
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/86769/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Baes, Michel, Oertel, Timm and Weismantel, Robert 2016. Duality for mixed-integer convex minimization.
Mathematical Programming 158 , pp. 547-564. 10.1007/s10107-015-0917-y 

Publishers page: http://dx.doi.org/10.1007/s10107-015-0917-y 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Duality for Mixed-Integer Convex Minimization

Michel Baes, Timm Oertel, and Robert Weismantel

April 7, 2015

Abstract

We extend in two ways the standard Karush-Kuhn-Tucker optimality conditions to
problems with a convex objective, convex functional constraints, and the extra requirement
that some of the variables must be integral. While the standard Karush-Kuhn-Tucker
conditions involve separating hyperplanes, our extension is based on mixed-integer-free
polyhedra. Our optimality conditions allow us to define an exact dual of our original
mixed-integer convex problem.

1 Introduction

Several attempts have been made in the past to define formally a dual of a linear integer or
mixed-integer programming problem. Let us first mention some important developments in this
direction.

One idea to define a dual program associated with a binary linear integer programming
problem is to encode the given 0/1-problem in form of a linear program in an extended space,
so that the new variables correspond to linearizations of products of original variables. The
variables of the dual of the resulting linear optimization program can be reinterpreted in terms
of the original variables. This concept of duality has its origins in the work of [21, 22] and
[16] and is closely connected with the earlier work of [3, 2] on disjunctive optimization. It also
provides us an interesting link to the theory of polynomial optimization including duality results
associated with hierarchies of semidefinite programming problems, see [13]. For a comprehensive
survey treating the relationships and differences between several relaxations of this kind we refer
to [14].

A second important development in integer optimization is based on the connections between
valid inequalities and subadditive functions. This leads to a formalism that allows us to establish
a subadditive dual of a general mixed integer linear optimization problem, see [9, 6, 7, 8, 10]
and [19] for a treatment of the subject and further references. Recently, a strong subadditive
dual for conic mixed integer optimization has been constructed in [17].

There are several other special cases for which the dual of a mixed integer optimization
problem has been derived. One such example is based on the theory of discrete convexity
established in [18]. Here, an explicit dual is constructed for L-convex and M-convex functions.

A third general approach to develop duality in several subfields of optimization is based
on the Lagrangian relaxation method. The latter method is broadly applicable and – among
others – leads to a formalism of duality in convex optimization. The connection between the
Lagrangian dual and linear relaxations of linear integer optimization problems has its origins in
[5]. This paper developed a combinatorial version of a Lagrangian relaxation in form of 1-trees
for the traveling salesman problem. Since then there have been a large number of applications
using this relaxation technique for integer optimization problems, see e.g. Chapter II.3 in [19].
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Our point of departure is the strong duality theorem for convex optimization based on the
Lagrangian relaxation method. We will show that optimality certificates and duality in convex
optimization have a very natural mixed-integer analogue. A duality theory in Euclidean space
follows from a precise interplay between points – that are viewed as primal objects – and level
sets of linear functions, that is, closed half-spaces, interpreted as dual objects. It turns out that
there is a similar interplay in the mixed-integer setting. Here, the primal objects are sets of
points, whereas the dual objects are mixed-integer-free open polyhedra. Where a set is mixed-
integer-free if its interior does not contain any mixed-integer point. (If d = 0, we just say that
the set is integer-free.) Our motivation for studying optimality certificates and a mixed-integer
convex dual comes from the important developments in convex optimization in the past decade.
As a first step towards new mixed-integer convex algorithms, it seems natural to make an
attempt of extending some of the basic convex optimization tools to the mixed-integer setting.

2 Mixed-integer optimality certificates

Let f : dom(f) 7→ R be a continuous convex function. In order to simplify our exposition we
may assume w.l.o.g. here that dom(f) = Rn. Assume that f has a, not necessarily unique,
minimizer x?. Then a necessary and sufficient certificate for x? to be a minimizer of f is that
0 ∈ ∂f(x?), i.e. the zero-function is in the subdifferential of f at x?. Hence

x? = argmin
x∈Rn

f(x)⇐⇒ 0 ∈ ∂f(x?).

The question emerges how to obtain a certificate that a point x? ∈ Zn × Rd solves the corre-
sponding mixed-integer convex problem

x? = argmin
x∈Zn×Rd

f(x)? (1)

Let us first explain the idea of our approach. By definition, x? = argmin
x∈Zn×Rd

f(x) if and only if

{x ∈ Zn × Rd | f(x) < f(x?)} = ∅. (2)

The level set {x ∈ Rn+d | f(x) ≤ f(x?)} is convex. If it is nonempty, then its projection to its
first n components, that is, to the subspace spanned by the integer variables is again a convex
set. Clearly, x? = argmin

x∈Zn×Rd
f(x) if and only if

Q := {z ∈ Rn | ∃y ∈ Rd, x = (z, y) and f(x) < f(x?)} ∩ Zn = ∅.

From a theorem of Lovasz, inclusionwise maximal integer-free convex sets are polyhedra [15]:
we can restrict our attention to such polyhedra P that contain the (convex) projection Q. From
the theorem of Doignon [4], it follows that a subset of at most 2n inequalities in the description
of P are enough to prove that int(P ) ∩ Zn = ∅. It remains to show how to relate these 2n

inequalities to the function f . The following theorem, which is an immediate consequence of
our Theorem 5 proved at the end of this section, clarifies this relationship, providing a necessary
and sufficient condition for our original mixed-integer convex problem.

Each of these 2n inequalities is related to a mixed-integer point, the set of which constitutes
our optimality certificate. The verification of this optimality certificate can be performed in
polynomial time, provided that the number of integer variables is a constant.

Throughout this paper we we make the following assumption.
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Assumption 1. Given a convex minimization problem, either (1) or its constrained version
(3), we assume that the set of continuous minima exists and is bounded. Note that this implies
that the feasible domain intersected with any level-set is bounded.

Theorem 2. x? = argmin
x∈Zn×Rd

f(x) if and only if there exist k ≤ 2n points x1 = x?, x2, . . . , xk ∈

Zn × Rd and vectors hi ∈ ∂f(xi) such that the following conditions hold:

(a) f(x1) ≤ . . . ≤ f(xk).

(b) {x ∈ Rn+d | hTi (x− xi) < 0 for all i} ∩ (Zn × Rd) = ∅.

(c) hi ∈ Rn × {0}d for i = 1, . . . , k.

Condition (a) ensures that x? is one of the points of the optimality certificate and is the
best of them. Also, in view of Condition (c), every point (z, y)T in the certificate minimizes f
on its own fiber, that is, in the set {z} × Rd. Finally, the subgradient of f at each point of the
certificate defines a half-space. The interior of their intersection plays the role of a polyhedron
whose projection on the first n components is the P described above. Condition (b) ensures
that this interior is mixed-integer-free.

Example 3. We consider the function f : R2 → R defined
as f(x) := ‖Ax − c‖22, where A :=

(
2 −2
1 1

)
and c := ( 0

1 ) .
The continuous minimum of f is attained at the non-
integer point (1/2 1/2)T. We choose x1 = (0 0)T, x2 =
(0 1)T, x3 = (1 0)T and x4 = (1 1)T and we define
P = {x ∈ R2 | hTi x ≤ hTi xi, i = 1, . . . , 4}, where
hi = ∇f(xi). It holds that f(x1) ≤ f(xi) for i = 2, 3, 4
and int(P )∩Z2 = ∅ (see Figure). Then Theorem 2 implies
that x1 = argminz∈Z2 f(z).

x1 x3

x2 x4

As announced, we formulate and prove a version of the above theorem that takes possible
convex functional constraints to problem (1) into account.

Let g1, . . . , gm : dom(f) 7→ R be continuous convex functions. Again we may assume w.l.o.g.
that dom(gj) = Rn for all j. By g(x) we denote the vector of components g1(x), . . . , gm(x). Let
us first discuss the continous convex optimization problem

x? = argmin
x∈Rn,
g(x)≤0

f(x). (3)

Assume that there exists a feasible point y ∈ Rn fulfilling the so-called Slater condition, that
is, gi(y) < 0 for all functions gi that are not are not affine linear. Under this assumption the
Karush-Kuhn-Tucker (KKT) conditions (e.g. [11, 12]) provide necessary and sufficient opti-
mality conditions. Namely, the point x? such that g(x?) ≤ 0 attains the optimal continuous
solution if and only if there exist hf ∈ ∂f(x?), hgi ∈ ∂gi(x?), for i = 1, . . . ,m and non-negative
λi, i = 1, . . . ,m, such that

hf +

m∑
i=1

λihgi = 0 and λigi(x
?) = 0 ∀i. (4)
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Note that in this representation it suffices to consider only those gi(x
?) that are binding, i.e.

λi 6= 0, and for which the corresponding hgi are linearly independent.
It is our intention to generalize these optimality conditions to the mixed-integer setting

x? = argmin
x∈Zn×Rd,
g(x)≤0

f(x). (5)

We first generalize the Slater condition.

Definition 4. We say that the constraints g(x) ≤ 0 fulfill the mixed-integer Slater condition if
for every point (z, y) ∈ Zn × Rd with g((z, y)) ≤ 0 there exists a y′ ∈ Rd such that g((z, y′)) ≤ 0
and gi((z, y

′)) < 0 for every function gi that is not affine linear.

Under the assumption of the mixed-integer Slater condition, we next formulate and justify
mixed-integer optimality conditions.

Similarly to the unconstrained case, one implication of this result is that the optimality of
a mixed-integer point can be verified in polynomial time, provided that the number of integer
variables is a constant.

Theorem 5. Let g fulfill the mixed-integer Slater condition. A point x? ∈ Zn × Rd is optimal
for the mixed-integer constrained problem (5) if and only if g(x?) ≤ 0 and there exist k ≤ 2n

points x1 = x?, x2, . . . , xk ∈ Zn × Rd and k vectors u1, . . . , uk ∈ Rm+1
+ with corresponding

hi,m+1 ∈ ∂f(xi), and hi,j ∈ ∂gj(xi) for j = 1, . . . ,m and i = 1, . . . , k such that the following
five conditions hold:

(a) If g(xi) ≤ 0 then f(xi) ≥ f(x?), ui,m+1 > 0 and ui,jgj(xi) = 0 for j = 1, . . . ,m.

(b) If g(xi) � 0 then ui,m+1 = 0 and ui,j = 0 for all j /∈ Ii := {1 ≤ j ≤ m : gj(xi) =
max1≤`≤m g`(xi)}.

(c) 1 ≤ | supp(ui)| ≤ d+ 1 for i = 1, . . . , k.

(d) {x ∈ Rn+d |
∑m+1
j=1 ui,jh

T
i,j(x− xi) < 0 for all i} ∩ (Zn × Rd) = ∅.

(e)
∑m+1
j=1 ui,jhi,j ∈ Rn × {0}d for i = 1, . . . , k.

As in the unconstrained situation, a certificate is given by a list of k ≤ 2n mixed-integer
points x1, x2, . . . , xk. Our substitute for the nonnegative multipliers λ are k nonnegative vectors
u1, . . . , uk of size m+ 1. Condition (c) asserts that none of these vectors is null; their maximal
sparsity is a consequence of Caratheodory’s Theorem. As in Theorem 2, Condition (e) indicates
that the points of the certificate are optimal in their own fiber. Condition (a) ensures that
the mixed-integer optimum x? is in the certificate, and is the best among all those that are in
it. The additional complementarity conditions are inherited from the continuous KKT theorem
quoted above. Among the certificate points x2, . . . , xk, several might be infeasible for the primal
problem. Let us define the set Ii := {1 ≤ j ≤ m | gj(xi) = max1≤`≤m g`(xi)} for every 1 ≤ i ≤ k.
Condition (b) addresses infeasible points xi in the certificate, that is, those for which gj(xi) > 0
for any j ∈ Ii. It ensures that ui,j > 0 only when j /∈ Ii. (Note that the complementarity
condition for feasible points xi’s in Condition (a) can be expressed identically). The mixed-
integer-freeness Condition (d) is the natural extension of Condition (b) in Theorem 2.

Proof. In order to prove the first implication, we assume that x? is optimal. Let X? denote
the set of all optimal solutions to (5). If there exists a point x ∈ X? with 0 ∈ ∂f(x), then the
theorem follows directly from the purely continuous version of the KKT conditions described
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above; we can also take k = 1. Next, assume there exist an x ∈ X? ∩ int(conv(X?)) and
hx ∈ ∂f(x) such that hx 6= 0. By convexity, f must be constant on conv(X?), contradicting
that hx 6= 0. This implies that if X?∩ int(conv(X?)) 6= ∅, then 0 ∈ ∂f(x) for all x ∈ X?. Hence,
let us assume that X? ∩ int(conv(X?)) = ∅ and that 0 /∈ ∂f(x) for all x ∈ X?.

For every z ∈ Zn we consider the following continuous convex subproblem,

min
y∈Rd,

g((z,y))≤0

f((z, y)). (6)

We distinguish two cases.

(i) Problem (6) is infeasible. Let us define

yz := argmin
y∈Rd

max
1≤i≤m

gi((z, y)).

Let Iz := {1 ≤ j ≤ m | gj((z, yz)) = max1≤i≤m gi((z, yz))}. Since yz is an optimal solu-
tion to an unconstrained convex problem, there exists a vector hz ∈ ∂max1≤i≤m gi((z, yz)) =
conv({∂gi,z((z, yz)) | i ∈ Iz}) such that hz ∈ Rn × {0}d [20, Lemma 3.1.10]. We can write

hz =

m∑
j=1

uz,jhz,j

with uz,j ≥ 0 for j ∈ Iz, uz,j = 0 for j /∈ Iz,
∑
j∈Iz uz,j = 1 and hz,j ∈ ∂gj((z, yz)) for

j = 1, . . . ,m. We also define uz,m+1 := 0. From Caratheodory’s Theorem it follows that we
can choose uz = (u1,z, . . . , um,z, uz,m+1) = (u1,z, . . . , um,z, 0) such that | supp(uz)| ≤ d+ 1. We
verify Conditions (b), (c), and (e).

(ii) Problem (6) is feasible. We define

yz := argmin
y∈Rd

{f((z, y)) | g((z, y)) ≤ 0}.

Since by our initial assumption x? is optimal, it follows that f((z, yz)) ≥ f(x?). From Slater’s
condition, we can apply the standard continuous KKT conditions. There exists a vector of
multipliers uz ∈ Rm+1

+ , a vector hz,m+1 ∈ ∂f((z, yz)), and vectors hz,j ∈ ∂gj((z, yz)) for j =
1, . . . ,m such that

uz,m+1 > 0, uz,jgj((z, yz)) = 0 for j = 1, . . . ,m.

Condition (a) would thereby be verified whatever fiber minimizer we would take in our certificate.

Furthermore, the KKT conditions imply also that
∑m+1
j=1 uz,jhz,j ∈ Rn × {0}d, which will

lead to Condition (e).
Note that uz,m+1 > 0 implies that | supp(u)| ≥ 1. Caratheodory’s Theorem implies that we

can choose u such that | supp(u)| ≤ d+ 1, which will yield Condition (c).
It remains to verify Condition (d) for both cases. To this end, we define

hz :=

m+1∑
j=1

uz,jhz,j ∈ Rn × {0}d

and the open half-space

Lz := {(z′, y′) ∈ Rn × Rd | hTz ((z′, y′)− (z, yz)) < 0}. (7)
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Note that the half-spaces are well defined, because hz is always different from zero. This case
was handled in the beginning of this proof. Since the last d components of hz are null, (z′, y′)
belongs to Lz if and only if the whole fiber containing z′ belongs to Lz. So, the fiber of z does
not belong to Lz because (z, yz) /∈ Lz.

Suppose now that (z′, y′) is a (continuous) feasible point that does not belong to Lz. Then
f((z′, y′)) ≥ f((z, yz)). Indeed, we first have:

0 ≥
m∑
j=1

uz,jgj(z
′, y′) =

m∑
j=1

uz,j(gj(z
′, y′)− gj(z, yz)) ≥

m∑
j=1

uz,jh
T
z,j((z

′, y′)− (z, yz)),

where we have used successively the nonnegativity of the multipliers uz,j , the complementarity
conditions, and the convexity of the functions gj . Since uz,m+1 > 0, we deduce that:

0 ≤ hTz,m+1((z′, y′)− (z, yz)) ≤ f((z′, y′))− f((z, yz)) (8)

as announced.
Therefore, the intersection L := ∩z∈ZnLz is mixed-integer-free and contains every feasible

point (z, y) ∈ Rn × Rd for which f((z, y)) < f(x?). We have excluded at the beginning of this
proof the situations where L could be empty.

It follows from [4] and our Assumption 1, that a sub-selection of k ≤ 2n inequalities hTziy <
hTzizi, i = 1, . . . , k suffices to describe a polyhedron containing L that does not contain any integer
point in its interior.1 By (8), one of those k points has to be a solution x? to our mixed-integer
problem. Then we obtain the desired certificate by defining x1 = x?, x2 = (z2, yz2), . . . , xk =
(zk, yzk). Note that we have written hi for hzi in the theorem’s statement.

All the conditions are now satisfied.
To prove the other direction, let x1, . . . , xk be the points in the certificate, and consider the

open polyhedron:

P := {x ∈ Rn+d |
m+1∑
j=1

ui,jh
T
i,j(x− xi) < 0 for all i = 1, . . . ,m},

with hi,j as defined in the statement of the Theorem. We assume that Conditions (a) – (e) are
satisfied. In particular, P is mixed-integer-free. Let x̄ ∈ Zn × Rd. Then x̄ must violate at least
one inequality of P , say the i-th inequality, i.e.,

m+1∑
j=1

ui,jh
T
i,j(x̄− xi) ≥ 0.

Since v :=
∑m+1
j=1 ui,jhi,j is a subdifferential of the convex function ψ(x) := ui,m+1f(x) +∑m

j=1 ui,jgj(x) at xi, the minimum of ψ(x) over the half-space {x | vT(x− xi) ≥ 0} is precisely
xi.

Assume g(xi) � 0. Since ui,m+1 = ui,j = 0 for all j /∈ Ii, we get

0 ≤
∑
j∈Ii

ui,jh
T
i,j(x̄− xi) ≤

∑
j∈Ii

ui,j(gj(x̄)− gmax(xi)),

with gmax(xi) := max1≤j≤m gj(xi), from which we deduce that x̄ is not feasible.

1We provide all the details of this assertion in the appendix.
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Assume now that g(xi) ≤ 0. Then ui,jgj(xi) = 0, so

0 ≤
m+1∑
j=1

ui,jh
T
i,j(x̄− xi) ≤

m∑
j=1

ui,j(gj(x̄)− gj(xi)) + ui,m+1(f(x̄)− f(xi))

=

m∑
j=1

ui,jgj(x̄) + ui,m+1(f(x̄)− f(xi)).

So, if x̄ is feasible, the sum of the m first terms above is nonpositive, and f(x̄) ≥ f(xi). Thus
the best point x? among those in the certificate must be optimal.

Remark 6. Note that Assumption 1 is necessary. Consider the problem inf{x2 | g(x1, x2) =
ex1−x2 ≤ 0}, if we assume that x1, x2 ∈ R, then the infimum is 0. This infimum is not attained
by any point, i.e., the problem is unbounded. On the other hand, if we require x1, x2 ∈ Z, then
the infimum is 1 and it is attained at any point of the form at x? = (x1, 1)T with x1 ∈ Z−.
However, Theorem 5 cannot be applied: the integer-free set would have a face contained in the
line {(t, 1)T : t ∈ R}. Also, ∂g

∂x1
(x) > 0 for all x. Thus, no finite number of the integer points

(x1, x2)T with x2 ≤ 0 can cut all the integer points of {(t, 1)T : t < 0}.

As an application of the above theorem, let us consider the mixed-integer Euclidean Projec-
tion problem:

y? = arg min{||x− y ||2 | g(x) ≤ 0, x ∈ Rn × Zd}, (9)

for a given point y ∈ Rn+d.
The continuous version of this problem has a unique solution, say ycont, which satisfies the

so-called projection condition:

for all feasible x, (y − ycont)T(x− ycont) ≤ 0.

Observe that this projection condition implies:

for all feasible x, ||x− y ||2 ≥ ||x− ycont ||2 .

Corollary 7. Assume that the feasible set fulfills the mixed-integer Slater’s condition. The
certificate x1, . . . , xk given for the problem (9) satisfies the projection property:

for all mixed-integer feasible x there exists 1 ≤ i ≤ k for which (y − xi)T(x− xi) ≤ 0,

and

for all mixed-integer feasible x there exists 1 ≤ i ≤ k for which ||x− y ||2 ≥ ||x− xi ||2 .

Proof. We denote by S the feasible set {x ∈ Rn+1 | g(x) ≤ 0}. Theorem 5 for f(x) := ||x−y||22/2
provides us with a certificate of points x1, . . . , xk, its accompanying set of nonnegative vectors ui
and subgradients hi,j . Let x ∈ S∩(Zn×Rd). By Condition (d), the point x violates at least one of

the inequalities describing the open mixed-integer-free polyhedron, say
∑m+1
j=1 ui,jh

T
i,j(x−xi) ≥ 0

7



for some i = 1, . . . , k. This implies that since x is feasible xi must be feasible as well and
therefore, by Condition (a), we know that ui,m+1 > 0. Thus:

0 ≤
m∑
j=1

ui,jh
T
i,j(x− xi) + ui,m+1h

T
i,m+1(x− xi)

≤
m∑
j=1

ui,j(gj(x)− gj(xi)) + ui,m+1(xi − y)T(x− xi)

=

m∑
j=1

ui,jgj(x) + ui,m+1(xi − y)T(x− xi)

≤ ui,m+1(xi − y)T(x− xi).

The second inequality in the Corollary’s statement comes readily from:

||x− y||22 = ||x− xi||22 + ||xi − y||22 + 2(xi − y)T(x− xi) ≥ ||x− xi||22 + ||xi − y||22.

The following theorem characterizes another set of optimality conditions. We use here a
larger set of points in the certificate, and therefore a more complex mixed-integer-free poly-
hedron. Moreover, these points do not necessarily belong to the lattice. However, the Slater
condition becomes much simpler to verify.

Theorem 8. Assume the standard Slater’s condition: there exists a point s ∈ Rn+d such that
g(s) < 0. A point x? ∈ Zn × Rd is optimal with respect to (5) if and only if

(a) g(x?) ≤ 0,

(b) there exist k + l ≤ 2n(d + 1) points x1 = x?, x2, . . . , xk and y1, . . . , yl in Rn+d such that
f(xi) ≥ f(x?) for i = 1, . . . , k and g(yi) ≤ 0 for i = 1, . . . , l,

(c) there exist numbers 1 ≤ j1, . . . , jl ≤ m such that gji(yi) = 0 and there exist subgradients
hxi ∈ ∂f(xi) and hyi ∈ ∂gji(yi) such that

P := {x ∈ Rn+d |hTxix < hTxixi for all i = 1, . . . , k,

hTyix ≤ h
T
yiyi for all i = 1, . . . , l }

is mixed-integer-free.

Proof. Let X? denote the set of all optimal solutions. We can assume that X? is not empty, for
otherwise the statement holds vacuously. In view of Slater’s condition, the case where a point
of X∗ coincides with a continuous optimum corresponds to the continuous KKT conditions (4),
which imply the stated optimality certificate: if all the Lagrange multipliers are null, we simply
take k = 1, l = 0, x1 = x? to ensure that the set P is empty; if the Lagrange multipliers
are not all null, we take k = l = 1, xi = y1 = x?, and, using the notation of (4), we take
hy1 :=

∑m
j=1 λjhgj/

∑m
j=1 λj to get an empty P .

Therefore, we assume without loss of generality that no x? ∈ X? has a nonnegative λ ∈ Rm

that satisfies the KKT conditions (4). Using the argument of the proof of Theorem 5, we can
assume that X? ∩ int(conv(X?)) in empty.

Denote by L the level set L := {x ∈ Rn+d | f(x) ≤ f(x?)}, where x? ∈ X?, and by
S1, . . . , Sm the sets Sj := {x ∈ Rn+d | gj(x) ≤ 0}, whose intersection S is the feasible set. Thus
X? = L ∩ S ∩ (Zn × Rd).
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In fact, our assumptions ensure that int(L) ∩ S ∩ (Zn × Rd) is empty. Suppose otherwise
and take a point x? ∈ X? that would be in the above set. Then there exists a closed ball B
centered in x? and contained in L. By convexity, the maximum of f on B is attained on bd(B)
and cannot exceed f(x?). Hence the function f is constant on B, so that f ′(x?) = 0. Taking
λ := 0 shows that x? satisfies the continuous KKT conditions, a contradiction.

Since f and g are continuous, L and S are closed. Additionally, the existence of a point
x̂ with f(x̂) < f(x?) — because 0 /∈ ∂f(x?) — allows us to describe L as the intersection of
half-spaces defined by its boundary points and their corresponding subdifferentials:

L =
⋂

z∈bd(L),
h∈∂f(z)

{x ∈ Rn+d | hTx ≤ hTz}. (10)

The interior of L is easily seen to coincide with:⋂
z∈bd(L),
h∈∂f(z)

{x ∈ Rn+d | hTx < hTz}.

Similarly, in view of Slater’s conditions, every set Sj can be described as:

Sj =
⋂

z∈bd(Sj),
h∈∂gj(z)

{x ∈ Rn+d | hTx ≤ hTz},

so that S is:

S =

m⋂
j=1

⋂
z∈bd(Sj),
h∈∂gj(z)

{x ∈ Rn+d | hTx ≤ hTz} =

m⋂
j=1

⋂
z∈bd(Sj)∩S,
h∈∂gj(z)

{x ∈ Rn+d | hTx ≤ hTz}.

It follows from [1], the Assumption 1 and the compactness of the boundary, that a subset of
2n(d + 1) half-spaces suffice in order to guarantee that the corresponding intersection remains
mixed-integer-free2. Without loss of generality, we can choose one of the supporting half-spaces
in this description (see the construction in [1]); thus, we can take the inequality in the description
of L corresponding to x? for x1.

To prove the other direction, let x1, . . . , xk, y1, . . . , yl be the points of the certificate and
consider the mixed-integer-free set P given by the statement of the theorem. Let x ∈ Zn × Rd.
Then x violates one of the inequalities in the description of P . If that violated inequality is of
the form hTxix < hTxixi, for a point xi in bd(L), then we have f(x) ≥ f(xi) + hTxi(x − xi) ≥
f(xi) = f(x?) and x cannot be better than x?. Otherwise the violated inequality is of the form
hTyix ≤ hTyiyi, for a point yi in bd(Sji) and a subgradient hyi ∈ ∂gji(yi). Since gji(yi) = 0, we
have

0 < hTyi(x− yi) = gji(yi) + hTyi,j(x− yi)) ≤ gji(x),

so x is not feasible and therefore not a solution to our problem.

3 The mixed-integer convex dual

In the purely continuous setting, it is not too difficult to apply the KKT-theorem in order to
show a duality theorem. Provided that the standard Slater condition holds, that all functions

2We relegate the proof of that fact in the appendix.
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f and gj , j = 1, . . . ,m are continuous and convex, and that the primal and dual feasible sets
are nonempty, one has

f? = min
x∈Rn
{ f(x) | g(x) ≤ 0} = α? := max

α,u∈Rm+
{α | α ≤ f(x) + uTg(x) ∀x ∈ Rn}. (11)

In other words, any multiplier u ≥ 0 gives rise to an unconstrained convex optimization problem
α = min{f(x) + uTg(x) | x ∈ Rn} whose optimum is a lower bound on the optimal primal value
f?. The naive extension of the continuous convex dual would be to replace Rn in (11) everywhere
by Zn × Rd. This is not correct, though.

Example 9. Let n = m = 2, d = 0, f(x) = 1
2 ||x − 1||22, g1(x) = x1 − 1

2 , and g2(x) = x2 − 1
2 ,

where 1 is the all-one vector. The optimal integer point is x? = 0, so f(x?) = 1. However,

f(x) + uTg(x) =
1

2
||x− 1||22 + u1x1 + u2x2 −

1

2
(u1 + u2).

Note that f(x) + uTg(x) equals 1
2 + u1−u2

2 at x = (1, 0)T and 1
2 + u2−u1

2 at x = (0, 1)T. Then

α? = max
α,u∈R2

+

{α | α ≤ f(x) + uTg(x) ∀x ∈ Z2}

≤ max
α,u∈R2

+

{α | α ≤ f(x) + uTg(x) ∀x ∈ {(1, 0)T, (0, 1)T}} =
1

2
.

Instead of using just one multiplier per constraint, our dual, as in our KKT Theorem 5 for
mixed-integer problems, must use a selection of up to 2n multipliers per constraint. To every
mixed integer point is associated one multiplier of the selection. We denote the function that
describes this association as π : Zn × Rd 7→ {1, . . . , 2n}.

Formally, let (6) denote the primal problem. Then, the dual object is the pair of the function
π and the matrix U ∈ R2n×m

+ that pile up the multipliers. Here is a geometrical interpretation of

that dual object. Consider a polyhedron P = {x ∈ Rn+d | Ax ≤ b}, where A ∈ R2n×(n+d) and
b ∈ R2n with a mixed-integer-free interior that contains the continuous optimum and suppose
that we are given vectors Ui ∈ Rm+ associated to each row of Ax ≤ b. We can use this polyhedron
and these nonnegative vectors to generate a lower bound α for the original minimization problem
(5) as follows. For each i = 1, . . . , 2n, we consider the continuous convex problem

min
x∈Rd+n

{Uig(x) | Aix ≥ bi}. (12)

If the half-space {x ∈ Rd+n | Aix ≥ bi} contains feasible points, the optimal value of (12) is
non-positive. Denote by IP the set of indices i of all those half-spaces containing feasible points.
We can write:

f(x?) ≥ αP,U = min
i∈IP

{
min

x∈Rd+n
f(x) + Uig(x) | Aix ≥ bi

}
.

These lower bounds lead to the mixed integer duality result stated below.

Theorem 10. Let f : Rn+d 7→ R and g : Rn+d 7→ Rm be convex functions, and assume that
the mixed-integer feasible set {x ∈ Zn × Rd | g(x) ≤ 0} is non-empty, compact and contained
in the domain of f . Further, assume that g fulfills the mixed-integer Slater condition. Then
min{ f(x) |g(x) ≤ 0, x ∈ Zn × Rd} equals:

max
α∈R

U∈R2n×m
+

{ α | ∃ π : Zn × Rd 7→ {1, . . . , 2n} satisfying:

∀x ∈ Zn × Rd we have α ≤ f(x) + Uπ(x)g(x) or 1 ≤ Uπ(x)g(x)},

where Ui denotes the i-th row of U .
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Proof. We call the minimization problem the primal problem and the maximization problem
the dual problem. The assumptions regarding f and g guarantee that there exists a feasible
point x? such that f(x?) attains the primal optimum. Then, for any u ∈ Rm+ we obtain using
the point x? as a condition on the optimal dual value,

α ≤ f(x?) + uTg(x?) ≤ f(x?).

This bound on α guarantees that the optimal dual solution must be less or equal than the primal
value.

To show the other direction we apply Theorem 5 using the same notation. Since x? is optimal
it follows from Theorem 5 that there exist u1, . . . , uk fulfilling the conditions in Theorem 5. If
ui,m+1 > 0, we define Ui,j :=

ui,j
ui,m+1

for j = 1, . . . ,m. Otherwise, ui,m+1 = 0 and we define

Ui,j :=
ui,j
µi

for j = 1, . . . ,m, where µi :=
∑m
j=1 ui,jgj(xi). Note that, if k < 2n we can

introduce artificial redundant rows Ui = Uk for i = k + 1, . . . , 2n. Now, we define π as follows:
π(x) := min{ i |

∑m+1
j=1 ui,jh

T
i,j(x − xi) ≥ 0}. The mixed-integer-freeness of the set P in the

statement of Theorem 5 shows that this function is well-defined for every point in Zn × Rd. If
x happens to be infeasible, then

∑m
i=1 ui,jgj(xi) > 0, i.e., Uig(x) ≥ 1. If x is feasible, then

ui,m+1 > 0 and

f(x)+Uig(x) = f(x)+

m∑
i=1

ui,j
ui,m+1

(gj(x)−gj(xi)) ≥ f(xi)+

m+1∑
i=1

ui,j
ui,m+1

hTi,j(x−xi) ≥ f(xi) ≥ f(x?).

We conclude that the primal and the dual solution attain the same objective function value.

Example 11. Let us apply the above theorem to the problem given
in Example 9. The integer Slater condition holds. We see that the
certificate x1 := (0, 0)T, x2 := (1, 0)T, x3 := (0, 1)T along with the
vectors u1 := (0, 0, 1)T, u2 := (1, 0, 0)T, u3 := (0, 1, 0)T, satisfy the
statement of Theorem 5; indeed x1 is the only feasible point, where
the constraints are satisfied strictly. The two other points violate
only one constraint. Then, the corresponding integer-free set is

P =
{
x ∈ Rn |

(−1 −1
1 0
0 1

)
x ≤

(
0
1
1

)}
.

See the figure for an illustration.

x1 x2

x3

x1 x2

x3

Next, we illustrate how to apply Theorem 10. We choose the matrix U corresponding to our mul-

tipliers u as: ( 0 2 0 0
0 0 2 0 )

T
. Note that the fourth row is a dummy one as we will never use it. Further

we set the assignment function π to:

π(x) =

 1 if (−1 − 1)x ≥ 0
2 else if (1 0)x ≥ 1
3 else (0 1)x ≥ 1.

When π(x) = 1, the conditions on α can be read as:

α ≤ 1

2
||x− 1||2 for x ∈ Z2, s.t. (−1,−1)x ≤ 0.

Thus, α ≤ 1. On the other hand, for those x with π(x) = 2 or 3, we have that 1 ≤ Uπ(x)g(x).
Hence, together with the lower bound on α, we obtain α = 1.

It is straightforward to generalize the previous result slightly: one may drop the assumptions
about the convex functions f : Rn+d 7→ R and g : Rn+d 7→ Rm that ensure that the primal and
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dual problem are feasible and bounded. This then forces us to replace the minimum and the
maximum with the infimum and the supremum, respectively.

Let us finally comment on the linear case. In this special situation we have that f(x) = cTx
and g(x) = Ax − b, with c ∈ Qn+d, A ∈ Qm×(n+d) and b ∈ Qm. This special setting allows
us to simplify the min-max relation and at the same time highlight the connection to mixed-
integer-free polyhedra. Let us assume without loss of generality that the row vectors U1, . . . , Uk
correspond to the first type of inequality in the duality statement, i.e. α ≤ f(x) + Uig(x), and
the remaining Ui’s correspond to the second type of inequality, 1 ≤ Uig(x). We define

P (α,U) := {x ∈ Rn+d | α− Uib > (cT − UiA)x for i = 1, . . . , k
1− Uib > −UiAx for i = k + 1, . . . , 2n}.

Then the duality statement in the linear mixed-integer situation can be recast as follows:

Corollary 12. With the notation introduced above one has

min
x∈Zn×Rd

{ cTx |Ax ≤ b} = max
α∈R

U∈R2n×m
+

{ α | P (α,U) ∩ (Zn × Rd) = ∅}.

Appendix

We display in this appendix some elementary technical observations needed in the proof of
Theorems 5 and 8. The notation B(x,R) designate the open Euclidean ball centered in x of
radius R > 0 and B[x,R] its closure. The relative interrior of a set S is written ri(S).

Observation 13. We know by Doignon’s Theorem [4] that if a possibly infinite intersection of
convex sets is integer-free and if one of these sets is bounded, then a sub-selection of at most 2n

of them is integer-free.
As in the proof of Theorem 5, we consider the sets Lz defined in (7) and their intersection

L. Since the d last components of hz are null, we can restrict our attention to the projection L̂z
of Lz on its n first component and the intersection L̂.

First, we show that L̂ is bounded. Suppose otherwise and consider one of its rays ` :=
{z0 + td : t ≥ 0}. Pick a few points z1, . . . , zN ∈ Zn so that the interior of their convex hull
contains B[z0,

√
n]. Since the level set corresponding to max1≤i≤N f(zi) is bounded, there exists

a ball B[z0,M ] containing it. Further, there exists an integral point ẑ /∈ B[z0,M ] at a distance

smaller than
√
n
2 from `. The half-space {y ∈ Rn : hTy < hTẑ}, with h ∈ ∂f(ẑ), contains L.

Now, ` cannot be entirely in this half-space. This contradiction shows that L̂ is bounded.
Let us take a closed ball B[0, R] containing L̂. Consider the compact set C := B[0, 2R]\B(0, R).

The sets B(0, 3R)\ cl(L̂z) are open and cover C. Hence, a finite number of them are enough
to cover C, say C ⊆ ∪Ni=1B(0, 3R)\ cl(L̂zi). Thus ∩Ni=1L̂zi ⊆ B[0, R] by connectivity of this
intersection.

Observe that the previous observation holds also when we replace some Lz by their closure.
The second observation follows closely the proof of the main result in [1].

Observation 14. Let C ⊆ Rn+d be a mixed-integer-free convex set. Assume that C = int(L)∩S,
where L and S are the bounded level sets of two convex functions f and g. (In the context of
Theorem 8, g plays the role of gmax) Suppose that:

int(L) :=
⋂

z∈bd(L),
u∈∂f(z)

{y ∈ Rn+d : uT(y−z) < 0} 6= ∅ and S :=
⋂

z∈bd(S),
v∈∂g(z)

{y ∈ Rn+d : vT(y−z) ≤ 0}.
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Denote by Π the projection operator on the first n components and Ĉ := Π(C). By continuity
of Π, we know that Π(cl(C)) = cl(Ĉ). Since int(C) is nonempty, it is easy to verify that
Π(int(C)) = ri(Ĉ). Define for every x ∈ bd(Ĉ) := cl(Ĉ)\ ri(Ĉ) the sets Cx := ({x} × Rd) ∩ C
and C̄x := ({x} × Rd) ∩ cl(C) (Note that C̄x is not necessarily the closure of Cx). For every
x ∈ bd(Ĉ), we know Cx ⊆ bd(C). If Cx is empty (and then x /∈ Ĉ), there exists y ∈ S ∩ bd(L)
with Π(y) = x (for otherwise x /∈ cl(Ĉ)). If Cx is not empty, then there exists y ∈ C with
Π(y) = x, y ∈ int(L), and y ∈ bd(S) (for otherwise x ∈ ri(Ĉ)).

Let us apply our previous observation on Doignon’s Theorem. We obtain N ≤ 2n inequalities,
say the k first from L and the N − k last from S whose intersection is integer-free, namely:

P̂ =

k⋂
i=1

{y ∈ Rn : uTi (y − xi) < 0} ∩
N⋂

j=k+1

{y ∈ Rn : uTj (y − xj) ≤ 0}.

Note that some xi with 1 ≤ i ≤ k might coincide with some xj with k < j ≤ N . Now, let

x ∈ {x1, . . . , xN}. By what precedes, x /∈ P̂ iff Cx = ∅, in which case x ∈ bd(L) and x = xi
for some 1 ≤ i ≤ k. As in [1], for every x ∈ bd(Ĉ) we define a point y ∈ ri(C̄x) and the
closed convex cone Nx of affine functions from Rn+d to R vanishing on y and nonnegative on
C. The extreme rays of Nx are in ∂f(y) if y ∈ bd(L) and in ∂g(y) if y ∈ bd(S). Since Ĉ is of
dimension n, the dimension of Nx is not larger than d+ 1.

Now, (ui, 0)T ∈ Nx, so we can represent this vector as a combination of at most d + 1
extreme vectors in Nx, say b(1), . . . , b(d+1), with possibly repeated vectors. If Cx is not empty,
then y ∈ int(L) because y ∈ ri(Cx), so all these vectors belong to ∂g(y), yielding inequalities of
the type {z ∈ Rn+d : (b(j))T(z − y) ≤ 0}. If Cx is empty, the corresponding inequalities are of
the form {z ∈ Rn : (b(j))T(z − y) < 0} or {z ∈ Rn : (b(j))T(z − y) ≤ 0}, with at least one of the
first type, depending on b(j) ∈ ∂f(y) or b(j) ∈ ∂g(y). Note that y is not in the intersection of
these half-spaces, and in fact, no point of {x} × Rd.

The mixed-integer-freeness of the resulting intersection is now clear.
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