
a 

 

 

MEASURING THE IMPACT OF OCCUPANT BEHAVIOUR ON 

ENERGY USAGE IN EXISTING HOMES 

 

 

 

 

 

 

 

 

 

Shiyu Jiang   

Welsh School of Architecture 

 

Cardiff University 

 

 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO 

CARDIFF UNIVERSITY FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

2015 



b 

 

 



1 

 



2 

 

ACKNOWLEDGEMENTS 

 

I would like to take the opportunity to express my gratitude to all the people who assisted me, 

with one way or another, in completing this work. 

First and foremost, I would like to express my deepest gratitude to my supervisor, Prof Chris 

Tweed, for his kind supervision and guidance throughout the voyage of this research; the 

time spent in discussing various aspects and progress of the work had been most valuable. I 

am also particularly grateful for the trust and support of the BRE Trust that funded this 

research. I am also very thankful to Prof Phil Jones when I initially began to orientate the 

research direction. I would like also to thank Dylan Dixon and Huw Jenkins, who supported 

me by providing this research with the measurement equipment and advices on method that 

were used for the field monitoring. I would also like to say thanks to Katrina Lewis for dealing 

with research matters and communication and with research panel. I would like to send my 

appreciation to all the support staff members at the Welsh School of Architecture for their 

valuable support and help. Special thanks also go to my colleagues and friends at the school 

for their support and encouragement through the years of the work. 

I also extend by gratitude to the related departments and universities who contributed greatly 

in helping me conduct the field study, as well as the staff at Cynon Taf House Association, 

for their assistance during my site visits and measurements. Not forgetting the tenant who 

volunteered in the field study and filling the survey form and energy diary as well. 

I am also deeply grateful for my parents’ encouragement, support, and patience during my 

study, their love through the years of my life. 

 

 

 

 

 



3 

 



4 

 

Abstract 

Thermal, visual, and acoustic comfort and air quality in buildings have a significant effect on 

occupant performance, productivity and satisfaction. Most importantly, earlier research has 

found that maintaining thermal comfort can make heavy demands on building energy usage 

in dwellings. Those trends are leading to even greater increases in energy demand and CO2 

emissions that create a vicious cycle. 

In the real world, human indoor thermal comfort is influenced by complexities of past comfort 

history, technical practices and culture. There is a need to review of existing research and 

achievements. It provides great benefits to identify future research directions. For this 

reason, this research presents the results of an extensive literature review on previous 

studies on different topics of indoor comfort and human behavioural response in the built 

environment. 

This study is focused on monitoring and measuring energy consumption and physical 

environment in dwellings to test various methods that can capture how occupants control 

their indoor built environment at what cost of energy. Eight dwellings have been selected 

and the occupants have participated this study. Their thermal comfort, energy consumption, 

indoor and local outdoor physical conditions have been monitored by mixed methodologies 

at detailed level. Due to the level of disaggregated information, the number of dwellings was 

limited and the data can only represent the participating occupants, but the validation of 

monitoring methodologies has provided valuable overview regarding a range of methods 

instrumentations for measuring various parameters that could be used different levels of 

detailed domestic energy consumption and thermal environment information.  
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1.1 Energy consumption in the domestic sector 

This research takes as its starting point the potential energy savings that could be made in 

dwellings in day-to-day life and attempts to develop a methodology to measure the variation 

in energy usage caused by different occupant behaviour and preferences. Proportionally, 

one of the highest energy saving could be achieved from maintaining thermal comfort at our 

homes during the heating season, which led to one of the objectives of this research: to find 

a means of quantifying energy consumption and thermal comfort related indoor physical 

variables. Appropriate measurement method could help to determine the potential of energy 

savings in domestic building sector, which is commonly difficult to estimate due to its 

complexity. Comparing with commercial buildings, general public may not see domestic 

buildings consume as much as energy, however, the potential benefits could be significant 

once multiplied by the number of homes and the amount of time that people spend at their 

homes. Thus, reducing energy consumption in the domestic sector may have a crucial role 

in reducing carbon emissions, which is a major aspect of climate change mitigation.  

To be more precise regarding the carbon emission, around 30 per cent of the UK’s total CO2 

output is accounted for by domestic energy, a figure that could be reduced by up to 10 per 

cent through simple energy saving steps and tips(Sundramoorthy and Cooper, 2011). In 

addition, persuading households to become more energy efficient is vital if CO2 emissions 

are to be reduced; research shows that behavioural interventions have the potential to 

reduce the energy consumption of a household by 15 per cent(Darby, 2006).  

Climate change is one of the most significant environmental issues facing human beings 

today. Ever-increasing fossil fuel-based energy consumption is contributing to this issue at a 

higher level(Boardman, 2007). Figures from the Department of Energy and Climate Change 

show that the UK building sector consumes 40 per cent of energy and that domestic 

buildings are one of the most important aspects to consider when attempting to reduce 

energy consumption(DECC 2011). 

In the UK, domestic building energy consumption has increased substantially since 1945. In 

the 2011 energy consumption statistical report, the domestic sector accounted for 32 per 

cent of total UK final energy consumption(DECC 2011). Comparing with the statistics at 

1970, 1990 and 2009, respectively, domestic sector accounts for 22 per cent, 26 per cent 

and 28 per cent, a trend of can be clearly seen(DECC 2011).  
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In response to incremental energy consumption, the efficiency of domestic buildings has 

been continuously enhanced and. In past decades, buildings with better thermal properties 

and improved heating systems lowered domestic energy usage in theoretical calculations. 

However, significant differences in energy consumption, such as by space heating, have 

been found in even identical building types through long-term monitoring(Haas 1996; Emery 

and Kippenhan, 2004, Hens et al. 2010). Haas(1996) showed that the actual energy 

consumption of different families could double. Emery and Kippenhan(2004) found that the 

difference between heating consumption varied from 29 per cent to 32 per cent amongst 

households of a similar socio-economic status. It is possible that these differences might be 

caused by users’ patterns of behaviour and setting the heating output level(Hens et al., 

2010). These significant differences show that the potential to greatly reduce energy 

consumption exists when occupants optimise the potential of their home. 

The UK government has introduced regulations to improve the energy efficiency within the 

domestic building sector. The 1965 Building Regulations introduced the first limits on the 

amount of energy lost through certain elements of the fabric of new houses. This was 

expressed as a U-value, giving the amount of heat lost per square metre, for each degree 

Kelvin of temperature difference between inside and outside. The energy policy of the United 

Kingdom, as set out in the 2003 Energy White Paper(DEFRA, 2003), specified directions for 

more energy efficient building construction. Energy efficiency requirements within the 

Building Regulations were hence significantly tightened in 2006. 

With the long term aim of cutting overall emissions by 60 per cent by 2050, and by 80 per 

cent by 2100, the intention of the 2006 changes was to cut energy use in new housing by 20 

per cent compared to similar buildings constructed according to the 2002 standards. The 

changes to the regulations were first brought about by the desire to reduce emissions. In the 

2006 regulations, the U-value was replaced as the primary measure of energy efficiency by 

the Dwelling Carbon Dioxide Emission Rate(DER), this provides an estimate of carbon 

dioxide emissions per m² of floor area. This is calculated using the Government's Standard 

Assessment Procedure for the Energy Rating of Dwellings(SAP 2005). 

In addition to the levels of insulation provided by the structure of the building, the DER also 

considers the airtightness of the building, the efficiency of space and water heating, the 

efficiency of lighting, and any savings derived from solar power or other energy generation 

technologies employed, as well as a range of other factors. This was when it first became 

compulsory to upgrade energy efficiency in existing houses when extensions or certain other 

works are carried out. 
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 The Climate Change Act, 2008, imposes a legal requirement on the UK to reduce 

greenhouse gas emissions by 80 per cent compared with 1990 levels, with a reduction of at 

least 34 per cent by 2020. The government now sets carbon budgets spanning five-year 

periods. The government has stated that all new buildings will eventually be “zero carbon” 

and has also published a timetable to deliver this(Building a Greener Future: Policy 

Statement, CLG 2007 for dwellings, and the 2008 Budget for non-domestic buildings):  

• 2010 – New dwellings and non-domestic buildings reduce emissions by 25 per cent 

compared to a 2006 building. This corresponds to Code 3 in the Code for 

Sustainable Homes(CSH).  

• 2013 – New dwellings and non-domestic buildings reduce emissions by 44 per cent 

compared to a 2006 building. This corresponds to Code 4 in CSH.  

• 2016 – New dwellings to be zero carbon, including unregulated emissions. This 

corresponds to Code 6 in CSH.  

• 2018 – New non-domestic public buildings to be zero carbon. 

• 2019 – All new non-domestic buildings to be zero carbon. 

These regulations have been pushing developments, such as new designs for sustainable 

homes, with substantially improved thermal performance and eco refurbishment throughout 

to extend the life of the house. Theoretically, these sustainable homes should need less 

energy to heat. Interest in and research into energy consumption in buildings are usually 

focused on the systematic evaluation of the building envelope and HVAC system. However, 

improved building thermal performance and heating systems do not always lead to lower 

energy consumption(Hass 1996). Rather, this is generally perceived to be caused by 

occupant behaviour, the local climate and the properties of the building. This research 

investigates the effect of occupant behaviour on energy consumption in domestic buildings, 

especially in new-build and recently eco-refurbished sustainable homes, since these follow 

future trends and are considered to be key to reducing energy consumption in the domestic 

building sector. 

1.2 Background 

1.2.1 Role of sustainable home development in Wales  

In Wales, DEFRA(2006) states that the domestic sector is responsible for 11 per cent of total 

CO2 emissions, which increased by 16 per cent between 1990 and 2004. As one of the 
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measure to take to reduce domestic CO2 emission In Wales, in 2007, the Code for 

Sustainable Homes(CSH) was introduced to build new homes with lower running costs and 

a reduced carbon footprint. A few “Code level” homes with improved thermal efficiency in 

walls and windows and roofs that use the latest materials have since been constructed. The 

fabric is carefully designed to minimise thermal bridging and heat loss and uses a high-

efficiency condensing boiler and low carbon technologies such as solar panels and PV.  

Wales faces more challenges than other parts of the UK in making its housing stock energy 

more efficient. 36 per cent of the domestic residences in Wales was built before 1919(Welsh 

Assembly Government 2006); these are typically difficult to insulate and heat. In 2013, it was 

estimated that 29% of all households in Wales were experiencing fuel poverty, which is 

much higher than rest of the UK(DECC, 2013). This figure has increased substantially over 

the survey taken in 2004 and 2011, raised from 15% to 26%. In addition, a comparatively 

large proportion of Welsh homes are not connected to mains gas, meaning that they rely on 

electricity or bottled oil or gas for space heating. In addition to building “code level” new 

homes, existing homes can be refurbished to make them more energy efficient, at a 

reasonable cost to achieve long-term energy gains rather than demolition. Showcase 

projects have attempted to test if it is possible that energy use can be reduced by 60 per 

cent by such improvements(SDC, 2006).  

The energy consumption for space of both the new and existing British homes is closely 

double the amount of the Nordic countries(Lapillonne and Pollier 2007; Olivier 2001). In 

addition, 25 million out of 25.8 million of the properties standing today will still be around by 

2050, by then the rate of heat loss in these homes has to have dropped by at least half, 

which probably makes existing domestic housing stock the biggest challenge(Boardman, 

2007).  
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1.2.2 Impact of occupant behaviour on energy consumption 

The way in which occupants operate their buildings has profound implications for the quality 

of both the natural and built environments(Kempton, 1987; Humphreys, 1994; Haas, 1996; 

Brager, 2004; Bourgeois, 2005; Haldi, 2008). It is commonly estimated that people in 

economically developed countries spend at least 80 per cent of their time indoors, which 

suggests that much of the energy consumption of the home depends on occupant 

behaviour(Brager, 2004). Due to population increase and falling household size, there could 

be 23 per cent more households in the UK by 2050, and, under a business as usual 

scenario, a 23 per cent increase in energy consumption. Electricity use by lights and 

appliances continues to rise(Boardman, 2007). In an effort to maintain the quality of the 

indoor environment, occupants mechanically condition their home to provide a “comfortable” 

environment. 

Interest and research into occupant behaviour and energy consumption first began in the 

mid-1970s in response to the oil crisis and has recently regained attention due to increasing 

concerns over human impact on the global climate. A number of international studies have 

been conducted to collect data on the behaviour of building users with regards to building 

control systems and appliances, for example how people operate fans, radiators, windows, 

shades and lights to create desirable indoor environmental conditions((Kempton, 1987; 

Humphreys, 1994; Yun and Steemers, 2008; Haldi, 2008).  

1.3 Problem Definition 

The fundamental problem is that often energy consumption fails to fall by the predicted 

amount, following an energy upgrade and it is not entirely clear how much this is because of 

the behaviour of the occupants or what that behaviour is. So, we need to develop new ways 

of monitoring and measuring the impact of occupant behaviour on energy consumption in 

dwellings. 

The main objective of sustainable homes and new energy regulations is to reduce energy 

consumption by domestic buildings. The Affordable Housing Development in Liverpool, 

Urban Splash in inner Salford, Parity Projects in South London and the ZED Factory have all 

shown that new “Code level” homes and refurbished old households have actually reduced 

their energy consumption(CASE, 2008).  However, not all households showed the expected 

energy improvements(CASE, 2008). Further research is therefore needed into the 

relationship between improved sustainable homes and reductions in energy consumption. In 
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other words, further research is needed into the relationship between energy reduction and 

unexpected consumption.  

National planning policy now requires that new developments of five or more dwellings meet 

Level 3 of the Code for Sustainable Homes and reduce carbon emissions by 31 per cent 

above current Building Regulations requirements(Welsh Assembly Government, 2009). The 

diagram below illustrates the steps in the approach to the design of sustainable energy 

management that should be used within new-build projects and refurbishments. 

 

Figure 1.1: Sustainable energy management hierarchy 

The purpose of the energy hierarchy is to provide a clear pathway to detail the design of a 

building with a sustainable energy performance in mind. This hierarchy is being embedded 

into policy and practice on Low and Zero Carbon buildings, Building Regulations, and is part 

of planning policy.  

The energy hierarchy aims to reduce the demand for energy by reducing the quantity of 

energy required for heating, lighting and cooling via fabric efficiency and passive design. The 

second most important aspect involves the use of energy to efficiently provide occupants 

with comfort and safety via appliances and controls, such as high efficiency condensing 

boilers, low-energy lighting and energy-efficient white goods. Furthermore, on-site 

renewable, low and zero carbon technologies will be used to minimise energy consumption. 

Air or ground source heat pumps are most popular in “Code level” homes. Other technology 

includes combined heat and power, biomass boilers, solar water heating and solar 

photovoltaic panels to offset carbon emissions. The remainder of the energy hierarchy 

involves determining what solutions might be used and at what cost.  

Based on this hierarchy, reducing the amount of energy required, consuming it at maximum 

efficiency and then fully utilising the potential of renewable technologies are still the 
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mainstream approaches and are currently more achievable(CASE, 2008). However, 

witnesses from housing associations and occupant communities have pointed out that in 

some of their sustainable home projects net energy consumption does not meet the target 

for energy reduction, whilst some occupants have claimed that the new homes actually need 

more energy to run(Wales Consumer Council, 2007; Pembrokeshire Coast National Park, 

2007).  An interim assessment suggests that at least a third of the carbon savings in the 

residential sector will have to come from day-to-day behavioural changes(Hillman and 

Fawcett 2005), as opposed to the effective use of new technology or fuel-switching. People 

are an important resource to consider, they are the only agents who can invent, adopt, 

ignore, reject, adapt or subvert technologies.  

All those previous investigations lead to a possible hypothesis that occupant behaviour 

probably provides the greatest opportunity to reduce energy demand and to consume 

energy efficiently in home. Occupant behaviour also represents the most immediate 

response link to the built environment, for instance, if occupants feel uncomfortable, they 

take corrective action to meet their comfort expectations. In terms of impact, occupant 

behaviour in relation to achieving indoor comfort is responsible for energy wastage, 

overusing automated comfort systems and direct/indirect carbon emissions and accounts for 

a large proportion of energy use in the targeted improvements. Thus, it is essential to 

investigate the impact of occupant behaviour on energy consumption, as it could be one of 

the key solutions to ensuring that the maximum benefit is derived from constructing new 

buildings and retrofitting sustainable homes.  

1.4 Aim of the study 

The aim of this study is to investigate methods of quantifying impact of occupant behaviour 

on domestic energy consumption, thermal comfort and indoor environmental conditions.  

1.4.1 Objectives of the thesis 

This research is based on the development of different strategies and devices for monitoring 

energy and environmental conditions in dwellings and tested through fieldwork involving the 

monitoring of physical conditions, energy usage and occupant behaviour within three Code 

Level 4 sustainable homes and one eco-refurbished terrace house. By working closely with 

occupants, the resulting analysis addresses uncertain causes of energy consumption 

variation, as these are impacted by different patterns of occupant behaviour and aims to 

understand their day-to-day comfort practices. The specific objectives are: 
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1. To review and summarise current knowledge of the impact of behaviour on energy 

usage in the literature; 

2. To devise empirical studies to investigate people’s behaviour in buildings and the 

resulting impacts on energy consumption and the environment; 

3. To monitor behaviour in actual buildings and to record its impact on energy 

consumption and the environment. 

1.5 Hypotheses and Research Questions 

The importance of the role of domestic buildings in low carbon developments has been 

increasingly acknowledged in recent years; reducing carbon emissions in the domestic 

sector is crucial to achieving the UK’s future targets. This research therefore examines the 

possibility of creating a constructive means of understanding occupant behaviour and its 

implications with regards to domestic energy usage and the indoor environment in South 

Wales during cold winters. Moreover, this research aims to help housing associations and 

energy advisers improve the thermal performance and energy efficiency of both existing 

housing stock and future designs. This should be a time-saving and convenient means of 

promoting sustainable development in Wales. 

In accordance with the background of this study, the following hypotheses were proposed: 

• Occupant behaviour can account for significant variation in energy consumption. 

• Indoor comfort requirements are dynamic. Occupants can perceive the home to be 

adequately comfortable under different physical conditions, such air temperature and 

relative humidity. 

In order to achieve better understanding of these hypotheses, this study also aims to answer 

the following research questions: 

1. What methods may be used to measure occupant behaviour conveniently and 

ethically? 

2. How can we measure the impacts of occupant behaviour on energy consumption? 

3. How much will energy consumption change after people move from a less energy 

efficient home to a more energy efficient home? 
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4. What behaviour has the greatest impact on energy consumption? 

5. What are the differences between the perceived comfort level and actual physical 

parameters? 

1.6 Scope and Limitations of the Research 

This research focuses on the impact of occupant behaviour on indoor environment, including 

thermal comfort and domestic energy reduction, across a selection of sustainable homes in 

south Wales. This allows for a better understanding of the impact of occupant behaviour on 

energy consumption and thermal comfort in domestic buildings. This study therefore 

examines the influence of the impact of behaviour on thermal comfort and energy 

performance.  

Field measurements to investigate energy consumption and an indoor thermal comfort 

survey were conducted at the same time. Due to time constraints, cost and equipment 

limitations, only two pairs of building energy performance field measurements were taken 

simultaneously. This limited the range of different sustainable housing types but provided a 

more in-depth detail from pairs of identical houses. 

The analyses were conducted in three parts, and limitations are listed according to the 

individual investigations as follows:    

• Physical parameter measurement, include space heating adjustment, domestic hot 

water demand, windows and doors operation, electrical appliance and lighting 

demand, occupancy and wearable activity meter. 

• Social science survey, contains questionnaire, self-administrated diary and interview. 

• Integration of data from above two.   

1.7 Structure of the thesis 

In order to answer the research questions and to achieve the research objectives, the 

following tasks were identified and carried out, as shown in Figure 1.2. 
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Figure 1.2: Structure of the thesis 
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store the digital information in memory so that it can verify the user next time he or she 

needs to authenticate their identity. Biometric sensors are mostly deployed for access 

control in buildings. High sensor cost is a major limitation for its widespread uptake. 

Electromagnetic based sensors such as infrared sensors have potential use for occupancy 

sensing. The axiomatic people counter is a good example of this(Axiomatic-technology-

limited). These are normally mounted at exit points to monitor occupant traffic. They use an 

infrared beam, with a transmitter and receiver pair mounted such that an infra-red beam is 

interrupted when occupants pass through the door. The sensor has good accuracy for 

establishing occupant presence but may be unsuitable for counting numbers of occupants, 

since the sensor is unable to detect multiple people crossing the infrared beam. Starting 

price for a beam counter is £276.00 for a basic model, up to £844.80 for one with Ethernet 

connectivity and automated reporting(Axiomatic-technology-limited). It is rarely used in 

building services control applications. However, it does have widespread usage in industries 

for machine operations safety. 

An acoustic sensor such as a microphone can also be deployed for sensing occupants’ 

activities(Fogarty and Hudson, 2006), and is simple and cheap. However, noise from 

sources other than occupants can result in false triggering. Performance limitations 

associated with single occupancy sensing technologies may have prompted manufacturers 

to combine different technologies. Some commercially available products combine PIR and 

sound, or ultrasonic with microwave, thereby reducing the likelihood of false switching. 

Hybrid sensors tend to offer improved sensitivity, accuracy and flexibility, but often come at a 

higher cost. These sensors can be effective in partitioned offices, although their performance 

has not been documented(Maniccia and Wolsey, 1998). 

 

2.7.8 Wearable activity trackers  

A limited number of studies have reported the use of wearable sensors for occupancy 

monitoring in office buildings. Devices could be in the form of a ring(Sokwoo et al., 1998) or 

wristwatch(Lötjönen et al., 2003), or neck tag. The use of these devices is widespread in 

health care monitoring. Korhonen et al.(2003) proposed the use of wearable sensors for 

monitoring recovering hospital patients, while Sungmee and Jayaraman(2003) suggested 

the use of a smart shirt for monitoring health conditions 10(such as heart beat rate, 

temperature etc.) of its users. This shirt may be useful in a heath care setting, but it is clearly 

impractical for use in other places such as public buildings. Radio frequency 
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identification(RFID) based sensors can be effective for indoor occupancy monitoring. For 

example, Li et al.(2012) proposed an occupancy detection system based on RFID tags, 

which reported real-time occupancy numbers and the thermal zones where each occupant 

was located in an office building. A K- nearest neighbour algorithm was used for occupancy 

tracking, and the system produced an average zone detection accuracy of 88% for 

stationary occupants, 62% for moving occupants. Zi-Ning(2008) developed an occupancy 

detection system for lighting control. Occupants’ localization was achieved using a support 

vector machine(SVM) algorithm that was aided by a round-robin rule based on some 

numerical logics. Tracking accuracy reached 93% for occupants’ that wore the RFID tags. 

However, it was not clear how the system would address issues of latency and scalability in 

large non-domestic buildings with large occupancy profiles. Gillott et al.(2009) and Gillott et 

al.(2010) determined occupancy patterns in a residential building using ultra-wideband RF-

based tags worn by occupants, the system tracked moving occupants to within an accuracy 

of 15cm in three dimensions. One advantage of these technologies is that they provide 

occupancy information that can be based on zones that are either physically or virtually 

partitioned, making them suitable for use in open-plan spaces with multiple thermal zones(Li 

et al., 2012). However, willingness and ability of occupants to wear these devices may be a 

critical issue for their uptake.  

Past studies have also investigated the use of CO2-based occupancy detection systems in 

residential buildings, as opposed to a mixed-use building. For example, Cleveland and 

Schuh(2010) developed an occupancy monitoring system for automation of HVAC 

thermostats in residential buildings using CO2 and motion sensors, and a simple control 

algorithm based on the rate of change of CO2 levels. Occupancy detection was best inferred 

from CO2 levels in the house. CO2 levels of 525ppm or a change in CO2 concentration 

reaching 50ppm or above for two straight minutes, indicated occupancy, while concentration 

of 300ppm suggested vacancy. Results were not validated with a field test, and it remains 

unclear how the system would perform for occupancy number estimation. CO2-based 

systems may be susceptible to common operational limitations, since they generally have 

slow response in detecting incoming people(Wang and Jin, 1998), and also CO2 

concentration levels may be affected by factors other than occupancy such as passive 

ventilation(e.g. open windows, air infiltration etc.). These sensors may suffer significant drift 

over time(say over a year) which may limit their functionality(Shrestha and Maxwell, 2010). 

Besides, there is a high level uncertainty between number of persons and CO2 

concentration levels(Chenda and Barooah, 2010). Such limitations make accurate and 

robust prediction of real-time occupancy numbers using CO2-based systems challenging. 
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2.8 Knowledge gaps 

Regarding the method of and instrumentation of measurement of occupant behaviour related 

research, knowledge gaps have been identified. Some of the more significant are identified 

below:  

• There is a lack of detailed description and specification of how the relevant 

parameters were measured and what could be improved in terms of data collection 

method.  

• The advantage and disadvantage of utilising instrument and methods in field studies 

are relative less researched 

• Questionnaire survey, interview, visit to the building and observation are the most 

commonly used methods. However, in many cases, these methods can only 

represent glimpses of energy related behaviours, which can be difficult to interpret 

based on snapshots of corresponding parameters. Retrospective reporting of comfort 

and behaviour can be inaccurate and may give a false picture of what people felt at 

the time and how they behaved(Raina et al., 2009; Short et al., 2009). 

• There are relatively fewer high quality research investigations in domestic sectors. 

Commercial and hospitality sectors are particularly overlooked given their significant 

carbon emissions.  

• High resolution metering researches usually focused more on the technical side, 

such as the development of monitoring hardware, but less on the behavioural data 

analysis.  

• Research into ethically accepted monitoring and non-intrusive format of long-term 

data collection methods are needed. The difficulties of attaining ethical approval or 

permission may partially explain the popularity of using one-off data collection 

method such of questionnaire, spot measurement where multiple samples can better 

understand the cause and consequences of energy related behaviour.     

• In most studies, only several main instrumentation of measurement methods were 

used, few studies looked cross-referencing parameters. In dwellings, the interaction 

among parameter can be intense, for instance, thermostat set-point temperature can 
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be directly affect by the duration and frequency of window opening, together indoor 

temperature, humidity and smoking habit.  

To fill the gaps, research into how to robustly and ethically measure energy behaviours 

across a broad range of parameters is needed. This would underpin a segmentation of the 

domestic sector to be used energy relative behaviour analysis.  

 

2.9 Summary 

In previous occupant behaviour studies, the following methods and instrumentations have 

been commonly used to measure the parameters of energy related behaviours.  

Table 2.17 below summarises the parameters and behaviours that this study focuses in 

dwellings and occupants with their potential advantages and disadvantages.  Some their 

advantages and disadvantages are deduced from manufacturers’ data sheet and review 

since they were not described detailed in existing studies. The next chapter, methodology, 

will choose the series of instrumentation and methods that based on their availability when 

conducting field data collection in order to address the knowledge gaps mentioned above at 

best attempt.  
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Table 2.17 Summary of parameter measuring method and instrumentation: advantages and potential disadvantages. 
Behaviour Parameters Data collection 

instrumentation/method  
Potential Advantages Potential disadvantages 

Space heating Gas consumption Main gas meter readings Relatively easy to access 
without occupants being in 
Less intrusive  

Only provide overview of total gas usage 
Requires research to visit 

Sub gas meter with pulse counter Accurately record the gas 
consumption for gas boiler only, 
excludes gas cooking 

Does not separate space heating from 
domestic hot water 

Thermostat control 
Individual radiator 
control 

Video, Audio recorder 
 

 Video footage and audio recording take 
time to transcribe and can be perceived to 
be very intrusive to privacy 

Domestic Hot water Water volume In-line flow meter Capable of provide accurate hot 
water flow through the selected 
pipe at low cost 

Require plumber to install and dismantle. 
May cause pressure drop 

Ultrasonic flow meter Easy clamp-on installation, non-
intrusive 

Expensive 

Hot water demand event Temperature sensor on pipe 
surface 

Low cost and easy to install Not able to differ active hot water flow from 
dormant hot water in pipe 

Window 
operation/ventilation 

Status of window Contact switch Low cost and relative easy to 
install 

Need to test with each window to prevent 
false contact since magnetic switch only 
tells open or close two status  

Air flow Tracer gas decay system Accurately measure the air flow 
rate for all the rooms as a whole.  

Intrusive as tracer gas need to be injected 
into dwelling and measure its concentration 
level and decay rate. Not suitable for long 
term monitoring 

CO2 concentration sensor  Expensive and the position of CO2 sensor 
does affect its accuracy and responding 
speed. 

Electricity 
appliance/lighting 

Appliance electricity 
usage 

Appliance survey Easy to conduct  Usually one off survey and the use of 
appliance(e.g. duration, frequency of use) is 
relied on occupants’ memory. 

Device level plug sensor 
 

Measure both current and 
voltage for highly accurate 
electricity consumption 

Depends on household, the number of plug 
sensor can be large therefore increase the 
total cost  

Total electrcity usage Current Transducer(clamp-on) Easy to install and relatively Error rate can be upto 15% since it does 



90 

 

Behaviour Parameters Data collection 
instrumentation/method  

Potential Advantages Potential disadvantages 

cheaper, mostly wireless  not measure the fluctuation of voltage 
Take meter readings Relative easy to collect 

readings, most of the time can 
be done from outside of house 

Metering readings only tell the overall 
consumption but no details of daily 
electricity usage profile. 

Certain 
circuit/room/lighting  

In-line sub electricity meter Relatively low cost and highly 
accurate. 

Need electrician to install and dismantle. 
Can be too intrusive to obtain permission 

Physical environment Air temperature Air temperature sensor 
 

Low cost and easy to install 
 

The location of sensor in a room does 
matter the reading in dwellings 

Relative humidity Relative humidity sensor 
Air flow Handheld air flow meter Comparing to tracer gas it gives 

quick air flow rate and easy to 
take measurement 

Spot measurement only, location affects 
accuracy 

Illuminance Illuminance meter Quick and easy to measure 
illuminance level 

Spot measurement only, location affects 
accuracy 

Occupant All biological, 
psychological social 
parameters 

Questionnaire  
Interview 

Easy to conduct Consumes more time and  

Activity level Activity tracker Provide highly accurate 
information about activity level 

May be considered intrusive 

Presence and 
occupancy 

Occupancy sensor Add the layer of occupancy data 
about room 

Can be considered intrusive 
Relatively difficult to install without causing 
damage(to the ceiling) 

All behaviour without 
direct measurable 
parameter 

Observation Can quantify behaviour to an 
extent 

Intrusive, especially observation is not 
really suitable for dwellings or long-term. 
Being watched by others may also affect 
how occupant would usually interact with 
dwellings 

Self-reported diary Provide multiply samples for 
behaviours 

Short term or will be considered annoying 

Comparing with identical buildings Correlate the difference of 
energy consumption with 
behavioural difference may 
reveal the pattern and linkage 

Identical building may not available nearby 
therefore the local climatic condition differs 
which may the comparison difficult 
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Chapter 3: Research design, monitoring methodologies and 
instrumentation 
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3.1 Introduction 

The aim of this chapter is to develop a suitable research design to address the 

questions and gaps identified in Chapter 2. 

This study proposes to test the methods and instrumentations that allows 

researchers to measure parameters that can be used to quantify energy related 

occupant behaviours in dwellings. The literature review and previous studies indicate 

that occupant behaviour and building energy consumption are tightly related and can 

be sophistically interlinked,  

The goal is to test a range of methods for measurement, in space heating, domestic 

hot water, window operation, electric appliance, personal characteristics and physical 

indoor environment. The instrumentation and method have been selected based on 

the following criteria,  

• Invasiveness- include disturbance to occupant in every possible way, such as 

visual, noise, disruption to normal functions of building component and 

appliance.  

• Accuracy- error comes with the method or naturally built with measuring 

instrument 

• Cost- the number of sensors and logger can quickly add up to the 

expenditure which may restrict the scale of monitoring. 

• Ease of installation, uninstallation and data collection – the difficulty of 

deploying, removing monitoring system and collecting data can affect not only 

the study in terms of physical work and logistics but also 

• Reliability for long-term monitoring—some methods and instrument may be 

more suitable for relatively short period of, such as memory capacity and 

power consumption.  

Therefore, this chapter presents the instrumentation and measuring methods that 

have been selected for this study. Due to their availability and cost restriction, only 

those could be accessed and had actually been tested or installed are presented 

here. 
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3.2 Research design and methodology 

3.2.1 Measure Space heating related parameters 

The selected parameters for space heating are gas consumption, thermostat 

adjustment, individual radiator, boiler and its control signals.   

In house with gas boiler powered central space heating system, the status of gas 

consumption is directly linked with boiler’s activity that as a consequence of occupant 

space heating related behaviour. Available options are either measuring the main 

gas meter or installing additional gas sub-meter for the boiler. For main gas meter, 

the options are optical reader and infrared sensor that can almost non-intrusively 

measure movement of the dial without directly interfering with its enclosure which is 

not allowed since main gas meter actually belonging to utility company. Both sensors 

measures movement of an object at close distance which complies with regulation.  

On the other hand, gas sub-meter can provide only boiler gas consumption data 

which is separated from gas cooking. Such disaggregation can assist to focus on gas 

boiler related gas usage. 

Thermostat adjustment has been only measured by qualitatively, such like 

questionnaire, interview and observation which are mainly based on the memory of 

the participant or cannot be conducted in domestic environment due to its 

invasiveness. Therefore, it would be more informative to test a new method of the 

measure setting temperature of thermostat. An exploratory method has been 

proposed to monitor value of resistance component of thermostat dial. 

Similarly, individual radiator control measurement relies mostly on social science 

research methods. This study proposed to measure the status of individual radiator, 

at various locations across a range of radiators. The status and radiator can assist to 

better understanding of selected room in a dwelling if occupant operate each radiator 

differently.  

Overall activity of boiler has yet been monitored in the previous literature. An 

exploratory method that have been developed to measure the boiler activity centrally. 

It is an alternative method of observing space heating activity indirectly. A pixel 

changing recognition software detects display panel icon appearance that represents 

various function which can be converted into each function’s operation period.
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Table 3.1: Methods of instrumentation selected for space heating related parameters 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

Gas sub-meter  High, as it adds extra 
meter to gas pipe work 

Up to 0.001m3 per 
pulse  

£150 plus £200 installation 
and removal fee 

Requires professionals 
to install and remove, 
data collection is 
straight forward 

Gas sub-meter is 
identical to the main 
meter, theoretically it 
performs as same a 
main meter  

Optical reflector 
sensor/infrared 
sensor 

Medium, a mini mast has 
to be set up and pointed 
to gas meter 

Each round of rotation 
0.001m3 is counted as 
1 pulse 

£2.5 to £5 plus customised 
pulse converting circuit 
board £ 20 
 

Does not require 
specialist to install but it 
is possible that gas 
meter cupboard does 
not have enough space 

The exact alignment of 
sensor and dial of gas 
meter must be 
maintained precisely all 
the time  

Resistance 
logger 

Low, the logger can be 
wired internally inside 
existing thermostat 
enclosure 

Up to 0.5 Ω.  £55 plus customised 
wirings 

Can be installed and 
removed easily  

The resolution depends 
on the actual resistive 
range of resistor 

Temperature 
sensor 

Low, sensors can be 
attached to radiator and 
take measurement 

Up to 0.01°C £40 to £80   Can be installed and 
removed easily 

It serves well to archive 
the goal  which is to 
capture sharp rise or 
decline of temperature 

Infrared camera 
and pixel 
recognition 
software 
(Tincam) 

Medium, as direct image 
is taken by camera 

Software defined pixel 
change recognition 

£20 for camera and £5  Can be installed and 
removed easily 

Depends on ambient 
brightness, works better 
in total darkness 
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3.2.2 Window and door operation 

Window and door operation was selected for this study because of its importance 

and implication on heat loss during winter. Mixed methods of observation and sensor 

based window status monitoring have been used in previous studies. In this study, 

the actual method that was permitted to install was contact switches, prior to which, 

several new sensors and settings have been trialled in controlled environment for 

accuracy purpose. Beside the data of window and door status itself, the data will be 

compared with purposely collected CO2 concentration and room temperature.  

The exact angle of windows and door have yet not been studied in the review 

literature. Therefore, experiments have been conducted with three customised 

methods, namely, rotatory resistive sensor, flex sensor and multi-reed switch board. 

The studied method of window and door operation related parameter are listed in 

table 3.2.  

Table 3.2: Methods of instrumentation selected for windows and door related 
parameters 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of 
use 

Reliability 

Contact 
switch and 
event logger 

Low, the sensors 
and wirings can 
be installed 
externally 

Every time a 
window or 
door being 
opened or 
closed  

£5 per 
sensor, £45 
for event 
logger 

Easy to 
install with 
double 
sided sticky 
pad and 
remove and 
dissolver 

Standing 
alone and 
simplicity 
make the 
setting up 
robust 
 

Rotary 
resistive 
sensor and 
Flex-sensor 
 

Medium, the 
sensor has to 
installed either 
on frame or the   

Up to 0.5 Ω. £9-10 per 
sensor and 
£55 for 
resistance 
logger 

Easy to 
install and 
remove 

multi-reed 
switch board 

High, the board 
needs to be 
installed at the 
hinge of door 
and takes space 

Varied by 
number of 
sensors and 
size of the 
board 

£5 for 10 
sensors 
plus £45 for 
event logger 

Relatively 
harder to 
install and 
maintain 
position 
without 
adding 
screws  

Relies on 
how well 
the sensor 
board is 
kept  
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3.2.3 Domestic hot water 

Direct and indirect methods have been selected for this sector, which are inline flow 

and temperature meter and pipe surface temperature,  

The goal of monitoring domestic hot water related parameters is to record the event 

of hot water demand which is one of highest energy consumption source and can 

vary substantially from people to people. 

Due to the invasiveness of installing in low flow meter and high cost of ultrasonic flow 

meter, the permission was not granted in any participated dwellings. To minimise the 

disturbance, recording surface temperature of inlet and return hot water pipe has 

been employed as an alternative option. In field study, the accuracy will be tested 

with regards to the temperature difference and interpretation of hot water demand 

event. 

Table 3.3: Methods of instrumentation selected for domestic hot water related 
parameters 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

Inline flow 
meter 

High, adding 
flow meter 
may lower the 
water flow 
speed 

Up to 
0.001m3 

£150 plus 
£100 
installation 
fee 

Requires 
plumber to 
install 

Act as same 
as common 
water flow 
meter 

Temperature 
sensor 

Low, sensors 
can be 
attached to 
radiator and 
take 
measurement 

Up to 
0.01°C 

£40 to £80   Can be 
installed and 
removed 
easily 

performs 
well at 
capturing 
rise or drop 
of 
temperature 

Non-intrusive 
Ultrasonic flow 
meter 

Low, clamps 
on pipe 

0.001m3 £1200-1600 Can be 
installed by 
researcher 

1% to 3% 
error rate 
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3.2.4 Electric appliance and lighting 

The selected instrument for investigation of electric appliances and lighting related 

parameters are current transducer and individual appliance socket sensor, in order to 

test their accuracy and applicability in dwelling setting. Both method not no intrusive 

and do not require additional sensor to be wired to existing circuit. The goal to 

disaggregate electricity usage within dwelling to sub-circuit level details and compare 

the difference between current transducer based system that with and without 

voltage input. 

 

Table 3.4: Methods of instrumentation selected for domestic hot water related 
parameters 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

Owl energy 
monitor 
(without 
voltage input) 

High, adding 
flow meter 
may lower the 
water flow 
speed 

Error range 
not given, up 
to every 
minute’s 
usage 

£20 per 
sub-circuit 
plus a 
computer 
on-site 
(£120-220)  

Can be 
installed by 
researcher,  

Designed for 
long term 
monitoring, 
requires  

Ecofront (with 
voltage input) 

Medium, need 
to wire voltage 
input from live 
cable 

Error range 
not given, 5 
minute’s 
accumulative 
data  

£550 that 
includes 7 
sub-circuit 
sensors 

Requires 
electrician to 
install 

Designed for 
long term 
monitoring 

Plugwise 
appliance 
socket sensor 

 +1% error 
rate, hourly 
accumulative 
data 

£350 for 9 
sensors 
pack 

Can be 
installed by 
researcher 

Designed for 
long term 
monitoring 
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3.2.5 Physical parameters  

A range of physical parameter measuring sensors have been select to monitor indoor 

environment while others are being recorded. The purpose is to test ease of use and 

whether different locations in the same room can affect measurement, especially the 

CO2 concentration level. Selected monitoring instrumentations are listed in table 3.5 

below. The selection was mainly restricted by the cost therefore only the available 

equipment in the department.  

Table 3.5: Methods of instrumentation selected for physical parameters 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

Arrex 
monitoring 
system, 
temperature 
humidity and 
CO2  

Low, discrete 
appearance, 
and battery 
powered  

+0.5°C 
+4% RH 
+4% ppm 
 
 

£35 per 
sensor 

Can be 
installed by 
researcher, 
wireless data 
acquisition  

Designed for 
long term 
wireless 
monitoring, 
requires 
computer on 
site 

Tinytag Ultra 2 Low, discrete 
appearance, 
and battery 
powered 

+0.35°C 
+3% RH 

£99 per 
sensor 

Can be 
installed by 
researcher, 
measurement 
must be 
manually 
downloaded 

Stand alone 
sensor and 
logger, 
32000 
readings  

 

3.2.6 Occupant parameters 

In preview studies, social science methods such like questionnaire, interview and 

self-report diary have been used as common measuring tools regarding occupant 

personal parameter. In this study, all these three tools will be tested in terms of ease 

of use. Self-reported diary is considered to be not accurate in measuring occupant 

satisfaction towards certain experience that based on memory. This study will 

compare the self-reported subjective thermal satisfaction and physical measurement 

calculated Predicted Mean Vote, in order to see how they differ from each other in 

domestic environment. 

In addition, presence sensor and activity tracker were proposed to add to the 

investigation. The aim of presence sensor is to test various location of sensor 

installation and its sensitivity toward motion detection. Activity tracker has rarely been 
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used especially in thermal comfort related study. The measure activity tracker data 

will help to verify self-reported activeness data. 

Table 3.6: Methods of instrumentation selected for physical parameters 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

Questionnaire Low - 
Medium 

Relies on 
participants’ 
memory 
 

Main the time 
to conduct 
questionnaire 
survey 

Most 
commonly 
used tool 

Very much 
depends on 
participants 

Self-reported 
diary of past 
30 minutes 

High, 
requires very 
good 
cooperation 
from 
participants 

Intensive 
report is 
better than 
recalling 
distant 
memory 

Time of 
occupant and 
perhaps cash 
incentives 

Entirely 
depends on 
permission 
granted by 
participants 

Depends on 
participants 

Interview High, need 
to arrange 
appointment 
with 
participants 

Face to 
face 
interview 
can discuss 
questions in 
depth 

Time of 
occupant and 
perhaps cash 
incentives 

Requires good 
interview and 
communication 
skill 

Depends on 
participants 

PIR sensor Medium, 
occupant 
may 
perceive it as 
breaching 
privacy 

Varies by 
distance 

£5 for PIR 
sensor plus 
£22 for 
Arduino 
Micro 
controller 
board 

Can be 
installed by 
researcher, 
measurement 
must be 
manually 
downloaded 

To be tested 
in domestic 
environment 

 

3.3 Monitoring space heating 

This section presents the methods and instrumentation for measuring gas 

consumption, thermostat (central) control and individual radiator.   

3.3.1 Gas consumption for individual purpose 

As shown in Figure 3.1, some gas may be used for cooking purposes; the remainder 

is for boilers and fireplaces (if applicable) that heat space and domestic hot water. It 

is preferable to separate gas consumption for heating from that used for producing 

hot water, since these two are the greatest sources of gas consumption.  



103 

 

 

Figure 3.1: commonly domestic gas distribution 

Gas powered space heating can be monitored by adding a dedicated sub gas meter 

to the boiler gas inlet pipe which provides information about total gas usage and high 

resolution boiler gas usage also indicates the boiler related behaviours, namely, 

space heating and hot water.  A gas sub-meter provides the best measurement to 

the gas consumption with a pulse data logger (figure 3.2).  

 

Figure 3.2: G4 gas sub-meter with pulse output and pulse counter logger 

A Metrix G4 diaphragm gas meter was choosen for this study based on its similarity 

to existing main gas meter at designated dwelling. The main meter has a max flow 

rate of 6m3 per hour. It was advised by plumber that any additional gas sub-meter 
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must has maximum flow rate equal or higher that the main gas meter, otherwise the 

appliance performance might by affected due to slowness on its inlet gas flow. 

Considered this reason, Metrix G4 gas sub-meter was choose to avoid potential 

performance issue. 

A gas sub-meter can only be installed beyond the main gas meter due to its 

ownership and installation of sub gas meter usually involves plumbing work and 

safety concerns. It is one of the intrusive way of measuring gas consumption. In 

some of the study houses, the gas meter and pipework have very restricted access 

and occupants can be reluctant to agree to have the installation of sub meter. 

A non-intrusive method includes an optical sensor to read the physical moment of the 

dial of existing gas meter without physically altering it as shown in figure 3.3, e.g. 

     

 

Figure 3.3: existing gas meter with dial(left) and reflective digit(right) 

Both types of meters shown above can be monitoring by optical sensor, especially 

the one with reflective digit which is implemented optically rather than mechanically 

because the zero on the least significant digit is a shiny metallic oval rather than a 

painted white number. In this study, Optek OPB704 (figure 3.4) optical sensor was 

used, it has an infrared LED and a photo-transistor which both point at a spot some 4 

mm at the front and can be powered by 5v battery with 5mA input for good response 
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rate.  The phototransistor starts conducting current when hit by infrared light reflected 

of whatever target is in front of the assembly, which is able to capture every time the 

dial turns one circle or reflective digit passes from 9 to 0 (0.001m3
 of gas equivalent) 

and generate 1 readable pulse for data logger. 

  

 

Figure 3.4: Gas meter mounted with infrared reader, optical sensor and pulse counter 

 

3.3.2 Monitoring thermostat adjustments 

Thermostat adjustment has a crucial influence on occupant behaviour, regarding the 

space heating energy consumption and indoor thermal conditions. As mentioned in 

the literature review, thermal comfort requirements, such as the urgent need for 

warmth are usually reflected by thermostat control. Depending on how well 

occupants understand their thermostat, actual energy consumption can vary greatly 

according to different patterns associated with its adjustment. Thermostat setting has 

a direct effect on indoor air temperature; a higher setting means the heating system 

needs to work harder and longer to reach the set temperature.  
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The most common problem is the gap or lag time between occupant thermal comfort 

demand and the actual thermal condition. If a thermostat has been set too high for 

too long, the house can become overheated, but not necessarily uncomfortable, 

especially initially when quick warmth is required. The time the heating system takes 

to heat up a house to the desired level also varies according to different start 

conditions; for example, a colder/unoccupied house tends to take longer to heat than 

a regularly heated house. How quickly a house meets the desired temperature also 

hinges on the occupant’s previous thermal experience; people who frequently 

experience colder conditions would prefer to be heated sooner rather than later. 

These variables all lead to different thermostat adjustment patterns and associated 

energy consumption results, which explains the importance of monitoring thermostat 

adjustment behaviour. 

 

Figure 3.5: Thermostat dial type 

A common dial-type room thermostat can be monitored by recording its dial position. 

Turning the dial changes its internal resistance value, as shown in Figure 3.6.  
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Figure 3.6: Thermostat internal circuit, resistor 

The next series of picture (figure 3.7) shows how the resistance value changes. The 

Thermostat in this test has a range of 12˚C to 30˚C setting temperature and the 

resistance value varies from 8.97KΩ (at 25˚C) to 11.89KΩ (at 12˚C). This change 

represents the physical position of temperature.   

 

 Figure 3.7: Thermostat internal resistant value variation 

Thermostat setting behaviour can be effectively monitored by Zeta-tec logger with 

0.76Ω resolution and range of 0Ω to 50kΩ (Figure 3.8). 

 

 

Adjust dial 

resistor 
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Figure 3.8: Resistance logger (source: http://www.zeta-tec.co.uk/resistance-data-
loggers.htm)  

 

3.3.3 Individual radiator and boiler 

For a heating system with a boiler and radiators, there will usually be only one room 

thermostat to control the whole house. However, different temperatures can be 

achieved in each individual room by installing thermostatic radiator valves (TRVs) on 

the individual radiators (Fgiure4.9).  

 

Figure 3.9: Radiator TRV control 
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An individual radiator’s temperature can be monitored by attaching a temperature 

sensor onto its surface Figure 3.10.  

 

Figure 3.10: Radiator surface temperature monitoring as viewed from above. 

The best position of temperature logger really depends on the type of the radiator. 

The general rule is to place logger as close as possible to the inner circulating pipe 

where hot water passes when boiler runs. This study will measure temperature of 

various location of the same radiator and compare their difference.  

3.3.4 Boiler activity 

Since 2002, Building Regulations require a certain level of control for new boilers or 

hot water cylinders. The control panel switches the boiler on/off with different on/off 

times for the hot water and space heating. It also sets a maximum temperature for 

the heat output of the system. The occupant adjusts the control panel much less 

frequently than the thermostat. The setting of the control panel (figure 3.11) reflects 

the occupant’s preferences on space heating and hot water usage at home. 

 

Figure 3.11: Boiler control programmer 
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The method this study uses regarding the control panel setting is a pixel sensitive 

infrared camera pointed directly to the display panel (figure 3.12), in case of boiler 

being located in a dark space The camera will take still images if selected area 

shows any change in the pixels, such as the output temperature setting or a hand (of 

the occupant) changing the timer. 

 

Figure 3.12: Control panel change monitoring by motion camera 

Several personal computers were used to set and download the data recorded from 

the data loggers, and Microsoft Excel was used to analyse and demonstrate the 

graphical charts of the obtained results. 

 

Figure 3.13: Computer server on site with wireless receivers. 
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An exploratory method was proposed which attempts to attach a temperature sensor 

on to boiler enclosure. This method is based on the fact that a gas condensing boiler 

generate heats when space heating and domestic hot water function is being 

demanded, therefore, capturing its enclosure surface temperature can be used as 

less intrusive method to record boiler activity when direct monitoring methods are not 

permitted such as gas sub-meter. The same method was also planned for AHSP 

boiler. Details will be described in next chapter where participated dwellings are 

presented.   

3.4 Window and door operation 

3.4.1 Determining open and closed status 

Magnet based contact switch has been used to monitor the window and door 

open/close operation. As shown in the figure 3.14 and 3.15, the contact switch and 

logger record exactly when the state of a window or door changes. This method is 

more accurate and less labour intensive comparing to observation. 

  

Figure 3.14: contact switch on a window  
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Figure 3.15: contact switch and event logger on a door 

3.4.2 Angle and position 

Limited methods for window and door status monitoring, such as observation, self-

reported diary and contact switches are still the most commonly used methods. 

Observation takes a lot of time, and it is impossible for an observer to record all the 

window events or multiple windows and doors. A self-reported diary requires that 

participants write down their own window controlling behaviour, which involves 

constantly reminding people of their use, to the extent of altering the behaviour itself. 

A diary is not ideal method to reveal how people naturally interact and respond to the 

built environment. A contract switch consists of a tiny magnetic switch and magnets 

that attached to a window and a window frame respectively. When the magnet part 

moves closer to the switch, it will cause a closed circuit and vice versa. The major 

issue with a contact switch is that it only gives two readings: ‘open’ and ‘closed’, or to 

be more precise; those would be ‘properly closed’ or ‘not properly closed’. When a 

window is tilted or opened wide, or not closed properly, a contact switch will only 

classify the window as ‘open’. This limits accuracy when the researcher seeks to take 

account of the impact of the window position on indoor conditions. 
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Multiple contact switch 

In order to improve the accuracy of door position monitoring, a multiple contact 

switchboard has been developed, as shown in figure 3.16. 

 

Figure 3.16: Internal door angle sensor monitoring system 

 

Figure 3.17: Sensor board layout 
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The principle means dividing the door-opening range into segments and monitoring 

their status.  

A contact switch, as shown in figure 17 represents each segment. From 0˚ to 90˚, 

every 11.25˚ has its own switch, which can be triggered by a magnet attached to the 

door. The chosen contact switch has a 0.15 ms reacting time. The logger we tested 

is a simple 4-channel event logger and these channels have up to 16 binary 

combinations. We selected 9 combinations, as shown in Table 3.1.  

Table 3.1: Internal door angle sensor range 

Angle Ch 1 Ch 2 Ch 3 Ch 4 
0˚ 0 0 0 0 
11.25˚ 1 0 0 0 
22.5˚ 0 1 0 0 
33.75˚ 0 0 1 0 
45˚ 0 0 0 1 
56.25˚ 1 0 0 1 
67.5˚ 0 0 1 1 
78.75˚ 0 1 0 1 
90˚ 1 0 1 0 

 

Resistance based sensor  

Two resistance base sensors have been selected to develop angle measurement, 

namely rotary resistor and flex sensor, as shown in figure 3.18 and 3.19. Their 

resistance value vary according to the physical position of operable part when a 

door’s angle changes. Combining with battery powered resistance logger, these two 

customised sensor settings are able to monitor the angle changes, either a window 

or a door. 
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Figure 3.18: Rotary resistor angle measurement on a door 

 

 

Figure 3.19: Flex sensor angle measurement on a door 
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3.5 Domestic hot water 

3.5.1 Water volume and temperature 

Domestic hot water demand behaviour, such as turning on a hot water tap, taking a 

shower or bath, or starting a warm washing machine cycle will directly cause hot flow 

change in pipes.  

Another monitoring method involves using the heat meter. A heat meter works as 

shown in (figure 3.20 and 3.21). It contains two parts: a water flow meter and a pair 

of temperature sensors. The flow meter measures how much hot water passes 

through and the temperature sensors measure the inlet and outlet water 

temperatures. By multiplying the volume and temperature difference, a heater can 

calculate the heat loss and generate pulse signals representing energy, commonly 

1000 pulses for 1 kWh. The pulse output will be recorded by a TinyTag Plus count 

logger (figure 3.22).  

 

Figure 3.20: Sontex Heat flow meter  
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Figure 3.21: Heat flow meter (source from Haina Electric Automation Systems 
http://hainaelectric.en..com/) 

 

Figure 3.22: Water flow installed in hot water supply pipe. 
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Figure 3.23: Clamp on non-intrusive ultrasonic water flow meter (source: Supplies 
ultrasonic flowmeters. http://www.ultrasonic-flow.com) 

3.5.2 Hot water demand event detection 

Installing a flowing meter may not be possible for all pipes. The surface temperature 

of a hot water pipe can also reflect the hot water demand behaviour. In order to 

monitoring this, a copper based surface temperature sensor (figure 3.24) can be 

mounted on the pipe. 

 

Figure 3.24: Copper based temperature sensor 

The Eltek Squirrel Data logger (Figure 3.25) is a compact, portable instrument with 

many applications. The data is recorded using a transducer to convert the data into 

electrical outputs. It accepts a wide range of input sensors, including temperature, 

humidity, RH, pulse, frequency and digital inputs, all of which can be configured and 

displayed locally, using the Squirrel panel controls; it can also be displayed remotely 

using Eltek's “Darca" software, which is designed to run on Windows equipped 

systems. The logging rate can be set from 1 second to daily basics. Moreover, the 
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logger has numerous input channels enabling up to 2 million readings, facilitating 

connection with multiple measuring sources at the same time. In the field study, one 

Eltek logger was placed at the top of a building to record horizontal solar radiation 

and two were used indoors to record surface temperatures. 

 

Figure 3.25: Eltek Squirrel Logger. Source: author. 

 

3.6 Electric appliance and lighting 

3.6.1 Current transducer with and without voltage input 

The majority of domestic appliances are powered by electricity. In some homes, 

space heating and domestic hot water also rely on electricity. A common electrical 

distribution in dwellings is schematised in Fig. 3.26.  

  

 

Figure 3.26: Electricity distribution in a typical home consumer unit 
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The main meter is usually located at the front of a home, and electricity is further split 

into several fused sub circuits according to their possible maximum power load. 

Common sub circuits are lighting, sockets, and sockets for individual high power 

appliances. Actual situations may vary, due to the increasing number of high power 

rate appliances in use, such as tumble dryers or immersion water heaters. It is also 

necessary to consider having a separate circuit for the kitchen socket, because in 

that setting, a single high power appliance like an electric fryer that may be in use.  

Common individual circuits can then be monitored by a current transducer(figure 

3.27), a non-intrusive, clip-on sensor. The current transducer generates a current or 

voltage proportional to the current passing through the centre of the transducer. 

  

Figure 3.27: Current transducer (CT) 

Using figure 3.26 as an example, there are several points that can be used to 

monitor electricity by clamping CTs onto:  

• Point S represents total electricity consumption,  

• Points A, B, C and D measure individual usage by the sub circuits.  
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Figure 3.28: Owl Energy electricity monitoring system   

Figure 3.29 shows the example of installation of Owl electricity meter(figure 3.28) 

being installed to main meter and sub-circuits. 

  

Figure 3.29: Owl energy meter transmitter, receiver and computer set up 

Individual circuits have also been monitored in conjunction with high power rate 

appliances, in order to disaggregate all the circuits from total consumption. Figure 

3.30 illustrates how electricity enters a home and is then distributed to many circuits 

controlled by sub-switches.  
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Figure 3.30: domestic electricity meter and consumer unit 

Usually, all higher power rate appliances, such as electric cookers, sockets in a room 

and similar have their own circuits and sub-switches. This enables the possibility of 

installing multiple current transducers and then monitoring the electricity usage 

separately. Figure 3.0 shows six current transducers being installed inside of a 

consumer unit onto sub circuits. 

 

Figure 3.31:  Consumer unit and sub-circuit sensors installation 

Most of the clamp-on current transducers based non-intrusive electricity monitoring 

system use an estimated voltage to multiply with the measured current therefore 

calculate energy consumption. The actual voltage may vary from time of day or 

geographic distance from nearest transformer of national grid. Having voltage 

measured together with current would definitely increase the accuracy of electricity 

consumption.  Ecofront (figure 3.32) basic version was chosen for this purpose. 

Fundamentally, it uses the similar current transducer as previously described but 

Ecofront has its own voltage sensor that directly connected the main circuit and take 

real-time voltage measurement alone with current records of other sub-circuits.  
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Figure 3.32: Ecofront energy monitor’s CTs and voltage input setup with sample sub-
circuits 

Voltage measuring input of Ecofront energy monitor is matched to CT sensor mains 

measuring channels and is used to help accurately calculate power consumption and 

power factor()figure 3.33P. The voltage sensor is a potential transformer that 

provides a linear output voltage proportional to the input voltage. The output voltage 

is 2 volt when the input voltage is 250VAC and will work with most standard mains 

AC circuits up to 380VAC. 

 

Figure 3.33: Ecofront’s own wired voltage sensor  
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3.6.2 Appliance electricity usage 

Having reviewed the pros and cons of both approaches; in this study, a mixed 

method was selected in order to balance out the barriers: the selected appliances 

and selected circuits, are therefore, monitored separately and simultaneously. 

Individual appliance energy consumption is monitored using the Plugwise system 

(figure 3.34), which measures electricity used by appliance being plugged to each 

socket type sensor and transfer the data wirelessly via Zigbee mesh network.  

 

Figure 3.34: Plugwise system sockets and USB receiver  

The Plugwise system is comprised of three components, as pictured above and 

described below: 

1. Circle - a plug which goes between the plug of for the appliance and the 

mains power socket. 

2. Stick - a USB device plugged into a personal computer to receive data 

wirelessly from the Circle(s). This Stick can also transmit instructions 

wirelessly to turn the appliances on or off. 

3. Circle+ - a Circle containing a real-time clock and battery. Circle+ is used to 

co-ordinate the Circles within the network. This also acts as a regular Circle 

as described above. 
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4. Source - software installed on a computer to process the electricity 

consumption data collected in realtime, displaying it numerically and in charts, 

and logging it for later analysis. The Source software is also used to manually 

or automatically turn the appliances on or off. 

Each Circle has a unique ID code. The name of the appliance plugged into it can be 

entered in the Source software and energy consumption tracked immediately. 

Plugwise Circles communicate with one another and with the Stick via the ZigBee 

wireless communication protocol. These Circles form a mesh network between 

themselves and the Stick.  

   

Figure 3.35: Plugwise home appliance monitoring set up 

Common high power rated domestic appliances are: the plasma TV, electric cooker, 

fan oven, kettle, microwave oven, convection heater, washing machine, tumble dryer, 

electric shower and so on.  
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3.7 Physical parameters 

Gemini Tinytag Ultra and Tinytalk data loggers were used to evaluate the thermal 

performance of selected residential buildings,  which have been widely used in 

building performance evaluation research. 

The Gemini Tinytalk data logger (Figure 3.36) is a small, lightweight, cell-contained 

device with an 1800 reading memory and log rates ranging between 1 second and 

4.5 hours. It is used to record environmental data inside and outside buildings and 

has up to 3 years of battery life. It can also be used in other fields, such as industry 

and food transportation. In this study, it was used in internal spaces to measure the 

globe temperatures of interior spaces in all the case studies. 

 

Figure 3.36: Gemini Tinytalk Data Logger. Source: author. 

Another type of Gemini tiny data logger is the Tinytag Ultra (Figure 3.37 left); this has 

the ability to measure air temperature and relative humidity (RH) simultaneously on 

two separate charts. It is capable of measuring air temperatures ranging from -30°C 

to +50°C and RH from 0% to 95%, which covers the environmental situation in Wales 

during monitoring period. Tinytag Ultra has a memory of 7800 readings and 

programmable alarms. It has a logging rate ranging from 1 second to 10 days with 

minimum, maximum and actual readings, plus up to 5 years battery life. Moreover, 

the Gemini Tinytag Plus (Figure 3.37 right) shares the same features as the Tinytag 

Ultra, but is a different in shape. 
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Figure 3.37: Tinytag Ultra and Tinytag Plus for Air Temperature recordings. Source: 
author. 

The Gemini data loggers were launched via a personal computer, using Gemini 

Tinytag Explorer (GTE) software. The GTE software was used to set up the loggers 

to begin logging, and to permit the download of data after logging. The downloaded 

data was viewed, saved, printed, copied to the clipboard and exported into Excel 

software to be translated into tables and charts. All loggers were instructed to delay 

the start of recording until 11:00 am as a first reading. They were also instructed to 

record environmental data every fifteen minutes, and to stop once the devices were 

full of data. Figure 3.38 shows a sample of the first page of the GTE software after 

the data was downloaded from the external recording function of a Tinytag Ultra 

logger, in the first case study. 

 

Figure 3.38: Tinytag Explorer 
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Tinytag is a stand along sensor with built logger and the data collection has to be 

conducted by manual download with its data transfer cable. Alternatively, a wireless 

system, Arexx BS-500 which monitors air temperature, relative humidity and CO2 

level was selected (Figure 3.39). Comparing with other wireless monitoring systems, 

Arexx BS-500 (Figure 3.40) cost substantially less as it requires a computer to store 

high resolution data, as well as smaller range, suitable for individual dwelling. 

 

 

Figure 3.39: Arexx BS-500 wireless temperature humidity and CO2 monitoring system 

 

Figure 3.40: Demonstration of domestic setting up with Arexx BS-500 system 
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3.8 Monitoring occupant related parameters 

3.8.1 Biological psychological and social parameters 
Thermal comfort questionnaire  

Regarding the perception of comfort, three methods were selected in this field of 

study, to gather the occupant’s opinions about their surrounding built environment: 

comfort questionnaire, self-administrated diary and post monitoring informal 

interview. 

Subjective measurements were conducted using a comfort questionnaire survey. 

The comfort questionnaire contained questions about how occupants like their home 

environment to be. It also provides faster and easier comfort votes than measuring 

the thermal, visual or acoustics environment associated with votes. Any member of a 

family is welcome to fill complete their own copy of the diary whenever they feel 

inspired to do so. It takes a couple of seconds to tick a response each time. 

Occupant’s comfort perceptions and satisfaction with the rooms in the home were 

measured using a thermal comfort rating form during the monitoring period, based on 

their indoor experience across summer and winter. Figure 3.41 shows an example of 

a thermal comfort diary. Occupants are encouraged to feel free to tick their feelings 

about a room for both winter and summer. Compared to 7 points scale, the 

questionnaire is simplified to 5 points in order to shorten the answering time.   

  
In winter I prefer my indoor environment to be 
 

  

Warmth Much warmer A bit warmer no change A bit cooler much cooler 

Air movement Much less air 
movement 

a bit less air 
movement no change a  bit more air 

movement 
Much more air 
movement 

Humidity much drier a bit drier no change a bit more  
humid 

much more 
humid 

Natural light much dimmer a bit dimmer no change a bit brighter much brighter 

Noise much quieter a bit quieter no change     

  In Summer I prefer my indoor environment to be 
   

  

Warmth Much warmer A bit warmer no change A bit cooler much cooler 

Air movement Much less air 
movement 

a bit less air 
movement no change a  bit more air 

movement 
Much more air 
movement 

Humidity much drier a bit drier no change a bit more  
humid 

much more 
humid 

Natural light much dimmer a bit dimmer no change a bit brighter much brighter 

Noise much quieter a bit quieter no change    

Figure 3.41: Sample of indoor comfort questionnaire  
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Self-reported dairy 

Self-administrated comfort diary has been designed to combine the frequent asked 

questions in comfort research, namely, thermal experience, thermal satisfaction, 

clothing insulation level and activity level. 

The dairy was formatted as figure 3.42 shows: four fixed time in a day, 8am, 12am, 

6pm and 10pm. Occupants were encouraged to tick their thermal sensations at these 

moments and there is also blank rows in between when they feel like to add more 

information such as whether they returned from outdoor in the past 30 minutes, how 

active they were, whether they had a hot or cold drink earlier. These optional 

questions can further help to collect personal factor samples. 
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Figure 3.42: Self-admitted comfort diary example. 

 



132 

 

The self-administrated diary can be customised for different occupants on request. 

An example of a shower diary has been made and is as shown below, which only 

focus on shower and bathing activities. 

 

Figure 3.43: Shower and Bath activity diary 

 

3.8.2 Occupancy and presence 

Occupancy is also helpful when interpreting human behaviour and indoor comfort. 

Motion sensors are those most frequently used in occupancy monitoring.  

There are two types of motion sensor: Active sensors inject energy (light, 

microwaves or sound) into the environment in order to detect a change; passive 

sensors measure energy radiating from objects in their field of view.  

Stores, for example, usually have a beam of light crossing the room near the door, 

and a photosensor on the other side of the room. When a customer breaks the 

beam, the photosensor detects the change in the amount of light and rings a bell. 

Many grocery stores have automatic door openers, which use a very simple form of 

radar to detect when someone passes near to the door. The box above the door 

sends out a burst of microwave radio energy and then waits for the reflected energy 

to bounce back. When a person moves into the microwave energy field, it changes 
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the amount of reflected energy, or the time it takes for the reflection to arrive, and the 

box opens the door. Since these types of devices use radar, they often set off radar 

detectors. The same can be achieved using ultrasonic sound waves; bouncing them 

off a target and waiting for the echo. 

In this study, PIR (Passive Infrared sensor) based motion detectors (figure 3.44). 

Apparent motion is detected when an infrared source at one temperature, such as a 

human, passes in front of an infrared source at another temperature, such as a wall. 

This is not to say that the sensor detects the heat from the object passing in front of 

it, but that the object disrupts the field, which the sensor has determined as in a 

"normal" state. Any object, even one exactly the same temperature as surrounding 

objects will cause the PIR to activate if it moves through the sensor field.  

 

Figure 3.44: PIR sensor module and Arduino controller circuit board  

Often, PIR technology will be paired with another model to maximise accuracy and 

reduce energy usage. In order to make a sensor that can detect a human being, you 

must make it sensitive to the temperature of the human body. Humans, have a skin 

temperature of about 33.8˚C; they radiate infrared energy at a wavelength between 9 

and 10 micrometres. Therefore, sensors are typically sensitive in a range of 8 to 12 

micrometres. The infrared light bumps the electrons off a substrate, and these 

electrons can then be detected and amplified into a signal. PIR sensor is sensitive to 

motion, but not to a person standing still. That is because the electronics package 
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attached to the sensor looks for a fairly rapid change in the amount of infrared energy 

it sees. When a person walks by, the proportion of infrared energy in the field of view 

changes rapidly and the sensor easily detects it.  

3.8.3 Activity tracker 

In addition to self-reported activity level, wearable trackers was proposed to the field 

study. The Walkwithme activity meter (figure 3.45) is a clip accelerometer that tracks 

the occupant’s steps. In order to measure this a wristband modification was added to 

record the occupant’s activity level. Every valid movement of the wrist can be 

recorded and uploaded wirelessly to a game console, on which the occupant can 

view graphs and charts of steps and activity time (figure 3.46).  

 

Figure 3.45: Walkwithme wrist activity sensors 
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Figure 3.46: Walkwithme wrist activity tracker data 

Walkwithme tracker was chosen due to its availability and reviews by consumers. For 

the purpose of comparison between reported and recorded activity level, it was 

considered reasonably informative enough. More importantly, occupant who agreed 

to wear tracker has compatible devices at home and more willing to participate since 

they would be able to access the data too.  
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3.8 Summary 

In this chapter, the research methodologies employed are discussed. Measurement 

methods and instrumentations selected for investigation focus on parameters related 

to space heating, domestic hot water, window and door, electrical appliance and 

lighting, physical environment, and occupant factors.  

Need to emphasis, selection of the instrumentation and method have been mainly 

restricted by their invasiveness, accuracy, cost, ease of use and reliability. Table 3.7 

summarises all the selected methods and instrumentations that will be studied in the 

actual dwellings.  

Table 3.7: Summary of selected methods and instrumentations for field investigation 

Sector Type of parameter Methods and/or instrumentations 

Physical 
measurement 

Space heating Gas sub-meter and pulse counter 
Gas boiler surface and temperature sensor 
ASHP boiler outdoor unit and temperature 
sensor 
Thermostat dial and resistance logger 
Individual radiator and fireplace and 
temperature logger 

Domestic hot water Customised shower diary 
Hot water inlet and return pipe surface and 
temperature logger 
Boiler control panel display icon recognition  

Windows and door Opening angle and Multiple contact switch 
board 
Opening angle and Flexi resistive sensor 
Opening angle and Rotary resistive sensor 
Opened or closed status and single contact 
switch event logger 

Electrical appliance and 
lighting 

Electricity sub-circuit and current transducer 
with and without voltage input 
Individual appliance and socket electricity 
meter 

Indoor physical 
environment 

Temperature, humidity and CO2 

Subjective 
measurement 

Occupant Questionnaire and indoor condition satisfaction 
Self-reported recent thermal satisfaction, 
activity and clothing level  
Face to face interview 

Physical 
measurement 

Occupancy and PIR presence sensor 
Wearable activity tracker 

In chapter4 the next, participated dwellings are described with sensor deployment 

details. Results for each type of parameters grouped into three chapters. The 

chapters are namely, Chapter 5: Physical measurement; Chapter 6: Subject 

measurement; Chapter 7: Integrated measurement. 
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Chapter 4: Field study dwellings 
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4.1 Introduction 

The aim of this chapter is to present the setup and test of instrumentation and 

measuring methods in a range of dwellings. The objectives of the chapter are:  

• to establish the criteria used for selecting suitable dwellings for use in this 

study; 

• to identify and describe the study dwellings and explain their selection; 

• to describe the specific sensor installations and what data they were intended 

to collect. 

Dwellings have been selected for best fit of methods and instrumentation 

investigation. Dwelling 1, 2 and 3 have been selected more for pilot study purposes 

which enabled author to be familiar with equipment and social science survey. The 

experience gained in these three sites continued to serve a better installation and 

communication with households and occupants in dwelling 4 to 8. Details of aim and 

of how dwelling fits the requirement are present at the start of each section. 

4.2 Study dwelling 1 

Dwelling 1 was selected primarily to pilot both physical measurement and social 

science survey. Permission to access dwelling 1 was granted the earliest among 

several other high rise apartment where recruitment of participates for questionnaire 

survey live in apartment with identical building fabric and performance. Physical 

measurement tools selected for dwelling 1 sites are electrical sub-circuits, indoor 

environment and short questionnaire survey regarding occupants’ opinions towards 

their indoor environment. There is another benefit in electricity only dwellings as 

space heating, domestic hot water, electrical appliances and lightings are all 

measurable with sub-circuit current transducer which usually is considered as a non-

intrusive method. 

Equipment was only available to be installed in on apartment and the building 

manager has granted access to the central electricity meter room where individual 

meter readings could be taken for an overall glance of off-gas apartments in this site. 
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4.2.1 Forms and plan 

This selected development is located in central Cardiff, south Wales. The building is 

72 metres (232 ft) high and has 23 floors. The tower was the tallest residential 

building in Wales upon its completion in 2005, and remains one of the tallest 

buildings in Cardiff and in Wales. 

 

Figure 4.1:  North façade of dwelling 1, Source: Author 

 

Figure 4.2: Form and surroundings of dwelling 1 

The Y-shaped building (Figure 4.2 left) contains 292 one to three bedroom 

apartments with views across the city. (Figure 4.2 right). The typical apartment plan 
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is similar to figure 4.3. Each apartment has mixed ventilations: natural vents and 

mechanical extract fans; both can be closed or switched off. The windows are 

restricted from fully open and can only be opened up to 20 cm wide due to safety 

reason. Each room has at least one electrical panel radiators installed in each room 

with plus one heater in bathroom. The external wall is 350mm thick. Each apartment 

has its own electric immersion heater to provide domestic hot water. The windows 

are double-glazed.   

 

Figure 4.3: Typical flat plan and HVAC systems 
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4.2.2 Space heating  

The apartment does not have central heating. Each room has its own electrical 

heater and has to be operated individually. There is no timer function and occupants 

have to manually turn it on or off or adjust the heating output. As show in the figure 

4.4, the control panel has four bottoms: mode, and temperature up and down with 

scale from 1 to 9. This type of panel radiator cannot store heat, therefore, it will cool 

down very quickly once it is turned off. 

 

Figure 4.4: Electric radiator control panel 

In order to monitor the status of space heating behaviour, each radiator has its 

dedicated temperature logger, a Tinytag Plus 2 sensor. It is hoped capture the high 

temperature readings of the radiators which can only be caused by being turned on. 

The handheld infrared temperature meter shows that when running, the front surface 

of this type of electrical radiator can rise up to 70˚C which is not only too high for the 

plastic enclosure but also can be risky for the battery inside of Tinytag.  Spot 

measure shows that the next hottest spot is the top but behind the heating element, 

only goes up to 50˚C, enough to be differentiated from room temperature and 

capable of indicating the status of radiator.  

Additionally, each participant was given a diary to write down the time and the setting 

temperature when a change is made for a period of 14 days. The diary keeping is not 

mandatory but occupants were asked to fill as much as possible but it is completely 

up to them if it becomes too annoying.   
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4.2.3 Domestic hot water  

Domestic hot water is provided by a 210 litres immersion water heater as shown in 

figure 4.6. Its control panel has very basic feature:  

• a power rate switch, it toggles between normal rate(3kW) and Boost mode 

normal mode(6kW), 

• a boost button, it is designed for urgent hot water demand which enable 

immersion heater to work at 6kW, each press gives one hour of boost running 

and can be pressed up to three times  

• a timer, it can store four periods of running time during 24 hour cycle 

 

Figure 4.6: Control pannel for immersion water heater and Efergy electricity meter 

In order to monitoring the domestic how water related behaviour and energy 

consumption,  an Efergy electricity meter has been clamped on the sub circuit inside 

the consumer unit,  in order to keep eyes on the domestic water consumption (figure 

4.7). 
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4.2.4 Electrical sub-circuit and current transducer 

Given the access to the consumer unit, total electrical appliance and lighting were 

monitored with current transducers. Each sub circuit has its own clamp-on electric 

current transducer in order to measure the electric current come through the current 

transducer. 

 

 

Figure 4.7: Consumer unit and installation of clamp-on sensor (current transducer) 

4.2.5 Occupant subject indoor environment satisfaction 

In total, 150 occupants were asked to fill questionnaires about their satisfaction of the 

internal conditions, namely, temperature, humidity, ventilation, lighting and noise for 

both winter and summer. The whole process takes approximately 5 minutes. At the 

end of survey, occupants were shown the sample of self-administrated dairy of 

indoor thermal comfort.  

4.2.6 Indoor physical environment 

Tinytag plus 2 temperature and humidity logger were installed at various locations of 

the participated apartment (figure 4.8). Apart from the dedicated sensors near 

radiators, each zone has another Tinytag logger.  Given the fact that this apartment 

has an open planed kitchen and living room, kitchen worktop has an additional 
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Tinytag logger to detect the temperature and humidity changes caused by cooking 

behaviour, which can may affect the rest zones of the apartment. 

 

Figure 4.8: Tinytag sensors set up in dwelling 1. 

4.3 Study dwelling 2 

The second study dwelling is a semi-detached house which has northeast facing and 

next the former canal and surrounded by trees and bushes. It was selected for 

piloting methods and sensor installations, namely, non-intrusive optical reader and 

infrared sensor on main gas meter, individual radiator, gas fire place operation, 

electrical appliance, domestic hot water pipe surface temperature and indoor 

physical conditions. Dwelling 2 has a main gas meter with reflective plate which is 

suits the testing sensors. The access to its hot water inlet and return pipe is 

convenient. Dwelling2 contains 2 bedrooms, 1 bathroom at first floor, kitchen and 

Lounge at ground floor. It is equipped with Economy-7 tariff electricity meters.  

 

Bathroo

Bedroom 

Hallway 

Kitchen 

Lounge 

Immersion Heater 
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4.3.1 Individual heating appliances monitoring 

Both gas and electricity are used for space heating.   Besides a gas fireplace (figure 

4.10 top right) in the lounge, there are two electrical storage heaters (bottom left) in 

bedrooms and one fan heater (top left) in the bathroom to provide space heating. 

Occupants bought one additional convention heater (bottom right) and placed it in 

the main bedroom for additional warmth that storage heater couldn’t provide.  

 

Figure 4.10: Space heating appliances in dwelling 3  

In this household, gas is also used for cooking. The permission of installing a sub 

gas meter was not granted, there for only total gas consumption was monitored by 

attaching a tailored optical sensor and pulse counter, as shown in figure 4.11. All gas 

passes through the meter before being distributed to the cooker and fireplace. A 

tailored optical sensor has been made and mounted onto the gas meter (figure 4.11). 

Since there is strict limitation on what can be installed on the main gas meter, the 

method is considered to be most appropriate and indirect as possible. The reader will 

generate one pulse signal when the last digit of dial rotates one complete circle, 

which is equal to consumption of 0.001m3 of gas.  
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Figure 4.11: Gas meter mounted with optical reader and pulse generator circuit board. 

Each radiator also has its own Tinytag plus 2 sensor in order to record their operating 

status. Since there are three type of space heating appliances with different capacity 

of space heating output. For instance, the storage heater will emit heat very slowly 

but it is able to continue release heat for several hour after being turned off. Gas 

powered fire place is located at ground floor and can heat up the ground floor very 

fast but it is never left unattended. The additional electrical heater is only turned 

when both of earlier mentioned heating element fail to provide sufficient warmth.  

In addition to the Tinytag placed close to these two heating appliances, an additional 

one was placed outside of the house, next to the exhaust vent, in order to provide 

another set of data of gas fireplace operating status (figure 4.12). 

 

Figure 4.12: Gas fireplace exhaust vent  

4.3.2 Surface temperature of domestic hot water pipes 

Domestic hot water is supplied by immersion heater (figure 4.13). The Immersion 

heater is controlled by a simple ON-OFF switch only. There is no timer or 

programmer. Occupant has to manually control the water tank 



147 

 

 

Figure 4.13 Immersion water heater, control switch and hot water outlet pipe 
underneath 

A temperature probe was mounted on the hot water supply outlet pipe underneath 

the immersion heater. When there is hot water demand at any tap, it will go through 

the outlet pipe and immediately cause pipe surface temperature rise.  

 

4.3.3 Electricity monitoring 

In this household, the consumer unit is bolted and access to the sub-circuits was 

very limited and participants did not give permission due to the potential disturbance 

and damage. Socket level appliance sensors were not available during the 

monitoring period of dwelling 2. As a result, only total electricity consumption was 

monitored.  

Economy 7 tariff has two sets of meters and supply wires: one for peak hours in the 

day and another one for off-peak supply in night hours.  There is a teleswitch and 

communication cable which can toggle the counting between two meters.  Peak 

hour’s electricity price is generally three time higher than off-peak, e.g. Peak hour 
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rate is 13.45 pence per kWh, and off-peak rate is 4.95 pence per kWh. It encourages 

occupant to avoid consume electricity during peak hours for financial benefit.  

In order to monitor both peak and off-peak hour electricity usage, two sets of current 

transducers have been clamped as illustrated in figure 4.13.     

 

Figure 4.13 Economy 7 electricity meter monitoring setting 

4.3.4 Indoor and outdoor environment 

Several Tinytag Plus 2 temperature and humidity logger were installed at different 

rooms to record their internal and external environmental conditions. Their locations 

are shown in figure 4.14. 
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Figure 4.14: Sensor installation plan in pilot study 3. 

4.4 Study dwelling 3 

Study dwelling 3 is actually an office room shared by three people. The purpose of 

this selection is to test the windows and door operation behaviour and its effects on 

indoor air temperature and humidity. It suits the purpose due to it window type and 

both windows and door are being frequently used by three users. This office has 

relatively simpler occupancy and few variables in such a closed space: two windows 

that can only be tilted open and one door (figure 4.15). The window facade is 

southeast facing but the mostly shaded in the afternoon due to a higher wall 

southwest shown in figure 4.15, two desks are placed next to the windows. 

  

Figure 4.15: Room plan prospective view (left) and top view (right) 
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The entrance to this office is connected with a mini corridor with fire door and 

emergency stairwell. This means the only good ventilation source is through opening 

the windows. The orientation of this office also causes too much glare on one desk’s 

computer screen and closing blinds will block the window from fully open. In a sunny 

summer afternoon, the office’s blinds has to be closed but two windows are only tilt 

open with limited access to fresh cool air. Consequently, the feeling of insufficient 

ventilation and restricted window opening make office users feels worse regarding 

the overheating.   

Propping door open is the usually the quickest solution but it also brings noise from 

the corridor and adjacent offices such as telephoning and walking on the stairs. Two 

windows and one door have been monitored during this experimental study as 

shown in figure 4.16. The purpose is to test the windows/door monitoring and method 

in field and conduct analysis between window/door operation and indoor thermal 

comfort.  Voluntary comfort diaries have been provided to all the three office users in 

order to keep additional record of their thermal comfort perception.   

 

Figure 4.16: Sensor allocation in selecting office  

Three pairs of contact switches have been installed on windows and door in this 

office. A temperature sensor is place in the centre of the ceiling. All the records are 

feeding into Eltek data logger located on the shelf. 
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4.5 Study dwelling 4 & 5 

Dwelling 4 and 5 have been selected for field study primarily they make an unique 

case: 

• Exactly the same occupants 

• Structurally identical form and location but dwelling 5 is completed renovated 

in every aspect. 

• It was possible to install a gas sub-meter before the new boiler being fitted.  

• It was possible to reserve access to electrical sub-circuits before consumer 

unit being installed. 

• Gas in dwelling 4 is identical to one of the gas meter that has been tested in 

lab with satisfactory results of optical reader.  

Study dwelling 4 & 5 are occupied by the same family who moved from dwelling 4 to 

newly refurbished dwelling 5 with much higher energy efficiency standard on the 

same street. Both houses are terraced houses and have been built for over 50 years. 

The property is built on a hillside in Western face of valley with North-West/South-

East road orientation. It consists of South-West lounge and a bath room at ground 

floor, three bedrooms at 1st floor and a North-East facing kitchen at lower ground 

level as shown in figure 4.17 and 3D model in figure 4.17.  
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Figure 4.17 : location of dwelling 4 (A) and 5 (B),  source from: Googlemap. 

4.5.1 Form and plan 

Dwelling 4 comprise principally a living room, a bathroom, three bedrooms (small, 

medium and large) and a kitchen spacious enough for dining.  Living room and 

bathroom are located on the ground floor. Kitchen is located at lower floor.  The first 

floor contains three bedrooms with various size. They have very similar structure and 

the exterior appearance and the major difference is that dwelling 4 has its kitchen at 

lower ground floor and dwelling 5 has it at ground floor as shown in the 3D models in 

figure 4.18.   
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Figure 4.18: Room plans of dwelling 4, first, ground and lower ground floor.  
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Figure 4.19: Views from front entrance and rear kitchen door, dwelling 4 

Dwelling 5 is one house of Eco Terrace project completed by Cynon Taf Housing 

Group in 2010-2011. It is use to be a single-skin solid stone-walled Victorian house. 

It is now updated into low carbon home that meets ‘EcoHomes’ excellent standard 

(figure 4.20). The property is located on Western face of valley with North West / 

South East Road Orientation.  

Dwelling 5 consists of North-East lounge and three bedrooms, a bath room a South-

West facing kitchen. Comparing to dwelling 4, it has following features: 

• EcoHomes excellent standard.  

• Front of residence faces: North East 

• Triple glazing, ‘A’ rated doors and internal insulation  

• Roof mounted solar thermal collectors linked to A-rated condensing boilers  

• Water butts, low capacity baths and water flow regulators  

• Skylights in order to Introduce daylight to internal spaces 
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Figure 4.20: Fabric upgrade and skylight in the kitchen of Dwelling 5 

Besides the improvement above, the major difference happened to the occupants is 

probably the orientation. The lounge window is now facing north-east which is the 

opposite of the place they used to live in.  

 

Figure 4.21: Dwelling 5, triple glazing windows and solar hot water collectors on the 
roof  
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4.5.2 Space heating 

The boiler in dwelling 4 in sealed behind the fireplace and not easily accessible. The 

main gas meter is located in the cabinet next to the boiler without enough space for 

an additional sub gas meter. Therefore, only the total gas consumption was 

monitored by optical sensor that was attached on the main gas meter, as illustrated 

in figure 4.22. There are three gas consumption sources: back boiler, gas fire place, 

gas cooker (with oven and grill built-in), among them, the fireplace is not functional. 

 

Figure 4.22: Space heating and gas distribution in dwelling 4 

Dwelling 5 has new boiler and hot water system fitted. Space heating is provided by 

a Worcester 24Ri condensing boiler with 8-24kW of central heating output. There is 

also a 210 litres hot water cylinder working together with the solar collector on the 

roof (Figure 4.21). 
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Figure 4.23: Space heating and gas distribution in dwelling 5 

In dwelling 5, a sub gas meter has been installed to the boiler gas inlet pipe to record 

its gas usage. Additionally, a Tinytag temperature logger has been attached to the 

side of the boiler. Having both gas usage and surface of condensing boiler 

monitored, it shall provide some side to side comparison of the work status of boiler 

since a sub gas meter takes much more effort to install than attaching a sensor onto 

boiler enclosure. 
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Figure 4.24: gas sub-meter installation with boiler in dwelling 5  

In both dwelling 4 and 5, radiator in each room has its own Tinytag plus 2 

temperature logger for the individual radiator control behaviour. The thermostat is 

newly fit digital type. It was not possible to install an electric resistance logger that 

can monitor its setting point temperature. 

 

Figure 4.24: Individual radiators and temperature sensor in dwelling 4 & 5  

 

Sub gas meter and 

l  t  

Temperature sensor  



159 

 

4.5.3 Monitoring window side temperature  

Contact switches has been installed to the windows of main bedroom and living 

room. In both dwellings, their windows are tilt-open only. Each window has an extra 

temperature sensor installed from inside next to the top of window (Figure 4.25) 

 

Figure 4.25: Additional temperature next to tilt-open windows  

4.5.5 Electricity 

Current transducers have been installed on the main electricity and meter reading 

were taken for secondary set of usage data in order to correct the potential error that 

current transducer built up with.  

There are four circuits in dwelling 4, as illustrated in figure 4.26, respectively control 

lightings, lower floor sockets, ground floor socket and first floor sockets.  
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Figure 4.26 Electricity meter and sub circuit distribution in dwelling 4 

In both dwellings, the issue with separating these four circuits from each other was 

consumer unit which has too little space to fit electricity monitoring sensors to all the 

sub-circuits and it may jeopardise the function of prepay meter. Due to this space 

and restriction of prepay electricity meter, current transducer was only installed to the 

main circuit. 

 

Figure 4.27: Owl current transducer on prepay electricity in dwelling 4 (left) and 
dwelling 5 (right) 
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High power-rated appliances has socket type sensor installed, e.g. kitchen 

appliances, washing machine and tumble dryer. Electrical appliance survey has been 

conducted in both households to gain a list of alliance power rate and locations. 

Electrical appliance that generates heats also has it own temperature logger placed 

nearby, as shown in figure 4.28 below, a hot air fryer and kettle with Tinytag sensors 

placed adjacently.  

      

Figure 4.28: Additional temperature sensor placed nearby high power rated appliances 

4.5.6 Occupant 

Occupant opt-out of self-kept diary, presence sensor and activity trackers in dwelling 

4 and 5. The only method of occupant behaviour related data was face to face 

interview at beginning and end of each monitoring period. This interview contains 

question of activity level, thermal satisfaction, clothing preferences at home and 

usual occupancy habit.  

4.5.7 Indoor environment. 

Room temperature and relative humidity are monitored as illustrated in figure 4.29. 

Wireless temperature and humidity measuring system have been placed at 

designated position. Each room has two sensors, in the bedroom, one sensor was 

placed at the centre of the room but underneath the bed, and the other one was 

installed at higher but less intrusive point such like top of wardrobe. In reality, it is 

difficult to install sensor at the most appropriate spot of a room because it can cause 

disturbance to occupant’s daily life and shorten the permission of monitoring study. 
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Figure 4.29: Environmental monitoring sensor locations in dwelling 4 

 

Figure 4.30: Environmental monitoring sensor locations in dwelling 5 
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4.6 Study dwelling 6 and dwelling 7 

Dwelling 6 and 7 were monitored simultaneously with identical sets of sensor, 

therefore they are grouped and described together in this section.  

They were selected due to identical building fabric, form and plan but different 

occupants with different life styles routines and preference of indoor environment 

during winter. They are ideal for investigation of following methods and 

instrumentation: 

• Off-gas, means every energy related parameter can be monitored by non-

intrusive method (current transducers and appliance socket meter). 

• Both are bungalows easy access to install windows and door sensors without 

risking climbing with height.  

• Occupants are very keen to take part in field study, as a result of that, 

agreement of keep self-reported diary, permissions of install all type of 

sensors include PIR presence sensor, have been granted by both families. 

4.6.1 Plan and form 

The second case study consists two newly built homes at the southmost of Brecon 

Beacon national park. Dwelling 6 and 7 are located next each other. As shown in 

figure 4.31, they are almost  the mirrored version of each other, with identical building 

system, fabric with slight difference in total area size.  Dwelling 6 has a gross floor 

area of 120 m2 and dwelling 7 is 126m2 but the number of rooms remains the same. 

The occupant composition is similar, both households have two adults and three 

children whose age range is the major difference. Dwelling 6 has two adult children 

and one teenage, where dwelling 7 has three younger kids and the oldest is only 10 

years old.  

These two bungalows are specially built for disability needs. In dwelling 6, both 

parents have different level of accessibility problem but not the children. Dwelling 7 

has the opposite situation, parents are completely free from disability but two children 

are not. The typical occupancy is different due the employment status varies 

substantially between two households.  



164 

 

 

 Figure 4.31: Dwelling 6(Right) and 7 (left) 

Both dwellings were completed at the end of 2009 as part of a Ecohome scheme and 

there were built with standard level 4 of Code for Sustainable Homes (CSH) in 

December 2009. The type is a bungalow with the main entrance on the west side 

and the north facade overlooking the rear garden. It consists of a north facing 

kitchen/diner and lounge, two east facing bed rooms, a south facing master bedroom 

with en-suite, a store near the main entrance, and a west facing bathroom. It features 

as followings: 

• Code level 4 for Sustainable Home 

• Front of residence faces: South  

• Air Source Heat Pump produces space heating and domestic hot water with 

top-up immersion.  

• Mechanical Heat Recovery Ventilation 
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• Rainwater collection system for toilet flashing with 3000 litres underground 

storage tank. 

Dwelling 6 and 7 are not connected to main natural gas. Everything appliance is 

driven by electricity, including the mechanical ventilation and heat recovery system 

(MVHR) installed in the loft.   

 

4.6.2 Space heating and domestic hot water 

Occupants in these two houses used to live in stone-walled terrace houses heated 

by with gas boiler.  The new bungalow is significantly different in terms of building 

fabric, space heating and domestic hot water system. One of the most fundamental 

change is probably the Air Source Heat Pump (ASHP), which is the electrical 

alternative of gas boiler. 

Air Source Heat Pump provides space heating and domestic hot water system as 

illustrated in figure 4.32. Tenants control their heating by setting their target water 

temperature and timed schedule on the remote controller located in storage room. 

Thermostat with built in temperature sensor is located in the hallway. There is also a 

300 litres hot water cylinder equipped with immersion heater for urgent hot water 

demand. Immersion heater will boil the hot water from heat pump and top it up to 

standard domestic required temperature. Tenants were advised by the manufacturer 

that ideally the heat pump target temperature should be 40 ˚C and immersion heater 

will do the rest 20 ˚C to make the water reaches up to 60 ˚C.  
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Figure 4.32: Air source heat pump system 

ASHP and immersion are both in charge of supplying hot water and powered by 

electricity, see electricity section in following section for details regarding their energy 

monitoring setup. The electricity usage profile represents the total running energy 

consumed for both space heating and domestic hot water, therefore, additional 

sensors have been installed in order to be able to differ hot water event from space 

heating event.  

Pipe surface temperature have been monitored by Arexx wireless sensor as shown 

in figure 4.33, it measures the temperature rise when ASHP is running. It was safe to 

attach as the ASHP only heat water to 40˚C, which is also the maximum temperature 

of all the radiator.  

 

Figure 4.33: Surface temperature sensor on hot water outlet pipe 
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The control panel of ASHP has it own camera installed ash show in figure 4.34. This 

camera is modified to take infrared image due to the ASHP is located in a dark 

storage room and mostly remains dark. An infrared LED is also installed to provide 

constant light which is only visible by this special camera but not by occupants for 

minimised disturbance. The control panel shows the individual function that the 

whole system runs and displays different icons (figure 4.35).  

 

Figure 4.34, infrared camera points at ASHP and immersion heater controller panel 

 

 

Figure 4.35, Icons for not running, immersion heater running and ASHP running from 
left to right 

The camera is set to take picture only when the pixel of the image changes. Such 

setting is to reduce the amount the picture it takes and only does when the icon 

changes.  
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The key of ASHP is the outdoor unit which is usually installed outside of house 

(figure 4.36). It imports ambient air into by a fan unit and exports colder air after heat 

exchange/extraction. Considering this characteristic, a temperature logger has been 

installed to the outdoor unit. Having this sensor installed, it captures the sudden 

temperature changes that theoretically can only be caused by the outdoor unit 

extracting movement. 

 

Figure 4.36: temperature on ASHP outdoor unit 
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The setting temperature of thermostat has been monitored by recording its electrical 

resistance value that corresponding to the change of the position of the control dial. 

The purpose is to obtain when and how much occupant adjust thermostat which is 

controls the space heating output (figure 4.37). 

 

Figure 4.37: Thermostat in the hallway and electrical resistance logger 

Occupants agreed to keep a diary of space heating and hot water demand, however, 

they preferred to only record shower and bathing. A simple of this diary is shown in 

figure 4.38. The diary contains date, either taking shower or bath, start and finish 

time, and whether the space heating is on. Occupants claimed that the status of 
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space heating can be judged by touching the radiator in the bath room, where the 

diary has been kept at. 

  

Figure 4.38: Shower or bath diary kept and filled by participants 

Additional temperature and humidity sensors have been attached next to the shower 

space to capture the changes of these two variables that can only be trigger by hot 

water related behaviour in the bathroom (figure 4.39) 

 

Figure 4.39: temperature and humidity logger next to shower in the bathroom 

4.6.3 Windows and doors 

Contact switches have been installed to front door, back door connects kitchen and 

garden, bath room window and main bedroom window.  
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4.6.4 Electrical appliance and lighting 

It was convenient to disaggregate end uses by their functions in these two electricity 

only properties. Sub circuits have been monitored individually as shown in figure 

4.40. As a mandatory requirement of level 4 CSH house, dwelling 6 and 7 have been 

installed with mechanical ventilation and heat recovery system (MVHR) installed in 

the loft space. It was not possible to separate it from all the other  

 

Figure 4.40 of sub-circuits monitoring and consumer unit 

The first tier of sub-circuit are accessible within the consumer unit, namely, Air 

Source Heat Pump, immersion water heater, cooker, sockets in kitchen, sockets in 

all other rooms and all the lighting sockets. Fire alarm circuit is excluded. 

 

 

Figure 4.41:  Consumer unit and sub-circuit sensors 
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Air source heat pump circuit: the consumption represents the amount of electricity. 

ASHP system is supposed to be more energy efficient but works slower than 

traditional gas boiler. To overcome the speed limit, immersion water heater is 

combined with ASHP at the moment of sudden and high volume of hot water 

demands either at hot water or space heating pipeline, for example, series of 

showers, bath, high temperature washing machine run and high space heating setup.  

In the kitchen, there are two sub-circuits: electric cooker and kitchen sockets. Electric 

cooker includes hob and oven where cooking is conducted. Kitchen sockets means 

all the sockets in the kitchen, namely, washing machine, tumble dryer and other 

sockets with small but high power rate appliances such as kettle, deep fryer and so 

on.  

High power rated appliances have been installed with socket electricity sensors and 

the total electricity of individual sub-circuit have been monitored by clamp-on current 

transducer. 

Lighting circuit represents all the light bulbs consumption.  Sockets of living room, 

three bedrooms and two bathrooms are connected the others socket circuit.  

There is a 3000 litres underground water tank and pump buried in the garden to 

collect rainwater for toilet flashing purpose. When there is not enough rain water 

collection, the water tank will top itself up from the main water supply. This is 

measures by a dedicated socket electricity sensor for the pump. 

4.6.5 Occupant monitoring 

Occupants agreed fill the diary continuously for two weeks. This diary contains, 

Thermal satisfaction and clothing. There is an optional question that occupant may 

freely add comments of what did they do on occasions when they felt the internal 

space is not sufficiently heated to their required warmth.   
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Figure 4.42: Behaviour diary and timer clock 

Diary needs to be filled at four fixed time, 8am, 12am, 6pm and 10pm every day. 

Occupants were encouraged to tick their thermal sensations at these moments and 

there are also blank rows in between when they feel like to add more information 

such as whether they returned from outdoor in the past 30 minutes, what activity 

were they doing, whether they had a hot or cold drink earlier. These optional 

questions can further help to collect personal factor samples. The thermal sensation 

scale is identical to PMV values. The purpose of keeping comfort diary is to compare 

the thermal sensation (Ts) with PMV results that are calculated from indoor 

environmental monitoring data in order to see if their relationship. This diary also has 

a digital alarm clock attached on the board in order to remind occupant to fill, but of 

course they are free to turn it off. Clothing diary is provided to the occupants to mark 

down their clothing level at the moment when they tick the thermal sensation scale. 

Participants also agreed to wear activity meters onto wrist. The activity meter 

measures the whole body’s acceleration, not just the wrist and it convert the activity 

profile format and then transmitted to handhold terminal. 
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Figure 4.43 wearable activity meter 

 

4.6.6 Indoor and outdoor environment 

 

Figure 4.44: sensor settings dwelling 6 and 7 

As shown in figure 4.44 a number of wireless temperature and humidity sensor have 

been installed in kitchen living room, bathrooms, hallway and main bedroom. Two 

wireless CO2 sensor were placed in the living room, initially at different locations, on 

at ceiling and the other one at height of 1.2 meters. However, the second week 
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occupants moved both sensors to the ground level next to the decorative fireplace. 

The effect of CO2 concentration level at difference height will be compared.  The 

CO2 density could indicate the CO2 concentration level of the room as well as 

occupant behavioural responses such as rapid CO2 drop from ventilation. 

 

Figure 4.45: Wireless CO2 sensor  

Wireless presence sensors were agreed to be placed in the kitchen and living room 

of dwelling 6 only, for a period of 14 days. 

 

Figure 4.46: Wireless presence sensor in dwelling 6 

 



176 

 

4.7 Study dwelling 8 

4.7.1 Plan and form 

Dwelling 8 is in a new award-winning development (figure 4.47), delivered by local 

Housing association to provide modern, eco-friendly home. It is also a part of Welsh 

Government pilot scheme of how new homes can meet higher levels of Code for 

Sustainable Homes. As one of the completed home, dwelling is a four-bedrooms 

house which has reached Code Level 4 and been offered with eco-measures such 

as solar hot water panel and Air Source Heat Pump. It is located only 500 meters 

north from dwelling 6 and 7. 

 

Figure 4.47: front and rear view of dwelling 8 

 

Figure 4.48: Room plans of dwelling 8, Ground Floor (left), First Floor (right) 
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The space heating and domestic hot water system are fairly similar to dwelling 6 and 

7. One the major difference is the heating system, whereas dwelling 8 has a buffer 

tank and solar thermal water heater on the roof to further assist the ASHP (Figure 

4.49). The solar water heater works with a300 litres hot water cylinder equipped with 

a 3kW immersion heater. It also has an additional 95 litres buffer tank to prevent the 

main hot water cylinder from working too often. ASHP is supposed to work most time 

but when it could satisfy a big demand and the immersion heater will begin to work.  

Besides the bath at the first floor, there is an electric power shower at ground floor. 

Tenant mentioned that she doesn’t use the electric shower very much as it has 

higher power rate and electricity consumption associated but most of the time when 

all the kids want to take a shower they often use electric shower at the ground floor 

when the first floor bathroom is in 

use.

 

Figure 4.49: DHW and space heating system of dwelling 8 

The gas is only used for cooker; everything else is powered by electricity. Cooking is 

a big demand in this household. There are two large fridges and one chest freezer 

which may indicate large amount of cooking activities. 

4.7.2 Space heating, domestic hot water and electrical 

appliances 

Beside gas cooker, everything in the dwelling 8 is driven by electricity. Due to 

availability of data logger, six circuits have been monitored as shown in figure 4.xx:  
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1. Air Source Heat Pump, 

2. Immersion heater 

3. Electric power shower 

4. Sockets downstairs (washing machine, Tumble dryer) 

5. Sockets upstairs 

6. Lighting, Oven and kitchen sockets 

 

Figure 4.xx: Sub circuit monitoring set up for dwelling 8 

Tenant uses pay as you go token to top up electricity credit when it runs low. They 

reported that when they were all out for holiday, the house consumed £39 worth of 

electricity in 9 days (during February 2012) without anyone in the house. The energy 

bill become even higher when tenants are in and this raised a complaint since the 

house is suppose to provide capability of saving energy.  

The purpose of study of this household is the first consultancy work with regards of 

identify potential cause of high energy and further test clamp-on current transducers 

with house that equipped with ASHP and solar thermal water system. 

No other monitoring instrumentation and method were agreed by occupants of 

dwelling 8. It has been monitored for relatively shorter for a period of 30 days during 
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the winter. The occupancy is one adult with six children, range from 4 to 10 years 

old. 

 

4.8 Summary 

This chapter described the methods and instrumentations that have been selected 

and corresponding dwellings where they would be deployed for field investigation. 

Dwelling selection criteria are based on individual household’s characteristics that fit 

as convenient as possible in order to suit for the installation of hardware. The 

purpose of field study is to  

The investigation focus on how these frequently studied parameters can be 

measured in domestic environment and what factor may affect invasiveness, 

accuracy, cost and reliability. In term of measurement type, results can be sorted into 

physical measurement, social science survey and integration of both, respectively 

presented in the following chapters.  
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Chapter 5    Physical measurement results 
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5.1 Introduction 

This chapter will present physical measurement results from studies of dwelling 1-8 

by applying a range of instrumentation and method for variables as listed below: 

• Space heating 

• Domestic hot water 

• Windows and doors operation 

• Electrical appliance and lighting 

• Indoor environment 

The results are presented and grouped by type that they belong to and mainly focus 

on the investigation of method and instrumentation regarding their difference on the 

same parameter monitoring. A short discussion follows after every sections. 

5.2 Space heating  

5.2.1 Gas meter monitoring method 

Dedicated sub gas meter with pulse out was only installed in dwelling 5, on its boiler 

gas inlet pipe. The other two gas meters are different types, reflective spot and dial 

type, have been applied with the optical sensor. Their accuracy is compared by the 

actual meter readings and monitored pulse count. Table 5.xx list the average daily 

meter readings and pulse count of 14-days period. 

Table 5.1: daily average comparison of actual meter reading and pulse count 

Instrumentation Meter reading 
(m3) 

Pulse count 
(pulse) 

Difference  
(%) 

Sub gas meter with pulse 
output      

5.732 5755 0.40% 

Reflective spot and 
optical sensor 

6.892 6532 -5.22% 

Dial meter with optical 
sensor 

4.279 3983 -6.92% 

Theoretically, every 0.001m3 on the gas meter reading should be recorded as 1 

pulse. From the comparison, it appeals that pulse count of sub gas meter with pulse 

output is the most accurate, only 0.4% more than actual reading. Optical sensor 
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reads fewer pulses, 5.22% on the reflective spot type and 6.92% on the dial meter 

type. 

All these three method used the same type of pulse counter data logger which is set 

to write down the total number of pulse count every 5 minutes.  At the begin of 

monitoring, each method had an initial side by side comparison between manual 

reading and pulse counts for a 30-minutes period. During this period, boiler was 

adjusted with different rate of heat output which generate varied gas consuming 

speed of testing purpose. The test results are illustrated in figure 5.2 to 5.4. 

 

 

Figure 5.2: Manual reading and pulse count comparison - Sub gas meter with pulse 
output 

 

Figure 5.3: Manual reading and pulse count comparison – Optical sensor and reflective 
spot 
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Figure 5.4: Manual reading and pulse count comparison – Optical sensor and dial 
meter 

It can be seen that gas sub meter with built-in pulse output had very little difference 

between the pulse counter and manual readings during the test. However, the 

number of missed counts are visible with optical sensor method with the other two 

gas meter types. Such a gap becomes widened as the speed of gas consumption 

increases.  

In principle, gas sub meter with built-in pulse output is contact switch based. Every 

round last digit wheel rotates, a magnet attached would triggers a reed switch which 

generates a pulse. This could only be achieved by its manufacturer who had access 

to the internal mechanism and able to build mini contact switch, any other tempt 

would bring up serious safety and legal issues.  On the other hand, optical sensor 

based monitoring method is mainly relying on either the detecting beam being cut or 

receiving a reflected beam. Larger number of misreading seems to correlate to the 

higher speed of rotation. Even at close distance, gas meter with either reflective plate 

or with dial show reasonable amount error at peak gas consuming period. However, 

interestingly, the combination of optical sensor and reflective plate gave higher 

measured gas consumption whereas the combination of optical sensor and dial 

measured fewer gas consumption than actual meter itself measured. 
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5.2.2 Gas boiler surface temperature 

The surface temperature of gas boiler in dwelling 5 has been monitored for 28 days. 

The 24-hour temperature profile of these 28days are plotted in figure 5.5 and 5.6 for 

clear glance of the pattern.  

 

Figure 5.5: 24-hour boiler mean surface temperature profile, dwelling 5 

A pattern was found in the majority where the surface of boiler slowly begins to cool 

down 5~10˚C from 10pm in evening to 7am next morning, then gradually rise 5-10˚C 

again in 4 hours and fluctuates mildly within much smaller range through the day until 

10pm at night. This pattern matches the interview result of occupant’s usual daily 

space heating habit: space heating is commonly turned off before bedtime and 

turned back on first thing in the morning (around 7:30) and left on at 26˚C for the rest 

of day except the time occupant goes out. There are exceptions, who surface 

temperature did not drop sharply overnight and potentially occupant chose to left 

space heating at lower output. The occupant of dwelling 5 is retired earlier, who stays 

at home most of the time and prefers warmer and constant indoor environment.  

The 24-hour temperature of dwelling 5’s living also matches well with the boiler 

surface temperature.  As shown in figure 5.xx, majority of the living room temperature 

begins to decrease sharply and constantly from 10pm in evening to 7am in morning, 

then rises in 3-4 hours to a much warmer level.  
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Figure 5.6: 24-hour mean room temperature profile, in dwelling 5 

The pulse count of the sub gas meter installed for the boiler in dwelling 5 further 

proved this space heating pattern (figure 5.7). The number of pulse remains dormant 

from 10pm to 7am, only few counts per hour for its pilot flame. These two nights of 

space heating being left on can also be spotted easily from their boiler gas 

consumption activity during night time. 

 

Figure 5.7: 24-hour boiler sub gas meter mean pulse count profile, dwelling 5 
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Surface temperature of boiler’s enclosure functions reasonably well as a qualitative 

indicator of status boiler. Installation does not require sophisticate process nor 

specialist. Mean room temperature and boiler surface temperature share a good 

similarity which is useful to estimate the space heating status and the general indoor 

temperature. On other hand, mean gas consumption pulse count profile shows that 

boiler has two periods of less worked, whereas both room and boiler surface 

temperature remain more stable in daytime and evening. Occupant in dwelling 5 

opted out for questionnaire and self reported dairy but agreed to an informal 

interview. According to interview, occupants have a preference of taking showers 

early morning and before bedtime. In addition, laundry and cook activities usually 

occurs after lunch hour, both may lead to sudden domestic hot water demand which 

may have caused boiler work harder to offer, therefore higher gas sub-meter pulses 

counted for condensing boiler.  

 

5.2.3 ASHP- Outdoor unit  

The outdoor unit of ASHP in dwelling 6 and 7 had sensors attached to the outdoor 

unit which according to the design, is an evaporator and contains fans. After ambient 

air being taken into the ASHP, the heat will be extracted inside and exhaust the 

cooled air through this outdoor unit. This characteristic of ASHP mechanism makes 

the surrounding of exhaust fan of outdoor unit cooler than ambient air. In other 

words, when ASHP is working, its outdoor unit should be slightly cooler than external 

air temperature. Also, some moisture of ambient air is condensed inside the ASHP 

compressor which theoretically should makes the exhausted air dryer.  

Figure 5.8 shows mean air temperature and relatively humidity difference between 

external ambient air and outdoor unit over 24-hour circle for 18 days. The external air 

temperature is also added into the figure as a reference line. 
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Figure 5.8:  mean indoor, outdoor temperature, humidity 24 hour profile, dwelling 6 

The positive difference value represents the measurement of ASHP outdoor unit is 

cooler and dryer than external environment, without disturbance from any other 

convection or radiant heat source. If it was the effect of the ASHP outdoor unit, the 

difference between these two sensors should be zero or close to.  

The temperature difference is mostly positive during the daytime, evening and night. 

Greater difference remains overnight, from 11pm to 6am next morning at 1.5-2.2˚C 

and drops sharply to -1.8˚C at 8am and rises to positive from the middle of day. 

Humidity difference demonstrates the similar pattern, positive difference above 10 

%RH occurs at night time but not so much from 10am to 7pm.  

Theoretically, ASHP shall be able extract more heat from ambient air when it is 

warmer and lead to greater temperature difference between exhausted air and 

common external air. However, it behaves oppositely, the sharp drop of temperature 

occurs when external air temperature begins to rise from 6am onwards. One of 

possible explanation is that there is heating/hot water demand in the morning and 

such demand cannot be provided by ASHP. Interview results support this hypothesis, 

one the occupant usually get up at 6am in the morning due to early work commitment 

and he prefers to take showers and warmer house to being days with.  
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5.2.4 Thermostat dial monitoring 

Since the rotating the dial of thermostat physically changes value of a 50 kΩ variable 

resistance inside, a set of spot measurements has been taken in order to estimate the 

internal resistance value that corresponding to the setting temperature positon of 

thermostat dial.  

Table 5.2, Spot measurement of resistance of thermal and dial position 

Thermostat setting 
temperature 

Spot measured internal 
resistance- Dwelling 6 

Spot measured internal 
resistance-Dwelling 7 

10 °C 13.2 kΩ 12.9 kΩ 
11 °C 12.9 kΩ 12.5 kΩ 
12 °C 12.6 kΩ 12.3 kΩ 
13 °C 12.3 kΩ 12.1 kΩ 
14 °C 12.0 kΩ 11.7 kΩ 
15 °C 11.7 kΩ 12.3 kΩ 
16 °C 11.4 kΩ 11.3 kΩ 
17 °C 11.1 kΩ 10.9 kΩ 
18 °C 10.8 kΩ 12.3 kΩ 
19 °C 10.5 kΩ 10.5 kΩ 
20 °C 10.2 kΩ 10.1 kΩ 
21 °C 9.9 kΩ 12.3 kΩ 
22 °C 9.6 kΩ 9.7 kΩ 
23 °C 9.3 kΩ 9.3 kΩ 
24 °C 9.0 kΩ 12.3 kΩ 
25 °C 8.7 kΩ 8.9 kΩ 
26 °C 8.4 kΩ 8.5 kΩ 
27 °C 8.1 kΩ 12.3 kΩ 
28 °C 7.8 kΩ 8.1 kΩ 
29 °C 7.5 kΩ 7.7 kΩ 
30 °C 7.2 kΩ 7.1 kΩ 

 

The physical position of thermostat has been monitored by resistance logger as the 

knob of thermostat actually adjust a variable resistance inside. By recording its value, 

the physical position or the setting temperature can be monitored. Figure 5.9 and 

5.10 show the average 28-days mean resistance value of dwelling 6 and 7 

respectively and compared with the actual air temperature recorded nearby 

thermostat in 24-hours circle. 
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Figure 5.9: 24-hours profile of thermostat air temperature and resistance dwelling 6 

The standard deviation represents hourly variation of air temperature measured 

nearby the thermostat, which is located in the identical spot of dwelling 6 and 7. The 

thermostat resistance stands for the physical position of the dial. The higher value, 

the lower setting temperature. Dwelling 6 has very stable temperature profile in the 

hallway through out of day, the standard deviation is ranged from 0.6°C to 0.9°C. The 

thermostat remains unadjusted most of the time, except 10am to 3pm. The converted 

physical position of the dial indicates that dwelling 6’s setting temperature mostly 

stays between 19-20°C and usually get turn to the lowest/off during these hour 

during day time, which may be the habit of the occupant in order to conserve the 

energy spent on space heating.  
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Figure 5.10: 24-hours profile of thermostat air temperature and resistance dwelling 7 

Comparing to its neighbour, dwelling 7 has rather fluctuated temperature nearby its 

thermostat and the setting temperature. As shown in figure 5.xx, The thermostat dial 

is usually turn to the lowest/off overnight, right after the temperature in hallway 

reaches the peak at 10pm in evening, then setting temperature is adjusted higher 

gradually during the day time.  Averagely, thermostat is turned to the 23-24°C at 

5pm. Dwelling 7 has a rather large value of temperature standard deviation during 24 

hours. Hourly variation is from 0.6°C to 3.2°C.  

Post monitoring interview with regards to the thermostat adjustment confirms the 

pattern. Occupants of dwelling 6 hold a belief that it is best to keep the thermostat at 

constant setting which brings the optimal practice of whole house warmth and 

heating cost. Occupants of dwelling 7 think the ASHP system is less warm than the 

combi-boiler in previous house and they felt the thermostat often need to be adjusted 

to the highest setting during cold days in winter and turned to low overnight for 

energy saving.  

Monitoring the resistive component of a dial type thermostat managed to capture the 

different habits of two dwellings. Comparing to direct monitoring method and 

questionnaire survey, records the physical position of a dial on thermostat is 

beneficial in both reducing invasiveness and the accuracy. Once the testing 

measurement is finished, resistance value can be converted directly to certain 

temperature setting of thermostat. However, such testing measurement may need to 
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take as many as possible, due to the resistive value changes varies by the physical 

position of small electrical parts. Even dwelling 6 and 7 have identical thermostat 

model, their resistive values and corresponding positions are slightly different but 

enough to be interpreted up to 2°C difference on setting temperature. 
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5.2.5 Individual radiator monitoring methods 
Gas boiler driven radiator  

Temperature loggers have been place at various locations of the same radiator in 

order to find out the difference in terms of the surface temperature that can be made 

by sensor location. In dwelling 4, two sensors have been placed to the radiator in two 

rooms, one at the inlet pipe and the other one at the middle of the radiator panel, 

where in Figure 5.11 shows the comparison of them for 7days during heating season 

in the format of average hourly measurement. The surface temperature of panel is 

always higher than the inlet pipe and higher than the room(centre) temperature, 

therefore, the temperature differences are depicted as below. 

 

Figure 5.11: Surface temperature of individual radiator inlet pipe and middle of panel, 
dwelling 4 

Room 1 does not have any operable window or ventilation and room 2 has one small 

window.  It can bee seen in figure 5.12 that 24hour temperature profile of room 1 is 

more stable, ranging from 16.41°C to 16.88°C over 24-hours period, whereas room 2 

varies from 17.16°C to 18.24°C. 

The average temperature difference between the middle of radiator panel and the 

inlet pipe of radiator are 4.08°C and 5.19°C respectively for room 1 and room2.   
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Figure 5.12: Air temperature comparison between room 1 and 2, dwelling 4 

 

Electrical storage heater 

Dwelling 2 has electrical storage heater in its master bedroom. This bedroom’s air 

temperature, upper position temperature of storage heater and and it electricity 

consumption have been monitored and compare as shown in figure 5.13. The 

electricity consumption of this storage heater suggests it is usually turned off in the 

morning and turned on around 10pm in the evening and left on over night. It is 

noticed that topside temperature of storage heater begins to drop as soon as it is 

turned off. The room temperature begins to drop alone with the topside temperature 

of storage heater and eventually become almost identical to the room temperature 

until being turned on again in evening.   
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Figure 5.13: Various measuring locations of storage heater and electricity 
consumption 

ASHP driven radiator 

Various locations of radiator surface temperature measurements were taken at 

dwelling 6 with one selected radiator that always left on. ASHP powered radiator is 

also fluid based but the maximum output temperature was set to 40 °C, compared to 

condensing boiler which can circulate up to 70°C to radiators.   

Three Tinytag sensors have been used in the measurement, one at the central spot 

behind the panel, one on the top and one at the bottom. Three sets of measurement 

are compared with temperature of the centre of the room where this radiator belongs 

to. The comparison measurement lasted 7 days when whole house under the same 

timer setting without adjustment and hourly average comparison is shown as figure 

5.14.  
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Figure 5.14: Various measuring locations of ASHP radiator and room temperature 

Compared to the radiator temperature, the room where selected radiator belongs to 

remains relatively stable. Surface temperature measurements taken from three 

location of the same radiator share similar pattern which clearly indicates the running 

status of radiator. From high to low, namely, the top, middle and bottom of the 

radiator panel.  

 

Electrical panel radiator 

In dwelling 1, the the radiator top temperature has been monitored and compared 

with the room temperature measurement where the radiator belongs to. Figure 5.15 

shows the average hourly temperature measured at the upper position of the 

electrical radiator in the living room for a 24 hours period. It can be seen that they are 

match to each other most of time but the upper spot of radiator rises sharply from 

6pm to 9pm which indicates the radiator was turned on. However, the room 

temperature does not seem to be significantly linked with the radiator but a small 

trend of temperature increase can be seen while the radiator being turned on. 
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Figure 5.15: temperature measurement of living room and its radiator top 

Various radiators and the ways they are heated affect the best monitoring position for 

temperature sensor as a direct method of recording its running status. The inlet pipe 

of radiator is less idea than the middle of radiator panel since the surface 

temperature seems to be lower in field study. This is perhaps caused by the smaller 

effective area in touch with the Tinytag logger which has its sensor embedded within 

enclosure. In principle, hot water will pass through inlet pipe of a fluid based radiator 

first before it emits heat by the rest of radiator panel. However, the pipe is much 

smaller than sealed temperature logger type and could potentially reduce the heat 

conductivity, therefore, reduces its measuring sensitivity. Surface temperature also 

seems to vary according to the position of a fluid based radiator, where higher 

position has warmer temperature readings and it may assist sensitivity of monitoring.  

For electrically heated storage heater, measuring its surface temperature may not 

reflect its status. This is because storage heater continues to emit heat after being 

turned off. It would be accurate to measure its electricity consumption.  

Directly attaching stand-along logger on a radiator panel may cause safety concern, 

due to the battery exposure to heat. Considering all the strength and weakness, it 

might be best to use logger with externally extended sensor that can be installed to 

the upper position of radiator panel.  
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5.2.6 Gas fireplace  
Fireplace operating 

In dwelling 2, the only heating element is the gas fireplace in its living room. Two sets 

of temperature loggers have been installed. One set in the living, at the centre of the 

room and one at the top of fireplace, the other set outside of the house, on the gas 

fireplace exhaust vent and the air temperature sensor of the local weather station. 

Dwelling 2 has gas cooker and it was not possible to separate its gas usage from 

fireplace due to potential disturbance of sub gas meter installation. Fig 5.16 

compared the hourly temperature of living room and the top of fireplace. Figure 5.17 

is the comparison between pulse count of main gas meter and temperature of 

fireplace exhaust vent and local external air temperature. Both figures include 7 days 

of monitoring data and presented in 24-hourly format.  

 

Figure 5.16: 24-hours mean temperature fireplace exhaust, outdoor and gas meter 
pulse 

Comparing the external ambient air temperature and the fireplace exhaust vent 

temperature, a pattern can be found that the temperature of exhaust vent is generally 

similar to temperature taken from local weather station except a few hours in the 

morning, late afternoon and evening. Having these hours compared with gas meter 

pulses, it seems that when gas pulse increases, the temperature of exhaust vent also 

does correspondingly. However, one exception exists, which is between 5 to 6 pm. 

This is perhaps the gas consuming activity of gas cooker which was not separated 

from gas fireplace. 
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The temperature measurement taken from the top of fireplace matches very well with 

the living room and remains constantly above 30°C when it is operating. Averagely it 

takes 3-4 hours to cool down to same level as living room after being turned off. 

 

Figure 5.17: 24-hours mean temperature of living room and the top of fireplace. 

Comparing measurement exhaust vent air of a gas powered fire place with external 

air temperature seems to be a valid method of monitoring whether a fireplace is 

being used. The temperature logger picked warmer readings at exhaust vent while 

gas consumption pulse count raised. During the period of no gas consuming 

activities, the exhaust vent has identical temperature reading as external air 

measures.  

In a small space with only gas fireplace as space heating method, fire place top 

temperature matches very well with the room temperature and when it is turned on. 

Gas fire place seems to produce convective heater quickly and a temperature logger 

on its top is able to record such a sudden rise as a indicator of operating status. After 

being turned off, it immediately begins to cool down and temperature measurement 

on its top drops sharply.  
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5.3 Domestic hot water 

5.3.1 Shower diary and Domestic Hot Water (immersion heater 

energy usage) 

Occupant of dwelling 6 volunteered to keep a shower diary in order to investigate the 

relationship between shower time and energy efficiency. Two dairies have been kept 

before and after boiler setting adjustment. First dairy keep period was 14 days.  In 

the period the immersion heater mainly supplies hot water demand, as ASHP unit 

was set to only work the first 45 minutes.  Space heating was not in use during the 

first shower diary- keeping period.  Figure 5.18 shows two pages of shower diary. 

Occupant wrote down the start and finish times of shower events as accurate as 

possible.  

The shower/bathing events have been manually projected  to the time on to 

immersion heater energy usage which were measured at 1 minute resolution, a few 

days have been picked randomly (day 1, 3, 5, 7, 9) and it can be seen that there is a 

clear linkage between them in the following figures 5.19 to 5.23.  Shower/bath events 

written on the diary are illustrated with immersion energy usage in 24-hours format.  

 

Figure 5.18: part of shower diary kept for wave 1, before re-commission being made 

The power rate of immersion heater is fixed, which means it will either be on or off at 

full power of 3 kW. The electricity used by immersion heater is 49 to 49.5Wh per 

minute which is very close to its actual power rate. The power rate of ASHP is 
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variable and it also provide space heating simultaneously with domestic hot water, 

which is the reason to list its electricity usage together with the others. 

 

Figure 5.19:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 1-wave1 

In figure 5.19, day 1’s monitoring only started at 12am with only one shower of 8 

minutes and then a bathing of 25 minutes. The ASHP had been running continuously 

right after the shower at higher power rate for 2 hours then half the power 

consumption for another 6 hours. The immersion heater was triggered right after the 

bathing with high energy consumption while ASHP ran at relatively lower power rate. 

 

Figure 5.20:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 3-wave1 
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On day 3, a 14 minutes shower event was followed by a peak of immersion heater 

which used 4699Wh in two hours. The ASHP was not running at low power rate 

while the peak occurred. 

 

Figure 5.21:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 5-wave1 

On day 5, only one 6 minutes shower and it did not trigger the immersion heater. 

 

Figure 5.22:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 7-wave1 
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On day 7, two shower events of 6 minutes, one in the morning and one in the 

afternoon. They match very well with peaks electricity consumptions of ASHP. 

 

Figure 5.23:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 9-wave1 

On day 9, three consecutive shower events are followed by peaks of electricity 

consumption of immersion heater right after each event. 

The rest of the days are very similar in terms of pattern in their daily view.  It seems 

that the majority of shower/bathing events have triggered the immersion to run. The 

longer a shower or bath event lasted, the longer and more frequently the immersion 

worked.  

Having suffered from the high energy bill after the first wave of shower/bath diary 

keeping, occupants of dwell 6 decided to have their ASHP and immersion heater re-

commissioned in order to reduce their cost. More importantly, they became more 

knowledgeable than before and made some behavioural changes on shower and 

bathing taking.  According to the interview after the re-commissioning, occupants in 

dwelling 6 began to adjust both their behaviour and system in order to find the 

balance between energy consumption and daily life style.  
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Figure 5.34: Dwelling 6 and 7 domestic hot water supply and demand flow    

 

As shown in figure 5.34, immersion heater is usually trigger by rapid and large 

domestic hot water demand. The energy efficient option for water heating is through 

ASHP unit, which is slower in responding speed especially in cold as there is less 

energy can be extracted from ambient air.  

The following behavioural changes, ASHP and immersion heating setting adjustment 

were made:  

• Tried to avoid taking shower or bath at late night or early morning 

• Tried to spread hot water uses throughout the day instead concentrated 

pattern. 



204 

 

• Set the ASHP temperature to 40 and maximise its working time prior to 

immersion heater, changed from 45 minutes to 95 minutes. 

• Minimised immersion heater working time from 5 minutes to 1 minute. 

• Maximised the anti-recycling time from 0.5 hour to 3 hours, which means 

system won’t be re-boiling within this set period. 

The second shower diary session lasted 14 days during the half of heating season.  

 

Figure 5.35: part of shower diary kept for wave 2, after re-commission being made 

 

Figure 5.36 to 5.40 show the day 1, 3, 5, 7, 9 of wave 2 after the the behavioural 

change and re-commission being made to the ASHP and immersion control panel.  
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Figure 5.36:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 1-wave2 

 

 

Figure 5.37:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 3-wave2 
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Figure 5.38:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 5-wave2 

 

Figure 5.39:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 7-wave2 
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Figure 5.40:  ASHP, Immersion heater electricity usage and shower/bath duration- 
dwelling 6- day 9-wave2 

The immersion heater was not trigged in these 5 days and only triggered twice during 

entire 14 days of wave 2. It can be seen that between the shower events, there are 

clear gaps of ASHP as well.  Without hot water demand from taking shower or 

bathing, ASHP seems work noticeably less. This is a very positive improvement as 

the ASHP had much less heat available for extraction in wave 2. In addition, the 

space heating was turned on more often in this wave2 which means that ASHP 

electricity consumption also include space heating. As a result of the new setting 

made to the control panel gives ASHP priority over the Immersion heater, this 

enables ASHP to run 95minutes to fulfil hot water demand  before switching to 

emergent immersion heater. The new setting also enables a period of 3 hours anti 

re-boiling feature that prevents immersion heater from running if the desired 

temperature has been reached inside the water tank.  

These changes are well reflected when comparing shower events along with ASHP 

and immersion energy consumption. Table 5.3 shows the comparison of ASHP 

electricity usage with the same shower/bath events.  

Table 5.3: Shower/bath behaviour and ASHP energy usage comparison 

Daily average ASHP (Wh) Immersion (Wh) Shower/bath (minute) 

Wave 1 6855 3041 28.4 
Wave 2 7015 343 27.6 
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It is interesting to see that daily average showering time is 28.4 minutes in wave 1 

and 27.66 minutes wave 2. This indicates that daily shower or bath demand is quite 

stable over the time and actually it is almost identical, averagely only differ 0.8 

minute between from other wave. It represents the consistence of shower/bath 

behaviour. 

Comparing the daily energy usage between two waves, average daily electricity 

consumption of immersion heater is 3041 Wh in wave 1 and it dropped down to only 

343 Wh per day in wave 2.   

Figure 5.41 compares the hourly shower events allocation. In wave 1, most of the 

shower behaviour taken place in hourly slots of 07:00-07:59, 12:00-12:59 and 17:00-

17:59, there are also a few in the late night as well. In wave 2, most shower and 

bathing event are in 06:00-06:59, 08:00-08:59 and 11:00 to 11:59 from 10th 

November to 15th December 2011.   

Self-reported shower/bath diary is an effective tool to record heating demand and it 

provides more accurate data than the interpretation of boiler and immersion heating 

energy activity. This is perhaps caused the built-in time lag with domestic hot water 

usage with storage tank, where certain amount of water will be always heated ready 

to stand by any demand. Although the there is clearly a link between shower/ bathing 

event and water heating system energy consumption, the time lag makes it difficult to 

estimate when a hot water demand activity occurred. Self-reported shower/bath diary 

may be considered to take too much effort to keep and might be objected by 

occupant for this reason, especially a family with several members as it entirely relies 

on self motivation to fill. 

In addition, figure 5.41 and 5.42 illustrate the difference before and after behaviour 

change. 
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Figure 5.41: Shower and bathing hourly allocation comparison 

Figure 5.42 illustrates hourly differences of between wave 1 and 2.  Orange (positive) 

columns are the increase of shower numbers in 2011 period and the white (negative) 

columns are the drops comparing to 2010 period. Starting from early morning, it is 

like occupant has shifted shower time one hour earlier as the rise in 06:00 slot 

followed by a reduction in 07:00 slot. The major increases are in AM hours before 

12:00 from 08:00 to 12:00. In the PM hours, there is significant increase in 18:00 slot. 

Occupants ceased to take use shower after 19:00 o’clock as they mentioned in one 

of the behavioural improvement. 
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Figure 5.42: Shower and Bathing hourly allocation difference 

 

5.3.2 Hot water outlet pipe 

Surface temperature of ASHP outlet pipe and return pipe have been monitored in 

dwelling 6. Figure 5.43 to 5.45 respectively illustrate the average, maximum and 

standard deviation of each hour of 14 days periods. 

 

Figure 5.43: average surface temperature of ASHP outlet and return pipes 
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Figure 5.44: maximum surface temperature of ASHP outlet and return pipes 

 

 

Figure 5.45: Standard deviation of surface temperature of ASHP outlet and return pipes 

In these figures, three sets of comparison have shown little difference between two 

pipes and the return flow pipe is always slight cooler than the outlet pipe. Average 

deviation of outlet pipe surface temperature is 0.77°C warmer than the return flow 

pipe. 
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Although it is a non-intrusive method, measuring surface temperature difference 

between outlet and return flow pipes of boiler tells very little more than general status 

of whether if boiler is operating or not. The surface temperature of outlet flow pipe 

seems always higher than return flow which is caused by the heat loss through 

circulation within a dwelling. It cannot replace the information that a inline flow meter 

or heat meter can provide with regards to domestic hot water related monitoring. 

 

5.3.3 Boiler control panel display 

An infrared camera and pixel detecting software have been used to monitor the 

display panel of AHSP unit of dwelling 6. However, the interpretation o f each image 

has to be conducted manually. Table 5.xx shows the number of images and images 

with actual icon changes over 14-days period.   The average recognition rate of 

image pixel change is 80%. The unrecognised pictures are either has no icon change 

or caused by increase of brightness by opening door of the storage room where the 

camera installed.  

Table 5.4: recognition rate of pixel change detection software and infrared camera 
images  

 Total image 
With icon 
change  

Recognition 
rate 

Day 1 85 60 71% 

Day 2 82 66 80% 

Day 3 160 120 75% 

Day 4 73 62 85% 

Day 5 65 57 87% 

Day 6 68 60 88% 

Day 7 221 144 65% 

Day 8 88 73 83% 

Day 9 69 57 82% 

Day 10 179 140 78% 

Day 11 73 58 80% 

Day 12 98 81 83% 

Day 13 82 66 81% 

Day 14 67 55 82% 
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There are five possible icons on the panel (figure 5.xx): 

• ASHP COMPRESSOR This icon indicates that the compressor in the 

outdoor unit of the installation is active. 

• BACKUP HEATER These icons indicate that the backup heater is 

operating, The backup heater provides extra heating capacity in case of low 

ambient outdoor temperature 

• IMMERSION BOOST HEATER ICON  This icon indicates that the 

booster heater is active. The booster heater provides auxiliary heating for the 

domestic hot water tank. 

• PUMP This icon indicates that the space heating circulation pump is 

active. 

• SET TEMPERATURE  The display shows the water temperature  for 

space heating circuit. 
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Figure 5.46: Icons on the display panel of ASHP, dwelling 6 

Although the camera and take images at dark and the software has average 80% 

rate of recognising changes of icon on the display panel, the interpretation work still 

has to be done manually. Table 5.5 lists the frequency (times) of these icons which 

have been manually counted for 14 days.  

Table 5.5: Frequency of Icons appeared on display panel- 14 days in wave 1 
Wave1 ASHP 

Compressor 
Pump Backup Heater Immersion 

Boost heater 
Setting 

temperature 
Day 1 12 11 3 10 0 
Day 2 13 12 3 11 0 
Day 3 24 22 8 20 0 
Day 4 12 11 3 11 1 
Day 5 11 10 3 10 0 
Day 6 12 11 3 10 0 
Day 7 29 26 7 24 0 
Day 8 15 13 4 12 2 
Day 9 11 10 1 10 0 

Day 10 28 25 12 24 0 
Day 11 12 11 3 10 1 
Day 12 16 15 7 14 0 
Day 13 13 12 3 11 0 

Day 14 11 9 3 9 0 
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There are few patterns found wave 1 as followings: 

• Immersion boost heater mostly appears on its own,  

• If ASHP Compressor  appears the Pump will follow, sometimes 

Backup heater  does too.  

• The Setting temperature  remains as 40°C, it only appeared few times 

without icon change but seems to be caused by the brightness change, 

possibly occurred when occupants entered the storage room. 

Wave 2 lasted as long as 14-days after re-commission being made to the ASHP and 

control (see surface pipe temperature section). Its immersion boost icon only 

appeared on two days for few times. The ASHP compressor icon and the pump were 

much more active and constant than wave 1.  

Table 5.6: ASHP control panel icon appearance counts 

 

This method, taking motion triggered pictures of the display icons of boiler panel, 

works as an indirect observer that keeps eyes of boiler status 24/7. The strength is 

that it is less invasive and does not require a researcher to be on site. This is 

favourable in domestic building research as most occupancy expands outside of 

working hours where direct observation of space heating usually would be difficult to 

conduct.  

Wave 2 ASHP 
Compressor 

Pump Backup Heater Immersion 
Boost heater 

Setting 
temperature 

Day 1 17 16 5 0 0 
Day 2 23 22 6 2 0 
Day 3 25 22 4 0 0 
Day 4 22 21 6 0 0 
Day 5 19 20 7 0 0 
Day 6 22 21 3 0 0 
Day 7 22 26 7 0 0 
Day 8 24 23 9 0 0 
Day 9 21 22 5 0 0 
Day 10 28 25 6 0 0 
Day 11 22 21 8 0 0 
Day 12 24 15 8 0 0 
Day 13 23 22 6 4 0 
Day 14 21 10 2 0 0 
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There is two main weaknesses. For one, it takes long time to manually interpret still 

images into meaningful boiler activities as every time an icon change in the view field 

of camera will be captured. This may become a problem for long-term monitoring. 

For another, the motion detection works much better in environment with strictly 

controlled brightness which might not be possible in some household.  

5.4 Windows and door 

Three tailored instrumentations that designed for angle measurement of internal door 

and windows have been tested in dwelling 3, an office environment. None of other 

participated households were in favour of internal door angle monitoring. Permission 

of window installation was granted however all the customised set up are either too 

visible or not weather proof. Therefore, only the field study results of from ‘dwelling 

3’, author’s office are presented in this section, by comparing measured angle and 

observed angle. 

5.4.1 Multiple contact switches board  

Testing results of multiple sensor board a close data observation, as shown in 5.47. 

A multiple sensor board can determine the angle of a door as operated and record 

the period during which it was maintained at a certain angle. Testing results are very 

close to observation. 
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Figure 5.47: Comparison of observed and measured door angle, multi contact switches 

 

5.4.2 Flexi sensor 

The range of selected flexi sensor to monitor door angle is between 7000 Ω to 13000 

Ω depends the level of being bent (0° to 180°) (Figure 5.48).   

 

Figure 5.48 Flexi sensor resistance and bending level 
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The the comparison between observed and measured angles are illustrated in figure 

5.49. The results show a clear relationship between resistance value and the angles 

of door. However, resistance value flexi sensor seems to have small variation for 

identical door angle which may be caused the physical position of the tested door. It 

is not possible to move exactly the same angle every time. The positioned angle is 

ranged from 0° to 90° which has a measured resistance value between 9030 Ω to 

13000 Ω. Given the resistance value varies in line enough with the door angle, it is 

difficult to interpret the data directly.  Averagely, every degree the door turned is 

equivalent to 30Ω drop on flexi sensor measurement.  

 

Figure 5.49: Comparison of observed and measured door angle, Flexi sensor 

5.4.3 Rotary position sensor 

A rotary resistive position sensor was selected to test the measurement accuracy on 

the same door where flexi sensor was tested simultaneously. It measured the same 

positions that a door was manually adjusted. Figure 5.50 shows its resistance value 

that compared with door angles. The rotary position sensor is capable of measuring 

from 0° to 330° with resistive range of 2500 Ω to 10000 Ω. The measured resistance 

value of rotary position sensor match very well with tested door at various angles 

with great consistence in terms of its readings.  
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Figure 5.50: Comparison of observed and measured door angle, rotary position sensor 

 

5.4.4 Single contact switch  

Prior to long term monitoring, two combination of single contact switch and different 

data loggers have been tested in dwelling 3 the office environment, one is pulse 

counter with interval setting and other one is pulse counter with event setting. The 

major difference between two methods is the resolution of data points. Pulse counter 

with interval has fixed data format which presents the number of times that a contact 

switch trigged within that interval. The longer the interval is set, the fewer data points 

at cost of less detailed measurement. The event logger takes exactly the time when 

a contact switch is triggered, whose raw data does not have fixed time interval.  

Given the simplicity of contact switches is only magnet triggered and gives either 

open or close status, both types of loggers have been tested for 5 working days, with 

same contact switches installed in dwelling 3 the tested office at different settings 

each day. The event logger is not changeable,  but the pulse counter was set to 

record total number of pulses at 1 minute, 5 minutes, 15 minutes, 30 minutes and 60 

minutes respectively for these 5 days. Figure 5.xx to 5.xx shows the comparison 

result between them with regards to number of times that windows and doors being 

opened and closed.  
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Table 5.7: Comparison of pulse between pulse counter and event logger 

 

1 
min
ute  

5 
minute
s  

15 
minute
s  

30 
minute
s  

60 
minute
s  

Hour 

Puls
e 
cou
nter 

Event 
logge
r 

Pulse 
counte
r 

Event 
logge
r 

Pulse 
counte
r 

Event 
logge
r 

Pulse 
counte
r 

Event 
logge
r 

Pulse 
counte
r 

Event 
logge
r 

00:00 0 0 0 0 0 0 0 0 0 0 
01:00 0 0 0 0 0 0 0 0 0 0 
02:00 0 0 0 0 0 0 0 0 0 0 
03:00 0 0 0 0 0 0 0 0 0 0 
04:00 0 0 0 0 0 0 0 0 0 0 
05:00 0 0 0 0 0 0 0 0 0 0 
06:00 4 4 4 4 2 2 2 2 0 0 
07:00 0 0 0 0 0 0 0 0 4 4 
08:00 1 1 0 0 4 5 1 1 1 1 
09:00 12 15 3 3 4 3 1 1 3 3 
10:00 4 4 4 4 4 4 4 4 4 4 
11:00 0 0 10 13 0 0 0 0 0 0 
12:00 5 5 5 5 5 5 5 5 5 5 
13:00 1 1 1 1 1 1 1 1 1 1 
14:00 4 4 3 3 9 13 4 4 4 4 
15:00 0 0 0 0 0 0 0 0 0 0 
16:00 10 12 0 0 0 0 0 0 0 0 
17:00 3 3 3 3 4 4 8 8 13 17 
18:00 0 0 0 0 0 0 0 0 0 0 
19:00 0 0 0 0 0 0 0 0 0 0 
20:00 0 0 0 0 0 0 0 0 0 0 
21:00 0 0 0 0 0 0 0 0 0 0 
22:00 0 0 0 0 0 0 0 0 0 0 
23:00 0 0 0 0 0 0 0 0 0 0 

 

As listed in table 5.7, the total number of contact switches being triggered are almost 

completely identical except several occasions when event logger seems counted a 

few more than the pulse counter measured, despite its interval length settings. 

Longer interval settings, such like 60 minutes, cannot provide enough evidence on 

this occasions to examining exactly what caused the difference count. There is one 

thing in common that intensive triggering a contact switch seems to generate higher 

number of pulse to event logger due to its higher sensitivity.  A close examination of 

the monitoring date on day 1 whose pulse counter was set to 1 minute interval 

supported this hypothesis. In general, pulse counter and event logger are matching 

very closely to each other. 

Operations of two bedroom windows and front door have been monitored 

simultaneously from June 2011 to Mar 2012. One bedroom window, one bathroom 

window, the front door have been individually monitored, plus the kitchen/garden 
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door at Dwelling 6. Their opening times are illustrated in figure 5.51 and listed in 

table 5.8. 

 

Figure 5.51: Door opening times comparison between dwelling 6 and 7 

 

Table 5.8: Door opening times comparison between dwelling 6 and 7 

Monthly Front 
Door- 
Dwelling 7 

Kitchen/Ga
rden door 
Dwelling 7 

Front 
Door- 
Dwelling 6 

Kitchen/Gar
den door 
Dwelling 6 

Jun-2011 151 Not in use 201 52 

Jul-2011 463 202 70 

Aug-2011 415 213 118 

Sep-2011 363 240 78 

Oct-2011 408 258 80 

Nov-2011 366 275 62 

Dec-2011 368 304 60 

Jan-2012 423 347 105 

Feb-2012 347 215 37 

Mar-2012 126 186 15 

 

Front door Dwelling7 

Kitchen/Garden door  

Front door Dwelling 6 
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It can be seen that in July 2011 that front door of dwelling 7 has been opened 463 

times, averagely 15 times per day. Dwelling 6’s front door was opened 202 times in 

the same month, equivalent to 7 times per day.  Over the whole 10 months, dwelling 

7’s front door has been opened more frequently than dwelling 6. Front door’s 

opening usually represents the frequency of occupant entering and exiting the 

bungalow.   

The opening frequency of dwelling 6’s front door gradually rises until Jan 2012 then 

drops. This may be explained by one the habit that the occupants have. The front 

door area of dwelling 6 has another function which is used as a covered smoking 

spot even had a cigarette butt collector installed to the external wall. It was observed 

several times that during the winter occupants of dwelling6 used the front door as 

first choice of smoking spot instead of the kitchen/garden door. While smoking, 

occupants in dwelling 6 often left the door partially open and they are aware of 

opened door may lead to the loss of warmth in the kitchen.  

Regarding the bedroom windows operation, window 1 of dwelling 7 have been 

opened up to 288 times in July 2011 the frequency continues to drop. Window 1 is 

the kid’s bedroom window and the parents do not want kid’s bedroom to be over 

ventilated too cold during the winter, as a result, the window are operated less 

frequently in the wintery month than summer. The same tendency is also found in 

Window 1 of dwelling 6.  
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Figure 5.52: Bedroom window opening behaviour comparison 

 

Table 5.9: Bedroom window opening behaviour comparison 

Monthly Window 1 
Dwelling 7 

Window 1- 
Dwelling 6 

Jun-2011 147 123 

Jul-2011 288 150 

Aug-2011 232 187 

Sep-2011 169 190 

Oct-2011 155 85 

Nov-2011 80 100 

Dec-2011 15 71 

Jan-2012 46 120 

Feb-2012 76 35 

Mar-2012 22 44 

Window 2 belongs to the bedroom bathroom in both dwellings. Since the houses 

were built with high standard especially the air tightness, occupants always ventilate 

their bathroom after use to prevent condensation and unpleasant mould growing 

issue.  Both Window 2s have very stable opening frequency from summer to winter. 

The only difference is that dwelling 7’s Window 2 have been opened less frequently 

in winter than summer. Occupant of dwelling 6 operates its window 2 slightly more 

often in winter. Over all, dwelling 6’s operates window 2 more than its neighbour 

dwelling 7. 
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 Figure 5.53: Bathroom window opening behaviour comparison 

Table 5.10: Bathroom window opening behaviour comparison 

Monthly Window 2- 
dwelling 7 

Window 2- 
Dwelling 6 

Jun-2011 142 96 

Jul-2011 246 96 

Aug-2011 206 101 

 Sep-2011 179 112 

Oct-2011 201 123 

Nov-2011 181 129 

Dec-2011 183 144 

Jan-2012 209 161 

Feb-2012 171 100 

Mar-2012 66 87 

 

 

5.5 Electrical appliance and lighting 

There are two methods have been applied in participated households, namely, 

current transducer with and socket appliance sensor, either one or both methods are 

applied in dwelling 1 to 8, exclude dwelling 3.  
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5.5.1 Current transducer and voltage 

The main differences between current transducer and socket appliance is real time 

voltage measurement. Current transducer measures the only electric current and 

multiplies with a fixed voltage value in order to calculate electricity consumption, 

unlike individual socket sensor which measures real-time values of both.  

Theoretically, the latter is more accurate as voltage can slightly fluctuate from 

household to household. Table 5.11 compares the difference between measured 

total electricity usage and actual meter readings for various number of days.  

Table 5.11:  Actual meter reading and Current transducer measurement comparison 

 

 
 

Number of 
days 

Actual meter 
readings 

Current 
transducer 

measurement Error rate 

Dwelling 1 56 674 kWh 573 kWh 15% 

Dwelling 2 42 1047 kWh 921 kWh 12% 

Dwelling 4 89 588 kWh 488 kWh 17% 

Dwelling 5 165 2354 kWh 2119 kWh 10% 

Dwelling 6 141 1369 kWh 1164 kWh 15% 

Dwelling 7 121 2050 kWh 1825 kWh 11% 
Dwelling 8 18 155 kWh 127 kWh 18% 

 

The measured electricity consumption values of all householder are 10% to 18% 

lower than the actual metering reading results. It seems that the longer the 

monitoring period, the lower the error rate. It is possibly caused by the variation of 

voltage  

One set of trial current transducer based electricity monitoring system does actually 

measure the real time voltage. It was briefly tested for 24 hours at dwelling 1, side by 

side with current transducer without voltage input monitoring system (figure 5.54).  
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Figure 5.54: Comparison between current transducer with and with voltage 
measurement   

The total electricity consumption of meter reading of these 24 hours is 18911 Wh, 

while current transducer with and without voltage show 18475 Wh and 17234 Wh 

respectively. Both measured electricity consumptions are lower than actual usage 

calculated by main meter readings, current transducer with voltage input is only 2.6% 

lower, whereas current transducer without voltage input is 9% lower. Over these 24 

hours, the voltage varied from 232V to 255 V, such fluctuation seems to the reason 

of lower measured consumption taken by sensor without voltage. A close 

examination show positive relationship between the difference of these two 

monitoring system and real time voltage measure (table 5.12).  

Table 5.12: Comparison between current transducer with and without voltage input 

Hour Electricity consumption 
measurement difference Voltage difference 

0 7.39% 17 V 

1 7.39% 17 V 

2 10.87% 25 V 

3 10.87% 25 V 

4 10.87% 25 V 

5 10.87% 25 V 

6 7.83% 18 V 

7 6.52% 15 V 
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8 5.22% 12 V 

9 5.22% 12 V 

10 5.22% 12 V 

11 5.22% 12 V 

12 3.91% 9 V 

13 2.17% 5 V 

14 5.22% 12 V 

15 5.22% 12 V 

16 5.22% 12 V 

17 0.87% 2 V 

18 1.30% 3 V 

19 0.87% 2 V 

20 2.17% 5 V 

21 3.91% 9 V 

22 6.09% 14 V 

23 6.52% 15 V 

 

The difference between current transducer with and without voltage import directly 

affect the accuracy of measured electricity consumption. The error increases 

proportionally with the difference between actual voltage and estimated voltage 

setting. Where absolute accuracy is required, it is probably best to choose current 

transducer with voltage input as up to 10.87% difference was found in field study. 

Measuring voltage requires electrician to connect since it need direct wiring to the 

live line with high voltage, therefore, increase the cost and invasiveness of 

installation. 

5.5.2 Socket appliance sensor and current transduce 

In dwelling 6, the sub circuits for all sockets in kitchen were monitored 

simultaneously by individual socket sensor and current transducer. The accuracy of 

socket appliance sensor has been compared with current transducer without voltage 

input. The most detailed level of measurement current transducer could take is whole 

sub-circuit. Therefore, for the testing period of 14 days, every appliance in the 

kitchen was installed either with its own dedicated socket sensor or shared with 

power strips. All the sockets in the kitchen, namely, kettle, hob, oven, microwave 

fryer, washing machine, tumble dryer, TV, fridge-freezer, and miscellaneous sockets, 

are added up to compare with current transducer measured electricity (table 5.13).  
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Table 5.13: Comparison between current transducer and socket sensor measurement 

 
Current transduce for 
kitchen Sub-circuit 

Total socket sensor 
measurement 

Day 1 3578 Wh 3907 Wh 

Day 2 3614 Wh 3939 Wh 

Day 3 3579 Wh 3865 Wh 

Day 4 3615 Wh 3940 Wh 

Day 5 3796 Wh 4061 Wh 

Day 6 3871 Wh 4173 Wh 

Day 7 5807 Wh 6330 Wh 

Day 8 3484 Wh 3801 Wh 

Day 9 5575 Wh 5965 Wh 

Day 10 2787 Wh 3038 Wh 

Day 11 4739 Wh 5118 Wh 

Day 12 3317 Wh 3516 Wh 

Day 13 2322 Wh 2531 Wh 

Day 14 3483 Wh 3796 Wh 

Total electricity consumption added by all the socket sensors’ measurement in the 

kitchen is slightly higher than the current transducer for every day of this monitoring 

period. The selected current transducer has a default estimated voltage of 230V, 

where spot measurement of socket voltage are all above 240V which can be the 

cause of higher but more accurate measurement taken by socket sensor.  

Total number of socket sensors in this studying kitchen is 12, due to each unit has 

limited power rate restriction. Appliance with higher power rate, such like fryer, kettle 

and tumble dryer must have its own socket sensor rather than one with power strip 

extension. After 14 days, the sensor installed for kettle become broken, possibly due 

to momentary current overload of this kettle (power rated 2000kW). 

The only downside of socket appliance sensor is probably the cost in this study, in 

domestic environment, the number of high power rated appliance can be high and as 

a result the cost may increase. The selected sensor, Plugwise, worked very well in 

terms of built-in memory and wireless system. Data collection could be done without 

entering the house as long as within its network coverage. Accuracy wise, socket 

appliance sensor measured higher electricity usage than current transducer without 

voltage import. This is consistent with the previous comparison where CT with 

voltage is generally lower. 
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5.5.3 Long term electricity monitoring for off-gas dwellings 

All the six sub electrical circuits of dwelling 6 and 7 have been monitor continuously 

for 14 months in total, with an exception at dwelling 6 when a power failure occurred 

during April and May 2011.  

Table 5.14: Monthly summary of electricity consumption in dwelling 6 

Monthly ASHP 
Immersion 

Heater 
Cooker 

Kitchen 
Socket 

Other 
Sockets 

Lighting 
Total 

consumption 

2011-Jan 375 kWh 74 kWh 22 kWh 130 kWh 237 
kWh 44 kWh 882 kWh 

2011-Feb 261 kWh 49 kWh 20 kWh 90 kWh 138 
kWh 37 kWh 595 kWh 

2011-Mar 171 kWh 26 kWh 20 kWh 81 kWh 94 kWh 37 kWh 429 kWh 

2011-Apr   
  Missing data 

  2011-May 

2011-Jun 55 kWh 10 kWh 12 kWh 74 kWh 43 kWh 5 kWh 199 kWh 

2011-Jul 77 kWh 14 kWh 24 kWh 128 kWh 
173 
kWh 8 kWh 424 kWh 

2011-Aug 90 kWh 3 kWh 38 kWh 37 kWh 175 
kWh 9 kWh 352 kWh 

2011-Sep 88 kWh 11 kWh 31 kWh 43 kWh 109 
kWh 9 kWh 291 kWh 

2011-Oct 145 kWh 17 kWh 25 kWh 103 kWh 
158 
kWh 18 kWh 466 kWh 

2011-Nov 223 kWh 16 kWh 33 kWh 73 kWh 146 
kWh 31 kWh 522 kWh 

2011-Dec 344 kWh 12 kWh 22 kWh 103 kWh 119 
kWh 41 kWh 641 kWh 

2012-Jan 226 kWh 13 kWh 24 kWh 130 kWh 
237 
kWh 44 kWh 674 kWh 

2012-Feb 180 kWh 12 kWh 23 kWh 90 kWh 138 
kWh 37 kWh 480 kWh 

2012-Mar 111 kWh 16 kWh 21 kWh 81 kWh 94 kWh 37 kWh 360 kWh 

 

The rest months show good mixture of electricity end used over seasons.  ASHP and 

immersion usage change significantly from winter to summer.  ASHP supplies space 

heating and domestic hot water while immersion heater acts as backup option when 

ASHP cannot cope large and sudden hot water demand especially under cold 

climatic conditions. Peak consumption of ASHP and immersion heater usage are 

found in December 2010.  As listed in table 5.xx, in December 2010 ASHP circuit 

used 508 kWh and immersion heater consumed 112kWh. Both ASHP and immersion 

heater consumption decreased sharply in January 2012 and continued to drop 

gradually. Lowest ASHP electricity consumption occurred in June 2011, only 55kWh 



230 

 

that is almost 90% less. Immersion heater consumed only 3kWh for the whole month 

in August. Lighting usage also varied along with season nicely. Summer month used 

up to eight times less than winter possible due to longer daylight hour. 

Proportionally, the distribution of every sub circuits are listed and illustrated in table 

5.15 and figure 5.55 respectively. During wintery months, ASHP and other sockets 

usually take the highest of part of electricity consumption of whole house. 

Table 5.15: Monthly percentage of electricity consumption in dwelling 6 

Monthly ASHP 
Immersion 

Heater 
Cooker 

Kitchen 
Socket 

Other 
Sockets 

Lighting 

2011-Jan 43% 8% 2% 15% 27% 5% 

2011-Feb 44% 8% 3% 15% 23% 6% 

2011-Mar 40% 6% 5% 19% 22% 9% 

2011-Apr 
Missing data  

2011-May 

2011-Jun 28% 5% 6% 37% 22% 3% 

2011-Jul 18% 3% 6% 30% 41% 2% 

2011-Aug 26% 1% 11% 11% 50% 3% 

2011-Sep 30% 4% 11% 15% 37% 3% 

2011-Oct 31% 4% 5% 22% 34% 4% 

2011-Nov 43% 3% 6% 14% 28% 6% 

2011-Dec 54% 2% 3% 16% 19% 6% 

2012-Jan 34% 2% 4% 19% 35% 7% 

2012-Feb 38% 3% 5% 19% 29% 8% 

2012-Mar 31% 4% 6% 23% 26% 10% 
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Figure 5.55: Monthly percentage summary of electricity consumption in dwelling 6  

Dwelling 7 has been monitored simultaneously with it neighbour, as listed in table 

5.16, highest ASHP consumption months are January 2011 and Feb 2012. In 

January 2011, ASHP consumed 444kWh and 530 kWh respectively. Lowest ASHP 

usage was June 2011 that only consumed 108 kWh. Immersion water heater 

consumption has been relatively stable throughout winter and summer. The highest 

immersion heater consumption was in August 2010, one of the warmest months in 

summer. The lowest month was February 2011 in the winter.  
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Table 5.16: Monthly summary of electricity consumption in dwelling 6 

Month ASHP 
Immersion 

Heater 
Cooker 

Kitchen 

Socket 

Other 

Sockets 
Lighting 

Total 

consumption 

2011-Jan 444 kWh 135 kWh 38 kWh 190 kWh 267 kWh 49 kWh 1123 kWh 

2011-Feb 286 kWh 87 kWh 24 kWh 122 kWh 172 kWh 42 kWh 733 kWh 

2011-Mar 403 kWh 149 kWh 31 kWh 156 kWh 322 kWh 42 kWh 1103 kWh 

2011-Apr 183 kWh 138 kWh 36 kWh 178 kWh 249 kWh 25 kWh 809 kWh 

2011-May 197 kWh 148 kWh 45 kWh 225 kWh 276 kWh 28 kWh 919 kWh 

2011-Jun 108 kWh 103 kWh 32 kWh 158 kWh 294 kWh 19 kWh 714 kWh 

2011-Jul 136 kWh 105 kWh 39 kWh 194 kWh 344 kWh 23 kWh 841 kWh 

2011-Aug 156 kWh 181 kWh 52 kWh 262 kWh 317 kWh 24 kWh 992 kWh 

2011-Sep 184 kWh 121 kWh 39 kWh 194 kWh 322 kWh 24 kWh 884 kWh 

2011-Oct 251 kWh 156 kWh 47 kWh 235 kWh 317 kWh 38 kWh 1044 kWh 

2011-Nov 343 kWh 156 kWh 46 kWh 232 kWh 294 kWh 36 kWh 1107 kWh 

2011-Dec 435 kWh 180 kWh 46 kWh 229 kWh 276 kWh 46 kWh 1212 kWh 

2012-Jan 449 kWh 139 kWh 62 kWh 311 kWh 322 kWh 49 kWh 1332 kWh 

2012-Feb 530 kWh 125 kWh 52 kWh 260 kWh 249 kWh 42 kWh 1258 kWh 

2012-Mar 343 kWh 129 kWh 43 kWh 216 kWh 267 kWh 42 kWh 1040 kWh 

 

In terms of percentage, ASHP consumption in dwelling 7 varied well with season, 

reached up to 42% in each winter. From January 2011, ASHP consumption gradually 

reduced until June, and began to rise again until February 2012. Compared with 

ASHP, immersion heater, cooker, kitchen sockets and lighting are relatively more 

stable. Consumption of other sockets increased substantially in summer, up to 41% 

in June and July.  
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Table 5.16: Monthly percentage of electricity consumption in dwelling 7 

Monthly ASHP 
Immersion 

Heater 
Cooker 

Kitchen 
Socket 

Other 
Sockets 

Lighting 

2011-Jan 40% 12% 3% 17% 24% 4% 

2011-Feb 39% 12% 3% 17% 23% 6% 

2011-Mar 37% 14% 3% 14% 29% 4% 

2011-Apr 23% 17% 4% 22% 31% 3% 

2011-May 21% 16% 5% 24% 30% 3% 

2011-Jun 15% 14% 4% 22% 41% 3% 

2011-Jul 16% 12% 5% 23% 41% 3% 

2011-Aug 16% 18% 5% 26% 32% 2% 

2011-Sep 21% 14% 4% 22% 36% 3% 

2011-Oct 24% 15% 5% 23% 30% 4% 

2011-Nov 31% 14% 4% 21% 27% 3% 

2011-Dec 36% 15% 4% 19% 23% 4% 

2012-Jan 34% 10% 5% 23% 24% 4% 

2012-Feb 42% 10% 4% 21% 20% 3% 

2012-Mar 33% 12% 4% 21% 26% 4% 

 

 

Figure 5.56: Monthly percentage summary of electricity consumption in dwelling 7  
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5.6 Indoor physical environment 

Detailed monitoring data of household are presented in later section where 

participated dwellings are compared.  In general, both standing alone and wireless 

sensor and loggers are very well functional. Wireless monitoring system has one 

weakness that it relies on the on site computer to receive and record measurement. 

There are a few times that the on-site computers were powered off due to 

unforeseen reasons and caused data loss.  

The number of available sensors reached peak while studying dwelling 6.  There was 

period that the living room and kitchen were installed with multiple temperature and 

humidity sensors in order to compare the effect of different locations within the same 

room.  

 

5.6.1 Location of temperature measurement in same room 

For the testing period, three Tinytag temperature and humidity loggers have been 

installed in the living room for a 28 days period. They were placed near entrance, 

under window and the decorative fireplace.  They are all place away from radiator 

and direct sunlight and any other direct heat source.  

  

Figure 5.57: Different locations temperature humidity logger in living room –dwelling 6, 
top left: near window, top right: near entrance, bottom: fireplace 
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The average hourly temperature measurements taken from these three locations are 

listed in table 5.17.  All the sensors were calibrated before installation and have 

accuracy of 0.01˚C. Comparing the hourly temperature measurements and their 

standard deviations, most of the results are exactly the same, except fireplace and 

window side. It seems that the temperature taken from the window side is slightly 

lower than the other two, the highest difference is 0.12˚C. During the day time, the 

measurement taken by sensor near the entrance are slightly higher, which is possibly 

caused by its furthest distance from external wall.  

Table 5.17: Temperature comparison of multiple sensors in living room of dwelling 6 

Hour Fireplace  
Fireplace 
standard 
deviation 

Near 
window 

Near 
window 
standard 
deviation 

Near 
entrance 

Near 
entrance 
standard 
deviation 

0 19.75 ˚C 0.66 ˚C 19.77 ˚C 0.65 ˚C 19.77 ˚C 0.66 ˚C 

1 19.72 ˚C 0.66 ˚C 19.70 ˚C 0.64 ˚C 19.74 ˚C 0.66 ˚C 

2 19.60 ˚C 0.64 ˚C 19.51 ˚C 0.65 ˚C 19.62 ˚C 0.64 ˚C 

3 19.43 ˚C 0.62 ˚C 19.30 ˚C 0.64 ˚C 19.45 ˚C 0.63 ˚C 

4 19.25 ˚C 0.62 ˚C 19.07 ˚C 0.62 ˚C 19.27 ˚C 0.62 ˚C 

5 19.07 ˚C 0.59 ˚C 18.89 ˚C 0.59 ˚C 19.09 ˚C 0.59 ˚C 

6 18.91 ˚C 0.60 ˚C 18.70 ˚C 0.60 ˚C 18.93 ˚C 0.60 ˚C 

7 18.81 ˚C 0.60 ˚C 18.59 ˚C 0.62 ˚C 18.83 ˚C 0.60 ˚C 

8 18.75 ˚C 0.56 ˚C 18.58 ˚C 0.58 ˚C 18.77 ˚C 0.56 ˚C 

9 18.72 ˚C 0.52 ˚C 18.55 ˚C 0.51 ˚C 18.74 ˚C 0.52 ˚C 

10 18.68 ˚C 0.47 ˚C 18.54 ˚C 0.48 ˚C 18.70 ˚C 0.47 ˚C 

11 18.71 ˚C 0.49 ˚C 18.64 ˚C 0.50 ˚C 18.73 ˚C 0.50 ˚C 

12 18.75 ˚C 0.52 ˚C 18.67 ˚C 0.53 ˚C 18.77 ˚C 0.52 ˚C 

13 18.75 ˚C 0.53 ˚C 18.68 ˚C 0.55 ˚C 18.77 ˚C 0.53 ˚C 

14 18.70 ˚C 0.70 ˚C 18.64 ˚C 0.68 ˚C 18.72 ˚C 0.70 ˚C 

15 18.60 ˚C 0.91 ˚C 18.55 ˚C 0.88 ˚C 18.62 ˚C 0.91 ˚C 

16 18.76 ˚C 0.62 ˚C 18.73 ˚C 0.66 ˚C 18.78 ˚C 0.62 ˚C 

17 18.92 ˚C 0.58 ˚C 18.93 ˚C 0.59 ˚C 18.94 ˚C 0.58 ˚C 

18 19.10 ˚C 0.59 ˚C 19.10 ˚C 0.59 ˚C 19.12 ˚C 0.59 ˚C 

19 19.23 ˚C 0.57 ˚C 19.25 ˚C 0.56 ˚C 19.24 ˚C 0.57 ˚C 

20 19.32 ˚C 0.59 ˚C 19.34 ˚C 0.58 ˚C 19.34 ˚C 0.59 ˚C 

21 19.42 ˚C 0.60 ˚C 19.43 ˚C 0.58 ˚C 19.44 ˚C 0.60 ˚C 

22 19.52 ˚C 0.63 ˚C 19.53 ˚C 0.59 ˚C 19.54 ˚C 0.63 ˚C 

23 19.66 ˚C 0.63 ˚C 19.68 ˚C 0.62 ˚C 19.68 ˚C 0.63 ˚C 
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The same pattern is found with measurement of three locations in the kitchen (table 

5.18), namely, worktop, near internal door and under the window (figure5.58). 

  

Figure 5.58: Different locations temperature humidity logger in living room –dwelling 6, 
top left: worktop, top right: under the window and bottom right: near internal door 

Table 5.18: Temperature comparison of multiple sensors in kitchen of dwelling 6 

Hour Worktop  
Worktop 
standard 
deviation 

under 
window 

under 
window 
standard 
deviation 

Near internal 
door 

Near internal 
door 
standard 
deviation 

0 19.42 ˚C 0.90 ˚C 19.35 ˚C 0.53 ˚C 19.44 ˚C 0.93 ˚C 

1 19.37 ˚C 0.90 ˚C 19.23 ˚C 0.56 ˚C 19.39 ˚C 0.93 ˚C 

2 19.25 ˚C 0.90 ˚C 19.01 ˚C 0.58 ˚C 19.27 ˚C 0.93 ˚C 

3 19.09 ˚C 0.90 ˚C 18.82 ˚C 0.59 ˚C 19.11 ˚C 0.92 ˚C 

4 18.98 ˚C 0.91 ˚C 18.69 ˚C 0.62 ˚C 19.00 ˚C 0.94 ˚C 

5 18.86 ˚C 0.92 ˚C 18.50 ˚C 0.62 ˚C 18.88 ˚C 0.94 ˚C 

6 18.75 ˚C 0.90 ˚C 18.44 ˚C 0.62 ˚C 18.76 ˚C 0.93 ˚C 

7 18.68 ˚C 0.91 ˚C 18.34 ˚C 0.60 ˚C 18.70 ˚C 0.94 ˚C 

8 18.63 ˚C 0.88 ˚C 18.32 ˚C 0.55 ˚C 18.64 ˚C 0.90 ˚C 

9 18.55 ˚C 0.80 ˚C 18.26 ˚C 0.52 ˚C 18.57 ˚C 0.82 ˚C 

10 18.56 ˚C 0.75 ˚C 18.32 ˚C 0.57 ˚C 18.58 ˚C 0.77 ˚C 

11 18.60 ˚C 0.76 ˚C 18.36 ˚C 0.56 ˚C 18.61 ˚C 0.78 ˚C 

12 18.63 ˚C 0.68 ˚C 18.42 ˚C 0.63 ˚C 18.65 ˚C 0.70 ˚C 

13 18.75 ˚C 0.71 ˚C 18.55 ˚C 0.65 ˚C 18.76 ˚C 0.73 ˚C 

14 18.78 ˚C 0.70 ˚C 18.64 ˚C 0.69 ˚C 18.80 ˚C 0.72 ˚C 

15 18.83 ˚C 0.70 ˚C 18.67 ˚C 0.73 ˚C 18.85 ˚C 0.73 ˚C 
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Hour Worktop  
Worktop 
standard 
deviation 

under 
window 

under 
window 
standard 
deviation 

Near internal 
door 

Near internal 
door 
standard 
deviation 

16 18.85 ˚C 0.74 ˚C 18.67 ˚C 0.67 ˚C 18.87 ˚C 0.76 ˚C 

17 18.91 ˚C 0.76 ˚C 18.76 ˚C 0.65 ˚C 18.93 ˚C 0.78 ˚C 

18 18.98 ˚C 0.76 ˚C 18.84 ˚C 0.67 ˚C 19.00 ˚C 0.78 ˚C 

19 19.05 ˚C 0.81 ˚C 18.96 ˚C 0.61 ˚C 19.07 ˚C 0.83 ˚C 

20 19.09 ˚C 0.84 ˚C 19.00 ˚C 0.63 ˚C 19.11 ˚C 0.87 ˚C 

21 19.14 ˚C 0.87 ˚C 19.05 ˚C 0.56 ˚C 19.16 ˚C 0.89 ˚C 

22 19.25 ˚C 0.88 ˚C 19.19 ˚C 0.52 ˚C 19.27 ˚C 0.90 ˚C 

23 19.39 ˚C 0.88 ˚C 19.32 ˚C 0.49 ˚C 19.41 ˚C 0.91 ˚C 

It can be seen that in both tested room. The temperature variation between different 

measurement locations is not greater than 0.45°C. This is potentially a joint result of 

the built-error of Tinytag logger and activity type in the room. Manufacturer claimed 

reading accuracy is 0.01°C or better and each logger had been calibrated before 

installation. There is still room for measurement and each logger may have small 

response difference built-in with itself. Despite this possible source of error, the 

standard deviation in living room is generally lower than measurement taken in 

kitchen. This is possibly caused by the use of appliances and cooking activities that 

occurred in the kitchen with unregulated heat gains. In general, the difference is 

within an acceptable range where a central location cannot be permitted to install 

sensor at. 

 

5.6.2 Temperature and humidity of different room 
Dwelling 1 

Dwelling 1 has relatively smaller space and all the radiators have to be controlled 

individually. Its kitchen and living room are one connected open space. Table 5.19 

compared the mean and standard deviation of air temperature and relative humidity 

measurement of various room during heating season for 14 days. Given the fact that 

this apartment does not have central heating, the mean air temperature of bedroom 

centre, living centre, hallway and bathroom centre are almost identical.  Living room 

centre and bathroom centre are 0.2°C higher, possibly due to the cooking and 

shower activity.  Kitchen area is 0.9°C warmer than the next adjacent sensor at living 

room entrance. Both windows in bedroom and living room are slightly colder than the 

central spot measurement of each room.  
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Kitchen has the highest temperature deviation, 5.45°C, however, it seems that the 

cook activities did not affect the living room entrance and centre which have identical 

standard deviation of 2.45°C.  Living room window has higher temperature fluctuation 

which is possibly caused by heat loss through window operation.   The next highest 

standard temperature deviation is found at bathroom where sensor placed next to the 

shower enclosure, potentially can be explained by the heat of hot water.  

Table 5.19: Indoor air temperature and relative humidity in dwelling 1 

  
Mean air 

temperature 

Temperature 

Std Dev  

Mean 

relative 

humidity 

Relative 

humidity 

Std Dev 

Bedroom centre 25.00°C  1.95°C  67.20% 6.55% 

Bedroom next to window 24.40°C  2.05°C  67.10% 9.75% 

Kitchen  25.90°C  5.45°C  64.50% 31.05% 

Living room Entrance 25.00°C  2.45°C  65.40% 8.45% 

Living room next to 

window 
23.90°C  3.45°C  67.10% 11.25% 

Living room centre 25.20°C  2.45°C  64.00% 7.40% 

Bathroom Centre 25.20°C  2.45°C  69.00% 18.05% 

Bathroom next to Shower 25.10°C  2.95°C  73.00% 22.00% 

Hallway 25.00°C  1.90°C  69.10% 13.40% 

     

Average 24.97°C  2.79°C  67.38% 14.21% 

 

Highest mean relative humidity is found at the Bathroom as moisture relate activity 

can be expected to take place. The moisture seems transferred to the hallway which 

is a small space connecting living room and bedroom. Hallway mean relative 

humidity is higher than bedroom centre and living room entrance. The lowest mean 

relative humidity is the centre of living room. 

In terms of standard humidity deviation, kitchen area has the highest value of 

31.05%, and the then bathroom and hallway. Relative humidity deviated more nears 

windows of bedroom and living room than their centre spots.  
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Dwelling 2  

As a two storey house, dwelling 2 contains clearly defined rooms. Similar to dwelling 

1, the heating system is individually controlled and often at night time due to the 

financial concern of Economy-7 tariff and storage heater. 14-days’ worth mean air 

temperature and relative humidity results are listed in table 5.20. Two bedroom are 

warmer than rest of rooms. Like what was found in dwelling 1, kitchen also has the 

highest temperature and relative humidity deviations in dwelling 2.  The relative 

humidity deviated similarly as kitchen, which is possible caused by its space heating 

appliance which is a gas powered fire place. In dwelling 2, the temperature varied 

from room to room significantly, potentially due to its older building age, use of night 

storage heater and gas fireplace. 

Table 5.20: Indoor air temperature and relative humidity in dwelling 2 

Location 

Mean air 

temperatur

e 

Temperature 

StdDev  

Mean 

relative 

humidity 

Relative 

humidity StdDev 

Bedroom 1 19.20°C  4.55°C  46.20% 6.80% 

Bedroom 2 18.20°C  4.75°C  45.74% 6.73% 

Living room 15.50°C  6.75°C  52.60% 16.05% 

Bathroom 15.74°C  5.78°C  60.84% 35.95% 

Kitchen 15.60°C  7.45°C  52.07% 15.89% 

Average 16.85°C  5.86°C  51.49% 16.28% 

 

Dwelling 4 and dwelling 5 

14 days during the winter have been selected and compared between dwelling 4 and 

5, in table 5.21 and 5.22 separately. The same family moved from dwelling 4 to 5 and 

the selection of measurement are from two winters. Dwelling 5 is basically a fully 

upgraded version of dwelling 4. The space heating system is centrally controlled and 

during these 14 days, individual radiator have not been adjusted. Building structure-

wise, dwelling 4 has is kitchen located at lower ground floor whereas dwelling has its 

kitchen adjacent to living room at ground level. 
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Table 5.21: Indoor air temperature and relative humidity in dwelling 4 

Location 
Mean air 

temperature 
Temperature 

StdDev  
Mean relative 

humidity 
Relative 

humidity StdDev 

Living room central 18.00°C  0.80°C  35.40% 14.55% 

Master Bedroom Central 18.60°C  1.25°C  35.20% 13.45% 
Bath room Central 18.90°C  0.95°C  37.90% 9.60% 

Guest Bedroom Central 18.10°C  1.15°C  34.80% 14.75% 

Kitchen Central 17.70°C  3.65°C  31.80% 20.55% 

Hallway 18.10°C  1.80°C  31.40% 7.65% 

Average 18.23°C  1.60°C  34.42% 13.43% 

Table 5.22: Indoor air temperature and relative humidity in dwelling 5 

Location 
Mean air 

temperature 

Temperature 

StdDev  

Mean relative 

humidity 

Relative 

humidity StdDev 

Living room Central 20.90°C  2.90°C  34.65% 12.30% 

Master bedroom Central 18.10°C  2.10°C  35.10% 11.75% 

Bathroom Central 16.30°C  2.05°C  36.20% 13.75% 

Guest bedroom Central 19.80°C  2.15°C  34.30% 14.55% 

Kitchen Central 21.80°C  2.30°C  32.60% 18.15% 

Hallway 19.60°C  2.15°C  34.40% 17.55% 

Average 19.42°C  2.28°C  36.23% 14.68% 

 

Comparing the mean results of measurement of same family, the temperature and 

standard deviation are stable in both dwellings. In dwelling 4, kitchen seems to have 

the lowest mean air temperature but twice the deviation than average. This was 

changed in dwelling 5 where kitchen became overall the warmest room. At a glance, 

it is fair to estimate that the family has preference of evenly heating every room in the 

both houses, where hydro-thermal measurements in dwelling 5 are slightly improved, 

perhaps due to its upgraded energy efficiency and fabric performance. Although the 

external weather was not exactly the same in each period, the standard deviations is 

also more constant across all the room in both dwelling 4 and 5.  

 

Dwelling 6 and 7  

Dwelling 6 and 7 were monitoring for 14-month continuously, during which dwelling 6 

had a power failure with its on-site computer therefore caused missing data for April 
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and May in 2011. Dwelling 7 fortunately did not experience any problem with data 

collection. Table 5.22 and 5.23 below show the mean monthly indoor temperature of 

different rooms of dwelling 6 and 7. Hallway bathroom of dwelling 7 was not part of 

this long term monitoring due to number of sensor available. 

Both houses have ASHP driven space heating system and occupants claimed that 

they usually only adjust the space heating through thermostat located in hallway and 

very rarely turn off any individual radiator even a room in not in use.  

Table 5.22: Indoor air temperature and relative humidity in dwelling 6 

Month 
Master 

Bedroom 
Kitchen Hallway 

Living 
Room 

Master 
Bathroom 

Hallway 
Bathroom 

2011-Jan 19.97°C  20.93°C  19.71°C  19.00°C  20.15°C  20.48°C  

2011-Feb 20.77°C  20.31°C  20.26°C  19.58°C  20.48°C  20.04°C  

2011-Mar 20.33°C  20.88°C  19.89°C  19.65°C  20.04°C  20.58°C  

2011-Apr 
missing data due to logger power failure 

2011-May 

2011-Jun 20.70°C  20.44°C  20.61°C  21.15°C  20.91°C  20.16°C  

2011-Jul 22.03°C  20.50°C  23.39°C  21.58°C  20.58°C  20.26°C  

2011-Aug 20.59°C  22.44°C  21.58°C  21.45°C  20.26°C  20.75°C  

2011-Sep 21.50°C  22.43°C  21.52°C  20.75°C  20.75°C  21.34°C  

2011-Oct 19.66°C  23.11°C  21.93°C  20.51°C  21.34°C  22.07°C  

2011-Nov 19.48°C  20.73°C  20.61°C  20.04°C  22.07°C  19.19°C  

2011-Dec 19.93°C  21.02°C  21.58°C  19.58°C  19.39°C  20.13°C  

2012-Jan 19.97°C  21.06°C  19.07°C  19.12°C  20.08°C  20.43°C  

2012-Feb 20.67°C  21.36°C  19.14°C  18.66°C  20.18°C  20.03°C  

2012-Mar 20.23°C  21.16°C  19.51°C  19.00°C  19.94°C  20.28°C  

    
 

      
Average 20.45°C  21.41°C  20.68°C  20.01°C  20.47°C  20.44°C  
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Table 5.23: Indoor air temperature and relative humidity in dwelling 7 

Monthly 
Master 

Bedroom 
Kitchen Hallway 

Living 
Room 

Hallway 
Bathroom 

2011-Jan 21.26°C  18.96°C  21.55°C  22.47°C  21.08°C  

2011-Feb 20.76°C  18.12°C  21.15°C  21.82°C  20.72°C  

2011-Mar 20.38°C  17.11°C  21.15°C  22.07°C  20.64°C  

2011-Apr 20.67°C  18.93°C  20.85°C  21.91°C  20.67°C  

2011-May 20.34°C  18.84°C  21.82°C  21.68°C  20.42°C  

2011-Jun 21.13°C  20.21°C  22.01°C  22.72°C  21.38°C  

2011-Jul 21.49°C  20.59°C  21.46°C  22.92°C  21.60°C  

2011-Aug 20.87°C  20.67°C  21.85°C  22.44°C  20.96°C  

2011-Sep 21.14°C  20.78°C  21.98°C  22.77°C  21.38°C  

2011-Oct 22.08°C  18.93°C  21.82°C  23.06°C  21.31°C  

2011-Nov 21.89°C  16.63°C  21.70°C  22.73°C  21.41°C  

2011-Dec 21.76°C  16.12°C  20.50°C  22.87°C  21.00°C  

2012-Jan 21.38°C  16.60°C  20.28°C  22.74°C  20.77°C  

2012-Feb 20.86°C  16.13°C  20.06°C  22.25°C  20.55°C  

2012-Mar 20.17°C  16.25°C  21.41°C  21.59°C  19.39°C  

  
 

      
Average 21.08°C  18.69°C  21.31°C  22.40°C  20.89°C  

In general, both dwellings have higher indoor temperature across all the measured 

room during summer, e.g. July to September. During winter, kitchen of dwelling 7 

seems to be much colder among all the rooms, where in dwelling 6 temperature 

profile is more constant.  Such temperature difference is less during the summer.  
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5.6.3 Location and CO2 measurement in same room 

Two identical CO2 sensors have been placed near by the fireplace of living room in 

dwelling 6 for comparison purpose. The main difference is the height, one CO2 

sensor is left on floor level and the other one is place at the decorative fireplace top 

(1.2 meter high).  

Table 5.24: CO2 level comparison of different heights in living room, dwelling 6 

Hour 
CO2 fireplace 

top 
standard 
deviation 

CO2 Fireplace 
floor level 

standard 
deviation 

Difference 
between 
top and 

floor level 

Difference 
in 

standard 
deviations 

0 493 ppm 19 ppm 551 ppm 26 ppm 58 ppm 7 ppm 

1 495 ppm 18 ppm 553 ppm 26 ppm 58 ppm 8 ppm 

2 498 ppm 18 ppm 553 ppm 25 ppm 55 ppm 7 ppm 

3 499 ppm 17 ppm 553 ppm 25 ppm 54 ppm 8 ppm 

4 499 ppm 18 ppm 553 ppm 26 ppm 54 ppm 8 ppm 

5 499 ppm 18 ppm 553 ppm 26 ppm 54 ppm 8 ppm 

6 498 ppm 18 ppm 552 ppm 25 ppm 54 ppm 7 ppm 

7 496 ppm 18 ppm 551 ppm 25 ppm 55 ppm 7 ppm 

8 492 ppm 19 ppm 549 ppm 25 ppm 57 ppm 6 ppm 

9 489 ppm 19 ppm 547 ppm 26 ppm 58 ppm 7 ppm 

10 485 ppm 20 ppm 546 ppm 26 ppm 61 ppm 6 ppm 

11 483 ppm 20 ppm 545 ppm 27 ppm 62 ppm 7 ppm 

12 483 ppm 20 ppm 546 ppm 28 ppm 63 ppm 8 ppm 

13 483 ppm 21 ppm 545 ppm 28 ppm 62 ppm 7 ppm 

14 483 ppm 21 ppm 546 ppm 28 ppm 63 ppm 7 ppm 

15 483 ppm 22 ppm 547 ppm 28 ppm 64 ppm 6 ppm 

16 484 ppm 22 ppm 547 ppm 28 ppm 63 ppm 6 ppm 

17 484 ppm 22 ppm 547 ppm 28 ppm 63 ppm 6 ppm 

18 485 ppm 21 ppm 547 ppm 28 ppm 62 ppm 7 ppm 

19 486 ppm 21 ppm 547 ppm 28 ppm 61 ppm 7 ppm 

20 488 ppm 21 ppm 546 ppm 28 ppm 58 ppm 7 ppm 

21 489 ppm 21 ppm 547 ppm 28 ppm 58 ppm 7 ppm 

22 490 ppm 20 ppm 548 ppm 28 ppm 58 ppm 8 ppm 

23 492 ppm 21 ppm 551 ppm 27 ppm 59 ppm 6 ppm 

As shown in table 5.24, the CO2 concentration level at fireplace top is always lower 

than the measurement of sensor at floor level. The hourly measurement taken at the 

floor level is always 54-64 ppm higher than the measurements at fireplace top which 
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is 1.2 meters vertically higher. Such pattern is also found in their hourly standard 

deviation, floor level measurements is 6-8ppm higher.  

The height seems do make a different with regards to CO2 concentration level. This 

is probably caused by the higher density of CO2 in the air and it tends to sink 

therefore, a higher concentration could be expected to be measured by CO2 sensor 

at lower position.  

5.6.4 CO2 concentration level and season 

Living room CO2 levels in both dwelling 6 and 7 living room areas have been 

measured. The reason of choosing living room area for the CO2 density monitoring is 

based on the balance between time spent in a room (apart from sleeping) and 

number of windows or doors lead to outdoors. 

Living rooms in dwelling 6 and 7 are identical, both have a big sliding glass door 

adjacent to the rear garden.  Since it is carpet covered, occupant only use the 

kitchen door to go to the garden to in order to avoid dropping dirt and soil onto the 

nice carpet. Occupant in dwelling 7 had a full size sofa placed in front of it sliding 

door window that clearly indicates it is not in use for access to the garden. Figure 

5.59 compares the CO2 level in both living room areas and their individual monthly 

average values are listed in table 5.25. Dwelling 6 missed data of April and May in 

2011 due to power failure of its onsite computer and wireless receiver. 

 

Figure 5.59: Living room CO2 level comparison between dwelling 6 and 7 
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Table 5.25: Monthly Living room CO2 level comparison summary 

Monthly Dwelling 6 Dwelling 7 
Jan-2011 539 ppm 746 ppm 
Feb-2011 567 ppm 761 ppm 
Mar-2011 623 ppm 823 ppm 
Apr-2011 Missing 763 ppm 
May-2011 Missing 744 ppm 
Jun-2011 636 ppm 719 ppm 
Jul-2011 692 ppm 744 ppm 
Aug-2011 733 ppm 705 ppm 
Sep-2011 726 ppm 694 ppm 
Oct-2011 793 ppm 739 ppm 
Nov-2011 804 ppm 736 ppm 
Dec-2011 945 ppm 746 ppm 
Jan-2012 878 ppm 708 ppm 
Feb-2012 892 ppm 738 ppm 
Mar-2012 844 ppm 769 ppm 

   
Average 744 ppm 742 ppm 
Maximum 945 ppm 823 ppm 
Minimum 539 ppm 694 ppm 

 

Both homes have their CO2 kept below 1000 ppm but dwelling 7 is more stable and 

constant than its neighbour. Highest CO2 level at dwelling 7 is 823 ppm in March 

2011 and lowest is 694 ppm in September. Afterwards it remains close to its annual 

average level of 742 ppm.  

Dwelling 6 living room’s CO2 level kept rising in the whole year of 2011. It peaked in 

December with recorded value of 945 ppm, which is pushing the 1000ppm boundary 

towards poor air quality. Then the concentration level gradually decreases in the first 

three months of 2011 but no less than 844 ppm. 

Besides the window opening behaviour, the major difference on ventilation behaviour 

is the use of Mechanical Heat Recovery Ventilation (MVHR). As occupant of dwelling 

7 explains:  

“We always have our mechanical ventilation on, the house was designed 

with it and it has a good reason in this air-tight house. Earlier this year my 

wife accidently switched the ventilation off. It made us to do a good clean-

up as mould and condensation are spotted at ceiling corners.  Living room 

is even worse as it is kind of opposite to the bathroom in the hallway. Oh, it 
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is quiet you can’t hear a thing. That is why we didn’t realise it was turned off 

for a few month. I remember it was end of February may be early March 

something like that. Contractor came to fix the thermostat and the 

ventilation circuit got knocked off. Do I feel any draught come down from 

the vents? A little bit sometime but at least we don’t have to wipe the mould 

with bleach and vinegar every Sunday morning. ” 

As occupant stated, dwelling 7’s MVHR only switched off unexpectedly between 

around February and March in 2011. This may explains the higher value of CO2 

concentration level in March. The constant use of MVHR is also reflected on the 

stable CO2 level in the following months. 

The use of MVHR is completely different in dwelling 6. Since the occupant moved in 

winter. The cycled air comes down from the ceiling vent makes occupant feel it is 

draught.  As a consequence, MVHR was turned off in March 2011. Minor 

condensation and mould have been spotted but not significant at all according to one 

of the occupant’s statement: 

“It is definitely making difference. Switching the ventilation off actually stops the 

draught. I don’t understand why they installed it as it makes us feel colder 

especially when we moved in. Yeah I do appreciate the high standard and 

quality of this bungalow. One of the vent is located right next our bedroom 

bathroom. We had to wear pajamas before coming out of bathroom after taking 

a shower.  Condensation is not really a problem, we close the bathroom door 

and left a window open for a while so the hot humid air could get out. ”  

As a result of the MVHR being switched off, the condensation actually occurred in 

the loft within the heat exchanger, which is a core unit of MVHR system. Although the 

MVHR system is off, cold air can still get in through the inlet and condenses on the 

heat exchanger.  This cumulative amount of water keeps increasing but couldn’t 

evaporate quickly enough. Eventually condensed water overflowed and began to drip 

through the ceiling vents. Contractors were called when this happened and they 

cleaned the excessive water in the loft space. Occupants were suggested to keep 

the system, however, one of the occupants has asthma and he doesn’t feel too well 

when the MVHR is running. This caused the occupant to switch off the system and 

called maintenance contractor again. In the second inspection, the air filter was 

found heavily moulded as shown in figure 5.64.  
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Figure 5.60: Air filter in MVHR system at dwelling 6  

Despite the new filter was replaced, a visit on 5th October 2011 shows that occupants 

in dwelling 6 have manually covered the ceiling vents that means they choose to not 

to use the MVHR system.  

Without MVHR system, the average CO2 concentration level in dwelling 6 living room 

area has been rising since September 2011. Comparing with dwelling 7, whose CO2 

level of December 2011 is 199 ppm less. In the following month, January, February, 

and March 2012, Dwelling 6’s CO2 level is 169, 153 and 75 ppm less respectively.  

5.7 Summary 

The chapter presents the findings of selected instrumentations and methods that 

have been applied in participated dwelling 1 to 8 in south Wales. All the 

measurements were taken during heating season, with exception of dwelling 6 and 7 

where the summer was also included between two winters.   

Space heating monitoring methods have tested in terms of various types of heating 

system, position of heating appliance, location of room, location of house. A number 

of gas meter monitoring method and hardware has been studied and compared.  

Domestic hot water related behaviours has been studied by self–kept hot water 

demand event diary, compare surface temperature of hot water pipes and icon 

recognition of boiler control panel display.  

Windows and doors was monitoring by single contact switch after testing a few other 

possible sensors and loggers. All the methods have satisfactory level of accuracy. 
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Electricity consumption has been monitored individual circuits and appliance level. 

This method worked well at homes has ASHP since their major demands like space 

heating and domestic hot water are all powered by electricity.  

Indoor physical condition have been mainly focused on temperature, relative 

humidity and CO2. Difference has been found at different locations of sensor installed 

in a room but not significantly varying across each other.  

Next chapter will discuss the methods with regards to occupant related parameter 

using both social science survey methods and sensory technologies. 
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Chapter 6 Social science survey results 
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6.1 Introduction 

This chapter the following field study results are presented:  

• Questionnaire and interview of indoor condition satisfaction 
• Self-reported recent thermal satisfaction, activity level, and clothing level 
• Occupancy and PIR presence sensor 
• Wearable activity tracker 

6.2 Questionnaire and interview results 

In Dwelling 1 the complex high-rise apartment, 150 participants were asked to fill a 5 

minutes comfort questionnaires, 103 of them answered. 43 of them claimed that they 

fully understood the questions and the rest 60 participants had doubts with at least 

one question or its answer. The results are shown in table 6.1 in terms of occupants’ 

preference of indoor warmth, air movement, humidity, natural light and noise 

conditions in both winter and summer. 

Table 6.1: Questionnaire result of dwelling 1 

  In winter I prefer my apartment to be     

Warmth Much warmer A bit warmer no change A bit cooler much cooler 

  3% 24% 73%     

Air movement 
Much less air 

movement 
a bit less air 
movement no change a  bit more air 

movement 
Much more air 

movement 
  45% 33% 10% 12%   

Humidity much drier a bit drier no change a bit more  
humid 

much more 
humid 

    22% 66% 12%   

Natural light much dimmer a bit dimmer no change a bit brighter much brighter 

    15% 80% 5%   

Noise much quieter a bit quieter no change     

  78% 21% 1%     

  In summer I prefer my apartment to be     

Warmth Much warmer A bit warmer no change A bit cooler much cooler 
      27% 28% 45% 

Air movement 
Much less air 

movement 
a bit less air 
movement no change a  bit more air 

movement 
Much more air 

movement 
      53% 13% 34% 

Humidity much drier a bit drier no change a bit more  
humid 

much more 
humid 

      85% 15%   

Natural light much dimmer a bit dimmer no change a bit brighter much brighter 

    25% 75%    

Noise much quieter a bit quieter no change    

  78% 21% 1%     
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Compare the preferences of indoor physical conditions between winter and summer, 

it seems that majority of occupants consider their apartments to be comfortable 

(73%), 24% prefer a bit warmer in the winter. Excessive amount of air movement is 

considered to be less favourable. Humidity and natural light are generally satisfactory 

but 78% and 21% prefer their apartment to be much quieter and a bit quieter. 

Preferences towards warmth and air movement are opposite in the summer, 

occupant would like to be cooler and more air movement. Humidity, natural light, 

noise  have similar or identical votes.  

The differences between summer and winter suggests these well insulated 

apartments are possibly having overheating issue in the summer. Given the fact that 

the same ventilation system works passively except windows, it is perceived to be 

excessive in winter but insufficient in summer. Noise is commonly agreed issue, 

despite the seasons, possibly caused by its closeness to railway and busy roads. 

There is a vague trend between the height and noise complaint, occupant lives in 

higher floor are less bothered by the noise. 

The option of keeping self-administrated diary was proposed to the participants, just 

over half of them expressed that they would not mind keeping one as long as it is 

fixed period, ideally no more than 4 weeks maximum.  

 

6.3 Self administrated diary 

Self-administrated comfort diary has been given to occupants of dwelling 6 and 7 in 

order to continuously collect personal factors, namely, thermal experience, thermal 

satisfaction, clothing insulation level and activity level. 

The dairy was formatted as figure 6.1 shows: four fixed time in a day, 8am, 12am, 

6pm and 10pm. Occupants were encouraged to tick their thermal sensations at these 

moments and there is also blank rows in between when they feel like to add more 

information such as whether they returned from outdoor in the past 30 minutes, how 

active they were, whether they had a hot or cold drink earlier. These optional 

questions can further help to collect personal factor samples. 
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Figure 6.1: Self-admitted comfort diary daily example. 
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The results of dairy and activity meters are shown in table 6.2, filled by occupant 

during identical 28 days in the winter. In total, the dairy has 112 entries, occupants of 

dwelling 6 filled 93 entries and dwelling 7 filled 69 entries, due to the absent from 

being at home or simply forgot to fill.  

Table 6.2, self-administrated dairy comparison between dwelling 6 and 7 

In the past 30 minutes,  Dwelling 6 Dwelling 7 

had a hot drink 39 times 17 times 

had a cold drink  18 times 

 

Came back from outdoor 14 % 38 % 

 

Seated relaxed 21% 8% 

Sedentary activity 32% 4% 

Standing light activity 32% 17% 

Standing medium activity 15% 12% 

Walking around 2% 59% 
 
How do you feel right now 

Cold 29% 11% 

Cool 32% 13% 

Slight cool 25% 28% 

neutral 14% 48% 

 

Occupant of dwelling 6 seems prefer to take hot drink such like tea or coffee more 

often than occupant of dwelling 7 who took similar number of cold drink as well. 

Dwelling 6 occupant may go out less, judging by the higher number of dairy entries 

and lower percentage of ‘coming back from outdoor’ choice.  Regarding the activity 

level, occupant in dwelling 6 is much less active than its neighbour. 

As shown as table 6.3, occupant in dwelling seems to have preference of  light level 

clothing when she is at home in both heating seasons, mostly ticked garment are T-

shirt, trousers and slippers, perhaps due to the higher level of t house works like 

washing, cleaning, cooking meals that give her higher metabolic rate.  On the 

contrary, occupant from dwelling 6 choose more garments, especially sleeping 

wearing such like pyjama and robe,  which were never selected by occupant of 
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dwelling 7. For footwear, dwelling 7’s occupant seems always to wear slippers and 

socks whereas in dwelling 6 occupant wears flip-flops without socks half of the time.  

Table 6.3: Clothing level comparison between dwelling 6 and 7 

Garment Dwelling 6 Dwelling 7 

T-Shirt 
 

78% 
Pyjama 90%   
Robe 47%   
Hoody 40%   

Sweater  12% 
Shorts 

 
  

Trousers 53% 89% 
Woolly Hat 

 
  

Scarf    

Socks 40% 100% 
Flip flop 60%   

Slippers 40%  100% 

The ease of use of the dairy has been discussed with occupants at the end of 

interview. Both occupants reached agreement on several points that self-

administrate diary which they felt need improvement. The first one is to fill the diary 

at designated time of day. The timer and alarm was useful as a reminder but 

somehow begin to annoy and got turned off in both dwellings.  

6.4 Activity meter 

In addition the dairy keeping in dwelling 6 and 7,  activity level was measured by 

wearable activity meter which records the whole body’s acceleration, not just the 

wearing wrist and it convert the activity date into step format and then transmitted to 

handhold terminal. 

 

Figure 6.2: wearable activity meter 
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The activity is measured by steps taken during these 28 days periods. Both 

participants have been wearing their trackers most of time and results comparison 

between them is shown as table 6.4. 

Table 6.4: activity trackers comparison between dwelling 6 and 7 

 
Dwelling 6 Dwelling 7 

Day 1 3296 steps 7828 steps 

Day 2 2471 steps 5629 steps 

Day 3 3528 steps 8058 steps 

Day 4 3449 steps 7950 steps 

Day 5 4930 steps 12419 steps 

Day 6 3498 steps 9008 steps 

Day 7 2243 steps 8996 steps 

Day 8 2417 steps 11445 steps 

Day 9 5295 steps 10047 steps 

Day 10 1084 steps 16116 steps 

Day 11 4784 steps 13081 steps 

Day 12 4492 steps 13123 steps 

Day 13 2218 steps 7125 steps 

Day 14 1398 steps 11178 steps 

Day 15 5150 steps 12363 steps 

Day 16 5507 steps 9013 steps 

Day 17 3311 steps 15510 steps 

Day 18 3964 steps 12440 steps 

Day 19 3983 steps 8264 steps 

Day 20 3863 steps 11064 steps 

Day 21 3825 steps 11570 steps 

Day 22 2573 steps 11440 steps 

Day 23 571 steps 8484 steps 

Day 24 3655 steps 10750 steps 

Day 25 3835 steps 13648 steps 

Day 26 3764 steps 11137 steps 

Day 27 3614 steps 13679 steps 

Day 28 3814 steps 11547 steps 

 

It is obvious that the participant of dwellings 7 was much more active, whose daily 

average steps taken is 10818 steps, compared to participants of dwelling 6 who 
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average walks 3448 steps per day. Their average hourly steps profile over 24-hours 

is illustrated in figure 6.3 and 6.4, which show hours that are more active. Due to the 

restricted export function of the activity tracker’s software, these two figures are 

screenshots. It can be clearly seen that occupant of dwelling 7 is much more active 

by taking more steps. 

 

 

Figure 6.3: Average daily steps profile of participant, dwelling 6 

 

 

Figure 6.4: Average daily steps profile of participant, dwelling 7 
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Figure 6.5: Reported clothing level: Left-dwelling 6, Right-dwelling 7 

Answers to Clothing level question are almost the same. Occupant of dwelling 7 

occupant usually wears short t-shirt and trousers with summer slippers. Occupant of 

dwelling 6 generally wears long sleeves pyjama and robe, plus socks and winter 

slippers. Self reported clothing level has very good consistency: Dwelling 7 prefers to 

wear more summerly and dwelling 6 shows preference of sleeping wears such like 

robe and pyjama. This is possibly caused by their difference activity at home, since 

dwelling 7’s occupant does lots of house works from throughout the day but occupant 

of dwelling 6 mostly is more sedentary. 

The WalkWithMe activity trackers have been capable of measure the difference of 

activity level between two participated occupants. Post monitoring interview also 

confirms this finding, occupant of dwelling 6 has back problem which limits her 

movement to a certain extent, whereas occupant of dwelling 7 does not have 

difficulty to move and she claims herself to be mostly walking around throughout a 

day with various housework tasks. Feedback as wearer of these trackers is positive 

without any complaint regarding disturbance to their daily life, thanks to its waterproof 

feature and durability especially. Occupants even expressed the interesting of 

purchasing an activity tracker for their own health interest. From data collection 

prospective, lack of data exportation is a weakness, as it took a reasonable amount 

of time process steps counts manually.  

 

6.5 PIR Presence sensor 

Permission of PIR motion sensor installation has been granted to the living room in 

dwelling 6. The range and motion sensitivity have been tested by placing two 

sensors at different location, record motions diagonally at ceiling corners of living 
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room (figure 6.6). PIR sensor 1 is closer to the front area of two sofas where 

occupant usually sit. PIR sensor 2 was installed at the ceil corner of entrance of living 

room.  

 

 

Figure 6.6: location comparison of PIR motions sensors 

 

14 days of comparison between locations is shown in 24 hours cycle (figure 6.7). 

Both sensors detected little activity during night time. For the rest of time, PIR sensor 

1 measured more hourly average activity than PIR sensor 2 did. Details of pulse 

counted are listed in table 6.5. 

PIR sensor 2 

PIR sensor 1 
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Figure 6.7: location comparison of PIR motions sensors 

Most of the time, PIR sensor 1 records 100% to 1050% more motion triggers pulses 

than PIR sensor 2, except very few occasions, such like early morning and late night. 

The difference reached several peaks, especially 13:00 to 14:00, 16:00 to 17:00 and 

18:00 to 19:00, according to occupant, these hours are their common tea and meal 

time that two occupants normally prefer to have in the living room. It is possible that 

the PIR sensor’s sensitivity of capturing sedentary activities PIR 2 dropped 

significantly due to angle from where is it was installed. Compared it, PIR sensor 1 

points to the front of two sofas more straight which might helped it to record small 

movements while occupant remains seated. 

Table 6.5: Hourly average motion pulses comparison 

Hour PIR 1 PIR 2 Difference (PIR1 - PIR 2) 

0 0 pulses 0 pulses 0% 

1 0 pulses 0 pulses 0% 

2 0 pulses 0 pulses 0% 

3 0 pulses 0 pulses 0% 

4 0 pulses 0 pulses 0% 

5 0 pulses 0 pulses 0% 

6 0 pulses 0 pulses 0% 

7 2 pulses 5 pulses -60% 

8 56 pulses 18 pulses 211% 

9 29 pulses 4 pulses 625% 

10 12 pulses 15 pulses -20% 

11 49 pulses 18 pulses 172% 
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Hour PIR 1 PIR 2 Difference (PIR1 - PIR 2) 

12 37 pulses 7 pulses 429% 

13 122 pulses 12 pulses 917% 

14 27 pulses 4 pulses 575% 

15 55 pulses 9 pulses 511% 

16 69 pulses 6 pulses 1050% 

17 35 pulses 14 pulses 150% 

18 144 pulses 20 pulses 620% 

19 89 pulses 25 pulses 256% 

20 38 pulses 19 pulses 100% 

21 42 pulses 12 pulses 250% 

22 9 pulses 18 pulses -50% 

23 12 pulses 6 pulses 100% 

 

In this field study, PIR presence sensor measures the pulse of raw motion detection 

rather than processed activity count. This because most PIR detectors incorporate 

an anti-false alarm feature which is designed to avoid misreading caused by insects, 

or air temperature. With the feature being turned on, raw motioned triggered pulse 

would be filtered first, for example, only three consecutive pulse will be reckoned as 

human movement. PIR sensor in this study report only the raw pulses rather 

processed human movement. 

The number of raw pulse is affected by threshold that built-in with the PIR sensor. 

The sensor starts with voltage output and only a voltage higher than manufacturer 

set threshold would be processed as valid pulse. However, this threshold was not 

programmable and further test was not possible. 

PIR sensor 1 pointed from the front of the two sofas picked higher number of raw 

pulse count than the identical PIR sensor 2 pointed from side.  Their distance to the 

sofa area are very similarly positioned. One possible explanation could be that the 

PIR sensor 1 could pick up more motions changes of sedentary activity than PIR 

Sensor 2 because it measure from the front, not from side. There are few occasions 

PIR sensor 2 recorded more pulses than PIR sensor 1, but predominately the PIR 

sensor 1 measures higher motions. 
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6.6 summary 

In this chapter, methods and instrumentations of measuring occupant related 

parameters have been presented in terms of questionnaire and interview of indoor 

condition satisfaction. Self-reported recent thermal satisfaction, activity level, and 

clothing level, occupancy and PIR presence sensor and wearable activity tracker.  

In next chapter, measurements taken from each section have been used for co-

incidental analysis, namely, window opening and CO2 concentration level, CO2 

concentration level and external temperature, presence and CO2 concentration level, 

physical condition and occupant related variables, calculated PMV and self rated 

subjective thermal satisfaction. 
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Chapter 7 Integration of physical measurement and social 
science survey 
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7.1 Introduction 

This chapter aims to integrate some measured parameters from different category 

and explore their relationship. The selected combinations of parameters are:  

• Window/door operation, CO2 concentration level and external temperature 

• Presence and CO2 level 

• Recent thermal experience, activity level, clothing value and thermal 

satisfaction 

• Calculated PMV and voted thermal satisfaction scale 

These combinations are selected based on their possible relationships that worth to 

inspect as a whole.  

7.2 Window opening, CO2 concentration level and external 
temperature 

Air exchange caused windows and doors operation can affect the CO2 level in the 

living room, especially the front door that is the closest exit to the living room area. 

Figure 7.1 compares the windows/doors opening time with living room area CO2 

level. 

 

Figure 7.1: Dwelling 6 Living room CO2 level and window/doors opening comparison 

 

It can be seen that before March 2011. Frequencies of windows and doors operating 

behaviour was decreasing but after MVHR being turned off in March the number of 
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operating began to increase especially the Bedroom window and Front door. CO2 

level record is missing from April and May. Since June 2011, the bathroom window 

and front door opening frequencies are having similar tendencies.  

Dwelling 6 ‘s CO2 level also seems to be related with external temperature during 

heating season (figure 7.2). In the summery month from June to September 2011, 

CO2 level increases as external air temperature does. From October, it is found that 

external temperature began to descend while CO2 continues going up. 

 

 

Figure 7.2: Dwelling 6’s Living room CO2 level and air temperature comparison 

Combining tendencies from windows, doors and external air temperature together, 

plus the fact that Dwelling 6’s MVHR was completely switched off and the occupant 

sealed ceiling vents, it is estimated that colder weather actually trigger the occupant 

in Dwelling 6 to operate windows more frequently than summer as indoor 

temperature is more influential by outdoor conditions. Higher frequency means less 

time that window being left open. Also without the help from mechanical ventilation, 

CO2 level could cumulatively raise in the heating season. 

In Dwelling 7, since its MVHR has been used all the time. Front door opening time 

and Living room CO2 level show good similarity from June to December 2011 (figure 

7.3). However, Front door opening frequencies began to drop sharply but CO2 level 

Temperature °C 
CO2 concentration 
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in living room area was not greatly affected. It only increased 60ppm from January to 

March 2012. Comparing with Dwelling 6, Dwelling 7’s CO2 concentration level has 

been very stable throughout the whole period.  Figure 7.4 shows that the 

temperatures in living room and the hallway next to it are as stable as CO2 level 

when external temperature dropped from 16.1˚C to -0.1˚C. 

 

Figure 7.3: Dwelling 7’s living room CO2 level and window/doors opening comparison 

 

 

 

Figure 7.4: Dwelling 7’s living room CO2 level and air temperature comparison 

CO2 concentration Opening times 

  
  

 
 

Temperature °C 
CO2 concentration 
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7.3 Presence and CO2 level 

14-days worth of presence monitoring results which were collected by two PIR 

sensors installed in the living room are compared with the CO2 concentration level 

data (Figure 7.5). In general, the CO2 level reaches its peak value after midnight, 

without any activity being recorded and then begins to drop gradually until 1pm in the 

afternoon. There is a sharp reduction corresponding to the increased activity pulses 

at between 12am to 1pm then slowly builds up in the next hour. However, such 

pattern did not repeat between 5pm to 8pm, where the highly condensed activity 

pulses were detected while CO2 level stably climbed up. Within these 14 days, it was 

difficult to identify a pattern between CO2 concentration level and presence in the 

living room 

 

Figure 7.5: 24-hours presence comparison with CO2 concentration level profile - 
Dwelling 6 

 

7.4 Physical condition, personal factor and thermal 
satisfaction 

Occupants from dwelling 6 and 7 are similar in age and gender, however, their 

activity level, life style and routines are different.  The following charts compared 

thermal satisfaction vote with various factors that reported by occupants and 

recorded by temperature logger in the past 30 minutes before each vote made 

between dwelling and 6 and 7.  
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Figure 7.6 and 7.7 illustrate the distribution of mean thermal satisfactory vote over 4 

times a day with mean indoor temperature of whole house. Dwelling 6 has much 

higher vote towards ‘slight cool’ at 08:00, when sensation of being ‘Cool’ was only 

votes at. The vote of ‘about right’ increases gradually from morning to evening, 

whereas ‘Slight cool’ vote decreases. The recent 30 minutes of mean indoor 

temperature rises only 0.93°C from 19.09°C to 20.02°C stably.  

Occupant of dwelling 7 rated her thermal satisfaction significantly different. The 

proportion of felling Cool is 55% at 8:00. The satisfied vote, ‘about right’, is 100% at 

12:00 and 22:00 and 88% at 18:00 with 12% vote of ‘slight cool’. Mean indoor air 

temperature rises from 21.16°C to 24.61°C from early morning to late evening, which 

is 3.45°C increase.  

 

Figure 7.6: thermal satisfaction, time of day and recent indoor temperature—dwelling 6 
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Figure 7.7: thermal satisfaction, time of day and recent indoor temperature—dwelling 7 

 

 

Participated occupant of dwelling 6 seems to rate thermal satisfaction lower when 

they were less active, such like seated relaxed and sedentary activity. Feeling cool is 

only found when occupant was seated relaxed. As activity level goes up, the 

satisfactory state of ‘about right’ was rated more when occupant was more active and 

had been conducting sedentary, standing and walking activity. The dissatisfactory 

vote of ‘slight cool’ gradually declines as occupant become more active. 
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Figure 7.8: thermal satisfaction, and recent activity—dwelling 6 
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Figure 7.9: thermal satisfaction, and recent activity—dwelling 7 

 

Up to 60% of vote of ‘about right’ occurred when occupant of dwelling 7 was walking 

around which is the most active available in the dairy. The other active levels have 

few thermal satisfaction votes, whereas the ‘Cool’ only appeared when occupant 

claimed to be seat relax in the past 30 minutes. 
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Occupant of dwelling 6 did not record any consumption of cold drink at all. After had 

a hot drink in the past half hour, votes from high to low, are about right, slight cool 

and cool (figure 7.10). This seems suggest the possibility of hot beverage 

consumption and improved thermal satisfaction. Recent thermal experience, in this 

dairy, refers to cold experience from outside in the past 30 minutes. In dwelling 6, 

participant rated them four times more with ‘about right’ than ‘slightly cool’. 

 

Figure 7.10: thermal satisfaction, beverage and recent thermal experience—dwelling 6 

 

The responses in dwelling 7 is substantially different, where the relationship between 

consuming hot/cold drinks and thermal satisfaction seems to be vague (figure 7.11). 

Vote of ‘about right’ similarly distributed to hot beverage, cold beverage and return 

from outside, and so does the vote of ‘slight cool’. 
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Figure 7.11: thermal satisfaction, beverage and recent thermal experience—dwelling 7 

With regards to the thermal satisfaction and clothing level, despite the difference that 

dwelling 6 has more clothing choices and layers, thermal satisfactions appear not 

vastly different in each garment, except hoody, flip-flops and socks. In figure 7.12, 

occupant dwelling 6 never rate her thermal sensation as ‘cool’ if she had been 

wearing hoody or flip-flops. Occupant of dwelling 7 (figure 7.13) seems not felt ‘cool’ 

either if socks were worn. Occupants from both dwellings have their own preference 

of garment choices when they are at home and it seems to hard to find a pattern 

between clothing and thermal satisfaction, as usually it is considered that more 

clothe would be worn in order to restore thermal comfort. 

 

Figure 7.12: Thermal satisfaction and clothing level, dwelling 6 



274 

 

 

 

Figure 7.13: Thermal satisfaction and clothing level, dwelling 7 

7.5 Calculated PMV and voted thermal satisfaction scale 

Based on the samples from handhold anemometer, clothing level information from 

diaries and activity tracker data, the following assumptions have been made for the 

PMV calculation of dwelling 6 and 7 (table 7.4). 

Table 7.4: Assumption for PMV calculation for dwelling 6 and 7 

 Relative Air 

velocity 

Clothing 

Insulation 

Metabolic 

Rate 

(m/s) (clo) (met) 

Dwelling 6 0.10 1.04 0.9 

Dwelling 7 0.20 0.63 1.2 

 

The results are presented in the following series of figures (Figure 7.14 to 7.21). 

Each figure contains actual thermal sensation rated by occupants and calculated 

PMV value based on physical indoor environmental monitoring results in the past 30 

minutes. 
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Figure 7.14: Calculated PMV and thermal satisfaction comparison at 8:00, dwelling 6 

 

 

Figure 7.15: Calculated PMV and thermal satisfaction comparison at 12:00, dwelling 6 

 

 

Figure 7.16: Calculated PMV and thermal satisfaction comparison at 18:00, dwelling 6 
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Figure 7.17: Calculated PMV and thermal satisfaction comparison at 22:00, dwelling 6 

 

 

 

Figure 7.18: Calculated PMV and thermal satisfaction comparison at 8:00, dwelling 7 
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Figure 7.19: Calculated PMV and thermal satisfaction comparison at 12:00, dwelling 7 

 

 

Figure 7.20: Calculated PMV and thermal satisfaction comparison at 18:00, dwelling 7 

 

Figure 7.21: Calculated PMV and thermal satisfaction comparison at 22:00, dwelling 7 
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In general, the thermal satisfaction rated by occupant of dwelling 6 seems always 

higher than calculated PMV value of 30 minutes period before the the rating was 

given. In first fortnights, the fluctuation of both voted and calculated PMV match 

better than rest of diary keeping period. The self rated thermal sensation is closer to 

PMV value at 8:00 time than the other three diary time slots where most of thermal 

satisfaction votes are one level more comfortable than calculated PM.  

Occupant of dwelling 7 seems always feel comfort at 18:00 and 22:00. The 

difference between rated thermal satisfaction and calculated PMV at dwelling 7 are 

much closer at the 8:00 and 22:00 than 12:00 and 18:00.  

 

7.6 Application of monitoring methods 

As part of informal contract with the housing association who provided access to 

some of the participated dwellings, it was agree to provide a brief report of energy 

comparison between dwelling 4 and 5, dwelling 6 and 7, and dwelling 8. 

 

7.6.1 Identical occupants in different buildings:  Dwelling 4 

and 5 

The family lives in dwelling and their total energy consumption are compared in table 

5.36, where the mean gas and electricity consumption per house per day are 

compared between January and February of each year. The electricity consumption 

actually increased from 12.036 kWh to 14.181 kWh, equivalent to 18% rise.  The gas 

consumption dropped from 13.604m3 to 9.507m3 which is 42% reduction. The 

increased electricity may be explained by the switch from gas cooker to electric hob.  

Table 7.5: Energy consumption of occupants in dwelling 4 and 5 

Mean daily 
consumption 

Dwelling 4 Dwelling 5 

Main Gas Electricity Main Gas Electricity 

Jan & Feb 2010 13.604 m3 12.036 kWh 

Jan & Feb 2011 9.563 m3 14.181 kWh 
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7.6.2 Identical buildings with different occupants: Dwelling 6 

and 7 

Comparing the total energy consumption, dwelling 7 always uses significantly more 

energy than dwelling 6.  The differences between Dwelling 6 and 7 are listed in table 

5.37. 

In the percentage view, it can be seen that the biggest difference was September 

2011 when dwelling 7 consumed 884 kWh which is 204% than Dwelling 6. Generallt 

dwelling 7’s consumption is twice as high as dwelling 7. Interestingly, the difference 

is lower during winter but higher in summer. January and February 2011, dwelling 7 

only used 27% and 23% more than dwelling 6.  When entering heating season in 

October 2011, their difference dropped from 304% to 224% and then gradually 

decreased below 200% until February 2012. 

Table: 7.6: Total energy consumption comparison 

Monthly Dwelling 6 Dwelling 7 Difference 

Jan-2011 881.07 kWh 1,122.46 kWh 127% 

Feb-2011 595.10 kWh 731.92 kWh 123% 

Mar-2011 429.03 kWh 1,103.49 kWh 257% 

Apr-2011 Missing 806.48 kWh  

May-2011 Missing 918.94 kWh  

Jun-2011 298.20 kWh 713.02 kWh 260% 

Jul-2011 423.45 kWh 840.55 kWh 199% 

Aug-2011 351.53 kWh 992.59 kWh 282% 

Sep-2011 290.64 kWh 884.30 kWh 304% 

Oct-2011 465.24 kWh 1,043.85 kWh 224% 

Nov-2011 521.43 kWh 1,107.17 kWh 212% 

Dec-2011 641.85 kWh 1,211.72 kWh 189% 

Jan-2012 673.52 kWh 1,330.95 kWh 198% 

Feb-2012 479.20 kWh 1,257.99 kWh 263% 

Mar-2012 359.48 kWh 1,040.53 kWh 289% 
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Table 7.7: ASHP energy comparison 

Monthly ASHP Dwelling 6 ASHP Dwelling 7 Difference 

Jan-2011 375 kWh 444 kWh 118% 

Feb-2011 261 kWh 286 kWh 110% 

Mar-2011 171 kWh 403 kWh 236% 

Apr-2011 Missing 183 kWh  

May-2011 missing 197 kWh  

Jun-2011 55 kWh 108 kWh 196% 

Jul-2011 77 kWh 136 kWh 177% 

Aug-2011 90 kWh 156 kWh 173% 

Sep-2011 88 kWh 184 kWh 209% 

Oct-2011 145 kWh 251 kWh 173% 

Nov-2011 223 kWh 343 kWh 154% 

Dec-2011 344 kWh 435 kWh 126% 

Jan-2012 226 kWh 449 kWh 199% 

Feb-2012 180 kWh 530 kWh 294% 

Mar-2012 111 kWh 343 kWh 309% 

 

Electricity consumed by ASHP in two bungalows generally have the same curve. 

Starting from January 2011, ASHP consumptions in both bungalows are very similar 

for the first two months but in March dwelling 7 ASHP used twice as much as 

dwelling 6. From June to December, their tendencies are almost the same. dwelling 

7’s ASHP continued to work towards the maximum until February 2012 when 

dwelling 6’s usage began to decrease two month ago after December 2011.  

The similarity in curve suggests that both homes operate their ASHP the same way. 

But the higher usage at Dwelling 7 means occupants have warmer heat pump output 

setting.   
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Table 7.8: Immersion energy comparison 

Monthly Immersion Dwelling 6 Immersion Dwelling 7 

Jan-2011 74 kWh 135 kWh 

Feb-2011 49 kWh 87 kWh 

Mar-2011 26 kWh 149 kWh 

Apr-2011  138 kWh 

May-2011  148 kWh 

Jun-2011 10 kWh 103 kWh 

Jul-2011 14 kWh 105 kWh 

Aug-2011 3 kWh 181 kWh 

Sep-2011 11 kWh 121 kWh 

Oct-2011 17 kWh 156 kWh 

Nov-2011 16 kWh 156 kWh 

Dec-2011 12 kWh 180 kWh 

Jan-2012 13 kWh 139 kWh 

Feb-2012 12 kWh 125 kWh 

Mar-2012 16 kWh 129 kWh 

Immersion heater consumptions between two bungalows has significant difference. 

Occupants in Dwelling 6 had their immersion heater setting changed in June 2011 

and they also adjusted their hot water consumption schedule such as avoid taking 

shower or bath at late night.  

The impact of changed hot water demanding time and immersion heater setting is 

shown on Dwelling 6’s immersion electricity consumption: after June, the immersion 

heater usage has dropped to 3 kWh for the whole August and staying around 10-14 

kWh per month throughout the 2011-12 heating season. However, Dwelling 7 uses 

significantly much more just on immersion heater. Dwelling 7’s immersion heater 

energy consumption is always 10 times of its neighbour. While Dwelling 6 has its 

lowest immersion heater consumption in August 2011, Dwelling 7’s immersion heater 

actually used 181 kWh that is the highest usage.  
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Table 7.9: Cooker and Kitchen Sockets energy comparison 

Monthly Cooker 
Dwelling 6 

Cooker 
Dwelling 7 

Kitchen Socket 
Dwelling 6 

Kitchen Sockets 
Dwelling 7 

Jan-2011 22 kWh 38 kWh 130 kWh 190 kWh 

Feb-2011 20 kWh 24 kWh 90 kWh 122 kWh 

Mar-2011 20 kWh 31 kWh 81 kWh 156 kWh 

Apr-2011 Missing 36 kWh Missing 178 kWh 

May-2011 Missing 45 kWh Missing 225 kWh 

Jun-2011 12 kWh 32 kWh 74 kWh 158 kWh 

Jul-2011 24 kWh 39 kWh 128 kWh 194 kWh 

Aug-2011 38 kWh 52 kWh 37 kWh 262 kWh 

Sep-2011 31 kWh 39 kWh 43 kWh 194 kWh 

Oct-2011 25 kWh 47 kWh 103 kWh 235 kWh 

Nov-2011 33 kWh 46 kWh 73 kWh 232 kWh 

Dec-2011 22 kWh 46 kWh 103 kWh 229 kWh 

Jan-2012 24 kWh 62 kWh 130 kWh 311 kWh 

Feb-2012 23 kWh 52 kWh 90 kWh 260 kWh 

Mar-2012 21 kWh 43 kWh 81 kWh 216 kWh 

 

Kitchen sockets and cooker electricity consumptions are compared together since 

they mainly hinged to the cooking, washing and drying activities. Overall, Dwelling 7 

shows more energy consumption again either on Cooker and Kitchen Sockets. The 

higher electricity usage on kitchen sockets (include washing machine and dryer) in 

bungalow 2 suggests that it has more demand on kitchen appliance and laundering. 

Averagely dwelling 7 used around 50% to 319% more energy in Kitchen area 

includes Cooker and Kitchen sockets throughout the whole monitoring period.  

 

 

 



283 

 

Table 7.10: Other Sockets energy comparison 

Monthly Other Sockets 
Dwelling 6 

Other Sockets 
Dwelling 7 

Jan-2011 237 kWh 267 kWh 

Feb-2011 138 kWh 172 kWh 

Mar-2011 94 kWh 322 kWh 

Apr-2011  249 kWh 

May-2011  276 kWh 

Jun-2011 43 kWh 294 kWh 

Jul-2011 173 kWh 344 kWh 

Aug-2011 175 kWh 317 kWh 

Sep-2011 109 kWh 322 kWh 

Oct-2011 158 kWh 317 kWh 

Nov-2011 146 kWh 294 kWh 

Dec-2011 119 kWh 276 kWh 

Jan-2012 237 kWh 312 kWh 

Feb-2012 138 kWh 269 kWh 

Mar-2012 94 kWh 277 kWh 

 

Dwelling 7’s other sockets uses much more electricity again, according to the 

appliances auditing conducted in October 2011, every kid in Dwelling 7 has her own 

sets of game console, tablet, electric bike and etc. This would increase the energy 

consumption massively as these three kids can be more actively use more 

appliances comparing to the two adult children in Dwelling 6. 

Lighting sub-circuit electricity consumption shows great similarity in winter.  In the 

summer of 2011 from June to September, dwelling6 ’s Lighting electricity 

consumption is lower than 10 kWh per month, even dropped to 5 kWh per month in 

June.  Comparing to 37 kWh in March, dwelling 6 consumed 87% less in June. 

Dwelling 7 used 42 kWh in March then it dropped down to 19 kWh in June 2011, 

which is 55% reduction in lighting electricity. From October, both bungalows began to 

use more electricity on lighting and reached the highest consumption in January 

2012. 
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Table 7.11: Lighting energy comparison between dwelling 6 and 7 

Monthly Dwelling 6 Dwelling 7 

Jan-2011 44 kWh 49 kWh 

Feb-2011 37 kWh 42 kWh 

Mar-2011 37 kWh 42 kWh 

Apr-2011 missing 25 kWh 

May-2011 missing 28 kWh 

Jun-2011 5 kWh 19 kWh 

Jul-2011 8 kWh 23 kWh 

Aug-2011 9 kWh 24 kWh 

Sep-2011 9 kWh 24 kWh 

Oct-2011 18 kWh 38 kWh 

Nov-2011 31 kWh 36 kWh 

Dec-2011 41 kWh 46 kWh 

Jan-2012 44 kWh 49 kWh 

Feb-2012 37 kWh 42 kWh 

Mar-2012 37 kWh 42 kWh 

 

 

7.6.3 Identifying the cause of high energy usage Dwelling 8 

Monitoring starts from 27th Mar and finished 26th April/2012. In 30 days, the total 

electricity usage is 1315.62 kWh, which is averagely 42.44 kWh per day. Table 5.43 

lists all the electricity end uses by all the six sub circuits and illustrated in figure 5.89. 

 

Table 7.12: Summary of sub-circuits electricity consumption.  

Periods Immersion ASHP Electric 

Shower 

Sockets 

downstairs 

Sockets 

Upstairs 

Lighting 

and 

Kitchen 

Sockets 

Week 1 0.00 kWh 27.99 kWh 24.60 kWh 64.33 kWh 6.21 kWh 34.82 kWh 

Week 2 72.71 kWh 60.47 kWh 20.30 kWh 56.97 kWh 0.62 kWh 40.12 kWh 
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Periods Immersion ASHP Electric 

Shower 

Sockets 

downstairs 

Sockets 

Upstairs 

Lighting 

and 

Kitchen 

Sockets 

Week 3 87.89 kWh 54.61 kWh 41.45 kWh 65.41 kWh 6.09 kWh 66.84 kWh 

Week 4 150.07 kWh 12.98 kWh 39.67 kWh 73.68 kWh 2.82 kWh 70.07 kWh 

 

Total 327.64 kWh 156.05 kWh 131.1 kWh 282.80 kWh 17.71 kWh 230.31 kWh 

 

Highest daily consumption is 73.15 kWh and the lowest is 15.34 kWh. Electricity 

consumption at upstairs is the lowest comparing to downstairs and kitchen and 

lighting.  The socket at ground floor contains all the appliances in the lounge and 

hallway where the washing machine and tumble dryer are located at the rear. The 

third sub circuit contains all the lighting in the house, oven and all the appliances in 

the kitchen. Ground floor sockets and kitchen sockets (plus lighting) are more close 

and similar in their trend. 

Immersion heater uses significantly more than ASHPand electric shower. Daily 

average consumption of immersion heater is 10.92 kWh and highest is 39.48 kWh 

per day.  The average ASHP usage is 5.20 kWh per day, which is about half of the 

immersion heater. Electric shower also uses similar amount of 4.37 kWh per day.  

There are few correlations between the immersion heater and the electric shower, 

but immersion heater runs much higher in later Aril while ASHP drops down. 

Occupant turned the ASHP completely off on 21 April and on that day immersion 

heater consumption reached the maximum. 

Immersion heater was completely turned off by occupant in week 1. In the rest three 

weeks, immersion heater becomes a major end use. Since week 2, the electricity 

usage of ASHP becomes less and less while immersion heater raises from 29% to 

43%. Throughout the 30days, it can bee seen that the largest part of electricity usage 

is immersion heater (29%). The second highest is socket downstairs (25%), but 

socket upstairs only takes 2%. The third place of electricity usage is taken by the 

circuit contains lighting, oven and kitchen sockets. This difference between sockets 

at ground and first floor is probably caused by the washing machine and tumble dryer 
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at the rear of the hallway, plus the other appliances in the lounge such as plasma TV. 

ASHP consumption and Electric shower are 14% and 11% respectively. 

Looking at ASHP and immersion heater, it can be seen that the ASHP only uses less 

than half of the immersion heater. This uneven usage ratio indicates that the less 

energy efficient immersion heater works a lot more than the ASHP. Considering the 

monitoring period was at the end of the heating season, high usage on immersion 

heater is most likely caused by the large amount of domestic hot water demand by 

the six children and one adult in the house.   

 

Figure 7.22:  Percentage views of electricity consumption 

Occupancy of seven people, especially with six you children, consequently leads to 

higher cooking, washing, drying and domestic hot water activities. However, the 

optimal energy efficiency cannot be achieved by satisfying such demand. This is 

reflected on the electricity consumption by ASHP and immersion heater. 

 

7.7 Summary  

This chapter presented the integration of physical measurement and social science 

survey results in order to explore the potential relationships which might become 

additional information of tested monitoring methods and instrumentation.  In real 

cases, such methods have proven their usefulness with regards to the cause of high 

energy consumption. 
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As an exploratory attempt, there are some interesting relationships and interactions 

between these parameters but not conclusive. If the integration of measurements 

from different aspects had been planned before deployment of method and 

installation, a better result could be achieved on top of individual measurement and 

jointly provide additional information towards better interpretation of occupant 

behaviour in dwellings. 
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CHAPTER 8  DISCUSSION 
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8.1 Introduction 

This chapter discusses the objectives outlined in Chapter 1 and addresses 

knowledge gaps listed in Chapter 2 in the light of the results from the fieldwork 

described in Chapters 5, 6 and 7. These objectives were developed in order to 

address the main aim of this thesis: ‘to investigate methods of quantifying impact of 

occupant behaviour on domestic energy consumption, thermal comfort and indoor 

environmental conditions’. Each objective is considered in turn and a final concluding 

statement is presented in relation to the main aims of this research. The final section 

of this chapter includes discussion of the aspects of the thesis where further work 

could be undertaken. 

8.2 Contribution to knowledge gaps 

The first and second knowledge gap, as stated in Chapter 2, are the lack of detailed 

description and specification of how relevant parameters were measured and what 

advantages and disadvantages a method or instrument may possess. This gap 

makes it is difficult for others to choose their tool when conduct similar studies. 

These gaps have been partially addressed by investigation of selected methods and 

sensors that focused on energy related parameters in domestic built environment. 

Each method and instrument has been studied and presented in table 8.1 in section 

8.2.1 by five criteria, namely, level of invasiveness, accuracy, cost, ease of use and 

reliability.  

The most commonly used method, such as questionnaire survey, interview, visit and 

observation have all been used for domestic built environment and occupants with 

several modifications. To begin with, one-off thermal comfort focused questionnaire 

has been replaced with self-administrated diary with repeatedly asked questions.  

Regarding the gap of fewer studies in domestic sector, this research has been 

focusing solely on dwellings, especially on the comparisons of two pairs of 

sustainable homes in Wales (dwelling 4, 5, 6 and 7). The first pair, occupants moved 

from poor energy efficiency dwelling to a much better one actually reduced their 

energy consumption with slightly warm indoor environment. The second pair shows 

that even in identical dwellings with code level-4 sustainable home standard, the 

actually energy consumption can be significantly different due to the occupant’s 

behaviours, especially during the heating season where energy demand peaks. 

The high resolution metering investigating primarily focuses on bridging the gap 

between monitoring hardware and behavioural data analysis. Namely, the gas meter 
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measurement and heating control pattern, electricity sub-circuit measurement and 

consumption profile, immersion heater energy consumption and domestic hot water 

demand events, windows status and their operation preferences. The positive 

feedback of purposely collected data and meaningful interpretation of occupant 

behaviour. 

Minimising the level of invasiveness that monitoring method and instrumentations 

has been a priority in this research. The selected ones for investigate have been 

carefully thought of in order to avoid occupant feeling being monitored. Based on the 

feedback from occupants in field study, the invasiveness of each method and 

instrumentation have been rated (table 8.1).   

The gap of how to integrate measurement has been attempted to fill by joining data 

from different sectors, namely, window opening CO2 concentration level and external 

air temperature, presence and CO2 concentration level, physical measurement 

based thermal satisfaction and subjectively rated thermal satisfaction. Given the 

relatively small number of field study dwellings, there are positive relationships 

between these parameters due to their interaction within dwellings which is also 

much smaller than commercial buildings. With more purposely designed and ethically 

permitted field study, it would be possible to reveal and quantify these interlinks more 

accurately.  

8.3 Objectives of the research  

The following objectives were developed: 

1. To review and summarise current knowledge of method and 

instrumentations of measuring impact of behaviour on energy usage in 

the literature; (8.2.1) 

2. To devise empirical studies to investigate people’s behaviour in buildings 

and the resulting impacts on energy consumption and the environment; 

(8.2.2) 

3. To monitor behaviour in actual buildings and to record its impact on 

energy consumption and the environment; (8.2.3) 

8.3.1 Current monitoring methods and instrumentations  

The energy and occupant behaviour-related parameters in the built environment 

have been studied broadly in existing literature. In general, monitoring methods and 
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instrumentations can be classified into physical measurement and social science 

methods.  With regards to the physical measurement, there is a lack of detail about 

how relevant parameters have been measured, especially the advantages and 

disadvantages of selected sensors and systems when deploying them in different 

buildings.  

Social science methods, such as questionnaires and interviews, physical visits, direct 

and indirect observation are widely used in studies of the commercial built 

environment. Some cannot be applied in domestic dwellings due to the high level of 

invasiveness. Retrospective reporting of comfort and behaviour is often used, for 

example in the ‘standard’ Building Use Studies methodology (Bordass and Leaman 

REF), but can be inaccurate and may provide a false picture in occupant related 

parameters.  

High resolution metering commonly focuses more on the technical side, and less on 

application and field test.  In particular, there is very little information about test 

results to achieve optimal performance.  

In conclusion, to bridge the gaps in terms of energy related behaviours study, there 

needs to be methods and instrumentations which are ethically accepted, minimally or  

completely non-intrusive, cost effective, and suitable for long-term study in domestic 

built environment. It is also interesting to integrate measured data together for better 

and more accurate interpretation of measured data.  

8.3.2 Empirical studies to investigate monitoring methods and 

instrumentation behaviour in buildings  

In general, methods and instrumentations are categorised into physical 

measurement and social science survey. The methods and instrumentations 

selected for investigation are listed in the Table 8.1 with regards to their 

invasiveness, cost, accuracy, ease of use and reliability. Specification of individual 

sensors can be found in the Chapter 3. This table focus on reviewing 

instrumentations and methods after they being been tested in the field study 

investigation. 
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Type of 
parameter 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

Space heating Gas sub-meter and 
pulse counter 

High, a gas sub-
meter has to be 
installed into 
existing gas 
pipework 

High, widely used 
with industrial 
standard  

Low to medium, 
depends on size, 
gas sub meter cost 
between £40 to 
£70, plus £100 
installation/dismantl
e cost, pulse 
counter costs £96 

Requires 
specialist to 
install. Easy to 
operate once 
being installed. 

High, works much the 
same as common gas 
meter, suitable for long-
term study, almost 
maintenance free 

Gas boiler surface and 
temperature sensor 

Low Low to Medium, 
cannot differentiate 
space heating from 
domestic hot water  

Low, Tinytag 
temperature sensor 
costs £56 per unit 

Easy, place or 
attach sensor 
onto boiler 
surface 

Medium. Can function 
as a rough indicator of 
boiler running status.  

ASHP boiler outdoor 
unit and temperature 
sensor 

Low, could be 
installed  from 
outside of the 
house 

Medium to high, the 
temperature 
change marches 
with heat 
exchanger, 
therefore the ASHP 

Low, Tinytag 
temperature sensor 
cost £56 per unit 

Easy place or 
attach sensor 
onto ASHP 
extractor fan 
unit 

Medium, Can function 
as a rough indicator of 
ASHP running status. 
Not able to separate 
space heating demand 
from domestic hot water 

Thermostat dial and 
resistance logger 

Low, installation 
could be finished 
within15 minutes 

High, it measures 
directly the rotary  
resistor inside 
thermostat which 
represents the 
temperature 
settings 

Low, one 
resistance logger 
costs £55 

Medium, the 
resistive 
component and 
corresponding 
positions 
(temperature 
settings) must 
be measured 

High, and suitable for 
long term monitoring 
since it does not 
interfere with normal 
operation of thermostat 
(rotatory type) 

Individual radiator and 
fireplace and 
temperature logger 

Low, a sensor 
could be place 
onto or nearby 

Low to medium, as 
radiator remains 
warm for a while 
after being used, 
the lagging period 

Low, Tinytag 
temperature sensor 
cost £56 per unit 

Easy, 
researcher can 
installed 
sensors by 
oneself 

Medium, effective 
enough to indicate state 
change from ‘Off’ to 
‘On’, however, due to 
the lagging period, it is 
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Type of 
parameter 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

varies and depends 
on its capacity 

could not completely tell 
exactly when space 
heating is off since it 
stays warm short after.  

Domestic hot 
water 

Customised 
shower/bath diary 

High, could only 
be completed by 
occupant who 
must remember to 
fill in 

Medium to High, if 
well kept the hot 
water demand 
matches well with 
monitoring 

Low, it is voluntary, 
but participant in 
this study was 
offered £20 
incentive for 
keeping diary 

Easy, can be 
tailored to the 
best fit to 
occupant’s 
requirement 

Low to Medium, in 
dwelling with multiple 
members of family, 
keeping track of every 
shower or bathing event 
may not be realistic 

Hot water inlet and 
return pipe surface and 
temperature logger 

Low, not plumbing 
works required 

Low, it only capture 
temperature shift 
from cold to hot 
well,   

Low, Tinytag 
temperature sensor 
cost £56 per unit 

Easy, simply 
attach sensor to 
pipe with good 
contact 

Low, cannot provide 
details such as volume 
and temperature that 
inline heat and water 
meter can offer  

Boiler control panel 
display icon recognition  

Medium, although 
it only points to 
the boiler, 
however it 
introduces visual 
recording device 

High, once the 
tuning is 
completely, key 
activity icon change 
can be capture with 
time stamps 

Medium, most cost 
goes to 
computer/laptop, 
customised 
webcam, infrared 
LED and  tripod 
cost £40 

Difficult, pictures 
of icon changes 
have to 
manually 
interpreted  

Medium to High, it 
function as a footage of 
boiler’s activity, lead to 
occupant’s space 
heating and domestic 
hot water behaviour 

Windows and 
door 

Opening angle and 
Multiple contact switch 
board 

Low to medium, 
the board needs 
to be installed 
either over the top 
or at bottom of the 
door,  

High, the number of 
sensor could be 
increased for a 
higher resolution of 
angles 

Low, reed switch 
cost £0.5 each and 
£45 for a 4 
channelled event 
logger  

Medium, need 
to measure the 
physical 
dimensions  for 
best fit 

Medium, it may needs 
inspection to ensure the 
right position securely. If 
reed switches could be 
fixed on the floor then 
less inspection would 
be required of long term 
measuring. 

Opening angle and Flexi Low, the setting High, bending Low, £9-10 per Easy, light High, the only movable 
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Type of 
parameter 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

resistive sensor and small and 
low-profile 

caused by a door 
matches well with 
resistance value 

sensor and £55 for 
resistance logger 

sensors setting 
can be attached 
with double 
sided sticky pad 

piece is the flexi sensor 
which is designed up to 
10000 times of  bending 

Opening angle and 
Rotary resistive sensor 

Low, the setting 
and small and 
low-profile 

High, level of 
rotation represents 
physical angle of 
door 

Low, £9-10 per 
sensor and £55 for 
resistance logger 

Easy to 
medium, sensor 
has to be to the 
top of door 

Medium to High, the 
rotary resistive sensor 
was not designed for 
rapid rotation 

Opened or closed status 
and single contact 
switch event logger 

Low, the setting 
and small and 
low-profile 

High, ‘open’ and 
‘closed’ status of a 
door or window can 
be recorded 
accurately 

Low, £5 per sensor, 
£45 for event 
logger with an 4 
channels. 

Easy, light-
weighted 
contact switch 
can be installed 
externally with 
double sided 
sticky pad 
 
 

High, the contact switch 
are designed for door 
status monitoring, can 
be maintained outside 
of dwelling. 

Electrical 
appliance and 
lighting 

Electricity sub-circuit 
and current transducer 
with and without voltage 
input 

Low to Medium, 
depends the 
location of main 
consumer unit 

Medium to High, 
error rate is 
proportionally 
greater without 
voltage input 

High, every 
electrical sub-circuit 
needs a CT sensor 
the  

Difficult, may 
need an 
electrician to 
install due to 
exposure of live 
wires.  

High, suitable for long 
term monitoring, voltage 
import can improve its 
accuracy 

Individual appliance and 
socket electricity meter 

Low, the setting 
and small and 
low-profile has 
appearance of 
normal socket 

High, measures 
current and voltage 

High, £40  for each 
sensor 

Easy, plug and 
play 

Indoor physical 
environment 

Temperature, humidity  
 
 

Low, especially 
the battery 
powered stand-

High, it has been 
widely and 
commonly used in 

Medium, £96 per 
sensor,  

Easy, place and 
ready to record, 

High, stand-alone 
logger can be retrieved 
up to with capacity of 10 
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Type of 
parameter 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

along sensor with 
built-in logger 

field study month of data at 30 
minutes interval 

CO2 (Non Dispersive 
Infrared) 

Low, the setting 
and small and 
low-profile 

Medium, in 
domestic 
environment, 
location of CO2 
sensor is restricted 
and must not 
interrupt daily 
activity 

High, £200 per 
sensor 

Easy, place and 
ready to record 

Medium. It does not 
pick up significant 
amount of CO2 
concentration level 
while a room being 
occupied, requires 
additional parameters 
such as the ventilation 
rate and occupancy, 
CO2 level data alone 
functions only as one 
aspect of indoor air 
quality 

Occupant Questionnaire and 
indoor condition 
satisfaction 

Medium, will take 
5 to 10 minutes of 
each participant 

Medium, relies on 
personal, 
experience, 
judgement and 
understanding 
towards different 
types of comfort 

N/A, mainly time of 
researcher and 
participant 

Easy to 
medium, 
requires good 
understanding 
of questions and 
able to explain 
the terms and 
definitions if 
requires 

Function as a glimpse 
of participants’ memory 
and personal 
interpretation of comfort 

Self-reported recent 
thermal satisfaction, 
activity and clothing 
level  

High, requires 
complete co-
operation from 
occupants, 

Medium to high, as 
the same set of 
questions are 
answered 
repeatedly with 
gradually 
strengthened 

N/A, participant in 
this study was 
offered £20 
incentive for 
keeping diary 

Medium, 
feedback from 
field study was 
positive, it was 
difficult to keep 
for long term 
due to its 

The pattern of activity 
level, clothing level, 
thermal comfort 
satisfaction,  
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Type of 
parameter 

Method and 
instrument 

Invasiveness Accuracy Cost Ease of use Reliability 

understanding 
which provides 
consistence  

frequency (four 
times a day) 

Face to face interview High, appointment 
need to be 
arranged  

Medium to High, it 
offers in depth 
information of 
specific interest 

N/A, mainly time of 
researcher and 
participant 

Medium, 
communication 
and people skill  

Better than 
questionnaire, can clear 
some doubts regarding 
occupant’s understand 
of interviewed questions 
and topics 
 
 
 

Occupancy and PIR 
presence sensor 

Medium to High, it 
need to point the 
area where 
occupant would 
usually be 

Medium, varies with 
the setting, raw 
pulse generated by 
motion detection is 
more sensitive in 
than default ‘error’ 
filtered activity 
signal 

Low to Medium, 
adjustable level of 
sensitivity requires 
customised PIR 
module with 
Arduino micro 
controller, cost £27 
per set 

Medium, 
requires basic 
programing skill 
with Arduino 
control and 
ability of building 
customised PIR 
module board 

Medium, the position of 
PIR sensor affects its 
motion detection. In 
addition, it is important 
to measure the raw 
pulse instead of ‘error’ 
filtered activity signal 

Wearable activity tracker High, total steps 
count while being 
worn 

High, at least 3 
accelerometers 
based tracker could 
detect movement 
accurately, mostly 
differ active level of 
wearer either being 
sedentary or 
walking around  

Medium, tracker 
costs £30 to £50 
each 

Easy, wear on 
wrist, clip-on 
belt/clothe 

Medium, It was found 
difficult in field study 
that wearer often forgot 
to take it off while not in 
home, this make it hard 
to estimate their activity 
level at home.  

 

 

Table 8.1: summary of monitoring methods and instrumentation 
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8.3.3 Monitor behaviour in actual buildings to record its impact on 

energy consumption and the environment 

The field study contains two pairs of detailed monitoring studies for compassion. One 

selected two dwellings with different levels energy efficiency and occupied by the same 

participants. The other contains two different families who live in identical dwellings next to 

each other.  

The family who moved into a higher energy efficient dwelling showed an improved mean 

indoor temperature that raised from 19.0 ˚C to 20.88˚C. The energy consumption also 

achieved substantial reduction, 24% less daily electricity and 44% less gas consumption.  

Electricity consumption is relatively stable but boiler gas consumption has very clear 

relationship with external temperature, higher boiler gas usage during cold days. Lifted 

indoor temperature doesn’t alter her ventilation preferences according to the main bedroom 

window opening frequency. Occupants did not participate the self-administrated dairy, 

therefore very little is known regarding their behaviour change after moving to the new 

house. 

The second comparison contains more detailed measurements in both physical and social 

science survey that have been conducted in dwelling 6 and 7 (off-gas properties). In 

comparison, dwelling 6 uses averagely 125% more electricity than dwelling 7, even up to 

204% during heating season. However, dwelling 7’s ASHP consumed averagely 90% more 

than dwelling 6 1 but its immersion water heater uses 1143% more electricity. Both physical 

measurement and social science survey results suggest that occupants of dwelling 7 prefer 

to have bath but their neighbour usually takes shower. Such different preference may 

explain the significant amount of domestic hot water energy consumption. It was found that 

ASHP cannot satisfy sudden domestic hot water demand and when it occurs, the much less 

energy efficient immersion heater would take over. This is proven by integrating 

shower/bathing diary and immersion heater which is always triggered after consecutive 

shower/bathing events. 

Dwelling 7 has higher 174% energy on laundry appliances and often drying them inside 

house. On the other hand, in winter windows of dwelling 7 were operated 33% more 

frequently than dwelling 6 which suggest more active ventilation behaviour in winter. As a 

result, dwelling 7 has 25% lower CO2 concentration level.  

Higher number of window opening can also lead to heat loss and lower indoor temperature. 

Given the higher ASHP energy consumption in dwelling, mean indoor air temperature of 

dwelling 7 is only 0.33 ˚C warmer than dwelling 6.  
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Lighting energy usage shows matching tendency with daylight in both dwellings. Shorter day 

light time brings up lighting electricity consumption. 

The social science survey found substantial differences between participants of Dwellings 6 

and 7, namely activity level, clothing and thermal satisfaction. Participants who have high 

activity levels in past 30 minutes seems to wear fewer clothes, drink fewer hot beverage and 

rate thermal satisfaction better, given the 0.33 ˚C warmer indoor temperature.  

In conclusion, energy consumption and indoor environment is directly affected by occupant 

who operates the house to satisfy various demands, life styles, habits and personally 

preferences. The investigation of impact of occupant behaviour on domestic energy 

consumption must consider all of those factors together in order to achieve a better 

understanding. Beside the measurement methods of each individual parameter, potential 

relationships between the followings are worth to be considered together for better data 

interpretation: 

• Energy consumption for heating, space heating control behaviour and window 

operation (heat loss) behaviour. 

• Domestic hot water energy usage, domestic hot water demands measurement, and 

immersion water heater (if any). 

• CO2 concentration level, occupancy and window operation of the room and perhaps 

extend to the adjacent room’s windows/doors. 

• Wearable activity tracker data, clothing level, calculated PMV and self-reported 

thermal satisfaction. 

• Analysed measurement and post monitoring social science surveys that are tailored 

and targeted to verify findings. 
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CHAPTER 9  CONCLUSION 
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This chapter concludes the thesis by presenting the benefit of this research and 

recommendations for future studies.  

 

9.1 Benefit of this research  

The research explored a range of methods and instrumentations and studied several 

sustainable homes regarding their energy consumption and occupant behaviour.  The 

results of tested method and sensors investigation provide first-hand experience, both pros 

and cons regarding their application in domestic buildings. Such experience may serve 

others who want to explore energy and occupant behaviour in the domestic built 

environment. 

The study has developed four new methods for monitoring the domestic thermal 

environment. These are:  

Thermostat adjustment behaviour 

It was proven in field study that dial resistor based thermostat, which is also one of the most 

popular type, can be monitored by simply a resistance logger which both cost-effective and 

highly accurate with very little invasiveness. It captures all adjustments on space heating 

setting temperature made by occupant continuously even suitable for long term monitoring. 

Such method could be beneficial to detailed research on how occupant set space heating 

output and perhaps what circumstance might trigger them to make adjustment. 

Optical gas meter reader 

The test results optical sensor and existing gas meters, both dial and rotary type, are 

satisfying. Installation itself is non-intrusive and can provide accurate pulse readings as 

same as inline gas sub-meter does. 

Self-administrated diary and wearable activity tracker 

It was found that self-administrated diary kept at fixed intervals could provide more detailed 

subjective data and personal parameters than one-off questionnaire. Wearable activity 

tracker could also offer high quality data of activity level which usually replies on self-rated 

method via questionnaire. 
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Presence sensor’s raw pulse 

The finding of PIR presence sensor could be useful to occupancy monitoring. Commonly, 

PIR sensor contains manufacturer defined error filter which was designed to eliminate ‘false’ 

motion, however, such mechanism may not suit for domestic environment and the purpose 

of occupancy data collection. In commercial building, PIR presence sensor usually controls 

other functions, such like lighting, flush water or intruder detection alarm. In these occasions, 

PIR sensors are deliberately tuned less sensitive for ease of use. For example, three 

consecutive motion pulses within 5 seconds will be processed as an activity signal.  

However, in occupancy monitoring study, it would be ideal to measure the raw motion pulse 

than pre-filtered activity signal. 

Indirect measurement 

While directly measurement not applicable for some parameters, it worth to explore 

alternative parameters that might also be used to interpret occupant behaviour. Several new 

methods have been trialled with gas boiler surface temperature, ASHP compressor 

temperature, individual radiator surface temperature, exhaust vent temperature of gas 

fireplace, and hot water pipe surface temperature.  Measurement taken from these spots are 

not exactly of study interest but come up as alternative option when permission or technical 

difficulty limits the direct monitoring method. Examples like fire place exhaust vent humidity 

and ASHP extraction fan temperature have shown clear relationship with their operating 

status. Indirect measurement methods often tend to be much less intrusive and more like to 

be accepted by occupant, however, at the cost of reduced accuracy. For example, testing 

result of hot water pipe surface temperature is proven to be only indicative of the start of 

domestic hot water demand only, whereas the more intrusive in-line heat meter would be 

able to differentiate and mark exactly a hot water demand start and finish. 

Beside these new methods, energy consumption results indicate that higher energy 

efficiency can be achieved as a joint effort of best practice of HVAC system and behavioural 

adjustment. Energy reduction was found in the case study dwellings 4 and 5, the same 

family shows substantial amount of energy savings while being able keep the new house 

warmer during heating season.  

It was also found that occupant behaviour, habit and life style could significantly affect the 

energy consumption even in dwellings with higher energy efficiency. Examples are dwelling 

6, 7 and 8, where the lack of understanding regarding new space heating and hot water 
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system, bathing choice and window ventilation preference together caused significant impact 

on energy consumption. 

Data integration of energy consumption and behaviour measurement has been proven 

useful for local housing association to provide energy saving advice and to troubleshoot 

uncertain cause of high energy usage. In dwelling 6, 7 and 8, one common cause is 

mismatch between domestic hot water consumption habit and ASHP system. Occupants 

used to gas power condensing boiler which provide hot water as required, whereas ASHP 

could not provide if optimal energy efficiency is needed to be achieved. Have both sides 

understood, namely, ASHP system and occupant preference, can lead to target-oriented 

energy saving advice. 

On a household scale, occupants and young one could be beneficial from a better 

understand of their indoor comfort need and best practice of maximising every unit of energy 

that used to provide such comfort. On a bigger canvas, better energy efficient while fulfilling 

occupant’s requirement could be one of solution to battle against the worsening climate 

change, considering the time people spend at home and the number of dwellings.  

 

9.2 Recommendation for further study 

‘All research work is incomplete – whether it be observational or experimental. All scientific 

work is liable to be upset or modified by advancing knowledge. That does not confer upon us 

a freedom to ignore the knowledge we already have or to postpone the action that it appears 

to demand at a given time’. (Bradford Hill, 1965) 

This research has investigated a range of the methods and instrumentations which measure 

both physical and subjective parameters in domestic built environment in order to achieve a 

better understanding of occupant behaviour and its impact of energy consumption. The 

following considers a number of further research considerations that have resulted from this 

study. 

Detailed space heating related control and automated method to record adjustment made by 

occupant has been considered. Given the increased popularity of digital control panel in 

boiler and heat pump manufacturing, it worth to investigate the possibility of monitor the 

internal signals. For example, a digital thermostat would send a signal of current room 

temperature and desired setting temperature to the boilers control module where a decision 
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would be made regarding whether further heat output needs to be supplied. Same principle 

applies to domestic hot water, or even immersion heater which has a logic module to control 

when to start and stop water heating. This set of information can reveal the relationship 

between occupant demand pattern and system responses, which would be of mutual interest 

to both occupant who wants to know more and manufacturer who desires further product 

performance from tuning and commissioning existing system. 

The current wide choice of parameters that could be measured in dwellings is likely to 

introduce consideration of integrated monitoring plans which can be targeted for different 

purpose. Measurement can serve better data interpretation, for example, window operation, 

room temperature, space heating energy, CO2 concentration and occupancy are closed 

linked together. Individually, one parameter would be difficult to speculate how other 

parameters changes.   

It is also considered that paper based subjective data collection method could be studied 

further and possibility of utilising handheld electronic equipment could be explored. A 

smartphone or tablet app may be able to provide a more friendly and convenient platform for 

participant to keep. The function is smart devices is also expandable, such as adding 

reminder feature to replace the alarm clock used in this study. Electronic device based social 

science survey also removes the physical boundary that limit the content per page.  

Several customised sensor settings have been developed for door angle monitoring and all 

demonstrate good performance on invasiveness, cost, accuracy and reliability. In principle, 

these settings could be used for window monitoring. Angle of window could offer a much 

more enriched data set with regards to their exact level of being left open. 

Occupants of dwelling 6 actively engaged with this study and made several changes to both 

HVAC system and their habits. Such intervention was found to have an impact on related 

energy consumption. It is considered further study could be focused on quantifying impact of 

behaviour change in dwelling with detailed monitoring set up. Experiments could lead to 

useful data that may be used to update the occupant input database of energy performance 

simulation software. It might be possible to compare the predicted performance with actual 

measurement in order to refine accuracy of simulation tool.  
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