cells.  CSC-like cells and non-CSCs were 

sensitised overnight with 10 µM zoledronate and co-cultured with γδ T cells.  (A) Degranulation of 

γδ T cells was assessed by co-culturing target cells with γδ T cells in the presence of GolgiSTOP, 

PE-conjugated antibodies against CD107a and blocking antibodies against Vγ9 TCR, NKG2D or 

an irrelevant isotype control (mIgG) for 5 hours.  (B) For the blocking of BTN3, cancer cells were 

incubated with blocking BTN3 antibodies for one hour and then washed before co-culturing them 

with γδ T cells.  Significance of differences was calculated by two-way ANOVA. (**p ≤ 0.01; ***p ≤ 

0.001; ****p ≤ 0.0001).  (C) Relative inhibition by each blocking antibody as compared with isotype 

controls  
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Figure 4.12. Blocking the IFN-γ secretion of γδ T cells.  CSC-like cells and non-CSCs were 

sensitised overnight with 10 µM zoledronate and co-cultured with γδ T cells.  (A) IFN-γ secretion 

by γδ T cells was assessed by co-culturing target cells with γδ T cells overnight in the presence of 

blocking antibodies against Vγ9 TCR, NKG2D or an irrelevant isotype control (mIgG).  The amount 

of IFN-γ in the culture supernatants was assessed by ELISA.  (B) For the blocking of BTN3, 

cancer cells were incubated with blocking BTN3 antibodies for one hour and then washed before 

co-culturing them with γδ T cells.  Significance of differences was calculated by two-way ANOVA. 

(*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).  (C) Relative inhibition by each blocking antibody as 

compared with isotype controls.  
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4.4.5. Sensitisation of CSC-like cells and non-CSCs to Vγ9/Vδ2 T cell-mediated 

cytotoxicity by humanised anti-GD2 antibodies 

Besides recognition via the TCR and/or NKG2D (Wrobel et al., 2007), Vγ9/Vδ2 T cells 

have also been shown to target tumour cells including breast cancer cells upon antibody 

opsonisation and engagement of CD16, the low affinity IgG receptor III (FcγRIII) 

(Gertner-Dardenne et al., 2009; Capietto et al., 2011; Seidel et al., 2014).  In line with the 

expression of GD2 by CSC-like cells (Figure. 3.5C), I therefore tested whether the 

humanised anti-GD2 antibody hu14.18K322A could confer Vγ9/Vδ2 T cells the ability to 

recognise and lyse CSC-like cells in the absence of zoledronate treatment.  As shown in 

Figure 4.13, treatment with humanised anti-GD2 antibody induced a relatively small but 

significant enhancement of Vγ9/Vδ2 T cell activation as judged by CD107a mobilisation 

and IFN-γ secretion in response to hu14.18K322A-treated CSC-like cells but not to treated 

non-CSCs.  These findings provided proof-of-concept that a specific sensitisation of 

cancer stem cells by monoclonal antibodies to attacks by human T cells is feasible. 

 

In summary, these data demonstrate that resistant CSC-like cells can be sensitised to 

recognition by human Vγ9/Vδ2 T cells through inhibition of FPPS via zoledronate 

treatment or using shRNA, and through the use of CSC-specific opsonising antibodies. 
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Figure 4.13. Specific targeting of CSC-like cells but not non-CSCs to γδ T cell-mediated 

immunity via opsonising antibodies.  CSC-like cells or non-CSCs were individually co-cultured 

with expanded γδ T cells in the presence of 10 µg/ml humanised anti-GD2 monoclonal antibodies 

or 10 µg/ml human IvIg as control.  (A) Degranulation of to co-cultures of γδ T cells after five hours 

of co-culture in the presence of anti-CD107a antibodies and GolgiSTOP.  Representative FACS 

plots of results are shown in (B).  (C) IFN-γ secretion by γδ T cells co-cultured overnight with CSC-

like cells or non-CSCs.  Significance of differences was calculated by two-way ANOVA. (*p ≤ 

0.05). 
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4.5. MHC-restricted killing of CSCs by antigen-specific CD8+ T cells 

4.5.1. Killing of CSC-like cells and non-CSCs pulsed with specific peptides by 

corresponding antigen-specific CD8+ T cells 

Apart from the non-MHC-restricted killing mediated by γδ T cells, I next investigated the 

recognition of HMLER-derived CSC-like cells and non-CSCs by MHC-restricted CD8+ 

αβ T cells using two well-characterised peptides as surrogate antigens, namely the 

immunodominant epitopes of Flu M1, p58-66 (GILGFVFTL), and of the human 

cytomegalovirus (CMV) lower matrix phosphoprotein UL83/pp65, p495-503 

(NLVPMVATV).  As shown in Figure 4.14A, CSC-like cells and non-CSCs pulsed with 

Flu M1 (p58-66) were readily targeted by Flu M1-specific CD8+ T cells but not by pp65-

specific CD8+ T cells as antigen-mismatched negative control.  Similarly, CSC-like cells 

and non-CSCs pulsed with CMV pp65 (p495-503) were only lysed by pp65-specific CD8+ 

T cells but not by Flu M1-specific CD8+ T cells, demonstrating the specificity of the 

experimental system (Figure 4.14B).  Of note, while epitope-specific CD8+ T cells were 

able to kill both CSC-like cells and non-CSCs when pulsed with the cognate peptides, 

CSC-like cells were significantly more resistant to killing than their non-CSC counterparts 

(Figure 4.14A and Figure 4.14B, left panels). 
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Figure 4.14. Increased resistance of CSC-like cells to MHC-restricted cytotoxic CD8+ T cells.  

CSC-like cells and non-CSCs were pulsed with Flu M1 p58-66 peptides or CMV pp65 p495-503 

peptides, labelled with CellVue or PKH26 and mixed at 1:1 ratios to prepare different target 

combinations as shown in the figure. These different target combinations were then co-cultured 

with (A) Flu M1- or (B) CMV pp65-specific CD8+ T cells for 4 hours. Specific killing of target cells 

by CD8+ T cells was revealed by Live/dead Aqua staining and analysed by flow cytometry.  Data 

shown are from a duplicate experiment representative for two independent experiments. 
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4.5.2. Killing of CSC-like cells and non-CSCs with endogenous Flu M1 expression 

by Flu M1-specific CD8+ T cells 

I next translated the observations with peptide-pulsed CSC-like cells and non-CSCs to 

CSC-like cells and non-CSCs that had been lentivirally transduced to express Flu M1 

endogenously (for generation of CSC-M1 and non-CSC-M1 cells, see section 3.6.1).  As 

expected, Flu M1-specific CD8+ T cells targeted only CSC-M1 and non-CSC-M1 cells but 

not their non-transduced or Gluc-expressing counterparts, which both lacked endogenous 

Flu M1 expression (Figure 4.15A).  Notably however, in co-culture with mixtures of both 

CSC-M1 and non-CSC-M1 cells, Flu M1-specific CD8+ T cells preferentially killed non-

CSC-M1 cells compared to CSC-M1 cells (Figure 4.15B).   
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Figure 4.15. Relative resistance of CSC-M1 cells against antigen-specific cytotoxicity by 

CD8+ T cells, compared to non-CSC-M1 cells.  (A) CSC-M1 and non-CSC-M1 cells were mixed 

with their non-transduced or Gluc-expressing counterparts at 1:1 ratios and used as targets for 

killing by Flu M1-specific CD8+ T cells.  (B) CSC-M1 and non-CSC-M1 cells were mixed at 1:1 

ratios and used as targets for killing by Flu M1-specific CD8+ T cells. Data shown are from a 

triplicate experiment representative for two independent experiments.  Significance of differences 

was calculated by two-way ANOVA. (***p ≤ 0.001; ****p ≤ 0.0001). 
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4.5.3. Degranulation and IFN-γ secretion by cytotoxic CD8+ T cells in targeting 

CSC-like cells and non-CSCs  

I next investigated the possible mechanism underlying the relative resistance of CSC-M1 

cells to antigen-specific killing by CD8+ T cells.  As shown in Figure 4.16A, both non-

CSC-M1 and CSC-M1 cells strongly triggered degranulation of Flu M1-specific CD8+ T 

cells using CD107a translocation to the cell surface as experimental readout. Of note, 

there was a trend towards reduced degranulation in response to CSC-like cells compared 

to non-CSCs.  This trend was substantiated by data on the cytokine secretion of activated 

CD8+ T cells, where Flu M1-specific CD8+ T cells co-cultured overnight with non-CSC-

M1 cells produced considerably more IFN-γ than those co-cultured with CSC-M1 cells 

(Figure 4.16B).  Taken together, these results show that compared to their non-CSC 

counterparts, CSC-like cells evade better from CD8+ T cell-mediated cytotoxicity by 

inducing lower degree of T cell activation.  Whether the CSC-like cells also acquire 

intrinsic resistance to cytotoxic molecules secreted by T cells such as TRAIL (Dieli et al., 

2007; Piggott et al., 2011; Chen et al., 2013) remains unclear at this stage and needs 

further investigation.  
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Figure 4.16. Activation of Flu M1-specific CD8+ T cells by CSC-M1 and non-CSC-M1 cells.  

(A) Flu M1-specific CD8+ T cells were co-cultured separately for five hours with CSC-M1 or non-

CSC-M1 cells at an E/T ratio of 1:1 in the presence of GolgiSTOP and PE-conjugated mAbs 

against CD107a, and then analysed by flow cytometry. (B) Flu M1-specific CD8+ T cells were co-

cultured overnight with CSC-M1 or non-CSC-M1 cells at an E/T ratio of 1:1 for.  Culture 

supernatants were collected and the amount of IFN-γ within was measured by ELISA.  Data 

shown are from a triplicate experiment. 
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4.6. Sensitisation of CSC-like cells and non-CSCs to CD8+ T cell-mediated 

killing by IFN-γ 

Down-modulation of cell adhesion molecules involved in cell-cell contact and of MHC 

molecules and other proteins involved in antigen presentation and target cell recognition 

are widely used by many tumour cells as part of effective immune evasion strategies 

(Vesely et al., 2011).  Indeed, within the parental HMLER cell line, CD44hi/CD24lo cells 

expressed lower levels of MHC class I (HLA-ABC) and of CD54 (ICAM-1) on the cell 

surface as compared to CD44hi/CD24lo cells (Figure 4.17).  Consistently, HMLER-derived 

CSC-like cells showed lower expression levels of both MHC class I and of CD54 as 

compared to their non-CSC counterparts (Figure 4.17).  Interestingly, the down-regulation 

of CD54 in CSC-like cells increased after the isolation and maintenance as a separated 

line.   
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Figure 4.17. Reduced levels of MHC class I and CD54 expression on CSC-like cells 

compared to non-CSCs.  Parental HMLER cells and HMLER-derived CSC-like cells and non-

CSCs were stained with mAbs against CD44, CD24, HLA-ABC and CD54 and analysed by flow 

cytometry. For parental HMLER cells, the expression of HLA-ABC and CD54 was analysed by 

gating separately on CD44hi/CD24lo CSC-like cells and CD44lo/CD24hi non-CSCs. The histogram 

shown is representative of 3 individual stainings, the bar diagrams show means + SD from 3 

independent experiments. 
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Treatment of parental HMLER cells with recombinant IFN-γ readily up-regulated the 

expression of MHC class I and CD54 by CD44hi/CD24lo CSC-like cells and 

CD44lo/CD24hi non-CSCs to similar levels (Figure 4.18A).  These findings were 

replicated using sorted HMLER-derived CSC-like cells and non-CSCs.  While 

recombinant IFN-γ induced similar levels of MHC class I expression on CSC-like cells 

and non-CSCs, the levels of IFN-γ induced CD54 expression remained lower than those 

induced on non-CSCs (Figure 4.18B).  These findings demonstrate that the down-

modulation of MHC class I and CD54 expression in CSC-like cells was regulatory rather 

than due to non-reversible defect at genetic level caused lost-of-function mutation.   

I next tested the functional implications of the IFN-γ induced up-regulation of MHC class 

I and CD54 on tumour cells for their recognition by CD8+ T cells.  Using the peptide-

loading model with Flu M1 or CMV pp65 as antigen, treatment of CSC-like cells and non-

CSCs with recombinant IFN-γ led to a significantly improved killing by Flu M1-specific 

CD8+ T cells (Figure 4.19) or by CMV pp65-specific CD8+ T cells (Figure 4.20).  Indeed, 

treatment of CSC-M1 and non-CSC-M1 cells with recombinant IFN-γ significantly 

increased their susceptibility to killing by Flu M1-specific CD8+ T cells (Figure 4.21).  

Taken together, these findings indicate that the relative resistance of CSC-like cells toward 

CD8+ T cell-mediated killing is significantly due to their reduced levels of MHC class I 

and CD54 expression.   

The fact that IFN-γ, a cytokine that is abundantly secreted by activated γδ T cells, could 

effectively sensitise resistant CSC-like cells to killing by tumour antigen-specific T cells 

prompted me to investigate the potential of using γδ T cells as modulator for adaptive 

CD8+ T cell responses. 
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Figure 4.18. Up-regulation of MHC class I and CD54 expression on CSC-like cells and non-

CSCs by IFN-γ. Parental HMLER cells and HMLER-derived CSC-like cells and non-CSCs were 

sensitised overnight with 100 U/ml recombinant human IFN-γ and stained with mAbs against 

CD44, CD24, HLA-ABC and CD54 and analysed by flow cytometry. (A) For parental HMLER cells 

treated with or without IFN-γ, the expression of HLA-ABC and CD54 was analysed by gating 

individually on CD44hi/CD24lo CSC-like cells and CD44lo/CD24hi non-CSCs. (B) Sorted CSC-like 

cells and non-CSCs were analysed for their expression of HLA-ABC and CD54 upon IFN-γ 

treatment as performed with parental HMLER cells.  The histogram shown is representative of 3 

individual staining, the bar diagrams show means + SD from 3 independent experiments.  

Significance of differences was calculated by non-parametric two-way ANOVA (*p ≤ 0.05; **p ≤ 

0.01; ***p ≤ 0.001).  Asterisks indicate the significance of difference between untreated control 

group and group with IFN-γ treatment for CSC-like cells or non-CSCs. 
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Figure 4.19. Sensitisation of CSC-like cells and non-CSCs to killing by Flu M1-specific CD8+ 

T cells.  CSC-like cells and non-CSCs were sensitised overnight with or without 100 U/ml 

recombinant human IFN-γ and then pulsed with Flu M1 pp58-66 peptides. Different target cell 

populations loaded with peptides were then labelled with CellVue or PKH26, and mixed at 1:1 ratio 

to generate the target cell mixtures shown in the figure for co-cultures with Flu M1-specific CD8+ T 

cells. The killing of different targets in co-culture with Flu M1-specific CD8+ T cells was analysed 

by flow cytometry by gating on CellVue+ and PKH26+ cells.  Data shown are results of an 

experiment with triplicates. 
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Figure 4.20. Sensitisation of CSC-like cells and non-CSCs to killing by CMV pp65-specific 

CD8+ T cells.  CSC-like cells and non-CSCs were sensitised with or without 100 U/ml 

recombinant human IFN-γ for overnight and then pulsed with CMV pp65 p495-503 peptides. 

Target cells loaded with peptides were then mixed at 1:1 ratio to make the pairs as shown in the 

figure for the following co-culture with CMV pp65-specific CD8+ T cells.  Data shown are results of 

an experiment with triplicates. 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.21. Sensitisation of CSC-M1 cells and non-CSC-M1 cells to killing by Flu M1-

specific CD8+ T cells.  CSC-M1 cells and non-CSC-M1 cells were sensitised overnight with or 

without 100 U/ml recombinant human IFN-γ.  Different target cell populations were then labelled 

with CellVue or PKH26, and mixed at 1:1 ratio to generate the target cell mixtures shown in the 

figure for co-cultures with Flu M1-specific CD8+ T cells. The killing of different targets in co-culture 

with Flu M1-specific CD8+ T cells was analysed by flow cytometry by gating on CellVue+ and 

PKH26+ cells.  Data shown are results of experiment with triplicates.  
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4.7. Sensitisation of CSC-like cells and non-CSCs to cytotoxic CD8+ T cells by 

Vγ9/Vδ2 T cell conditioned supernatant 

Having shown that both CSC-like cells and non-CSCs can be sensitised to killing by either 

human αβ T cells and γδ T cells, we next addressed the potential synergy of these types of 

T cells in targeting resistant tumour cells, especially CSC-like cells, by combining the 

antigen-specific nature of cytotoxic CD8+ T cells and the innate killer function of non-

MHC restricted γδ T cells.  Given earlier reports showing that IFN-γ increases 

immunogenicity of CSCs in head and neck cancer cell lines to cytotoxic CD8+ T cells 

(Liao et al., 2013) and my own observation that recombinant IFN-γ had a striking effect 

on sensitising CSC-like cells to cytotoxic CD8+ T cells (Figure 4.19, 20 and 21), I next 

explored the possibility to manipulate γδ T cells as physiological source of IFN-γ in order 

to boost the targeting of CSCs by cytotoxic CD8+ T cells.  For these experiments I 

generated conditioned medium by treating expanded γδ T cells overnight with HMB-PP, 

based on the earlier observation that stimulation of expanded γδ T cells with HMB-PP 

could induce section of IFN-γ (Figure 4.3).  Alternatively, I generated conditioned 

medium by treating co-cultures of primary γδ T cells and autologous monocytes overnight 

with zoledronate.  Treatment of CSC-like cells and non-CSCs with supernatant of HMB-

PP stimulated expanded γδ T cells significantly increased their expression of MHC class I 

and CD54 (Figure 4.22).  A similar up-regulation was observed when treating CSC-like 

cells and non-CSCs with conditioned medium of zoledronate-treated co-cultures of freshly 

isolated γδ T cells and monocytes, which mimics the activation of γδ T cells by 

zoledronate-sensitised tumour cells (Figure 4.23).   

 

In order to confirm the crucial role of γδ T cell-derived IFN-γ in mediating these 

phenotypical changes, I used neutralising monoclonal antibodies against IFN-γ.  As shown 

in Figure 4.24, the γδ T cell-induced up-regulation of MHC class I and CD54 expression 

by CSC-like cells and non-CSCs could be blocked completely with anti- IFN-γ antibodies, 

identifying IFN-γ as the major modulator secreted by γδ T cells enhancing target 

immunogenicity to cytotoxic CD8+ T cells.   
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Figure 4.22. Up-regulation of MHC class I and CD54 expression on CSC-like cells and non-

CSCs by HMB-PP stimulated primary γδ T cells.  HMLER cells were treated overnight with 

conditioned medium of HMB-PP stimulated γδ T cells at 1:10 and 1:50 dilutions and analysed for 

their expression of (A) MHC class I and (B) CD54 by flow cytometry.  Data shown are pooled from 

experiments using γδ T cell supernatants collected from 3 different donors.  Significance of 

differences was calculated by non-parametric two-way ANOVA (**p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 

0.0001).  For both CSC-like cells and non-CSCs, asterisks indicate the significance of difference 

between untreated control group and groups treated with γδ T cell supernatants at 1:10 or 1:50 

dilution. 
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Figure 4.23. Up-regulation of MHC class I and CD54 expression on CSC-like cells and non-

CSCs by zoledronate-stimulated expanded γδ T cells.  CSC-like cells and non-CSCs were 

treated overnight with conditioned medium of zoledronate-stimulated co-cultures of γδ T cells and 

monocytes, and analysed for their expression of MHC class I and CD54 by flow cytometry. Data 

shown are representative for two independent experiments  
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Figure 4.24. Abrogation of expanded γδ T cell-mediated MHC class I and CD54 up-

regulation on CSC-like cells and non-CSCs by IFN-γ neutralising antibodies.  HMLER cells 

(A, B) or HMLER-derived CSC-like cells and non-CSCs (C, D) were treated overnight with γδ T 

cell conditioned medium in the presence of IFN-γ neutralising antibodies or isotype antibodies, and 

analysed for their expression of (A, C) MHC class I and CD54 by flow cytometry.  The % blocking 

was calculated and shown in (B, D).  Data shown are pooled from experiments using γδ T cell 

supernatants collected from 3 different donors.  Significance of differences was calculated by non-

parametric two-way ANOVA (*p ≤ 0.05; **p ≤ 0.01).  For both CSC-like cells and non-CSCs, 

asterisks indicate the significance of difference between untreated control group and group treated 

with γδ T cell supernatants at 1:10 dilution. 

  

+ m
IgG

1

+ α-
IF

N-γ 
0

5000

10000

15000

M
FI

CSC-like cells
non-CSCs

+ m
IgG

1

+ α-
IF

N-γ 
0

5000

10000

15000

M
FI

CSC-like cells
non-CSCsCD54 HLA-ABC 

(C)�

HLA
-A

BC
CD54

0

20

40

60

80

100

120

%
 B

lo
ck

in
g 

CSC-like cells
non-CSCs

(D)�

** 

** 

** ** 

+ m
IgG

1

+ α-
IF

N-γ 
0

5000

10000

15000

M
FI

CSC-like cells
non-CSCs

+ m
IgG

1

+ α-
IF

N-γ 
0

5000

10000

15000

M
FI

CSC-like cells
non-CSCsCD54 HLA-ABC 

(A)�

HLA
-A

BC
CD54

0
20
40
60
80

100
120

%
 B

lo
ck

in
g 

CSC-like cells
non-CSCs

(B)�

** 
** 

** * 

CTRL
1:5

0
1:1

0
0

5000

10000

15000

20000

25000

M
FI

CSC-like cells non-CSCs

CTRL
1:5

0
1:1

0
0

5000

10000

15000

20000

25000

M
FI

CSC-like cells non-CSCs

CD44hi/CD24lo cells 

CD44lo/CD24hi cells 



 149 

These findings indicate that γδ T cells can enhance antigen presentation by CSC-like cells 

and non-CSCs to CD8+ T cells, thus potentially leading to improved immunosurveillance 

by CD8+ T cells.  Indeed, using the peptide pulsing as assay described before (Figures 

4.14, 4.19 and 4.20), treatment of both CSC-like cells and non-CSCs with conditional 

medium of activated primary γδ T cells by zoledronate in the presence of monocytes as 

APCs led to better killing by cytotoxic CD8+ T cells specific for Flu M1 (Figure 4.25) or 

to CMV pp65 (Figure 4.26).  Consistently, treatment of both CSC-M1 and non-CSC-M1 

cells with culture supernatants obtained from HMB-PP stimulated γδ T cells also 

significantly enhanced their susceptibility to killing by Flu M1-specific CD8+ T cells 

(Figure 4.27).  Neutralisation of IFN-γ in the γδ T cell supernatants effectively abrogated 

the enhanced killing of both CSC-M1 and non-CSC-M1 by Flu M1-specific CD8+ T cells 

(Figure 4.28). 

 

Taken together, these results indicate that IFN-γ secreted by activated γδ T cells enhance 

the susceptibility of CSC-like cells and non-CSCs to cytotoxic CD8+ T cell-mediated 

killing via up-regulating their expression of HLA class I and CD54, thereby enabling 

better antigen presentation and cell-cell contact with CD8+ T cells. 
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Figure 4.25. Sensitisation of CSC-like cells and non-CSCs to Flu M1-specific CD8+ T cell 

killing by γδ T cells.  CSC-like cells and non-CSCs were treated overnight with conditioned 

medium of zoledronate-stimulated co-cultures of γδ T cells and monocytes, and pulsed with Flu 

M1 p58-66 peptides for the analysis of their susceptibility to Flu M1-specific CD8+ T cells.  Data 

shown are results of an experiment with triplicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.26. Sensitisation of CSC-like cells and non-CSCs to CMV pp65-specific CD8+ T cell 

killing by γδ T cells using CMV pp65 p495-503 pulsing model.  CSC-like cells and non-CSCs 

were treated for overnight with conditioned medium of zoledronate-stimulated co-cultures of γδ T 

cells and monocytes, and the pulsed with CMV pp65 p495-503 peptides for the analysis of their 

susceptibility to CMV pp65-specific CD8+ T cells.  Data shown are results of an experiment with 

triplicates.  
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Figure 4.27. Sensitisation of CSC-M1 and non-CSC-M1 cells to Flu M1-specific CD8+ T cell 

killing by γδ T cells.  CSC-M1 and non-CSC-M1 cells were treated overnight with conditioned 

medium of expanded γδ T cells stimulated with HMB-PP for the analysis of their susceptibility to 

Flu M1-specific CD8+ T cells.  Data shown are pooled from experiments using γδ T cell 

supernatants collected from 3 different donors.  Significance of differences was calculated by non-

parametric two-way ANOVA (**p ≤ 0.01; ***p ≤ 0.001). 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.28. Abrogation of γδ T cell-mediated sensitisation of CSC-like cells and non-CSCs 

to CD8+ T cell killing by IFN-γ neutralising antibodies.  CSC-M1 and non-CSC-M1 cells were 

treated overnight with conditioned medium of HMB-PP stimulated γδ T cells in the presence of 

anti-IFN-γ neutralising antibodies or mouse IgG1 isotype control antibodies for the analysis of their 

susceptibility to Flu M1-specific CD8+ T cells. Data shown are pooled from experiments using γδ T 

cell supernatants collected from 3 different donors.  Significance of differences was calculated by 

non-parametric two-way ANOVA (**p ≤ 0.01; ***p ≤ 0.001).  
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4.8. Discussion 
In this chapter, I firstly show that Vγ9/Vδ2 T cells could be expanded from healthy donor 

PBMCs with zoledronate and IL-2 in long-term culture over a period of 14 days.  Over 14 

days of expansion, Vγ9/Vδ2 T cells uniformly differentiated into TEM status with a 

CD45RA− CD27− phenotype (Figure 4.2), which has been characterised as the main 

population functionally responsible for release of IFN-γ upon stimulation with 

phosphoantigens through TCR recognition (Dieli et al., 2003).  Angelini et al. showed that 

CD16 expression specifically discriminates a population of TEMRA cells that exhibits 

strong cytotoxicity through the perforin pathway but lacks the capacity to secrete IFN-γ 

(Angelini et al., 2004).  My results show that expanded Vγ9/Vδ2 T cells expressed CD16 

generally at a relatively low level with large variability between different donors (Figure 

4.1).  Expanded Vγ9/Vδ2 T cells maintained their responsiveness to stimulation with 

exogenous HMB-PP and with zoledronate-treated cancer cells, and were able to both 

secrete IFN-γ and kill (in terms of degranulation and cytotoxicity) efficiently (Figure 4.3 

and 4.5-7).  These functional analyses confirm the expansion of a mixture of secretory 

TEM and cytotoxic TEMRA cells, and that TEM within the expanded populations may retain 

the plasticity to differentiate further into TEMRA cells.  The functional differentiation of 

Vγ9/Vδ2 T cells into memory subsets and their subsequent maintenance has been shown 

essential and critical for competent disease control and clinical outcome of end-stage 

prostate and breast cancer patients treated with zoledronate and IL-2 (Dieli et al., 2003; 

Dieli et al., 2007; Meraviglia et al., 2010).  A phase I trial on metastatic hormone-

refractory prostate cancer showed that expansion of effector memory Vγ9/Vδ2 T cells by 

administration of zoledronate and low-dose IL-2 was correlated with beneficial clinical 

outcomes with remission or stable disease in several treated patients (Dieli et al., 2007).  

Similarly, another trial with 10 patients with advanced metastatic breast cancer showed 

that treatment of these patients with zoledronate and low-dose IL-2 was safely tolerated 

and successfully promoted the effector maturation of Vγ9/Vδ2 T cells.  The sustained 

maintenance of Vγ9/Vδ2 T cell responses in three patients may have contributed to partial 

remission and stable disease in these individuals (Meraviglia et al., 2010).  These findings 

strongly suggest that treatment of cancer patients with zoledronate and IL-2 is safe and 

feasible.  Expansion of Vγ9/Vδ2 T cells with nBPs in vitro has been reported by the use of 

PBMCs collected from patients with melanoma (Khan et al., 2014a), chronic 

myelogenous leukaemia (D'Asaro et al., 2010) and others, suggesting ex vivo expansion of 

autologous Vγ9/Vδ2 T cells from patients for personalised adoptive transfer is feasible.  
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Taken together, adjuvant therapy by continuous administration of zoledronate and IL-2 

may benefit the efficacy of adoptive transfers of ex vivo expanded effector γδ T cells in 

cancer patients (Dieli et al., 2007; Santini et al., 2009; Meraviglia et al., 2010; Welton et 

al., 2013a).  These encouraging observations prompt us to investigate further the 

possibility of using ex vivo expanded Vγ9/Vδ2 T cells as effector cells for targeting CSCs. 

 

Both CSC-like cells and non-CSCs isolated from the HMLER cell line (Chapter 3) were 

resistant to killing by Vγ9/Vδ2 T cells but could be sensitised efficiently by pretreatment 

with zoledronate (Figure 4.4 and 4.5).  In co-culture with CSC-like or non-CSCs, there no 

activation of Vγ9/Vδ2 T cells was observed in terms of degranulation and IFN-γ secretion, 

suggesting that both CSC-like and non-CSCs were invisible for the recognition by 

Vγ9/Vδ2 T cells.  This invisibility could be due to suboptimal concentrations of 

intracellular IPP, and the lack of expression of ligands such as MICA/B and ULBP1-4 for 

the recognition by Vγ9/Vδ2 TCR and NKG2D, respectively (Rey et al., 2009; Chen et al., 

2013).  The fact that both zoledronate-sensitised CSC-like cells and non-CSCs could be 

killed efficiently by Vγ9/Vδ2 T cells (Figure 4.5 and 4.10) and nearly 100% by cytotoxic 

CD8+ T cells (Figure 4.19-21 and 4.25-27) showed that these cells possessed no intrinsic 

resistance to apoptosis induced by cytotoxic molecules such as TRAIL, FasL, granulysin, 

granzyme and perforin released by activated immune effector cells including both 

Vγ9/Vδ2 T cells and cytotoxic CD8+ T cells.  By mimicking the action of zoledronate 

through specific knock-down of FPPS, a similar sensitisation effect to Vγ9/Vδ2 T cell-

mediated cytotoxicity was observed, confirming the role of IPP accumulation in activating 

Vγ9/Vδ2 T cells (Figure 4.10).  Ginestier et al., showed by gene expression profiling that 

mammospheres derived from basal-like cancer cell lines exhibited a hyperactivated 

mevalonate pathway as compared to their counterparts cultured in adherent conditions and 

that protein geranylgeranylation downstream geranylgeranyl-PP (Figure 1.1) is critical for 

the maintenance of breast CSCs (Ginestier et al., 2012).  These findings may partially 

explain why CSC-like cells are resistant to Vγ9/Vδ2 T cells, assuming that IPP does not 

accumulate inside the cells due to rapid turnover and strong downstream geranylgeranyl 

transferase activity.  This also indicates that the mevalonate pathway is a critical candidate 

for targeting CSCs due to its pivotal role in both essential metabolism of CSCs and in 

stimulating effector functions of Vγ9/Vδ2 T cells  
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The stimulation of Vγ9/Vδ2 T cells by both zoledronate-sensitised CSC-like cells and 

non-CSCs could almost totally be abrogated by neutralisation of the TCR (but not 

NKG2D) on Vγ9/Vδ2 T cells and by neutralisation of BTN3 on target cells (Figure 4.11 

and12).  These results suggest that the zoledronate-mediated sensitisation was majorly 

through the Vγ9/Vδ2 TCR recognition of intracellularly accumulated phosphoantigens, 

most likely IPP.  Consistently, Dhar et al., showed that treatment with zoledronate and 

pamidronate efficiently sensitised the breast cancer cell line MCF-7 to Vγ9/Vδ2 T cell-

mediated killing majorly through TCR recognition and downstream perforin cytotoxic 

pathway (Dhar and Chiplunkar, 2010).  Although recognition through NKG2D alone 

without engagement on Vγ9/Vδ2 TCR is sufficient for the activation of Vγ9/Vδ2 T cells 

(Rincon-Orozco et al., 2005; Lanca et al., 2010), concomitant recognition of MICA/B via 

NKG2D may enhance the effector function of Vγ9/Vδ2 T cells activated via Vγ9/Vδ2 

TCR engagement (Das et al., 2001; Nedellec et al., 2010b).  Nevertheless, it remains 

unclear whether treatment of CSC-like cells and non-CSCs with zoledronate modulate 

their expression of ligands for NKG2D and NCRs.  A comprehensive screening for the 

expression of ligands in CSC-like cells and non-CSCs with and without zoledronate 

pretreatment should be done in the future.   

 

Todaro et al. recently demonstrated the feasibility of such a combined approach, by 

showing that low concentrations of the chemotherapeutic agents 5-fluorouracil and 

doxorubicin successfully sensitise colon cancer-initiating cells to γδ T-cell-mediated 

cytotoxicity, which is dependent on the recognition of target cells by NKG2D and the 

interaction between TRAIL and TRAIL-R2 (Todaro et al., 2013).  Of note, the same 

population of colon cancer-initiating cells could also be sensitised to γδ T-cell-mediated 

cytotoxicity by pretreatment with zoledronate, leading to increased recognition by the 

TCR and killing via perforin and granzyme (Todaro et al., 2009).  It is therefore 

conceivable that in instances in which TCR ligand expression by tumour cells is below the 

threshold required for efficient recognition by γδ T cells, especially in CSCs, target 

recognition may occur predominantly through NKG2D (Figure 4.29).  Forced 

accumulation of IPP in zoledronate-treated cells may then favour TCR-mediated killing.  

In contrast, chemotherapy or other treatments enhancing expression of NKG2D ligands 

may boost NKG2D-mediated killing.  As consequence, appropriate manipulation of anti-

apoptotic and pro-apoptotic pathways will effectively sensitise tumour cells to either 

perforin/granzyme or TRAIL, or both.   
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Consistently, Nishio et al. showed that neuroblastoma cells maintained in both sphere 

culture and adherent culture were resistant to Vγ9/Vδ2 T cell-mediated killing but could 

be efficiently sensitised by treatment with zoledronate (Nishio et al., 2012).  In contrary, 

Lai et al. showed that spheres of SKOV3 ovarian cancer cells were endogenously 

susceptible to Vγ9/Vδ2 T cell killing (Lai et al., 2012), reinforcing the notion that 

Vγ9/Vδ2 T cells are indeed an important candidate for targeting CSCs.  Of note, these 

studies used sphere cultures to enrich CSCs from the bulk population of tumour cells.  

However, long-term culture in sphere culture may potentially change the nature of both 

CSCs and non-CSCs with respect to differentiation, dedifferentiation or environmental 

stresses.  Taking advantage of the stability of HMLER-derived CSC-like and non-CSC 

cells as described in this Thesis, my experimental model provides a powerful approach by 

maintaining both subsets under identical culture conditions for direct comparison of their 

susceptibility to Vγ9/Vδ2 T cells. 

 

 

 
Figure 4.29.  Human γδ T-cell mediated killing of tumour cells (Chen et al., 2013).  Different 

targets are recognised through expression of NKG2D ligands such as MICA/B or members of the 

ULBP family, or by expression of γδ T-cell receptor (TCR) ligands such as butyrophilin-3A1 

(CD277), endothelial protein C receptor (EPCR) or ephrin receptor A2 (EphA2), ultimately inducing 

local secretion of effector molecules including IFN-γ, TRAIL, perforin and granzymes.  Other 

pathway such as triggering of natural cytotoxicity receptors (NCRs) or induction of antibody-
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dependent cellular cytotoxicity (ADCC) via CD16 may contribute to this response.  TRAIL induces 

apoptosis in target cells via binding to TRAIL-R1 and/or TRAIL-R2.  In the case of Vδ2+ T cells, 

tumour cells can be specifically sensitised by inhibition of farnesyl pyrophosphate synthase 

(FPPS) through zoledronate and related aminobisphosphonates, or through siRNA-mediated 

knockdown, leading to intracellular accumulation of IPP and ‘presentation’ by BTN3/CD277.  Other 

strategies to sensitise refractory cells to TRAIL mediated killing involve a wide range of 

approaches, including targeted inhibition of c-FLIP. 
 

 

In addition to sensitisation with zoledronate, I showed that treatment with humanised anti-

GD2 antibodies (hu14.18K322A) could selectively direct Vγ9/Vδ2 T cell against CSCs 

but not non-CSCs (Figure 4.13).  However, the effect of this opsonisation-dependent 

sensitisation was limited.  This is possibly due to the fact that only about 30% of CSC-like 

express GD2 on their surface.  An attempt to sensitise purified GD2+ CSCs failed as these 

cells quickly differentiated and lost their expression of GD2.  Although the effect of 

sensitisation is therefore limited in my hands, similar strategies have widely been 

employed for treating neuroblastoma by efficiently inducing NK-mediated ADCC 

(Ahmed and Cheung, 2014; Navid et al., 2014), and for facilitating cross-presentation of 

tumour cell-released antigens by Vγ9/Vδ2 T cells to CD8+ T cells (Himoudi et al., 2012).  

Besides GD2, other markers could potentially be targeted for directing Vγ9/Vδ2 T cells 

specifically against breast CSCs.  In this respect, it has been shown that Her2 is critical in 

regulating the self-renewal of ALDH+ mammary stem/progenitor cells and subsequently 

drives tumourigenesis and disease progression in Her2+ breast cancers and also in luminal 

breast cancers, which normally lack Her2 expression (Korkaya et al., 2008; Korkaya et al., 

2009; Ithimakin et al., 2013; Korkaya and Wicha, 2013).  These findings indicate that 

Her2 is a promising candidate for targeting CSCs in different subtypes of breast cancer.  

Indeed, Capietto et al. showed that monoclonal trastuzumab specifically against Her2 

efficiently opsonised human breast cancer xenografts and induced significant therapeutic 

benefit by enhancing the ability of γδ T cells to control tumour progression (Capietto et al., 

2011).   

 

CD44 represents another option for targeting breast CSCs.  Apart from the standard form 

of CD44, an alternative splicing isoform, CD44v6, was recently identified to be a potent 

CSC markers for colon cancer (Todaro et al., 2014).  Humanised monoclonal antibodies 

against CD44 and certain variant isoforms, e.g. CD44v6, may thus efficiently label breast 
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CSCs as targets for Vγ9/Vδ2 T cells.  Jin et al. showed that anti-CD44 monoclonal 

antibodies, H90, selectively eradicate CSCs of AML by blocking their trafficking to the 

supportive microenvironment that is essential for their survival in a NOD/SCID mouse 

model (Jin et al., 2006).  Young et al. described that treatment with humanised anti-CD44 

monoclonal antibodies, H460-16-2, significantly inhibited the growth of human BxPC3 

pancreatic cancer xenografts and increase the survival of mice with AML engrafts by 

targeting on CD34+ CD38− CSCs (Young D. Patent WO2007098571, 2007; Arius 

Research Inc.).  In conclusion, targeting breast CSCs with humanised monoclonal 

antibodies represents an efficient sensitisation strategy not only enhancing the specificity 

of treatment with effector γδ T cells and γδ T-APCs but also potentially modulating the 

tumour microenvironment to control tumour initiation and progression.  

 

I next examined the susceptibility of CSC-like cells and non-CSCs to cytotoxic CD8+ T 

cells using peptide pulsing and endogenous antigen expression models.  I found that as 

compared to non-CSCs, CSC-like cells expressed lower levels of MHC class I and CD54 

molecules on their cell surface and thus were more resistant to CD8+ T cell-mediated 

killing.  Importantly, IFN-γ secreted by γδ T cells enhanced MHC class I and CD54 

expression by CSC-like cells non-CSCs, and enhanced their clearance by cytotoxic CD8 T 

cells (Figure 4.30).    

 

 

 

 

 

 

 
 

 

Figure 4.30.  Proposed synergism between γδ T cells and cytotoxic CD8+ T cells in effective 

tumour killing.  Non-MHC-restricted γδ T cells kill a proportion of tumour cells sensitised by 

zoledronate and secrete IFN-γ to up-regulate the expression of MHC class I and CD54 on the 

surface of surviving tumour cells for better recognition by MHC-restricted cytotoxic CD8+ T cells.  

Subsequently, this immunomodulatory effect leads to the clearance of residual targets by cytotoxic 

CD8+ T cells. 
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As opposed to their intrinsic resistance to chemotherapeutic drugs, my results show that 

the resistance of CSC-like cells to cytotoxic CD8+ T cells is majorly due to the down-

regulation of antigen presenting molecules (MHC class I) and cell-cell adhesion molecules 

(CD54), which are both essential for successful recognition by CD8+ effector T cells.  

These observations provide great hope in targeting CSCs efficiently by immune effector 

cells in combination with different biological immune modulators.  A similar down-

regulation of MHC class I was noticed before in CSCs of different primary tumours and 

metastasis (Di Tomaso et al., 2010; Schatton et al., 2010b; Chen et al., 2011; Tallerico et 

al., 2013).  Schatton et al. showed that tumourigenic ABCB5+ malignant melanoma TICs 

display lower levels of MHC class I as compared with their ABCB5− counterpart, and 

were able to inhibit IL-2-dependent activation of effector T cells through induction of 

CD4+ CD25+ FoxP3+ Treg cells (Schatton et al., 2010b).  Similarly, Di Tomaso et al. 

showed that glioblastoma CSCs are only weakly positive for MHC class I and II as well as 

NKG2D ligands, and carry defects in their antigen-processing machinery (Di Tomaso et 

al., 2010).  Similar to my own observation in breast CSC-like cells, the down-regulation 

of MHC class I by glioblastoma CSCs could be rescued by the treatment with IFN-γ (Di 

Tomaso et al., 2010).  Consistently, Chen et al. showed that within a unique cell line 

established from the lymph node metastasis of a patient with unknown primary tumour, 

CSCs were majorly harboured in spheroids/floating aggregates under normal adherent 

culture condition and exhibited a CD44hi CD24lo phenotype accompanied by down-

regulation of MHC class I expression that could be rescued by IFN-γ  treatment (Chen et 

al., 2011).  The susceptibility of CSC-like cells to IFN-γ-mediated up-regulation of MHC 

class I expression indicates that the depressed expression of MHC class I in CSC-like cells 

does not represent a non-reversible loss and can readily be overcome.  However, the 

underlying mechanism of MHC class I down-regulation is currently unclear apart from 

limited insight into the defective antigen-processing machinery (Di Tomaso et al., 2010).  

In contrast to total loss of MHC class I expression by structural defective mutations 

(Chang and Ferrone, 2006; Hsieh et al., 2009), down-regulation of the molecules might be 

a better strategy to escape from both cytotoxic CD8+ T cells and innate-like NK and γδ T 

cell-mediated immunosurveillance, since the thresholds for MHC class I expression levels 

to activate CTLs and NK cells may be different (Figure 4.31). 
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Figure 4.31.  Proposed regulation of MHC class I expression by CSCs to escape killing by 

both MHC-restricted and innate-like effector cells.  Through partial down-regulation of MHC 

class I expression to a certain degree CSCs may successfully escape from the surveillance of 

both MHC-restricted and innate-like effector cells.  
 

 

Of note, down-regulation of MHC class I does not occur in all CSCs.  Using a Flu M1 and 

CMV pp65 surrogate antigen model similar to the one utilised in this Thesis, Brown et al. 

showed no difference between CD133+ brain tumour initiating cells (BTSCs) enriched in 

sphere culture and their differentiated CD133– counterparts in the expression of MHC 

class I and CD54 (Brown et al., 2009).  Both BTSCs and differentiated cells induced 

similar levels of cytotoxic CD8+ T cell responses in terms of degranulation and cytokine 

production, and most importantly, were equally sensitive to killing by cytotoxic CD8+ T 

cells both in vitro and in vivo in a NOD/SCID model of human glioma (Brown et al., 

2009).  Liao et al. showed that ALDHhi cells derived from sphere culture of CaSki and 

UM-SCC11B cell lines were more sensitive to killing by alloantigen-specific CD8+ T cells 

as compared to their ALDHlo counterparts (Liao et al., 2013).  Visus et al. identified 

ALDH1A1, an isoform of ALDH that actively distinguishes ALDHhi CSCs in the 

ALDEFLOUR assay (Ginestier et al., 2007), as a novel CSC-specific tumour antigen for 

cytotoxic CD8+ T cells in squamous cell carcinoma of head and neck cancer (SCCHN) 

(Visus et al., 2007).  The recognition by cytotoxic CD8+ T cells is HLA-A2-restricted and 

specific for the p88-96 peptide of ALDH1A1 (Visus et al., 2007).  Later, Visus et al. 

showed that in vitro ALDHhi CSCs in SCCHN, breast and pancreatic cell lines, in SCCHN 

xenografts and in surgical removed lesion could be efficiently recognised by ALDH1A1 

p88-96-specific CD8+ T cells.  Encouragingly, adoptive transfer of these ex vivo expanded 

ALDH1A1 p88-96-specific CD8+ T cells efficiently inhibited the growth of orthotopic 

SCCHN xenografts and the development of pulmonary metastasis by MDA-MB-231 
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breast cancer cells in immunodeficient mice.  These ALDH1A1 p88-96-specific CD8+ T 

cells were found by tetramer staining in the circulation of SCCHN patients at rates of 

1/500-1/2000, suggesting their important physiological relevance in patients (Visus et al., 

2011). 

 

Indeed, the present approach using viral surrogate antigens for studying the efficacy of 

CSC targeting by cytotoxic CD8+ T cells needs to be further translated into CSC-specific 

antigens like ALDH1A1 and general tumour-associated antigens such as Muc1, 5T4, NY-

ESO, MART-1 and MAGE-3, which are potential targets for cytotoxic CD8+ T cell-based 

immunotherapies.  In conclusion, my findings provide promising proof-of-concept 

evidence that the efficacy of cytotoxic CD8+ T cell-based immunotherapies could be 

significantly potentiated by the synergism with innate-like γδ T cells, which provides a 

different spectrum of target recognition and killing and modulation of immunogenicity of 

those originally resistant to CD8+ T cell-mediated killing.   
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Chapter 5. Cross-Presentation of Tumour-Expressed Proteins to 

Antigen-Specific Cytotoxic CD8+ T Cells by γδ T Cells  

5.1. Introduction  

The functional plasticity of γδ T cells is an intriguing topic in the field (Vantourout and 

Hayday, 2013; Lafont et al., 2014; Tyler et al., 2015).  Apart from their well-characterised 

cytotoxic effector functions against malignant cells and their ability to boost adaptive αβ T 

cell responses by modulating the immunogenicity of transformed cells via the secretion of 

pro-inflammatory cytokines such as IFN-γ and TNF-α (Chapter 4), human Vδ9/Vδ2 T 

cells possess a unique ability to function as APCs upon stimulation with phosphoantigens, 

e.g. HMB-PP and IPP.  The characterisation of the APC function of human Vδ9/Vδ2 T 

cells was first conducted in our laboratory (Brandes et al., 2005; Brandes et al., 2009; 

Meuter et al., 2010; Khan et al., 2014a) but was subsequently confirmed by others 

(Landmeier et al., 2009; Wu et al., 2009b; Altvater et al., 2012; Himoudi et al., 2012; 

Schneiders et al., 2014; Muto et al., 2015).  In particular, the processes involved in cross-

presentation of exogenous antigens by both short-term activated primary γδ T cells and 

long-term expanded γδ T cells to CD8+ T cells in an antigen-specific manner have been 

characterised (Brandes et al., 2009; Meuter et al., 2010; Khan et al., 2014a).  In an attempt 

to address the physiological relevance of those findings, Himoudi et al. established an in 

vitro co-culture system of cancer cells with both γδ T cells as APCs and antigen-specific 

CD8+ T cells as responders, and showed that opsonisation of target cells with humanised 

antibodies may be required to "license" antigen cross-presentation by γδ T cells to 

antigen-specific CD8+ T cells (Himoudi et al., 2012).  In their study, Vγ9/Vδ2 T cells 

acquired an APC phenotype (as judged by expression of APC-associated markers) upon 

co-culture with non-opsonised cancer cells but were only fully functional with regard to 

cross-presentation of tumour antigens to CD8+ T cells when co-cultured with cancer cells 

that had been opsonised by humanised antibodies, suggesting that a secondary signal, 

particularly through CD16-dependent phagocytosis of foreign antigens, is important to 

induce the potent cross-presentation by γδ T cells (Wu et al., 2009b; Himoudi et al., 2012).  

These results suggest that γδ T cells may function concomitantly as killer cells and APCs 

upon appropriate stimulation under the control of the TCR and CD16 triggered two 

signalling pathways.  Whether other signalling pathway(s) under the control of additional 

activating receptors, e.g. NKG2D and NCRs, are involved in the regulation of killer and 

APC function of γδ T cells is not clear (Chen et al., 2013) and merits further investigations.   
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Whether and how γδ T cells function as killer cells and APCs in a sequential dynamic is 

still unclear.  In particular, it is not known whether γδ T cells acquire different functions 

concomitantly and hence become multiple-functional upon activation, or acquire different 

functions at different stages of activation reflecting the requirement of different signals in 

the local environment of infection and tumour.  It is also thinkable that cytotoxic γδ T 

cells and γδ T-APCs are mutually exclusive subsets and are induced as different lineages 

upon different activatory signals and regulations during infection and inflammation.   

 

In this chapter, I aimed to link the cytotoxicity and APC function of γδ T cells and to 

illustrate that killing of target cells (including CSCs and non-CSCs), uptake of exogenous 

antigens released from lysed cancer cells, and cross-presentation of tumour-derived 

antigens are sequential functional events mediated by γδ T cells.  In addition, an attempt 

was made to establish an ex vivo antigen-cross presentation assay to investigate how γδ T 

cells kill, obtain and cross-present tumour-associated antigens to cytotoxic CD8+ T cells in 

vivo using a human tumour xenograft model in immunodeficient NSG mice. 

 

5.2. Aim 

• To show that γδ T cells have the ability to take up tumour cell expressed antigens 

from lysed CSC-like cells and non-CSCs upon sensitisation with zoledronate, and 

subsequently cross-present those antigens to antigen-specific cytotoxic CD8+ T cells 

in vitro and in vivo.  

 

  



 163 

5.3. Ex vivo expansion of γδ T-APCs 

5.3.1. Expression of effector and APC markers by expanded γδ T cells 

The APC function of both primary and expanded human γδ T cells including their (i) 

expression of cellular makers associated with antigen presentation, (ii) ability to take up 

exogenous antigens by endocytosis, and (iii) capacity to cross-present exogenous antigens 

to CD8 T cells, has been well characterised in our lab (Brandes et al., 2005; Brandes et al., 

2009; Meuter et al., 2010; Khan et al., 2014a). 

 

In order to generate sufficient numbers of γδ T-APCs for adoptive transfer studies in 

animal models, γδ T cells were here expanded from PBMCs of healthy donors in the 

presence of zoledronate and IL-2, and their APCs characteristics were examined at day 14 

in culture.  As shown in Figure 5.1, expanded γδ T cells expressed the antigen-presenting 

molecules MHC class I and II and the co-stimulatory molecules CD80 and CD86 at 

intermediate to high levels, whereas another co-stimulatory molecule, CD40, was only 

expressed at low levels.  Low levels of CD11c expression distinguished the expanded γδ T 

cells from monocyte-derived and inflammatory DCs, which express high level of CD11c 

(Segura and Amigorena, 2013; Segura et al., 2013).  Of note, as described in Figure 4.1, 

the strong expression of CD69 by expanded γδ T cells indicated their activation status at 

that stage.  
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Figure 5.1. Phenotypic characterisation of expanded γδ T cells.  (A) Expression of APC 

markers including CD11c, CD40, CD80, CD86, MHC class I and MHC class II by γδ T cells were 

measured by FACS after 14 days of expansion from PBMCs with zoledronate and IL-2 (n = 

number of donors used for γδ T cell expansion).  Representative FACS plots of different cell 

surface markers expressed by expanded γδ T cells are shown in (B).  Isotype controls are shown 

as grey zebra plots and the stained markers are shown as red dots. 
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5.3.2. Re-stimulation of expanded γδ T cells to enhance APC characteristics 

Given the relatively low expression levels of some APC markers by expanded γδ T cells 

as in semi-resting status after around 14 days in culture and the fact that de novo cross-

presentation by DCs requires activation for up-regulation of their antigen presenting 

molecules, I next determined whether γδ T cells expanded by the treatment of zoledronate 

can be re-stimulated again for further enhancement of their APC features by specific TCR-

mediated stimulation.  Expanded γδ T cells were re-stimulated with HMB-PP and assayed 

for their expression of APC-associated markers.  As shown in Figure 5.2, HMB-PP 

stimulated γδ T cells significantly up-regulated their expression of APC-associated 

markers including MHC class I, MHC class II and CD80.  A small increase in the 

expression of CD86 by HMB-PP stimulated γδ T cells was observed in 3 of 4 donors 

examined (Figure 5.2).  However, the increase was not significant statistically, which may 

have been in part due to the small number of experiments conducted.   

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2. Enhanced APC phenotype of expanded γδ T cells upon re-stimulation with HMB-

PP.  Expression of APC markers including CD80, CD86, HLA class I and HLA class by γδ T cells 

cultured for 24 hours in the presence or absence of 10 nM HMB-PP were measured by FACS.  

Data were pooled from experiments with expanded γδ T cells derived from four healthy 

individuals.  Significance of differences was calculated using paired Student’s t test (*p ≤ 0.05; ***p 

≤ 0.001).  
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5.3.3. Cross-presentation of recombinant Flu M1 protein by expanded γδ T cells in 

vitro 

In order to confirm the APC characteristics of expanded γδ T cells on the functional level, 

their ability to take up and cross-present exogenous antigens to cytotoxic CD8+ T cells 

was examined in more detail.  As described in previous publications from our laboratory 

(Brandes et al., 2009; Meuter et al., 2010; Khan et al., 2014a), expanded γδ T cells were 

cultured overnight in the presence of 0.01, 0.1 or 1 µM recombinant Flu M1 protein 

serving as model antigen.  Using this well-established experimental system, I investigated 

the potential of expanded γδ T cells to take up and process exogenous M1 protein and load 

the immunodominant peptide p58-66 onto MHC I molecules for presentation to HLA-A2-

restricted cytotoxic CD8+ T cells with specificity to M1 p58-66 (as described in Chapter 

4).  As shown in Figure 5.3, MHC-matched γδ T-APCs (HLA-A2+ve) exhibited a strong 

ability to cross-present M1 antigen and induce robust cytotoxic CD8+ T cell responses in a 

dose-dependent manner (M1 concentration during preparation of γδ T-APCs), as 

determined by intracellular IFN-γ staining of CD8+ T cell responders.  As negative control, 

MHC-mismatched γδ T-APCs (HLA-A2−ve) pulsed with recombinant M1 protein failed to 

induce such CD8+ T cell responses, and no activation of CD8+ T cells was observed in the 

absence of M1 regardless of the MHC haplotype of the γδ T-APCs, confirming the antigen 

specificity of the experimental system.  Treatment of CD8+ T cell responders with 

universal non-specific mitogen PMA and ionomycin served as positive control.  In 

conclusion, consistent with the observation on short-term activated γδ T cells (Brandes et 

al., 2009; Meuter et al., 2010) and long-term expanded γδ T cells with zoledronate, IL-2 

and IL-15 (Khan et al., 2014a), here I showed that γδ T cells expanded with zoledronate 

and IL-2 for 14 days retain the potential to respond to HMB-PP and act as APC that can 

uptake, process and cross-present exogenous antigen to cytotoxic CD8+ T cells. 
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Figure 5.3. Cross-presentation of recombinant influenza M1 model antigen by γδ T cells in 

vitro.  (A) γδ T cells expanded from PBMCs with IL-2 and zoledronate were cultured overnight in 

the presence of recombinant influenza M1 protein at various concentrations and then used as 

APCs for cross-presentation to M1-specific CD8+ T cell responders.  The activation of CD8+ T cell 

responders in co-cultures with γδ T-APCs was measured by intracellular staining of IFN-γ and 

analysed by FACS.  Data were pooled from experiments with expanded γδ T cells derived from 

PBMCs of three HLA-A2+ve and three HLA-A2−ve healthy donors.  Significance of differences was 

calculated by non-parametric two-way ANOVA (****p ≤ 0.0001).  Representative FACS plots of 

intracellular IFN-γ staining are shown in (B).  
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5.4. Cross-presentation of tumour cell-expressed Flu M1 by γδ T cells in vitro 

5.4.1. Induction of APC characteristics in expanded γδ T cells by sensitised CSC-

like cells and non-CSCs in vitro 

Although it is clear that γδ T cells can function both as cytotoxic effectors in targeting 

various types of cancer cells and as APCs, there is only very limited evidence showing 

that γδ T cells can obtain antigens from the cancer cells they lyse and cross-present them 

to CD8+ T cells (Himoudi et al., 2012).  Here, I assessed whether γδ T cells can be 

activated in co-culture with cancer cells and show APC features, taking advantage of the 

CSC-like cell model established in Chapter 3.  As shown in Figure 5.4A, expanded γδ T 

cells co-cultured with zoledronate-sensitised CSC-like cells up-regulated MHC class I, II 

and CD86 expression as compared to baseline levels observed in co-cultures with their 

non-sensitised CSC-like counterparts.  A similar, or even better, activation of expanded γδ 

T cells was observed in co-culture with zoledronate-sensitised non-CSCs (Figure 5.4B). 

These results demonstrate that the APC characteristics of expanded γδ T cells can be 

induced further not only upon exposure to soluble HMB-PP but also upon co-culture with 

zoledronate-treated tumour cells, suggesting that a similar induction of APC features may 

take place in patients receiving intravenous zoledronate. 

 

Furthermore, these results also indicate that upon activation induced by zoledronate-

sensitised CSC-like cells and non-CSCs, γδ T cells seem to concomitantly acquire APC 

feature along with cytotoxicity.  However, whether the activation of γδ T cells through 

TCR recognition leads to induction of these two functionally distinct subsets or to 

acquisition of both cytotoxicity and APC features by every single γδ T cells still remain 

unclear.  
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Figure 5.4. Sensitisation of CSC-like cells and non-CSCs with zoledronate enhanced the 

APC phenotype of expanded γδ T cells in co-culture.  Expression of the APC markers CD80, 

CD86, MHC class I and MHC class II by γδ T cells in co-culture with CSC-like cells (A) or non-

CSCs (B) pretreated with or without 10 µM zoledronate was measured by FACS.  Data were 

pooled from two experiments with expanded γδ T cells derived from five healthy individuals.  

Significance of differences was calculated by paired Student’s t test (*p ≤ 0.05; **p ≤ 0.01).  
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5.4.2. Cross-presentation of Flu M1 expressed in transduced CSC-like cells and 

non-CSCs by expanded γδ T cells in vitro 

Having shown that γδ T cells can lyse zoledronate-treated cancer cells and at the same 

time up-regulate the expression of APC markers, I next examined whether γδ T cells can 

cross-present tumour cell-expressed antigens released from the lysed targets to CD8 T 

cells.  M1-expressing CSC-like cells and non-CSCs were sensitised overnight with 

zoledronate and served both as stimulus for γδ T cell activation and as cellular source of 

M1 protein.  Gluc-expressing CSC-like cells and non-CSCs were used as negative control 

for antigen specificity. Untreated CSC-M1 cells and non-CSC-M1 cells were used as 

negative controls for activation and cytotoxicity of γδ T cells and for subsequent cross-

presentation as lack of antigen release from healthy targets.  As shown in Figure 5.5A, γδ 

T-APCs were isolated by FACS to purities >95% from the co-culture of expanded γδ T 

cells with CSC-like cells or non-CSCs.  The sorted γδ T-APCs were then co-cultured with 

M1-specific CD8+ T cells and the activation of the responder cells was judged from their 

IFN-γ production.  Unexpectedly, all types of γδ T-APCs prepared failed to induce 

significant CD8+ T cell responses, irrespective of the culture conditions used to generate 

such γδ T-APCs (Figure 5.5B).  As almost 100% killing of sensitised CSC-like cells and 

non-CSCs by γδ T cells was observed during the preparation of γδ T-APCs (determined 

by the observation that no adherent CSC-like cells or non-CSCs were left after overnight 

co-culture with γδ T cells; data not shown), it is conceivable that the amount of M1 

antigen released from lysed cells was not sufficient for potent cross-presentation by γδ T 

cells.  In agreement, no tdTomato signal was detected in γδ T-APCs isolated from co-

cultures with sensitised CSC-like or non-CSC targets (data not shown), further suggesting 

that the uptake of exogenous antigens released from lysed target cells by activated γδ T 

cells under those experimental conditions was suboptimal.  Besides the generally limited 

concentrations of M1 and tdTomato produced by the tumour cells and hence available for 

uptake by γδ T cells, it is thinkable that at least a proportion of these two proteins were 

already degraded during cell apoptosis before being released into the culture.  
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Figure 5.5. In vitro cross-presentation of Flu M1 by expanded γδ T cells in co-culture with 

M1-expressing CSC-like and non-CSC targets.  M1-expressing CSC-like cells and non-CSCs 

were sensitised overnight with 10 µM zoledronate and then mixed with expanded γδ T cells at 1:1 

ratio for overnight, allowing γδ T cells to kill and uptake antigens from lysed target cells.  γδ T cells 

were then isolated from co-culture by FACS sorting and served as APCs for M1-specific CD8+ T 

cell responders.  Intracellular IFN-γ expression was used as readout for CD8+ T cell activation. 

The gating strategy used for isolation of γδ T cells from co-cultures is shown in (A).  Results 

shown were representative for two independent experiments.  Error bars shown in the figures 

were representative for SD. 
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5.4.3. In vitro antigen uptake by γδ T cells 

 

To further investigate the uptake of exogenous antigens, γδ T cells were pulsed with (i) 

protein extract of CSC-M1 cells with expression of tdTomato as fluorescent reporter 

protein and/or (ii) BSA tagged with DQ, which is resistant to degradation in lysosome, as 

fluorescent label (Meuter et al., 2010) for the visualisation of antigen uptake, and analysed 

by flow cytometry.  As short-term activated γδ T cells (MACS-purified primary γδ T cells 

stimulated with HMB-PP and IL-2 for 3 days) have been shown for their good capacity to 

uptake soluble antigens in cultures (Meuter et al., 2010), we first used short-term activated 

γδ T cells to test whether the experimental model is optimal to reveal the uptake of 

tdTomato from extract of CSC-M1 cells by γδ T cells in the presence of BSA-DQ as 

internal positive control for antigen uptake.  When pulsed with BSA-DQ at 37°C, short-

term activated γδ T cells showed a strong ability to endocytose this exogenous 

fluorescence-tagged protein (Figure 5.6A).  Serving as negative control, γδ T cells 

incubated with BSA-DQ at 4°C showed no such antigen uptake.  Next, short-term 

activated γδ T cells were pulsed with BSA-DQ together with soluble extracts of CSC-M1 

cells co-expressing tdTomato as fluorescent reporter protein for the visualisation of 

antigen uptake. Although only a very small proportion of γδ T cells became positive for 

tdTomato under these conditions, all tdTomato+ γδ T cells were also positive for BSA-DQ 

indicative of a real uptake of tdTomato protein (Figure 5.6B).  In order to translate these 

findings with primary γδ T cells to long-term cultures and determined whether expanded 

γδ T cells can pick up specific antigen from the mixed protein pool released form lysed 

cells for cross-presentation, expanded γδ T cells were incubated with a soluble extract of 

M1-expressing CSC-like cells for a longer 4 hours period allowing both antigen uptake 

and subsequent processing.  Consistent with the results obtained using short-term 

activated γδ T cells, limited tdTomato uptake was observed in expanded γδ T cells (Figure 

5.7).  These results confirmed the ability of γδ T cells to uptake exogenous antigens from 

culture.  However, these findings also supported the possibility that the concentration of 

tumour-expressed proteins present in soluble cell extracts may be too low to demonstrate 

efficient uptake and cross-presentation by γδ T-APCs. 
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Figure 5.6. In vitro antigen uptake by primary γδ T-APCs.  γδ T cells were purified by MACS 

sorting and then activated in culture with 10 nM HMB-PP and 100 U/ml IL-2 for three days to serve 

as APCs.  Generated gd T-APCs were incubated with 0.5 mg/ml BSA-DQ alone (A) or with both 

0.5 mg/ml BSA-DQ and 10 mg/ml protein extract of M1-expressing CSC-like cells (B) at 4°C or 

37°C for one hour.  The uptake of BSA-DQ and tdTomato fluorescent reporter in the extract of M1-

expressing CSC-like cells by γδ T-APCs was analysed by FACS.  Figures shown were pooled 

results with use of γδ T cells isolated from two healthy donors. 
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Figure 5.7. In vitro antigen uptake by expanded γδ T-APCs.  γδ  T cells were expanded from 

PBMCs in the presence of zoledronate and IL-2 for 14 days to serve as APCs.  Expanded γδ T-

APCs were incubated with 10 mg/ml protein extract of M1-expressing CSC-like cells at 37°C for 

four hours.  The uptake of tdTomato fluorescent reporter in the extract of M1-expressing CSC-like 

cells by γδ T-APCs was analysed by FACS.  Figures shown were pooled results with use of γδ T 

cells isolated from two healthy donors.  
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5.4.4. Cross-presentation of FluM1 within the protein extract of transduced CSC-

like cells by expanded γδ T cells in vitro 

Having demonstrated limited yet detectable uptake of tumour-expressed proteins, I next 

examined the capacity of γδ T-APCs to cross-present tumour cell-expressed M1 present in 

the soluble extract prepared from CSC-M1 cells.  Expanded γδ T cells were incubated 

with 1 or 10 mg/ml cell extract of M1-expressing CSC-like cells for 6 hours and then 

washed to serve as γδ T-APCs for the induction of M1-specific CD8+ T cell responses.  γδ 

T-APCs incubated with a cell extract prepared from Gluc-expressing CSC-like cells and 

thus presenting an irrelevant antigen were used as negative control.  In addition, HLA-

A2−ve γδ T-APCs were used as MHC-mismatched negative control to identify any non-

specific activation of CD8+ responder cells by γδ T-APCs.  γδ T-APCs prepared with 10 

mg/ml soluble extract of CSC-M1 cells induced a slightly increased IFN-γ production by 

CD8+ responder cells, compared to γδ T-APCs prepared without antigens and γδ T-APCs 

prepared with 1 mg/ml soluble extracts of CSC-M1 cells (Figure 5.8).  The better CD8+ T 

cell response induced by M1-presenting γδ T-APCs as compared to Gluc-presenting γδ T-

APCs suggested a certain degree of cross-presentation by γδ T-APCs.  However, there 

was no difference between MHC-matched HLA-A2+ve γδ T-APCs and MHC-mismatched 

HLA-A2−ve γδ T-APCs in inducing IFN-γ production by CD8+ responder cells, indicating 

that the activation of CD8+ T cells observed was non-specific rather than actual cross-

presentation of M1 by γδ T-APCs.   

 

Taken together, the present attempt to show cross-presentation of tumour cell-expressed 

M1 from CSC-like cells by γδ T-APCs failed, most likely because of the insufficient 

supply of antigen to γδ T-APCs in our in vitro co-culture system. The fact that only less 

than 1% of cells were actually positive for tdTomato uptake after incubation with cell 

extract suggests that our experimental system is not sensitive enough to observe efficient 

cross-presentation by γδ T-APCs.  However, the results did confirm that γδ T cells can 

function to kill CSC-like cells and non-CSCs sensitised with zoledronate and take up 

exogenous antigens from the lysed cancer cells. 
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Figure 5.8. In vitro cross-presentation by expanded γδ T-APCs.  γδ T cells were expanded 

from PBMCs in the presence of zoledronate and IL-2 for 14 days to serve as APCs.  Expanded γδ 

T-APCs were incubated with 1 or 10 mg/ml protein extract of M1- or Gluc-expressing CSC-like 

cells at 37°C for six hours, washed extensively and then co-cultured with M1-specific CD8+ T cell 

responders for 5 hours in the presence of Brefeldin A.  The activation of M1-specific CD8+ T cell 

responders was analysed by FACS using intracellular IFN-γ expression as readout.  Results 

shown were experiment pooled with use of HLA-A2+ve γδ T cells from two healthy donors and 

HLA-A2−ve γδ T cells from one healthy donor.  Error bars shown in the figures were representative 

for SD.  
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5.5. Cross-presentation of tumour cell-expressed Flu M1 by γδ T cells in vivo 

5.5.1. Generation of Flu M1-expressing tumours in NSG mice  

In order to increase the local amount and concentration of exogenous M1 antigen available 

for γδ T-APCs to take up, we sought to utilise an in vivo M1-expressing tumour model, 

which is likely to provide a better microenvironment with respect to tighter contacts for 

the formation of stable immune synapses between γδ T-APCs and cancer cell targets, and 

the presence of a more condensed antigen pool for γδ T-APCs to obtain appropriate 

antigens from the immune synapses.  Of note, if successful, these experiments would be 

the first ever demonstration that human γδ T cells indeed act as APCs in vivo.  In order to 

achieve this, we used mice bearing tumours that co-expressed M1 and tdTomato by 

orthotopic xenotransplantation of M1-expressing CSC-like cells in NSG mice (see 

Chapter 3).  Mice with tumours co-expressing tdTomato and Gluc as irrelevant antigen 

were used as antigen-mismatched negative control.  When the tumours reached sizes of 

0.5 cm in the longest dimension, they were sensitised with zoledronate (or saline as 

negative control) through i.v. injection (Figure 5.9A).  Expanded γδ T cells were injected 

directly into the tumours on the next day and harvested again from the tumours 24 hours 

later by FACS sorting to purities of approx. 85% with contaminants majorly consisted of 

tumour cells and cell debris as distinguished by their sizes (FSC/SSC) and tdTomato 

expression (Figure 5.9B).  
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Figure 5.9. FACS isolation of γδ T-APCs from tumours derived from M1- or Gluc-expressing 

CSC-like cells.  γδ T cells were expanded from PBMCs in the presence of zoledronate and IL-2 

for 14 days to serve as APCs.  Tumours were established in NSG mice by s.c. injecting 2 × 106 

M1- or Gluc-expressing CSC-like cells into the mammary gland.  The developed tumours were 

used as targets for gd T-APCs when the size of tumour reaches > 0.5 cm in longest dimension.  

Tumours were sensitised with 50 µg/kg zoledronate or PBS given intravenously in a total volume 

of 100 µl one day before 5 × 106 γδ T-APCs (HLA-A2+ve or HLA-A2−ve) were given directly into 

each tumours in 50 µl saline.  24 hours later, tumours were harvested, dissociated by chopping 

thoroughly with a scalpel, and then filtered through 70 µm and 40 µm cell strainers to release γδ T-

APCs into single cell suspensions.  These mixed cell suspensions were then stained with fixable 

AQUA live/dead followed by surface staining for CD3 and Vγ9 TCR before FACS sorting.  γδ T-

APCs were sorted to purities of approx. 85% according to sequential gating on intact, single and 

live CD3+/Vγ9+ cells.  
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5.5.2. APC phenotype of in vivo antigen-primed γδ T-APCs isolated from M1-

expressing tumours 

To investigate whether γδ T cells could be activated and obtain APC-associated features in 

vivo, γδ T-APCs were isolated from M1- or Gluc-expressing tumours that had been 

sensitised or not with zoledronate, and were analysed by flow cytometry for their 

expression of MHC class II.  These experiments demonstrated that γδ T-APCs isolated 

from non-sensitised M1-expressing tumours, zoledronate-sensitised M1-expressing and 

Gluc-expressing tumours all showed marginal up-regulation of MHC class II expression 

compared to γδ T-APCs in cell culture (Figure 5.10), indicating that the γδ T cells in the 

tumours maintained (and in some cases even enhanced) their APC features in vivo.   

  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10. Modulation of APC phenotype of expanded γδ T-APCs in tumours.  γδ T-APCs 

isolated from M1-expressing or Gluc-expressing tumours with or without Zoledronate sensitisation 

were examined for their expression of HLA-DR by flow cytometry.  Results shown were three 

experiments pooled with use of HLA-A2+ve γδ T cells from three healthy donors and HLA-A2−ve γδ 

T cells from two healthy donors.  Error bars shown in the figures were representative for SD. 
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5.5.3. Uptake of tdTomato by in vivo primed γδ T-APCs in tumours 

In addition to HLA-DR expression, uptake of the fluorescent reporter tdTomato from the 

tumour cells by expanded γδ T cells was assessed by flow cytometry.  As shown in Figure 

5.11, γδ T cells harvested from M1-expressing tumours sensitised with zoledronate 

exhibited significant uptake of tdTomato with respect to both the proportion of tdTomato+ 

γδ T cells and the MFI of the tdTomato signal.  Uptake of tdTomato by γδ T cells isolated 

from non-sensitised M1-expressing tumours and from sensitised Gluc-expressing tumours 

was less pronounced but nevertheless detectable.  The lower level of tdTomato uptake by 

γδ T cells in zoledronate-sensitised Gluc tumours compared to M1 tumours was likely due 

to generally lower expression levels of tdTomato in CSC-Gluc cells compared to CSC-M1 

cells (data not shown).  In conclusion, these findings demonstrate that γδ T cells have the 

ability to take up antigen released by tumour cells in vivo.  
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Figure 5.11. Uptake of tdTomato by expanded γδ T-APCs in tumours.  (A) γδ T-APCs isolated 

from M1-expressing or Gluc-expressing tumours with or without prior zoledronate sensitisation 

were examined for their expression of tdTomato.  Representative zebra plots showing tdTomato 

uptake by antigen-primed γδ T-APCs under different conditions in vivo were shown in (B).  Results 

shown were three experiments pooled with use of HLA-A2+ve γδ T cells from three healthy donors 

and HLA-A2−ve γδ T cells from two healthy donors.  Error bars shown in the figures were 

representative for SD.  Significance of differences was calculated by Kruskal-Wallis tests. (**p ≤ 

0.01) 
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5.5.4. Ex vivo cross-presentation of M1 by in vivo primed γδ T-APCs isolated from 

M1-expressing tumours 

Finally, γδ T cells isolated from the tumours were used as γδ T-APCs in co-culture with 

M1-specific CD8+ T cells to examine their ability to cross-present model antigens from 

the tumour.  Cross-presentation of M1 by these in vivo primed γδ T-APCs was assessed by 

intracellular staining of CD8+ responder cells for IFN-γ as before, and analysed by flow 

cytometry.  As shown in Figure 5.12, M1-specific CD8+ T cells in co-culture with γδ T-

APCs isolated from either zoledronate-sensitised or non-sensitised M1 tumours showed 

substantial production of IFN-γ, whereas CD8+ T cells in co-culture with γδ T-APCs 

isolated from Gluc tumour failed to produce IFN-γ, confirming the antigen specificity of 

the experimental system.  However, IFN-γ production was observed in M1-specific CD8+ 

T cells in co-culture with both HLA-A2+ve (MHC-matched) and HLA-A2−ve (MHC-

mismatched) γδ T-APCs isolated from zoledronate-sensitised M1 tumours (Figure 5.13).  

These results showed that the antigen-specific activation of M1-specific CD8+ T cells in 

co-culture with γδ T-APCs was likely due to the presence of residual HLA-A2+ve M1-

expressing tumour cells (up to 15%; Figure 5.9B) being present as contaminants in the γδ 

T-APC preparations, thereby masking any potential effect by γδ T-APCs.    
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Figure 5.12. Ex vivo cross-presentation of M1 by γδ T-APCs isolated from tumours.  (A) γδ 

T-APCs isolated from M1-expressing or Gluc-expressing tumours with or without Zoledronate 

sensitisation were examined for their ability to cross-present M1 to CD8+ T cells.  Representative 

zebra plots showing IFN-γ production by M1-specific CD8+ T cell responders in co-culture with γδ 

T-APCs generated under different conditions in vivo were shown in (B).  Results shown were three 

experiments pooled with use of HLA-A2+ve γδ T cells from three healthy donors and HLA-A2−ve γδ 

T cells from two healthy donors.  Error bars shown in the figures were representative for SD.  
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5.6. Discussion 
In this chapter, firstly I showed that re-stimulation of expanded γδ T cells with soluble 

HMB-PP or by co-culture with zoledronate-sensitised CSCs-like cells and non-CSCs 

enhanced their expression of MHC and co-stimulatory molecules, indicating the 

successful acquisition of APC features through activating signals via the γδ TCR 

(Himoudi et al., 2012).  However, the observation that in vitro expanded γδ T cells were 

readily able to cross-present exogenous Flu M1 to antigen-specific CD8+ T cells indicates 

that a secondary signal via FcγR postulated earlier (Wu et al., 2009b; Himoudi et al., 2012) 

may play an additive or synergistic role but is not required for the induction of a potent 

CD8+ T responses by γδ T-APCs.  This was confirmed by similar phenomeon observed 

using γδ T-APCs that had been expanded by zoledronate in the presence of IL-2 and IL-15 

(Khan et al., 2014a).  As the triple co-culture system of γδ T-APCs, CD8+ responder cells 

and target cancer cells established by Himoudi et al., 2012 is very complex and may 

hinder some potential cross-talks in between each cell populations that could affect the 

activation of CD8+ T cell responders, I tried to establish a simpler and "cleaner" co-culture 

system by isolating pure γδ T-APCs from co-cultures with zoledronate-sensitised tumour 

targets.  These purified γδ T-APCs were then used to test their ability to cross-present 

tumour cell-expressed Flu M1 to CD8+ T cells.  However, no activation of CD8+ T cell 

responders was observed by the use of these γδ T-APCs, indicating that the experimental 

conditions may not have been optimal.  As γδ T-APCs are very efficient in presenting 

soluble proteins to antigen-specific CD8+ T cells and were substantially activated in co-

cultures with sensitised targets, it can be speculated that the supply of tumour cell-released 

soluble M1 in these co-culture was insufficient, possibly due to degradation of the 

transduced Flu M1 protein during apoptosis.  While Meuter et al. showed that short-term 

activated γδ T-APCs can cross-present M1 from debris of influenza-infected cells (Meuter 

et al., 2010), my own experiments attempted to induce CD8+ T cell responses by loading 

γδ T-APCs with lysates of M1-expressing cells failed.  The most likely explanation for 

this apparent failure to detect antigen-specific CD8+ T cell responses under these 

conditions is the fact that in contrast to a productive viral infection, the Flu M1 protein in 

the transduced HMLER-derived cell lines used here may only constitute a very minor 

proportion of the whole cell lysate.  In fact, uptake of tdTomato by γδ T cells incubated 

with protein lysate of Flu M1/tdTomato-expressing cells was also only observed at very 

low levels, supporting the notion that concentrations of defined proteins were very limited 

in the tumour cell lysates, even though expression of Flu M1 and tdTomato was under the 
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control of strong EF-1 promoters.  Further experiments are required to determine the exact 

proportion and amount of Flu M1 in these lysates by Western blotting and compare the 

cross-presentation efficiency of recombinant Flu M1 with endogenously expressed Flu M1.  

 

In order to overcome these experimental hurdles in a physiologically more relevant 

microenvironment, γδ T cells were injected directly into established Flu M1-expressing 

tumours that had been pre-conditioned overnight by i.v. zoledronate treatment.  As CSC-

like cells are resistant to γδ T cell-mediated killing in vitro, tumours without prior 

sensitisation by zoledronate were used as negative control for in vivo killing and 

subsequent antigen uptake and cross-presentation.  In these studies, γδ T cells acquired 

similar levels of tdTomato in vivo as indicator of antigen uptake from tumours, 

irrespective of prior zoledronate sensitisation.  In addition, no significant up-regulation of 

HLA-DR was observed in γδ T-cells in vivo as compared to γδ T-APCs maintained in cell 

culture in vitro.  These results suggested that γδ T cells did not become fully activated in 

vivo even in zoledronate-treated animals, which prompted us to query whether i.v. 

sensitisation with zoledronate was actually effective enough to activate γδ T-APCs in the 

tumour.  In collaboration with Dr. Emmanuel Scotet at the University of Nantes, France, 

we therefore looked into the effect of zoledronate in sensitising CSC-M1 tumours in vivo 

using different injection routes.  The results obtained by the team of Dr. Scotet showed 

that only sensitisation via s.c. injection near the tumour successfully induced ex vivo 

activation of γδ T cells (Figure 5.13) but not injections that were given i.p. or i.v., which 

may explain why in our in vivo γδ T-APC model, γδ T cells were not fully activated and 

were unable to cross-present tumour-released Flu M1.   

 

So far, I have not yet able to determine the exact intracellular location of tdTomato 

acquired by intratumoural γδ T-APCs in vivo.  In particular, it needs to be tested whether 

the tdTomato signal detectable in γδ T-APCs residing in the tumours was due to 

membrane exchange with cell debris or apoptotic bodies by trogocytosis (Poupot et al., 

2005; D'Asaro et al., 2010; Himoudi et al., 2012; Mao et al., 2014; Schneiders et al., 2014) 

or whether it was true endocytosis.  The disappearance of the tdTomato signal in γδ T-

APCs after 5 hours of co-culture with CD8+ responder T cells suggests that the antigens 

were actually internalised and processed for cross-presentation.  However, only rigorous 

examinations such as visualisation of intracellular tdTomato and Flu M1 in γδ T-APCs 

isolated from tumours by IF confocal microscopy, and/or by Western blotting of tdTomato 
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and/or M1 within cytosolic and membrane protein extracts of γδ T-APCs isolated from 

tumour would provide solid evidence of actual antigen uptake by γδ T-APCs in vivo.    

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13. Effect of zoledronate sensitisation in tumour-bearing mice through different 

routes. Tumours derived from CSC-like cells were sensitised in vivo by administering zoledronate 

via different injection routes including i.p., i.v. and s.c. near the tumour.  Tumours were harvested 

on the next day and dissociated into single cells for co-cultures with γδ T cells.  The activation of 

γδ T cells was examined by their degranulation (data kindly provided by Drs Emmanuel Scotet and 

Ulrich Jarry at the University of Nantes, France). 

 

 

The observation of large areas of necrosis in tumours derived from CSC-like by histology 

(data not shown) indicates that the tdTomato signal acquired by γδ T-APCs in vivo may 

have been due to uptake of material released from tumour cells undergoing necrosis rather 

than originating from tumour cells killed by γδ T cells.  This poses an interesting question 

as to which kind of cell death, i.e. apoptosis and necrosis, is more suitable for antigen 

uptake and cross-presentation by local APCs.  In this respect, it has been shown that DCs 

can efficiently cross-present antigens from apoptotic cells to cytotoxic CD8+ T cells and 

prime an immune response (Heath and Carbone, 2001; Steinman et al., 2003).  γδ T cells 

exhibit their cytotoxicity by inducing apoptosis of target cells through secretion of 

cytotoxic molecules including TRAIL, TNF, FasL, perforin, granzymes and granulysin 

(Chen et al., 2013).  The γδ T cell-induced apoptosis of cancer cells may thus create an 

ideal scenario for optimal cross-presentation of tumour antigens to CD8+ T cells.  
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Moreover, apoptosis of tumour cells induced by chemotherapy, specifically doxorubicin, 

showed strong immunogenicity and elicited phagocytosis by DCs and protective CD8+ T 

cells responses against established tumours in mice (Casares et al., 2005; Ma et al., 2011).  

Todaro et al. recently showed that treatment of colon cancer initiating cells with 

chemotherapeutic agents, 5-fluorouracyl and doxorubicin, enhanced their expression of 

NKG2D ligands and death receptor 5 (TRAIL-R2), which modulated their susceptibility 

to killing by γδ T cells through the secretion of TRAIL (Todaro et al., 2013).  Taken 

together, these results suggest that sensitisation of tumours, especially CSC-like cells, may 

significantly enhance killing by γδ T cells and cross-presentation of tumour-specific 

antigens to CD8+ T cells for the induction of potent adaptive immunity against CSCs 

eventually contributing to tumour control. 

 

While substantial CD8+ T cell responses were observed in co-culture with γδ T-APCs 

isolated from tumours, both HLA-A2+ and HLA-A2− γδ T-APCs induced similar levels of 

CD8+ T cell responses, indicating that any true cross-presentation by γδ T-APCs, even if 

only minor, was likely to have been masked by contaminant HLA-A2+ tumour cells 

remaining after FACS sorting.   

 

Despite the failure to demonstrate cross-presentation by γδ T-APCs in vivo, the findings in 

this Chapter give important clues as to how to optimise the experimental model further.  

Firstly, s.c. injection of zoledronate near the established tumour has been identified as the 

most effective sensitisation route for activation of γδ T-cells.  Secondly, my findings show 

that humanised anti-GD2 can specifically sensitise CSC-like cells to induce cytotoxicity 

(Figure 4.13) and possibly APC features (data not shown); future studies should therefore 

explore a combined sensitisation approach using both zoledronate and anti-GD2.  Thirdly, 

in preliminary work I have already generated another Flu M1-expressing model using the 

HLA-A2− breast cancer cell line SKBR3 (data not shown), to overcome the inherent 

limitations of FACS sorting of intratumoural γδ T-cells to sufficient purities for functional 

assays.  Experiments assessing the tumour take of these SKBR3-M1 cells in NSG mice 

are ongoing.  Fourthly, it might be feasible to knock out HLA-A2 specifically in CSC-M1 

cells using the novel CRISPR/Cas9 technology and use HLA-A2− tumour cells as targets 

for cross-presentation assays in vivo.   
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Chapter 6. General Discussion 

6.1. Summary  

In this thesis, I generated stable CSC-like and non-CSC sublines from the HMLER cell 

line (Elenbaas et al., 2001; Mani et al., 2008) with distinct phenotypical and functional 

characteristics confirmed in vitro and in vivo in NSG mice to study the interaction 

between CSC-like cells/non-CSCs and anti-tumour effector T cells.  By the use of this 

model, I observed a powerful synergism between non-MHC-restricted γδ T cells and 

MHC-restricted cytotoxic CD8+ T in targeting CSC-like cells.  By sensitising CSC-like 

cells and non-CSCs with zoledronate or farnesyl diphosphate synthase (FPPS)-targeting 

shRNA, γδ T cells showed enhanced cytotoxicity and IFN-γ secretion.  The secretion of 

IFN-γ by activated γδ T cells efficiently sensitised surviving CSC-like cells and non-CSCs 

to cytotoxic CD8+ T cell-mediated killing through up-regulating the surface expression of 

MHC class I and CD54 on sensitised cancer cells.  As alternative sensitisation strategy, 

the humanised anti-GD2 monoclonal antibody, (Navid et al., 2014), directed γδ T cell 

responses including cytotoxicity and APC properties against opsonised CSC-like cells but 

not non-CSCs.   

 

With regard to the APC characteristic of γδ T cells, I have shown in vitro that γδ T cells 

are able to take up exogenous antigens and cross-present them to antigen-specific 

cytotoxic CD8+ T cells.  By establishing a breast cancer model in NSG mice with 

transduced CSCs-like cells, which stably express tdTomato as fluorescent reporter and Flu 

M1 as surrogate for yet-to-be-discovered CSC-associated antigens, my data demonstrate 

that γδ T cells readily obtain tumour-associated antigen (tdTomato) for processing.  The 

potential ex vivo cross-presentation of tumour-associated antigen (Flu M1) however was 

masked by technical limitations for sorting intra-tumoural γδ T-APCs to purities that are 

sufficient for these challenging functional studies.  

 

In summary, the experimental model established during my PhD studies provide proof-of-

principle results for CSC-targeting immunotherapies by γδ T cells with special emphasis 

on novel immunotherapies that might benefit from a two-pronged approach combining γδ 

T cell and CD8+ T cell targeting strategies that triggers effective innate-like and tumour-

specific adaptive responses (Figure 6.1). 
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Figure 6.1. Synergistic targeting of breast CSCs by innate-like non-MHC-restricted γδ T 

cells and MHC-restricted cytotoxic CD8+ T cells.  Within a tumour, both CSCs and non-CSCs 

can be sensitised by zoledronate efficiently through increased presentation of IPP by BTN3 to γδ 

 T cells.  Sensitisation with therapeutic monoclonal antibodies against CSC-specific antigens, e.g. 

GD2, CD44 and Her2, may enhance the specificity of γδ T cell responses to CSCs.  Upon 

activation, γδ  T cells will kill a proportion of CSCs and concomitantly secrete IFN-γ to modulate 

the susceptibility of surviving CSCs to cytotoxic CD8+ T cell-mediated killing.  Moreover, γδ  T cells 

may function as APCs to take up CSC-specific antigens such as ALDH1A1, released from dead 

CSCs into the microenvironment for cross-presentation to induce local cytotoxic CD8+ T cell 

immunity.  Activated γδ  T-APCs switch their chemotactic properties by up-regulating CCR7 

expression and down-regulating CCR5 expression for migration from the tumour to draining lymph 

nodes, where they may cross-present CSC-specific antigens and induce the maturation of 

naïve/central memory CD8+ T cells.  Mature cytotoxic CD8+ T cells with specificity against CSCs 

will expand clonally and establish a second wave of attack for infiltrating into the tumour and 

subsequent eradication of residual CSCs.  The re-establishment of comprehensive innate and 

adaptive immunity against CSCs in combination with other therapies, e.g. hormone therapy, 

chemotherapeutic drugs and radiation eradicating non-CSCs, might eventually shrink the tumour 

mass and prevent disease progression and relapse by the newly established balance between 

effective immunosurveillance and immune evasion.   
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6.2. γδ T cell-based immunotherapy for breast cancer 
An overall survival benefit of zoledronate treatment in breast cancer patients was recently 

demonstrated by comprehensive meta-analyses of clinical trials on using zoledronate as an 

adjuvant therapy (Huang et al., 2012; Valachis et al., 2013).  Although these studies failed 

to elucidate the biological mechanism underlying the anti-tumour role of zoledronate, the 

clinical benefit may at least in part be mediated by Vγ9/Vδ2 T-cells (Kunzmann and 

Wilhelm, 2011; Welton et al., 2013a).  In fact, targeted γδ T cell-based immunotherapies 

have successfully been tested in early clinical trials against various types of cancer.  The 

design of these trials mainly relied on the cytotoxic nature of γδ T cells against cancer 

cells with two main approaches, namely (i) direct activation and expansion of γδ T cells in 

patients in vivo by administration of nBPs or synthetic phosphoantigens (Dieli et al., 2007; 

Gertner-Dardenne et al., 2009; Meraviglia et al., 2010; Lang et al., 2011; Kunzmann et 

al., 2012), and (ii) adoptive transfer of γδ T cells expanded ex vivo with phosphoantigens 

or nBPs  with or without co-administration of nBPs and IL-2 (Kobayashi et al., 2007; 

Bennouna et al., 2008; Abe et al., 2009; Nakajima et al., 2010; Kobayashi et al., 2011; 

Nicol et al., 2011; Sakamoto et al., 2011).  Fisher et al. as well concluded from 12 clinical 

trials with information on 157 patient who had received γδ T cell-based immunotherapies 

that γδ T cell-based immunotherapy is generally well-tolerated, safe and potentially 

superior to current second-line therapies such as prednisolone + docetaxel and everolimus 

for advanced prostate cancer and renal cell carcinoma, respectively (Fisher et al., 2014).  

These results support the great potential of utilising Vγ9/Vδ2 T cell-cased immunotherapy 

as adjuvant to conventional therapies for cancer patients with advanced or refractory 

disease.  However, besides these encouraging results suggesting the benefit of harnessing 

γδ T cells for treatment of cancer patient, the situation in breast cancer remains 

challenging.  Distinct from melanoma, where tumour mass infiltration of γδ T cells, 

especially Vδ2+ T cells is positively correlated with better prognosis (Bialasiewicz et al., 

1999; Cordova et al., 2012), infiltration of γδ T cells in breast cancer is oppositely 

correlated with poor prognosis (Ma et al., 2012).  Specifically, Ma et al. showed that high 

numbers of tumour-infiltrating γδ T cells as determined by high magnification microscopy 

was positively correlated with advanced tumour stage, Her2 expression levels and lymph 

node metastasis, and negatively correlated with the survival of patients (Ma et al., 2012).  

Although such retrospective studies cannot identify causal relationships and determine 

whether tumour-infiltrating γδ T cells actually promote or control disease progression, 

these findings indicate that γδ T cells play an important role in the tumour 
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microenvironment and progression of breast cancer.  Indeed, given the striking functional 

plasticity of γδ T cells and distinct specificities of different subsets, γδ T cells might 

become distinctly polarised by the tumour microenvironment depending on the type of 

cancer and the disease stage, and subsequently modulate intra-tumoural responses by 

secretion of different sets of cytokines (Lo Presti et al., 2014).    Although the anti-tumour 

activity of γδ T cells has been well characterised by their cytotoxicity against a wide 

spectrum of different tumour types and their abundant IFN-γ secretion, certain γδ T cell 

subsets have been reported to oppositely exhibit pro-tumour activity, mainly through their 

production of IL-17, in various murine cancer models and in human colorectal cancer 

(Silva-Santos et al., 2015).  Murine Vγ4+ T cells in breast cancer (Coffelt et al., 2015) and 

haptocellular carcinoma (Ma et al., 2014), and Vγ6+ T cells in ovarian cancer (Rei et al., 

2014) were identified as the major source of IL-17, which facilitated the recruitment and 

function of immunesuppressive cells such as myeloid-derived suppressor cells (MDSCs), 

macrophages and inducible regulatory T cells.  In particular, as revealed by the use of a 

spontaneous murine breast cancer model, secretion of IL-17 by Vγ4+ T cells contributed to 

the systemic polarisation and expansion of CD11b+Ly6G+ neutrophils that suppressed the 

CD8+ T cells responses (Coffelt et al., 2015).  The dysregulation of protective CD8+ T cell 

immunity subsequently led to enhanced tumour metastases to lung and lymph nodes 

(Coffelt et al., 2015).  Apart from murine γδ T cells, the pro-tumour activity of IL-17-

producing γδ T cells was also reported recently in human colorectal cancer.  Wu et al. 

showed that in addition to being the main source of IL-17 in the tumour 

microenvironment, Vδ1+ T cells also secret significant level of IL-8, TNF-α and GM-CSF, 

which facilitate recruitment of MDSCs into the tumour microenvironment for onsite 

expansion, and therefore sustained the chronic pro-tumour inflammation in colorectal 

cancer (Wu et al., 2014).  In fact, the regulatory and pro-tumour activity of certain γδ T 

cell populations was reported majorly in breast cancer (Peng et al., 2007; Ye et al., 2013; 

Wesch et al., 2014).  Peng et al. were first to show that Vδ1+ T cells within breast tumours 

inhibited the activation of both CD4+ and CD8+ T cells and abrogated the maturation of 

DCs possibly through a TLR8 signalling-dependent mechanism (Peng et al., 2007).  Later, 

results from the same group showed that CXCL10 secreted by breast cancer cells recruits 

Vδ1+ T cells to the tumour microenvironment where they function as regulatory cells that 

induce the transition of local T cells and DCs to an immunosuppressive status (Ye et al., 

2013).  Although these observations were on Vδ1+ T cells rather than Vδ2+ T cells, which 

exhibit distinct specificity to antigens and functions, it is important to keep in mind that 
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the overall tumour microenvironment in breast cancer might be uniquely 

immunosuppressive.  The manipulation of γδ T cell responses for targeting breast cancer 

should therefore be carefully designed with appropriate sensitisation strategies 

overcoming inhibitory signals and aim to create a new anti-cancer microenvironment.  

Check-point inhibition of two major suppressive pathways, PD1/PD-L1 and CTLA-4/B7, 

might significantly help tilt the balance toward pro-inflammatory, cytotoxic T cell 

responses anti-cancer status to polarise γδ T cells to initiate favourable new αβ T cell 

response by their APC function.  

 

Besides harnessing γδ T cells as cytotoxic killer in immunotherapy for breast cancer, their 

function as APC makes them a promising candidate for cancer vaccines (Moser and Eberl, 

2007, 2011; Khan et al., 2014b).  DCs as traditional APCs have widely been used in 

clinical trials, albeit with disappointing results with regard to improving clinical outcomes 

(Palucka and Banchereau, 2012).  Recently, CSCs have been used as target for the making 

of DC vaccines and showed substantial efficacy in targeting breast cancer (Sharma et al., 

2012), melanoma (Ning et al., 2012), prostate cancer (Jachetti et al., 2013), pancreatic 

cancer (Yin et al., 2014), and glioma (Xu et al., 2009b; Hua et al., 2011).  Specifically for 

targeting breast CSCs, Sharma et al. showed that administration of a Her2 DC vaccine to 

patients suffering from Her2-overexpressing ductal carcinoma in situ (DCIS) is safe and 

well-tolerated.  The vaccination significantly induced the decline and/or eradication of 

Her2 expression in these patients (Sharma et al., 2012).  Ning et al. showed that as 

compared to vaccination with DCs pulsed with bulk cancer cells, vaccination of DCs 

pulsed with ALDH+ CSCs isolated from melanoma or squamous tumours augmented 

CSC-specific antibody responses, primed CSC-specific cytotoxic CD8+ T cell responses, 

and ultimately led to reduced lung metastasis.  These findings suggest that vaccines 

specifically targeting CSCs may have true clinical impact.  Meuter et al. showed that γδ T 

cells process antigens in a way distinctly from DCs and generate different peptide 

fragments from the same antigen for cross-presentation (Brandes et al., 2009; Meuter et 

al., 2010), suggesting that the APC function of γδ T cells is non-redundant and may be 

important to broaden the spectrum of adaptive αβ T cell immunity.  Indeed, which types of 

antigens are preferentially presented by γδ T cells or DCs (which utilise different 

proteasomes for antigen processing) requires further investigation.  In addition, the 

detailed mechanism of how γδ T cells process antigens needs to be defined better to 

ultimately inform the design of a γδ T cell-based vaccine that boost anti-tumour αβ T cell 
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responses.  In conclusion, taking advantage of the dual innate-like cytotoxicity and 

antigen-presentation function of γδ T cells and their rapid and substantial expansion ex 

vivo, preparation of a γδ T cell vaccine is feasible and can thus establish potent and 

persistent anti-cancer immunity by in situ killing of cancer cell and induction of αβ T cell 

immunity (Moser and Eberl, 2011; Khan et al., 2014b). 
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